Impact of Wind Direction, Wind Speed, and Particle Characteristics on the Collection Efficiency of the Double Fence Intercomparison Reference

Thériault, Julie M.; Rasmussen, Roy; Petro, Eddy; Trépanier, Jean-Yves; Colli, Matteo et Lanza, Luca G. (2015). « Impact of Wind Direction, Wind Speed, and Particle Characteristics on the Collection Efficiency of the Double Fence Intercomparison Reference ». Journal of Applied Meteorology and Climatology, 54(9), pp. 1918-1930.

Fichier(s) associé(s) à ce document :
[img]
Prévisualisation
PDF
Télécharger (2MB)

Résumé

The accurate measurement of snowfall is important in various fields of study such as climate variability, transportation, and water resources. A major concern is that snowfall measurements are difficult and can result in significant errors. For example, collection efficiency of most gauge–shield configurations generally decreases with increasing wind speed. In addition, much scatter is observed for a given wind speed, which is thought to be caused by the type of snowflake. Furthermore, the collection efficiency depends strongly on the reference used to correct the data, which is often the Double Fence Intercomparison Reference (DFIR) recommended by the World Meteorological Organization. The goal of this study is to assess the impact of weather conditions on the collection efficiency of the DFIR. Note that the DFIR is defined as a manual gauge placed in a double fence. In this study, however, only the double fence is being investigated while still being called DFIR. To address this issue, a detailed analysis of the flow field in the vicinity of the DFIR is conducted using computational fluid dynamics. Particle trajectories are obtained to compute the collection efficiency associated with different precipitation types for varying wind speed. The results show that the precipitation reaching the center of the DFIR can exceed 100% of the actual precipitation, and it depends on the snowflake type, wind speed, and direction. Overall, this study contributes to a better understanding of the sources of uncertainty associated with the use of the DFIR as a reference gauge to measure snowfall.

Type: Article de revue scientifique
Mots-clés ou Sujets: Precipitation, Snowfall, Automatic weather stations, Surface observations, Numerical analysis/modeling, Wind effects
Unité d'appartenance: Faculté des sciences > Département des sciences de la Terre et de l'atmosphère
Déposé par: Julie Mireille Thériault
Date de dépôt: 21 mars 2016 14:33
Dernière modification: 01 mai 2016 04:10
Adresse URL : http://archipel.uqam.ca/id/eprint/7946

Statistiques

Voir les statistiques sur cinq ans...