Oppermann, Steffen; Reiten, Idun et Thomas, Hugh (2015). « Quotient closed subcategories of quiver representations ». Compositio Mathematica, 151(03), pp. 568-602.
Fichier(s) associé(s) à ce document :
|
PDF
Télécharger (402kB) |
---|
Adresse URL: http://dx.doi.org/10.1112/S0010437X14007623
Résumé
Let Q be a finite quiver without oriented cycles, and let k be an algebraically closed field. The main result in this paper is that there is a natural bijection between the elements in the associated Weyl group WQ and the cofinite additive quotient-closed subcategories of the category of finite dimensional right modules over kQ. We prove this correpondence by linking these subcategories to certain ideals in the preprojective algebra associated to Q, which are also indexed by elements of WQ.
Type: | Article de revue scientifique |
---|---|
Mots-clés ou Sujets: | Quotient closed subcategories; Weyl groups; preprojective algebras; sorting order |
Unité d'appartenance: | Faculté des sciences > Département de mathématiques |
Déposé par: | Hugh R. Thomas |
Date de dépôt: | 18 mai 2016 19:50 |
Dernière modification: | 30 mai 2016 20:16 |
Adresse URL : | http://archipel.uqam.ca/id/eprint/8493 |
Modifier les métadonnées (propriétaire du document) |
Statistiques |