Permutahedra and generalized associahedra

Hohlweg, Christophe; Lange, Carsten E.M.C. et Thomas, Hugh (2011). « Permutahedra and generalized associahedra ». Advances in Mathematics, 226(1), pp. 608-640.

Fichier(s) associé(s) à ce document :
[img]
Prévisualisation
PDF
Télécharger (609kB)

Résumé

Given a finite Coxeter system (W,S)(W,S) and a Coxeter element c, or equivalently an orientation of the Coxeter graph of W , we construct a simple polytope whose outer normal fan is N. Reading's Cambrian fan Fc, settling a conjecture of Reading that this is possible. We call this polytope the c-generalized associahedron. Our approach generalizes Loday's realization of the associahedron (a type A c-generalized associahedron whose outer normal fan is not the cluster fan but a coarsening of the Coxeter fan arising from the Tamari lattice) to any finite Coxeter group. A crucial role in the construction is played by the c-singleton cones, the cones in the c-Cambrian fan which consist of a single maximal cone from the Coxeter fan. Moreover, if W is a Weyl group and the vertices of the permutahedron are chosen in a lattice associated to W, then we show that our realizations have integer coordinates in this lattice.

Type: Article de revue scientifique
Mots-clés ou Sujets: Coxeter groups; Cambrian fans; Cambrian lattices; Generalized associahedron; Cluster fans
Unité d'appartenance: Faculté des sciences > Département de mathématiques
Déposé par: Christophe Hohlweg
Date de dépôt: 15 févr. 2016 15:04
Dernière modification: 20 avr. 2016 19:31
Adresse URL : http://archipel.uqam.ca/id/eprint/7808

Statistiques

Voir les statistiques sur cinq ans...