On the canonical line bundle and negative holomorphic sectional curvature

Heier, Gordon; Lu, Steven S. Y. et Wong, Bun (2010). « On the canonical line bundle and negative holomorphic sectional curvature ». Mathematical Research Letters, 17(6), pp. 1101-1110.

Fichier(s) associé(s) à ce document :
[img]
Prévisualisation
PDF
Télécharger (182kB)

Résumé

We prove that a smooth complex projective threefold with a Kähler metric of negative holomorphic sectional curvature has ample canonical line bundle. In dimensions greater than three, we prove that, under equal assumptions, the nef dimension of the canonical line bundle is maximal. With certain additional assumptions, ampleness is again obtained. The methods used come from both complex differential geometry and complex algebraic geometry.

Type: Article de revue scientifique
Mots-clés ou Sujets: Several complex variables and analytic spaces, Complex manifolds, Negative curvature manifolds
Unité d'appartenance: Faculté des sciences > Département de mathématiques
Déposé par: Steven Lu
Date de dépôt: 09 juin 2016 13:40
Dernière modification: 27 juin 2016 16:00
Adresse URL : http://archipel.uqam.ca/id/eprint/8604

Statistiques

Voir les statistiques sur cinq ans...