DUNEScan: a web server for uncertainty estimation in skin cancer detection with deep neural networks

Mazoure, Bogdan; Mazoure, Alexander; Bédard, Jocelyn et Makarenkov, Vladimir (2022). « DUNEScan: a web server for uncertainty estimation in skin cancer detection with deep neural networks ». Scientific Reports, 12(1).

Fichier(s) associé(s) à ce document :
[img]
Prévisualisation
PDF (Article)
Télécharger (1MB)

Résumé

Recent years have seen a steep rise in the number of skin cancer detection applications. While modern advances in deep learning made possible reaching new heights in terms of classification accuracy, no publicly available skin cancer detection software provide confidence estimates for these predictions. We present DUNEScan (Deep Uncertainty Estimation for Skin Cancer), a web server that performs an intuitive in-depth analysis of uncertainty in commonly used skin cancer classification models based on convolutional neural networks (CNNs). DUNEScan allows users to upload a skin lesion image, and quickly compares the mean and the variance estimates provided by a number of new and traditional CNN models. Moreover, our web server uses the Grad-CAM and UMAP algorithms to visualize the classification manifold for the user’s input, hence providing crucial information about its closeness to skin lesion images from the popular ISIC database. DUNEScan is freely available at: https://www.dunescan.org.

Type: Article de revue scientifique
Mots-clés ou Sujets: skin cancer detection, machine learning, deep learning
Unité d'appartenance: Centres institutionnels > Laboratoire de combinatoire et d'informatique mathématique (LACIM)
Déposé par: Vladimir Makarenkov
Date de dépôt: 26 janv. 2022 09:21
Dernière modification: 26 janv. 2022 09:21
Adresse URL : http://archipel.uqam.ca/id/eprint/15081

Statistiques

Voir les statistiques sur cinq ans...