Thomas, Hugh (2005). « Graded left modular lattices are supersolvable ». Algebra universalis, 53(4), pp. 481-489.
Fichier(s) associé(s) à ce document :
|
PDF
Télécharger (111kB) |
---|
Adresse URL: http://dx.doi.org/10.1007/s00012-005-1914-4
Résumé
We provide a direct proof that a finite graded lattice with a maximal chain of left modular elements is supersolvable. This result was first established via a detour through EL-labellings in [MT] by combining results of McNamara [Mc] and Liu [Li]. As part of our proof, we show that the maximum graded quotient of the free product of a chain and a single-element lattice is finite and distributive.
Type: | Article de revue scientifique |
---|---|
Mots-clés ou Sujets: | Supersolvability, left modularity, graded lattice |
Unité d'appartenance: | Faculté des sciences > Département de mathématiques |
Déposé par: | Hugh R. Thomas |
Date de dépôt: | 24 mai 2016 15:11 |
Dernière modification: | 30 mai 2016 20:23 |
Adresse URL : | http://archipel.uqam.ca/id/eprint/8505 |
Modifier les métadonnées (propriétaire du document) |
Statistiques |