Cha, Jae Choon; Friedl, Stefan et Powell, Mark (2014). « Concordance of links with identical Alexander invariants ». Bulletin of the London Mathematical Society, 46(3), pp. 629-642.
Fichier(s) associé(s) à ce document :
|
PDF
Télécharger (224kB) |
---|
Adresse URL: http://dx.doi.org/10.1112/blms/bdu002
Résumé
Davis showed that the topological concordance class of a link in the 3-sphere is uniquely determined by its Alexander polynomial for 2-component links with Alexander polynomial one. A similar result for knots with Alexander polynomial one was shown earlier by Freedman. We prove that these two cases are the only exceptional cases, by showing that the link concordance class is not determined by the Alexander invariants in any other case.
Type: | Article de revue scientifique |
---|---|
Mots-clés ou Sujets: | Alexander polynomial, topological concordance class, knots, Alexander invariants |
Unité d'appartenance: | Faculté des sciences > Département de mathématiques |
Déposé par: | Mark Powell |
Date de dépôt: | 27 avr. 2016 19:23 |
Dernière modification: | 19 mai 2016 18:14 |
Adresse URL : | http://archipel.uqam.ca/id/eprint/8343 |
Modifier les métadonnées (propriétaire du document) |
Statistiques |