Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions

Billera, Louis J.; Thomas, Hugh et van Willigenburg, Stephanie (2006). « Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions ». Advances in Mathematics, 204(1), pp. 204-240.

Fichier(s) associé(s) à ce document :
[img]
Prévisualisation
PDF
Télécharger (312kB)

Résumé

We define an equivalence relation on integer compositions and show that two ribbon Schur functions are identical if and only if their defining compositions are equivalent in this sense. This equivalence is completely determined by means of a factorization for compositions: equivalent compositions have factorizations that differ only by reversing some of the terms. As an application, we can derive identities on certain Littlewood–Richardson coefficients. Finally, we consider the cone of symmetric functions having a nonnnegative representation in terms of the fundamental quasisymmetric basis. We show the Schur functions are among the extremes of this cone and conjecture its facets are in bijection with the equivalence classes of compositions.

Type: Article de revue scientifique
Mots-clés ou Sujets: Ribbon Schur function; Littlewood–Richardson coefficients; Compositions; Partitions
Unité d'appartenance: Faculté des sciences > Département de mathématiques
Déposé par: Hugh R. Thomas
Date de dépôt: 18 mai 2016 19:48
Dernière modification: 30 mai 2016 20:09
Adresse URL : http://archipel.uqam.ca/id/eprint/8477

Statistiques

Voir les statistiques sur cinq ans...