PERMUTAHEDRA AND GENERALIZED ASSOCIAHEDRA

CHRISTOPHE HOHLWEG, CARSTEN LANGE, AND HUGH THOMAS

Abstract

Given a finite Coxeter system (W, S) and a Coxeter element c, or equivalently an orientation of the Coxeter graph of W, we construct a simple polytope whose outer normal fan is N . Reading's Cambrian fan \mathcal{F}_{c}, settling a conjecture of Reading that this is possible. We call this polytope the c generalized associahedron. Our approach generalizes Loday's realization of the associahedron (a type $A c$-generalized associahedron whose outer normal fan is not the cluster fan but a coarsening of the Coxeter fan arising from the Tamari lattice) to any finite Coxeter group. A crucial role in the construction is played by the c-singleton cones, the cones in the c-Cambrian fan which consist of a single maximal cone from the Coxeter fan.

Moreover, if W is a Weyl group and the vertices of the permutahedron are chosen in a lattice associated to W, then we show that our realizations have integer coordinates in this lattice.

Contents

Introduction

1. Coxeter-singletons and Cambrian lattices
1.1. c-sortable elements
1.2. c-Cambrian lattice,
1.3. c-singletons 6
2. Coxeter fans, Permutahedra, and Cambrian fans 10
2.1. Permutahedra 11
2.2. Cambrian fans 12
3. Realizing generalized associahedra 15
3.1. A general result 15
3.2. Realizations of generalized associahedra 17
3.3. Proof of Theorem 3.4 19
3.4. On integer coordinates 24
4. Observations and remarks 25
4.1. Recovering the c-cluster complex from the c-singletons 25
4.2. A conjecture about vertex barycentres 27
4.3. Recovering the realizations of 9 for types A and B 28
Acknowledgements 29
References 29

Hohlweg was partially supported by Canadian Research Chair and the Fields Institute. Hohlweg is partly supported by a startup grant from PAFARC. Thomas is partly supported by a Discovery Grant from NSERC.

Introduction

Let (W, S) be a finite Coxeter system acting by reflections on an \mathbb{R}-Euclidean space. Let \boldsymbol{a} be a point in the complement of the hyperplanes corresponding to the reflections in W. The convex hull of the W-orbit of \boldsymbol{a} is a simple convex polytope: the well-known permutahedron $\operatorname{Perm}^{\boldsymbol{a}}(W)$. The normal fan of $\operatorname{Perm}^{\boldsymbol{a}}(W)$ is the Coxeter fan \mathcal{F}.

Cluster fans were introduced by S. Fomin and A. Zelevinsky in their work on cluster algebras [7. To each Weyl group there corresponds a cluster fan which encodes important algebraic information including the exchange graph of the corresponding cluster algebra. One very natural question is to find realizations of these fans as normal fans of simple polytopes. This was first answered by F. Chapoton, S. Fomin, and A. Zelevinsky in [5]: for each Weyl group W, they construct a simple convex polytope whose normal fan is the cluster fan. Such a polytope is called a generalized associahedron of type W.

In [20, N. Reading introduced Cambrian lattices which generalize the Tamari lattice to any finite Coxeter group W and Coxeter element $c \in W$. The c-Cambrian lattice is defined as a quotient of the weak order on W, and therefore has an associated fan, the c-Cambrian fan \mathcal{F}_{c}, which is a coarsening of the Coxeter fan \mathcal{F}. N . Reading conjectured that any c-Cambrian fan is the normal fan of a simple convex polytope [20, Conjecture 1.1].

We will call a polytope with the c-Cambrian fan as normal fan a c-generalized associahedron $\operatorname{Asso}_{c}(W)$. In [23], N. Reading and D. Speyer showed that \mathcal{F}_{c} is a simplicial fan, so c-generalized associahedra are simple polytopes. In the case where W is a Weyl group, they also showed that c-Cambrian fans are all combinatorially isomorphic to the cluster fan. Moreover, for bipartite c, they show that \mathcal{F}_{c} is linearly isomorphic to the cluster fan. In other words, $\operatorname{Asso}_{c}(W)$ has the same combinatorial type as a generalized associahedron of type W, and for bipartite c, Asso $_{c}(W)$ is linearly isomorphic to a generalized associahedron of type W.

In this article, we construct c-generalized associahedra for all c, settling Reading's conjecture.

Let us review the history of some realizations. For symmetric groups, that is for Coxeter groups of type A, c-generalized associahedra are combinatorially isomorphic to the classical associahedron $\operatorname{Asso}\left(S_{n}\right)$, whose combinatorial structure was first described by J. Stasheff in 1963 [29]. The combinatorial structure in question is the face lattice of a simple convex polytope whose 1-skeleton is isomorphic to the undirected Hasse diagram of the Tamari lattice on the set Y_{n} of planar binary trees with $(n+1)$-leaves (see for instance [14]) and therefore a fundamental example of a secondary polytope as described in [8]. Numerous realizations of the associahedron have been given, see [5, [15] and the references therein. An elegant and simple realization of $\operatorname{Asso}\left(S_{n}\right)$ by picking some of the inequalities for the permutahedron $\operatorname{Perm}\left(S_{n}\right)$ is due to S. Shnider \& S. Sternberg [26] (for a corrected version consider J. Stasheff \& S. Shnider [30, Appendix B]). This realization implies a surjective map from the vertices of the permutahedron to the vertices of the associahedron, which turns out to be the well-known surjection from S_{n} to Y_{n} that maps the weak order on S_{n} to the Tamari lattice as described in [3, Sec. 9]. Recently, J.-L. Loday presented an algorithm to compute the vertex coordinates of this realization, [15]: label the vertices of the associahedron by planar binary trees with $n+2$ leaves and apply a simple algorithm on trees to obtain integer coordinates
in \mathbb{R}^{n}. This polytopal realization of the associahedron from the permutahedron is referred to as Loday's realization. An important aspect of this construction is the fact that the Tamari lattice is a quotient lattice, as well as a sublattice, of the weak order on S_{n}.

For Coxeter groups of types A and B, the first two authors gave recently a Loday-type realization of any c-generalized associahedron (9), and they showed that Loday's realization of the associahedron is a c-generalized associahedron for a particular c. For hyperoctahedral groups, that is Coxeter groups of type B, the generalized associahedron is called a cyclohedron. It was first described by R. Bott and C. Taubes in 1994 [4] in connection with knot theory, and rediscovered independently by R. Simion [27. See also [5, 16, 18, 24, 27]; none of these realizations is similar to Loday's (type A) realization.

The realization of $\mathrm{Asso}_{c}(W)$ for any finite Coxeter group W and any Coxeter element c given in this article generalizes to any finite Coxeter group the approach initiated by Shnider \& Sternberg in type A, and extended by the two first authors to types A and B.

Our construction of the c-generalized associahedron is very straightforward. Start from $\operatorname{Perm}^{\boldsymbol{a}}(W)$ and its H-representation by non-redundant half spaces and fix a particular reduced expression of the longest element w_{0} of W determined by c. The prefixes of w_{0} up to commutation of commuting simple reflections will be called c singletons. A half space \mathscr{H} of the H-representation of $\operatorname{Perm}^{\boldsymbol{a}}(W)$ is c-admissible if its boundary contains a vertex of $\operatorname{Perm}^{\boldsymbol{a}}(W)$ that corresponds to a c-singleton. The intersection of all c-admissible half spaces is a c-generalized associahedron Asso $_{c}^{a}(W)$ and its normal fan is the c-Cambrian fan \mathcal{F}_{c} (Corollary 3.5). The selection of c admissible and the removal of not c-admissible half spaces for the permutahedron of type A and distinct choices for the Coxeter element is illustrated in Figure 1 and Figure 2.

Figure 1. Obtaining the associahedron from the permutahedron for the Coxeter group S_{4} and Coxeter element $c=s_{1} s_{2} s_{3}$. The left picture shows the permutahedron with the facets contained in the boundary of c-admissible half spaces translucent and the facets contained in the boundary of non c-admissible half spaces shaded. The picture to the right shows the associahedron obtained from the permutahedron after removal of all non c-admissible half spaces.

Figure 2. Obtaining the associahedron from the permutahedron for the Coxeter group S_{4} and Coxeter element $c=s_{2} s_{1} s_{3}$. The left picture shows the permutahedron with the facets contained in the boundary of c-admissible half spaces translucent and the facets contained in the boundary of non c-admissible half spaces shaded. The picture to the right shows the associahedron obtained from the permutahedron after removal of all non c-admissible half spaces.

Moreover, if W is a Weyl group and the vertices of the permutahedron $\operatorname{Perm}^{\boldsymbol{a}}(W)$ are chosen in a suitable lattice associated to W, then we show that $\operatorname{Asso}_{c}^{a}(W)$ has integer coordinates in this lattice (Theorem 3.15).

Another interesting aspect of this construction is that we are able to recover the c-cluster complex: relating cluster fans to quiver theory, R. Marsh, M. Reineke and A. Zelevinsky introduce in [17] what N. Reading and D. Speyer call the c-cluster fan in [23], and its associated simplicial complex the c-cluster complex. A c-cluster fan is a generalization of the cluster fan to any finite Coxeter group W and Coxeter element $c \in W$ (c bipartite is then the traditional case); its applications in quiver representations are most natural for W of types A, D and E.

By replacing the natural labeling of the maximal faces of Asso $_{c}^{a}(W)$ by a labeling that uses almost positive roots only, we obtain the c-cluster complex. This replacement is determined by an easy combinatorial rule as stated in Theorem 2.6 This suggests that these constructions will play an important role in the study of c-cluster complexes and related structures.

This article is organized as follows. In §1, we recall some facts about finite Coxeter groups, Coxeter sortable elements, and Cambrian lattices. Additionally, the important notion of a c-singleton is defined and fundamental properties are proven. In 42. we recall some facts about fans, in particular of Coxeter and Cambrian fans, and give a precise combinatorial description of the rays of Cambrian fans. In 93 , we state and prove our main result (Theorem 3.4). Finally, in 44 we study some specific examples of finite reflection groups. We work out the dihedral case explicitly to show that the vertex barycentres of the permutahedra and associahedra coincide and we explain how the realizations given in [9] for type A and B are a particular instances of the construction described in this article.

In a sequel [1, we describe the isometry classes of these realizations.

The construction presented in this article has been implemented as the set of functions CAMBRIAN to be used with the library CHEVIE for GAP [25, 6] and can be found on the first author's web page, [10].

1. Coxeter-singletons and Cambrian lattices

Let (W, S) be a finite Coxeter system. We denote by e the identity of W and by $\ell: W \rightarrow \mathbb{N}$ the length function on W. Let $n=|S|$ be the rank of W. Denote by w_{0} the unique element of maximal length in W.

The (right) weak order \leq on W can be defined by $u \leq v$ if and only if there is a $v^{\prime} \in W$ such that $v=u v^{\prime}$ and $\ell(v)=\ell(u)+\ell\left(v^{\prime}\right)$. The descent set $D(w)$ of $w \in W$ is $\{s \in S \mid \ell(w s)<\ell(w)\}$. A cover of $w \in W$ is an element $w s$ such that $s \notin D(w)$.

The subgroup W_{I} generated by $I \subseteq S$ is a (standard) parabolic subgroup of W and the set of minimal length (left) coset representatives of W / W_{I} is given by

$$
W^{I}=\{x \in W \mid \ell(x s)>\ell(x), \forall s \in I\}=\{x \in W \mid D(x) \subseteq S \backslash I\}
$$

Moreover, each $w \in W$ has a unique decomposition $w=w^{I} w_{I}$ where $w^{I} \in W^{I}$ and $w_{I} \in W_{I}$. Moreover, $\ell(w)=\ell\left(w^{I}\right)+\ell\left(w_{I}\right)$, see [11, §5.12]. The pair $\left(w^{I}, w_{I}\right)$ is often called the parabolic components of w along I. For $s \in S$ we follow N. Reading's notation and set $\langle s\rangle:=S \backslash\{s\}$.

Let c be a Coxeter element of W, that is, the product of the simple reflections of W taken in some order, and fix a reduced expression for c.
1.1. c-sortable elements. For $I \subset S$, we denote by $c_{(I)}$ the subword of c obtained by considering only simple reflections in I. Obviously, $c_{(I)}$ is a Coxeter element of W_{I}. For instance, take $W=S_{5}$ and $S=\left\{s_{i} \mid 1 \leq i \leq 4\right\}$ where s_{i} denotes the simple transposition $(i, i+1)$. If $c=s_{1} s_{3} s_{4} s_{2}$ and $I=\left\{s_{2}, s_{3}\right\}$ then $c_{(I)}=s_{3} s_{2}$. Consider the possible ways to write $w \in W$ as a reduced subword of the infinite word $c^{\infty}=\operatorname{cccccc} \ldots .$. In [21, §2], N. Reading defines the c-sorting word of $w \in W$ as the reduced subword of c^{∞} for w which is lexicographically first as a sequence of positions. The c-sorting word of w can be written as $c_{\left(K_{1}\right)} c_{\left(K_{2}\right)} \ldots c_{\left(K_{p}\right)}$ where p is minimal for the property:

$$
w=c_{\left(K_{1}\right)} c_{\left(K_{2}\right)} \ldots c_{\left(K_{p}\right)} \quad \text { and } \quad \ell(w)=\sum_{i=1}^{p}\left|K_{i}\right| .
$$

The sequence $c_{\left(K_{1}\right)}, \ldots, c_{\left(K_{p}\right)}$ associated to the c-sorting word for w is called the c-factorization of w. The c-factorization of w is independent of the chosen reduced word for c but depends on the Coxeter element c. In general the c-factorization does not yield a nested sequence K_{1}, \ldots, K_{p} of subsets of S. An element $w \in W$ is called c-sortable if $K_{1} \supseteq K_{2} \supseteq \ldots \supseteq K_{p}$. It is clear that for any chosen Coxeter element c, the identity e is c-sortable, and Reading proves in 21 that the longest element $w_{0} \in W$ is c-sortable as well. The c-factorization of w_{0} is of particular importance for us and is denoted by $\mathbf{w}_{\mathbf{0}}$. To illustrate these notions, consider $W=S_{4}$ with generators $S=\left\{s_{1}, s_{2}, s_{3}\right\}$. The weak order of S_{4} with elements represented by their c-factorization is shown in Figure 3 for $c=s_{1} s_{2} s_{3}$ and Figure 4 for $c=s_{2} s_{1} s_{3}$ (the delimiter ' \mid ' indicates the end of K_{i} and the beginning of K_{i+1}). Moreover, the background colour carries additional information: The background of w is white if and only if w is c-sortable.

Figure 3. $c=s_{1} s_{2} s_{3}$
1.2. c-Cambrian lattice. N. Reading shows that the c-sortable elements constitute a sublattice of the weak order of W which is called the c-Cambrian lattice, 20, 22]. A Cambrian lattice is also a lattice quotient of the weak order on W. In particular, there is a downward projection π_{\downarrow}^{c} from W to the c-sortable elements of W which maps w to the maximal c-sortable element below w. Hence, w is c sortable if and only if $\pi_{\downarrow}^{c}(w)=w,\left[22\right.$, Proposition 3.2]. It is easy to recover π_{\downarrow}^{c} in Figure 3 and 4 . A c-sortable element w (white background) is projected to itself; an element w which is not c-sortable (coloured background) is projected to the (maximal) boxed c-sortable element below the coloured component containing w. For instance in Figure 4, we consider $c=s_{2} s_{1} s_{3}$ and have $\pi_{\downarrow}^{c}\left(s_{2} s_{3} s_{2}\right)=s_{2} s_{3} s_{2}$ and $\pi_{\downarrow}^{c}\left(s_{3} s_{2} s_{1}\right)=\pi_{\downarrow}^{c}\left(s_{3} s_{2}\right)=\pi_{\downarrow}^{c}\left(s_{3}\right)=s_{3}$.

We say that $w \in W$ is c-antisortable if $w w_{0}$ is c^{-1}-sortable. We have therefore a projection π_{c}^{\uparrow} from W to the set of c-antisortable elements of W which takes w to the minimal c-antisortable element above w. For example in Figure 4 we have $\pi_{c}^{\uparrow}\left(s_{1} s_{3}\right)=s_{1} s_{3} s_{2} s_{1} s_{3}$. The maps π_{\downarrow}^{c} and π_{c}^{\uparrow} have the same fibres, that is,

$$
\left(\pi_{\downarrow}^{c}\right)^{-1} \pi_{\downarrow}^{c}(w)=\left(\pi_{c}^{\uparrow}\right)^{-1} \pi_{c}^{\uparrow}(w)
$$

These fibers are intervals in the weak order as shown by N. Reading, 22, Theorem 1.1] and the fibre that contains w is $\left[\pi_{\downarrow}^{c}(w), \pi_{c}^{\uparrow}(w)\right]$.
1.3. c-singletons. We introduce a particularly important subclass of c-sortable elements: an element $w \in W$ is a c-singleton if $\left(\pi_{\downarrow}^{c}\right)^{-1}(w)$ is a singleton. It is easy to read off c-singletons in Figures 3 and 4 An element is a c-singleton if and only if its background colour is white and it is not boxed, that is, $s_{2} s_{1} s_{3}$ in Figure 4 is a c-singleton while neither $s_{1} s_{3} s_{2}$ nor $s_{2} s_{3} s_{2}$ are c-singletons.

We now prove some useful properties of c-singletons.

Figure 4. $c=s_{2} s_{1} s_{3}$.

Proposition 1.1. Let $w \in W$. The following propositions are equivalent.
(i) w is a c-singleton;
(ii) w is c-sortable and $w s$ is c-sortable for all $s \notin D(w)$;
(iii) w is c-sortable and c-antisortable.

Proof. '(i) is equivalent to (iii)' and '(i) is equivalent to (ii)' follow from the fact that the fibre containing w is $\left[\pi_{\downarrow}^{c}(w), \pi_{c}^{\uparrow}(w)\right]$ and that the map π_{\downarrow}^{c} is order preserving.

It follows that w_{0} and e are c-singletons.
The word property says that any pair of reduced expressions for $w \in W$ can be linked by a sequence of braid relation transformations. In particular, the set

$$
S(w):=\left\{s_{i} \in S \mid w=s_{1} \ldots s_{\ell(w)} \text { is reduced }\right\}=\bigcap_{\substack{I \subset S \\ w \in W_{I}}} I
$$

is independent of the chosen reduced expression for w. It is clear that $w \in W_{S(w)}$ and that $S(w)=K_{1}$ if w is c-sortable with c-factorization $c_{\left(K_{1}\right)} c_{\left(K_{2}\right)} \ldots c_{\left(K_{p}\right)}$.

Two reduced expressions for $w \in W$ are equivalent up to commutations if they are linked by a sequence of braid relation of order 2 , that is, by commutations. Let \mathbf{u}, \mathbf{w} be reduced expressions for $u, w \in W$. Then \mathbf{u} is a prefix of $\mathbf{w} u p$ to commutations if \mathbf{u} is the prefix of a reduced expression \mathbf{w}^{\prime} and \mathbf{w}^{\prime} is equivalent to \mathbf{w} up to commutations. We now state the main result of this section. Its proof is deferred until after Proposition 1.7

Theorem 1.2. Let w be in W. Then w is a c-singleton if and only if w is a prefix of $\mathbf{w}_{\mathbf{0}}$ up to commutations.
Remark 1.3. For computational purposes, it would be interesting to find a nice combinatorial description of $\mathbf{w}_{\mathbf{0}}$.

Example 1.4. Let $W=S_{4}$ with set of generators $S=\left\{s_{i} \mid 1 \leq i \leq 3\right\}$ and Coxeter element $c=s_{2} s_{1} s_{3}$. The c-singletons of W are

e,	$s_{2} s_{3}$,	$s_{2} s_{1} s_{3} s_{2} s_{1}$,
s_{2},	$s_{2} s_{1} s_{3}$,	$s_{2} s_{1} s_{3} s_{2} s_{3}$, and
$s_{2} s_{1}$,	$s_{2} s_{1} s_{3} s_{2}$,	$w_{0}=s_{2} s_{1} s_{3} s_{2} s_{1} s_{3}$.

We see here that $s_{2} s_{3}$ is not a prefix of $s_{2} s_{1} s_{3} s_{2} s_{1} s_{3}$, but it does appear as a prefix after commutation of the commuting simple reflections s_{1} and s_{3}.

Proposition 1.5. The c-singletons constitute a distributive sublattice of the (right) weak order on W.

Examples of these distributive lattices for $W=S_{4}$ are given in Figure 5
Proof. Let L be the set of subsets $P \subset\left\{1, \ldots, \ell\left(w_{0}\right)\right\}$ with the property that the reflections at positions $i \in P$ of $\mathbf{w}_{\mathbf{0}}$ can be moved by commutations to form a prefix \mathbf{w}_{P} of $\mathbf{w}_{\mathbf{0}}$. This prefix \mathbf{w}_{P} represents $w_{P} \in W$. Note that $\ell\left(w_{P}\right)=|P|$ because \mathbf{w}_{P} is a prefix up to commutation of a reduced word for $\mathbf{w}_{\mathbf{0}}$. The set L is partially ordered by inclusion and forms a distributive lattice with $P_{1} \vee P_{2}=$ $P_{1} \cup P_{2}$ and $P_{1} \wedge P_{2}=P_{1} \cap P_{2}$ according to [28, Exercise 3.48]. (In particular, $P_{1} \cup P_{2}, P_{1} \cap P_{2} \in L$ if $\left.P_{1}, P_{2} \in L\right)$.

We claim that $P \longmapsto w_{P}$ is an injective lattice homomorphism.
First we check injectivity. Suppose $w_{P}=w_{Q}$ for $P \neq Q$. Since \mathbf{w}_{P} and \mathbf{w}_{Q} are reduced expressions, we have $|P|=|Q|=r$. Let $P=\left\{p_{1}, \ldots, p_{r}\right\}$ and $Q=$ $\left\{q_{1}, \ldots, q_{r}\right\}$ with $p_{i}<p_{i+1}$ and $q_{i}<q_{i+1}$. Without loss of generality, let the smallest element in $(P \cup Q) \backslash(P \cap Q)$ be p_{i}. Let $s \in S$ be the reflection at position p_{i} of $\mathbf{w}_{\mathbf{0}}$, then s also appears at some q_{j} with $q_{j}>p_{i}$. When moving the reflections in Q to the front of $\mathbf{w}_{\mathbf{0}}$, the s that started at q_{j} must pass the s at p_{i}, but this implies that the expression for $\mathbf{w}_{\mathbf{0}}$ would not be reduced at this step, which is contrary to our assumption. Thus the map is injective.

We show that $P \longmapsto w_{P}$ respects the lattice structures of L and W. Let $P, Q \in L$ and $R=P \cap Q$. Since $R \in L, \mathbf{w}_{R}$ is a prefix of $\mathbf{w}_{\mathbf{0}}$ up to commutation. In

Figure 5. There are four Coxeter elements in S_{4}. Each yields a distributive lattice of c-singletons.
particular, it is also a prefix of \mathbf{w}_{P} and \mathbf{w}_{Q} up to commutation. Hence $w_{R} \leq w_{P}$ and $w_{R} \leq w_{Q}$. We obtain $\mathbf{w}_{P \backslash R}$ and $\mathbf{w}_{Q \backslash R}$ from \mathbf{w}_{P} and \mathbf{w}_{Q} by deletion of all reflections that correspond to an element of R and conclude $w_{P}=w_{R} w_{P \backslash R}$ and $w_{Q}=w_{R} w_{Q \backslash R}$. We have $S\left(\mathbf{w}_{P \backslash R}\right) \cap S\left(\mathbf{w}_{Q \backslash R}\right)=\varnothing$ since $\mathbf{w}_{\mathbf{o}}$ is reduced. The proof is by contradiction and is similar to the proof of injectivity. Therefore, no element of W is above \mathbf{w}_{R} and below \mathbf{w}_{P} and \mathbf{w}_{Q}. We have shown $w_{R}=w_{P} \wedge w_{Q}$ with respect to the weak order of W. A similar argument proves $w_{T}=w_{P} \vee w_{Q}$ with respect to the weak order of W where $T=P \cup Q: S\left(\mathbf{w}_{T \backslash P}\right) \cap S\left(\mathbf{w}_{T \backslash Q}\right)=\varnothing$ implies that no $w \in W$ below w_{R} and above w_{P} and w_{Q} exists.

The following lemma characterizes the elements that cover a c-singleton.
Lemma 1.6. Let $c_{\left(K_{1}\right)} \ldots c_{\left(K_{p}\right)}$ be the c-factorization of the c-singleton w and $s \notin D(w)$. The c-factorization of the cover $w s$ of w is either $c_{\left(K_{1}\right)} \ldots c_{\left(K_{p}\right)} c_{(s)}$ or $c_{\left(K_{1}\right)} \ldots c_{\left(K_{i} \cup\{s\}\right)} \ldots c_{\left(K_{p}\right)}$.

If $w s=c_{\left(K_{1}\right)} \ldots c_{\left(K_{i} \cup\{s\}\right)} \ldots c_{\left(K_{p}\right)}$ then i is uniquely determined and s commutes with every $r \in K_{i+1} \cup L$ where L satisfies $c_{\left(K_{i} \cup\{s\}\right)}=c_{\left(K_{i} \backslash L\right)} s c_{(L)}$.

Proof. If $s \in K_{p}$ then $c_{\left(K_{1}\right)} \ldots c_{\left(K_{p}\right)} c_{(s)}$ is obviously the c-factorization for $w s$. So we assume $s \notin K_{p}$. As w is a c-singleton, $w s$ is c-sortable with c-factorization $c_{\left(L_{1}\right)} \ldots c_{\left(L_{q}\right)}$ where $L_{1} \supseteq \ldots \supseteq L_{q}$. As $s \in D(w s)$, there is a unique $1 \leq i \leq q$ and $r \in L_{i}$ such that $w=(w s) s=c_{\left(L_{1}\right)} \ldots c_{\left(L_{i} \backslash\{r\}\right)} \ldots c_{\left(L_{q}\right)}$ by the exchange condition.
Case 1: Suppose $i=1$, i.e. $i=1$ is the unique index such that

$$
\begin{equation*}
w=(w s) s=c_{\left(L_{1} \backslash\{r\}\right)} c_{\left(L_{2}\right)} \ldots c_{\left(L_{q}\right)} \tag{1}
\end{equation*}
$$

Case 1.1: $r \notin K_{1}$. Then $r \notin S(w)$ and $s=r$ because $r \in S(w s)=S(w) \cup\{s\}$. Since any two reduced expressions of $w s$ are linked by braid relations according to Tits' Theorem, [2, Theorem 3.3.1] and since $s \notin S(w)$, we conclude that we have to move s from the rightmost position to the left by commutation. In other words, s commutes with $K_{2} \cup L$.
Case 1.2: $r \in K_{1}=S(w)$. As $c_{\left(L_{1} \backslash\{r\}\right)} c_{\left(L_{2}\right)} \ldots c_{\left(L_{q}\right)}$ is reduced and $L_{2} \supseteq \ldots \supseteq L_{q}$ is nested, we have $r \in L_{2}$. Hence

$$
K_{1}=S(w)=\left(L_{1} \backslash\{r\}\right) \cup L_{2}=L_{1} \cup L_{2}=L_{1} .
$$

Thus $c_{\left(L_{2}\right)} \ldots c_{\left(L_{q}\right)}$ and $c_{\left(K_{2}\right)} \ldots c_{\left(K_{p}\right)} s$ are reduced expressions for some $\widehat{w} \in W$ and $s \in D(\widehat{w})$. The exchange condition implies the existence of a unique index $2 \leq j \leq q$ and $t \in L_{j}$ such that

$$
\widehat{w} s=c_{\left(L_{2}\right)} \ldots c_{\left(L_{j} \backslash\{t\}\right)} \ldots c_{\left(L_{q}\right)} .
$$

In other words

$$
w=c_{\left(L_{1}\right)} \hat{w}=c_{\left(L_{1}\right)} c_{\left(L_{2}\right)} \ldots c_{\left(L_{j} \backslash\{t\}\right)} \ldots c_{\left(L_{q}\right)}
$$

is reduced. But this contradicts the uniqueness of $i=1$ in Equation (11). So $r \notin K_{1}$ and we finished the first case.

Case 2: Suppose $i>1$, then $K_{1}=S(w)=L_{1}$. Set $\nu:=\min (p, i-1)$ and iterate the argument for $c_{\left(L_{1}\right)}^{-1} w, c_{\left(L_{2}\right)}^{-1} c_{\left(L_{1}\right)}^{-1} w, \ldots$ to conclude $L_{j}=K_{j}$ for $1 \leq j \leq \nu$. If $\nu=p$ then $i=q=p+1$ and $L_{i} \backslash\{r\}=\varnothing$. So $L_{i}=\{s\} \subseteq L_{i-1}=K_{p}$ which contradicts $s \notin K_{p}$. Thus $\nu=i-1$ for some $i \leq p$ and $L_{j}=K_{j}$ for $1 \leq j \leq i-1$. We may assume $i=1$ and are done by Case 1 .

Proposition 1.7. Let w be a c-singleton and \mathbf{w} its c-sorting word. Any prefix of \mathbf{w} up to commutations is a c-singleton.
Proof. Let $c_{\left(K_{1}\right)} \ldots c_{\left(K_{p}\right)}$ denote the c-factorization of w. It is sufficient to show that the prefix w^{\prime} up to commutations of length $\ell(w)-1$ is a c-singleton. There is $1 \leq i \leq p$ and $r \in K_{p}$ such that $w^{\prime}=c_{\left(K_{1}\right)} \ldots c_{\left(K_{i} \backslash\{r\}\right)} \ldots c_{\left(K_{p}\right)}$ is the c-factorization of w^{\prime}. It remains to show that $w^{\prime} s$ is c-sortable for $s \notin D\left(w^{\prime}\right)$.
Case 1: Suppose $s \in D(w)$. Recall the definition of the Bruhat order $\leq_{\mathcal{B}}$ on W : $u \leq_{\mathcal{B}} v$ in W if an expression for u can be obtained as a subword of a reduced expression of v, see [2, Chapter 2]. The lifting property of the Bruhat order implies $w^{\prime} s \leq_{\mathcal{B}} w$. Moreover $\ell\left(w^{\prime} s\right)=\ell\left(w^{\prime}\right)+1=\ell(w)$. Thus $w=w^{\prime} s$ and $s=r$. In particular $w^{\prime} s=w$ is c-sortable.
Case 2: Suppose $s \notin D(w)$, in particular $s \neq r$. So $w s$ is c-sortable and by Lemma 1.6 there are two cases to distinguish.
Case 2.1: If $c_{\left(K_{1}\right)} \ldots c_{\left(K_{p}\right)} c_{(s)}$ is the c-factorization of $w s$ then $s \in K_{p}$ and $c_{\left(K_{1}\right)} \ldots c_{\left(K_{i} \backslash\{r\}\right)} \ldots c_{\left(K_{p}\right)} c_{(s)}$ is the c-factorization of $w^{\prime} s$. In particular, the sequence $K_{1} \supseteq \ldots \supseteq K_{i} \backslash\{r\} \supseteq \ldots \supseteq K_{p} \supseteq\{s\}$ is nested and $w^{\prime} s$ is c-sortable.
Case 2.2: If $c_{\left(K_{1}\right)} \ldots c_{\left(K_{j} \cup\{s\}\right)} \ldots c_{\left(K_{p}\right)}$ is the c-factorization of $w s$ then either s and r commute or not.

If s and r do not commute then $j=i$ and r appears before s in the chosen reduced expression of c, since s commutes with every simple reflections to the right of the rightmost copy of s in the c-factorization of $w s$ by Lemma 1.6. Then $w^{\prime} s=c_{\left(K_{1}\right)} \ldots c_{\left(K_{i} \backslash\{r\} \cup\{s\}\right)} \ldots c_{\left(K_{p}\right)}$ is c-sortable.

If s and r commute, suppose first $j \leq i$. Then

$$
w^{\prime} s=w r s=w s r=c_{\left(K_{1}\right)} \ldots c_{\left(K_{j} \cup\{s\}\right)} \ldots c_{\left(K_{i} \backslash\{r\}\right)} \ldots c_{\left(K_{p}\right)}
$$

is the c-factorization of $w^{\prime} s$. As $K_{1} \supseteq \ldots \supseteq K_{j} \cup\{s\} \supseteq \ldots \supseteq K_{i} \backslash\{r\} \supseteq \ldots \supseteq K_{p}$ is nested, $w^{\prime} s$ is c-sortable. The case $j>i$ is proved similarly.

We conclude that $w^{\prime} s$ is c-sortable for any $s \notin D\left(w^{\prime}\right)$, so w^{\prime} is a c-singleton.
Proof of Theorem 1.2. We know by Proposition 1.1 that w is a c-singleton if and only if w is c-sortable and $w w_{0}$ is c^{-1}-sortable.

Suppose w is a c-singleton. Let s be the rightmost simple reflection appearing in the c^{-1}-factorization for $w w_{0}$, so $w w_{0}=u s$ for some c^{-1}-sortable element u.

We have $s u^{-1} w=w_{0}$ and hence $u^{-1} w=s w_{0}$. Since $S=w_{0} S w_{0}, t:=w_{0} s w_{0}$ is a simple reflection. Now $u^{-1} w t=w_{0}$ implies $\ell(w t)>\ell(w)$ and we conclude that $w t$ is c-sortable by Proposition 1.1. But $w t$ is also c-antisortable since $w t w_{0}=u$ is c^{-1}-sortable. Hence, $w t$ is a c-singleton that covers w in the weak order.

Repeating this process, we show that every c-singleton is on an unrefinable chain of c-singletons leading up to w_{0}. By downwards induction, every element of that chain is a prefix of w_{0} up to commutations. This is clearly true for w_{0}. As we went up each step, though, we added a simple reflection which commuted with every reflection to its right (or was added at the rightmost end), by Lemma 1.6. Thus, when we want to remove the element we added at the last step, we can rewrite w_{0} using commutations only such that this simple reflection is on the right.

2. Coxeter fans, Permutahedra, and Cambrian fans

In this section, we describe the geometry of Coxeter fans and c-Cambrian fans. We first recall some fact about the geometric representation of W and use the
notation of [11] on Coxeter groups and root systems. Let W act by reflections on an \mathbb{R}-Euclidean space $(V,\langle\cdot, \cdot\rangle)$.

Let Φ be a root system corresponding to W with simple roots $\Delta=\left\{\alpha_{s} \mid s \in S\right\}$, positive roots $\Phi^{+}=\Phi \cap \mathbb{R}_{>0}[\Delta]$ and negative roots $\Phi^{-}=-\Phi^{+}$. Without loss of generality, we assume that the action of W is essential relative to V, that is, Δ is a basis of V. The set Φ^{+}parametrizes the set of reflections in W : to each reflection $t \in W$ there corresponds a unique positive root $\alpha_{t} \in \Phi^{+}$such that t maps α_{t} to $-\alpha_{t}$ and fixes the hyperplane $H_{t}=\left\{v \in V \mid\left\langle v, \alpha_{t}\right\rangle=0\right\}$.

The Coxeter arrangement \mathcal{A} for W is the collection of all reflecting hyperplanes for W. The complement $V \backslash(\bigcup \mathcal{A})$ of \mathcal{A} consists of open cones. Their closures are called chambers. The chambers are in canonical bijective correspondence with the elements of W. The fundamental chamber $D:=\bigcap_{s \in S}\left\{v \in V \mid\left\langle v, \alpha_{s}\right\rangle \geq 0\right\}$ corresponds to the identity $e \in W$ and the chamber $w(D)$ corresponds to $w \in W$.

A subset U of V is below a hyperplane $H \in \mathcal{A}$ if every point in U is on H or on the same side of H as D. The subset U is strictly below $H \in \mathcal{A}$ if U is below H and $U \cap H=\varnothing$. Similarly, U is above or strictly above a hyperplane $H \in \mathcal{A}$. The inversions of $w \in W$ are the reflections that correspond to the hyperplanes H which $w(D)$ is above.

For a simple reflection $s \in S$, we have $\ell(s w)<\ell(w)$ if and only if $s \leq w$ in the weak order if and only if $w(D)$ is above H_{s}. To decide whether $w(D)$ is above or below H_{s} is therefore a weak order comparison. These notions will be handy in $\$ 3$

A $\operatorname{fan} \mathcal{G}$ is a family of nonempty closed polyhedral (convex) cones in V such that
(i) every face of a cone in \mathcal{G} is in \mathcal{G}, and
(ii) the intersection of any two cones in \mathcal{G} is a face of both.

A $\operatorname{fan} \mathcal{G}$ is complete if the union of all its cones is V, essential (or pointed) if the intersection of all non-empty cones of \mathcal{G} is the origin, and simplicial if every cone is simplicial, that is, spanned by linearly independent vectors. A 1-dimensional cone is called a ray and a ray is extremal if it is a face of some cone. The set of k-dimensional cones of \mathcal{G} is denoted by $\mathcal{G}^{(k)}$ and two cones in $\mathcal{G}^{(k)}$ are adjacent if they have a common face in $\mathcal{G}^{(k-1)}$. A fan \mathcal{G} coarsens a fan \mathcal{G}^{\prime} if every cone of \mathcal{G} is the union of cones of \mathcal{G}^{\prime} and $\bigcup_{C \in \mathcal{G}} C=\bigcup_{C \in \mathcal{G}^{\prime}} C$. We refer to [31, Lecture 7] for more details and examples.

The chambers and all their faces of a Coxeter arrangement \mathcal{A} define the Coxeter fan \mathcal{F}. The Coxeter fan \mathcal{F} is known to be complete, essential, and simplicial, [11, Sections 1.12-1.15]. The fundamental chamber $D \in \mathcal{F}$ is a (maximal) cone spanned by the (extremal) rays $\left\{\rho_{s} \mid s \in S\right\}$, where ρ_{s} is the intersection of D with the subspace orthogonal to the hyperplane spanned by $\left\{\alpha_{t} \mid t \in\langle s\rangle\right\}$.

Recall that the rays of \mathcal{F} decompose into n orbits under the action of W and each orbit contains exactly one $\rho_{s}, s \in S$. Thus, any ray $\rho \in \mathcal{F}^{(1)}$ is $w\left(\rho_{s}\right)$ for some $w \in W$ where $s \in S$ is uniquely determined by ρ but w is not unique. In fact, $w\left(\rho_{s}\right)=g\left(\rho_{s}\right)$ if and only if $w \in g W_{\langle s\rangle}$.
2.1. Permutahedra. We illustrate Coxeter fans by means of permutahedra, that is, polytopes that have a Coxeter fan as normal fan.

Take a point \boldsymbol{a} of the complement $V \backslash(\bigcup \mathcal{A})$ of the Coxeter arrangement \mathcal{A}, and consider its W-orbit. The convex hull of this W-orbit is a W-permutahedron denoted by $\operatorname{Perm}^{a}(W)$. There is a bijection between the rays of \mathcal{F} and the facets of $\operatorname{Perm}^{\boldsymbol{a}}(W)$: there is a halfspace associated to each ray $\rho \in \mathcal{F}$ such that its
supporting hyperplane is perpendicular to ρ and such that the permutahedron is the intersection of these halfspaces. Let us be more precise.

Let $\Delta^{*}:=\left\{v_{s} \in V \mid s \in S\right\}$ be the fundamental weights of Δ, that is, Δ^{*} is the dual basis of Δ for the scalar inner product. The fundamental chamber D is spanned by the fundamental weights, that is, $D=\mathbb{R}_{\geq 0}\left[\Delta^{*}\right]$. Hence, the rays of \mathcal{A} are easily expressed in terms of Δ^{*} : We have $\rho_{s}=\mathbb{R}_{\geq 0}\left[v_{s}\right]$ and therefore $w\left(\rho_{s}\right)=\mathbb{R}_{\geq 0}\left[w\left(v_{s}\right)\right]$ for any $w \in W$ and $s \in S$.

Without loss of generality, we choose $\boldsymbol{a}=\sum_{s \in S} a_{s} v_{s}$ in the interior of D, that is $a_{s}>0$ for $s \in S$, and define $M(w):=w(\boldsymbol{a})$. All points $M(w)$ are distinct and the convex hull of $\{M(w) \mid w \in W\}$ yields a realization of the W permutahedron Perm ${ }^{a}(W)$. It is not difficult to describe this polytope as an intersection of half-spaces.

For each $\rho=w\left(\rho_{s}\right) \in \mathcal{F}^{(1)}$, we define the closed half space

$$
\mathscr{H}_{\rho}^{\boldsymbol{a}}:=\left\{v \in V \mid\left\langle v, w\left(v_{s}\right)\right\rangle \leq\left\langle\boldsymbol{a}, v_{s}\right\rangle\right\} .
$$

This definition does not depend on the choice of $w \in W$ such that $\rho=w\left(\rho_{s}\right)$, but only of the coset $W / W_{\langle s\rangle}$. The open half space $\mathscr{H}_{\rho}^{a,+}$ and the hyperplane H_{ρ}^{a} are defined by strict inequality and equality respectively. Now, the permutahedron $\operatorname{Perm}^{a}(W)$ is given by

$$
\operatorname{Perm}^{\boldsymbol{a}}(W)=\bigcap_{\rho \in \mathcal{F}^{(1)}} \mathscr{H}_{\rho}^{\boldsymbol{a}}
$$

As for the rays of the Coxeter fan, we have $H_{\rho}^{a}=H_{(w, s)}^{a}=H_{\left(w^{\prime}, s\right)}^{a}$ if and only if $w \in w^{\prime} W_{\langle s\rangle}$ and $\rho=w\left(\rho_{s}\right)=w^{\prime}\left(\rho_{s}\right)$. Moreover, $M(w) \in H_{\left(w^{\prime}, s\right)}^{a}$ if and only if $H_{\left(w^{\prime}, s\right)}^{a}=H_{(w, s)}^{a}$. A simple description of the vertex $M(w)$ of the permutahedron follows:

$$
M(w)=\bigcap_{s \in S} H_{(w, s)}^{a}
$$

Example 2.1 (Realization of $\operatorname{Perm}\left(S_{3}\right)$). We consider the Coxeter group $W=S_{3}$ of type A_{2} acting on \mathbb{R}^{2}. The reflections s_{1} and s_{2} generate W and the simple roots that correspond to s_{1} and s_{2} are α_{1} and α_{2}. They are normal to the reflection hyperplanes $H_{s_{1}}$ and $H_{s_{2}}$. The fundamental weight vectors that correspond to the simple roots are the vectors v_{1} and v_{2} and determine the ray $L=\left\{\mu\left(a_{1} v_{1}+a_{2} v_{2}\right) \mid \mu>0\right\}$, $a_{1}, a_{2}>0$, which contains $M(e)=\boldsymbol{a} \in L$. We obtain the permutahedron $\operatorname{Perm}\left(S_{3}\right)$ as convex hull of the W-orbit of $M(e)$. Alternatively, the permutahedron is described as intersection of the half spaces $\mathscr{H}_{(x, s)}^{a}$ with bounding hyperplanes $H_{(x, s)}^{a}$ for $x \in W$ and $s \in S$. All objects are indicated in Figure 6 .
2.2. Cambrian fans. For any lattice congruence Θ of the weak order on W, N. Reading constructs a complete fan \mathcal{F}_{Θ} that coarsens the Coxeter fan \mathcal{F}, [19]. A maximal cone $C_{\vartheta} \in \mathcal{F}_{\Theta}$ corresponds to a congruence class ϑ of Θ and C_{ϑ} is the union of the chambers of \mathcal{A} that correspond to the elements of ϑ. In 19, Section 5] N. Reading proves that these unions are indeed convex cones and that the collection \mathcal{F}_{Θ} of these cones and their faces is a complete fan.

The c-Cambrian fan \mathcal{F}_{c} of W is obtained by this construction if we consider the lattice congruence with congruence classes $\left[\pi_{\downarrow}^{c}(w), \pi_{c}^{\uparrow}(w)\right]$ for $w \in W$ and chosen Coxeter element c. The n-dimensional cone that corresponds to the c-sortable element w is denoted by $C(w)$. It is the union of the maximal cones of \mathcal{F} that

Figure 6. The permutahedron Perm $\left(S_{3}\right)$ obtained as convex hull of the S_{3}-orbit of $M(e) \in L$ or as intersection of the half spaces $\mathscr{H}_{(x, s)}^{a}$.
correspond to the elements of $\left(\pi_{\downarrow}^{c}\right)^{-1} \pi_{\downarrow}^{c}(w)=\left[\pi_{\downarrow}^{c}(w), \pi_{c}^{\uparrow}(w)\right]$. In particular, $C(w)$ is a maximal cone of \mathcal{F}_{c} and of \mathcal{F} if and only if w is a c-singleton.

In [23, N. Reading and D. Speyer define a bijection between the set of rays of \mathcal{F}_{c} and the set of almost positive roots $\Phi_{\geq-1}:=\Phi^{+} \cup(-\Delta)$. To describe this labeling of the rays, we first define a set of almost positive roots for any c-sortable w. For $s \in S(w)$, let $1 \leq j_{s} \leq \ell(w)$ be the unique integer such that $s_{j_{s}}$ is the rightmost occurrence of s in the c-sorting word $s_{1} \ldots s_{\ell(w)}$ of w and define

$$
\operatorname{Lr}_{s}(w):=\left\{\begin{array}{ll}
s_{1} \ldots s_{j_{s}-1}\left(\alpha_{s}\right) & \text { if } s \in S(w) \\
-\alpha_{s} & \text { if } s \notin S(w),
\end{array} \quad \text { and } \quad \operatorname{cl}_{c}(w):=\bigcup_{s \in S} \operatorname{Lr}_{s}(w)\right.
$$

Example 2.2. To illustrate these maps, we consider the Coxeter group $W=S_{3}$ with generators $S=\left\{s_{1}, s_{2}\right\}$ as shown in Figure 6. Choose $c=s_{1} s_{2}$ as Coxeter element. It is easy to check that $w \in W \backslash\left\{s_{2} s_{1}\right\}$ is c-sortable and that $w \in$ $W \backslash\left\{s_{2}, s_{2} s_{1}\right\}$ is a c-singleton. From the above definition follows

$$
\begin{array}{ll}
\operatorname{Lr}_{s_{1}}(e)=\operatorname{Lr}_{s_{1}}\left(s_{2}\right)=-\alpha_{1}, & \operatorname{Lr}_{s_{2}}(e)=\operatorname{Lr}_{s_{2}}\left(s_{1}\right)=-\alpha_{2} \\
\operatorname{Lr}_{s_{1}}\left(s_{1}\right)=\operatorname{Lr}_{s_{1}}\left(s_{1} s_{2}\right)=\alpha_{1}, & \operatorname{Lr}_{s_{2}}\left(s_{1} s_{2} s_{1}\right)=\operatorname{Lr}_{s_{2}}\left(s_{1} s_{2}\right)=\alpha_{1}+\alpha_{2} \\
\operatorname{Lr}_{s_{1}}\left(s_{1} s_{2} s_{1}\right)=\alpha_{2}, & \operatorname{Lr}_{s_{2}}\left(s_{2}\right)=\alpha_{2}
\end{array}
$$

and therefore

$$
\begin{array}{ll}
\operatorname{cl}_{c}(e)=\left\{-\alpha_{1},-\alpha_{2}\right\}, & \operatorname{cl}_{c}\left(s_{1} s_{2}\right)=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\} \\
\operatorname{cl}_{c}\left(s_{1}\right)=\left\{\alpha_{1},-\alpha_{2}\right\}, & \operatorname{cl}_{c}\left(s_{1} s_{2} s_{1}\right)=\left\{\alpha_{2}, \alpha_{1}+\alpha_{2}\right\} \\
\operatorname{cl}_{c}\left(s_{2}\right)=\left\{-\alpha_{1}, \alpha_{2}\right\} . &
\end{array}
$$

N. Reading and D. Speyer use the cluster map cl_{c} to prove that c-Cambrian fans and cluster fans have the same combinatorics: the maximal cone $C(w)$ of the c-Cambrian fan represented by the c-sortable element w is mapped to the set $\mathrm{cl}_{c}(w)$ of almost positive roots. The cardinality of $\operatorname{cl}_{c}(w)$ matches the number of extremal rays of $C(w)$ and cl_{c} induces a bijection f_{c} between the rays of \mathcal{F}_{c} and the almost positive roots by extending cl_{c} to intersection of cones:
$\operatorname{cl}_{c}\left(C_{1} \cap C_{2}\right):=\operatorname{cl}_{c}\left(C_{1}\right) \cap \operatorname{cl}_{c}\left(C_{2}\right)$. To put it slightly differently, N. Reading and D. Speyer showed the following Theorem.

Theorem 2.3 (Reading-Speyer [23, Theorem 7.1]). There is a bijective labeling f_{c} : $\mathcal{F}_{c}^{(1)} \rightarrow \Phi_{\geq-1}$ of the rays of the c-Cambrian fan \mathcal{F}_{c} by almost positive roots such that the extremal rays of $C(w)$ are labeled by $\mathrm{cl}_{c}(w)$.

We now aim for an explicit description of f_{c} that relates nicely to c-singletons, but first need the following two lemmas.

Lemma 2.4. For $\beta \in \Phi_{\geq-1}$, there exists a c-sortable element w and a simple reflection s such that $\operatorname{Lr}_{s}(w)=\beta$.

Proof. The identity e is a c-singleton and $\operatorname{cl}_{c}(e)=\Phi_{\geq-1} \backslash \Phi^{+}$, so we are done if β is a negative simple root. Suppose that $\beta \in \Phi^{+}$and consider the longest element w_{0} with c-sorting word $\mathbf{w}_{\mathbf{0}}=s_{j_{1}} s_{j_{2}} \ldots s_{j_{N}}$. Since $w_{0}(D)$ is above all reflecting hyperplanes,

$$
\Phi^{+}=\left\{s_{j_{1}} s_{j_{2}} \ldots s_{j_{p-1}}\left(\alpha_{s_{j_{p}}}\right) \mid 1 \leq p \leq N\right\}
$$

and $\beta=s_{j_{1}} \ldots s_{j_{i-1}}\left(\alpha_{s_{j_{i}}}\right)$ for some $1 \leq i \leq N$. Since $w=s_{j_{1}} \ldots s_{j_{i}}$ is a prefix of $\mathbf{w}_{\mathbf{0}}$, it is a c-singleton and $\operatorname{Lr}_{s_{j_{i}}}(w)=\beta$.

Lemma 2.5. Let $\rho \in \mathcal{F}_{c}^{(1)}$. There is a c-singleton w such that ρ is an extremal ray of $C(w)$.

Proof. Pick $\rho \in \mathcal{F}_{c}^{(1)}$. According to Theorem2.3, $f_{c}(\rho)=\beta$ for some almost positive root β. By Lemma 2.4, there is a c-singleton w and a simple reflection $s \in S$ such that $\operatorname{Lr}_{s}(w)=\beta$. But this implies that ρ is an extremal ray of $C(w)$.

If w is a c-singleton, then $C(w) \in \mathcal{F}_{c}^{(n)}$ is the maximal cone $w(D)$ which is spanned by the rays $\left\{w\left(\rho_{s}\right) \mid s \in S\right\}$. The main result of this section is

Theorem 2.6. Let $\rho \in \mathcal{F}_{c}^{(1)}$. There is a unique simple reflection $s \in S$ and there is a c-singleton w such that $\rho=w\left(\rho_{s}\right)$ and $f_{c}\left(w\left(\rho_{s}\right)\right)=\operatorname{Lr}_{s}(w)$.

Proof. The uniqueness of $s \in S$ follows from the fact that any ray of the Coxeter fan is of the form $w\left(\rho_{s}\right)$ where $s \in S$ is uniquely determined (but not $w!$).

The first claim follows directly from Lemma 2.5. We proceed by induction on the length of w. If $\ell(w)=0$ then $w=e$. In particular, e is a c-singleton and $s=e s$ is c-sortable for any $s \in S$. Fix some $s \in S$. Since $\operatorname{cl}_{c}(e)=-\Delta=\left\{-\alpha_{t} \mid t \in S\right\}$ and $\operatorname{cl}_{c}(s)=\left\{-\alpha_{t} \mid t \in\langle s\rangle\right\} \cup\left\{\alpha_{s}\right\}$, we conclude $f_{c}\left(e\left(\rho_{s}\right)\right)=-\alpha_{s}$ as $s(D) \subset C(s)$ and the rays of \mathcal{F} in $s(D) \cap D$ are $\left\{\rho_{t} \mid t \in\langle s\rangle\right\}$.

Suppose that $\ell(w)>0$ and let $t \in S$ be the last simple reflection of the c sorting word of w. By Proposition 1.7 $w t$ is a c-singleton with $\ell(w t)<\ell(w)$. By induction, $f_{c}\left(w t\left(\rho_{s}\right)\right)=\operatorname{Lr}_{s}(w t)$ for some $s \in S$. If $s \neq t$ then $t \in W_{\langle s\rangle}$ and we conclude $w t\left(\rho_{s}\right)=w\left(\rho_{s}\right)$ and $\operatorname{Lr}_{s}(w t)=\operatorname{Lr}_{s}(w)$. Hence, we suppose $s=t$. We have $C(w) \cap C(w s)=w(D) \cap w s(D)$, the extremal rays of this cone are $\left\{w\left(\rho_{t}\right) \mid t \in\langle s\rangle\right\}$, and their image under f_{c} is

$$
\operatorname{cl}_{c}(w) \cap \operatorname{cl}_{c}(w s)=\left\{\operatorname{Lr}_{t}(w) \mid t \in\langle s\rangle\right\}=\operatorname{cl}_{c}(w) \backslash\left\{\operatorname{Lr}_{s}(w)\right\}
$$

So $f_{c}\left(w\left(\rho_{s}\right)\right)=\operatorname{Lr}_{s}(w)$.

3. REALIZING GENERALIZED ASSOCIAHEDRA

3.1. A general result. A fan has to satisfy some obvious conditions in order to have the combinatorics of the normal fan of a polytope, in particular, the fan has to be pointed and complete. This condition is far from sufficient and in general it is quite hard to decide whether a given fan is polytopal or not. Coarsenings or refinements of a (polytopal or non-polytopal) fan may or may not be polytopal, examples are easily derived from the non-polytopal fan of [31, Example 7.5] which is a pointed, complete and simplicial fan in \mathbb{R}^{3}. We aim for something less ambitious and prove a criterion that implies that a given realization of a fan is the normal fan of a polytope. Our notation is inspired by Section 2 ,

Consider a pointed, complete, and simplicial fan $\mathcal{G} \subseteq \mathbb{R}^{n}$ with d-dimensional cones $\mathcal{G}^{(d)}$. To $\rho \in \mathcal{G}^{(1)}$ we associate a vector v_{ρ} such that $\rho=\mathbb{R}_{\geq 0}\left[v_{\rho}\right]$. Suppose that we are given a collection of positive real numbers λ_{ρ}, one for each $\rho \in \mathcal{G}^{(1)}$. We then define a hyperplane

$$
H_{\rho}=\left\{x \in \mathbb{R}^{n} \mid\left\langle x, v_{\rho}\right\rangle=\lambda_{\rho}\right\}
$$

and a half space

$$
\mathscr{H}_{\rho}:=\left\{x \in \mathbb{R}^{n} \mid\left\langle x, v_{\rho}\right\rangle \leq \lambda_{\rho}\right\} .
$$

We write \mathscr{H}_{ρ}^{+}if the inequality is strict. Since \mathcal{G} is simplicial, we have for every maximal cone $C \in \mathcal{G}^{(n)}$ a point $x(C)$ defined by $\{x(C)\}:=\bigcap_{\rho \in C^{(1)}} H_{\rho}$. Then

$$
P:=\text { ConvexHull }\left\{x(C) \mid C \in \mathcal{G}^{(n)}\right\} \quad \text { and } \quad \widetilde{P}:=\bigcap_{\rho \in \mathcal{G}^{(1)}} \mathscr{H}_{\rho}
$$

are well-defined polytopes of dimension at most n.
For instance the case of a W-permutahedron constructed from the Coxeter fan \mathcal{F} as explained in 2.1 fits nicely in this context: $x(w(D))$ is by definition $M(w)$ and the half spaces \mathscr{H}_{ρ} are precisely the half spaces \mathscr{H}_{ρ}^{a}, for $\rho \in \mathcal{F}^{(1)}$. In this case the two polytopes P and \widetilde{P} coincide.

Let $C \in \mathcal{G}^{(n)}$ and $f \in C^{(n-1)}$ a $(n-1)$-dimensional face of C. An outer normal of C relative to f is a vector v normal to f, that is normal to the hyperplane spanned by f, and such that $C \subseteq\left\{x \in \mathbb{R}^{n} \mid\langle x, v\rangle \leq 0\right\}$.

Let $C_{i}, C_{j} \in \mathcal{G}^{(n)}$ be two adjacent maximal cones in \mathcal{G}, that is, $C_{i} \cap C_{j} \in \mathcal{G}^{(n-1)}$. A vector u is said to be pointing to C_{i} from C_{j} if there is an outer normal v of C_{j} relative to $C_{i} \cap C_{j}$ such that $\langle u, v\rangle>0$. In particular, observe that:
(i) Any outer normal of C_{j} relative to $C_{i} \cap C_{j}$ is pointing to C_{i} from C_{j};
(ii) If $x_{i} \in C_{i}$ and $x_{j} \in C_{j}$ are points in the interior of these cones, then the vector $x_{i}-x_{j}$ is pointing to C_{i} from C_{j};
(iii) Any vector not contained in the span of $C_{i} \cap C_{j}$ is either pointing to C_{i} from C_{j} or pointing to C_{j} from C_{i}.
Notice that the vector $x\left(C_{i}\right)-x\left(C_{j}\right)$ is a normal vector to $C_{i} \cap C_{j}$, but not necessarily pointing to C_{i} from C_{j}, since $x\left(C_{i}\right)$ is not necessarily a point in C_{i}.

Theorem 3.1. Use the notation as above and suppose that $x\left(C_{i}\right)-x\left(C_{j}\right)$ points to C_{i} from C_{j} whenever $C_{i}, C_{j} \in \mathcal{G}^{(n)}$ with $C_{i} \cap C_{j} \in \mathcal{G}^{(n-1)}$. Then $P=\widetilde{P}$ has (outer) normal fan $\mathcal{N}(P)=\mathcal{G}$ and is of dimension n.

Remark 3.2. The hypothesis of Theorem 3.1 is satisfied in (at least) three cases.

First, the case of W-permutahedra constructed from the Coxeter fan \mathcal{F}. Indeed, the points $M(w)$ are strictly in the cone $w(D)$. So $M(w)-M\left(w^{\prime}\right)$ points to $w(D)$ from $w^{\prime}(D)$ whenever $w(D)$ and $w^{\prime}(D)$ are adjacent cones.

Second, the case of the cube constructed from the fan \mathcal{G} which is the skew coordinate hyperplane arrangement obtained from the hyperplanes which bound the fundamental chamber in the Coxeter arrangement. (Note that this fan corresponds to the usual construction of the Boolean lattice as a quotient of weak order, via the descent map, see [13]).

Third, as we shall show, the case of Cambrian fans described on the two next sections.

Remark 3.3. A similar theorem, which includes the assumption that \mathcal{G} should be a coarsening of a Coxeter fan, appears as [12, Theorem A.3]. That theorem would suffice for our purposes, but we prefer to give the following independent proof of the more general theorem.

Proof of Theorem 3.1. Since P and \widetilde{P} are convex polytopes, it is enough to show that the vertex set $V(P)$ of P is equal to the vertex set $V(\widetilde{P})$ of \widetilde{P}.

Let us prove first that $P \subseteq \widetilde{P}$. It suffices to prove $\left\langle x(C), v_{\rho}\right\rangle<\lambda_{\rho}$ for $C \in \mathcal{G}^{(n)}$ and $\rho \in \mathcal{G}^{(1)} \backslash C^{(1)}$.

Let $C \in \mathcal{G}^{(n)}$ and $\rho \in \mathcal{G}^{(1)} \backslash C^{(1)}$. We will show that there is a finite sequence $C_{0}:=C, \ldots, C_{k}=C^{\prime}$ of maximal cones of \mathcal{G} such that $\rho \subseteq C^{\prime}, C_{i} \cap C_{i+1} \in \mathcal{G}^{(n-1)}$ and v_{ρ} is pointing to C_{i+1} from C_{i}, for $0 \leq i<k$.

For x in C, we write $x+\rho$ for the half line $\left\{x+\lambda v_{\rho} \mid \lambda \geq 0\right\}$ parallel to ρ and starting at x. Write C_{ρ} for the union of all maximal cones of \mathcal{G} that contain ρ. Since \mathcal{G} is a pointed complete fan, C_{ρ} contains n-dimensional balls of arbitrary diameter centered at points of ρ. In particular, C_{ρ} contains such a ball of diameter d, where d is the distance between the lines containing ρ and $x+\rho$. So $(x+\rho) \cap C_{\rho} \neq \varnothing$ for any point $x \in C$. Hence there is a maximal cone C^{\prime} of \mathcal{G} such that ρ is an extremal ray of C^{\prime} and $(x+\rho) \cap C^{\prime} \neq \varnothing$ for any point $x \in C$. For any $x \in C$, the line segment between C and C^{\prime} on $x+\rho$ determines a sequence of cones $C_{0}=$ $C, C_{1}, \ldots, C_{p}=C^{\prime}$ of \mathcal{G} of arbitrary dimension, those are the cones that $x+\rho$ meets between C and C^{\prime} in the natural order on the C_{i} induced by the order of points of $x+\rho$ given by the parametrization of this half line. From this point, we are looking for a sequence $C=C_{0}, C_{0,1}, C_{1}, C_{1,2}, \ldots, C_{k-1, k}, C_{k}=C^{\prime}$ such that C_{i} is a maximal cone and $C_{i, i+1}=C_{i} \cap C_{i+1}$ is a cone of codimension 1. Since the number of cones in \mathcal{G} is finite, the number of cones met by all possible half lines $x+\rho$ for $x \in C$ is finite. Since C is a full dimensional cone, we may move x in C and then may assume that $x+\rho$ does not intersect any cone of \mathcal{G} of codimension larger than 1. In other words, there is a finite sequence $C_{0}=C, C_{1}, \ldots, C_{k}=C^{\prime}$ of maximal cones of \mathcal{G} such that $C_{i, i+1}=C_{i} \cap C_{i+1} \in \mathcal{G}^{(n-1)}$ and $(x+\rho) \cap C_{i} \neq \varnothing$. Pick y_{i} in the interior of C_{i} and in $x+\rho$. So $y_{i+1}-y_{i}$ points to C_{i+1} from C_{i}. Since the cones C_{0}, \ldots, C_{k} have the same order as the points on $x+\rho$, the distance from x to y_{i} is strictly smaller than the distance from x to y_{i+1}. This means the vector $y_{i+1}-y_{i}=\kappa v_{\rho}$ with $\kappa>0$. Hence v_{ρ} points to C_{i+1} from C_{i}.

Now, we consider the piecewise linear path from $x\left(C_{0}\right)$ to $x\left(C_{k}\right)$ that traverses from $x\left(C_{i}\right)$ to $x\left(C_{i+1}\right)$. Since $x\left(C_{i+1}\right)-x\left(C_{i}\right)$ points to C_{i+1} from C_{i}, the vector $x\left(C_{i+1}\right)-x\left(C_{i}\right)$ is an outer normal to C_{i} relative to $C_{i} \cap C_{i+1}$, and since v_{ρ} points to C_{i+1} from C_{i} for $0 \leq i<k$, we conclude that $\left\langle x\left(C_{i+1}\right)-x\left(C_{i}\right), v_{\rho}\right\rangle>0$.

Hence

$$
\left\langle x\left(C_{0}\right), v_{\rho}\right\rangle<\ldots<\left\langle x\left(C_{k}\right), v_{\rho}\right\rangle=\lambda_{\rho}
$$

This proves $P \subseteq \widetilde{P}$.
For any vertex $x(C)$ of P we know that $x(C)$ is a vertex of \widetilde{P} since $x(C)$ is defined as the intersection of hyperplanes that bound half spaces defining \widetilde{P} and $P \subseteq \widetilde{P}$. Moreover, for any maximal cone $C \in \mathcal{G}$, the point $x(C)$ must be on the boundary of P for that reason. But now it follows that the points $x(C)$ are in convex position because \mathcal{G} is simplicial and $\bigcap_{\rho \in C^{(1)}} H_{\rho}$ is a singleton. Hence

$$
\left\{x(C) \mid C \in \mathcal{G}^{(n)}\right\}=V(P) \subseteq V(\widetilde{P})
$$

The rays $\rho \in C^{(1)}$ span the outer normal cone of $x(C) \in P$ for every maximal cone $C \in \mathcal{G}$. The hyperplanes $H_{\rho}, \rho \in C^{(1)}$, bound the half spaces of $x(C) \in \widetilde{P}$, so the normal cones agree. But the union of these cones equals the complete fan \mathcal{G}, so \widetilde{P} does not have any additional vertices.

The claim that $\operatorname{dim}(P)=n$ follows from the fact that $\lambda_{\rho}>0$ for all $\rho \in \mathcal{G}^{(1)}:$ a neighborhood of 0 is contained in P.
3.2. Realizations of generalized associahedra. We apply Theorem 3.1 to show how c-Cambrian fans \mathcal{F}_{c} and associahedra $\operatorname{Asso}_{c}{ }^{a}(W)$ relate. The associahedron is described as intersection of certain half spaces of the permutahedron $\operatorname{Perm}^{a}(W)$ determined by the rays of \mathcal{F}_{c} and the common vertices of $\operatorname{Asso}_{c}^{a}(W)$ and $\operatorname{Perm}{ }^{a}(W)$ are characterized in terms of c-singletons. The proof of Theorem 3.4 is deferred to Section 3.3 .

Theorem 3.4. Let c be a Coxeter element of W and choose a point a in the interior of the fundamental chamber D, to fix a realization of the permutahedron $\operatorname{Perm}^{a}(W)$.
(i) The polyhedron

$$
\operatorname{Asso}_{c}^{\boldsymbol{a}}(W)=\bigcap_{\rho \in \mathcal{F}_{c}^{(1)}} \mathscr{H}_{\rho}^{\boldsymbol{a}}
$$

is a simple polytope of dimension n with c-Cambrian fan \mathcal{F}_{c} as normal fan.
(ii) The vertex sets $V\left(\operatorname{Asso}_{c}^{a}(W)\right)$ and $V\left(\operatorname{Perm}^{a}(W)\right)$ satisfy

$$
V\left(\operatorname{Asso}_{c}^{\boldsymbol{a}}(W)\right) \cap V\left(\operatorname{Perm}^{\boldsymbol{a}}(W)\right)=\{M(w) \mid w \text { is a c-singleton }\} .
$$

The first statement implies that the facet-supporting half spaces of the associahedron form a subset of the facet-supporting half spaces of the permutahedron. We mentioned this in the introduction in the context of c-admissible half spaces. A facet-supporting half space \mathscr{H}_{ρ}^{a} of the permutahedron $\operatorname{Perm}^{a}(W)$ is c-admissible if $M(w) \in H_{\rho}^{a}$ for some c-singleton w. We rephrase the first statement as follows:
Corollary 3.5. The associahedron $\mathrm{Asso}_{c}^{\boldsymbol{a}}(W)$ is the intersection of all c-admissible halfspaces of $\operatorname{Perm}^{a}(W)$.

We illustrate these results with a basic example.
Example 3.6. The first statement of Theorem 3.4 claims that the intersection of a subset of the half spaces $\mathscr{H}_{\rho}^{\boldsymbol{a}}$ of $\mathrm{Perm}^{\boldsymbol{a}}(W)$ yields a generalized associahedron $\operatorname{Asso}_{c}^{a}(W)$ if we restrict to half spaces such that ρ is a ray of the c-Cambrian fan \mathcal{F}_{c}. Figures 7 and 8 illustrate this for $W=S_{4}$ generated by $S=\left\{s_{1}, s_{2}, s_{3}\right\}$. We use the following conventions: The point \boldsymbol{a} used to fix a realization of Perm ${ }^{\boldsymbol{a}}(W)$ is labeled A. A facet of the associahedron $\operatorname{Asso}_{c}^{a}(W)$ is labeled by the ray $\rho_{j} \in \mathcal{F}_{c}$
that is perpendicular to that facet. Recall that each ray ρ can be written as $w\left(\rho_{s_{i}}\right)$ for some (non-unique) c-singleton w and some (unique) simple reflection s_{i} by Lemma 2.5. If the Coxeter element $c=s_{1} s_{2} s_{3}$ is chosen (Figure [7), then we can express the ray $\rho_{i} \in \mathcal{F}_{c}$ that corresponds to the (c-admissible) half space $\mathscr{H}_{\rho_{i}}^{\boldsymbol{a}}$ as follows:

$$
\begin{aligned}
& \rho_{1}=e\left(\rho_{s_{1}}\right), \\
& \rho_{2}=e\left(\rho_{s_{3}}\right)=s_{1}\left(\rho_{s_{3}}\right)=s_{1} s_{2}\left(\rho_{s_{3}}\right)=s_{1} s_{2} s_{1}\left(\rho_{s_{3}}\right), \\
& \rho_{3}=e\left(\rho_{s_{2}}\right)=s_{1}\left(\rho_{s_{2}}\right), \\
& \rho_{4}=s_{1} s_{2}\left(\rho_{s_{2}}\right)=s_{1} s_{2} s_{3}\left(\rho_{s_{2}}\right)=s_{1} s_{2} s_{1}\left(\rho_{s_{2}}\right)=s_{1} s_{2} s_{3} s_{1}\left(\rho_{s_{2}}\right), \\
& \rho_{5}=s_{1}\left(\rho_{s_{1}}\right)=s_{1} s_{2}\left(\rho_{s_{1}}\right)=s_{1} s_{2} s_{3}\left(\rho_{s_{1}}\right), \\
& \rho_{6}=s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}\left(\rho_{s_{1}}\right) \\
& \rho_{7}=s_{1} s_{2} s_{3} s_{1} s_{2}\left(\rho_{s_{2}}\right)=s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}\left(\rho_{s_{2}}\right) \\
& \rho_{8}=s_{1} s_{2} s_{3}\left(\rho_{s_{3}}\right)=s_{1} s_{2} s_{3} s_{1}\left(\rho_{s_{3}}\right)=s_{1} s_{2} s_{3} s_{1} s_{2}\left(\rho_{s_{3}}\right)=s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}\left(\rho_{s_{3}}\right), \text { and } \\
& \rho_{9}=s_{1} s_{2} s_{1}\left(\rho_{s_{1}}\right)=s_{1} s_{2} s_{3} s_{1}\left(\rho_{s_{1}}\right)=s_{1} s_{2} s_{3} s_{1} s_{2}\left(\rho_{s_{1}}\right) .
\end{aligned}
$$

The claim of the second statement of Theorem 3.4 is that the common vertices of $\operatorname{Perm}^{\boldsymbol{a}}(W)$ and $\operatorname{Asso}_{c}^{\boldsymbol{a}}(W)$ are the points $M(w)=w(M(e))$ for w a c-singleton. It is straightforward to verify this claim directly if $c=s_{1} s_{2} s_{3}$ in Figure 7 The common vertices of $\operatorname{Asso}_{c}^{a}(W)$ and $\operatorname{Perm}^{a}(W)$ are labeled A through H and we have

$$
\begin{array}{lll}
A=M(e), & B=M\left(s_{1}\right), & C=M\left(s_{1} s_{2}\right) \\
D=M\left(s_{1} s_{2} s_{1}\right), & E=M\left(s_{1} s_{2} s_{3}\right), & F=M\left(s_{1} s_{2} s_{3} s_{1}\right) \\
G=M\left(s_{1} s_{2} s_{3} s_{1} s_{2}\right), & H=M\left(s_{1} s_{2} s_{3} s_{1} s_{2} s_{1}\right) . &
\end{array}
$$

Figure 7. An unfolding of the associahedron $\operatorname{Asso}_{c}^{a}\left(S_{4}\right)$ with $c=s_{1} s_{2} s_{3}$. The 2-faces are labelled by $\rho_{i} \in \mathcal{F}_{c}^{1}$ for the facet-defining hyperplane $H_{\rho_{i}}^{a}$.

Figure 8. An unfolding of the associahedron Asso ${ }_{c}^{a}\left(S_{4}\right)$ with $c=s_{2} s_{1} s_{3}$. The 2 -faces are labeled by $\rho=(w, s) \in$ \mathcal{F}_{c}^{1} for the facet-defining hyperplane H_{ρ}^{a}.

If the Coxeter element is $c=s_{2} s_{1} s_{3}$ (Figure (8) then we have the following list of expressions for $\rho_{i} \in \mathcal{F}_{c}$ (we do not list all possible expressions for ρ_{i}):

$$
\begin{array}{lll}
\rho_{1}=e\left(\rho_{s_{3}}\right), & \rho_{2}=s_{2}\left(\rho_{s_{2}}\right), & \rho_{3}=e\left(\rho_{s_{1}}\right), \\
\rho_{4}=e\left(\rho_{s_{2}}\right), & \rho_{5}=s_{2} s_{1} s_{3} s_{2} s_{3}\left(\rho_{s_{3}}\right) & \rho_{6}=s_{2} s_{1} s_{3} s_{2} s_{1} s_{3}\left(\rho_{s_{2}}\right), \\
\rho_{7}=s_{2} s_{1}\left(\rho_{s_{1}}\right), & \rho_{8}=s_{2} s_{3}\left(\rho_{s_{3}}\right), & \rho_{9}=s_{2} s_{1} s_{3} s_{2} s_{1}\left(\rho_{s_{1}}\right) .
\end{array}
$$

The common vertices of the permutahedron and associahedron are labeled A through I and we have

$$
\begin{array}{lll}
A=M(e), & B=M\left(s_{2}\right), & C=M\left(s_{2} s_{1}\right), \\
D=M\left(s_{2} s_{3}\right), & E=M\left(s_{2} s_{1} s_{3}\right), & F=M\left(s_{2} s_{1} s_{3} s_{2}\right), \\
G=M\left(s_{2} s_{1} s_{3} s_{2} s_{3}\right), & H=M\left(s_{2} s_{1} s_{3} s_{2} s_{1}\right), & I=M\left(s_{2} s_{1} s_{3} s_{2} s_{1} s_{3}\right) .
\end{array}
$$

3.3. Proof of Theorem [3.4, Let $c \in W$ be a Coxeter element and let \boldsymbol{a} be in the interior of D. The proof of Theorem 3.4 is based on Theorem 3.1 We use the same notations as in 3.1 applied to the c-Cambrian fan \mathcal{F}_{c} and denote by $x(C)$ the intersection point of the hyperplanes H_{ρ}^{a} for ρ the extremal rays of a maximal cone C of \mathcal{F}_{c}.

Let w and w^{\prime} be distinct c-sortable elements such that the associated maximal cones $C:=C(w)$ and $C^{\prime}:=C\left(w^{\prime}\right)$ of the Cambrian fan \mathcal{F}_{c} intersect in a cone of codimension 1 . So either w is a cover of w^{\prime} or w^{\prime} is a cover of w in the lattice of c-sortable elements. Without loss of generality, we may assume that w is a cover of w^{\prime}. To meet the requirement of Theorem [3.1 we have to prove that the vector $x(C)-x\left(C^{\prime}\right)$ points to C from C^{\prime}.

We use the following notations. Set $\mathcal{R}:=\left\{w\left(v_{s}\right) \mid w \in W, s \in S\right\}$ so that the set of rays of the Coxeter fan is $\mathbb{R}_{\geq 0} \mathcal{R}:=\{\lambda v \mid \lambda \geq 0, v \in \mathcal{R}\}$. For $v \in \mathcal{R}$, we write $\nu_{v}:=\left\langle\boldsymbol{a}, v_{s}\right\rangle=\langle M(w), v\rangle>0$ which depends only on s.

The intersection $C \cap C^{\prime}$ is contained in a hyperplane H_{t} for some reflection $t \in W$ since \mathcal{F}_{c} is a coarsening of the Coxeter fan \mathcal{F}. We now show which of the two roots associated to H_{t} is an outer normal to C^{\prime} relative to $C^{\prime} \cap C$.

Lemma 3.7. Let $w, w^{\prime} \in W$ be c-sortable elements such that w is a cover of w^{\prime} in the lattice of c-sortable elements. $C(w) \cap C\left(w^{\prime}\right)$ is an n-1-dimensional cone of \mathcal{F}_{c}, and suppose it lies in H_{t} for some reflection t. Let the roots associated to t be $\pm \beta$. If β is an outer normal to C^{\prime} relative to $C^{\prime} \cap C$, then β is a negative root.

Proof. Let $\widetilde{w} \in\left(\pi_{\downarrow}^{c}\right)^{-1}\left(w^{\prime}\right)$ such that w is a cover of \widetilde{w} in the right weak order. Then $w(D) \cap \widetilde{w}(D) \subset H_{t}$ is an $(n-1)$-dimensional cone of the Coxeter fan \mathcal{F}. Since β is an outer normal for $C\left(w^{\prime}\right)$ relative to $C(w) \cap C\left(w^{\prime}\right)$, it is an outer normal for $\widetilde{w}(D)$ with respect to $\widetilde{w}(D) \cap w(D)$.

Case 1: Suppose that $w^{\prime}=\widetilde{w}=e$. Then $w=s$ for some $s \in S$. The hyperplane dividing $w(D)$ from D is H_{s}, perpendicular to α_{s}. D lies on the side of H_{s} having positive inner product with α_{s}. Thus the outer normal $\beta=-\alpha_{s}$ is a negative root.

Case 2: Suppose $\widetilde{w} \neq e$. Then $\widetilde{w}^{-1} w=s \in S$ since w covers \widetilde{w} in right weak order. By the previous case, $\widetilde{w}\left(-\alpha_{s}\right)$ is an outer normal. Since $\ell(w)=\ell(\widetilde{w} s)>\ell(\widetilde{w})$, we have that $\beta=\widetilde{w}\left(-\alpha_{s}\right)$ is a negative root, as desired.

We have that $C \cap \mathbb{R}_{\geq 0} \mathcal{R}=\left\{\rho_{u_{1}}, \ldots, \rho_{u_{p}}\right\}$ and since \mathcal{F}_{c} is simplicial, we may assume that the extremal rays of C are the first $n:=|S|$ rays. Similarly, we may assume $\left\{\rho_{u_{1}^{\prime}}, \rho_{u_{2}}, \ldots, \rho_{u_{n}}\right\}$ are the extremal rays of C^{\prime}. Hence, H_{t} is spanned by $\left\{u_{2}, \ldots, u_{n}\right\}$. As we have $x(C):=\bigcap_{i=1}^{n} H_{\rho_{u_{i}}}^{a}$ and $x(C)-x\left(C^{\prime}\right) \in \bigcap_{i=2}^{n} H_{\rho_{u_{i}}}^{a}$, we conclude $x(C)-x\left(C^{\prime}\right)=\mu \beta$ for some $\mu \in \mathbb{R}$ and β a negative root. Thus, $x(C)-x\left(C^{\prime}\right)$ is pointing to C from C^{\prime} if and only if $x(C)-x\left(C^{\prime}\right)=\mu \beta$ with $\mu>0$.

Lemma 3.8. Let $w, w^{\prime} \in W$ be c-sortable elements such that w covers w^{\prime} in the lattice of c-sortable elements and $C(w) \cap C\left(w^{\prime}\right) \subset H_{t}$ is an $(n-1)$-dimensional cone of \mathcal{F}_{c} for a reflection t. Let the extremal rays of $C:=C(w)$ and $C^{\prime}:=C\left(w^{\prime}\right)$ be generated by $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{u_{1}^{\prime}, u_{2}, \ldots, u_{n}\right\}$ and suppose $u_{1}+u_{1}^{\prime}=\sum_{i=2}^{n} b_{i} u_{i} \in$ H_{t} with $b_{i} \geq 0$. Then the following statements are equivalent:
(i) $x(C)-x\left(C^{\prime}\right)$ is pointing to C from C^{\prime};
(ii) $x(C)-x\left(C^{\prime}\right)=\mu \beta$ with $\beta \in \Phi^{-}$and $\mu>0$;
(iii) $\left\langle x(C)-x\left(C^{\prime}\right), u_{1}\right\rangle>0$;
(iv) $\nu_{u_{1}}+\nu_{u_{1}^{\prime}}>\sum_{i=2}^{n} b_{i} \nu_{i}$.

Proof. The first equivalence follows from Lemma 3.7 and the preceding discussion.
As $u_{1} \in C$ and C is spanned by the vectors in $C \cap C^{\prime}$ together with u_{1}, we have $\left\langle\beta, u_{1}\right\rangle>0$ if and only if β is an outer normal of C^{\prime} relative to $C \cap C^{\prime}$. This shows the second equivalence.

The last equivalence follows from

$$
\left\langle x(C)-x\left(C^{\prime}\right), u_{1}\right\rangle=\nu_{u_{1}}-\left\langle x\left(C^{\prime}\right),-u_{1}^{\prime}+\sum_{i=2}^{n} b_{i} u_{i}\right\rangle=\nu_{u_{1}}+\nu_{u_{1}^{\prime}}-\sum_{i=2}^{n} b_{i} \nu_{u_{i}} .
$$

We apply Theorem 3.1 to conclude:
If one of the equivalences in Lemma 3.8 is achieved for all pairs of adjacent cones in \mathcal{F}_{c}, then \mathcal{F}_{c} is the outer normal fan of $\operatorname{Asso}_{c}{ }_{c}(W)$ which proves Theorem 3.4.
This will be done in Lemma 3.13 below.
We first consider the special case that e is covered by $s \in S$ and there is a reduced expression for c that starts with s, that is s is initial in c.
Lemma 3.9. Let $s \in S$ be initial in c. Then $C(e) \cap C(s) \subseteq H_{s}, u_{1}^{\prime}=v_{s}, u_{1}=s\left(v_{s}\right)$, and

$$
u_{1}^{\prime}+u_{1}=\sum_{r \neq s} b_{r} u_{r} \in H_{s}
$$

with $b_{r}=-2 \frac{\left\langle\alpha_{s}, \alpha_{r}\right\rangle}{\left\langle\alpha_{s}, \alpha_{s}\right\rangle} \geq 0$. Moreover, $\nu_{u_{1}^{\prime}}+\nu_{u_{1}}>\sum_{r \neq s} b_{r} \nu_{u_{r}}$.
Proof. Without loss of generality, assume $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and $s=s_{1}$. Since $s \in S$ is initial, s is a c-singleton. The maximal cones $C(e)$ and $C(s)$ of \mathcal{F}_{c} are therefore maximal cones of the Coxeter fan with extremal rays generated by $\left\{v_{s_{1}}, \ldots, v_{s_{n}}\right\}$ and $\left\{s\left(v_{s_{1}}\right), v_{s_{2}}, \ldots, v_{s_{n}}\right\}$. Since $\alpha_{r}=\sum_{i=1}^{n}\left\langle\alpha_{r}, \alpha_{i}\right\rangle v_{i}$, we have

$$
s_{1}\left(v_{s_{1}}\right)=v_{s_{1}}-2 \frac{\left\langle\alpha_{s_{1},}, v_{s_{1}}\right\rangle}{\left\langle\alpha_{s_{1}}, \alpha_{s_{1}}\right\rangle} \alpha_{s_{1}}=-v_{s_{1}}+\sum_{i=2}^{n}\left(-2 \frac{\left\langle\alpha_{s_{1}}, \alpha_{s_{i}}\right\rangle}{\left\langle\alpha_{s_{1}}, \alpha_{s_{1}}\right\rangle}\right) v_{s_{i}} .
$$

In particular, $s\left(v_{s_{1}}\right)+v_{s_{1}} \in H_{s_{1}}$ and $\left\langle\alpha_{s_{1}}, \alpha_{s_{i}}\right\rangle \leq 0$ for $s_{1} \neq s_{i}$. As \boldsymbol{a} is a vertex of $\operatorname{Perm}^{a}(W)$, we conclude

$$
\nu_{s_{1}\left(u_{1}\right)}=\left\langle\boldsymbol{a}, v_{s_{1}}\right\rangle>\left\langle\boldsymbol{a}, s_{1}\left(v_{s_{1}}\right)\right\rangle=-\nu_{s_{1}\left(v_{s_{1}}\right)}+\sum_{i=2}^{n} b_{i} \nu_{s_{i}}
$$

Some terminology and results due to N. Reading and D. Speyer are needed to prove Lemma 3.13 (and therefore to finish the proof of Theorem (3.4). To distinguish objects related to a Cambrian fan with respect to different Coxeter elements, we use the Coxeter element as index. For example, if we use the Coxeter element scs instead of c, then $C_{s c s}(w)$ denotes the maximal cone that corresponds to the scssortable element w. If $s \in S$ is initial in c then $\mathcal{F}_{s c}$ is the $s c$-Cambrian fan for the Coxeter element sc of $W_{\langle s\rangle}$.
Lemma 3.10 (23, Lemmas 4.1, 4.2]). Let c be a Coxeter element and s initial in c.
(i) Let $w \in W$ such that $\ell(s w)<\ell(w)$. Then w is c-sortable if and only if $s w$ is scs-sortable.
(ii) Let $w \in W$ such that $\ell(s w)>\ell(w)$. Then w is c-sortable if and only if $w \in W_{\langle s\rangle}$ and w is sc-sortable.
Note that $\ell(s w)<\ell(w)$ if and only if the chamber $w(D)$ of the Coxeter arrangement corresponding to w lies above H_{s}. In this case, the maximal cone $C(w)$ of \mathcal{F}_{c} is above H_{s} because w is minimal in its fibre $\left(\pi_{\downarrow}^{c}\right)^{-1} \pi_{\downarrow}^{c}(w)=\left[\pi_{\downarrow}^{c}(w), \pi_{c}^{\uparrow}(w)\right]$ for the c-Cambrian congruence. On the other hand, if $\ell(s w)>\ell(w)$, then $w(D)$ is below H_{s} in the Coxeter arrangement. In this case, we know that the maximum
element of the fibre $\left[\pi_{\downarrow}^{c}(w), \pi_{c}^{\uparrow}(w)\right]$ for w, and thus all of $C(w)$, is below H_{s}, by [23, Lemma 4.11]. It follows that the hyperplane H_{s} separates the cones of \mathcal{F} into two families and it never intersects a maximal cone of \mathcal{F}_{c} in its interior. For $\rho \in \mathcal{F}_{c}^{(1)}$ we define

$$
\zeta_{s}(\rho):= \begin{cases}s(\rho) & \text { if } \rho \neq \rho_{s} \\ -\rho_{s} & \text { otherwise }\end{cases}
$$

We abuse notation and consider ζ_{s} also as a map on the set of vectors generating the rays $\mathcal{F}_{c}^{(1)}$. The following lemma is a consequence of [23, Lemma 6.5] and [23, Theorem 1.1]. Compare also the comments after [23, Corollary 7.3], from which the last statement is taken.

Lemma $3.11(\boxed{23})$. Let $s \in S$ be initial in the Coxeter element c. If $\rho_{1}, \ldots, \rho_{n}$ are the extremal rays of the maximal cone $C(w) \in \mathcal{F}_{c}$ then $\zeta_{s}\left(\rho_{1}\right), \ldots, \zeta_{s}\left(\rho_{n}\right)$ are the extremal rays of a maximal cone of $\mathcal{F}_{\text {scs }}$. If $\ell(s w)<\ell(w)$, then these extremal rays are the extremal rays of the maximal cone $C(s w)$ that corresponds to the scs-sortable element sw.

Before we finish the proof of Theorem 3.4 with Lemma 3.13 we make an observation that will be useful also in Section 3.4.

Lemma 3.12. Let c be a Coxeter element, $s \in S$ initial in c, and $w \in W_{\langle s\rangle} s c$ sortable. Then the maximal cone $C(w) \in \mathcal{F}_{c}$ is spanned by $C_{s c}(w) \in \mathcal{F}_{s c}$ and the ray $\rho_{s} \in \mathcal{F}_{c}$.

Proof. The ray ρ_{s} is the unique ray of \mathcal{F}_{c} that is strictly below H_{s} by [23, Lemma 6.3]. From Lemma 3.10 it follows that $C(w)$ is below H_{s} and has ρ_{s} as an extremal ray. Hence $C(w)$ is spanned by ρ_{s} and a maximal cone $E(w):=C(w) \cap H_{s} \in \mathcal{A}_{\langle s\rangle}$.

Now consider all inversions t of w, that is, all reflections $H_{t} \in \mathcal{A}$ such that $C(w)$ is above H_{t}. Since $w \in W_{\langle s\rangle}$ we conclude $t \in W_{\langle s\rangle}$. Hence, the inversions of $E(w)$ and $C_{s c}(w)$ coincide and $E(w)=C_{s c}(w)$.

Lemma 3.13. Let $w, w^{\prime} \in W$ be c-sortable elements such that w covers w^{\prime} in the lattice of c-sortable elements and $C(w) \cap C\left(w^{\prime}\right) \subset H_{t}$ is an $(n-1)$-dimensional cone of \mathcal{F}_{c} for a reflection t. Let the extremal rays of $C:=C(w)$ and $C^{\prime}:=C\left(w^{\prime}\right)$ be generated by $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{u_{1}^{\prime}, u_{2}, \ldots, u_{n}\right\}$.

Then $u_{1}^{\prime}+u_{1}=\sum_{i=2}^{n} b_{i} u_{i}$ with $b_{i} \geq 0$ and $\nu_{u_{1}^{\prime}}+\nu_{u_{1}}>\sum_{i=2}^{n} b_{i} \nu_{u_{i}}$.
Proof. The proof is an induction on the rank $n=|S|$ and the length $\ell(w)$.
If $|S|=1$ then the result is clear, so assume that $S=\left\{s_{1}, \ldots, s_{n}\right\}$ with $n>1$ and $\ell(w)=1$. Assume without loss of generality that $w=s_{1}$, and since w covers $w^{\prime}, w^{\prime}=e$. If w is initial for c then we are done by Lemma 3.9, So assume that w is not initial for c. Then we have $u_{i}=v_{s_{i}}$, for $2 \leq i \leq n, u_{1}^{\prime}=v_{s_{1}}$, and $u_{1}=u$ for some $u \in \mathcal{R}$. Thus the maximal cones $C(e)$ and $C(w)$ are generated by $\left\{v_{s_{1}}, v_{s_{2}}, \ldots, v_{s_{n}}\right\}$ and $\left\{u, v_{s_{2}}, \ldots, v_{s_{n}}\right\}$. For sake of definiteness, suppose $s=s_{2}$ is initial in c. Then $C(e)$ and $C(w)$ are both below H_{s}. By Lemma 3.12 we have maximal cones $C_{s c}(e)=C(e) \cap H_{s}$ and $C_{s c}(w)=C(w) \cap H_{s}$ in the scCambrian fan $\mathcal{F}_{s c}$ of $W_{\langle s\rangle}$ and these cones are generated by $\left\{v_{s_{1}}, v_{s_{3}}, \ldots, v_{s_{n}}\right\}$ and $\left\{u, v_{s_{3}}, \ldots, v_{s_{n}}\right\}$. So by induction on the rank of $|S|$, we obtain the claim with $b_{2}=0$.

For the induction, we assume that the claim is true whenever \widetilde{w} is \widetilde{c}-sortable for a Coxeter group generated by \widetilde{S} with $|\widetilde{S}|<|S|$ or \widetilde{w} is a c-sortable element with $\ell(\widetilde{w})<\ell(w)$.

Assume $w, w^{\prime} \in W$ are c-sortable with $\ell(w)>1$ and w covers w^{\prime} in the lattice of c-sortable elements. Let $s \in S$ be initial in c. We split into cases based on the position of $C(w)$ and $C\left(w^{\prime}\right)$ relative to H_{s}. Note that $C(w)$ below H_{s} and $C\left(w^{\prime}\right)$ above H_{s} is not possible since w covers w^{\prime} in the c-Cambrian lattice.

Case 1: Suppose $C(w)$ and $C\left(w^{\prime}\right)$ are above H_{s}. The ray ρ_{s} is strictly below H_{s} by [23, Lemma 6.3], so $v_{s} \notin\left\{u_{1}^{\prime}, u_{1}, \ldots, u_{n}\right\}$. Moreover, we conclude from Lemma 3.11 that the maximal cones $C_{s c s}(s w)$ and $C_{s c s}\left(s w^{\prime}\right)$ in $\mathcal{F}_{s c s}$ are generated by $\left\{s\left(u_{1}\right), \ldots, s\left(u_{n}\right)\right\}$ and $\left\{s\left(u_{1}^{\prime}\right), s\left(u_{2}\right), \ldots, s\left(u_{n}\right)\right\}$ since $\ell(s w)<\ell(w), \ell\left(s w^{\prime}\right)<$ $\ell\left(w^{\prime}\right)$ and $w, w^{\prime}>s$ in the right weak order. We have $C_{s c s}(s w) \cap C_{s c s}\left(s w^{\prime}\right) \subset H_{s t s}$ because $C(w) \cap C\left(w^{\prime}\right) \subset H_{t}$. By induction on the length, we have

$$
s\left(u_{1}\right)+s\left(u_{1}^{\prime}\right)=\sum_{i=2}^{n} b_{i} s\left(u_{i}\right) \quad \text { and } \quad \nu_{s\left(u_{1}\right)}+\nu_{s\left(u_{1}^{\prime}\right)}>\sum_{i=2}^{n} b_{i} \nu_{s\left(u_{i}\right)} \text { with } b_{i} \geq 0
$$

Applying s to these (in)equalities yields

$$
u_{1}+u_{1}^{\prime}=\sum_{i=2}^{n} b_{i} u_{i} \in H_{s} \quad \text { and } \quad \nu_{u_{1}}+\nu_{u_{1}^{\prime}}>\sum_{i=2}^{n} b_{i} \nu_{u_{i}} \text { with } b_{i} \geq 0
$$

since ν_{u} depends only on the orbit of u under the action of W.
Case 2: $C(w)$ and $C\left(w^{\prime}\right)$ are below H_{s}. Since w is c-sortable and $\ell(s w)>\ell(w)$, we have that $w \in W_{\langle s\rangle}$, and similarly for w^{\prime}. The ray ρ_{s} is the only ray of \mathcal{F}_{c} strictly below H_{s} by [23, Lemma 6.3], hence we may assume that $u_{2}=v_{s}$. Now $\left\{u_{1}, u_{3}, \ldots, u_{n}\right\}$ and $\left\{u_{1}^{\prime}, u_{3}, \ldots, u_{n}\right\}$ generate the extremal rays of maximal cones $C_{s c}(\widetilde{w}), C_{s c}\left(\widetilde{w}^{\prime}\right) \subset H_{s}$ of the $s c$-Cambrian fan $\mathcal{F}_{s c}$ with $\widetilde{w}, \widetilde{w}^{\prime} \in W_{\langle s\rangle}$. The claim follows by induction on the rank $|S|$.

Case 3: $C(w)$ is above H_{s} and $C\left(w^{\prime}\right)$ is below H_{s}. Hence $C(w)$ and $C\left(w^{\prime}\right)$ are separated by H_{s}, so we have $s=t$. Hence $u_{1}^{\prime}=v_{s}\left(\rho_{s}\right.$ is the only ray of \mathcal{F}_{c} below $\left.H_{s}\right)$ and there is a maximal cone $C_{s c s}(g)$ for some scs-sortable element $g \in W$ which is generated by the extremal rays $\zeta_{s}\left(u_{1}^{\prime}\right), \zeta_{s}\left(u_{2}\right), \ldots, \zeta_{s}\left(u_{n}\right)$. Now, observe that

$$
\begin{aligned}
\zeta_{s}\left(u_{1}\right) & =s\left(u_{1}\right) \\
\zeta_{s}\left(u_{1}^{\prime}\right) & =-u_{1}^{\prime}=-v_{s} \\
\text { and } \zeta_{s}\left(u_{i}\right) & =u_{i} \text { for } 2 \leq i \leq n
\end{aligned}
$$

Thus the maximal cones $C_{s c s}(g)$ and $C_{s c s}(s w)$ have extremal rays generated by $-v_{s}, u_{2}, \ldots, u_{n}$ and $s\left(u_{1}\right), u_{2}, \ldots, u_{n}$. Moreover, $C_{s c s}(g) \cap C_{s c s}(s w) \subseteq H_{s}$.

We first show that $g=w$. By definition of \mathcal{F}_{c}, we have $\operatorname{sw}(D) \subset C_{s c s}(s w)$. From $C_{s c s}(s w) \cap C_{s c s}(g) \subseteq H_{s}$ we deduce that $w(D) \subset C_{s c s}(g)$ or equivalently $w \in\left(\pi_{\downarrow}^{s c s}\right)^{-1}(g)$. Now $g>s w$ implies $h>s w$ for all $h \in\left(\pi_{\downarrow}^{s c s}\right)^{-1}(g)$. But $C(w)$ is above H_{s}, so $h<w$ implies $h \notin\left(\pi_{\downarrow}^{s c s}\right)^{-1}(g)$. Hence w is the minimal element of $\left[\pi_{\downarrow}^{s c s}(g), \pi_{s c s}^{\uparrow}(g)\right]$ and we have $w=g$.

Though $C_{s c s}(w) \cap C_{s c s}(s w) \subseteq H_{s}$, it is not possible to apply the induction hypothesis immediately, since the length $\ell(w)$ has not been reduced, but we claim that for any $z \in S$ initial in scs either $C_{s c s}(w)$ and $C_{s c s}(s w)$ are both above H_{z} or both below H_{z}. From $z \in S \backslash\{s\}$ we conclude that $v_{z} \in H_{s}$. We know that $u_{2}, \ldots, u_{n} \in H_{s}$ and $u_{1}^{\prime}, u_{1}, s\left(u_{1}\right) \notin H_{s}$. So $v_{z} \in C_{s c s}(w)$ if and only if $v_{z} \in$
$C_{s c s}(s w)$. Since v_{z} is the only ray of $\mathcal{F}_{s c s}$ below the hyperplane H_{z}, we have shown that $C_{s c s}(w)$ and $C_{s c s}(s w)$ are on the same side of H_{z}.

This implies that we are now in Case 1 or Case 2, so we first apply the argument of the relevant case to apply the induction hypothesis and conclude

$$
\zeta_{s}\left(u_{1}\right)+\zeta_{s}\left(u_{1}^{\prime}\right)=\sum_{i=2}^{n} b_{i} u_{i} \in H_{s} \quad \text { with } b_{i} \geq 0
$$

Therefore

$$
s\left(u_{1}+u_{1}^{\prime}\right)=\left(\zeta_{s}\left(u_{1}\right)+\zeta_{s}\left(u_{1}^{\prime}\right)\right)+\left(v_{s}+s\left(v_{s}\right)\right) \in H_{s}
$$

and $u_{1}+u_{1}^{\prime}=\sum_{i=2}^{n} b_{i} u_{i} \in H_{t}$ with $b_{i} \geq 0$, since $s=t$.
It remains to prove $\nu_{u_{1}}+\nu_{u_{1}^{\prime}}>\sum_{i=2}^{n} b_{i} \nu_{u_{i}}$. By Lemma 3.8 it is sufficient to show that $\left\langle x\left(C\left(w^{\prime}\right)\right)-x(C(w)), u_{1}^{\prime}\right\rangle>0$.

Recall that $t=s \in S$. Pick a maximal chain in the c-Cambrian lattice

$$
y_{0} \lessdot y_{1} \lessdot \ldots \lessdot y_{p}
$$

with $y_{0}=s$ and $y_{p}=w$. Then $s \leq y_{i}$ for $0 \leq i \leq p$, so $C\left(y_{i}\right)$ is above H_{s} for $0 \leq i \leq$ p. So for the pair $\widetilde{w}^{\prime}=y_{i-1}$ and $\widetilde{w}=y_{i}$ we have $z_{i}:=x\left(C\left(y_{i}\right)\right)-x\left(C\left(y_{i-1}\right)\right)=\mu_{i} \beta_{i}$ with $\mu_{i}>0$ and $\beta_{i} \in \Phi^{-}$by Lemma 3.8 and Case 1 above. Now $\left\langle\beta_{i}, v_{s}\right\rangle$ is the coefficient of the simple root α_{s} in the simple root expansion of β_{i}. Since β_{i} is a negative root, $\left\langle\beta_{i}, v_{s}\right\rangle \leq 0$. In particular we have

$$
\left\langle x\left(C\left(y_{i-1}\right)\right), v_{s}\right\rangle \geq\left\langle x\left(C\left(y_{i-1}\right)\right), v_{s}\right\rangle+\left\langle z_{i}, v_{s}\right\rangle=\left\langle x\left(C\left(y_{i}\right)\right), v_{s}\right\rangle
$$

for $1 \leq i \leq p$. Hence

$$
\left\langle x(C(e)), v_{s}\right\rangle>\left\langle x(C(s)), v_{s}\right\rangle \geq\left\langle x\left(C\left(y_{2}\right)\right), v_{s}\right\rangle \geq \cdots \geq\left\langle x(C(w)), v_{s}\right\rangle
$$

where the first inequality is Lemma 3.9. As $u_{1}^{\prime}=v_{s}$ we have

$$
\left\langle x(C(e)), v_{s}\right\rangle=\nu_{v_{s}}=\nu_{u_{1}^{\prime}}=\left\langle x\left(C\left(w^{\prime}\right)\right), v_{s}\right\rangle
$$

Thus $\left\langle x\left(C\left(w^{\prime}\right)\right)-x(C(w)), u_{1}^{\prime}\right\rangle>0$.
3.4. On integer coordinates. Suppose that W is a Weyl group and that the root system Φ for W is crystallographic, that is, for any two roots $\alpha, \beta \in \Phi$ we have $s_{\alpha}(\beta)=\beta+\lambda \alpha$ for some $\lambda \in \mathbb{Z}$. The simple roots Δ span the lattice L and the fundamental weights $v_{s}, s \in S$, span a lattice L^{*} which is dual to L. For $\beta \in L$ and $v \in L^{*}$ we have $\langle\beta, v\rangle \in \mathbb{Z}$. In fact, $\beta \in L$ if and only if $\langle\beta, v\rangle \in \mathbb{Z}$ for all $v \in L^{*}$. For each ray $\rho \in \mathcal{F}_{c}$, we denote by $v_{\rho} \in L^{*}$ the lattice point closest to the origin.
Lemma 3.14. Let Φ be a crystallographic root system for the Weyl group W and c a Coxeter element of W. The set $\left\{v_{\rho} \mid \rho\right.$ an extremal ray of $\left.C\right\}$ forms a basis of L^{*} for each maximal cone $C \in \mathcal{F}_{c}$.

Proof. Let $C=C(w)$ denote the maximal cone of \mathcal{F}_{c} for some c-sortable $w \in W$. The proof is by induction on $\ell(w)$ and the rank of W. Let s be initial in c and by Lemma 3.10 we have to distinguish two cases,

Suppose that $\ell(s w)<\ell(w)$. Then $s w$ is $s c s$-sortable and $C(w)=s\left(C_{s c s}(s w)\right)$. Since the simple reflection s preserves the lattice, the result follows by induction.

Suppose on the other hand that $\ell(s w)>\ell(w)$. Then the cone $C(w)$ lies below the hyperplane H_{s} and $w \in W_{\langle s\rangle}$ is $s c$-sortable. Let $C_{\langle s\rangle}(w)$ denote the maximal cone that corresponds to w in the Cambrian fan $\mathcal{F}_{\langle s\rangle} \subset H_{s}$ for $W_{\langle s\rangle}$. Then $C_{\langle s\rangle}(w)=$ $C(w) \cap H_{s}$ by Lemma 3.12. The induction hypothesis implies that the extremal
rays of $C_{\langle s\rangle}(w)$ form a basis for the lattice $L_{\langle s\rangle}^{*} \subset H_{s}$ and ρ_{s} is the unique extremal ray of $C(w)$ not contained in H_{s} by Lemma 3.12. Since the fundamental weights $v_{t}, t \in S$, span L^{*} it follows that L^{*} is spanned by v_{s} and $L_{\langle s\rangle}^{*}=L^{*} \cap H_{s}$. Hence, the extremal rays of $C(w)$ span L^{*}.

Theorem 3.15. Let Φ be a crystallographic root system for the Weyl group W and c a Coxeter element of W. Suppose that $\boldsymbol{a} \in L$. Then the vertex sets $V\left(\operatorname{Perm}^{\boldsymbol{a}}(W)\right)$ and $V\left(\operatorname{Asso}_{c}^{a}(W)\right)$ are contained in L.

Proof. The result for the permutahedron is classic. Let $w \in W$ be c-sortable, $x(w)$ be the vertex of $\operatorname{Asso}_{c}^{a}(W)$ contained in the maximal cone $C(w) \in \mathcal{F}_{c}$, and ρ_{i}, $1 \leq i \leq n$ be the extremal rays of $C(w)$. Denote the lattice point on ρ_{i} closest to the origin by y_{i}. The point $x(w)$ satisfies $\left\langle x(w), y_{i}\right\rangle=c_{i}$ for some integer c_{i} since $\boldsymbol{a} \in L$. Because $\left\{y_{i}\right\}, 1 \leq i \leq n$, is a basis of L^{*}, this set of equations for $x(w)$ has an integral solution. In other words, $x(w) \in L$.

4. Observations and REMARKS

4.1. Recovering the c-cluster complex from the c-singletons. It is possible to obtain polytopal realizations of the c-cluster complex from the construction of generalized associahedra presented as follows. Suppose that we are given a W-permutahedron $\operatorname{Perm}^{\boldsymbol{a}}(W)$, a Coxeter element c, and the c-sorting word $\mathbf{w}_{\mathbf{0}}$ of w_{0}. Then we can easily compute all c-singletons using the characterization given in Theorem [1.2. The associahedron $\operatorname{Asso}_{c}^{a}(W)$ is now obtained from $\operatorname{Perm}^{a}(W)$ by keeping all admissible inequalities for the permutahedron, that is all inequalities $\left\langle v, w\left(v_{s}\right)\right\rangle \leq\left\langle\boldsymbol{a}, v_{s}\right\rangle$ for c-singleton w. We label the facet $\left\langle v, w\left(v_{s}\right)\right\rangle \leq\left\langle\boldsymbol{a}, v_{s}\right\rangle$

Figure 9. An unfolding of the associahedron $\operatorname{Asso}_{c}^{a}\left(S_{4}\right)$ with $c=s_{1} s_{2} s_{3}$, the polar of the c-cluster complex. The 2 -faces are labeled by replacing the labels $w\left(\rho_{s}\right)$ in Figure 7 by the almost positive root $\operatorname{Lr}_{s}(w)$.

Figure 10. An unfolding of the associahedron Asso $_{c}^{a}\left(S_{4}\right)$ with $c=s_{2} s_{1} s_{3}$, the polar of the c-cluster complex. The 2 faces are labeled by replacing the labels $w\left(\rho_{s}\right)$ in Figure 8 by the almost positive root $\operatorname{Lr}_{s}(w)$.
of $\operatorname{Asso}_{c}{ }_{c}(W)$ by the almost positive root $\operatorname{Lr}_{s}(w)$ and extend this labeling to the Hasse diagram of $\operatorname{Asso}_{c}^{\boldsymbol{a}}(W)$ as follows: if a face f is the intersection of facets F_{1}, \ldots, F_{k} then assign f the union of the almost positive roots assigned to F_{1}, \ldots, F_{k}. By Theorem [2.6] this labeling matches the labeling of the c-Cambrian fan by almost positive roots given by Reading and Speyer. Therefore, the opposite poset of this labeled Hasse diagram is the face poset of the c-cluster complex because it is the face poset of the c-Cambrian fan \mathcal{F}_{c}. The polar of $\operatorname{Asso}_{c}^{a}(W)$ is therefore a polytopal realization of the c-cluster complex. In particular, a set of almost positive roots is c-compatible (see 21]) if and only if it can be obtained as the intersection of some facets of Asso ${ }_{c}^{a}$ by the process described above.

We illustrate the recovery of the c-cluster complex for $W=S_{4}$. Figure 9 refers to the Coxeter element $c=s_{1} s_{2} s_{3}$ and Figure 10 refers to the Coxeter element $c=$ $s_{2} s_{1} s_{3}$. We use the polar of the c-cluster complex for the illustration.

First consider the Coxeter element $c=s_{1} s_{2} s_{3}$. The facets are labeled by almost positive roots as indicated. The vertices correspond to clusters as follows:

$$
\begin{array}{lll}
A=\left\{-\alpha_{s_{1}},-\alpha_{s_{2}},-\alpha_{s_{3}}\right\}, & B=\left\{\alpha_{s_{1}},-\alpha_{s_{2}},-\alpha_{s_{3}}\right\} \\
C=\left\{\alpha_{s_{1}}, \alpha_{s_{1}}+\alpha_{s_{2}},-\alpha_{s_{3}}\right\}, & D=\left\{\alpha_{s_{2}}, \alpha_{s_{1}}+\alpha_{s_{2}},-\alpha_{s_{3}}\right\}, \\
E=\left\{\alpha_{s_{1}}, \alpha_{s_{1}}+\alpha_{s_{2}}, \alpha_{s_{1}}+\alpha_{s_{2}}+\alpha_{s_{3}}\right\}, & F=\left\{\alpha_{s_{2}}, \alpha_{s_{1}}+\alpha_{s_{2}}, \alpha_{s_{1}}+\alpha_{s_{2}}+\alpha_{s_{3}}\right\}, \\
G=\left\{\alpha_{s_{2}}, \alpha_{s_{2}}+\alpha_{s_{3}}, \alpha_{s_{1}}+\alpha_{s_{2}}+\alpha_{s_{3}}\right\}, & H=\left\{\alpha_{s_{3}}, \alpha_{s_{2}}+\alpha_{s_{3}}, \alpha_{s_{1}}+\alpha_{s_{2}}+\alpha_{s_{3}}\right\}, \\
1 & =\left\{-\alpha_{s_{1}},-\alpha_{s_{2}}, \alpha_{s_{3}}\right\}, & 2=\left\{\alpha_{s_{1}},-\alpha_{s_{2}}, \alpha_{s_{3}}\right\}, \\
3 & =\left\{\alpha_{s_{1}}, \alpha_{s_{1}}+\alpha_{s_{2}}+\alpha_{s_{3}}, \alpha_{s_{3}}\right\}, & 4=\left\{-\alpha_{s_{1}}, \alpha_{s_{2}}+\alpha_{s_{3}}, \alpha_{s_{3}}\right\}, \\
5 & =\left\{-\alpha_{s_{1}}, \alpha_{s_{2}}, \alpha_{s_{2}}+\alpha_{s_{3}}\right\}, &
\end{array}
$$

Second consider the Coxeter element $c=s_{2} s_{1} s_{3}$. The facets are labeled by almost positive roots as indicated and the vertices correspond to clusters as follows:

$$
\begin{aligned}
A & =\left\{-\alpha_{s_{1}},-\alpha_{s_{2}},-\alpha_{s_{3}}\right\}, & B & =\left\{-\alpha_{s_{1}}, \alpha_{s_{2}},-\alpha_{s_{3}}\right\} \\
C & =\left\{\alpha_{s_{1}}+\alpha_{s_{2}}, \alpha_{s_{2}},-\alpha_{s_{3}}\right\}, & D & =\left\{-\alpha_{s_{1}}, \alpha_{s_{2}}, \alpha_{s_{2}}+\alpha_{s_{3}}\right\}, \\
E & =\left\{\alpha_{s_{1}}+\alpha_{s_{2}}, \alpha_{s_{2}}, \alpha_{s_{2}}+\alpha_{s_{3}}\right\}, & F & =\left\{\alpha_{s_{1}}+\alpha_{s_{2}}, \alpha_{s_{1}}+\alpha_{s_{2}}+\alpha_{s_{3}}, \alpha_{s_{2}}+\alpha_{s_{3}}\right\}, \\
G & =\left\{\alpha_{s_{1}}, \alpha_{s_{1}}+\alpha_{s_{2}}, \alpha_{s_{1}}+\alpha_{s_{2}}+\alpha_{s_{3}}\right\}, & H & =\left\{\alpha_{s_{3}}, \alpha_{s_{2}}+\alpha_{s_{3}}, \alpha_{s_{1}}+\alpha_{s_{2}}+\alpha_{s_{3}}\right\}, \\
I & =\left\{\alpha_{s_{1}}, \alpha_{s_{1}}+\alpha_{s_{2}}+\alpha_{s_{3}}, \alpha_{s_{3}}\right\}, & 1 & =\left\{-\alpha_{s_{1}},-\alpha_{s_{2}}, \alpha_{s_{3}}\right\}, \\
2 & =\left\{-\alpha_{s_{1}}, \alpha_{s_{2}}+\alpha_{s_{3}}, \alpha_{s_{3}}\right\}, & 3 & =\left\{\alpha_{s_{1}},-\alpha_{s_{2}}, \alpha_{s_{3}}\right\}, \\
4 & =\left\{\alpha_{s_{1}},-\alpha_{s_{2}},-\alpha_{s_{3}}\right\}, & 5 & =\left\{\alpha_{s_{1}}, \alpha_{s_{1}}+\alpha_{s_{2}},-\alpha_{s_{3}}\right\} .
\end{aligned}
$$

4.2. A conjecture about vertex barycentres. J.-L. Loday mentions in [15] that F. Chapoton observed the following: the vertex barycentres of the permutahedron and associahedron coincide in the case of Loday's original realization of the (classical) type A associahedron. The first two authors observed the same phenomenon for the realizations of type A and B associahedra described in (9). None of these observations have been proven so far. Checking numerous examples in GAP [25], we observed that the vertex barycentre of $\operatorname{Perm}^{\boldsymbol{a}}(W)$ and $\operatorname{Asso}_{c}^{a}(W)$ coincide for $\boldsymbol{a}=\sum_{s \in S} a v_{s}, a>0$. The cases include types $A_{n}(n \leq 7), B_{n}$ and D_{n} $(n \leq 5), F_{4}, H_{3}, H_{4}$, and dihedral groups $I_{2}(m)$. The experiments can be summarized in the following conjecture.

Conjecture 4.1. Let W be a Coxeter group and $c \in W$ a Coxeter element. Choose a real number $a>0$ and set $\boldsymbol{a}=\sum_{s \in S}$ avs to fix a realization of the permutahedron $\operatorname{Perm}^{a}(W)$. Then the vertex barycentres of $\operatorname{Perm}^{a}(W)$ and $\operatorname{Asso}_{c}^{a}(W)$ coincide.

It is straightforward to prove this conjecture for a special family, the dihedral groups G_{m} of order $2 m$. We outline the proof.

Let $m \geq 2$ be an integer. The dihedral group G_{m} of order $2 m$ is the finite Coxeter group of type $I_{2}(m)$ generated by the two reflections s and t with st having order m. For any m, the action of G_{m} on $V=\mathbb{R}^{2}$ is essential and we identify \mathbb{R}^{2} with the the complex numbers. If we define

$$
v_{s}:=\frac{1+e^{i \frac{\pi}{m}}}{2} \quad \text { and } \quad v_{t}:=\frac{1+e^{-i \frac{\pi}{m}}}{2}
$$

then G_{m} is generated by the reflections with respect to the hyperplanes spanned by v_{s} and v_{t}. We choose $\boldsymbol{a}=v_{s}+v_{t}=1$ and follow our earlier notation where $M(w)$ denotes the point obtained by the action of $w \in G_{m}$ on \boldsymbol{a}. Then

$$
M(w)= \begin{cases}e^{i \ell(w) \frac{\pi}{m}} & \text { if } \ell(s w)<\ell(w) \\ e^{-i \ell(w) \frac{\pi}{m}} & \text { if } \ell(s w)>\ell(w)\end{cases}
$$

The convex hull of the points $M(w), w \in G_{m}$, is the permutahedron Perm ${ }^{a}\left(G_{m}\right)$ which is a regular $2 m$-gon. It is easy to verify that the origin is the vertex barycentre of $\operatorname{Perm}^{a}\left(G_{m}\right)$.

We argue now for the the Coxeter element $s t$; if $c=t s$, the reasoning is similar. The c-singletons are e and all $w \in G_{m}$ with $\ell(s w)<\ell(w)$. The generator t is the only c-sortable element which is not a c-singleton. Denote the intersection of the line through $M(e)$ and $M(t)$ and the line through $M\left(w_{0}\right)$ and $M\left(s w_{0}\right)$ by P. The
associahedron Asso $_{c}^{a}\left(G_{m}\right)$ is the convex hull of the points $M(w)$, such that $w \in G_{m}$ is a c-singleton, and P. A straightforward computation yields

$$
P=\frac{i \sin \left(\frac{\pi}{m}\right)}{\cos \left(\frac{\pi}{m}\right)-1}
$$

and it is not hard to verify that

$$
\sum_{\substack{w \in G_{m} m \\ \text { not } \\ c-\text { singleton }}} M(w)=\sum_{k=1}^{m-1}\left(e^{-i \frac{\pi}{m}}\right)^{k}=P,
$$

so the vertex barycentres of $\operatorname{Perm}^{a}\left(G_{m}\right)$ and $\operatorname{Asso}_{c}^{a}\left(G_{m}\right)$ coincide.

4.3. Recovering the realizations of 9 for types A and B.

4.3.1. Type A. Let $\mathcal{B}=\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical basis of \mathbb{R}^{n}. The symmetric group S_{n} acts naturally on \mathbb{R}^{n} by permutation of the coordinates. We set

$$
\Delta:=\left\{e_{i+1}-e_{i} \mid 1 \leq i \leq n-1\right\} \quad \text { and } \quad \Phi^{+}:=\left\{e_{j}-e_{i} \mid 1 \leq i<j \leq n\right\}
$$

Then $\Phi=\Phi^{+} \cup\left(-\Phi^{+}\right)$is a root system of type A_{n-1} with simple root system Δ. Moreover, we recall that the reflection group S_{n} acts essentially on

$$
V:=\mathbb{R}[\Delta]=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}=0\right\} \subset \mathbb{R}^{n}
$$

Let s_{i} be the simple reflection that maps the simple root $e_{i+1}-e_{i}$ to $e_{i}-e_{i+1}$. The dual basis Δ^{*} of Δ is described by

$$
v_{s_{i}}:=\frac{i-n}{n} \sum_{k=1}^{i} e_{k}+\frac{i}{n} \sum_{k=i+1}^{n} e_{k} \in V .
$$

We choose $\boldsymbol{a}:=\sum_{i=1}^{n-1} v_{\tau_{i}}$ and have $\boldsymbol{a}=\sum_{k=1}^{n}\left(k-\frac{n+1}{2}\right) e_{k}$.
There is a bijection between Coxeter elements $c \in S_{n}$ and orientations of the Coxeter graph of S_{n} : if s_{i} appears before s_{i+1} in a reduced expression of c then the edge between s_{i} and s_{i+1} is oriented from s_{i} to s_{i+1}. The orientation is from s_{i+1} to s_{i} if s_{i} appears after s_{i+1} in a reduced expression of c. Given an oriented Coxeter graph, we can apply the construction described earlier and obtain a permutahedron $\operatorname{Perm}^{\boldsymbol{a}}\left(S_{n}\right)$ and an associahedron $\mathrm{Asso}_{c}^{\boldsymbol{a}}\left(S_{n}\right)$.

Consider the affine subspace $\mathcal{V} \subset \mathbb{R}^{n}$ that is a translate of V by $v_{G}=\frac{n+1}{2} \sum_{i=1}^{n} e_{i}$:

$$
\mathcal{V}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \left\lvert\, \sum_{i=1}^{n} x_{i}=\frac{n(n+1)}{2}\right.\right\}
$$

Translate $\operatorname{Perm}^{\boldsymbol{a}}\left(S_{n}\right) \subset V$ by v_{G} to obtain $\operatorname{Perm}^{\boldsymbol{a}}\left(S_{n}\right)+v_{G} \subset \mathcal{V}$. The vertices of Perm ${ }^{\boldsymbol{a}}\left(S_{n}\right)+v_{G}$ are the orbit of $\boldsymbol{a}+v_{G}=\sum_{i=1}^{n} i e_{i}$ under the action of S_{n}, in other words we have

$$
M(w)=\sum_{i=1}^{n} w^{-1}(i) e_{i}
$$

for $w \in S_{n}$. The permutahedron $\operatorname{Perm}^{a}\left(S_{n}\right)+v_{G}$ was used in 9] but the vertices were labeled according to $w \mapsto w^{-1}$.

Proposition 4.2. Consider a Coxeter element $c \in S_{n}$ or equivalently an orientation of the Coxeter graph and let v_{G} and \boldsymbol{a} be as above. The translated associahedron $\mathrm{Asso}_{c}^{\boldsymbol{a}}\left(S_{n}\right)+v_{G}$ is the associahedron Asso_{c} constructed in (9].

Proof. In 9, Proposition 1.3], it was proved that the c-singletons are the common vertices of the permutahedron and the associahedron and that the normal fan of the latter is \mathcal{F}_{c}. In other words, the realization of the associahedron in 9 matches precisely the description of $\mathrm{Asso}_{c}^{a}\left(S_{n}\right)$ given in Corollary 3.5,
4.3.2. Type B. Consider the simple root system of type B given by

$$
\Delta^{\prime}:=\left\{e_{n+1}-e_{n}\right\} \cup\left\{e_{i+1}-e_{i}+e_{2 n+1-i}-e_{2 n-i} \mid 1 \leq i \leq n-1\right\} \subset \mathbb{R}^{2 n}
$$

If we set $V^{\prime}:=\mathbb{R}\left[\Delta^{\prime}\right]$ then V^{\prime} is a n-dimensional subspace of $\mathbb{R}^{2 n}$ which is contained in V, the span of the type $A_{2 n-1}$ root system as in 4.3.1. Denote the simple reflection that corresponds to $e_{n+1}-e_{n}$ by s_{0} and the simple reflection that corresponds to $\left(e_{i+1}-e_{i}\right)+\left(e_{2 n+1-i}-e_{2 n-i}\right)$ by s_{n-i}. The hyperoctahedral group W_{n} (or Coxeter group of type B_{n}) is generated by these reflections. It is easy to see that $V^{\prime}=V \cap \bigcap_{i=1}^{n-1} V_{i}^{B}$ where $V_{i}^{B}:=\left\{x \in \mathbb{R}^{2 n} \mid x_{i}+x_{2 n+1-i}=0\right\}$. In particular we have $\boldsymbol{a} \in V^{\prime}$.

The claim that \boldsymbol{a} is in the open cone spanned by the fundamental weights of Δ^{\prime} follows from the fact that the scalar product of \boldsymbol{a} with any element of Δ^{\prime} is strictly positive.

A Coxeter element $c \in W_{n}$ is related to an orientation of the Coxeter graph of W_{n} as in type A : If s_{i} appears before (resp. after) s_{i+1} in a reduced expression of c then the edge between s_{i} and s_{i+1} is oriented from s_{i} to s_{i+1} (resp. form s_{i+1} to s_{i}). A Coxeter element or an orientation of the Coxeter graph yields therefore a permutahedron $\operatorname{Perm}^{\boldsymbol{a}}\left(W_{n}\right)$ as described in Section 2.1 and an associahedron $\operatorname{Asso}_{c}^{a}\left(W_{n}\right)$. The orientation of the Coxeter graph of W_{n} determines a symmetric orientation of the Coxeter graph of $S_{2 n}$ (that is, of type $A_{2 n-1}$), and thus a Coxeter element \tilde{c} of $S_{2 n}$ and we have

$$
\operatorname{Perm}^{\boldsymbol{a}}\left(W_{n}\right)=\operatorname{Perm}^{\boldsymbol{a}}\left(S_{2 n}\right) \cap V^{\prime} \quad \text { and } \quad \operatorname{Asso}_{c}^{a}\left(W_{n}\right)=\operatorname{Asso}_{\tilde{c}}^{a}\left(S_{2 n}\right) \cap V^{\prime}
$$

The following proposition is a direct consequence from the construction in 9 .
Proposition 4.3. Consider a Coxeter element $c \in W_{n}$ or equivalently an orientation of the Coxeter graph. Let v_{G} and \boldsymbol{a} as above for type A. The translated associahedron $\operatorname{Asso}_{c}{ }^{a}\left(W_{n}\right)+v_{G}$ is the cyclohedron constructed in 9 that corresponds to the orientation of the Coxeter graph determined by c.

Acknowledgements. The authors thank Nathan Reading and David Speyer for having made their results in [23] available to us during their work and for their helpful remarks. In particular, we thank David Speyer for having conjectured Theorem 3.1 while reading an earlier version of this article.

The authors wish to thank the Fields Institute, where much of this work was done, for its hospitality.

References

[1] N. Bergeron, C. Hohlweg, C. Lange and H. Thomas, Isometry classes of generalized associahedra (2007), 12 pages, arXiv:math.CD/0709.4421
[2] A. Björner and F. Brenti, Combinatorics of Coxeter groups, Springer, New York, 2005.
[3] A. Björner and M. Wachs, Shellable nonpure complexes and posets II, Trans. Amer. Math. Soc. 349 (1997), 3945-3975.
[4] R. Bott and C. Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994), 5247-5287.
[5] F. Chapoton, S. Fomin and A. Zelevinsky, Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2003), 537-566.
[6] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, chevie - A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras. Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175-210.
[7] S. Fomin and A. Zelevinsky, Y-systems and generalized associahedra, Annals of Mathematics 158 (2003), 977-1018
[8] I. Gel'fand, M. Kapranov, and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, 1994.
[9] C. Hohlweg and C. Lange, Realizations of the associahedron and the cyclohedron, Discrete and Computational Geometry $\mathbf{3 7 (4)}$ (2007), 517-543.
[10] C. Hohlweg, http:www.lacim.uquam.ca/ ${ }^{\text {nhohlweg/cambrian.html }}$
[11] J.E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, 1990.
[12] J. Kamnitzer, Mirković-Vilonen cycles and polytopes (2005), 42 pages, arXiv:math.AG/0501365
[13] C. Le Conte de Poly-Barbut, Sur les treillis de Coxeter finis, Math. Inf. Sci. Hum. 125 (1994), 41-57.
[14] C. Lee, The associahedron and triangulations of the n-gon, Europ. J. Combinatorics 10 (1989), 551-560.
[15] J.-L. Loday, Realization of the Stasheff polytope, Arch. Math. 83 (2004), 267-278.
[16] M. Markl, Simplex, associahedron, and cyclohedron, Contemp. Math. 227 (1999), 235-265.
[17] R. Marsh, M. Reineke and A. Zelevinsky, Generalized associahedra via quiver representations. Trans. Amer. Math. Soc. 355 (2003) no. 10, 4171-4186.
[18] A. Postnikov, Permutohedra, associahedra, and beyond (2004), 59 pages, arXiv:math.CO/0507163
[19] N. Reading, Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A 110(2) (2005), 237-273.
[20] N. Reading, Cambrian lattices, Adv. in Mathematics 205(2) (2006), 313-353.
[21] N. Reading, Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Am. Math. Soc. 359(12) (2007), 5931-5958.
[22] N. Reading, Sortable elements and Cambrian lattices, Algebra Universalis 56(3-4) (2007), 411-437.
[23] N. Reading and D. Speyer, Cambrian fans (2006), to appear in J. Eur. Math. Soc., 40 pages, arXiv:math.CO/0606201.
[24] V. Reiner, Equivariant fiber polytopes, Documenta Math. 7 (2002), 113-132.
[25] M. Schönert et al., GAP - Groups, Algorithms, and Programming - version 3 release 4 patchlevel 4". Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany, 1997.
[26] S. Shnider and S. Sternberg, Quantum groups: from coalgebas to Drinfeld algebras, International Press, 1994.
[27] R. Simion, A type-B associahedron, Adv. Appl. Math. 30 (2003), 2-25.
[28] R. Stanley, Enumerative combinatorics, Vol.1, Cambridge University Press, Cambridge, 1997.
[29] J. Stasheff, Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108 (1963), 275-312.
[30] J. Stasheff, From operads to "physically" inspired theories, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), 53-81, Contemp. Math., 202, Americ. Math. Soc. (1997).
[31] G. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995.
(Christophe Hohlweg) Université du Québec À Montréal, LaCiM et Département de Mathématiques, C.P. 8888 Succ. Centre-Ville, Montréal, Québec, H3C 3P8, CANADA

E-mail address: hohlweg.christophe@uqam.ca
URL: http://www.lacim.uqam.ca/ ${ }^{\text {hohlweg }}$
(Carsten Lange) Freie Universität Berlin, Institut für Mathematik und Informatik, Arnimallee 3, 14195 Berlin, Germany

E-mail address: lange@math.tu-berlin.de
(Hugh Thomas) Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, CANADA

E-mail address: hugh@math.unb.ca

