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ABSTRACT 

Non-structural carbohydrates (NSC) provide plants with the energy to maintain their 

metabolism and enhance recovery after a physical disturbance and/or during periods 

of low photosynthetic activities . Within an individual plant, allocation of carbon to 

reserve pools is a competitive process between growth and other physiological 

processes such as defense. Allocation of carbon to NSC in tree tissues depends on the 

ability of organs to acquire plant-available resources and the physical distance among 

those organs. Therefore, disturbances that imply loss of tissue will trigger the 

mobilization of carbohydrates to support compensatory growth and this will affect 

carbon allocation priorities between growth and reserves. Nevertheless, there are still 

fundamental unanswered questions about how NSC are stored and used among 

tissues and among different species. This thesis addressed the global question of how 

do different levels and types of physical damage affect the recovery of juvenile trees , 

and how do different tree species used their carbon reserves given their different 

resource conservation strategies (acquisitive-conservative). Due to the high number 

of samples I obtained for analysis , and the expenses and time commitment necessary 

for measuring NSC in plant tissue using regular analytical procedures, 1 developed a 

general NSC concentration calibration madel using near-infrared spectroscopy 

(NIRS) in Chapter 1. This madel was based on samples from different tree species 

and tissue types, from tropical and temperate biomes. 1 obtained parsimonious and 

accurate calibration models for total NSC and sugars, which demonstrated the ability 

of the NIRS models to infer NSC concentrations across species and tissues in a rapid 

and cast-effective way. In Chapter 2, 1 tested whether there was a coordinated 

variation between NSC concentrations and the leaf and wood economie spectra. I 

found that the relationship between functional traits and carbohydrate concentrations 

was orthogonal. The first axis was formed by traits that define the leaf and wood 

economies spectrum and the second axis was defined by NSC concentrations. 
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Additionally, most of the relationships between NSC concentrations in woody tissues 

and economie traits were weak or non-significant. These results suggest that carbon 

investment in defense traits that are associated with resource conservation, or ' slow ' 

ecological strategies (high investment in defenses) , are not related to investment of 

carbon in NSC storage. In Chapter 3, 1 assessed the dynamics ofNSC concentrations 

in different tree parts immediate ly following a maintenance pruning of the crown of 

two urban tree species, Acer saccharinum and Acer platanoides. 1 found that 

maintenance pruning did not have any significant depletion effect on carbohydrate 

concentrations in the different tree parts of either species. On the contrary, NSC 

concentrations in unpruned branches of pruned trees of A. platanoides increased at 

the end of the growing season, but no effect was measured in A. saccharinum. This 

differentiai response suggests that A. platanoides responds better to urban 

maintenance pruning than A. saccharinum. This result suggests that maintenance 

pruning does not impede the capacity of urban trees to produce compensatory growth 

from accumulated reserve following pruning. In Chapter 4, I evaluated the single and 

interactive effects ofthree stress factors (defoliation, root pruning, and stem damage) 

on NSC concentrations and growth of three tree species th at are common urban trees 

in eastern North America: Fraxinus pennsylvanica, Celtis occidentalis, and Tilia 

cordata. 1 found that the predominant effects on NSC concentrations were due to the 

single stress treatment effects. Also, 1 found that the effects of single treatments 

remained after a growing season (more than one year after the last stress application), 

but that the effects of combined stresses almost disappeared after the first growing 

season. Additionally, the stress treatments that increased the levels of reserves the 

most led to a greater decrease in growth of the trees ' diameter and height 

demonstrating the competitive nature between tree reserve and growth. Finally, there 

were very di fferent responses found among the three tree species investigated and no 

generalizable trends could be found . These results force a re-examination of the rotes 
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and linkages between NSC 111 trees and vanous stress factors that are common ly 

found in urban environment. 

Keywords : Non-structural carbohydrates, tree stresses, compensatory mechanisms, 

single and multiple stresses, plant carbon allocation strategies, functional traits , 

tropical forest, temperate forest, urban trees 



RÉSUMÉ 

Les hydrates de carbone non structuraux (HCNS) fournissent aux plantes l'énergie 
leur permettant de maintenir leur métabolisme et d'améliorer leur récupération suite à 
des perturbations physiques et/ou pendant des périodes d'activité photosynthétique 
plus faible. À l ' intérieur d ' un individu, l'allocation du carbone dans les réservoirs est 
conditionnée par un processus de compétition entre la croissance et d'autres processus 
physiologiques tels que la défense. L'allocation de carbone pour la synthèse des 
HCNS dans les tissus de l'arbre dépend de la capacité des organes à acquérir des 
ressources disponibles et de la distance physique entre ces organes. Par conséquent, 
les perturbations impliquant une perte de biomasse vont déclencher la mobilisation 
des HCNS afin de compenser la perte de croissance ce qui affecte ainsi les priorités 
d'allocation de carbone entre la croissance et les réserves. Néanmoins, il y a des 
questions fondamentales , non encore répondues, sur la façon dont les HCNS sont 
stockés et utilisés entre les tissus et chez des espèces différentes. La présente thèse 
aborde la question globale qui est comment les différents niveaux et les différents 
types de dommage physique affectent-ils la récupération des jeunes arbres. Comment 
différentes espèces d ' arbres utilisent-elles leurs réserves de carbone étant donné leurs 
différentes stratégies d ' utilisation des ressources (acquisition vs conservation)? 

En raison du nombre élevé d'échantillons collectés pour les analyses ainsi que des 
frais et du temps nécessaire pour mesurer les HCNS dans les tissus végétaux à l' aide 
des procédures d ' analyse classique, j'ai développé, dans le Chapitre 1, un modèle 
général d ' étalonnage de la concentration des HCNS par la spectroscopie en proche 
infrarouge (NIRS en anglais). Ce modèle était basé sur des échantillons de différentes 
espèces d ' arbres et de différents types de tissus provenant de biomes tropicaux et 
tempérés. J'ai obtenu des modèles NIRS parcimonieux et précis pour les HCNS ainsi 
que les sucres, qui ont démontré leur capacité à inférer les concentrations des HCNS à 
travers différentes espèces et tissus d'une manière rapide et rentable. 

Dans le Chapitre 2, j ' ai testé s'il y existait une covariation entre les concentrations 
des HCNS et le spectre économique des feuilles et du bois (traits fonctionnels). 
Aucune ou de faibles relations entre les traits fonctionnels et les concentrations des 
hydrates de carbone dans les tissus ligneux ne fut trouvée. Ces résultats suggèrent que 
les investissements de carbone dans les traits de défense qui sont associés à la 
conservation des ressources ou à des stratégies écologiques « lentes» (des 
investissements élevés en défense) ne sont pas liés à l'investissement de carbone dans 
le stockage des HCNS. 
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J'ai évalué, dans le Chapitre 3, les dynamiques des concentrations des HCNS sur 
des parties différentes de l' arbre, immédiatement après un élagage de la couronne 
chez deux espèces d'arbres urbains: Acer saccharinum et Acer platanoides. J'ai 
constaté que l'élagage n'a pas eu d'effet significatif sur l'épuisement des 
concentrations en HCNS sur les différentes parties des arbres chez les deux espèces 
étudiées. Au contraire, les concentrations des HCNS dans les branches non élaguées 
d'arbres chez A. platanoides ayant subi un élagage ont augmenté à la fin de la saison 
de croissance, alors qu'aucun effet n'a été mesuré chez A. saccharinum. Cette réponse 
différente suggère qu 'A. platanoides répond mieux qu'A. saccharinum aux 
perturbations causés par l'élagage urbain. Ce résultat suggère aussi que l' élagage 
d ' entretien ne limite pas la capacité des arbres urbains à compenser la perte de 
croissance suite à l' élagage à partir des réserves accumulées. 

Dans le Chapitre 4, j'ai étudié les effets propres de trois facteurs de stress 
(défoliation, taille des racines et endommagement du tronc) ainsi que leurs 
interactions sur les concentrations des HCNS et sur la croissance des troi s espèces 
d'arbres couramment utilisés en milieu urbain dans l'est de l'Amérique du Nord : 
Fraxinus pennsylvanica, Celtis occidentalis et Tilia cordata. J'ai ainsi trouvé que les 
principaux effets sur les concentrations des HCNS sont dus aux traitements propres et 
non aux interactions. En outre, les effets des traitements seuls sont restés après une 
saison de croissance (plus d'un an après la dernière application du stress) mais que les 
effets des facteurs de stress combinés ont presque disparu après la première saison de 
croissance. De plus, les traitements de stress qui ont augmenté le plus les niveaux de 
réserves ont conduit à une plus grande diminution de la croissance du diamètre et de 
la hauteur des arbres, démontrant ainsi la compétition qui existe chez les arbres au 
niveau de leurs réserves et de leur croissance. Finalement, il y a eu des réponses très 
différentes entre les trois espèces étudiées et aucune tendance généralisable ne fut 
trouvée . Ces résultats forcent à examiner de nouveau les rôles et les liens entre les 
HCNS dans les arbres et les divers facteurs de stress généralement observés en milieu 
urbain. 

Mots clés : Hydrates de carbone non structuraux, stress d'arbres , mécanismes de 
compensation, stress uniques et multiples, stratégies d'allocation de carbone chez les 
plantes, traits fonctionnels , forêts tropicales, forêts tempérées, arbres urbains. 





INTRODUCTION 

Trees live under fluctuating and somewhat unpredictable conditions that influence 

their overall growth and survival strategies. Any sustained deviation beyond the 

optimum environmental range or normal levet of disturbance reduces productivity 

and constitutes a stress for the plant (Niinemets & Valladares 2006; Niinemets 201 0). 

Additionally, several stress factors may occur in an interactive manner that could 

genera te a response that may be more or less severe than the sum of the ir individual 

effects (Mittler 2006; Niinemets 201 0). For example, in forest environments, light 

limitation (Niinemets & Valladares 2006; Myers & Kitajima 2007; Poorter & 

Kitajima 2007), drought (McDowell et al. 2008; Mitchell et al. 2013; O ' Brien et al. 

2014), altitudinallimitation at treeline (Handa, Korner & Hattenschwiler 2005; Hoch 

& Këirner 2012; Fajardo & Piper 2014), or herbivory (Kobe 1997; Canham et al. 

1999; Myers & Kitajima 2007; Atkinson et al. 2014) constitute key environmental 

stresses and disturbances. ln urban areas, trees are affected by a multitude of severe 

abiotic stresses that make the growing conditions even harsher than for trees growing 

under natural conditions (Sieghardt et al. 2005). For instance, many grey 

infrastructures such as sidewalks, roads and buildings negatively affect tree growth 

and survival by limiting their growing space, compacting the soit and limiting water 

infiltration (Sieghardt et al. 2005). Human activities that result in soit , water, and 

atmospheric pollution increase the problem (Konijnendijk & Randrup 2004; Tubby & 

Webber 2010). Finally, direct damage to the surrounding trees caused by road, 

sidewalk and building repair and recurrent vandalism further exacerbate the limitation 

to normal tree growth (Sieghardt et al. 2005 ; Tello et al. 2005). 

Non-structural carbohydrates (NSC) are believed to improve tolerance to diverse 
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stress and disturbance conditions (Canham et al. 1999; Gleason & Ares 2004; Myers 

& Kitajima 2007; Atkinson et al. 2014; O'Brien et al. 2014). During periods of stress 

for plant growth, NSC can maintain basic metabolic functions , and after disturbances 

that involve a loss of tissue, NSC can be mobilized from various sources (i .e. , stems, 

leaves, and roots) to potential sinks to maintain metabolism and/or start compensatory 

growth (Chapin, Schulze & Mooney 1990; Dietze et al. 2013). NSC concentrations 

may comprise 5-40 % of the dry matter of a plant, depending on plant functional 

types and environmental conditions, such as climate and disturbance (Hoch, Richter 

& Korner 2003; Würth et al. 2005 ; Zhang, Wang & Wang 2014). In general , 

carbohydrate reserves are comprised of NSC that are formed by low weight sugars 

and starch. Sugars are mobilized easily and they are used for short-term metabolism, 

but starch is stored in a more recalcitrant form for long-term use during periods of 

severe stress (Chapin, Schulze & Mooney 1990; Dietze et al. 20 13). 

At the plant level , NSC stores may accumulate passively when carbon supplied by 

photosynthesis exceeds the carbon demand of the plants (Korner 2003), or plants may 

accumulate carbon actively when trees regulate the levels of reserves at the expense 

of growth (Chapin, Schulze & Mooney 1990). Active storage suggests a trade-off 

between NSC and growth that may influence the carbon allocation "decisions", which 

may depend on the life-history strategies oftrees (Myers & Kitajima 2007; Poorter & 

Kitajima 2007; Wiley 2013) . Therefore, NSC concentrations may be related to other 

trade-offs linked to the way that plants acquire and invest resources in a manner that 

has been described as a ' fast-slow ' continuum in the plant economies. For example, 

fast-growing, resource-acquisitive species, are generally characterized by high 

specifie leaf area (SLA), high leaf nutrient concentrations, and low wood density. On 

the contrary, slow-growing, resource-conservative species, are genera li y 

characterized by low SLA, low leaf nutrient concentrations, and high wood density 

(Grime et al. 1997; Westoby et al. 2002; Diaz et al. 2004; Wright et al. 2004; Chave 
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et al. 2009; Reich 2014; Dfaz et al. 2016) . 

At the tissue level, NSC depends on the distance between the carbon sources (NSC 

pools and currently produced photosynthate) and carbon sinks (respiratory 

metabolism, storage of NSC, and tissue growth), and the ability of organs to acquire 

plant-available resources (sink strength) (Lacointe 2000; Minchin & Lacointe 2005). 

Thus, disturbances that imply loss of tissue will affect the priorities for carbon 

allocation for growth and reserves. This response will depend on the functional role 

of the organs involved, because these organs may function as carbon sources or 

carbon sinks (Li , Hoch & Korner 2002). For instance, after a sudden reduction in 

photosynthesizing biomass by defoliation or branch pruning, the remaining leaves 

may increase their photosynthetic rates and their foliar nitrogen to compensate the 

supply of carbon to growth and storage (Reich et al. 1993; Yanderklein & Reich 

1999; Quentin et al. 2010; Quentin et al. 2011). Root pruning reduces the water 

supply for gas exchange which wil l inhibit photosynthesis (carbon sources) 

(Vysotskaya et al. 2004) and also produces a reduction in total stored carbohydrates 

(Landhausser & Lieffers 2003). Thus, root pruning should cause a reduction in total 

tree growth, and a real location of resources belowground to quickly rebuild its root 

(Ferree, Scurlock & Schmid 1999; Wajja-Musukwe et al. 2008; Dong et al. 2016). 

Stem damage by bark removal affects the mobilization and refilling of reserves 

between sources and sinks (Hogberg et al. 2001; Moore 2013; Purcell 2014; Mei et 

al. 20 15). Su ch damage negatively affects the transport of reserves from roots to 

above-ground parts above the region ring-barked as weil as the transport of 

photosynthates from the foliage to the root system (Moore 2013; Mei et al. 2015) . 

The response of carbohydrate concentrations to simultaneous stresses is more 

complex since the effect may be more or less severe than the sum of the ir individual 

effects (Mittler 2006; Niinemets 2010). Thus, the effect on carbohydrate 
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concentrations of defoliation and root pruning simultaneously may be lower 

compared to single stresses. This is because the removal of transpiring leaf area by 

defoliation reduces the impact ofwater stress that is caused by root pruning and , thus , 

reduces the need to use reserves to initiate compensatory growth to produce new roots 

and to exploit new available soil nutrients and water resources (Quentin et al. 2012; 

Jacquet et al. 20 14). On the other hand, the combination of tissue Joss (by either 

defoliation or root pruning) and stem damage could lead to a reduction of reserve 

concentrations, because stem damage would limit the supply of reserves from roots to 

leaves that is required to initia te compensatory leaf production under defoliation, or it 

would limit the supply of new photosynthates from leaves to roots required to 

increase root production (Mei et al. 201 5). 

The purpose of my dissertation was to improve our understanding of the relationship 

between stress and disturbance, which are faced by trees in urban and natural areas, 

and NSC storage at the tissue and plant leve!. The main hypotheses that 1 wanted to 

test were (i) if there was a coordinated variation between NSC concentrations and the 

leaf and wood economie spectra, independent of the geographical origin of species 

(tropical/temperate). · Therefore, I expected that species with higher NSC 

concentrations have trait values that are associated with resource conservation or 

'slow' ecological strategies, such as a low SLA, high tissue density, and low 

concentrations of leaf nutrients, and the reverse for species with trait values that are 

associated with resource acquisition or ' fast' ecological strategies; (ii) that there are 

negative and positive interactions in NSC concentrations in trees exposed 

simultaneously to common urban stresses. Thus, compared to single stresses, the 

effect of combined stress factors should be a decrease in NSC concentrations 

(negative interaction) as a response to tissue Joss (either by defoliation or root 

pruning) and stem damage, and higher NSC concentrations (positive interaction) in 

NSC in response to defoliation and root pruning simultaneously. 
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Initially in Chapter 1, thanks to the large number of samples collected for analysis 

and the costs and time commitment required for the procedures to measure NSC, I 

proposed a novel technique for estimating NSC through near-infrared spectrometry. 

In Chapter 2, I sampled 80 tree species from temperate deciduous, and upper 

montane and lowland tropical forests to evaluate the large-scale ecological patterns of 

variation between NSC concentrations and leaf and woody functional traits. In 

Chapter 3, l measured the seasonal dynamics of NSC in woody tissues of both 

pruned and un-pruned trees of Acer saccharinum and Acer platanoides to evaluate the 

dynamics of NSC concentrations after pruning during a single growing season. 

Finally, in Chapter 4, 1 conducted a large scale manipulative experiment with three 

tree species that are commonly planted in cities of eastern North America (Fraxinus 

pennsylvanica, Celtis occidentalis and Tilia cordata). These trees suffered different 

levels of defoliation, root pruning, and stem damage (and their interactions) to 

evaluate treatment effects on NSC concentrations. 

The four chapters of this thesis are presented in the format of scientific journal 

articles. The first chapter is already published in the journal Methods in Eco/ogy and 

Evolution (Ramirez et al. 2015). The second and third chapter will be submitted 

shortly to New Phytologist and Urban Forestry & Urban Greening, respectively. The 

journal to which I will submit the fourth chapter has not been identified yet 
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1.1 ABSTRACT 

The allocation of non-structural carbohydrates (NSCs) to reserves constitutes an 

important physiological mechanism associated with tree growth and survival. 

However, procedures for measuring NSC in plant tissue are expensive and time­

consuming. Near-infrared spectroscopy (NIRS) is a high-throughput technology that 

has the potential to infer the concentration of organic constituents for a large number 

of samples in a rapid and inexpensive way based on empirical calibrations with 

chemical analysis. 

The main objectives of this study were (i) to develop a general NSC concentration 

calibration that integrates various forms of variation such as tree species and tissue 

types and (ii) to identify characteristic spectral regions associated with NSC 

molecules. In total, 180 samples from different tree organs (root, stem, branch, leaf) 

be1onging to 73 tree species from tropical and temperate biomes were analysed . 

Statistical relationships between NSC concentration and NIRS spectra were assessed 

using partial !east squares regression (PLSR) and a variable selection procedure 

(competitive adaptive reweighted sampling, CARS), in order to identify key 

wavelengths. 

Parsimonious and accurate calibration models were obtained for total NSC (r2 of 

0 ·91 , RMSE of 1·34% in externat validation), followed by starch (r2 
= 0·85 and 

RMSE = 1·20%) and sugars (r2 = 0·82 and RMSE = 1·10%). Key wavelengths 

coincided among these models and were mainly located in the 1740-1800, 2100-

2300 and 2410-2490 nm spectral regions. 
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This study demonstrates the ability of general calibration madel to infer NSC 

concentrations across species and tissue types in a rapid and cast-effective way. The 

estimation of NSC in plants using NIRS therefore serves as a tool for functional 

biodiversity research, in particular for the study of the growth- survival trade-off and 

its implications in response to changing environmental conditions, including growth 

limitation and mortality. 
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1.2 INTRODUCTION 

Trees store non-structural carbohydrates (NSCs) as reserves to maintain plant 

metabolism during and after unfavourable conditions for plant growth. NSC reserves 

allow trees to survive cold temperatures at high altitudes and latitudes, provide energy 

for vegetative growth in spring and enable recovery and survival following periods of 

negative carbon balance indu-ced by drought (McDowell et al. 2008; Mitchell et al. 

2013; O'Brien et al. 2014), altitudinal limitation (Handa, Korner & Hattenschwiler 

2005; Hoch & Korner 2012; Fajardo & Piper 2014) and disturbances by herbivores 

(Kobe 1997; Canham et al. 1999; Myers & Kitajima 2007; Atkinson et al. 2014). 

There is considerable knowledge about the dynamics and mobilization of NSC 

reserves (Hoch, Richter & Korner 2003; Sala, Woodruff & Meinzer 2012; Dietze et 

al. 20 13). However, there is little knowledge about the amount of carbon allocated to 

reserves, whether it is control led passively or actively, or in which part of the plant 

reserves are stored (Sala, Woodruff & Meinzer 2012; Dietze et al. 2013). 

Furthermore, variation of NSC allocation to reserves across species and biomes, as 

weil as how it is controlled by the environment or along gradients of seasonality, is 

a Iso po orly documented (Dietze et al. 2013 ). The dearth of research on the 

mechanisms driving variation in NSC allocation is likely attributable to the time, 

labour and costs associated with the methods to measure NSC concentrations in plant 

tissues (Chow & Landhausser 2004; Bellasio, Fini & Ferrini 2014). While there are 

different well-standardized analytical methods for analysing carbohydrates in plant 

tissues, such as photometry, colorimetrie or chromatography (Gomez et al. 2003), 

these methods are expensive and time-consuming (Batten et al. 1993; Machado 

Du gante et al. 20 13). Additionally, analytic results from these different methods are 
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not comparable since they depend on the protocols selected to separate carbohydrates 

from the tissue matrix and the hydrolysis to break down sugars and starch to glucose 

(Chow & Landhausser 2004; Bellasio, Fini & Ferrini 2014). This limits the 

investigation ofNSC reserves in a biodiversity context considering a large quantity of 

samples for many species. 

Near-infrared spectroscopy (NIRS) is a high-throughput technique that allows for 

analysing a large quantity of samples. NIRS can be used to extrapolate measured 

contents of organic constituents from a limited number to a large number of samples 

(Foley et al. 1998). lt measures the absorbance of light at specifie wavelengths by 

different molecular bonds, principally -CH, -OH and -NH, which are the primary 

constituents of organic compounds of plant tissues (Bokobza 2002). A statistical 

relationship ('calibration ' ) between the near-infrared spectra and a sub-data set that 

has been analysed for the components of interest (Foley et al. 1998) allows to 

extrapolate the constituent of interest for a large number of samples expediently 

(Lawler et al. 2006). Hence, NIRS could be ideally suited for analysing NSC 

concentration in plant tissues, as sample preparation is straightforward and rapid and 

no chemical reagents are necessary. Furthermore, NIRS measurements also can be 

used to estimate other parameters of interest, including nitrogen, cellulose and lignin , 

ifbiochemical analyses are also available to calibrate a relationship (Gillon, Houssard 

& Joffre 1999; Petisco et al. 2005, 2006). Starch and soluble sugar concentrations 

have been also determined in shoot samples from rice and wheat as weil as in Rumex 

obtusifolius roots (Decruyenaere et al. 20 12). However, none of these studies 

analysed NSC concentration in different tissue types for many woody species 

simultaneously subjected to varying environmental conditions. In other words, 

variation of NSC concentration in trees species spanning different life histories and 

environmental constraints has not yet been integrated in a study in which 

carbohydrate reserves were analysed with NIRS. 
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Hence, the main objectives of this study were (i) to explore whether genera l (globa l) 

ca libration models can be obtained incorporating variation in NSC concentrations 

across tree species and tissue types and (ii) to identify key wavelength and 

characteristic spectral regions related to NSC molecules using competitive adapt ive 

reweighted sampling (CARS) variable selection in partial least squares regression 

(PLSR). The latter would allow for a physicochemical interpretation of the obtained 

models and their potential robustness. 
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1.3 MA TERIALS AND METHODS 

1.3.1 Sampling 

In 2012, we sampled 82 native tree species from the Mont St-Hilaire Gault Nature 

Reserve in the province of Quebec, Canada, and in various forest types in the 

depat1ments of Cundinamarca and Antioquia, Colombia (Table 1 .1 ) . Sites were 

chosen in order to geta contrast in latitude and seasonality (Canada versus Colombia) 

and altitude (within Colombia). Botanical samples of tropical species were taken for 

species verification and deposited at the Medellin Botanical Garden. At Mont St. 

Hilaire, this was not necessary since ali trees had been identified and tagged 

previously. 
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Table 1.1 Main characteristics of the study sites 

Mean annual 
Mean Number of 

Site Coordinates Biome 
Elevation 

precipitation 
annual species/samples 

(rn) 
(mm) 

temperature selected for 
{oq anal~sis 

Laguna Seca, 4°41'12"N Para mo 3500- 1950 8 5/9 
Para mo de (alpine 3700 
Chingaza, 73°46'21"W ecosystem) 
Cundinamarca, 
Co lombia 
Hacienda 4°32'30"N Upper 2650- 1900 12 26/57 
Sabaneta Nature montane 2900 
Reserve, 74°15'18"W forest 
Cundinamarca, 
Co lombia 

Rio Claro, 5°54'04"N Lowland 250- 4000 26 24/47 
Antioquia, tropical 750 
Colombia 74°51'24"W rainforest 

Gault Nature 45°32'31 "N Deciduous 150- 825 (rain) + 6 (16)' 18/67 
Reserve, Mont- temperate 300 1710(snow) 
Saint-Hilaire, 73°09'11 "W forest 
Quebec, Canada 

Total 73/ 180 
* Mean grow ing season temperature. 
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Leaves and wood samples (including branch, stem and root) were co llected from 

three to five mature individuals per species with a diameter at breast height > 10 cm 

for a total of 1271 samples. Young, fully expanded leaves from plants without visible 

pathogen or herbivore damage were sampled in the morning at the top oftrees using a 

tree trimmer, while wood tissues were sampled during the day. Stem samples were 

taken with a 4 · 3-mm-diameter increment borer wh ile branch sam pies w ith diameters 

2- 3 cm were co llected using a tree trimmer. Root samples, each approximately 5 cm 

long, were taken with a 4 ·3-mm increment borer from large surface roots near the 

base of the stem. Sam pies in Canada were taken after bud break (May) and at the end 

of the growing season (November). In arder to capture seasonal trends in NSC 

reserves in Co lombia, samples were taken during the transition between the dry and 

the rainy seasons (between January and April). Tissues were brought to the laboratory 

within 8 h after sampling in a coo ler with ice packs to reduce tissue respiration. Then, 

leaf and wood samples were microwaved and oven-dried at 65°C to a constant 

we ight. Fina lly, samples were ground using a bali mill and a grinder with a 0 ·5- mm­

aperture mesh sieve. 

1.3.2 Spectral measurements 

A li retlectance spectra were measured using a FT-NIR analyzer (Bruker MPA Multi 

Purpose FT-NIR Analyzer) . Spectra were taken from 1300 to 2650 nm to caver a 

wide spectral range. This includes the spectral region (2000-2650 nm) with high 

overlapping absorbance peaks, as we il as the first, second and third harmonie regions 

(1300- 2000 nm) which are informative regions with lower noise leve ls (Workman & 

Weyer 20 12). The spectral data were recorded at a mean spectral resolution of 1·7 nm 

and averaged a ver 5 scans per sample as absorbance (log 1/R, where R = retlectance ). 
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1.3.3 Biochemical analysis 

A subset of 180 samples (out of the 1271 samples) was selected for NSC analysis 

using the Kennard-Stone algorithm (Kennard & Stone 1969). This algorithm selects a 

defined number of representative samples that systematically caver the spectral 

variation of ali samples (Table 1.1). Samples from the selected subset were analysed 

for NSC concentration following Hoch, Popp & Kërner (2002). 10 mg of ground 

plant material was extracted with 2 ml distilled water over steam for 30 min. The sum 

of the three quantitatively most important low molecular weight sugars (i.e. glucose, 

fructose and sucrose) was determined in an aliquot of the extract after conversion of 

sucrose and fructose to glucose with invertase and phosphoglucose-isomerase (both 

Sigma-Aldrich, St. Louis, MO, USA). Total glucose was quantified in a microplate 

photometer at 340 nm (Thermo Fisher Scientific, Waltham, MA, USA) after the 

conversion of glucose to gluconate-6-phosphate using the glucose hexokinase (GHK) 

assay reagent (G3292, Sigma-Aldrich). The rest of the extract including the pellet 

was treated with a crude fungal amylase (' Ciarase' from Aspergillus oryzae; Enzyme 

Solutions Pty Ltd. , Crydon South, VIC, Australia) and incubated at 40°C for 15 h to 

break down starch to glucose. The sum offree sugars (glucose, fructose and sucrose) 

and starch (referred here as NSC) was then determined photometrically as described 

above. Starch was calculated indirectly by subtracting the measured sugars (sugars = 

glucose+ fructose +sucrose) from the measured total NSC. Pure starch and glucose, 

fructose and sucrose solutions were used as standards. Plant powder from orchard 

leaves (Leco, St. Joseph, MI, USA) was included to control replicability of the 

extractions . The NSC concentrations are reported here as the percentage of dry 

matter. 
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1.3 .4 Statistical analysis 

Partial !east squares regression (PLSR) was used to develop calibrations for the 

prediction of sugar, starch and total NSC concentrations in one mode! for ali studied 

plant tissues and to assess total NSC concentrations for ali tissue types separately. We 

used spectral information between 1300 and 2650 nm, because light absorption of 

NSC-related molecular bonds usually occurs within this spectral region (Curran 

1989). For PLSR analysis, we used the first derivative of the spectra, which led to 

better results compared to raw or vector-normalized spectra. 

For the calibration, a subset of 66% of the sam pies (n = 120 in ali tissue models) was 

selected using the Kennard-Stone algorithm to mimic our initial selection procedure. 

The remaining 33% of samples (n = 60 in ali tissue models) were set aside for 

independent (external) validation. Calibration equations were derived using PLSR 

and a variable selection procedure to find the smallest subset of spectral variables. 

Variable selection was performed using CARS-PLSR (CARS competitive adaptive 

reweighted sampling). CARS selects an optimal number of spectral variables, which 

returns the lowest root-mean-squared error (RMSE), and an optimum number of 

latent variables using leave-one-out cross-validation (Li et al. 2009). As CARS uses a 

Monte Carlo subsampling strategy and random numbers in the adaptive reweighted 

sampling procedure, no unique solution exists. Therefore, we used 50 CARS 

simulations to identify the best mode!, that is the mode! with the lowest RMSE in 

cross-validation. We used a maximum of 12 latent variables and selected the best 

CARS-PLSR mode!, which was subsequently applied to the external validation set. 

Mode! performance was assessed by using the coefficient of determination (Pearson's 

r2
) and the root-mean-squared error (RMSE). Additionally, the residual prediction 

deviation (RPD, the ratio of standard deviation of the prediction values to standard 

error) in PLSR calibration, cross-validation and the external validation was 
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calculated. RPD is a quality measure of the model performance for predicting 

carbohydrate concentrations. ln contrast to RMSE which is given in the unit of the 

response variable, RDP is independent from it and is thus more general measure 

allowing comparisons between calibration models considering different response 

variables and ranges within their concentrations (Saeys, Mouazen & Ramon 2005) . 

Predictions from models with RPD values between 1·5 and 2 ·0 allow one to 

differentiate between high and low values, while RPD values higher than 2 ·5 yield 

good to excellent predictions. Ali statistical analyses were performed in R 3.1.1 (R 

Development Core Team, Vi enna, Austria, 2014) using the packages pis, soil.spec 

and carspls. 
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1.4 RESULTS 

1.4.1 Predicting NSC across leaves, stems and roots for ali species (ali tissue 
models) 

The concentration of carbohydrates expressed in % dry matter in the sub-data set 

ranged between 0 and 13 ·5% in sugars (the sum of glucose, fructose and sucrose), 0 

and 17 · 8% in starch, and 0·1 and 20·1% in total NSC (su gars plus starch). For ali 

three-carbohydrate constituents, robust and parsimonious calibration models were 

identified using CARS-PLSR that retained their predictive power in the external 

validation (Figure 1.1 and 1.2). A cross ali calibration models, the best models were 

obtained for total NSC (r2 of0·91 , RMSE of 1·34% in validation), followed by starch 

(r2 = 0· 85 and RMSE = 1·20%) and sugars (r2 = 0· 82 and RMSE = 1·1 0%) (Table 

1.2). The number of latent variables varied between 10 and 12 and the number of 

selected predictor variables between 24 and 42, corresponding to 3 ·7-8·3% of ali 

spectral bands, respectively. The best models consistently indicated parsimonious and 

accurate calibration with RPD values greater than 2 (RPD values higher than 2 ·0 

indicate good to excellent predictions, Saeys, Mouazen & Ramon 2005). 
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Table 1.2 Description of CARS-PLSR regression models per carbohydrate type. 

Free 
Starch-

Total NSC 
Total NSC 

Total NSC Tota l 
Carbohydrate sugars-

a li tissues 
-ali 

- leaves 
-stem and NSC-

- tissue type a li t issues (%) tissues (%) branches roots 
{%) {%) {%) {%) 

Latent 
12 11 Il 10 12 10 

variab les 
Predictor 

24 37 42 33 24 19 
variables (#) 
/ calibration 0.81 0.9 0.93 0.98 0.97 0.99 

2 cross-r 
0.69 0.84 0.88 0.94 0.93 0.94 

validation 
r2 validation 0.82 0.85 0.91 0.68 0.87 0.91 
RMSE 

0.89 1.18 1.12 0.71 0.67 0.55 
calibration 
RMSE cross-

1.14 1.5 1.43 1.12 1.11 
validation 
RMSE 

1.1 1.2 1.34 2.63 1.22 1.18 
validation 
RPD cross-

1.8 2.5 2.88 4.22 3.86 4.22 
validation 
RPD validation 2.32 2.53 3.26 1.45 2.58 3.41 
Bias* 

-0.27 -0.23 0.43 -0.93 0. 1 0.3 
validation 
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Figure 1.1 CARS-PLSR regression models for sugars, starch and total non­
structural carbohydrate concentrations in plant tissues (root, stem, branch, 

leat). 

20 

Sample sizes for cross-validation (left) and independent validation model s (right) 

were n = 120 and 60, respectively. Linear fits in grey and 1:1 lines in black. 
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Figure 1.2 CARS-PLSR regression models for total non-structural carbohydrate 
concentration for tissue-specifie models. Cross-validation and validation are 
shown left and right, respectively. Linear fits in grey and l:llines in black. 
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The CARS-PLSR algorithm selected a set of wavelengths that explained the greatest 

amount of variation. To predict sugars, starch and NSC across ali tissue types, 24, 37 

and 42 wavelength bands were selected, respectively. Wavelengths with high 

regression coefficients (see bar plots indicating the relative weight of regression 

coefficients of each selected wavelength, Fig. 3) coincided among sugar, starch and 

total NSC models and are mainly located in the 1740-1800, 2100-2300 and 2410-

2490 nm spectral regions. 
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Figure 1.3 Positions of the key wavelengths in the NIR spectrum. Bars indicate 
the relative importance of the regression coefficients of each key wavelength. 

Superimposed are the mean calibration spectra. 
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1.4.2 Predicting NSC for leaves, stems or roots for ali species (tissue-specifie 
models) 

The tissue-specifie models (considering the three different tissue types separately 

with respect to total NSC concentration) differed in terms of accuracy and parsi mon y 

(Table 1.2). The best madel was obtained for total NSC in roots (/ = 0·91 and RMSE 

= 1 ·18% ), followed by stem and branches, and leaves . NSC concentration of leaves 

showed the poorest accuracy among ali models with an RPD of 1-45. For example, 

the NSC madel for leaves had the lowest number of latent variables (1 0) and 

relatively few predictor variables (33); in the external validation, its accuracy was the 

poo rest. In contrast, the NSC madel for roots with 10 latent variables and 19 predictor 

variables had the highest accuracy of ali considered models. The number of predictor 

variables varied between 19 and 42, and the highest bias was found in the NSC madel 

for leaves, while the lowest was found for the NSC madel of stem and branches 

(Table 1.2). 
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1.5 DISCUSSION 

Carbohydrate concentrations of the samples in this study were comparable to the 

range recorded in other studies across the globe (0- 19 NSC (% d.m.) , Hoch & Korner 

2003 ; Hoch, Richter & Korner 2003 , 2003; Landhiiusser & Lieffers 2003 ; Würth et 

al. 2005 ; Piper et al. 2009). Despite substantial variation in NSC concentrations 

ac ross species, tissue types and environmental conditions (Table 1) we were able to 

identify accurate and robust calibration models for total NSC, sugar and starch (Table 

1.2). The CARS-PLSR variable selection efficiently identified a relatively small set 

of predictor variables (ranging between 19 and 42) and the identification of key 

wavelengths. We consider this step, together with the representative sample selection 

using the Kennard-Stone algorithm, as crucial for yielding parsimonious and robust 

calibrations. 

The performance of our calibration models was equivalent to or better than those 

reported in previous studies that estimated carbohydrate concentration in plant tissues 

using NIRS (Table 1.2). For example, Batten et al. (1993) reported / = 0 ·98 and 

RMSE = 1-4% in calibration for NSC estimation in rice and wheat. Decruyenaere et 

al. (2012) reported r 2 values between 0·96 and 0 ·98 and RMSE between 0·63 and 

1· 85% in calibration and cross-validation models for estimating sugar and starch in 

Rumex obtusifolius roots. However, their relationships did not perform weil in 

independent validation, as indicated by a low r2 and high standard error of prediction 

(/ = 0 ·003 and SE of prediction= 2 ·7) . Converse! y, Chen et al. (2014) reported / = 

0 · 81 and RMSE = 1 · 77% in external validation of models for estimating sucrose and 

glucose concentration in sorghum stalks. Relative to other studies, the robustness of 

our models in the independent validation (as compared to the external validation) 



--------------- -- ----- - ------------------

28 

provides strong support for usmg our calibration models to estimate NSC 

concentration of plant species across bread environmental gradients and life histories. 

Unlike ether studies using NIRS to estimate carbohydrates or ether parameters such 

as nitrogen, cellulose and lignin (Gillon, Houssard & Joffre 1999; Petisco et al. 2005 , 

2006; Klaus et al. 20 12), we did not use commercial software for data processing. 

Commercial software often performs automated variable selection or pre-processing 

(sometimes called optimization) and does not allow users to adjust these procedures. 

The automation of these procedures may lead to over-fitting or spurious results when 

results are not validated externally. Ali analyses performed in this study were done in 

R with well-documented procedures that allow for replication and verification of the 

results obtained here. 

The performance of NIRS calibrations is usually evaluated using the root:mean­

squared error (RMSE) in either cross-validation or externat validation. ln this study, 

the best calibration was found for tissue-specifie NSC models (Table 1.2 and Figure 

1.2). However, RMSE did not vary much across the different models (except the 

mode! for leaves) when using externat validation. Another option to evaluate mode! 

performance is RPD. RPD values obtained in externat validation in this study were 

higher than 2 ·0 indicating a very good mode! performance, except for total NSC in 

leaves, where RPD was 1-45. As RPD values for starch (ali tissues) and NSC (stem 

and branches, roots and ali tissues) models were greater than 2 · 5, the performance of 

these models can be considered very reliable and useful for ecological research within 

and across ecosystems and biomes (Saeys, Mouazen & Ramon 2005). The small 

differences in RMSE and RPD values between cross-validation and externat 

validation provide evidence that the Kennard-Stone algorithm is a useful algorithm to 

select representative calibration samples. Thus, we recommend using this algorithm 
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to select samples prior to NIRS analysis m cases where not ali samples can be 

analysed and extrapolation is wanted. 

Sample heterogeneity is vital for optimal calibration, as it ensures that NIRS can be 

used to estimate NSC concentration across a broad range of plant species and tissue 

types. Contrary to the concern that samples from different biomes or tissues may lead 

to bias in validation and cross-validation results (Cécillon et al. 2009), our calibrated 

models for this wet chemistry method were accurate and robust for most tissue types. 

The exception to this was the relatively poor performance of the leaves mode] 

(validation RPD = 1-45). This may be due to the presence of phenolics or tannins that 

in sorne species can interfere with enzymatic techniques disrupting the signal 

intensity and leading to biased measurements in chemical analysis (Ashwell 1957). 

Furthermore, the presence of primary metabolites that were not measured with our 

NSC method may obscure the NSC measurements. For example, this may be caused 

by neutra] lipids (Hoch, Richter & Kéirner 2003) and other secondary metabolites in 

living leaves that are responsible for defence against herbivores, protection against 

ultraviolet radiation or high temperatures (Lambers, Chapin & Pons 2008) . In 

addition, secondary metabolites may be detected at spectral regions normally 

associated with carbohydrates and, thus, may also obscure the NTRS-carbohydrate 

relationships (Curran 1989; Workman & Weyer 2012). This finding suggests that 

further research is needed on chemical compounds inferring with NSC content in 

either wet chemistry analysis or spectral measurements. 

The reflectance spectrum of a sample is the result of the absorption features of each 

chemical compound, weighted by its concentration. Identified reflectance of key 

wavelengths corresponds to the regions within the light spectrum of high correlation 

between reflectance and chemical concentration (Curran 1989) . These wavelengths 

constitute the spectral frequencies that produce the minimum errors during 

---------------- --------
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quantitative determinations and may help to discriminate between dissimilar samples 

(Xiaobo et al. 201 0; Workman & Weyer 2012). Key wavelengths identified in this 

work were located in the long-wavelength NIR region, precisely between 1740- 1800, 

2100-2300 and 2410- 2490 nm. 

In the case of biological samples, overlapping absorptions are typically generated by 

overtones and combinations of vibrations of organic matter functional groups like C­

H, 0-H and N-H (Siesler et al. 2002; Chung, Boik & Potma 2013). The regions 

identified in this study were mainly related to the stretching and bending vibrations of 

the molecular bonds between hydrogen atoms and oxygen (0-H group regions) 

(Curran 1989; Siesler et al. 2002; Workman & Weyer 2012). In this case, the organic 

compounds that absorb in these wavelengths and 0-H bond vibrations are related to 

the chemical concentrations of cellulose, sugar and starch, and lignin (Curran 1989; 

Batten et al. 1993; Decruyenaere et al. 2012 ; Workman & Weyer 2012). 

Physiological research about the role of NSC in plants has mainly focused on free 

sugars (such as glucose, fructose and sucrose) and starch. In general , free sugars are 

used by plants for cellular metabolism, while starch is stored in a more recalcitrant 

form that must be transformed to a labile form before being transported or 

metabolized (Chapin, Schulze & Mooney 1990; Dietze et al. 2013). Little is known 

about mechanisms that control the transformation between starch and sugar and their 

different roles in plant functioning (Kobe 1997; Ogle & Pacala 2009; Dietze et al. 

2013). Despite the importance of this chemical process, many studies have not 

differentiated NSCs into sugars and starch. However, our method readily detects 

sugars and starch, which can provide further insight to important physiological 

processes in plants. This may facilitate the analysis of multiple samples required to 
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resolve outstanding questions about the rote of carbohydrate reserves along the 

growth-survival trade-off and its variation among functional groups (Poorter & 

Kitajima 2007; Dietze et al. 2013). 
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1.6 CONCLUSIONS 

To date, estimating carbohydrate concentrations for plant tissues using NIRS has 

been restricted to a handful of studies that have focused on annual plants in a single 

biome (Batten et al. 1993; Decruyenaere et al. 2012; Chen et al. 2014) . This study 

presents a successful application of a NIRS-based NSC quantification considering 

many woody species, different tissue types and a broad range of environmental 

conditions. CARS-PLSR variable selection of key spectral regions yielded consistent, 

parsimonious and robust calibrations across the three NSC constituents. Our results 

show that this approach for estimating plant carbohydrates with NIRS and is a 

promising avenue for physiological and ecological studies covering a wide range of 

species in different biomes, particularly the study of the growth- survival trade-off 

and its implications. 
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1.8 SUPPORTING INFORMATION 

1.8.1 AnnexA 

Table 1.3A Species list. 

Number Species Biome 
1 Acer pensylvanicum Temperate forest 
2 Acer rubrum Temperate forest 
3 Acer saccharinum Temperate forest 
4 Acer saccharum Temperate forest 
5 Aegiphila bogotensis Montane tropical forest 
6 Ageratina ampla Paramo 
7 Alnus acuminata Montane tropical forest 
8 Alnus rugosa Temperate forest 
9 Aniba perutilis Lowland tropical forest 
10 Apeiba glabra Lowland tropical forest 
Il Aptandra tubicina Lowland tropical forest 
12 Aspidosperma megalocarpon Lowland tropical forest 
13 Befaria resinosa Montane tropical forest 
14 Be !lucia pentamera Lowland tropical forest 
15 Betula alleghaniensis Temperate forest 
16 Be tula papyrifera Temperate forest 
17 Brosimum utile Lowland tropical forest 
18 Cariniana pyriformis Lowland tropical forest 
19 Carya cordiformis Temperate forest 
20 Casearia arborea Lowland tropical forest 
21 Cavendishia cordifolia Montane tropical forest 
22 Cecropia peltata Lowland tropical forest 
23 Cedrela montana Montane tropical forest 
24 Celtis occidentalis Temperate forest 
25 Cespedesia spathulata Lowland tropical forest 
26 Chusquea tessellata Para mo 
27 Citharexylum spp. Montane tropical forest 
28 Clathrotropis brachypetala Montane tropical forest 
29 Clusia multiflora Montane tropical forest 
30 Cardia alliodora Lowland tropical forest 
31 Cardia cylindrostachya Montane tropical forest 
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Nu rn ber Species Biome 
32 Cardia spp. Montane tropical forest 
33 Croton killipianus Lowland tropical forest 
34 Drimys granadensis Montane tropical forest 
35 Duguetia antioquensis Lowland tropical forest 
36 Espeletia grandiflora Paramo 
37 Fagus grandifolia Temperate forest 
38 Fraxinus americana Temperate forest 
39 Gaiadendron tagua Montane tropical forest 
40 Gaultheria spp. Para mo 
41 Goupia glabra Lowland tropical forest 
42 Hieronyma alchorneoides Lowland tropical forest 
43 Hyptidendron arboreum Lowland tropical forest 
44 !lex nervosa Montane tropical forest 
45 Juglans cinerea Temperate forest 
46 Juglans neotropica Montane tropical forest 
47 Ladembergia spp. Lowland tropical forest 
48 Miconia biappendiculata Montane tropical forest 
49 Morelia parvifolia Montane tropical forest 
50 Myrcianthes leucoxyla Montane tropical forest 
51 Myrsine coriacea Montane tropical forest 
52 Myrsine ferruginea Montane tropical forest 
53 Ochoterenaea colombiana Lowland tropical forest 
54 Ochroma pyramidale Lowland tropical forest 
55 Oreopanax bogotensis Montane tropical forest 
56 Ostrya virginiana Temperate forest 
57 Piper bogotense Montane tropical forest 
58 Populus grandidentata Temperate forest 
59 Populus tremuloides Temperate forest 
60 Prunus buxifolia Montane tropical forest 
61 Prunus serotina Temperate forest 
62 Pseudoxandra sclerocarpa Lowland tropical forest 
63 Quercus rubra Temperate forest 
64 Rhamnus goudotiana Montane tropical forest 
65 Senecio spp. Paramo 
66 Solanum humboldtianum Montane tropical forest 
67 Tabebuia guayacan Lowland tropical forest 
68 Tapirira guianensis Lowland tropical forest 
69 Tilia americana Temperate forest 
70 Trema micrantha Lowland tropical forest 
71 Verbesina crassiramea Montane tropical forest 
72 Viburnum lasiophyllum Montane tropical forest 
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2.1 ABSTRACT 

Carbohydrate reserves play a vital role in plant survival during periods of negative 

carbon balance. Thus, at the plant leve! , it is expected that carbon allocation to 

carbohydrate reserves exhibits a coordinated variation with a suite of functional traits 

that are related to acquisition and conservation of carbon resources. 

To test the relationship between plant functional economie traits and allocation to 

reserves, we sampled 80 tree species from temperate and tropical forests. We 

evaluated non-structural carbohydrates (NSC) and 16 traits (including specifie leaf 

area, photosynthetic capacity, wood density, leaf nutrients, and height). 

The relationship between functional traits and carbohydrate concentrations was 

orthogonal. The first axis was formed by traits that define the leaf and wood 

economies spectrum and the second axis was defined by NSC concentrations. Except 

for a significant relationship between carbohydrate concentrations in roots and tree 

height, most of the relationships between NSC concentrations in woody tissues and 

traits were weak or non-significant. 

Investment in traits that were associated with resource conservation is not related to 

investment in NSC storage. These results provide new insights about the allocation of 

carbon to storage or defenses in trees with different !ife strategies. 
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2.2 INTRODUCTION 

Carbohydrate reserves, mainly non-structural carbohydrates (NSC) comprised of 

sugar and starch (Hoch, Richter & Kèirner 2003), play a vital role in plant survival 

during periods of negative carbon balance induced by light limitation (Myers & 

Kitajima 2007; Poorter & Kitajima 2007), drought (McDowell et al. 2008; Mitchell et 

al. 2013; O'Brien et al. 2014), cold temperatures (Handa, Kèirner & Hattenschwiler 

2005; Hoch & Kèirner 2012; Fajardo & Piper 2014; Piper et al. 2016), diseases, and 

physical damage due to herbivory and falling debris (Kobe 1997; Canham et al. 1999; 

Myers & Kitajima 2007; Atkinson et al. 2014). Additionally, in temperate and boreal 

plants, a higher proportion of net carbon assimilation is allocated to NSC to provide 

the energy to maintain respiration during long winters and for vegetative growth in 

spring (Gaucher et al. 2005 ; Gough et al. 2009; Messier et al. 2009). 

At the plant level , the allocation of carbon to reserves has been hypothesized as a 

competition with growth and other physiological processes such as defense (Chapin, 

Schulze & Mooney 1990; Sala, Woodruff & Meinzer 2012; Dietze et al. 2013), 

which suggests a trade-off between carbon allocated to growth and that allocated to 

reserves and defense (Kitajima 1994; Kobe 1997; Myers & Kitajima 2007). Carbon 

allocation to growth, in turn, is involved in other trade-offs that are related to the 

' fast-slow ' plant economies (Reich 2014) and size spectra (Grime et al. 1997; 

Westoby et al. 2002; Diaz et al. 2004; Wright et al. 2004; Chave et al. 2009; Reich 

2014; Dfaz etal. 2016). 

These suites of trade-offs reflect a coordinated variation among plant traits from 

species that differ in growth form , size, phylogeny, and biome (Reich, Walters & 

Ellsworth 1997; Reich et al. 1999; Wright et al. 2004; Donovan et al. 2011; Reich 

20 14; Dfaz et al. 20 16). For example, fast-growing, resource-acquisitive species, are 
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generally characterized by high specifie leaf area (SLA), high leaf nutrient 

concentrations, and low wood density. On the contrary, slow-growing, resource­

conservative species, are generally characterized by low SLA, low leaf nutrient 

concentrations, and hi gh wood density (Reich et al. 1998; Wright et al. 2004; Poorter 

& Bongers 2006; Bara loto et al. 201 0; Wright et al. 2010) . 

Although intra- and inter-specifie variation of NSC concentrations may be caused by 

multiple factors , e.g ., climate, soil , biotic interactions, phylogeny, it is expected that 

carbon allocation to reserves exhibits a coordinated variation with a suite of 

functional traits that are related to resource acquisition and conservation. For 

instance, a higher SLA indicates a higher light capture potential , a higher net 

photosynthetic rate, and higher concentrations of nutrients such as N in leaves 

(Wright, Westoby & Reich 2002; Wright et al. 2004). Therefore, it is expected that an 

increase in SLA leads to an increase in carbohydrate reserves in certain plant organs, 

such as leaves, as a result of higher photosynthetic rates (Li et al. 2016). In addition, 

tough leaves and dense woody tissues suggest greater carbon investment in defense 

traits to resist and to recover from biotic and abiotic stress (Poorter & Kitajima 2007; 

Poorter et al. 201 0), which co-vary with carbon allocation to reserves, especially in 

roots (Kitajima 1994; Myers & Kitajima 2007). 

Furthermore, other traits, such as tree height, might be related to carbon allocation to 

reserves. NSC concentrations in woody tissues generally increase with plant height 

(Genet, Bréda & Dufrêne 2009; Sala & Hoch 2009; Piper & Fajardo 2011 ; Woodruff 

& Meinzer 2011). High concentrations of NSC are suggested to be necessary to 

maintain safety margins due to a reduced hydraulic efficiency associated with 

increasing tree height (Sala, Woodruff & Meinzer 2012) or the higher risk of stem 

breakage (Niklas 1992). Together, these findings suggest that variation in NSC 
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concentrations may be jointly constrained by that of leaf and wood traits and tree 

height. 

To date, there have not been any investigations of large-scale ecological patterns of 

variation between plant functional traits and allocation to reserves. To better 

understand these relationships, we sampled 80 tree species from temperate deciduous, 

upper montane tropical , and lowland tropical forests. Because allocation to reserves 

and other major functional traits are critical to survival, we expected that (i) there 

would be a coordinated variation between NSC concentrations and the leaf and wood 

economie spectra, independent of biomes; (ii) that species with higher NSC 

concentrations would have trait values associated with resource conservation or 

'slow' ecological strategies, such as a low SLA, high tissue density, and low 

concentrations of leaf nutrients, and vice versa for species with trait values associated 

with resource acquisition or ' fast ' ecological strategies; and (iii) that tree height 

would scale positively with concentration of reserves, because tree height determines 

changes in functional traits when plants experience increased light levels. 
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2.3 METHODS 

2.3.1 Research sites 

This study was carried out in a deciduous temperate forest (DTF; Mont St-Hilaire, 

Quebec, Canada) and in an upper montane forest (UMF) and a lowland tropical forest 

(LTF) in Colombia (Table 2.1). Sites were selected to obtain contrasts in latitude and 

seasonality (Canada versus Colombia) and altitude (within Colombia). Study sites had 

not experienced recent anthropogenic disturbances at the time of sampling. 
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Table 2.1 Main characteristics of the study sites. 

Rio Claro 
Reserve, 

Antioquia, 
Colombia (LTF) 

Biome 
Lowland tropical 

rainforest 

Latitude 5°54 '04" N 

Longitude 74°51 ' 24" w 
Altitude (range, rn as l) 250- 750 

Mean annual precipitation (mm) 4000 

Mean annual temperature (0 C) 26 

Mean annual freeze-free days NA 

N um ber of species stud ied 32 

* Mean growing season temperature. 

Hacienda 
Sabaneta Nature 

R eserve. 
Cundinamarca, 

Colombia (UMF) 

Upper montane 
forest 

4°32 '30" N 

74° 15' 18" w 
2500- 3300 

1900 

12 

NA 

27 

Gault Nature R eserve. 
Mont-Saint-Hilaire, 

Quebec, Canada (DTF) 

Deciduous temperate 
forest 

45°32 '31 " N 

73°09' 11 , w 
200-400 

967 

6 (16*) 

140 

21 
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2.3 .2 Field sampling 

We sampled a total of 80 native tree species (Annex 1) across the three study sites in 

2012. ln the temperate forest, samples were taken after bud break and hardening 

(May) and at the end of the growing season (October) to capture sorne of the seasonal 

dynamics in carbon reserves that are typical of n01thern temperate forests. In the 

tropical forest sites, samples were taken during the transition from the dry to rainy 

seasons (January to April). At each site, the most abundant tree species were selected 

for sampling. Botanical samples of tropical species were taken for verification and 

deposited at the Medellin Botanical Garden. At the temperate forest site, species 

identification had been validated previously. 

Leaves and wood (including tissues from branches, stems, and roots) were sampled 

from 3-5 individuals for each species. In total , we collected 1271 samples from trees . 

Young, fully expanded leaves from adult plants without visible symptoms of 

pathogen or herbivore attack were sam pied at the top of the tree. To avoid possible 

effects of diurnal variation in NSC, leaf samples were collected in the early morning 

(Upmeyer & Koller 1973). Stem samples were taken with a 4.3 mm diameter 

increment borer. Stem cores were taken perpendicular to the slope to reduce 

variability in wood density due to compression or tension. Samples of top branches 2-

3 cm in diameter were obtained by cutting them down with a tree trimmer. Root 

samples were taken with an increment borer from large surface roots ca. 50 cm away 

from the base of the stem . 

2.3 .3 Functional traits 

We measured 16 traits that were associated with important ecological strategies for 

tree functioning, productivity, and survival (Table 2.2) following standard protocol 

(Pérez-Harguindeguy et al. 20 13). 
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Table 2.2 List of functional traits considered in this study with the abbreviations 
used in the text, the units of expression, and the ecological role of the trait. 

Parameter Abbreviation Units Ecological rote 

Leafsize LS mm2 Resource acquisition 

Leaf thickness LT 
Res ource acquisition and 

mm 
defense 

Leaf dry matter content LDMC -1 Resource acquisition and 
mgg 

defense 

Specifie leaf area SLA mm2 mg-' Resource acquisition and 
defense 

Photosynthetic capacity 
Amax area 

11mol C02 m-2 

Resource acquisition 
(area base) s-' 

Photosynthetic capacity 
Amax mass 

nmol co2 g- 1 

Resource acquisition 
(mass base) s-' 

Foliar carbon c % 
Res ource acquisition and 
defense 

Foliar nitrogen N % 
Res ource acquisition and 
defense 

Foliar phosphorus p mgkg-1 Resource acquisition 

Foliar potassium K mgkg- 1 Resource acquisition 

Foliar calcium Ca mgkg- 1 Resource defense 

Foliar magnesium Mg mgkg- 1 Resource acquisition and 
defense 

Stem density SD -3 Hydraulic transport, mechanical 
mg mm 

strength and defence 

Branch density BD -3 Hydraulic transport, mechanical 
mg mm 

strength and defence 

Root density RD -3 Hydraulic transport, mechanical 
mg mm 

strength and defence 

Tree height H 
Resource capture and 

rn 
reproduction 

Foliar sugars Sugar_L % Carbon and energy source 
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Parameter Abbreviation Units Ecological role 

Foliar starch Starch L % Carbon and energy source 

Fo liar total NSC NSC L % Carbon and energy source 

Stem sugars Sugar_S % Carbon and energy source 

Stem starch Starch S % Carbon and energy source 

Stem total NSC NSC S % Carbon and energy source 

Branch sugars Sugar_B % Carbon and energy source 

Branch starch Starch B % Carbon and energy source 

Branch total NSC NSC B % Carbon and energy source 

Root sugars Sugar_R % Carbon and energy source 

Root starch Starch R % Carbon and energy source 

Root total NSC NSC R % Carbon and energy source 



57 

Leaf size (LS, mm2), leafthickness (LT, mm), leaf dry matter content (LDMC, mg g-1
) , 

and specifie leaf area (SLA, mm2 mg-1
): Eight completely expanded leaves from each 

individual were collected from the sampled branch. Leaves were placed in plastic 

bags in the field w ith damp paper to maintain humidity. LS was measured using 

WinFolia software (Regent Instruments, Toronto, Canada) . LT was measured in fresh 

leaves as the mean of four measurements with a digital micrometer (Mitutoyo 

Instruments, Singapore). LDMC was calculated as the leaf dry mass at 60 °C divided 

by its water-saturated fresh mass. SLA was calculated as the area of the fresh lamina 

surface divided by its dry mass . 

Photosynthetic capacity by mass (A max_mass: nmol C02 g-1 s-1
) and area 

(Amax_area: f.J.mol C02 m-2 s-1
): Photosynthetic capacity was measured on leaves 

from two branches in both tropical forest sites using a LiCor model 6400 portable 

photosynthetic system (LiCor, Lincoln, NE, USA). The photosynthetic capacity 

under saturating light (Amax) was measured at 2000 11mol m-2 s- 1
• Measurements were 

carried out under constant C02 concentration (390 ppm) and leaf temperature (set at 

20 °C). Leaves were allowed to acclimate to 1000 11mol m-2 s-' and then 2000 11mol 

m-2 s-' for 5 min before measurements. Photosynthetic capacity per leaf dry mass was 

calculated as the product of Amax_area and SLA1
• Photosynthetic data from Mont 

St. Hilaire trees were taken from Marino, Agil and Shipley (20 1 0) . 

Analysis of carbon (C, %), nitrogen (N, %), and nutrients (Ca, K, Mg, and P, mg kg-

1) : Leaftissues for these analyses were dried and ground to a fine powder using a bali 

mill. C and N concentrations were determined for leaf samples from ali trees with a 

CN analyzer (Elementar Vario Max) . Determination of Ca, K , Mg, and P was 

performed on 100 samples using the acid digest method (Allen 1974), and then these 

results were extrapolated to ali samples of tree leaves with a near-infrared 
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spectroscopy (NIRS) mode! (Ramirez et al. 2015). C, N, and nutrient analyses were 

performed at the Max Planck lnstitute for Biogeochemistry in Jena, Germany. 

Wood density (stem density (SD), branch density (BD), and root density (RD), mg 

mm·}· Sam pies of roots, stems, and branches were placed in plastic bags in the field 

with damp paper to maintain humidity, and then they were soaked in water in the lab 

for 48 hours. Fresh volume was measured by water displacement, and wood mass 

was determined after drying samples at 60 °C to a constant weight and then again at 

100 °C to a constant weight (Williamson & Wiemann 2010). 

Tree height (H, rn) : Tree height was measured on each tree sampled with a TruPulse 

360 laser (Laser Technology, lnc., CO, USA). The deviee resolution is 10 cm for 

linear lengths. 

Non-structural carbohydrates (sugar, starch, and NSC, %of dry matter): Leaves and 

wood samples for NSC analysis were placed in paper bags and refrigerated . These 

samples were then microwaved in the lab within 8 h after sampling to stop enzymatic 

activity (Popp et al. 1996). Leaf samples were ground using a bali mill and wood 

samples were ground using a coffee grinder with a mesh sieve. A sub-sample of 180 

(of a total of 1271) was selected using the Kennard-Stone algorithm (Kennard & 

Stone 1969) for NSC analysis following (Hoch, Popp & Korner 2002). Ground plant 

material was dissolved for 30 min in distilled water. Starch and sucrose were 

disaggregated in glucose and in glucose and fructose, respectively, with Clarase 

(Aspergillus oryzae, Enzyme Solutions Pty Ltd, Crydon South, Victoria, Australia) by 

incubation at 40°C for 1 5 h. Phosphoglucose-isomerase was added to the solution and 

th en the total amou nt of glucose ( corresponding to total NSC) was quanti fied photo­

metrically in a microplate photometer at 340 nm (Thermo Fisher Scientific, Waltham, 

USA) after conversion of glucose to gluconate-6-phosphate (hexokinase; Sigma-
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Aldrich, St. Louis, MO, USA) . An aliquot of the original extract was treated with 

invetiase and phosphoglucose-isomerase (both Sigma-Aldrich) to determine the 

amount of glucose, fructose , and sucrose using a glucose test (see above) . Starch was 

calculated as NSC minus sugar. Pure starch and glucose, fructose , and sucrose 

solutions were used as standards. Plant powder from orchard leaves (Leco, St. Joseph, 

MI, USA) was used as a standard reference material. The NSC concentrations are 

reported here as a percentage of dry matter. Sugar, starch, and NSC values were 

extrapolated to ali samples using near-infrared reflectance spectra. Reflectance 

spectra were measured using a FT-NIR Analyzer (Bruker MPA Multi-Purpose FT­

NIR Analyzer) for ali samples . The reflectance spectra were taken from 800 to 2780 

nm with a mean spectral resolution of 1.7 nm on 5 scans per sample. The spectral 

data were recorded as absorbances (log 1/R, where R = reflectance) . Regression 

models that predict carbohydrate concentrations in different plant tissues (leaves, 

stems, branches, and roots) from near-infrared reflectance spectra were developed 

using partial least squares regression and competitive adaptive re-weighted sampling. 

The adjustment of the models obtained was r2 = 0.91 , r2 = 0.85 , and r2 = 0.82 for 

NSC, starch and sugars, respectively (Ramirez et al. 2015). 

2.3.4 Statistical analysis 

To avoid multicollinearity among traits , we evaluated correlations among each pair of 

predictor traits. Traits with a Spearman's correlation value greater than 0.70 were 

filtered out using the findCorre lation function of the 'caret' package (Kuhn 2008). 

This process led to an e limination of four co llinear predictors (BD, P, Ca and C), 

yielding a final 12 traits used for further analysis . 

The relationship between the group of traits (i.e. leaf, stem, or root) and the NSC 

concentrations in plant tissues was evaluated using multiple factor analysis (MF A). 
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This multivariate technique identifies the common structure present in the datasets 

defined for the same group of individuals (Escofier & Pages 1994). To evaluate the 

degree of coordination between traits and NSC, we used the RV coefficient, which is 

a coefficient between 0 and 1 that indicates the relationship between the two sets of 

traits and the contribution of the variables to the components. This analysis was 

performed with the ' FactoMineR' package (Lê, Josse & Husson 2008). To analyze 

bivariate relationship between traits and NSC concentrations, we used standardized 

major axis (SMA) analyses. SMA determines how carbohydrate reserves in the 

different tissues scale with functional traits and how this relationship changes across 

biomes. To compare SMA !ines among biomes, we tested if the relationship under 

consideration had a slope that was different from zero (Warton et al. 2006). Finally, 

to compare common-slopes between biomes a pairwise comparison of biome slopes 

was performed. SMA tests were performed with the ' smatr' R package (Warton et al. 

20 12). 

Finally, linear mixed-effect models were used to test the extent to which height 

influenced the scaling of NSC with traits. The models predicted carbohydrate 

concentrations (sugar, starch, and NSC) in the different tissues (leaves, roots, stems, 

and branches) as a function oftraits, height, and site. The mode! included species as a 

random effect. Models were evaluated using analysis of variance (ANOVA) with the 

' LMERConvenienceFunctions ' R package (Tremblay 2012). Models were simplified 

by a backward selection of fixed effects. Mode! terms were removed at a threshold of 

0.05 and then a new mode! was fitted. Also, the complex and the simplified models 

were compared by a log-likelihood ratio test. Finally, collinearity effects on the 

overall mode! were assessed using the variance inflation factor (VIF) and the kappa 

statistic for collinearity. Overall, variables with VIF values higher than 5 and models 

with a kappa higher than 30 were dropped and recalculated until values below these 

thresholds were achieved . 
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Carbohydrate and trait data were log1o transformed to meet assumptions of normality 

and homogeneity of vari ance. A il stati stical analyses were conducted in R v. 3.02 (R 

Foundation fo r Statistica l Computing, Yienna, Austria) . 
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2.4 RESULTS 

2.4.1 Traits and variability in carbohydrate concentrations across biomes 

Mean concentrations of NSC were higher in roots followed by leaves, branches, and 

stems (Figure 2.1 ). Mean NSC concentrations in leaves of broadleaved tempera te 

trees were significantly higher than in tropical trees. On the contrary, NSC 

concentrations in temperate trees were significantly lower in stems and similar in 

branches and roots compared with trees from the tropical lowland and montane 

biomes (Figure 2.1 ). Mean values of LDMC, SLA, A max_ mass, and height were 

higher in temperate than in tropical trees, but leaf size, leaf thickness, Amax _area, K, 

and Mg were lower (Figure 2.1 ). Mean values of leaf N and wood density (SD and 

RD) were similar among biomes. The mean concentrations of NSC differed 

significantly among tissues (p < 0.05). 



----------------------------------------------------

Il) 
c: 

~ 
~ 
'E 
"' 0 
c: 
0 
0 

u 
<J) 

z 

l TF UMF OTF _S OTF _A 

Leaves 

• Sugar o Starch 

L TF UMF DTF _S DTF _A L TF UMF DTF _S DTF _A 

Branch Stem 

63 

LTF UMF DTF _S DTF _A 

Root 

Figure 2.1 Mean concentrations of carbohydrates (with standard error) in tree 
tissues from lowland tropical rainforest (LTF). 

Upper montane forest (UMF), and deciduous temperate forest (DTF) . Concentrations 

of carbohydrates for DTF are divided in spring (S) and autumn (A). Different letters 

indicate significant differences in mean values among biomes (Tukey ' s tests , a = 

0.05). 
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Figure 2.2 Mean trait values (with standard error) in trees from lowland 
tropical rainforest (L TF), upper montane forest (UMF), and deciduous 

temperate forest (DTF). Different letters indicate significantly different mean 
values among biomes (Tukey 's tests, a= O. 
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2.4.2 Relationships between carbohydrate concentrations and functional traits 

Overall , the relationship between functional traits measured and the carbohydrate 

concentrations was orthogonal , which suggested little coordination between these 

variables. Conversely, the relationship between both groups was not orthogonal in the 

DTF (Figure 2.3). The RV coefficient of the MFA showed a significant relationship 

between traits and carbohydrates in the DTF (RV = 0.18, p < 0.05), but not in LTF 

and UMF. The contribution of the variables to the axis of the MFA analysis are 

presented in Annex 2. 
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The pairwise relationships of leaf traits and NSC in leaves (especially sugar) were 

strongly correlated, reaching r values up to 0.5 (Table 2.3). Species with higher 

carbohydrate concentrations in leaves had lower LT, Amax_area, and Mg, and higher 

SLA, Amax_mass, and N (Table 2.3) . In contrast, traits and carbohydrates in woody 

tissues were either significantly correlated with low r values or were not sign ificantly 

correlated. Taller trees tended to have small er sugar and NSC concentrations in stems 

and larger concentrations in roots and leaves (Table 2.3). Nevertheless, biome­

specifie relationships were mostly not significant. In several cases, the relationships 

presented a contrasting patterns of variation among biomes, indicated by the low 

number of relationships with common slopes (Fig 4 and Annex 3). For example, the 

relationships between NSC in roots and Amax_mass in both tropical biomes did not 

exh ibit simi lar slopes (Fig 4 and Annex 3). 
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Figure 2.4 Correlations between NSC concentrations and functional traits in 
trees from upper montane forest (UMF), lowland tropical rainforest (L TR), and 

deciduous temperate forest (DTF). 
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Lines represent significant bivariate relationships for ali trees (gray) or per biome 

(c_olors) (p < 0.05). Refer to Table 2.2 for trait abbreviations. Axes are in log scale 



71 

2.4.3 Height- NSC relationships 

Linear mixed-effect models showed that height (H) predicted and scaled positively 

with the NSC concentrations in roots. This effect was not inter-dependent of traits or 

biome with the exception of LT, which had a significant effect (Table 2.4). For NSC 

concentrations in stems and leaves, site had a significant effect in ali models that we 

evaluated whereas H was not significant. This indicated that those significant 

correlations between NSC concentrations in stems and leaves (Table 2.3) were 

probably an indirect effect, because trees in DTF were taller than those in the LTF 

and UMF. None of the interactions between traits and H were statistically significant, 

which indicated that the response of NSC concentrations did not depend on a 

covariation with height (in the case of roots) or site (in the case of stem and leaves). 
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2.5 DISCUSSION 

Our results describe the relationships between the allocation of carbon to reserves and 

numerous functional traits of temperate and tropical tree species. We found 

coordinated variation between NSC concentrations and most traits in leaves (Table 

2.3 , Figure 2.4) . However, relationships between traits and NSC in woody tissues 

were weak or non-significant. Additionally, we identified a relationship between 

carbohydrate concentrations in roots and tree height that may provide insights about 

the plant survival strategies across biomes. 

2.5 .1 Relationships between carbohydrate concentrations and functional traits 

Partially supporting our first hypothesis , we found strong covariation between leaf 

functional traits and carbohydrates in leaves (Figure 2.3 , Table 2.3) . The strong 

relationship observed between functional traits and carbohydrate reserves in leaves of 

DTF species provides evidence of an acclimation strategy to maintain metabolic 

activity in colder environments by increasing the storage of NSC and N and 

increasing SLA and Amax (Tjoelker, Reich & Oleksyn 1999; Campbell et al. 2007; 

Xiang et al. 20 13). In addition, leaf structure of short-lived leaves of temperate­

deciduous trees with lower SLA and high Amax_max indicates that they contain 

tightly packed cells of palisade parenchyma in which NSC are stored (Poorter et al. 

2009), and thus likely more carbon that can be allocated to reserves. The apparent 

trait-mediated constraints on carbohydrates in leaves may allow deciduous trees to 

rapidly accumulate reserves for use in the dormant season and for bud break the 

following growing season (Kramer & Kozlowski 1979). 

Relationships between functional traits and carbohydrate concentrations in leaves (in 

L TF and UMF), stems, roots, and branches were either weak or not statistically 

significant. Our results clearly delineate two orthogonal axes of variation (Figure 2.3 , 
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Table 2.3). The first axts was formed by traits that define the leaf and wood 

economies spectrum (Wright et al. 2004; Chave et al. 2009) and the second axis was 

defined by NSC concentrations . Our results suggest that functional traits and 

carbohydrate concentrations in the studied tropical biomes exhibited orthogonal 

strategies for plant carbon acquisition and conservation. That is, species with a 

conservative carbon acquisition strategy, i.e. , shade-tolerant species, may be 

characterized by a proportionally large allocation of carbon to reserves and have 

conservative functional traits (Kobe 1997; My ers & Kitaj ima 2007; Poorter & 

Kitajima 2007; Atkinson et al. 2012). However, our results suggested that the lack of 

coordination between functional traits and carbohydrate concentrates may not always 

hold, particularly in large trees. Other studies have also reported that there was no 

trade-off between allocation of carbohydrates to reserves and carbon investment to 

conservative functional traits, such as those that improve survival in low-light (Lusk 

& Piper 2007; Imaji & Seiwa 2010; Piper 2015) . 

We had expected that functional traits and NSC concentrations would scale with 

similar slopes among biomes (Wright et al. 2004; Wright et al. 2005a; Reich 2014) . 

Because traits varied independently of NSC concentrations, we fou nd few significant 

relationships and, among those that were significant, contrasting trends in the 

relationships among the three biomes studied (Figure 2.4, Annex 3). Severa! other 

studies on woody plants have reported contrasting trade-off correlations among floras 

(Wright et al. 2005b; Heberling & Fridley 2012; Heberling & Fridley 2013). 

Contrasting patterns of plant functional strategies among plant communities have 

been associated with phylogenetic constraints, or selective biogeographie processes, 

such as adaptation to different climatic regimes or physical barriers that generate 

different selective pressures within communities . 
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The orthogonal relationship between NSC concentrations and functional traits may be 

because carbon accumulation and the leaf economie spectrum act on different time 

scales . Allocation of reserves to pools such as branches, stems, or roots operate over 

severa! seasons or even years, depending on the distance and the osmotic gradient 

between carbohydrate sources and sinks (Lacointe 2000; Hartmann & Trumbore 

20 16). Overall , NSC reserves that have been stored recently in leaves and branches 

support daily metabolism and annual growth, but older reserves stored in stems and 

roots may contribute to regrowth after disturbance (Vargas, Trumbore & Allen 2009; 

Carbone et al. 2013 ; Richardson et al. 2013). The lower mean NSC concentrations 

that we found in spring in branches of DTF indicated that the carbohydrates for leaf 

flush were supplied from the closest sources of reserves (branches) and not from the 

more distant ones with older reserves (stems and roots) that remained with similar 

concentrations (Schadel et al. 2009; Ho ch 20 15). Th us, NSC stored in stems and 

roots probably remain sequestered and may not vary considerably until a disturbance 

triggers an imbalance between carbon sources and sinks and initiates mobilization of 

reserves . In addition, trees under normal function (not facing large disturbances or 

stress) may store a great amount of carbohydrate reserves, which in sorne cases would 

be enough to rebuild the who le leaf canopy up to four times (Hoch, Richter & Këirner 

2003 ; Këirner 2003 ; Würth et al. 2005), and the whole carbon pool in temperate 

broadleaved trees were estimated to store enough carbon to supply stem growth for 

up to 30 years (Klein, Vitasse & Hoch 20 16). 

A factor that may influence the relationship between traits and NSC concentrations in 

leaves is that, independent of whether a species is ' conservative ' or 'acquisitive' in 

terms of carbon use, species can invest carbon differentially between storage and 

defenses to maximize survival and/or growth (Coley, Bryant & Chapin 1985; Kobe 

1997). In general , leaf damage by herbivory and pathogens in tropical forests is 

higher and more costly (due to leaf !ife span) than in deciduous temperate forests 
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(Coley & Barone 1996). Hence, tropical spec1es may preferentially invest more 

carbon in defenses than in carbohydrate reserves and, in this way, reduce the 

relationship between structural leaf traits and NSC concentrations. 

2.5 .2 Height relationship with NSC concentrations 

Partially supporting our first hypothesis , height (H) scaled positively with NSC 

concentrations in roots, but it did not co-vary with traits and site (Table 2.4). This 

result may be explained by the increased surplus of carbon due to the lower carbon 

demand for structural growth, defense, and reproduction as trees grow (Ryan, Binkley 

& Fownes 1997). ln addition, other possible factors that may explain the correlation 

between height and NSC concentrations include constraints on phloem transport in 

taller trees, which reduce the transport of carbohydrates from the carbon pools to the 

sinks, resulting in the accumulation of NSC in roots (Woodruff & Meinzer 2011). 

Also, because taller trees tend to have higher amounts of parenchyma than smaller 

trees (Zieminska, Westoby & Wright 2015), they may also have a higher capacity to 

store carbohydrates (Morris et al. 20 16). Finally, the higher concentration in roots 

may serve as long-term storage to respond to future stresses common to taller trees , 

such as physical damage from falling trees, branches, and litter (Clark & Clark 1991; 

Clarke et al. 2013). 
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2.7 SUPPORTING INFORMATION 

2.7.1 AnnexA 

Table 2.5A List oftree species sampled in Colombia and Canada. 

UMF: upper montane forest, L TF: lowland tropical rainforest, and DTF: deciduous 

temperate forest. 

Family Genus Species . Site 

Sapindaceae Ac er pensylvanicum DTF 

Sapindaceae Acer rubrum DTF 

Sapindaceae Ac er saccharinum DTF 

Sapindaceae Ac er saccharum DTF 

Lamiaceae Aegiphila bogotensis UMF 

Betulaceae A ln us acuminata UMF 

Betulaceae Alnus inca na DTF 

Lauraceae Ani ba perutilis LTF 

Malvaceae Apeiba glabra LTF 

Olacaceae Aptandra tu bic ina LTF 

Apocynaceae Aspidosperma megalocmpon LTF 

Ericaceae Bejaria resinosa UMF 

Melastomataceae Bellucia pentamera LTF 

Betulaceae Be tula alleghaniensis DTF 

Betulaceae Betula papyrifera DTF 

Moraceae Brosimum utile LTF 

Lecythidaceae Cariniana pyriformis LTF 

Juglandaceae Cary a cordiformis DTF 

Sali caceae Casearia arbore a LTF 

Ericaceae Cavendishia bracteata UMF 

Urticaceae Cecropia pelta ta LTF 

Meli aceae Cedrela montana UMF 
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Family Genus Species Site 

Mel iaceae Cedrela odorat a LTF 

Cannabaceae Ce/lis occidenta /is DTF 

Ochnaceae Cespedesia spathulata LTF 

Verbenaceae Citharexylum dtyanderae UMF 

Leguminosae Clathrotropis brachypetala LTF 

Clusiaceae Clusia multijlora UMF 

Boraginaceae Cardia alli adora LTF 

Boraginaceae Cardia cylindrostachya UMF 

Boraginaceae Cordia spp. UMF 

Euphorbiaceae Croton killipianus LTF 

Winteraceae Drimys granadensis UMF 

Annonaceae Duguetia antioquensis LTF 

Fagaceae Fagus grandifo/ia DTF 

Oleaceae Fraxinus america na DTF 

Loranthaceae Gaiadendron pu ne tatum UMF 

Malvaceae Goethalsia meiantha LTF 

Goupiaceae Goupia glabra LTF 

Phyllanthaceae Hieronyma a/chorneoides LTF 

Leguminosae J-!ym enaea courbaril LTF 

Lamiaceae J-!yptidendron arboreum LTF 

Aquifoliaceae 1/ex nervosa UMF 

Myristicaceae ifyanthera megistocarpa LTF 

Jug landaceae Jug/ans cinerea DTF 

Juglandaceae Juglans neotropica UMF 

Rubiaceae Ladembergia spp. LTF 

Lecythidaceae Lecythis am pla LTF 

Melastomataceae Miconia biappendiculata UMF 

Myricaceae More lia parvifo/ia UMF 

Muntingiaceae Muntingia calabura LTF 

Myrtaceae Myrcianthes leucoxyla UMF 

Primulaceae Myrsine coriacea UMF 
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Fam ily Genus Species Site 

Primulaceae Myrsine coriacea UMF 

A nacard iaceae Ochoterenaea colombiana LTF 

Malvaceae Ochroma pyramidale LTF 

Araliaceae Oreopanax bogotensis UMF 

Betulaceae Ostrya virginiana DTF 

Piperaceae Piper bogotense UMF 

Compositae Piptocoma disco/or LTF 

Salicaceae Populus grandidentata DTF 

Salicaceae Populus lremuloides DTF 

Burseraceae Protium aracouchini LTF 

Rosaceae Prunus buxifo/ia UMF 

Rosaceae Prunus pensylvanica DTF 

Rosaceae Prunus serotina DTF 

Ann onaceae Pseudoxandra sc/erocarpa LTF 

Fagaceae Que reus rubra DTF 

Rhamnaceae Frangula goudotiana UMF 

Solanaceae Solanum humboldtianum UMF 

Bignoniaceae Handroanthus guayacan LTF 

Anacard iaceae Tapir ira guianensis LTF 

Malvaceae Ti lia america na DTF 

Malvaceae Ti lia corda ta DTF 

Cannabaceae Trema micrantha UMF 

Ulmaceae Ulmus america na DTF 

Compositae Verbesina crassiramea UMF 

Adoxaceae Viburnum lasiophyllum UMF 

Hyperi caceae Vismia macrophylla LTF 

Rutaceae Zanthoxylum spp. UMF 
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2.7.2 Annex B 

Table 2.6B Contribution of traits and carbohydrate concentrations to the first 
two principal components in the multiple factor analysis. 

MFA LTF MFA UMF M FA DTF 

Diml (20.4*) 
Dim2 Di ml Dim2 Di ml Dim2 
(16.7% ) (29.5% ) (16.8% ) (21.6% ) (14.9% ) 

LS 1.79 0.40 0. 10 4.21 0.33 8.62 

LT 0.4 1 3.26 9.69 0.58 0.00 22.84 

LDMC 7.77 1.33 2.63 11 .53 10.30 4.36 

SLA 4.54 3.77 9.38 5.43 3.05 16. 18 

Amax area 9. 18 0.00 1.93 4.69 1.96 7.59 

Amax mass 12.03 1.25 7.72 8.17 5.35 0.77 

N 4.94 1.36 8.55 6.41 10.56 0.59 

K 4. 17 1.07 5.36 8.26 0.72 0.09 

Mg 0.03 2.65 0.25 0.00 4.82 0.16 

SD 6.56 2.37 1.45 5.12 6.45 5.95 

RD 4.26 0.94 0.73 2.33 7.29 3.22 

H 6.33 0.00 0.62 0.33 1.76 0.99 

NSC R 32.72 2. 12 10.33 3.85 8.45 1. 85 

NSC S 0.71 45.86 13.37 23.37 1.78 13.74 

NSC B 2.79 33.33 18.02 6. 18 12.29 12.00 

NSC L 1.76 0.29 9.85 9.54 24.89 1.05 
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3.1 ABSTRACT 

Carbon allocation to reserves is an important trait that contributes to a plant ' s ability 

to tolerate stress . We studied two common urban tree species in northeastern North 

America, Acer saccharinum (Silver maple, native) and Acer platanoides (Norway 

maple, exotic) to assess the dynamics of non-structural carbohydrate (NSC) 

concentrations immediately following a maintenance pruning of 20 to 30% removal 

of the tree crown. NSC concentrations were measured by high-performance liquid 

chromatography in branch, main stem and root tissues for both pruned and un-pruned 

trees at three intervals during the growing season. NSC concentrations in tree organs 

of A. platanoides were 75% more than in A. saccharinum. Maintenance pruning did 

not have any significant depletion effect on the carbohydrate concentrations of either 

species and un-pruned branches close to pruned branches did not suffer any 

carbohydrate depletion. Y et, there was a significant temporal response of branches to 

pruning that differed between species . NSC concentrations in unpruned branches of 

pruned trees of A. platanoides increased at the end of the growing season, wh ile no 

effect was measured in A. saccharinum. Higher levels of carbohydrates after pruning 

suggest that A. platanoides has compensatory mechanisms that allow this species to 

respond better to urban maintenance pruning stress than Acer saccharinum. 
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3.2 INTRODUCTION 

Trees coordinate the allocation of carbon between support tissues, defense, and 

storage (Chapin, Schulze & Mooney 1990; Dietze et al. 2013) . The storage pool is 

comprised mainly of non-structural carbohydrates (NSC) that can be mobilized to 

maintain plant metabolism during periods of unfavorable conditions for plant growth 

(Chapin, Schulze & Mooney 1990; Dietze et al. 20 13). In trees, the most important 

NSC are low molecular weight sugars (glucose, fructose , sucrose) and starch (Chapin, 

Schulze & Mooney 1990; Hoch, Richter & Korner 2003), although sorne 

oligosaccharides and sugar alcohols also may be important storage compounds in 

certain species (Hoch, Richter & Korner 2003). In general, low weight sugars and 

sugar alcohols are used for short-term metabolism, while starch is stored in a more 

recalcitrant form for long-term use (Chapin, Schulze & Mooney 1990; Dietze et al. 

2013). 

The maintenance of carbohydrate reserves in potential storage pools (e.g. woody 

tissues) of trees is necessary to support metabolic requirements and compensatory 

growth after periods of heavy demand for carbohydrates (Chapin, Schulze & Mooney 

1990; Dietze et al. 2013). Overall, plants with functional strategies adapted to cope 

with low-light environments (shade tolerant species) have a conservative carbon 

strategy that allocates proportionally more resources to defense and storage at the 

expense of reduced growth rates (Kobe 1997; Walters & Reich 1999; Myers & 

Kitajima 2007). In contrast, shade intolerant species have a higher relative carbon 

investment in growth and lower in storage because competition is one of the main 

selective filters in high- light environments (Kitajima 1994). Thus, there is a link 

between the carbohydrate storage and the light requirements of the species that may 

determine the growth and survival of trees (Myers & Kitajima 2007; Poorter & 

Kitajima 2007). 
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NSC reserves are located mainly in branches, stems, and coarse roots, because these 

woody perennial organs constitute the largest proportion of tree biomass. The 

concentrations of NSC in these tissues fluctuate due to mobilization and subsequent 

replenishment during the year, which depends in turn on the seasonal dynamics of 

NSC concentrations and the carbon source-sink balance between organs (Kozlowski 

1992). Generally, minimum NSC concentrations occur in spring when storage pools 

mobilize NSC to sinks to support tissue growth and respiration, and maximum NSC 

concentrations are attained in autumn after the growing season when storage pools 

are replenished (Barbaroroux & Bréda 2002; Hoch, Richter & Korner 2003; Palacio, 

Maestro & Montserrat-Marti 2007). 

The removal of plant tissues (as in the case of defoliation and pruning) can modify 

the source-sink balance between organs. This causes changes in NSC concentrations 

depending on the functional role of the damaged organs (sources or potential sinks) 

and the time at which removal occurs. On one hand, the removal of 

photosynthesizing biomass causes a reduction in carbohydrate synthesis, such as in 

the case of defoliation. On the other hand, the removal of vegetative sinks leads to a 

reduction in carbohydrate concentrations due to the mobilization of NSC to support 

metabolic demand and compensatory growth (Li , Hoch & Korner 2002; Handa, 

Korner & Hattenschwiler 2005; Palacio et al. 2008; Mei et al. 2015). Also, the time 

of the year in which the removal occurs determines the level of reserves available for 

tree recovery, according to the seasonal dynamics of NSC concentrations (Johnson 

2007). 

Overall , after tissue removal , carbohydrates are supplied from the closest sources at 

the expense of the more distant ones (Münch mass-flow theory of assimilate 
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transport, Wardlaw 1990; Le Roux et al. 2001) . For example, a steep reduction of 

carbohydrate reserves in branches after bud break indicates a strong dependence on 

the closest carbon sinks (Hoch , Richter & Korner 2003 ; Landhausser & Lieffers 

20 12). Branches from some deciduous trees may be carbon autonomous and do not 

drain stored carbohydrates from other parts of the tree, even when they are subjected 

to heavy stress, as in the case of photosynthetic tissue removal (Sprugel , Hinckley & 

Schaap 1991 ; Sprugel 2002; Hoch 2005). 

Trees growing in urban areas are confronted with multiple anthropogenic stresses that 

may cause a loss of vitality by increasing their susceptibility to pathogenic organisms 

or reduce their rate of growth and longevity (Nilsson, Randrup & Wandall 2000; 

Mittler 2006). One of the most common urban stressors is branch pruning to control 

plant size and improve tree appearance (Clark & Matheny 201 0). Higher 

carbohydrate reserves and rapid replenishment of carbohydrates should be important 

in allowing trees to respond appropriately to urban stressors, such as pruning. 

Nevertheless, NSC concentration has not been reported as a factor contributing to the 

success of urban species, and relatively little is known about the effect that urban tree 

pruning has on the dynamics of carbohydrate reserves . 

We measured the seasonal dynamics of NSC in branches, stems, and roots for both 

pruned and un-pruned trees of Acer saccharinum (shade-intolerant) and Acer 

platanoides (shade tolerant) , two common species of urban forests of eastern North 

America, to evaluate the dynamics of NSC concentrations after pruning during a 

single growing season. We hypothesized that (i) shade-tolerant A. platanoides 

maintains a higher carbohydrate concentration in reserves than the shade-intolerant A. 

saccharinum; (ii) maintenance pruning causes a depletion in carbohydrate reserves 

for bath species following treatment; and (iii) the carbohydrate depletion is greater 

for un-pruned branches close to pruned branches compared to other tissues situated 
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further away from where pruning occurred such as stem and roots. 
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3.3 METHOD 

3.3.1 Study site, se lected species and pruning treatment 

The study was conducted in a residential neighborhood m the city of Montreal 

(Quebec, Canada). We studied A. saccharinum L. (Si lver maple) and A. platanoides 

L. (Norway maple). A. saccharinum is a native, intermediate to shade-intolerant 

species (Burns & Honkala 1990), whereas A. platanoides is a more shade-tolerant 

species that was brought from Europe to America as an ornamental tree (Nowak & 

Rowntree 1990). A. platanoides has been reported as being widely adapted to 

conditions in eastern North America; it has the capacity to tolerate higher stress levels 

than native flora (including its native congeners Acer saccharinum and Acer 

saccharum) due to certain ecophysiological advantages, such as its long seasonal 

growth and phenotypic plasticity (Martin & Marks 2006; Lapointe & Brisson 2012; 

Paquette et al. 20 12). 

The trunks of selected trees were located about 2 - 3 rn from pavement, between 

street and sidewalk, or in front yards immediately adjacent to sidewalks. We sampled 

trees with similar heights (13 .9 rn on average) and diameters (63.2 cm average DBH) 

that appeared healthy, with no signs of physical damage or presence of pathogens. 

Both species are pruned periodically to control plant size and reduce the risk of short 

circuits caused by branches touching electricallines. Pruning oftrees was done by the 

local energy distribution company (Hydro-Quebec) in November 2010. Pruning 

consisted of removing the branches at the center of the tree, directly below the power 

lines in a "V shape" (Figure 3 .1 ). The biomass removed by pruning was quantified by 

LiDAR scans and represented 20-30% oftotal branch biomass (Lecigne 2013). 



106 

3.3.2 Tree sampling 

For both species, five trees with pruning and five without the pruning treatment were 

sam pied (20 trees in total) in April 2011 before bud break, in la te June 2011 at the 

peak of shoot growth and in October 2011 at the end of the growing season. At the 

ti me of the first sampling, buds of both species were still dormant. Leaves started to 

expand in the middle of May and by the end of June they were fully expanded and 

hardened. By the end of October, leaves started to fall ; however, leaves of A. 

platanoides stayed on the tree for a few days longer than leaves of A. saccharinum. 

Samples of roots, stems, and branches were collected from ali trees using a 2 mm 

increment puncher, which minimized injuries (Figure 3.1). Root samples were taken 

on surface roots ca. 50 cm away from the main stem. Stem samples were taken at 1.3 

rn height and at the first branch fork (first fork samples). In addition, two branch 

samples were taken from pruned trees, one sample from an un-pruned branch and a 

second sample from the pruned branch close to the wound. In unpruned trees, one 

sample was taken per tree from healthy branches at a height similar to the location 

sampled in pruned trees . Samples were placed in paper bags in the field , microwaved 

in the !ab, and oven-dried at 65 °C. 
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1. Un-pruned branch 
2. Pruned brunch 
3. Stem (tirst fork) 
4. Stem (brea t height) 
5. Root 

Un-pruned tree 

Figure 3.1 Schematic representation of the tree sampling 

Left: Un-pruned tree. Right: Pruned tree. Points indicate the location of the samples 

collected from each tree during the 2011 growing season. 
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3.3 .3 Components of non-structural carbohydrates and starch analysis 

Samples were analyzed for low molecular weight sugars (fructose, glucose, sucrose), 

other sugars (oligosaccharides (raffinose), sugar alcohols (myo-inositol and sorbitol), 

and starch. The sum of low molecular weight sugars, other sugars, and starch is 

referred to here as non-structural carbohydrates (NSC). For sugars, 20 mg of tissue 

were treated with a methanol:chloroform mixture (12:5) in a 60 oc water bath for 30 

minutes. An aliquot of the aqueous phase was vacuum-dried, stabilized with BSTFA 

(N, O-bis (trimethylsilyl) trifluoroacetamide)) and TMCS (trimethylchlorosilane), 

and analyzed on a gas chromatograph/mass spectrometer Varian 3800/Saturn 2000™ 

using MS WS software (Walnut Creek, CA, USA) . Phenyl-glucopyranoside was used 

as the internai standard. For analysis of starch, we treated 50 mg of tissue with 80% 

ethanol at 95 °C. The tissue remaining after the ethanol extraction was digested with 

a-amylase and amyloglucosidase and then measured colorimetrically at an 

absorbance of 525 nm (Chow & Landhausser 2004) . 

3.3.4 Data analysis and statistical analysis 

We fitted linear mixed models to test the effect of pruning on carbohydrate 

concentrations over the study period. Models considered sugars (low weight sugars 

and other sugars), starch, and NSC as response variables . Tissue, species, time, and 

treatment (control and pruning) were considered as fixed factors , and individual trees 

were treated as random factors. Best models were selected according to the Akaike 

Information Criteria (AIC, lower AIC indicates a better model), which considers the 

fit and complexity of the model. Likelihood ratio tests (L) were also used to evaluate 

the effect of fixed factors , because the ANOV A method is more sensitive to the order 

of the terms and unbalanced data (Zuur et al. 2009). Effects were considered 

significant at P < 0.05. Finally , differences in mean concentration responses were 
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assessed usmg multiple compansons of means (Tukey ' s tests). Analyses were 

performed using the " ]me" function from the package " nlme" in the program R 

3.1 .1 (R_Core_Team 2013 ; Pinheiro et al. 2015). 
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3.4 RESULTS 

3.4.1 Species differences in carbohydrate concentrations 

Overall , throughout the growing season, carbohydrate concentrations m the tree 

organs of A. platanoides were 75% higher than in A. saccharinum (Figure 3.2, Table 

3.1 ). The contribution of the different carbohydrates to total NSC was relatively 

similar in bath species (Figure 3.2, Annex 1). Low weight sugars were the most 

common component of NSC, and accounted for 60-89% during the three sampling 

periods, followed by starch (5 -36%) and other sugars (1-15%) (Figure 2, Annex 1). 

Also, NSC and low weight sugars followed the same seasonal pattern in bath species, 

except for other su gars where a species-specific response was observed (Table 3.1 ). 

NSC and low weight sugars decreased from a high concentration in April to a lower 

concentration (in sorne sugars such as myo-inositol close to zero) in June, and then 

increased to the highest concentration in October. In contrast, starch increased 

continuously during the growing season (Figure 3.2). 
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Figure 3.2 Seasonal dynamics of carbohydrate concentrations in un-pruned and 
pruned (exclu ding un-pruned branches of pruned trees) trees of Acer 

saccharinum and Acer platanoides. 

Mean NSC concentrations (with standard errors) shown are the sum of starch, low 

weight sugars, and other sugars. 
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Table 3.1 Parameters of selected mixed effects models for ti me, tissue, species, 
and pruning treatment and their interactions on low weight sugars, other 

sugars, starch and non-structual carbohydrate concentrations in urban trees of 
Acer saccharinum and Acer platanoides. The analysis excludes unpruned 

branches of pruned trees in both speccies. 

LWS os Sta rch NSC 
Parameter 

t-value P-value t-va lue P-value t-va lue P-value t-va lue P-value 

1.73 0.09 9.31 <0.001 9.64 <0.001 3.84 <0.001 

Tissue -1 .47 0.14 1.77 0.08 

Species -4.78 <0.001 4.73 <0.001 -4.15 <0.001 -6.61 <0.001 

Species*Time -7.18 <0.001 
P values < 0.05 are in bold . NSC is the sum of starch, low weight sugars, and other sugars. See Annex 2 for 
ali models considered. 
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3.4.2 Effect of pruning on carbohydrate concentrations and differences by tissue 

We fou nd no effect of pruning or of tissue type on carbohydrate concentrations wh en 

we compared carbohydrate concentrations of pruned (excluding un-pruned branches) 

and unpruned trees of both species (Table 3.1 , Annex 2) . However, wh en we included 

un-pruned branches from pruned trees (Figure 3 .l) and analyzed branches separately, 

we found a significant effect of species, treatment, and ti me on the concentrations of 

low weight sugars and NSC (Table 3.2, Annex 3). Also, the interactions between 

species, treatment, and time were significant, indicating that the response to treatment 

was species-specific and time-specific in branches. Overall, in unpruned branches of 

pruned trees of A. platanoides, the concentrations of low weight sugars and NSC 

increased significantly at the end of the growing season compared to pruned branches 

and unpruned branches from unpruned trees. Unlike A. platanoides, carbohydrate 

concentrations in branches of A. saccharinum did not show any significant difference 

in the concentrations among branches (multiple comparisons of means, P < 0.05 , 

Figure 3.3). 
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Table 3.2 Parameters of selected mixed effects models for time, species, pruning 
treatment a nd their interactions on low weight sugars, other sugars, starch and 
non-structual carbohydrate concentrations in urban trees of Acer saccharinum 

and Acer platanoides. The analysis includes both pruned and unpruned branches 
of un-pruned and pruned trees in both species. 

LWS os Starch NSC 
Parameter 

t-va lue P-value t-value P-value t-va lue P-value t-va lue P-value 

Ti me -2.11 <0.05 5.10 <0.001 8.31 <0.001 

Species -2.19 <0.05 2.48 <0.05 -4.67 <0.001 -2.09 <0.05 

Pruning -2.97 <0.001 -2.60 <0.01 

Species*Time -3.69 <0.001 

Spec ies* Pruning 2.61 <0.01 2.34 <0.05 

Pruning*Time 3.72 <0.001 3.28 <0.001 

Species*Pruning*Time -3.23 <0.01 -2.89 <0.01 
NSC is the sum of starch, low weight sugars, and other su gars. See Annex 3 for ali models considered. 
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Figure 3.3 Mean concentrations of carbohydrates (with standard errors) are 
shown in branches from un-pruned and pruned trees (un-pruned and pruned) of 

Acer saccharinum and Acer platanoides during the growing season. NSC 
concentration is the sum of starch, , low weight sugars, and other su gars. * P < 

0.05 
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3.5 DISCUSSION 

3.5.1 Species differences in carbohydrate concentrations 

As hypothesized in this study, and shown in other studies (Canham et al. 1999; 

Gaucher et al. 2005), the more shade-tolerant A. platanoides displayed higher 

carbohydrate concentrations than the shade-intolerant A. saccharinum throughout the 

growing season (Figure 3.2). It has been shown that shade-tolerant species allocate 

higher quantities of carbon to reserves and defense at the expense of growth than do 

light-demanding species (Kobe 1997; Myers & Kitajima 2007; Piper 201 5). This 

higher allocation to reserves plays an important role in the growth and survival of 

trees, because it increases resilience and reduces the risk of mortality during periods 

of negative carbon balance. For example, high NSC concentrations have been shown 

to play a role in the recovery of plants after drought (McDowell et al. 2008; Mitchell 

et al. 2013; O ' Brien et al. 2014), cold tolerance (Wong, Baggett & Rye 2003), as weil 

as for protection from pathogens and insects (Kobe 1997; Canham et al. 1999; Myers 

& Kitajima 2007; Atkinson et al. 2014). Clearly, such high levels of carbohydrate 

reserves, combined with a high overall light interception capacity and other growth 

differences (Martin & Marks 2006; Lapointe & Brisson 2012; Paquette et al. 2012) 

provide A. platanoides with a net advantage over A. saccharinum in coping with 

urban pruning maintenance stress. 

Seasonal patterns of concentrations of soluble sugars were different than those for 

starch concentrations in ali plant tissues in both species. In general , low weight sugars 

decreased concentrations in the middle of the growing season, and then reached high 

levels by the end of the growing season where they remained until the end of 

dormancy (Wong, Baggett & Rye 2003; Gaucher et al. 2005; Carbone et al. 2013). 

An initial decrease in sugar concentrations may be due to the fact that photosynthates 
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produced at the beginning of the growing season are not stored, but are mobilized to 

satisfy growth and other metabolic needs . Then, in the middle of the summer and the 

months that follow, the products of photosynthesis are allocated to reserves and 

carbohydrate concentrations increase due to the reduction in sink strength (Wong, 

Baggett & Rye 2003 ; Gaucher et al. 2005). In contrast, starch increased continuously 

during the growing season and achieved a maximum in fall before the beginning of 

dormancy . Although we did not measure winter dynamics, NSC concentrations 

typically decrease in winter when starch is hydrolyzed and convetted to free sugars 

for cold tolerance (Wong, Baggett & Rye 2003). 

3.5 .2 Effect of pruning on carbohydrate concentrations 

The source-sink imbalance generated by pruning did not deplete the carbohydrate 

reserves when we compared tissues from un-pruned and pruned trees in both species 

(treatment effect was not significant, Table 3.1 ) . This fa ct may be explained by the 

intensity of the perturbation, which modulated the response of carbohydrate 

concentrations to !ost tissue (Fang et al. 2006; Eyles, Pinkard & Mohammed 2009; 

Quentin et al. 2011 ; Atkinson et al. 2014). In this case, the percentage of biomass 

removed by pruning was not enough to cause any depletion of carbohydrate 

concentrations due to metabolic demand and compensatory growth. In fact, one year 

following pruning, trees bad recovered their crown totally without any sign of a 

reduction in growth (Lecigne 20 13). These results were surprising and contrary to 

expectations, because our pruning treatment was close to the pruning limits proposed 

by the American National Standards Institute to maintain the health of urban trees 

(ANSI 2001 ; Gilman 2002; Johnson 2007). Current guidelines suggest that urban 

trees , unlike their counterparts in the forest that may tolerate higher pruning 

intensities (Wadsworth 1997; Pinkard & Beadle 2000; James 2004), should not be 
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pruned more than 25% to prevent insect attacks, disease, or even death under 

unfavorable conditions for growth in urban areas (ANSI 2001). 

Severa! studies have investigated the effect of disturbance intensity/severity on the 

concentrations of carbohydrates. Overall , when the intensity of the perturbation of 

defoliation due to pruning is intermediate as in this study, carbohydrate 

concentrations are not altered (Chesney & Vasquez 2007; Palacio et al. 2008 ; Barry 

et al. 2012), especially in slow-medium growing species (Canham et al. 1999; 

Atkinson et al. 20 14). This lack of a pruning effect on carbohydrate concentrations 

may indicate a high carbon loading of trees, and supports the idea that they tend not 

to be limited by carbon supply (Hoch, Richter & Korner 2003; Korner 2003 ; Würth et 

al. 2005). This result may also suggest that new foliar resources from photosynthesis 

meet the demand for tree recovery and may be more important than carbon reserves 

that are stored in farther plant tissues (Korner 2003 ; Barry et al. 2012). 

3.5.3 Effect ofpruning on plant tissues 

Although we did not find any significant effect of pruning on the carbohydrate 

concentrations of tree tissues (Table 1), when we analyzed separately carbohydrate 

concentrations in branches from pruned trees (un-pruned and pruned branches) we 

found a significant effect of pruning (Table 3.2). Initially we expected a depletion in 

carbohydrate concentrations in un-pruned branches on pruned trees due to the 

temporal demand for carbohydrates from branches to maintain metabolic activity and 

compensatory growth (carbon autonomy of branches, Landhausser 2011 ; 

Landhausser & Lieffers 20 12). Contrary to what we expected, we fou nd an increase 

of low weight sugars and NSC in un-pruned branches on pruned trees of A. 

platanoides at the end of the growing season (Table 3.2 and Figure 3.3). This increase 

in carbohydrates following pruning showed that urban trees of A. platanoides 
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maintained high quantities of reserves in above-ground biomass even after pruning, 

which is a recognized compensatory response related to tolerance to tissue loss 

(Strauss & Agrawal 1999; Ey les, Pinkard & Mohammed 2009). Thi s strategy is 

typical of less shade-to lerant species (Handa, Korner & Œittenschwiler 2005; 

Atkinson et al. 2014) and shows that A. platanoides expresses strategies of both 

shade-to lerant and shade-into lerant spec ies (Mart in, Canham & Kobe 2010) . 

To conclude, although removal of more than 25% of live branches is not 

recommended in urban trees (ANSI 2001), we found that pruning leve ls of 20-30% 

did not have a significant effect on carbohydrate concentrations in either species. To 

improve planning and management operations on urban tree populations, it may be 

useful to determine which levels above these ranges induce a reduction in 

carbohydrate levels and a subsequent decrease in plant tolerance to environmental 

constraints, tree decline, and mortality (Palacio et al. 2008; Landhausser & Lieffers 

2012; Wiley et al. 2013; Saffell et al. 2014). Add itionally, periodic assessment of the 

concentration of carbohydrate reserves in urban trees may suggest which species 

respond better to urban stressors and could provide data that may be used to enab le 

source-sink models to better predict growth and survival after management treatments 

in urban trees. 
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3.7 SUPPORTING INFORMA TJON 

3.7. 1 AnnexA 

Table 3.3A Non-structural carbohydrates in urban trees of Acer platanoides and 
A. saccharinu m (mg g-1 ±SE) at three times during the growing season 2011. 
Values are means and standard errors of five t rees per species and treatment. 

Spccic Trcatmcn 
Tissue LWS-t 1 LWS-t2 LWS-t3 OS-t 1 OS-t2 OS-t3 

Starch Starch Starch 
se-t. NSC-t2 'SC-t3 s t -·· -tz -tl 

Control Root5 
188 .56 86.39 181.78 2.11 2.84 32.46 46.85 44 .36 57.46 237.52 133.59 27 1.71 
(2û.48) ( 18.84) (28 .39) (0.42) (0.99) (8.42) (13.52) (1 1.22) (5 .25) (28 .56) (15.41) (33.67) 

Control Stem 
114.26 82 .78 144 . 18 4. 1 2.04 37.3 35.8 1 45 .64 57.43 154.18 130.46 238.9 
(7. 11 ) (9.97) (49.98) (3) (0.6 1) (6.25) ( 4.07) (5 .98) (3 .98) (3.96) (7. 17) (49.65) 

Control 
Fir5t 158 .54 98 .02 202 .79 16.72 3.5 1 25.33 46.42 54 .09 61.35 22 1.68 155.6 1 289.47 
Fork ( 1.6) (2.87) (39.23) (3.98) (0.67) (3.79) ( 11.3) ( 1 0.56) (5.29) ( 11 .74) ( 14.29) (45 .59) 

Norwa Control 
Branche 175.04 134.44 204.55 7.32 6.87 32.4 1 14. 11 38.9 47.23 196.47 180.22 284.19 

(9.5 1) (24.53) (67.09) (4.19) (3.62) (9. 15) (8. 12) (3.85) (5. 18) (67.89) (22.47) (75.34) y 
187.7 72.72 235.89 5.63 2.74 39.24 29.39 33.65 42.3 1 222 .72 109. 12 3 17.45 

Maple Pruning Root5 
(25.96) ( 11 .22) (56.84) (0.59) ( 1.24) (9. 15) (8.62) (5.44) (7.98) (31.36) (16.55) (63.56) 

Pruning Stem 
125.6 62 244.34 2.56 1.83 38.89 35.75 35.58 5 1.55 163 .9 1 99.4 1 334.78 

( 15.38) ( 10.77) (36.49) (1.3 1) (0.44) (10.64) ( 4.08) (3 .16) (6.58) (15.56) (12.19) ( 40.53) 

Pruning 
Fir5t 178.44 93 .98 130.7 12.29 1.5 22.29 37.69 40.52 54.1 5 228.42 136 207 .15 
Fork (26.05) (9.77) (14.43) (6.92) (0.53) (1.29) (9. 13) ( 1.56) (4 .03) (29.56) ( 1 0.56) (32.43) 

Pruning 
Branche 2 14.6 1 138. 1 176.63 6.87 1.37 22. 17 3 1.34 34.48 37.28 252 .81 173.95 236.08 

{76.64) {30.53) {23.87) {2.33) {0.22) {5.98) {7 .69) { 4.28) {6.98) {73.6 1) {3 1.78) {36.2) 

Control Root5 
130.88 6 1.54 90.77 5.39 0.78 5.98 14.32 25 .35 33.26 150.58 87.67 130.0 1 
( 16.43) ( 15.29) (20.34) (2.75) (0.28) (0.89) (6.95) (8.8) (10.5) (21.56) (15.48) (30.29) 

Control Stem 
57 .6 1 48.7 163.66 5.9 1 1.57 13.38 11.74 28.77 32.75 75.26 79 .04 209.79 
(8 .24) (4 .4) (49.59) (3.27) (0.9) ( 4.39) (0 .92) (5.76) ( 4.57) ( 1 0.93) (4.3 1) (53.56) 

Control 
Fir5t 176.62 132.73 182.3 17.93 1.67 11.68 29.3 34.74 37.48 223.85 169. 14 23 1.47 
Fork (67 .53) (35 .2 1) (17.47) (5 . 12) (0.98) (2.86) ( 14.5) (7.4) (6.38) (63.88) (37 .69) (55 .69) 

Control 
Branche 98 .72 85.43 95 .26 7.87 2.64 15.59 6. 17 29.0 1 3 1.53 112.75 117.07 142.38 

Silver 5 (2 1.1 3) (33 .35) (29.33) (4.57) (1.32) (5 .3) (4.3 1) (2.2 1) (4.37) (63.4 1) (26.54) (33 .94) 
Maple 

Pruning Root5 
126.09 72.1 1 108.88 15.3 2 1.53 9.32 13. 16 34.98 33.24 154.56 108.6 1 15 1.44 
(9.67) (2 1.07) (9.96) (3 .5 1) (0.43) (0.52) (5.43) ( 10.8) (7. 17) (36. 11 ) (17.66) ( 12.45) 

Pruning Stem 
53.27 7 1.33 9 1.47 7.54 0.98 11.2 12.7 1 26.9 1 30. 14 73 .52 99.23 132.8 1 
( 1.6 1) ( 12.26) (7 .82) (4.78) (0.5) ( 1.72) (1.66) (5 .58) (2 .3) (4.4) (14.31) ( 1 0.28) 

Pruning 
Fir5t 15 1.79 224.54 180 .37 7.28 3.44 11 .68 20.72 39.37 36.62 179.78 267.34 228.68 
Fork (27 .39) (6.9 1) (35 .76) (0.76) ( 1.9) (2.97) ( 1.89) (5 .77) (3 .94) (3û.42) (3.98) (50.98) 

Pruning 
Branche 86.48 97 .19 68.6 7.7 1 1.95 8.6 8.8 19.98 24 .1 7 102.99 11 9.12 10 1.37 

5 { 12.34) {3 1.68) {12.48) {1.88) {0.42) {1.95) {3 .96) {3 .69) {2 .63) {14.5 1) {32.72) {13.59) 
L WS: Low weight sugar5 . OS : Other 5ugar5. NSC i5 the sum of starch, low weight su gars and other 
s u gars. 
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3.7.3 Annex C 

Table 3.5C Full set of linear mixed models considered with the Aka ike 
informa tion criterion (AIC), Iikelihood ratio test estimates (L), and tbeir 

respective inference (P value). 

Analys is fo r tissue, time, spec ies, and pruning treatment and the ir interact ions on 

non-structual carbohydrate (NSC) concentrations in urban trees of Acer saccharinum 

and Acer platanoides. Analys is includes branches from un-pruned and pruned trees 

(un-pruned and pruned) in bath species. 

LWS os Sta r ch NSC 
Mo del df P- P- P- P-

A IC L 
value 

AIC L 
value 

AIC L 
value 

AIC L 
value 

- 1 3 1082.33 735 .01 738.05 11 07.48 

Species 4 106 1.96 22.38 <.00 1 732.64 4.37 <.05 725 .60 14.45 <.00 1 1085. 17 24.30 <.00 1 

Ti me 4 1082.05 2.28 0.13 7 17.70 19.32 <.00 1 690.84 49.2 1 <.00 1 11 03.47 6.0 1 <.05 

Pruning 4 1083 .67 0.66 0.42 736.99 0.02 0.88 740.02 0.03 0.86 11 08.94 0.54 0.46 

Species+Ti me 5 106 1.34 7 14.25 677.80 1080.46 

Species*Time 6 1054.95 8.39 <.0 1 703.00 13.25 <.00 1 679.79 0.02 0.90 1074.79 7.68 <.0 1 

Species+ Prun ing 5 1063 .17 734.62 727.60 1086.54 

Species*Pruning 6 1064.37 0.80 0.37 736.58 0.03 0.85 729.46 0. 14 0.7 1 1087.87 0.67 0.4 1 

Time+Pruning 5 1083 .37 7 19.67 692.67 11 04.88 

Time*Pruning 6 1082.16 3.2 1 0.07 72 1.56 0.11 0.74 69 1.74 2.93 0.09 11 04.59 2.29 0.13 

Species+Time+Prunin 
6 1062.53 716.22 679.75 108 1.78 

g 

Species*Time*Pruning 10 1046.31 24.22 <.00 1 709.75 14.47 <.0 1 684.25 3.50 0.48 1069.71 20.07 <.00 1 
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4.1 ABSTRACT 

Trees that grow in urban areas are confronted with a wide variety of stresses that 

threaten their long-term survival. Some of these common stresses include crown 

damage, root reduction and stem injury. The single or combined effects of these 

stresses generate a complex array of growth and ecophysiological responses that are 

hard to predict. We hypothesized that (i) tree growth will be increasingly and 

negatively affected as stress levels increase; (ii) single and some combined stresses 

inflicted to the trees will negatively affect the levels of reserve concentrations found 

in tree tissues (roots, stems, branches and leaves) in order to maintain tree growth (iii) 

combined stresses will have a positive or negative impact on reserve concentrations 

depending on what eco-physiological mechanisms are being affected by the various 

stresses; and (iv) trees in stress treatments that result in higher carbohydrate 

concentrations would exhibit lower growth rates. To test these hypotheses, we set up 

a manipulative experiment using three common North American urban tree species 

(Celtis occidentalis, Fraxinus pennsylvanica, and Tilia cordata). These trees were 

submitted to an increasing level of single common stresses (three levels of defoliation 

and root pruning, and two levels of stem damage) and their combined effects under 

field conditions . As hypothesized, we found that tree growth declines in relation to 

the total amount of stress inflicted to the trees, i.e. , when the combined highest level 

of stress was applied, but that contrary to our second hypothesis reserves were not 

affected or in some cases increased with increasing level of stress. We did not find a 

consistent response, contrary to our third hypothesis, in reserve concentrations in 

relation to the various combined stress treatments applied to the three tree species 

investigated. Finally, in agreement with our fourth hypothesis we found an inverse 

relationship between tree growth rate and reserve concentrations, suggesting that trees 

adjust their levels of carbohydrate, especially in stems and roots, to meet their 
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metabo lic demand under stressful s ituations. Such acclimati on appears to be an 

important mechani sm a llowing tree to increase their surv ivorship under di fferent 

urban stress co nditions. 
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4.2 INTRODUCTION 

Trees are among the most val uable components of urban green a reas due to the ir wide 

range of environmental , social , cultural , and economie benefits (Konijnendijk et al. 

2005) . Nevertheless, trees that grow in urban areas are confronted with a wide variety 

of biotic and abiotic stresses that can make their growing conditions harsher than that 

of trees that grow under natural conditions (Sieghardt et al. 2005). Such stresses 

include natural or introduced pathogens, insect defoliation, frost damage, and 

breakage by wind, which lead to defoliation and loss of woody tissues. Grey 

infrastructure often limits the space of trees to grow which combined with compact 

soils, and water and atmospheric pollution further exacerbate the problem 

(Konijnendijk & Randrup 2004; Tubby & Webber 2010). Additionally, other stress 

such as girdling and ring-barking of trees often occur from vehicle impact, lawn 

mowers, weed trimmers and human vandalism (Moore 2013 ; Purcell 2014). Finally, 

roots are often damaged due to road and house repair and construction. 

Carbohydrate reserves oftrees in storage pools (e.g. , woody tissues) are an important 

mechanism by which trees have evolved to cope with disturbances, because they 

allow trees to maintain their metabolic activities and to start compensatory growth 

(Chapin, Schulze & Mooney 1990; Dietze et al. 2013). Allocation ofphotoassimilates 

to reserves normally compete with growth and other physiological processes such as 

defense (Chapin, Schulze & Mooney 1990). In general , carbohydrate reserves are 

comprised of non-structural carbohydrates (NSC) that are formed by low weight 

sugars and starch . Sugars are mobilized easily and used for short-term metabolism 

white starch is stored in a more recalcitrant form for long-term use during periods of 

severe stress (Chapin, Schulze & Mooney 1990; Dietze et al. 20 13). 
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The concentration of NSC in tree tissues depends on the ability of organs to acquire 

plant-available resources (sink strength), and the distance between the carbon sources 

(either NSC in pools or carbohydrates synthesized by leaves) and carbon sinks 

(respiratory metabolism, storage ofNSC, and tissue growth) (Lacointe 2000; Minchin 

& Lacointe 2005) . Th us, disturbances that imply Joss of tissue will affect the carbon 

allocation priorities for growth and reserves. This response will depend on the 

functional role of the organ/organs involved because these organs may function as 

carbon sources or carbon sinks (Li , Hoch & Korner 2002). For instance, defoliation 

causes a reduction in carbon sources and thus a decrease in the amount of 

photosynthates available for growth and reserves (Li , Hoch & Korner 2002; Eyles, 

Pinkard & Mohammed 2009; Quentin et al. 2011 ; Wiley et al. 2013; Atkinson et al. 

2014; Jacquet et al. 2014; Deslauriers, Caron & Rossi 2015). After a defoliation 

event, the remaining leaves may increase their photosynthetic rates and their foliar 

nitrogen to compensate the supply of carbohydrates with little effect on overall 

growth and allocation (Reich et al. 1993; Lovelock, Posada & Winter 1999; 

Vanderklein & Reich 1999; Handa, Korner & Hattenschwiler 2005 ; Quentin et al. 

201 0; Quentin et al. 2011 ). Defoliation a Iso requires the mobilization of NSC pools 

from branches, stems, and roots to maintain the metabolism and promote 

compensatory growth, which causes an additional reduction of the concentration of 

reserves th at are stored in most of the tree organ s. 

Root pruning reduces the water supply to the leaves, which will reduce 

photosynthesis (carbon sources) (Vysotskaya et al. 2004) and a Iso causes a reduction 

in total stored carbohydrates. Thus, root pruning should cause a reduction in total tree 

growth and a reallocation of resources belowground to quickly rebuild the root 

system (Ferree, Scurlock & Schmid 1999; Wajja-Musukwe et al. 2008; Dong et al. 

20 16). A Iso, roots are an important part of the tree woody biomass with a high 
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capacity to store carbohydrates (Landhausser & Lieffers 2003). Thus, root pruning 

implies the loss of a great part of the tree ' s NSC storage pools. 

The removal of the bark and cambium by stem damage has an impact on 

translocation via the phloem, but maintains water transport through the xylem. 

Removal of the phloem affects the mobilization and refilling of reserves between 

sources and sinks (Hogberg et al. 2001 ; Moore 2013 ; Purcell 20 14; Mei et al. 20 15). 

Thus, the transp01t of reserves from roots to above-ground parts above the region 

ring-barked is reduced but so too the transport of photosynthates from the foliage to 

the root system (Moore 2013 ; Mei et al. 20 15). 

Unfortunately, in many cases more than one stress factor causes urban trees to 

become unhealthy and die (Calfapietra, Pefiuelas & Niinemets 2015). The 

physiological response of trees to simultaneous stresses are generally unclear 

(Niinemets 201 0). The interaction of severa! stress factors genera tes a unique 

response that may be more severe (negative interaction) or less severe (positive 

interaction) than the sum of the ir individual effects (Mittler 2006; Niinemets 201 0). 

To date, relatively little is known about the effects of different individual stresses nor 

simultaneous stresses on both tree growth and the dynamics of NSC reserves in 

saplings and trees, because most of the studies about stress resistance have been 

carried out with seedlings subjected to a single stress (Niinemets 2010). To address 

this issue, we setup a manipulative experiment using three common North American 

urban tree species (Fraxinus pennsylvanica, Celtis occidentalis, and Tilia cordata). 

These trees were submitted to increasing levels of three common stresses under field 

conditions: (1) three levels of defoliation, (2) three levels of root pruning, and (3) two 

levels of stem damage. These stress treatments were applied individually and in 

combinations of two or three simultaneous stress factors. 
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We hypothesized that (i) tree growth (both in diameter and height) will be 

increasingly and negatively affected by increasing levet of single and combined 

stresses inflicted on the trees; (ii) there would be mainly a negative effect on the levet 

of NSC concentrations found in ali four tree compartments (roots, stems, branches 

and leaves) measured in stressed trees that maintained their growth rate ; (iii) there 

will be either a positive, negative or no effects of various combination of stresses 

depending on what eco-physiological mechanisms are being affected. For example, 

stem damage would limit the supply of reserves to either leaves (from roots) or roots 

(from new photosynthates), thus leading to a further reduction of reserves in these 

tissues. In contrast, there would be a positive interaction in NSC in treatments that 

involve defoliation and root pruning simultaneously, because defoliation may reduce 

the impact of water stress caused by root pruning. Th us, this should reduce the need 

to initiate compensatory growth to produce new roots and to exploit new water 

sources. And (iv) as a result of the competition for assimilates between tree growth 

and reserves, trees in single or combined stress treatments that resulted in higher 

carbohydrate concentrations would exh,ibit lower growth rates. 
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4.3 METHODS 

4.3.1 Study site 

The study was conducted in the municipal nursery of the city of Montreal , province 

of Quebec, Canada. The site lies at 45°30" N, 73°33' W (about 35 rn of elevation). 

The mean annual precipitation is 978 mm (215 mm snow and 763 mm rain). The 

mean annual temperature is 6.2 oc and the mean annual growing season temperature 

is 14.4 °C. 

4.3 .2 Study species 

We studied three tree species that are among the most commonly planted trees in the 

city of Montreal: Celtis occidentalis Linnaeus (Common Hackberry; native), 

Fraxinus pennsylvanica Marsh. (Green ash; native) , and Tilia cordata Mill. (little­

leaf linden; introduced in America from Europe). The three tree species have 

different growth strategies and , th us , may present different responses of allocation to 

reserves and growth under stress (Table 4.1). 
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Table 4.1 Functional characteristics of the tree species studied. 

Species/Trait 
Celtis 

Fraxinus pennsylvanica Tilia cordata 
occidentalis 

Foliar carbon(%) 41 .03 46.47 47.00 

Foliar nitrogen (%) 1.22 2.00 2.67 
Foliar carbonlnitrogen 33 .85 23.40 18.00 
Specifie leaf area (mm2 mg.1

) 17.27 15.17 18.60 
Photosynthetic capacity (J.Lmol C02 m-2 

6.00 13 .69 15.25 s·I) 

Wood density (mg mm-3
) 0.66 0.55 0.36 

Growth rate Moderate Intermediate Rapid 

Shade tolerance* Intermediate Intermediate Tolerant 
Lifespan Modera te Short Moderate 

*Data from Niinemets and Valladares (2006) 
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4.3.3 Sapling treatments 

Four-year-old trees of the aforementioned species with similar diameters and heights 

were selected in Montreal ' s municipal nursery. At the beginning of the study, trees 

were assigned randomly to gradients of three single stress treatments and various 

combinations of stresses (see details below) . Treatments were first applied in July 

2012 and repeated in July 2013 , which corresponded to the month of maximum leaf 

a rea. 

The stress treatments consisted of various gradients of defoliation, root reduction, and 

stem damage. The total number of samples in the experiment was 291 individuals 

(121 C. occidentalis, 91 F. pennsylvanica, and 79 T cordata) . The number of 

replicates per treatment was 6 in C. occidentalis and 4 in F. pennsylvanica and in T 

cordata. The difference in the number of replicates was due to a lower availability of 

trees for the last two species. The experimental design was fully factorial including 3 

levels of defoliation (0%, 33%, and 75%), 3 levels of root reduction (0%, 33%, and 

75%), and 2 levels of stem damage (0% and 50%) with ali possible combinations 

among these three treatments (Figure 4.1 ). The defoliation treatment consisted of 

removing leaves manually at the base of the petiole (Figure 4.1). Treatment intensity 

was defined as severe (75% defoliation) ; light (33% defoliation) and control (no 

defoliation). The root reduction treatment consisted of cutting a given percentage of 

the outermost part of a 30-cm radius of the root system with a tree spade machine 

(Figure 4.1 ). The machine consists of three or four blades that encire led the tree, dug 

into the ground independently, and eut the roots to a depth of 1.2 m. Treatment 

intensities were defined as severe (75 % root reduction) , light (33% root reduction) 

and control (no root reduction) . The stem damage treatment consisted of removing a 

40-mm wide band at 30 cm above the ground using a barkblaster tree girdling tool 

until we had removed both the cambium and phloem connection (Figure 4.1). 
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Treatment intensities were 50% of the stem c ircumfe rence length , and the contro l 

was no damage. 

Rool pruning 

Figure 4.1 Schema tic representation of the stress treatments applied to trees of 
F. pennsylvanica, C. occidentalis, and T. cordata. 

Left: defo liation, center: root pruning. Right: stem damage. 
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4.3 .4 Growth measurements 

Trunk diameter and total tree height were measured bimonthly between July 2012 

and November 2014. The diameter was measured at 40 cm above ground leve! to 

avoid branches that were actively growing. To increase accuracy, steel nails were 

inserted to mark the location of future measurements and the diameter was recorded 

on two sides of each individual. To allow comparisons between trees , growth 

measurements were normalized : 

where NG (t_i ) is the normalized growth at date i, G(ti) is the growth of the 

individual at date ti , G(tO) is the initial growth measure, and (G(to) ) is the mean 

initial growth measure of ali individuals. 
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4.3.5 Analysis of carbohydrate concentrations 

The concentrations of NSC in roots , stems, and branches of ali 291 saplings were 

determined in 2014 (at the beginning and at the end the growing season), one full 

season after the end of the last stress period to allow the trees to respond in terms of 

growth reallocation and reserve utilization . The concentrations ofNSC in leaves were 

measured in the summer of 2014 only. ln each individual , stem samples were taken 

with a 4.3-mm diameter increment borer at 130 cm above ground level. Top branches 

were obtained by cutting them with a tree trimmer. Root samples were taken with an 

increment borer from large surface roots within 10 cm from the base of the stem. Leaf 

samples were taken from the entire canopy and consisted of about 20 leaves per tree. 

Collected samples were placed in paper bags and refrigerated in the field. Within 8 h, 

they were microwaved in the lab to stop enzymatic activity (Popp et al. 1996), and 

then they were dried and grounded using a bail mill. Samples were analyzed for NSC 

concentration following Hoch, Popp and Kèirner (2002). Ground plant material was 

dissolved for 30 min in distilled water. Starch and sucrose were broken down into 

glucose and into glucose and fructose, respectively, with clarase (Aspergillus oryzae, 

Enzyme Solutions Pty Ltd, Crydon South, Victoria, Australia) incubation at 40"C for 

15 h. Phosphoglucose-isomerase was added to the solution. The total amount of 

glucose, which corresponded to total NSC, was quantified photometrically in a 

microplate photometer at 340 nm (Thermo Fisher Scientific, Waltham, USA) after the 

conversion of glucose to gluconate-6-phosphate (hexokinase; Sigma-Aldrich, St. 

Louis, MO, USA). Subsequently, an aliquot of the original extract was treated with 

invertase and phosphoglucose-isomerase (both Sigma-Aldrich) to determine the 

amount of glucose, fructose, and sucrose with a glucose test (see above). Starch was 

calculated as NSC minus sugars (sugars = sucrose +fructose+ glucose). Pure starch 

and glucose, fructose, and sucrose solutions were used as standards. Plant powder 

from peach leaves (Leco, St. Joseph, MI, USA) was included to control the 
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replicability of the extractions. NSC concentrations are reported here as percentage of 

dry matter. 

4.3.6 Statistical analysis 

Linear mixed-effect models were used to predict reserve concentrations (sugar, 

starch, and NSC) in the different tissues of the tree (leaves, roots, stems, and 

branches), and growth as a function of the three stress treatments . The models 

included the sampling blacks as a random effect. Models were evaluated using the R 

package " lme4" (Bates et al. 2014). The function difjlsmeans in the " lmerTest" 

package (Kuznetsova, Brockhoff & Christensen 20 16) was used as a post-hoc 

contrast to determine differences in the !east square means of the models. The 

relationship between reserve concentrations and growth was assessed through the 

coefficient of determination (Pearson's r). Ali statistical analyses were conducted in R 

v. 3.02 (R Foundation for Statistical Computing, Vienna, Austria). 
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4.4 RESULTS 

4.4.1 Effects of stress on tree growth 

Root pruning al one caused a significant reduction in the diameter growth of the three 

species evaluated. Defoliation alone also caused a significant reduction of diameter 

growth but only in C. occidentalis and T. cordata. Stem damage alone caused a 

significant increase in diameter growth ofF. pennsylvanica (Table 4.2 , Figure 4.2). 

Defoliation caused a significant reduction in height growth of C. occidentalis and F. 

pennsylvanica, while root pruning only in F. pennsylvanica (Table 4.2, Figure 4.2). 

In most cases, a significant effect on tree growth was only achieved with severe stress 

(75% defoliation or 75% root pruning), the only exception was the effect of root 

pruning on diameter growth of C. occidentalis and T. cordata that was significant at 

37% root pruning intensity . The interaction between stress treatments of defoliation 

and root pruning (DF:RP) reduced diameter growth on C. occidentalis. This effect is 

significant when there is an increase in defoliation from 37 to 75 % along with an 

increase in root pruning from 0 to 75%. The interaction between defoliation and stem 

damage (DF:SD) was also significant and reduced height growth on F. 

pennsylvanica, especially under light defoliation (37%) with stem damage (50%) 

(data not shawn). 
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Il) 
M 

~ 
Il) 
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Defoliation(%) 
0 37 75 

Root pruning (%) 

~ 
~ 
J: 

0 50 

Stem damage(%) 

Figure 4.2 Single effects of a gradient of defoliation, root pruning, and stem 
damage on diameter and height growth of Celtis occidentalis, Fraxinus 

pennsylvanica, and Tilia cordata. 

Error bars represent the standard error of the mean. Different letters represent 

significant mean differences between stress levels. 
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Table 4.2 Summary of linear mixed models effects showing the effects of 
defoliation (DF), root pruning (RP), and stem damage (SD) and their interacting 
effects on diameter and height at the end of the experiment of Celtis occidentalis, 

Fraxinus pennsylvanica, and Tilia cordata in the fall of2014. Statistically 
significant models are shown in bold. 

Growth Diameter Height 
F stat e-value F stat e-value 

DF 15.43 0.00 8.71 0.00 
RP 34.24 0.00 1.79 0.17 
SD 0.12 0.73 0.05 0.83 

Celtis occidentalis DF:RP 4.86 0.00 0.94 0.45 
DF:SD 0.53 0.59 0.13 0.88 
RP:SD 0.26 0.77 0.84 0.43 

DF:RP:SD 1.00 0.41 1.22 0.30 
·~·-----·- ---·-·---·--····--------.. 

DF 1.16 0.32 6.39 0.00 
RP 12.93 0.00 5.06 0.01 

Fraxinus 
SD 7.03 0.01 0.09 0.76 

DF:RP 0.09 0.98 1.11 0.36 
p ennsy lvanica 

DF:SD 0.69 0.50 4.11 0.02 
RP:SD 0.06 0.94 0.68 0.51 

DF:RP:SD 0.45 0.77 0.60 0.66 
·-·-·--··-· .. -·-····-.. -·····-·-·-.. --··--·····-·--··-·-····-·-··-·--·-··--·····--···-····-·····-·--·-·-·-·-··-·--·-·-··-·--·-··---·-·-·-··-··-·--·---·-----·-·-.. -·-··-·-·--··-----·- ·--·-·-·--·-·-·····-·····-·-·····-·-··--··-·-... ·-······-

DF 17.60 0.00 1.54 0.23 
RP 59.06 0.00 1.48 0.24 
SD 0.55 0.46 0.05 0.81 

Tilia cOl-data DF:RP 2.31 0.07 1.43 0.24 
DF:SD 0.15 0.86 0.43 0.66 
RP:SD 0.10 0.90 0.49 0.62 

DF:RP:SD 0.49 0.74 0.45 0.77 
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4.4.2 Effects of single stress treatments on NSC concentrations 

At the moment of the first assessment (spring 2014), NSC concentrations in woody 

tissues varied between 0.4 -12.01% and at the second assessment (fall 2014) they 

varied between 1.1 - 11.7%, depending on the tissue, species, and treatments (Annex 

2 and 3, respectively). Concentrations of NSC in leaves in summer varied between 

3.3 -12.7%; the highest were in C. occidentalis and the lowest in F. pennsylvanica 

(Annex 4) . 

Not ali the single stress treatments showed a significant effect on the concentrations 

of reserves in both periods evaluated (spring and fall. Table 4.3 , and Figure 4.3). 

Overall, the significant effects in both periods showed that a severe increase in single 

stress (by defoliation, root pruning or stem damage) increased significantly reserve 

concentrations in stems and roots, but reduced concentrations in branches (Figure 

4.3). Single treatments of root pruning and stem damage decreased significantly the 

NSC concentrations of leaves of C. occidentalis only (Table 4.3 , Annex 4) . 
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4.4.3 Effects of combined stress treatments on NSC concentrations 

In both evaluation periods, the combined stress treatments that showed s ignificant 

interactions on reserve concentrations were: (1) for Celtis occidentalis in the root 

between root pruning and stem damage in fall 2014, in the stem between defoliation 

and stem damage in spring 2014 and in the leaves between root pruning and stem 

damage; and (2) for Fraxinus pennsylvanica in the root between defoliation and stem 

damage in spring 2014 and the leaves between root pruning and stem damage (Table 

4.3 ; Figure 4.4) . No significant interactions among any of the three stress treatments 

were found for Tilia cordata. As seen in Fig. 4, in spring 2014, a light defoliation 

(37%) along with an increase in stem damage decreased reserve concentrations m 

roots of F. pennsylvanica. However, severe defoliation (75%) with an increase m 

stem damage increased reserve concentrations in roots of F. pennsylvanica (Figure 

4.4). 



15
2 

S
pr

in
g 

20
14

 
F

a
ll2

0
1

4
 

D
ef

ol
ia

tio
n 

0
%

 
D

ef
ol

ia
tio

n 
37

%
 

D
e

fo
lia

tio
n 

75
%

 
R

oo
t p

ru
n

in
g

 0
%

 
R

oo
t p

ru
n

in
g 

3
7

%
 

R
oo

t p
ru

n
in

g
 7

5%
 

-
-

~
 

~
 

~
 

~
~
 

A
 

B
 

~
 

0 

p-
4 

0 
~
 

B
 

0 
C

X
) 

0 

~
 

.....
 

.....
 

C
X

) 

c 
c 

"" 
ü 

u 
"" 

C
l)

 
..,. 

J:
 

:.!
: 

C
l) 

~
 

z 
z 

..,. 

-
- ~ 

C
X

) 
~
 

C
el

ûs
 o

cc
kJ

en
ta

lis
 

0 
~
 

,.._
 

« 
~
 

Fr
ax

m
us

 p
en

ns
yi

\IB
ni

C
JI

 

E
 

Q
) 

û
) .!
: u C
l)

 

z 

I 
Il

l 

"" 
J:

 

~
 Q

) 
~
 

>
 co
 

1
/)

 
~
 

CX
) 

..,. 
I 

I 
.!:

 

! 
"" 

"' 
I 

:.!
: 

u C
l) 

..,. 
1 

-1
 

z 
0 

50
 

0 
50

 
0 

50
 

0 
50

 
0 

50
 

0 

S
te

m
 d

a
m

a
g

e
(%

) 

F
ig

u
re

 4
.4

 S
ig

ni
fi

ca
nt

 i
nt

er
ac

ti
ng

 e
ff

ec
ts

 o
f d

ef
ol

ia
ti

on
, 

ro
ot

 p
ru

ni
ng

, 
an

d 
st

em
 d

am
ag

e 
on

 n
on

-s
tr

uc
tu

ra
l 

ca
rb

oh
yd

ra
te

s 
(N

S
C

) 
co

nc
en

tr
at

io
ns

 in
 t

is
su

es
 o

f C
el

ti
s 

oc
ci

de
nt

al
is

, 
F

ra
xi

nu
s 

pe
nn

sy
lv

an
ic

a,
 a

nd
 T

ili
a 

co
rd

at
a.

 

E
rr

or
 b

ar
s 

re
pr

es
en

t 
th

e 
st

an
da

rd
 e

rr
or

 o
f 

th
e 

m
ea

n.
 D

if
fe

re
nt

 l
et

te
rs

 r
ep

re
se

nt
 s

ig
ni

fi
ca

nt
 m

ea
n 

di
ff

er
en

ce
s 

be
tw

ee
n 

st
re

ss
 

le
ve

ls
. *

N
S

C
 e

va
lu

at
io

n 
in

 l
ea

ve
s 

w
as

 p
er

fo
rm

ed
 i

n 
su

m
m

er
 2

01
4.

 

T1
l1a

 O
O

id
at

a 1 50
 



153 

4.4.4 Relationship between NSC concentrations and tree growth 

We found in severa) tissues of the three species that the trees with higher NSC 

concentrations were those with lower diametric increment (Figure 4.5) . Specifically, 

we found significant negative correlations between diameter increment and NSC 

concentrations in roots and stems of C. occidentalis, roots ofF. pennsylvanica and 

roots, stems and branches of T. cordata. On the contrary, we did not find any 

significant correlation between height increment and NSC concentrations tn tree 

tissues of the three species in both evaluated periods (data not shown). 
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4.5 DISCUSSION 

Our results describe the single impact of different levels of defoliation, root pruning, 

and stem damage and their combined effects on tree growth and carbohydrate 

reserves for three common urban tree species. We found that tree diameter and height 

growth decreased in relation to the levels of stress applied to the trees (with the 

exception of stem damage on F. pennsylvanica where diameter growth increased). 

The effects of the different stress treatments on NSC in the different parts of the tree 

were much more varied among the three tree species and we found sorne significant 

interactions among the different stress treatments that make any generalizable 

interpretation difficult. Overall , the effects of single treatments caused an increase in 

the levels of reserves in stem and roots, and a decrease of the levels of reserves in 

branches. On the contrary, the effects of the combined stress treatments on reserve 

were very variable depending on the species and the tree part evaluated. However, we 

found globally a decline in tree growth for ali three species with an increase in the 

overall NSC stored in the root and stem and in the branch for T Cordata. 

4.5 .1 Effects of stress treatments on tree growth 

As hypothesized, tree growth (both in diameter and height) was ·negatively affected 

by the increasing leve! of stresses inflicted on the trees (Table 4.2, Figure 4.2) . 

Overall, annual growth in diameter and height was reduced up to 47% and 55%, 

respectively. Although the growth responses to stress treatments are complex and 

depend on the species and type of stress applied, our results are similar to the values 

reported for defoliation and root pruning in other studies (:=:o35-50%, Quentin et al. 

2011 ; Jacquet, Orazio & Jacte! 2012; Wiley et al. 2013; Dong et al. 2016). This 

reduction in growth was expected due to defoliation, which limits carbon uptake, and 

due to root pruning, which reduces water and nutrients uptake. Finally, a1though we 
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expected stem damage to decrease tree growth by disrupting the transport of 

photosynthates to the roots and affecting their physiological functions (Regier et al. 

201 0; Mei et al. 2015), we found in one instance a significant increase in tree 

diameter for F. pennsylvanica. This increase in tree diameter may have been due to 

accumulation of carbohydrates above the wound zone as none is able to get the root 

system (Moore 2013). 

4.5 .2 Effects of stress treatments on reserve concentrations 

We hypothesized that there would be a negative effect on the level of reserve 

concentrations in tree tissues in severa( stress treatments where trees are able to 

maintain growth rate. Our results do not fully support our hypothesis as we found that 

most of the single and combined stresses caused an increase in the levels of reserves 

in stem and roots and a decrease in tree growth rate , although we found a decrease in 

the levels of reserves in branches (Table 4.3 and, Figure 4.3). Severa( papers have 

reported a reduction of carbohydrate reserves just weeks or few months after stress 

conditions caused by defoliation (Palacio et al. 2012; Wiley et al. 2013; Atkinson et 

al. 2014), pruning (Chesney & Vasquez 2007), and stem girdling, especially from the 

tissues that mobilized reserves to maintain physiological activities (Mei et al. 2015). 

In this paper, we did our first assessment of carbohydrate reserve concentrations 

about nine months after the last stress treatments were applied to allow time for the 

trees to respond in terms of growth reallocation. Except for the concentrations of 

carbohydrates in branches after sorne stress treatments, our results of carbohydrate 

concentrations in stem and roots are consistent with the fast recovery and increase of 

reserves after severe episodes of stress regardless of the species or source of stress . 

An increase of carbohydrate concentrations to the pre-stress levels in the main stem 

and roots after carbon-limiting conditions induced by stress treatments may indicate 
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that these tissues are a more secure place to store carbohydrates, ensuring that 

resources are available for resprouting or refoliating after future stress episodes 

(Gibon et al. 2009; Wiley et al. 2013) . This idea is supported by the lower sugar to 

starch ratio found in these tissues (data not shown), indicating that trees might 

prioritize the accumulation of the more stable starch for long-term use during periods 

of severe stress (Dietze et al. 20 13). On the contrary, there was a reduction in reserve 

concentrations in branches. Across the species the mean sugar to starch ratio was 

higher in branches that in other woody tissues (data not show). This suggests a higher 

mobility of sugars from tissues to maintain metabolic activity and compensatory 

growth of new foliar resources after stress (Landhausser & Lieffers 2003 ; 

Landhausser 2011), and thus the reduction in concentrations after stress. 

The increase in carbohydrate reserve concentrations in stems and roots after the stress 

treatments may have been reached through compensatory mechanisms, such as 

increasing nitrogen concentrations and photosynthetic rates of the remaining foliage 

after defoliation (Pinkard & Beadle 1998; Vanderklein & Reich 1999; Eyles, Pinkard 

& Mohammed 2009). Carbohydrate concentrations in leaves can provide insights 

about these compensatory responses in these trees , because it is expected that an 

increase in nitrogen concentrations and photosynthetic rates leads to an increase in 

reserves in leaves (Li et al. 2016). Nevertheless, unlike woody tissues, few stress 

treatments had a significant effect on reserve concentrations in leaves, and those that 

had a significant effect caused a reduction on the carbohydrate reserves, which 

suggests no evidence of photosynthetic up-regulation and compensatory responses 

(Annex 7) . 

We hypothesized that there were either a positive, negative or no effects of the 

combination of stresses depending on the mechanisms affected. We expected a 

positive interaction in reserve concentrations in treatments that involved defoliation 
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and root pruning simultaneously compared to single stress treatments. Yet, none of 

these interactions was significant (Table 3). On the contrary, we believed that a 

combination of tissue loss (by either defoliation or root pruning) and stem damage 

would lead to a negative interaction (reduction of reserve concentrations) because 

stem damage limits the supply of reserves to either to leaves (from roots) or to roots 

(from new photosynthates). Overall, we found severa! significant interactions 

between tissue Joss and stem damage but with different patterns that make a 

generalizable interpretation difficult. We found that severe defoliation (75%) with 

stem damage (50%) increased reserve concentrations in roots and stems of C. 

occidentalis and F. pennsylvanica (Figure 4.4). As we suggested before, this may 

indicate the mobilization of reserves to more secure tissues under severe stress 

conditions (Gibon et al. 2009; Wiley et al. 2013). However, light defoliation (37%) 

with stem damage (50%) reduced reserve concentrations in roots. Severe root pruning 

(75%) and stem damage (50%) also caused a reduction in reserve concentrations in 

roots of C. occidentalis, which may indicate that stem damage is limiting the supply 

of reserves from leaves to roots and thus, roots are expending their accumulating 

reserves in metabolism and/or increasing root production to exploit new available soi! 

nutrients and water resources (Mei et al. 2015). Light root pruning (37%) and stem 

damage (50%) caused a contrasting effect in reserve concentrations of leaves of C. 

occidentalis and F. pennsylvanica (Figure 4.4). In C. occidentalis concentrations 

decreased while in F. pennsylvanica concentrations increased. A decrease in reserve 

concentrations after stress treatments in C. occidentalis may indicate the lack of 

mechanisms such as compensatory photosynthesis to recover carbon supply 

(McNaughton 1983). A reduction in the carbon supply by photosynthesis may lead to 

fast depletion of the reserve pools and thus increasing the stress effect on the trees 

(Niinemets 201 0). 
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4.5 .3 Relationship between carbohydrate reserves and tree growth 

As we hypothesized, we found a negative relationship between NSC concentrations 

and diameter increment (Figure 4.5). Nevertheless, this relationship was not 

significant in ali storage tissues for ali three species . Our results suggest that 

following the disturbance of sorne parts of the trees, trees may mobilize accumulated 

stored NSC over the short term to repair the damage and increase growth, but over 

the medium to long-term the strategy seems to replenish as quickly as possible the 

reserve pool at the detriment of tree growth. Increasing reserves under the conditions 

of lower carbon uptake imposed by the stress treatments is consistent with previous 

studies that suggested that allocation of carbon to reserves is an active process that 

does not depend on the balance between carbon supply and demand for growth and 

metabolism ; that is, trees regulate the levels of reserves at the expense of growth 

(Chapin, Schulze & Mooney 1990; Silpi et al. 2007; Sala, Woodruff & Meinzer 

2012; Wiley & Helliker 2012) . Such behavior in carbohydrate reserves suggests that 

trees adjust their levels of reserves to meet the new metabolic demand (Silpi et al. 

2007), because survival under the stress conditions may require higher availability of 

carbon for maintaining physiological functions , such as metabolism, hydraulic 

integrity and osmotic exchange of the soluble sugars, instead of maintaining growth 

(Sala, Woodruff & Meinzer 2012; Wiley & Helliker 2012). 

The negative relationship between NSC concentrations and diameter increment was 

significant in the three woody tissues of T. corda ta and persistent in roots of the three 

tree species . This may indicate that trees of T. cordata showed higher response to 

stress than the other two species. Although T. cordata is a shade tolerant species, it 

presents strategies of fast growing species such as high foliar nitrogen, 

photosynthetic capacity, and lower wood density (Table 4.1 ). This may indicate 

lower allocation of carbon to defense traits and thus higher dependence of reserves 
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than the other species to maintain a positive carbon balance. This results support the 

idea that fast growing species respond with higher flexibility than slow growing 

species under stress conditions (Atkinson et al. 2014). 
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4.6 CONCLUSIONS 

This study examined the single and combined effects of three common urban stresses 

(defoliation, root pruning, and stem damage) on the growth and NSC reserve 

accumulation in four-year-old trees under field conditions. Our results showed a 

consistent inverse relationship between diameter growth and total NSC reserve in ali 

three tree species, indicating that there is an active process of allocating reserves at 

the expense of tree growth. Globally, trees tended to accumulate NSC in roots and 

stems (but not in branches) 9 to 12 months following various combination of stresses, 

but we found sorne significant interactions between the three types of stresses applied 

indicating that sorne combination of stresses could modify the general trend found 

when single stresses are applied. These results are useful for predicting plant 

performance and survivorship under different urban stress conditions. 
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4.7 SUPPORTING INFORMATION 
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Figure 4.7B Means and standard errors of non-structural carbohydrates 
concentrations in spring 2014 after both single stress treatments of defoliation 

(DF, green numbers, on the left), root pruning (RP, red numbers, in the center), 
and stem damage (SD, blue numbers, on the right) and their combined effects in 

Celtis occidentalis, Fraxinus pennsylvanica, and Tilia cordata. 
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4 .7.3 Annex C 
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stem damage (SD, blue numbers, on the right) and their combined effects in 
Celtis occidentalis, Fraxinus pennsylvanica, and Tilia cordata. 
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pruning (RP), and stem damage (SD) and their combined effects in Celtis 

occidentalis, Fraxinus pennsylvanica and Tilia cordata. 
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4 .7.5 AnnexE 

Table 4.4E Summary of Iinear mixed models results showing the single effects of 
defoliation (DF), root pruning (RP), and stem damage (SD) and their interacting 

effects on concentrations of sugar and starch of Celtis occidentalis, Fraxinus 
pennsylvanica, and Tilia cordata. in spring 2014. Statistically significant models 

are shown in bold. 

Tissue Root Stem Bran ch 
Carbohydrate Sugar Starch Sugar Sta rch Sugar . Starch 

F stat 
p- F F p- F p- F p- F p-

value stat p-value stat va lue stat value stat va lue stat value 
DF 2.01 0.15 0.46 0.63 1.51 0.24 3.71 0.04 0.62 0.54 1.97 1.16 

RP 7.21 0.00 0.20 0.82 0.50 0.61 0.86 0.43 0.68 0.51 3.56 0.04 

Celtis 
SD 1.48 0.23 0.00 0.93 0.16 0.69 0.72 0.40 0.66 0.42 0.02 0.90 

accidenta lis 
DF:RP 1.72 0.17 0.59 0.67 0.89 0.48 0.14 0.97 1.18 0.33 2.18 0.09 

DF:SD 0.37 0.70 0.27 0.77 1.79 0.18 5.12 0.01 0.59 0.56 1.18 0.32 

RP:SD 0.61 0.55 0.86 0.43 0.74 0.48 1.09 0.35 1.85 0.17 0.30 0.74 

DF:RP:SD 0.73 0.58 2.76 0.04 0.62 0.65 0.27 0.90 0.97 0.44 2.10 0.10 
-·-·----w••---•••-• ----·--· 

DF 0.89 0.42 1.39 0.26 0.69 0.51 1.05 0.36 3.35 0.05 0.06 0.94 

RP 0.16 0.85 3.70 0.04 3.34 0.05 0.73 0.49 0.39 0.68 0.49 0.62 

SD 4.85 0.03 0.50 0.48 0.07 0.80 0.08 0.77 0.00 0.93 0.00 0.97 
Fraxinus 

DF:RP 1.20 0.33 1.46 0.23 2.05 0.11 0.81 0.52 0.74 0.57 0.22 0.92 
pennsylvanica 

DF:SD 4.67 0.02 4. 18 0.02 0.84 0.44 1.21 0.31 1.40 0.26 0.37 0.69 

RP:SD 0.88 0.42 0.28 0.75 2.23 0.12 1.04 0.36 0.79 0.46 2.08 0.14 

DF:RP:SD 1.45 0.24 0.37 0.83 1.21 0.32 0.40 0.81 0.71 0.59 0.49 0.74 
------·-·-····-·- ... ·--·--·--·--·-·-·-.. --····-··--- ·--·---·-··-.. ·-··-·-·-··-·--··--·--.. -·-·-· .. ·--···-···-·---···--·-·-·-·····-----·-----·---·-··-·-··--··-.. ··-··-----·-·--·· 

DF 0.77 0.47 0.55 0.58 0.16 0.86 1.33 0.28 4.34 0.02 2.31 0.11 

RP 1.52 0.23 0.82 0.45 1.75 0.19 2.27 0.12 1.29 0.29 4.06 0.03 

SD 0.00 0.99 7.99 0.01 1.77 0. 19 0.12 0.74 1.02 0.32 0.95 0.33 

Tilia corda/a DF:RP 1.02 0.41 1.14 0.35 0.50 0.74 1.16 0.34 1.84 0.14 0.92 0.46 

DF :SD 0.47 0.63 0.66 0.52 0.17 0.84 1.37 0.27 1.46 0.25 4.06 0.03 

RP :SD 0.59 0.56 0.22 0.80 0.45 0.64 0.52 0.60 0.73 0.49 0.1 2 0.88 

DF:RP :SD 0.64 0.64 1.50 0.22 1.49 0.23 0.93 0.46 0.81 0.53 1.48 0.23 
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4.7.6 Annex F 

Table 4.5F Summary of Iinear mixed models results showing the single effects of 
defoliation (DF), root pruning (RP}, and stem damage (SD) and their interacting 

effects on concentrations of sugar and starch of Celtis occidentalis, Fraxinus 
pennsylvanica, and Tilia cordata. in fall 2014. Statistically significant models are 

shown in bold. 

Tissue Root Stem Bran ch 
Carbohydrate Sugar Starch Sugar Starch Sugar Starch 

F stat p- F F p- F p- F p- F p-
value stat p-value stat value stat value stat value stat value 

DF 3.00 0.06 8.48 0.00 0.66 0.52 0.09 0.91 0.53 0.59 2.02 0.15 

RP 4.48 0.02 5.32 0.01 6.04 0.01 0.49 0.62 7.61 0.00 0.88 0.42 

SD 0.59 0.44 0.04 0.85 0.60 0.44 0.59 0.45 0.37 0.54 0.10 0.75 
Celtis 

DF:RP 1.83 0.1 5 0.94 0.45 1.49 0.23 0.39 0.81 0.57 0.69 0.44 0.78 
occidentalis 

DF:SD 0.57 0.57 1.06 0.36 0.61 0.55 0.10 0.90 1.27 0.29 0.22 0.80 
RP:SD 3.1 4 0.06 3.31 0.05 0.21 0.81 0.01 0.99 0.50 0.61 0.37 0.69 

DF:RP:SD 0.46 0.77 1.36 0.26 0.11 0.98 0.41 0 .80 0.74 0.57 1.12 0.36 
-·-·--------·--·----·----·------··--· ... ·-··--·----·-·-··---····-··--·--··--··-

DF 0.22 0.81 3.78 0.03 0.17 0.84 0.38 0.68 2.05 0.15 1.90 0.16 
RP 1.07 0.36 3.75 0.03 7.38 0.00 0.42 0 .66 0.50 0.61 0.74 0.48 
SD 0.03 0.87 0.78 0.38 1.21 0.27 0.51 0.47 0.13 0.73 0.22 0.64 

Fraxinus 
DF:RP 0.41 0.80 1.41 0.25 0.57 0.68 1.69 0.17 1.21 0.33 0.84 0.51 

pennsylvanica 
DF:SD 0.79 0.46 0.46 0.63 0.12 0.89 0.53 0.59 0.51 0.61 0.86 0.43 

RP :SD 1.62 0.21 0.78 0.46 0.42 0.66 0.36 0.70 1.00 0.38 1.21 0.31 

DF:RP:SD 1.71 0.17 0.57 0.68 1.44 0.24 0.31 0.87 0.52 0.72 0.92 0.46 
-··-·-·-··-·---·--·-··--·-···---··-···---·--·-·-·-·---····-·--------·-·-·----·-·---···--······--·-------·-··--··-·-··----·-·-·---··-··---·--·-·--·-·-·--·----·-·-·-·---·-·-·-·-··-·--·-·-·-·--··-··-·---·-·-·-

DF 0.1 3 0.88 1.65 0.20 10.62 0.00 2.24 0.12 2.99 0.06 1.84 17.00 

RP 32 .68 0.00 2.57 0.09 13.85 0.00 3.94 0.03 3.73 0.03 2.25 0.12 
SD 2.83 0.10 0.17 0.68 1.81 0.19 1.83 0. 19 0.04 0.85 0.01 0.76 

Tilia cordata DF:RP 0.54 0.70 0.35 0.84 1.41 0.25 2.39 0.07 0.87 0.49 0.74 0.57 
DF:SD 0.31 0.74 0.38 0.69 1.36 0.27 0.21 0.81 0.05 0.95 0.02 0.97 

RP :SD 1.84 0.17 0.49 0.62 0.15 0.87 0.27 0.76 0.57 0.57 0.85 0.44 
DF :RP:SD 1.02 0.41 0.64 0.64 1.24 0.31 1.40 0.26 0.36 0.84 0.45 0.77 
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4.7 .7 Annex G 
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Figure 4.10G Means and standard errors of NSC concentrations in leaves in 
summer 2014 after both single stress treatments of defoliation (DF), root 
pruning (RP), and stem damage (SD) and their combined effects in Celtis 

occidentalis, Fraxinus pennsylvanica and Tilia cordata. 
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GENERAL CONCLUSIONS 

J proposed a new technique for measuring NSC concentrations with near-infrared 

spectrometry (NIRS) (Chapter 1) . Then, I evaluated the relationship between NSC 

concentrations and the leaf and wood economie spectra (Chapter 2) . And finally , 1 

determined the response ofNSC concentrations to single and interactive stress factors 

that are common in urban environments (Chapters 3 and 4). 

In Chapter 1, I presented a successful application of a NIRS quantification method 

based on samples from many woody species, different tissue types, and a broad range 

of environmental conditions. The screening was done on 73 tree species and NIRS 

proved to be a technology with the potential to infer the concentration of NSC in a 

large number of samples in a rapid and inexpensive way, based on empirical 

calibrations with chemical analysis. Additionally, the partial !east squares regression 

that 1 used to assess the relationships between NSC concentration and NIRS spectra 

yielded consistent, parsimonious, and robust calibrations for sugar, starch , and total 

NSC concentrations. This new technique for measuring NSC concentrations is a 

promising avenue for physiological studies that link environmental stressors and plant 

responses, especially after recent findings that highlighted the variability and 

uncertainty in accuracy in measurements ofNSC among different laboratories around 

the world (Quentin et al. 2015). 

Using NSC concentrations estimated for forest trees in chapter 1, l presented in 

Chapter 2 the relationships between NSC concentrations and functional traits of 

temperate and tropical tree species. Contrary to our main hypothesis, the relationship 

between leaf functional traits and carbohydrate concentrations in stems, branches and 

roots was orthogonal , especially in tropical species. I found two clearly delineated 

orthogonal axes of variation. The first axis was formed by traits that defined the leaf 

economie spectrum (Wright et al. 2004; Chave et al. 2009), and a second axis was 
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defined by NSC concentrations. Additionally, 1 found weak or non-significant 

relationships between NSC concentrations in woody tissues and economie traits. 

These results suggest that an investment in traits that are associated with resource 

conservation, or 's low' ecological strategies (high investment in defenses), are not 

related to investment in NSC storage, which provide new insights about the allocation 

of carbon to storage or defenses in trees with different life strategies. 

In Chapter 3, I presented an assessment of the dynamics of NSC concentrations in 

urban trees of Acer saccharinum and Acer platanoides that immediately followed 

maintenance pruning. 1 found that pruning levels of 20-30% did not have any 

significant depletion effect on NSC concentrations in any tissue of either species. On 

the contrary, branches of pruned trees of A. platanoides increased NSC 

concentrations at the end of the growing season. These results provide valuable 

information for planning and management operations on urban tree populations 

because knowing the levels of pruning that do not decrease NSC concentrations is 

relevant to maintain plant tolerance to environmental constraints, and mortality 

(Palacio et al. 2008; Landhausser & Lieffers 20 12; Saffell et al. 2014). 

In Chapter 4, I analyzed the response of NSC storage to stress in further detail , and I 

focused on the interactive effects of experimental defoliation, root pruning, and stem 

girdling on NSC concentrations and growth of Fraxinus pennsylvanica, Celtis 

occidentalis, and Tilia cordata. Although I expected a reduction in NSC 

concentration due to carbon limitation in the most severe three factor stress 

treatments, 1 found instead that after stress treatments, trees prioritized the 

maintenance of high levels of NSC concentration over growth, especially under 

heavily stressed treatments. The fact that trees maintain this high NSC concentrations 

suggest that storage competes for carbon at the expense of growth (active process). 



176 

Overall, we found that there was no clear relationship between the ecological 

strategies of a tree species and its investment in NSC storage (Chapter 2). Regardless 

of species functional strategies, trees increased priority of NSC storage over growth 

after low or high carbon-limiting conditions (active allocation to reserves) (Chapters 

3 and 4). These results suggest that allocation of NSC to reserves has evolved as a 

central preventive measure to ensure long-term survival over shorter term growth 

(Gibon et al. 2009; Wiley 2013), since long-term survival depends more on the 

carbon avai lable to maintain metabolism and hydraulic integrity (e.g. turgor 

maintenance, osmoprotection, and embo lism repair; Wiley 2013) than on continuous 

growth. 

Our results suggest a re-evaluation of the role of the carbohydrate reserves in the 

growth, survival and response to sudden stresses. New research effotts shou ld focus 

on determining the specifie function of the increased carbon al located to reserves 

under severe stress events, and in estab li shing the physiological mechanisms that 

regulate such active carbon allocation to storage over growth . The use of stable 

carbon isotope labeling would provide information about the use of carbon between 

growth and storage in trees under stress condit ions. Thus, the quantification of the 

allocation of reserves to different plant organs, as weil as the ratio of growth to 

reserve storage through time cou ld provide valuable information about function and 

control of reserves. 
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