Brav, Christopher et Thomas, Hugh (2014). « Thin monodromy in Sp(4) ». Compositio Mathematica, 150(03), pp. 333-343.
Fichier(s) associé(s) à ce document :
|
PDF
Télécharger (308kB) |
---|
Adresse URL: http://dx.doi.org/10.1112/S0010437X13007550
Résumé
We show that some hypergeometric monodromy groups in Sp(4,Z) split as free or amalgamated products and hence by cohomological considerations give examples of Zariski dense, non-arithmetic monodromy groups of real rank 2. In particular, we show that the monodromy of the natural quotient of the Dwork family of quintic threefolds in P^{4} splits as Z*Z/5. As a consequence, for a smooth quintic threefold X we show that a certain group of autoequivalences of the bounded derived category of coherent sheaves is an Artin group of dihedral type.
Type: | Article de revue scientifique |
---|---|
Mots-clés ou Sujets: | algebraic geometry, Structure of families, monodromy |
Unité d'appartenance: | Faculté des sciences > Département de mathématiques |
Déposé par: | Hugh R. Thomas |
Date de dépôt: | 18 mai 2016 19:48 |
Dernière modification: | 30 mai 2016 20:11 |
Adresse URL : | http://archipel.uqam.ca/id/eprint/8480 |
Modifier les métadonnées (propriétaire du document) |
Statistiques |