Landriault, David; Renaud, Jean-François et Zhou, Xiaowen (2011). « Occupation times of spectrally negative Lévy processes with applications ». Stochastic Processes and their Applications, 121(11), pp. 2629-2641.
Fichier(s) associé(s) à ce document :
|
PDF
Télécharger (186kB) |
---|
Adresse URL: http://dx.doi.org/10.1016/j.spa.2011.07.008
Résumé
In this paper, we compute the Laplace transform of occupation times (of the negative half-line) of spectrally negative Lévy processes. Our results are extensions of known results for standard Brownian motion and jump-diffusion processes. The results are expressed in terms of the so-called scale functions of the spectrally negative Lévy process and its Laplace exponent. Applications to insurance risk models are also presented.
Type: | Article de revue scientifique |
---|---|
Mots-clés ou Sujets: | Occupation time, spectrally negative Lévy processes, fluctuation theory, scale functions, ruin theory. |
Unité d'appartenance: | Faculté des sciences > Département de mathématiques |
Déposé par: | Jean-François Renaud |
Date de dépôt: | 22 avr. 2016 14:49 |
Dernière modification: | 27 avr. 2016 19:27 |
Adresse URL : | http://archipel.uqam.ca/id/eprint/8253 |
Modifier les métadonnées (propriétaire du document) |
Statistiques |