Lattice structure of torsion classes for path algebras

Iyama, Osamu; Reiten, Idun; Thomas, Hugh et Todorov, Gordana (2015). « Lattice structure of torsion classes for path algebras ». Bulletin of the London Mathematical Society, 47(4), pp. 639-650.

Fichier(s) associé(s) à ce document :
[img]
Prévisualisation
PDF
Télécharger (207kB)

Résumé

We consider module categories of path algebras of connected acyclic quivers. It is shown in this paper that the set of functorially finite torsion classes form a lattice if and only if the quiver is either Dynkin quiver of type A, D, E, or the quiver has exactly two vertices.

Type: Article de revue scientifique
Mots-clés ou Sujets: Combinatorics, Algebraic combinatorics, Combinatorial aspects of representation theory; Order, lattices, ordered algebraic structures, Lattices, Structure theory; Associative rings and algebras, Representation theory of rings and algebras, Representations of quivers and partially ordered sets
Unité d'appartenance: Faculté des sciences > Département de mathématiques
Déposé par: Hugh R. Thomas
Date de dépôt: 18 mai 2016 19:50
Dernière modification: 30 mai 2016 20:15
Adresse URL : http://archipel.uqam.ca/id/eprint/8491

Statistiques

Voir les statistiques sur cinq ans...