Understorey light profiles in temperate deciduous forests: recovery process following selection cutting

Beaudet, Marilou; Messier, Christian et Leduc, Alain (2004). « Understorey light profiles in temperate deciduous forests: recovery process following selection cutting ». Journal of Ecology, 92, pp. 328-338.

Fichier(s) associé(s) à ce document :
Télécharger (261kB)


1 We investigated recovery following small-scale disturbance, i.e. selection cutting, by determining how understorey light profiles vary over time in temperate deciduous forests in Quebec (Canada). 2 We measured light availability (% PPFD, photosynthetic photon flux density) 0.2, 1, 2 and 5 m above the forest floor, as well as the density of saplings < 5 m in height, in seven Acer saccharum-Betula alleghaniensis-Fagus grandifolia stands that had been subjected to selection cutting 1-13 years before the study, and in adjacent uncut plots. 3 In the most recent cut (1 year old), mean % PPFD was 3. 5 to 5 times higher (depending on height) than in the uncut plot. Light availability rapidly decreased over time following selection cutting, especially near the forest floor. By about 13 years after cutting, light availability was similar to levels observed in the uncut plots. 4 Light profiles were used to assess the temporal pattern of recovery of the understorey after selection cutting, and four recovery phases could be identified. Uncut stands were characterized by profiles with low light near the forest floor and with a rather slow increase in light with increasing height, and recent cuts (1-4 years old) were characterized by J-shaped light profiles with relatively high % PPFD at all heights. Intermediate-age cuts (7-8 years old) were characterized by reverse J-shaped profiles that had a high % PPFD (13-46%) at 5 m, and very dark conditions (< 2%) near the forest floor, and were associated with high abundance of saplings. The relative frequency of the various profiles found in older cuts (11-13 years old) was generally similar to that observed in the uncut stands, except that the reverse J-shaped profiles were slightly more frequent. 5 As the microsuccession that follows canopy disturbance is very much influenced by local understorey structure and composition, forestry practices should consider such microscale forest characteristics in their harvest planning to regenerate the desired tree species.

Type: Article de revue scientifique
Mots-clés ou Sujets: Acer saccharum, Betula alleghaniensis, canopy disturbance, Fagus grandifolia, light gradients, regeneration dynamics
Unité d'appartenance: Faculté des sciences > Département des sciences biologiques
Déposé par: Christian Messier
Date de dépôt: 02 déc. 2008
Dernière modification: 01 nov. 2014 02:07
Adresse URL : http://archipel.uqam.ca/id/eprint/1435


Voir les statistiques sur cinq ans...