Blondin Massé, Alexandre; Brlek, Srecko et Labbé, Sébastien (2012). « A parallelogram tile fills the plane by translation in at most two distinct ways ». Discrete Applied Mathematics, 160(7-8), pp. 1011-1018.
Fichier(s) associé(s) à ce document :
|
PDF
Télécharger (405kB) |
---|
Adresse URL: http://dx.doi.org/10.1016/j.dam.2011.12.023
Résumé
We consider the tilings by translation of a single polyomino or tile on the square grid Z2 (Z exposant 2). It is well-known that there are two regular tilings of the plane, namely, parallelogram and hexagonal tilings. Although there exist tiles admitting an arbitrary number of distinct hexagon tilings, it has been conjectured that no polyomino admits more than two distinct parallelogram tilings. In this paper, we prove this conjecture.
Type: | Article de revue scientifique |
---|---|
Mots-clés ou Sujets: | Tilings; Polyominoes |
Unité d'appartenance: | Faculté des sciences > Département d'informatique |
Déposé par: | Alexandre Blondin Massé |
Date de dépôt: | 09 mai 2016 14:30 |
Dernière modification: | 30 mai 2016 14:44 |
Adresse URL : | http://archipel.uqam.ca/id/eprint/8429 |
Modifier les métadonnées (propriétaire du document) |
Statistiques |