Clifford, Edward; Thomas, Hugh et Yong, Alexander
(2014).
« K-theoretic Schubert calculus for OG(n,2n+1) and jeu de taquin for shifted increasing tableaux ».
Journal für die reine und angewandte Mathematik (Crelles Journal), 2014(690), pp. 51-63.
Fichier(s) associé(s) à ce document :
Résumé
We present a proof of a Littlewood–Richardson rule for the K-theory of odd orthogonal Grassmannians OG(n, 2n+1), as conjectured by Thomas–Yong (2009). Specifically, we prove that rectification using the jeu de taquin for increasing shifted tableaux introduced there, is well-defined and gives rise to an associative product. Recently, Buch–Ravikumar(2012) proved a Pieri rule for OG(n, 2n+1) that confirms a special case of the conjecture. Together, these results imply the aforementioned conjecture.
Type: |
Article de revue scientifique
|
Mots-clés ou Sujets: |
Algebraic geometry, Projective and enumerative geometry, Classical problems, Schubert calculus; Combinatorics, Algebraic combinatorics, Combinatorial aspects of representation theory |
Unité d'appartenance: |
Faculté des sciences > Département de mathématiques |
Déposé par: |
Hugh R. Thomas
|
Date de dépôt: |
18 mai 2016 19:49 |
Dernière modification: |
30 mai 2016 20:13 |
Adresse URL : |
http://archipel.uqam.ca/id/eprint/8484 |