Occupation times of spectrally negative Lévy processes with applications

Landriault, David; Renaud, Jean-François et Zhou, Xiaowen (2011). « Occupation times of spectrally negative Lévy processes with applications ». Stochastic Processes and their Applications, 121(11), pp. 2629-2641.

Fichier(s) associé(s) à ce document :
[img]
Prévisualisation
PDF
Télécharger (186kB)

Résumé

In this paper, we compute the Laplace transform of occupation times (of the negative half-line) of spectrally negative Lévy processes. Our results are extensions of known results for standard Brownian motion and jump-diffusion processes. The results are expressed in terms of the so-called scale functions of the spectrally negative Lévy process and its Laplace exponent. Applications to insurance risk models are also presented.

Type: Article de revue scientifique
Mots-clés ou Sujets: Occupation time, spectrally negative Lévy processes, fluctuation theory, scale functions, ruin theory.
Unité d'appartenance: Faculté des sciences > Département de mathématiques
Déposé par: Jean-François Renaud
Date de dépôt: 22 avr. 2016 14:49
Dernière modification: 27 avr. 2016 19:27
Adresse URL : http://archipel.uqam.ca/id/eprint/8253

Statistiques

Voir les statistiques sur cinq ans...