
THIN MONODROMY IN Sp(4)

CHRISTOPHER BRAV AND HUGH THOMAS

Abstract. We show that some hypergeometric monodromy groups
in Sp(4,Z) split as free or amalgamated products and hence by
cohomological considerations give examples of Zariski dense, non-
arithmetic monodromy groups of real rank 2. In particular, we
show that the monodromy of the natural quotient of the Dwork
family of quintic threefolds in P4 splits as Z ∗ Z/5Z. As a conse-
quence, for a smooth quintic threefold X we show that the group
of autoequivalences Db(X) generated by the spherical twist along
OX and by tensoring with OX(1) is an Artin group of dihedral
type.

1. Introduction

The question of the arithmeticity of Zariski dense monodromy groups
of families of projective varieties was raised by Griffiths-Schmid ([7]).
Non-arithmetic or ‘thin’ examples were given by Deligne-Mostow ([4])and
Nori ([11]), and more general examples in a similar spirit will be pro-
vided by Fuchs-Meiri-Sarnak ([6]). In all these examples, however, the
Zariski closure of the monodromy group has real rank 1 or is a product
of groups of rank 1, so it is natural to ask if there are examples of thin
monodromy in higher rank. For more discussion of this problem, see
Sarnak’s Notes on thin matrix groups ([12]).

The simplest test cases are families over P1 \ {0, 1,∞} with mon-
odromy having Zariski closure Sp(4,R) (which has real rank 2). Ex-
amples of such monodromy are provided by certain hypergeometric
groups ([1]). Very recently, some of these examples have been shown
to be arithmetic by Singh-Venkataramana ([13]), and for others their
methods are inconclusive.

In the present paper, we focus on the examples of hypergeomet-
ric groups in Sp(4,Z) having maximally unipotent monodromy at ∞,
which have been studied by many people ([3, 5, 15]). In order to de-
scribe them more precisely, let us introduce some notation.

A triple R, T, U ∈ GLn(C) with R = TU is called (irreducible)
hypergeometric if rank(T − I) = 1 and R−1, U have no common eigen-
values. This second condition ensures that the given representation of
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the hypergeometric group 〈R, T, U〉 ⊂ GLn(C) is irreducible. Hyper-
geometric groups are precisely the monodromy groups of generalised
hypergeometric ordinary differential equations ([1]). Such a group is
uniquely determined, up to conjugacy, by the Jordan normal forms of
R, T , and U , a property referred to as ‘rigidity’.

We shall be interested in the cases in which R, T, U ∈ Sp(4,Z) and U
has maximally unipotent monodromy (such arise as monodromy groups
of families of Calabi-Yau threefolds with h2,1 = 1 over P1 \ {0, 1,∞}
with maximal degeneration at ∞). There are precisely 14 such ex-
amples ([5]), which are labeled by a quadruple of rational numbers
(a1, a2, a3, a4) such that the eigenvalues of R are exp(2πiaj). In all of
these cases, the group is known to be Zariski dense in Sp(4,R) by a
criterion of Beukers-Heckman ([1]).

The 14 possibilities are listed in the table at the end of this section.

Theorem 1. In 7 of the 14 cases, the group splits as a free or an
amalgamated product and contains a free subgroup of finite index. In
particular, these examples give thin monodromy groups of real rank 2.

More precisely, in the next section we show by a ping-pong argument
that in 7 cases either that there is a splitting 〈R, T 〉 = 〈R〉∗〈T 〉 or Rk =
−I for some k > 0 and there is a splitting 〈R, T 〉 = 〈R〉 ∗〈Rk〉 〈Rk, T 〉.
The precise form of the splitting is displayed in the table at the end of
this section, from which it is immediate that either the group is free
or the group generated by conjugates of T by powers of R is a free
subgroup of finite index.

For thinness in these cases, note that the group Sp(4,Z) has coho-
mological dimension 2 over Q ([9], Cor. 5.2.3). But since a group of
finite cohomological dimension has the same cohomological dimension
as its finite index subgroups ([14], Th. 9.1), Sp(4,Z) cannot have free
subgroups of finite index.

Our ping-pong argument is uniform, works for 7 of the 14 cases,
and is inconclusive for the other 7. For 5 of these 7, we exhibit addi-
tional relations showing that the group does not split in the expected
way. Note of course that among these 7 other cases are 3 examples
((1

6
, 1
6
, 5
6
, 5
6
), (1

6
, 1
4
, 3
4
, 5
6
), and ( 1

10
, 3
10
, 7
10
, 9
10

)) of arithmetic groups from
Singh-Venkataramana ([13]).

The monodromy groups appearing in the table are well-studied in
the context of mirror symmetry and are expected to be mirror dual
to certain groups of autoequivalences acting on the bounded derived
category of coherent sheaves Db(X) on a Calabi-Yau threefold X. For
a discussion of this, see van Enckevort-van Straten ([15]).
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The case with parameter (1
5
, 2
5
, 3
5
, 4
5
) corresponds to the original and

most famous example of mirror symmetry, the Dwork family of quintic
threefolds and its mirror family, with the autoequivalences acting on
Db(X), X a smooth quintic threefold. Let α = TOX

be the spherical
twist functor along the structure sheaf OX and β = OX(1)⊗? the
functor of tensoring with OX(1). We are interested in describing the
subgroup of autoequivalences 〈α, β〉 ⊂ Aut(Db(X)).

Theorem 2. The subgroup 〈α, β〉 ⊂ Aut(Db(X)) is a two-generator
Artin group with relation (αβ)5 = (βα)5.

To see this, first consider the action of 〈α, β〉 on the even dimensional
cohomology Hev(X,Q), for which it is easy to write down explicit ma-
trices, which we denote A and B ([15]). Using this, we see that A
is a transvection, B is maximally unipotent, and C = AB has the
non-trivial fifth roots of unity for eigenvalues. A,B,C therefore give a
hypergeometric triple and by rigidity of hypergeometric triples, we can
choose bases in which A = T , B = U .

Next, note that from the splitting 〈A,B〉 = 〈A,AB〉 = Z ∗Z/5Z we
see that 〈A,B〉 is generated by A,B subject to the single relation

(AB)5 = I.

The relation between α, β in Aut(Db(X)) turns out to be slightly
more subtle. Namely we have (αβ)5 ' [2], where [2] ∈ Aut(Db(X)) is
the cohomological shift by two degrees ([2, 8]). In particular, (αβ)5 is
central. Since centrality gives β(αβ)5 ' (βα)5β, we have the relation

(αβ)5 ' (βα)5.

Conversely, the relation (αβ)5 ' (βα)5 implies centrality in a similar
way.

It is then not hard to see that (αβ)5 ' (βα)5 is the only relation
among α, β. Indeed, consider the Artin group generated by x, y subject
to the relation (xy)5 = (yx)5. Then we have a sequence of surjections
〈x, y〉 � 〈α, β〉 � 〈A,B〉, where x 7→ α, y 7→ β and α 7→ A, β 7→ B.
Since the only relation among the A,B is (AB)5 = I, the kernel of
the surjection 〈x, y〉 � 〈A,B〉 is generated as a normal subgroup by
(xy)5, but since (xy)5 is central, the kernel is in fact cyclic. Similarly,
the kernel of the surjection 〈α, β〉� 〈A,B〉 is cyclic and generated by
(αβ)5. The surjection 〈x, y〉� 〈α, β〉 therefore induces an isomorphism
between the kernels of 〈x, y〉 � 〈A,B〉 and of 〈α, β〉 � 〈A,B〉 and
hence is itself an isomorphism.
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We include here a table with the data for the fourteen hypergeo-
metric groups in Sp(4,Z) for which U is maximally unipotent. In the
first column are the parameters (a1, a2, a3, a4) giving the eigenvalues
exp(2πiaj) for R. With respect to a suitable basis ([3]), there are inte-
gers d and k so that we have

U =


1 1 0 0
0 1 0 0
d d 1 0
0 −k −1 1

 , T =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 ∈ Sp(4,Z).

The integers d, k appear in the second two columns. In the fourth
column, we describe a splitting of the group as a free or an amalgamated
product in those cases in which our method is effective. In the final
column we indicate cases in which there is a relation that prevents the
group from splitting in the obvious way. We do not claim in these cases
to give a complete set of relations and indeed we omit relations of the
form Rm = I.

The fourteen
(a1, a2, a3, a4) d k Splitting Additional relation

(1
5
, 2
5
, 3
5
, 4
5
) 5 5 Z ∗ Z/5Z None

(1
8
, 3
8
, 5
8
, 7
8
) 2 4 (Z× Z/2Z) ∗Z/2Z Z/8Z None

( 1
12
, 5
12
, 7
12
, 11
12

) 1 4 (Z× Z/2Z) ∗Z/2Z Z/12Z None
(1
2
, 1
2
, 1
2
, 1
2
) 16 8 Z ∗ Z None

(1
3
, 1
2
, 1
2
, 2
3
) 12 7 Z ∗ Z None

(1
4
, 1
2
, 1
2
, 3
4
) 8 6 Z ∗ Z None

(1
6
, 1
2
, 1
2
, 5
6
) 4 5 Z ∗ Z None

(1
4
, 1
3
, 2
3
, 3
4
) 2 3 No (R6T )2(R6T−1)2

(1
6
, 1
6
, 5
6
, 5
6
) 1 2 No (RT )8

(1
6
, 1
4
, 3
4
, 5
6
) 6 5 No (R6T )2(R6T−1)2

(1
6
, 1
3
, 2
3
, 5
6
) 3 4 No (R3T )2(R3T−1)2

( 1
10
, 3
10
, 7
10
, 9
10

) 1 3 No (R2T )12

(1
4
, 1
4
, 3
4
, 3
4
) 4 4 ? ?

(1
3
, 1
3
, 2
3
, 2
3
) 9 6 ? ?
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2. Ping-pong

We begin with a quick proof via the ping-pong lemma of the fact that
the SL(2) hypergeometric group having R with parameters (1/3, 2/3)
and U unipotent splits as Z∗Z/3Z. We include details for this example
because we take a very similar approach in the Sp(4) case.

By rigidity, we can choose any convenient basis in which to write
R, T, U . Let

U =

(
3 4
−1 −1

)
, T =

(
1 3
0 1

)
, R = TU =

(
0 1
−1 −1

)
.

Now we recall the ping-pong lemma, in a version convenient for us
([10], Prop. III.12.4):

Theorem 3. Let a group G be generated by two subgroups G1, G2,
whose intersection is H. Suppose that G acts on a set W , and suppose
there are disjoint non-empty subsets X, Y such that

(G1 −H)Y ⊆ X and (G2 −H)X ⊆ Y,

HY ⊆ Y and HX ⊆ X.

Then G = G1 ∗H G2.

We wish to apply the lemma with G1 the subgroup generated by T ,
and G2 the subgroup generated by R. We consider the given action of
G on R2.

Divide R2 into twelve equally-spaced cones (with respect to the angle
measure obtained when we put the axes at 60 degrees, as in the diagram
below):
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(1,−2)

(−1, 1)

(−1, 2)

(−1, 0) (1, 0)

(−1,−1) (1,−1)(0,−1)

(0, 1) (1, 1)(−2, 1)

(2,−1)

C−

C+−C−

−C+

We define X to be the union of the interiors of the four cones
which touch the horizontal axis, which are labelled in the diagram
as C+, C−,−C+,−C−. We define Y to be the union of the interiors of
the other eight cones.

We then must check that

(i) X and Y are disjoint.
(ii) R and R2 take X into Y .

(iii) T i takes Y into X for i 6= 0.

Statements (i) and (ii) are completely trivial. We can break state-
ment (iii) down into four even more trivial statements, as follows:

(iv) T−1C+ ⊆ C+

(v) TC− ⊆ C−

(vi) T−1Y ⊆ ±C+

(vii) TY ⊆ ±C−

This suffices. In order to show that T i takes Y into X for i negative,
(vi) tells us that T−1 takes Y into ±C+, and then (iv) tells us that
applying further powers of T−1 will not take us outside C+. For i
positive, the same approach is applied using (vii) and (v).

Examples in Sp(4)

We present our hypergeometric groups using the matrices
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U =


1 1 0 0
0 1 0 0
d d 1 0
0 −k −1 1

 , T =


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1


and

R = TU =


1 1 0 0
0 1− k −1 1
d d 1 0
0 −k −1 1

 ,

which preserve the standard symplectic form given by the matrix

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .

Consider the matrix:

B =


−1 0 0 0
0 1 0 −1
−d 0 1 0
0 0 0 −1

 ,

which satisfies B2 = I. We note that:

BRB = R−1 and BT−1B = T

The fixed subspace of B is just the span of the second and third
co-ordinate vectors. Let us write V for this subspace.

This subspace plays a similar role in our construction to the horizon-
tal axis in the 2-dimensional case dicussed above, where the analogue
of B is a reflection in the horizontal axis.

Remark 1. In the case that R is of finite order, V can be given a
different description which is instructive, because it emphasises the
analogy of V with the horizontal axis in the 2-dimensional case.

The cases where R is finite order are exactly the cases where R has
four distinct eigenvalues. In these cases, the eigenvalues are roots of
unity and come in complex conjugate pairs, so R induces a decompo-
sition of R4 into two 2-dimensional subspaces W1 and W2, on each of
which R acts by a rotation in an appropriate basis.

Each of W1,W2 has a one-dimensional intersection with the fixed
space of T . It turns out that V is the direct sum of these intersections,
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and B restricts to Wi, acting as a reflection fixing the intersection of
Wi with the fixed space of T .

Let

P = log(T−1R) = log(U), Q = log(TR−1).

If we consider the equation vTJPv = 0, there are two non-zero so-
lutions in V up to scalar multiples, which are (0, 0, 1, 0)T and

v = (0, 1, d/12− k/2, 0)T .

Now, define C+ to be the open cone generated by P iv for 0 ≤ i ≤
3 (that is to say, linear combinations of these four vectors, with all
coefficients strictly positive). Define C− = BC+, which can also be
described as the open cone generated by Qiv for 0 ≤ i ≤ 3. Note that
P 2v = Q2v = (0, 0, d, 0)T , the other solution to the equation which we
solved for v.

Finally, define

X = ±C+ ∪ ±C−, Y =
⋃

i|Ri 6=±I

RiX.

We now show that X and Y give ping-pong tables in the first 7
examples from the table.

Case (1
5
, 2
5
, 3
5
, 4
5
), d = 5, k = 5

The matrix R has order 5. H = {I}. G1 is the group generated by
T , and G2 is the group of order 5 generated by R.

Write M for the matrix whose columns are the generating rays
v, Pv, P 2v, P 3 of C+. Similarly, write N for the matrix whose columns
are the generating rays v,Qv,Q2v,Q3v of C−. We have

M =


0 1 0 0
1 0 0 0

−25/12 5/2 5 0
0 −25/12 0 −5

 N =


0 −1 0 0
1 25/12 0 5

−25/12 −5/2 5 0
0 25/12 0 5


The conditions we need to check are:

(i) X and Y are disjoint
(ii) (G2 −H)X ⊆ Y

(iii) (G1 −H)Y ⊆ X

In order to prove (i), it suffices to show that RjC+ and RjC− are
disjoint from C+ for 1 ≤ j ≤ 4. (Disjointness from C− then follows by
the symmetry with respect to B.)
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Consider, for example, showing that RC+ is disjoint from C+. In
order to do this, we expand M−1RM :

M−1RM =


−23/12 −55/12 −5 −5

1 1 0 0
−103/144 −131/144 −13/12 −25/12

1/6 1/2 1 1


Note that the entries in two of the rows are all non-negative, while

the entries in the other two rows are all non-positive. It follows that the
same will be true for any positive linear combination of the columns,
and thus for any point in RC+ in the basis given by the columns of M .
In particular, there is no intersection between RC+ and C+.

The same argument works for the other cases of (i): it is always the
case that two of the rows have non-negative entries and two of the rows
have non-positive entries.

Condition (ii) is true by construction.
As in the 2-dimensional case, we break condition (iii) down into four

subclaims.

(iv) T−1C+ ⊆ C+.
(v) TC− ⊆ C−.

(vi) T−1Rj(C+ ∪ C−) ⊆ ±C+ for 1 ≤ j ≤ 4.
(vii) TRj(C+ ∪ C−) ⊆ ±C− for 1 ≤ j ≤ 4.

Statement (iii) follows from (iv)–(vii) in essentially the same way as
in the 2-dimensional case. An element of (G1 − I)Y is of the form
T iRjy for some i 6= 0, 1 ≤ j ≤ 4, y ∈ Y . If i < 0, then (vi) tells us that
T−1Rjy ∈ ±C+, and then (iv) applies to tell us that T iRjy ∈ ±C+ ⊆
X. Similarly, if i > 0, apply (vii) and (v).

To establish (iv), we first argue that T−1C+ ⊆ C+. To show this, it
suffices to see that the generating rays of T−1C+ are contained in C+.
We evaluate:

M−1T−1M =


1 25/12 0 5
0 1 0 0
0 125/144 1 25/12
0 0 0 1


We observer that the entries are all non-negative, which is exactly

what we needed. Finally, since T−1 is an invertible linear transfor-
mation, it takes open sets to open sets, so the image of C+ will be
contained in C+.
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(v) can either be shown by a completely similar argument, checking
that the entries of N−1TN are non-negative, or by deducing it from
(iv) using the symmetry encoded by B.

The proof of (vi) works in exactly the same way: it reduces to check-
ing that the entries of the following matrices are either all non-negative
or all non-positive: M−1T−1RjM and M−1T−1RjN for 1 ≤ j ≤ 4.
Again (vii) is established by the same argument or by deducing it from
(vi).

Ping-pong therefore establishes that the monodromy is isomorphic
to Z ∗ Z/5Z.

Case (1
8
, 3
8
, 5
8
, 7
8
), d = 2, k = 4.

We have R4 = −I. Now H = {I, R4}.
G1 is generated by T and R4 (forming a group isomorphic to Z ×

Z/2Z). The subgroup G2 is generated by R.
Since X and Y are symmetric with respect to negation, the condi-

tions on H hold.
Condition (i) is proved exactly as before.
As before, condition (ii), that (G2 −H)X ⊆ Y , is true by construc-

tion.
Condition (iii) follows as before from conditions (iv)–(vii). In condi-

tions (vi) and (vii), note that now j runs from 1 to 3. The conditions
are checked the same way as before.

Ping-pong therefore establishes that the monodromy is isomorphic
to (Z× Z/2Z) ∗Z/2Z Z/8Z.

Case ( 1
12
, 5
12
, 7
12
, 11
12

), d = 1, k = 4

We have R6 = −I. As in the previous case, H = {I,−I}. G1 is
generated by T and R6 (forming a group isomorphic to Z × Z/2Z).
The subgroup G2 is generated by R.

Everything is checked exactly as in the previous case. Ping-pong
establishes that the monodromy is (Z× Z/2Z) ∗Z/2Z Z/12Z.

Case (1
2
, 1
2
, 1
2
, 1
2
), d = 16, k = 8

The order of R is infinite. H = {I}. G1 is generated by T and G2

by R.
The situation is very similar to the first case d = k = 5, except that,

in order to perform the check of conditions (i), (vi), and (vii) as in that
case, an infinite number of checks would be required. To establish (i)
we must show that RjC+ and RjC− are disjoint from C+ for all j 6= 0.
To establish (vi), we must show that the entries of M−1T−1RjM and
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M−1T−1RjN are all non-positive or all non-negative for each j 6= 0.
As before, (vii) then follows by symmetry.

We note that R consists of a single Jordan block with eigenvalue -1.
We therefore define Z = log(−R), which is nilpotent. Now

Rj = (−1)j exp(jZ) = (−1)j(I + jZ + j2Z2/2 + j3Z3/6).

We find that M−1RjM can therefore be expressed as

M−1RjM = (−1)j(I + jA1 + j2A2 + j3A3)

for certain matrices A1, A2, A3. Since the entries in A3 have all entries
in two rows positive, and all entries in two rows negative, the cubic
term will eventually dominate, leading us to conclude that M−1RjM
will have all entries in two rows positive and all entries in two rows
negative, for j sufficiently large. In fact, it is easy to see that the
cubic term dominates if |j| ≥ 6; one then checks the cases 1 ≤ |j| ≤ 5
individually.

To check condition (vi) we take a similar approach. We find that

M−1T−1RjM = (−1)j(M−1T−1M + jD1 + j2D2 + j3D3)

for certain matrices D1, D2, D3.
Since the entries of D3 are all strictly negative, for |j| sufficiently

large the cubic term dominates, and the entries of M−1T−1RjM are all
of the same sign. In fact, the absolute value of each entry of D3 is at
least as great as the corresponding entries in the other matrices, so the
cubic term dominates starting with |j| ≥ 6. We then check the cases
1 ≤ |j| ≤ 5 individually. The same analysis is applied to M−1T−1RjN .

Case (1
3
, 1
2
, 1
2
, 2
3
), d = 12, k = 7

As in the previous case, the order of R is infinite. H = {I}. G1 is
generated by T and G2 by R.

The analysis is very similar to the previous case. However, R has
eigenvalues exp (±2πi/3), and one 2-dimensional Jordan block with
eigenvalue −1. Therefore, we cannot simply take the logarithm of R.
However, R6 has all eigenvalues equal to 1, so we can define Z =
log(R6). Note that Z2 = 0. Now

R6n+j = Rj exp(nZ) = Rj(I + nZ)

To check that RmC+ is disjoint from C+ for m > 0, we observe
that for each 1 ≤ j ≤ 6, M−1RjM and M−1RjZM have the same two
rows consisting of positive entries, and the same two rows consisting of
negative entries. This suffices, since any positive m can be written as
6n + j for some 1 ≤ j ≤ 6. For m < 0, we proceed similarly, writing
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m = 6n + j with −6 ≤ j ≤ −1. To show that RkC− is disjoint from
C+, we proceed similarly.

To establish (vi), we consider:

M−1T−1R6n+jM = M−1T−1RjM + nM−1T−1RjZM

If 1 ≤ j ≤ 6, all the entries of the two matrices on the righthand
side have the same sign. This establishes that T−1RmC+ ⊆ C+ for any
m > 0.

For m < 0, we proceed similarly, writing m = 6n+ j with −6 ≤ j ≤
−1. Again, we check that M−1T−1RjM and −M−1T−1RjZM have all
entries with the same sign for −6 ≤ j ≤ −1. This establishes that
T−1RmC+ ⊆ C+ for m < 0.

We then repeat the same two steps to show that T−1RmC− ⊆ C+.
This completes the proof of (vi). Then (vii) follows by symmetry.

Case (1
4
, 1
2
, 1
2
, 3
4
), d = 8, k = 6

The matrix R has eigenvalues ±i together with one Jordan block of
rank two with eigenvalue −1. We therefore proceed as in the previous
case, but defining Z = log(R4). The analysis goes through in exactly
the same way.

Case (1
6
, 1
2
, 1
2
, 5
6
), d = 4, k = 5

The matrix R has eigenvalues exp (±πi/3) together with a Jordan
block of rank two with eigenvalue −1. We define Z = log(−R3). The
analysis goes through as in the previous two cases.

3. Logic behind the choice of ping-pong tables

The rough outline of the shapes of the ping-pong tables was inspired
from the 2-dimensional case. Given that, one wants to define cones C+

and C− (as in the previous section). C+ should be stable under T−1

and U , while C− should be stable under T and U−1. The two cones
therefore are going to lie on opposite sides of the fixed hyperplane of
T .

The fact that C+ and C− should have extreme rays in V , which is
codimension one in the fixed hyperplane of T , is not obvious.

As we already remarked, the cone C+ should be stable under U .
An awkward feature of this condition is that if we, for some reason,
decide that some vector x is in C+, then it follows that the infinite set
Ux, U2x, . . . all also lie in C+. The convex hull of this infinite set will
typically have infinitely many extremal rays, making further analysis
complicated.
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Therefore, we instead chose to require that C+ be stable under P =
log(U). Since U = exp(P ), stability under P implies stability under
U , but since P is nilpotent, stability under P is easier to work with.
Indeed, since P 4 = 0, for any x, the cone generated by P ix for 0 ≤ i ≤ 3
will be stable under P .
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