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RÉSUMÉ 

Dans ce mémoire de maîtrise, nous faisons une analyse de la grippe (Influenza 
Like Illness, ILl) à part ir des données qui sont disponibles sur le site des "Centers 
for Disease Control and Prevention" (CDC ), aux États-Unis. En ut ilisant ces 
données, nous développons une approche en analyse de survie en considérant des 
patients qui ont un test positif à la grippe. De plus , nous traitons les données 
comme censurées par intervalle, et nous appliquons des méthodes de censure par 
intervalle pour estimer la fonction de survie. Les estimateurs de la fonction de 
survie sont ut ilisés pour comparer certaines saisons de grippe, différents groupes 
d'âge et des régions. En utilisant l'estimateur Kaplan-Meier et en appliquant des 
méthodes de censure par intervalle, les estimateurs de la fonction de survie sont 
différents, mais pour ce qui est des résultats des tests d 'hypot hèses, les conclusions 
des t ests de log-rank respectifs sont identiques dans la plupart des cas. 

Mots-clés: données CDC ILl , fonction de survie, Kaplan-Meier , censure par 
intervalle, comparer les fonctions de survie, test de log-rank. 





ABSTRACT 

In t his M. Sc. thesis , we analyze the Influenza Like Illness (ILl) data available on 
the site of the Centers for Disease Control and Prevention (CDC) , USA. Using this 
data, we develop a survival approach by considering positive fiu tested patients. 
Moreover, we treat the data as interval censored, and we apply interval censoring 
methods to estimate the survival functions. Further , the survival estimators are 
used to compare sorne fiu seasons, different age groups and regions. The survival 
estimates are different when applying Kaplan-Meier at the reported event time 
and applying interval censoring, but in hypothesis t esting the conclusion of the 
respective log-rank tests are the same in most cases . 

Key words: CDC ILl data, survival function, Kaplan-Meier , interval censoring, 
comparing survival functions , log-rank test . 
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I TRODUCTION 

The main purpose of this thesis is to introduce an innovative approach to a study 

of the fiu data presented by the CDC (Centers for Disease Control and Preven­

t ion). We mainly use the data found through a tool called "Flu View Interactive", 

available on the CDC (U.S.) website. Different types of datasets are available to 

be downloaded throughout this tooL For example, the most important data-set 

used in our analysis is the U.S. national and regional numbers of people with 

influenza like illness (ILl) for seasons from 1997- 1998 until now. These are vis­

iting patients at the GP practices that participate. Related available datasets on 

FluView Interactive are the regional number of ILl for 10 regions of U.S. and the 

distribution by fiu types for sorne other subjects. 

The aim is to create, study and compare sorne survival functions by considering 

the number of people who get sick every week (ILl cases) among the patients of 

a network of about 2000 surveillance clinics. Since the CDC is not keeping track 

of the people who visit the participating clinics over time, we consider only the 

reported ILl cases in our analysis; then, a cohort data is created using patients 

with ILl in order to apply survival analysis techniques. To estimate the survival 

function, a fixed t ime To (typically 30 or 52 weeks) is picked and we work condi­

tionally, i.e. we consider sorne S(tiTo) conditional survival function for the time T 

to develop the fiu symptoms. 

The number of patients with ILl is reported once a week, and thus the exact 
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t im of getting flu is not known; therefore, one can consider th event t ime to 

be interval censored. In t he availablc datasets , the fl.u t ime is reported at the 

end of the week and this could be taken as the exact event time. On the other 

hand , as the flu could have started in t he previous week, we created interval cen­

sored data; further we applied interval censoring to this data to estimate survival 

functions. on-parametric estimators of survival functions , applying interval cen­

soring methods like Turnbull (1976) are developed to estimate survival functions . 

Also we considered the end of the reported weeks as the exact event time and the 

mpirical survival function was given in order to compare these functions with 

the survival functions using interval censoring methods. To compare survival es­

timates through different populations, log-rank test are impl mented. 

The content of the chapters in this thesis is as follows: the sources of data available 

on the CDC w bsite is presented in Chapter 1. In this Chapter, we describe as 

w ll how to create a data et to which survival analysis can be applied. Interval 

censoring is discussed in Chapter 2 and we implement this method in order to 

answer the problem of unprecise reporting of the event t ime. The main objective 

of Chapter 3 is to compare survival functions when considering different seasons, 

age groups and regions. Another objective is to compare the results obtained by 

con idering th empirical urvival function and the interval censored methodology. 



CHAPTER I 

DATA PRESENTATIO FROM A SURVIVAL ANALYSIS PERSPECTIVE 

The data 'of our study is collected by the Centers for Disease Control and 

Prevention ( CDC) , USA. The Epidemiology and Prevention Branch in the In­

fluenza Division at CDC gathers and analyzes information on influenza activity 

in the United States and posts sorne of these data on FluView and FluView 

Interactive. Flu View is a weekly influenza surveillance report , while Flu View In­

teractive allows us to visualize t he influenza surveillance data. The main data 

resource for dat a analysis in this thesis is available on Flu View Interactive. The 

influenza surveillance system of U.S. is a collective production between CDC and 

its many partners in st ate, local, and t erritorial health departments, public health 

and clinical laboratories, vital statistics offices, healt h care providers, clinics , and 

emergency departments. 

The information that is collected from different data sources allows the CDC to 

discover when and where influenza is happening. Using this information , CDC can 

determine influenza viruses type and can measure hospitalization and mortality 

caused by influenza. There exist five categories of Influenza Surveillance which 

are: Virologie Surveillance, Outpatient Illness Surveillance, Mortality Surveil­

lance, Hospitalization Surveillance and Summary of the Geographie Spread of 
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Influenza. 

Flu View Interactive provides databases and sorne graphies for these different cat­

egories of information. In Section 1.1 sorne of these categories of data are intro­

duced. 

1.1 Flu View Report 

The CDC Flu View report presents weekly influenza surveillance information through 

the United States. Through the Flu View Interactive website, we hav access to 

this data since 1997 - 1998 to the current season. Sorne of the organizations 

which provide this data are: the U.S. branch of the World Health Organization 

(WHO), National Respiratory and Enteric Virus Surveillance System ( REVSS) 

collaborating laboratories and U.S. Outpatient Influenza-like Illness Surveillance 

etwork (ILI et) . We how below how sorne of thi data is visualized on the 

Flu View Interactive website. 

An available graph for the Virologie Surveillance is t he Line Chart ILl et . Line 

Chart ILI1 et is available for each flu season. In t his chart , the percentage of visits 

for ILl is reported weekly. Figure 1.1 shows this graph, for 2014- 2015 flu season. 

T he influenza sea on starts on the Sunday of the week 40 of the year which falls at 

about the end of September and the beginning of October . Health care providers 

report the total number of patients and th number of patients diagnosed with 

infl uenza like illness (ILl) by age group (ILITOTAL). ILl is defined as f v r (tem­

p rature of 100° F[37.8°C] or greater) and a ough and/ or a ore throat without 

a known reason ether than infl uenza. 
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Figure 1.1 Line Chart ILINet . 

In the data reported by ILINet, for each season, the variable ILITOTAL is re­

ported weekly. Both public health and clinicallaboratories, situated throughout 

the United States participate in the virologie surveillance for influenza, but their 

influenza testing technique can differ . They both provide useful information to 

observe influ nza activity, and report age or age group of the patient , if available. 

Also they do examinations for positive influenza testing and influenza virus type. 

In the Flu View Line Char t data, the number of influenza-like ill ness (ILl) is shown 

by age groups. Finally, cumulative ILl totals are provided for each season . We 

can look at the variable "Age" as an explanatory variable in t he statistical model 

of our study. We come back to this issue in Chapter 2. 

In Table 1.1 , we can see how the FluView Line Chart data, available at the U.S. 

WHO/ NREVSS Collaborating Laboratories and ILl et are presented. Table 1.1 

shows the data on the first 10 weeks of the 2014-2015 flu season. The first column 

of t his table is t he 'Week" which starts by week 40. The next five columns are 

"Age groups" as follows '0 - 4" years, '5- 24" years , "25- 49" years, "50- 64" 

years and " > 64" years . In column 7, the total number of ILl is given. The 
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Table 1.1 First 10 weeks of ILINet data, 2014-2015. 

Week 0-4 5-25 25-49 50-65 > 65 ILl Total Num of Providers. 

40 2985 4078 2056 725 530 10374 1988 

41 3125 4534 2209 866 563 11297 2010 

42 3483 4806 2377 880 581 12127 2045 

43 3486 5027 2520 906 535 12474 2055 

44 3652 5172 2316 815 535 12490 2097 

45 4303 5878 2421 889 611 14102 2098 

46 4433 5836 2332 916 592 14109 2028 

47 4765 7449 3025 1078 650 16967 2090 

48 5468 6964 3401 1188 890 17911 2100 

49 6206 9220 4765 1812 1244 23247 2133 

number of providers is sp cified in the last column. 

r: 
~ = 

Ill 

.. , 

~= ' l ::.) ., 
" 

~ .... ...:::::~~~===- :· 

li!! • •, .. ,, ~ · · ~" ' ea • ·~'~~IHofW'II-·•- ... Iil • .. ...,..,, 
E!l ·~~~ B • ~ .. ! NI -IJt B • • ,... ..... 1 1* 0~ 

Figure 1.2 Stacked Column Chart WHO/ NREVSS 2014-2015 season. 

As discussed previously, from bath sources public health and clinical laboratories , 

u eful information to monitor influenza activity is provided. Clinical laborato­

ri do the examination to diagnose t he flu and the data provided by them gives 

valuable information on t he t iming and intensity of influenza. Public healt h labo-
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ratories do the examination on specimens to diagnose influenza virus type in each 

group of patients. Sorne of specimens from the clinical laboratories may be sent 

to public health laboratories to do further examinations. 

For each week, they both report to the CDC the total number of examined speci-

mens and the number positive for flu. Also "Age" or "Age Group ' of the person is 

reported, if available. Figure 1.2 gives in 2014-2015 the FluView chart reported by 

the "U.S . WHO/ REVSS Collaborating Laboratories' . The number of influenza 

positive specimens is given weekly in this chart. Public health laboratories present 

Table 1.2 First 10 weeks of ILl et data, 2014-2015. 

WEEK TESTED A(H3) A(H1N1) A(Subtyping B(Lineage 

SPECIME 8 not Performed) U nspecified) 

40 9567 100 2 97 110 

41 11036 125 5 149 160 

42 11729 226 7 186 164 

43 11385 212 5 200 127 

44 11531 295 4 292 136 

45 12918 506 6 489 155 

46 13777 633 8 629 147 

47 16166 1002 5 1233 163 

48 18504 1538 8 1878 200 

49 23068 2585 13 2483 249 

the weekly total number of tested specimens, the number of positive flu test s, and 

the number of flu viruses by type. In Table 1.2 a part of t his data is presented. 

This table shows th total number of tested specimens and sorne influenza types 
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in t he first 10 weeks of the 2014 - 2015 flu season. The week number is t he first 

column of t his table and total specimens and sorne flu types are shown in t he 

following columns . 

.... , 

Figure 1.3 Age Group Distribut ion Of Influenza, 2014-15 Season. 

Another graph which allows to visualize t he fl.u data, which is provided by CDC 

in F lu View, is the age distribution of influenza positive samples. The data is 

reported from public health laboratories. Figure 1.3 shows how this datais pre­

sented on t he CDC site, in the 2014 - 2015 flu season. In t his graph, t here are 

4 "age groups", namely: 0-4. In each age group, the graph shows the number of 

specimens by week. Virus types are indicated by different colours, as specified in 

t he figure . 
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Figure 1.4 Influenza virus type distribution, 2014-15 Season. 

Flu View provides another visualization tool for the age group distribution of in­

fluenza positive specimens. Figure 1.4 illustrates this type of data visualization. 

Here the graphs are divided by "virus type". For each virus type, the number of 

positive specimens is showed weekly, separated by age groups . 

Table 1.3 Virus View in four Age groups by season , 2014-2015 . 

Virus 0-4 yr 5-24 yr 25-64 yr 65+ yr 

A(H3) 3113 9108 9154 12852 

A(H1N1) 25 37 89 12 

A(Subtyping not Performed) 33 81 108 119 

B(Lineage Un pecified) 536 1846 2004 1199 

H3 2v 0 2 0 0 

Generally, t here are five different virus types, who are: A(H3) , A(H1N1), A(Subtyping 
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not Performed) , B and H3N2v. In the reported number of positive specimens, 

age groups are distinguished by colours. In Figure 1.4 the corresponding colours 

and age groups are mentioned in detail. 

Data Excel files can be downloaded through the FluView Interactive application. 

In Table 1.3, the data for the age group distribution on influenza positive tests is 

given by season. Indeed, the number of specimens with a positive t est result is 

given by different age groups for each virus type. In this table, the given num­

ber is not the weekly number but the number of patients for the whole season 

2014- 2015. For example, we can see in this table t hat 3113 children of age 0 to 

4 years old had A(H3) flu type during the 2014- 2015 flu season. 

ILI et comprises more than 2900 subscribed outpatient health care providers in 

all 50 states, Puerto Rico, the District of Columbia and the U.S. Virgin Islands. 

Each year , they report more than 36 million patient visits. Health care providers 

around the country report data on the total number of visiting patients and the 

ILI total by age groups , to the CDC. Influenza positive tests datais also reported 

to the CDC by HHS Region. Using this data, it is possible to compare t he flu in 

different U.S regions. 

The list of 10 U.S. Regions for influenza season are: 

Region 1: Connecticut , Maine, Massachusetts , ew Hampshire, Rhode Island , 

and Vermont 

Region 2: ew Jersey, New York, Puerto Rico , and the U.S . Virgin Islands 

R egion 3: Delaware , District of Colombia, Maryland, Pennsylvania, Virginia, 

and West Virginia 
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Region 4: Alabama, Florida , Georgia, Kentucky, Mississippi , North Carolina, 

South Carolina, and Tennessee 

Region 5: Illinois, Indiana , Michigan , Minnesota , Ohio, and Wisconsin 

Region 6: Arkansas, Louisiana, New Mexico , Oklahoma , and Texas 

Region 7: Iowa, Kansas, Missouri , and ebraska 

Region 8: Colorado , Montana, orth Dakota, South Dakota , Utah , and Wyoming 

Region 9: Arizona, California, Hawaii , and Nevada 

Region 10: Alaska, Idaho, Oregon, and Washington 

®Mot tr.t t nth.-n tt 

• .:. (., INIIC:œOt• l 

4 t~I"='! Pw'l~· ' ... , 

Figure 1.5 Influenza Positive te ts , by Region, 2014-15 Season . 

As an examplc, influenza posit ive tests rcpor tcd to CDC and ILI-Activity, season 

2014- 15, by 10 U.S. regions, is displayed in the map , given in Figure 1.5. 

In Section 1, we discussed different types of flu data, reported by CDC which 

is available in F luView. We have studied sorne of this data as described in the 

following sections. 
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1.2 A study based on Survival Analysis 

1.2.1 Limitations of the CDC statistics 

In the data ba es which ar available at the CDC, the flu disea e is tudied for the 

whole United Sta tes population. The number of studied peopl (Total Patients) 

and the number of people diagnosed by ILl (ILITotal), is accessible weekly in the 

data reported by collaborating laboratories and ILINet. This datais re-weighted 

as on the example given below (they take into account the population size), for 

the flu season 2014- 2015 is shown in Table 1.4. 

Table 1 .4 First 5 weeks of ILII et data, 2014-2015. 

Week ILl Total Total Num.Providers % UnweightediLI % WeightediLI 

40 10374 847743 1988 1.224 1.182 

41 11297 838183 2010 1.348 1.347 

42 12127 851592 2045 1.424 1.391 

43 12474 868755 2055 1.436 1.450 

44 12490 862144 2097 1.449 1.444 

In this table, b sides ILITotal and Total (total patients), um.Providers (I um­

ber of Provider ) , the proportion of people diagnosed with ILl (% UnweightediLI) 

and (% WeightediLI) are given weekly. This proportion is the ratio of ILITotal 

over Total Patients. Unweighted ILl is also call d "p rcentag of vi its for ILl", 

and it is shown in the FLUVIEW for very w k. Figure 1.1 demonstrates the 

percentage of visits for ILl by week for the season 2014 - 2015. pre ented in 

the Figure 1.1, th flu season start at week 40 of each year. To study each flu 

season, since we need to tart the time (week) from 1 we corr spond week 40 to 
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1, week 41 to 2 and et c. 

In Figure 1.1 , we can study the percentage of people diagnosed with ILI through 

weekly visits to t he provider clinics. As it is clear in this figure, in t he week 

52 (week 11 of t he fl.u season), the percentage of visits for ILI has its maximum 

value. Indeed , Figure 1.1 , present s t he pere ntage of visits for ILI t hrough differ­

ent weeks of the indicated season. As noted on the CDC website, such proportions 

cannat be compared between seasons and regions, as they vary due to many fac­

tors. In part icular the age distributions can be very different among GP practices. 

In this thesis, we propose to address this problem and consider the cohort of peo­

ple who visit the clinics over t ime, and eventually get the fl.u in one given season. 

This way, when comparing proportions, it is only the make up of the diseased 

cohort that matters, and this makes sense. Once the cohort is created, the follow­

ing study can be made: Over fixed t ime intervals (for example after every week), 

what is t he proport ion of people who "survive" or have not gotten t he fl.u yet? 

Among "survivors" or non-sick ones, what is t he ratio of people who get sick? In 

this context , in the population which we study and at a given time, people who 

do not s ill get t he fl.u are called survivors at that t ime. When the same peo­

ple are studied over a specified fl.u season, t he t ime to get fl.u for this population 

by week will be from 1 to 52 weeks, when every one fell ill by the end of the season. 

1.2.2 Creating a cohort data 

ILITotal is the number of people wit h influenza like illness among "Total Patients 

(Total)", where "Total Patients;' are t he people who go to t he provider clinics each 

week. We would like to concent rate on a fixed group of people who visit t he 
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provider clinic but if we count all patients who visit clinics, we may count sorne 

people more than once. When someone goes to the clinic who doesn 't have the 

flu , he/ she may visit t he clinic again. Also among t hese people, many of t hem do 

not have the experience of getting fiu at all in t he studied season. 

To prevent having t hese problems, for a specified season, a way out is to count all 

given weekly ILITotal in t hat season. If someone is diagnosed by influenza , he/ she 

will not get it again for a given year . Therefore we cannot count sick people more 

t han once in each fiu season. Since ILITOTAL is reported weekly, we can look 

at it as the number of events occurring every week for a given season . In other 

words , we take ILITotal as the size of new population where all get influenza by 

the end of a specifie fiu season. In t his given season, we gather all t he people 

who got influenza and t his is a group of individuals with a common property, i.e. 

getting flu by the end of t he indicated season, or less than 52 weeks. 

This new group of individuals, who have shared together t he event of getting the 

fiu , during a particular flu season forms a "cohort" followed for a year. For any 

flu season, we can create t his new population using the ILITotal variable. Follow­

ing this cohort data through time, we can study the proportion of the ones who 

"survived" at the end of each week, in different age groups, different U.S regions , 

different flu seasons and other available factors. Still, in most years, both methods 

give the same week for the maximum percentage of ILl cases. 

Using this cohort data, we can compute the percentage of ILl cases by week, by 

taking the proportion of ILITotal of t he week among all the people who got flu 

in the whole season. In Figure 1.6 we note t hat in Season 2014-2015, the ILl per-
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Figure 1.6 Comparison of given ILl percentage as reported by the CDC and 

calculated as the ILl weekly percentage among all ILl cases in the 2014-15 Season. 

centage as given at the CDC site is almost equal to the ILl percentage computed 

from the cohort data, but this is not always the case. 

1.3 Survival and hazard function, basic notions 

Survival analysis involves the modelling of time to event data. Death or failure, 

for example, getting sick in this context , is considered an "event, in t he survival 

analysis literature. This statistical method is defined as a set of methods for 

analyzing data where the outcome variable is the t ime until an event of inter­

est occurs. Survival analysis attempts to answer questions such as: what is the 

proportion of a population which will survive past a certain time? Of those that 

survive, at what rate will they die or fail? How do particula r circumstances or 
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characteristics increase or decrease the probability of survival? 

The survival function is t he probability that a subject survives past the time T . 

A survival funct ion of the random variable T is defined as 

S(t) = P (T > t) . (1.1) 

In Figure 1.7 and Figure 1.8, we can see general examples of a survival function 

S. If T is a continuous variable, its survival function should behave like the one 

in Figure 1.7. As for Figure 1.8, we can consider that it represents an estimate of 

such survival functions. 

S(O) 

1 
Thcorctical S(t) 

S(t) 

0 t 

Figure 1. 7 Survival curve in theory, Kleinbaum & Klein (2006). 

At the beginning of t he study, there exists no event , so t he estimated survivais 

starts from roughly 1. If by the end of the study all individuals experienced the 

event S(t) will descend to 0, otherwise, S(t) is still posit ive and undefined beyond 

this point . 

One fundamental quantity in survival analysis is the hazard function, denoted by 

h( x) . This function is defined as: 



S(t) 

0 t 

S( t ) in practice 

1 
1 
1 

Study end 

Figure 1.8 Survival curve in practice, Kleinbaum & Klein (2006). 

h(x) = lim P [x::; T <x+ ~x iT 2: xJ. 
t-.x---+0 ~x 
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(1.2) 

The hazard function provides the instantaneous potential to occur the event , per 

unit time given the condition of survival up to time t, Klein & Moeschberger 

(2005) . The hazard function concentrates on failing, which is in contrast to the 

survivor function. The hazard is a rate, rather than a probability and its values 

range between zero and infinity. The following equation, (1.4) shows the relation­

ship between survival and hazard function. If T is a continuous random variable 

of probability density function f (x), then its survival function is 

S(x) =loo f(t)dt , (1.3) 

while its hazard function is 

h(x) = f(x) / S(x) = -dln[S(x)]/ dx. (1.4) 

Further , H(x) or t he cumulative hazard function is defined as H( x) =fox h(u)du. 
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Therefore, if T is continuous then 

S(x) = exp[-H(x)] = exp [-lx h(u)du]. (1.5) 

An estimate of the cumulative hazard function H(t) is the "Nelson Aalen" esti­

mator , which is defined up to the largest observed t irne of study as follows: 

(1.6) 

where di is the number of events at the event t ime ti, i = 1, .. . , m , and ni or n(ti ) 

is the number of susceptibles at ti (i .e. the number of individuals at risk just 

before t ime ti ). An estimate of the hazard rate at an event time ti is given by 

1.4 Unconditional and Conditional survival functions 

In general, if T isa continuous random variable, its survival function is decreasing 

from 1 to O. Survival curves are available in many different types but they have 

sorne common properties. They all are monotone, non-increasing functions. The 

value of survival functions are S(O) = 1 and this value approaches zero when the 

time x approaches infinity. 

In the reported data, the variable of interest in our study is presented as t he num­

ber of cases or ILI ( defined accordmg to a specified protocol) , among number of 

visits. As mentioned above, in this study, the data provided by health agencies 

is not cohort data, but rather a cohort we have created out of this data. As ex­

plained in Section 1. 2.1, t his cohort is formed by the people who have experienced 

ILI , as reported by t h provider clinics . 

Thus, in the present treatment , the main idea is to use only the reported cases 
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in the analysis and treat them as a cohort (since in principle they cannot come 

twice for the same condition) , in other words to work conditionally. This approach 

cornes to considering a conditional survival function 

S(tjTo) = Pr(T > tiT::::; Ta). (1.7) 

where To is a fixed t ime (typically 30 or 52 weeks). The conditional survival 

function (1.7) is a proper survival function for a new variable T, where 

Pr(T > t) = S(tiTo). 

In what follows , we introduce an example of a conditional survival function and 

compare it with t he unconditional survival function. Consider the Weibull distri­

bution and its survival function, S(t) = exp( -)da) , where À > 0 and a > O. In 

Figure 1.9, a survival curve of Weibull distribution and its conditional survival 

curve are illustrated , For the case where a = 3 and À= 0.00208. The conditional 

survival curve is defined as: 

S(tiTo = 8) = Pr(T > tiT < 8). 

The value of this conditional probability can be calculated as the following 

Pr(T > t , T ::::; 8) 
Pr(T::::; 8) 

Pr(t < T::::; 8) 
Pr(T::::; 8) 

Pr(T > t) - Pr(T > 8) 
1- Pr(T > 8) 

In Figure 1.9, we present S(t) and S(tjTo). 

S(t) - S(8) 
1- S(8) . 

L_ _____________________________________________________________________ _ 
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Figure 1.9 Weibull Survival functions for a = 3, À = 0.00208 (red dotted curve) 

and conditional survival curve S(tiTo = 8) (blue dashed curve). 

1.5 Estimating t he survival functions 

The aim of this section is to explain how can one estimate survival functions, for 

t he flu data provided by U.S. healt h agencies, considering t he reported week of 

getting the fiu , as the event's time. By assuming these weeks as the event time, 

we can estimate the survival function for the data of our study. 

In this part , after a brief review of some definitions, we illustrate the concepts by 

considering a specifie flu season "2014 - 15"; further, a non-parametric estimate 

of the survival function, using the R software, is calculated. 
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The objectiv of this section is to describe a non-parametric estimate of the sur­

vival function. When all event t imes are exactly known, an obvious estimate of 

S(t) would be the empirical survival function , 

1 n 

S(t) = - L !{ti> t} , 
n 

(1.8) 
i=l 

where I is the indicator function that takes the value 1 if the condition in braces 

is true and 0 otherwise. Clearly this estimator is the proportion of alive (people 

who have not experienced the event) , at time t. We say these people survived at 

time t , as defined in the previous section. 

Kaplan and Meier (1985) extended this survival estimation to a specifie type 

of missing information , namely censored data (see section 2.1). This estimator is 

known as the pro duct lim it or K aplan-Meier estimator and can be computed 

in the case where there is no missing information as follows. Let 

represent ordered times of events ; let di be the number of events at ti, and let 

ni be the number of subjects at risk at ti . In other words, ni is the number of 

people who experienced no event , survivors just before ti, or the number at risk at 

time ti· The Kaplan-Meier estimator is the nonparametric maximum likelihood 

estimate of S(t): 

S(t) = II (1- di) 
n · 

i: ti <t t 

(1.9) 

and it can be shawn that S(t) = S(t) when there is no missing information. The 

idea behind the estimator is the following. Surviving to time t means you should 

survive to t 1 ; fur th er, you should survive from t 1 to t 2 , given that you already 

survived to t 1 , and so on. There is no event between t i- l and ti, so the prob­

ability of an event between these times is zero. The conditional probability of 
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having the event at ti given that there is no event right before this time, can 

be estimated by di/ni· The conditional probability of surviving to time ti is the 

complement 1- di/ni· The overall unconditional probability of surviving to time 

t is obtained by multiplying the conditional probabilities for all event times up tot . 

In our data, since there is no censoring, the Kaplan-Meier estimator or product 

limit estimator equals the empirical survival estimate. In what follows we use 

either Kaplan-Meier estimator or the empirical survival estimate interchangeably. 

1. 5. 1 An example of empirical survival estimates for complete dat a 

The empirical survival curve is a step function which has jumps at event times. 

Figure 1.10 represents the survival curve to study the evolving of ILl over time. 

The est imated survival function is defined on the created cohort data using the 

reports of ILINet (Table 1.4) , for the fl.u season 2014 - 2015. 

In the following t able (Table 1.5) , we can see the value o.f some survival estimates 

in t his fl.u season. The first column is t he t ime of t he event i. e. the week of 

report ing fl.u. The following columns are the number at risk , the number of events 

and the last column gives th survival estimates at the end of each week, in the 

given season. 
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Figure 1.10 Empirical Survival Estimate for ILINet data 2014-2015. 

Table 1.5 Sorne values of survival estimates of ILINet data 2014-2015. 

Week At risk Event Survival 

40 794902 10374 0.987 

41 784528 11297 0.973 

42 773231 12127 0.958 

43 761104 12474 0.942 

44 748630 12490 0.926 

52 16027 8026 0.01 

53 8001 8001 0.00 
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CHAPTER II 

I TERVAL CENSORING METHODS AND HOW TO APPLY THEM IN THE 

CDC FLU DATA 

In many applied fields such as medicine, biology, epidemiology, public healt h, en­

gineering and economies, we need to analyse time to event data. Time to event 

data sets usually contain censored observations. The data is censored when the 

exact event time for an observation is not known and we only know that the event 

happened in a certain period of time. One of the possible types of censoring is 

right-censoring. Right-censoring emerges when all we know about the event is 

that it occurred after a given time. Left-censoring arises when the event time of 

the observation is prior to the time of observation. Interval censoring, which is 

the general case of censoring , appears in a case where the event is known only to 

have taken place in sorne interval. 

2.1 Missing information in time to event data 

In this section we recall sorne concepts of various categories of censoring, such as 

right-censoring, left-censoring and interval-censoring. 
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2.1.1 Interval-censoring, the general case 

A general case of censoring happens when the only known information we have 

about the event time T is to be in an interval of time, [L , R], where L ~ T ~ R; L 

is the left endpoint and R is the right endpoint of the censoring interval. Interval­

censoring can occur in a clinical trial, for example, when patients are assessed 

only at periodic or pre-scheduled follow-up . When all sequences of t ime are in­

dependent of the event time we say that t he cen oring is non-informative. 

Exactly observed, right and left-censored data are special cases of interval-censored 

data. When the event occurs exactly at the moment of a visit , an exact survival 

time Ti = Li = Ui is observed. If R = oo, then the event time is in this interval 

[L , oo) and the event time is right-censored. In th case L = 0, the failure time 

is not observed and it lies in (0 , R), therefor the failure time is a left-censored 

observation. Consequently interval-cen oring is a generalization of left and right­

cen oring. 

As noted in Law & Brookm yer (1992), when dealing with interval censored data, 

a common approach in practice is to assume that the event occurred at the end 

(or beginning or mid point) of each interval, and then apply methods for standard 

time to event data. The authors note that this approach can lead to invalid in­

f r nees, and in particular will tend to underestimate the standard errors of the 

estimat d param ters. In ord r to s e the differ n of survival estimate using 

diff rent approach , in Chapter 3 we calculated survival functions at the mid­

points of time interval and u ing interval censoring method (Figure 3.1). 
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2.2 Why censoring is needed in the survival data of our study 

As mentioned in Chapter one, when we put together all the people who got the 

ftu each week (all cases), we have a new population of individuals who all get sick 

by the end of each ft u season ( October 3th). The main idea of this thesis is to 

estimate the survival function for this cohort data provided by ILINET. When 

this conditional survival function is estimated, we can compare it in different sit­

uations . 

In this study and in the data illustration of this thesis, the event of interest is 

the time to catch the ftu. But in the reported data of health care providers and 

clinics, the exact time of getting t he ftu or the exact failure time is not observed. 

The only known time is the reporteèi time (by the GP) , which is the end of the 

week where the patient visited the clinic. In this section, we discuss this problem 

of reporting the event-time and a solution for that is given. 

2.2.1 Problem with reporting the event time 

Indeed, the event of interest or getting sick in the data of our study is reported 

once a week. All we know about the reported event time is the week where a new 

case was observed (went to visit a doctor). But for each case, we don 't have the 

information on the exact starting time of the disease. By assuming the week of 

reporting cases as the event-time, for each individual , the event is considered to 

happen in this reported week. But the start of the disease can be in the previous 

week of reporting. Therefore , the information conveyed by health agencies and 

clinics, does not provide the exact time of getting the ftu. In other words , t he 

reported time of an event in the data of our study is not a precise event-time. 
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Collaborating laboratories consider Sunday as the start day of the week in their 

reports . Influenza can last for about two weeks . Usually when people get fln they 

go to the clinic in their first week of disease but not the first day. For example, 

if a patient gets sick on Sunday, it is very probable that he/ she goes to the clinic 

bcfore ncxt Sunday. But whcn somcone gets flu on Friday and goes to the clinic 

on the next Sunday or after that, his reported event time of getting flu will be set 

in the week where he/ she went to the clinic. In this case, the week of going to the 

clinic is a week after t he week of getting t he flu . Therefore, the event of interest 

can occur in the same week of reporting it or in a week before going to the clinic. 

If we consider reported weeks as the time of event , the estimated survival functions 

could be biased . The aim is to consider this existing imprecision in the available 

reported event time. 

2.2.2 A given solution for reporting the event time 

We assume that the duration of flu is over two weeks. Considering t he t ime t 

as the reported time of visit, the real failure time (measured in weeks) , is in this 

interval: [t-1 , t] . Since in this study the event- t ime or the time of getting flu is in 

an interval, we lmve iuLerva.l cew;ureù ùa.ta.. In this thesis anà in the àata analysis 

here, interval censoring methods are applied to estimate the survival functions 

(with or without covariates) . 

As mentioned before, interval censored data arises when a failure time t is not ob­

erved, but can only be determined to lie in an interval obtained from a sequence 

of observed t imes. In this study, t he real event time is eit her in the reported 
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week or in a preceding week. For example if the observed week of getting f:l.u 

(event-time) for personA is week 14, the actual week of starting f:l.u (t) is either 

during week 13 or during week 14. In other words , the real event-time is in this 

interval of time: [13, 14]. So 13 ::; t ::; 14. Existence of interval censoring in 

the reported 'event-t ime" is now clear . If t is the t ime wher one gets the f:l.u , by 

considering the time interval [t -1 , t], we can apply interval censoring to this data. 

From now on, in all st atistical analyses that are used, the method of interval 

censoring is applied. Indeed , we changed the variable of event-time in our data 

to a time interval variable. In the following sections after giving orne essential 

concepts and defini t ions, we apply a nonparametric method to estimate survival 

functions in the presence of interval censoring. 

2.3 Nonparametric survival estimation 

In Section 1.4, the Kaplan-Meier estimator of the survival function was introduced 

(equation 1.11) , and it applies to right censored dat a . In the following section, we 

want to estimate the survival function in the presence of interval censored time 

data. As previously discussed, for the Kaplan-Meier estimator , we use a nonpara­

metric procedure here, which is an initial investigation tool. First it is needed to 

describe the survival time and then the survival function can be estimated. The 

main factors or the covariates tha t are used in our survival models are qualitative 

and with few levels; thus, the quantitative variables can be categorized. For ex­

ample, age can be classified into t hree or four categories such as 0 to 5 years, 5 to 

10 year and o on, Giolo (2004). 

If the event of interest is not observed for all individuals, an indicator variable 
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for censoring should be defined. Sorne lines of a typical data-set are presented in 

Table 2.1 , to illustrate how a data-set should be organized for an analysis in R. 

Table 2.1 Rows of an example of a data-set . 

le ft right therapy censored 

5 11 1 1 

12 27 1 1 

0 14 1 0 

18 NA 1 0 

19 A 0 0 

10 16 0 1 

21 32 0 1 

The example shown in Table 2. 1, is a general form of an interval censored data­

set . In t his data-set , it is assumed that for each individual the event took place 

between an upper and lower time limit . The upper limit "NA" means that the 

upper limit of t his time interval is not available, or the data is right censored. 

If time is measured in weeks , the time interval [18, NA) means t hat the event of 

interest for this observation happened after the week 18. This observation can 

be presented in the form [18, oo) as well. The same type of censoring is applied 

to [19, NA). For the other observation [0, 14], as mentioned in Section 2.1.2 , the 

event time is left censored. In this toy, the censoring indicator variable i assumed 

to be known. Also there is a treatment variable (1 or 0). 

In this section, an analog to the Product-Limit estimator of the survival function 

for interval censored data is presented. This estimator has been suggested by 
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Turnbull (1976) , and we use the algorithm described in Giolo (2004) and Klein & 

Moeschberger ( 2005). 

2.3. 1 An algorithm for Turnbull's method to estimate survival functions 

The following algorithm shows the step by step Turnbull 's method to estimate a 

survival function, in the case of interval censored data. 

Step 0 : Let (Li, Ui] (i = 1, ... , n), be the n observed t ime intervals. Note that 

the event times of interest are in these n intervals . We put all the times Li and 

ui together and order them. So let 0 = To < Tl < . . . < Tm are the values 

{ L1 , U1, L2, U2 , . .. , Ln, Un } in increasing order. ote that in sorne cases, Li = L~ 

or Li = u;, i -1- i '. Therefore, for the ith observation we define a weight a.iJ as 

follows 

otherwise, 

where j = 1, . . . , ~. This weight a.ij specifies if the event which occurs in (Li, Ui] 

could have happened at time TJ. The algorithm counts of the following steps, 

Step 1: Calcula te the probability of an event occurring at time TJ, denoted by 

j = 1, . .. , ~ ~ n. (2. 1) 

If we apply the definition of survival function to estimate S(TJ_1 ) and S(TJ), then 

PJ estimates 1fj 
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Since the event does not occur at the exact time Tj , the probability of an event 

occurring at this t i me is calculated by using the time interval ( Tj _ 1 , Tj], w hi ch 

con tains Tj. 

Step 2 : We estimate the number of events which occurred at Tj , denoted by dj 

Turnbull (1976) 
n 

d· = ~ etijPj . 
J ~ '\"'m ' 

i=1 u k=1 etikPk 
j = 1, ... , m. (2 .3) 

In what follows, we explain why dj can estimate the number of events that occurred 

at Tj· 

Let D i = 2::::=1 CtikPk, where i = 1, ... , n. For each i, D i gives the sum of prob­

abilities of possible events which occurred in (Li, Ui]. To estimate the number of 

events that happen at time Tj, first we fix the time interval (Tj _ 1 , Tj ], and then 

look for all (Li, U i ], i = 1, ... , n which contain (Tj- 1 , Tj]· For each i, pjj D i is 

the proportion of events that happen at t ime Tj when Tj belongs to the interval 

(Li, Ui]; the weighted sum of all these proportions estimates the number of events 

happening at t i rn Tj . ote that dj is not necessarily an in te ger. 

Step 3: Determine the estimated number at risk at time Tj, denoted by lj : 

m 

(2.4) 

The people who are at risk at Tj are the ones who have not yet experienced the 

event un til the time Tj. Therefore, the number of people at risk at time Tj equals 

the sum of the number of events which occurred at time Tj and at t > Tj. 

Step 4: Compute the updated Product-Limit estimator using the number of 

events and the number at risk at time Tj comput d respectively in Steps 2 and 3; 

nam ely: 

(2.5) 
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If the updated estimate of S(.), S(TJ) , is close to the previous estimate of S(.) for 

all Ty's , stop the algorithm, otherwise repeat Steps 1-3, using the updated estimate 

of S(.) . 

In the following part , a small example of interval censored data is considered in 

order to illustrate the previous algorithm. On this example after computing K-M 

estimates, we apply the steps of Turnbull 's method algorithm to calculate esti­

mators of the survival function. 

2.3.2 Using Turnbull 's method in an illustration 

Example 2.3.1. In this small example 9 intervals of time are available. The time 

intervals in the form of (Li, Ui], 1 ~ i ~ 9 are as follows: 

(2, 5]; (2 , 5]; (3 , 4]; (1 , 3]; (5 , 7]; (5 , 7]; (5 , 7]; (3 , 6]; (7, 9] 

Each event of interest happens in an interval, so each interval corresponds to an 

event, but we don't have the information for the exact time of any event. 

If we calculate the K-M estimator of the survival function assuming that sorne 

event of interest happens at all given (Li's and Ui's) times , the following result 

would be obtained: 

Figure 2.2 gives the empirical survival curve for this example with 9 time interval . 

The K-M estimates of survivals are shown in Table 2.2. 

The aim is to illustrate Turnbull 's method, when applied to this example. We 
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Table 2 .2 Empirical survival estimates at the limits of time intervals in Example 

2.3.1 : 

1 Time 1 Survival 

1 0.9444 

2 0.8333 

3 0.6667 

4 0.6111 

5 0.3333 

6 0.2778 

7 0.0556 

9 0.0000 

"! 

., 
0 

<0 
0 

<t 
0 

N 
0 

~ j : ___________ ___ ) 

0 4 6 8 

Figure 2.1 Empirical Survival curv and confidence bands for Example 2.3.1. 
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need to apply all five algorithm steps shawn previously, to compute Turnbull 's 

non-parametric estimate of the survival function. In this computing, we need to 

choose sorne initial estimates of the survival functions like those which are shawn 

in Table 2.2. 

Step 0 Let 

To = 0, T1 = 1, T2 = 2, T3 = 3, T4 = 4, T5 = 5, T6 = 6, T7 = 7, Tg = 9. 

be the grid of times which includes all the points Li and Ui , i = 1, 2, ... , 9. We 

compute the K-M estimators where each Tj is an event time. All the cxi/s are 

shawn in the following matrix A= [cxij]· Since i = 1, 2, ... , 9, j = 1, 2, .. . , 8, we 

have n = 9 and m = 8. Consequently the matrix A is 9 x 8. After introducing 

the matrix A , we will compute sorne of cxij's. 

0 0 1 1 1 0 0 0 

0 0 1 .1 1 0 0 0 

0 0 0 1 0 0 0 0 

0 1 1 0 0 0 0 0 

A= [cxiJl = 0 0 0 0 0 1 1 0 

0 0 0 0 0 1 1 0 

0 0 0 0 0 1 1 0 

0 0 0 1 1 1 0 0 

0 0 0 0 0 0 0 1 

The time interval (To , T 1] = (0, 1] is in none of the given t ime intervals (Li, Ui], i = 

1, . . . , n . Therefore exil = 0 for all i = 1, . .. , n. The next time interval ( T1 , T2] = 
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(1 , 2] is just in (L4 , U4 ] = (1, 3], so in the second column of the matrix A, all the 

aiz 's are equal to 0 xcept a 4z = 1. Other ai/s can be computed similarly. 

Step 1 Probability of an event occurring at time Tj, j = 1, ... , 8. In this step we 

need to use K-M survival estimates in Table 2.2, namely: 

P1 = 5(0)- 5(1) = 1 - 0.9444 = 0.0556 , 

pz = 5(1)- 5(2) = 0.9444 - 0.8333 = 0.11 11 , 

P3 = 5(2)- 5(3) = 0.8333- 0.6667 = 0.1666 , 

P4 = 5(3)- 5(4) = 0.6667 - 0.6111 = 0.0556, 

Ps = 5(4) = 5(5) = 0.6111 - 0.3333 = 0.0 .2778, 

P6 = 5(5)- 5(6) = 0.3333- 0.2778 = 0.0.0555, 

P1 = 5(6)- 5(7) = 0.2778- 0.0556 = 0.2222 , 

p = 5(7)- 5(8) = 0.0556 - 0.000 = 0.0.0556. 

Step 2 Further we compute the number of p eudo events di which occurred at 

Tj, j = 1, ... , 8. To compute t his, first we hould calculate D/s, i = 1, .. . , n. In 

the following , Di 's are computed using the matrix A. 
8 

D1 = L a 1kPk = P3 + P4 + Ps, 
k= l 

D3 = ~ a3kPk = P4, 
k= l 

Ds = L askPk = P6 + P7 , 
k= l 

8 

D1 = L a7kPk = P6 + P1 , 
k= l 

Dg= L agkPk = P8, 
k=l 

8 

Dz = L ŒzkPk = P3 + P4 + Ps , 
k= l 

8 

D4 = 2..._; a4kPk =pz +p3 , 
k=l 

8 

D6 = L a6kPk = P6 + P1 , 
k= l 

8 

D = L: akp~;;=p4+Ps +P6 , 
k= l 
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To compute Di, we need the multiply the row i of the matrix A by the vector 

[pj] = [pl P2 P3 P4 Ps P6 P7 Ps]T. For example D1 = [alj] x [pj], and in the first 

row of matrix A we have a 13 = 1, a 14 = 1, a 15 = 1 and other a1j 's are equal to 

O. Therefore D1 is computed as above. Oth r Di's are computed similarly. In the 

following , dj's are calculated as explained in the algorithm in 2.3.1. 

9 

d
1 

= ~ ailPl = 0 
L.,; D · 
i= l t 
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Since the time interval (Ta , T1] = (0, 1] is included in none of the observed time 

intervals (Li, Ui], i = 1, . .. , 9, the number of events at time T1 , which is denoted 

by d1 , equals O. 

To compute d2 , we need the second column of A and the second time interval 

(T1 , T2] = (1 , 2]. We look at all (Li, Ui]'s where i = 1, ... ,m and the interval of 

our interest (1 , 2] is just in (L4 , U4] . For that reason , in the second column of the 

matrix A , a42 = 1 and all other elements are equal to O. The proportion of events 

of (1 , 2] occurring in the t ime interval (L4 , U4 ] equals to ~~ = 0.400 and the event 

of interest is not happening in other (Li, Ui]'s . Therefore d2 or the number of 

events in (1 , 2] is equal to ~: = 0.400. 

Step 3 The estimated number at risk at time Tj, j = 1, . .. , 8. 

8 8 

yl = l: dk = 9, y2 = l: dk = 9, 
k= l 

8 
k=2 

8 
k=3 

8 

Y4 = 2:: dk = 7.333 , Y5 = 2:: dk = 5.97, Y6 = l:dk = 4.143 , 
k=4 

8 
k=S 

8 
k=6 

y7 = 2:: dk = 3.40, Ys= l: dk = 1. 
k=7 k=8 

Step 4 The updated Product-Limit estimator using the data found in Steps 2 

and 3 is: 

A Yi- d1 
S(Tl) = yl = 1, 

A A Y2- d2 
S(T2) = S(Tl) x y2 = 0.956, 

A A Y3- d3 
S(T3) = S(T2) x Y3 = 0.815, 

A A Y4- d4 
S(T4) = S(T3) x Y4 = 0.663 

A A Ys- ds 
S(Ts) = S(T4) x Ys = 0.460 , 

A A y6- d6 
S(T6) = S(Ts) x Y6 = 0.378, 

A A Y7- d7 
S(T7) = S(T6) x y7 = 0.111 , 

A A Ys- d8 S(Ts) = S(T7 ) x = O. 
Ys 
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As it is clear in the result of Step 4, the updated estimates (S( Tj)) 's are different 

from the previous estimates of survival functions (K-M estimates in (2. 1)) , for all 

Tj's. So we have to redo the process (Steps 1 - 3 of algorithm) , using the updated 

estimates of survival (S(Tj)). Given in step 4, this process should be continued 

until t he difference of updated survivals with t he previous survivals are les t han 

sorne pre specified value, e.g. (lo- 3 ). 

Let (Sjk(Tj)) 's, 1 ~ j ~ 8, show the survival estimates for Example 2.3.1 , after 

repeating the algorithm k times. The following results are survival estimators 

(Sj4(Tj)) 's and (Sj5 (Tj))'s after repeating respectively 4 and 5 times the explained 

algorithm. 

The forth updated survival estimator is: 

s14(TI) = 1, 

s44(T4) = o.537, 

s74(T7) = o.111 , 

s24(T2) = o.989 , 

Ss4(Ts) = 0.472 , 

Ss4(Ts) =O. 

The fifth updated survival estimator is: 

S1s(T1) = 1, 

S4s(T4) = 0. 518, 

S7s(T7) = 0.111 , 

S2s(T2) = 0.993, 

Sss(Ts) = 0.476 ,. 

Sss(Ts) =O. 

s34(T3) = o.82o, 

S64(T6) = 0.335 , 

S3s(T3) = 0.816, 

S6s(T6) = 0.317, 

The difference between (Sj4(Tj)) and (Sj5(Tj)) for all j's (1 ~ j ~ 8), are still 

not less th an 10- 3 . Therefore the pro cess (Steps 1 - 3 of algorithm), should be 

continued. The repeating process is too long to be done by hand. In Giolo (2004) 's 

paper, an "R" function called Turnbull is created to estimate Turnbull 's estimate 

of survival functions. By using this "R" function Turnbul, we get the final estimate 
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as follows: 

S(O) = 1, 

S(3) = 0.797, 

S(6) = 0.111 , 

S(1) = 1, 

s( 4) = o.5ü9, 

S(7) = o.111 , 

S(2) = 1, 

S(5) = o.5ü9, 

S(8) =o. 

2.3 .3 Using the midpoint method in Example 2.3. 1 

In this Section we take the midpoint of each of the nine intervals of t ime and 

consider them as t he t ime of the event; further , we find t he estimator of the 

survival functions . 

Let t1 , t2 , ... , tg be the midpoints of t he intervals defined in Example 2.3. 1, namely: 

tl = 3.5 , 

t6 = 6.0 , 

t2 = 3.5 , 

t7 = 6.0, 

t3 = 3.5 , 

t g = 4.5 , 

t4 = 2.0, 

tg= 8.0. 

ts = 6.0 , 

In the fo llowing "R" output we can see t he K-M estimator of t he survival function 

at the midpoint time. 

time n . risk n . event survival std.err lower 95% CI upper 95% CI 

0.0 9 0 1. 00 1.00 1. 00 

2 .0 9 1 0 .889 0 .105 0 . 7056 1 . 000 

3.5 8 3 0.556 0 . 166 0.3097 0 . 997 

4.5 5 1 0.444 0 . 166 0 . 2141 0 . 923 

6.0 4 3 0.111 0.105 0.0175 0.705 

8.0 1 1 0 .000 NaN NA NA 

In Example 2.3.1 , the event time is not known and we just know that each event 

happens in a given interval. If we consider the midpoint of each interval as the 
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event time, we can compute the K-M estimates of survival at these midpoints. 

This result of K-M using midpoints is very different from Turnbull 's estimate of 

the survival function using this interval censoring method. 

In the following section we compare two types of estimators, using Turnbull 's 

method and the midpoint method. 

2.4 Comparing survival estimates in data with disjoint and overlapping inter-
vals of time · 

The steps of Turnbull 's survival est imate are not always different from those of 

the K-M 's at the midpoint of the t ime intervals in different types of examples . In 

sorne cases, the result of survival estimates using interval censoring methods is the 

same as survival estimates which consider midpoints of intervals as the event time 

of interest . In what follows, two types of time intervals are discussed which lead to 

different results in comparing the two methods of interval censoring and midpoint. 

2.4.1 The case of disjoint time intervals 

In sorne situations, time intervals are disjoint intervals and they do not overlap. 

Indeed t here is no common point in every two different intervals of t ime. The fl.u 

data provided by CDC is an example of such disjoint time intervals . In this data, 

the clinics report the data weekly (Sunday to Saturday) and there is no common 

day in two different weeks. 

Remark 2.4 .1. In a time to event data- set, if different time intervals are disjoint 

intervals, th en the survival estimate using Tum bull 's ( 1976) method has the sa m e 
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jumps as the Kaplan-Meier estimate at the midpoints of the time intervals. 

Proof. Note that this remark is not applicable to the right and left censored 

intervals, because when an event time is right or left censored , it is in the form 

of (Li, oo) or (0, Ui) for the right and left censored time intervals respectively. 

Consequently, if there are more than one interval in this form then the intervals 

will overlap. Also pay attention that different time intervals are disjoint , but more 

than one event can happen in each time interval. 

To prove t he remark , first we apply Thrnbull 's method a general form of survival 

data-set with disjoint time intervals. Then we compute the empirical survival f at 

the midpoints of the time intervals in this general form of data-set , and compare 

the results. 

Let the disjoint t ime intervals be (Li, Ui], 1 :::; 2 < n. When we apply "Step 

0" of the algorithm in Section 2.3.1 , proposed by Giolo (2004) for Thrnbull 's 

method, since the time intervals do not , overlap , the constructed time interval 

(Tj-1 , Tj] is included in one of (Li , Ui] only if it is exactly one of (Li, Ui]'s. Indeed 

(Tj - l ,Tj] Ç (Li, Ui] if and only if (Tj - l,Tj] = (Li, Ui]· For each i, this condition 

of (Tj _1 , Tj] Ç (Li, Ui] is valid only once. Therefore, in the matrix A = [aij] 

( 1 :::; i :::; n , 1 :::; j :::; m) , there is only one 1 in each row and the other elements 

of th at row are û. If more than one event happens in the kth interval ( Tk-l, Tkj, 

there will be lk rows corresponding to ( Tk-L Tk ] in the matrix A , where lk is the 

number of events which happen in th interval ( Tk - l , Tk]. 

Now we check the columns of the matrix A. All elements of the first column are 

0, because t he first interval (0, T1] is not one of the (Li , Ui] intervals. In the second 

column, as we discussed , at least one of the intervals (Li, Ui], 1 :::; i :::; n i equal 

to (T1 , T2]. The number of events in the first interval is h, so (Li, Ui] = (T1 , T2] 
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repeats l1 times. Therefore in this second column of A , 1 appears h times, and all 

other elements are equal to O. By the same argument , in the kth column (k > 1) 

of A , 1 appears lk_1 times and all other elements are O. 

In the "Step l " of the algorithm in 2.3.1, the probability of an event occurring at 

time Tj can be calculated by pj, similar to the equation (2.1). 

In the "Step 2" of Giolo 's algorithm in 2.3.1 , the goal is to estimate the number of 

events that occurred at Tj by dj similar to equation (2.2). So dj = I:7=1 aijPj/ Di, 

where Di= I:;-=1 aikPk· 

Calculation of the denominators (Di ) 's: As pointed above, for each row i of matrix 

A , all elements a ij are equal to 0, except one of them. So in Di = I:-;:1 a ikPk, 

there is only one value 1 of aij , corresponding to sorne (Tj _1 , Tj ]· Therefore, the 

value of Di is equal to one of the Pj probabilities. 

Calculation of the dj 's: The number of events in the jth interval ( Tj_1 , Tj ], is 

equal to lj. In this summation dj = I:7=1 a ijPj/ Di, the coefficient aij is equal to 

1, lj times and D'.ij is equal to 0 for the rest (n - lj times) . In other words, in 

the column j of the matrix A , there are lj rows where the value of aij is equal 

to 1, and all other ai/s are equal· to O. In arder to calculate dj, we look at the 

interval (Tj_1 , Tj], and in "Step 1", the probabili ty matched to this interval is Pj · 

Moreover , if a ij = 1, then the denominator Di = Pj· The following conclusion can 

be achieved: 

So the number of events in the jth interval is lj, an integer as in the K-M estimate. 

It is the same number of events if we suppose that the event happens at the 

midpoint or at the end point of the interval. So this gives the same estimator of 

survival as Kaplan-Meier. K-M estimator at time Tj is: S (Tj ) = IT -r <r · Y;Y-di . We 
t. _ J 1. 
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know that Yj is the number at risk and d j is the number of events at the time Tj 

or in the j -th interval. In this calculation we do not repeat Steps 0 - 3 and we 

stop because the updated survivals do not change and are the same as the K-M 

estimators (sin ce the number of events and numbers at risk are the same). D 

In the following example a survival data-set with disjoint t ime intervals is given. 

By computing survival functions using these two methods in thi example, we can 

compare Turnbull 's method with K-M at the midpoints of the time intervals, as 

Remark 2.4.2 can be applied to this example. 

Example 2 .4 .1. In this hypothetical example, we want to study the survival june­

tian in a small dataset. Assume that one studies egg white (a lbumen) allergy on 

10 child·ren which are follow ed in arder to see when they stop reacting to albumen 

(event time) . These children are about the same age and they all stopped the re­

action to albumen by the end of the study. The f ollowing data-set shows the date 

at which the alb·umen allergy test was negative for each kid. 

Table 2 .3 Data for albumen all rgy example. 

Id 1 2 3. 4 5 6 7 8 9 10 

Year 2002 2002 2003 2004 2004 2004 2005 2006 2006 2006 

Th allergy test is clone once a year and at the beginning of the study years. When 

t he allergy test is negative for a child , it means his body developed the antibody 

for this allergy in the pr vious months of doing the test. So if A shows the year of 

study, t he exact t i me to stop thi reaction is in th int rval [A - 1, A]. Th us , we 

should con id r an int rval of time for ea h vent of interest. Each of the following 

intervals make a correspond nee b tw n t ime int rvals and the above dates. 

(1, 2]· (1, 2]; (2 , 3]; (3 , 4]; (3, 4]; (3 , 4]; (4, 5]; (5 , 6] · (5 , 6]; (5 , 6] 
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In these corresponding intervals , 2 corresponds to 2002, so [1, 2] corresponds to 

[2001 , 2002]. This data-set is similar to the fiu data-set provided by CDC. For 

each child, we do not know the exact event time, so there exists interval censoring 

in this study. Also the data-set is a set of disjoint time intervals. 

Empirical survival estimates at the midpoints of time intervals: 

We used the R packages survival and KMsurv to calculate K-M at the midpoint 

of each interval. The version of R used in this calculation is R 3.1.1 which gave 

the following output: 

time n . risk n . event survival std.err lower 95% CI upper 95% CI 

1.5 10 2 0.8 0.126 0.587 1 . 000 

2.5 8 1 0 .7 0.145 0.467 1.000 

3.5 7 3 0 .4 0.155 0.187 0 . 855 

4.5 4 1 0.3 0.145 0.116 0.773 

5.5 3 3 0.0 NaN 

In general, whether we consider the left end point, right end point or middle point 

of time intervals, as the event-time of interest, t his does not change the jumps of 

the empirical estimator of survivals in these disjoint time intervals. 

Turnbull 's method: 

In arder to compute survival functions using 1\1rnbull's method, we need to cal­

culate the init ial value of survival probabilities. We put all the points coming 

from time intervals together and we calculate the K-M estimate of survivals. The 

initial value of the survival functions are in the following table of output of R: 

_j 
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time n.risk n . event survival std.err lower 95% CI upper 95% CI 

1 20 2 0.90 0.067 0 . 778 1.000 

2 18 3 0 . 75 0 . 097 0 . 582 0 . 966 

3 15 4 0.55 0.111 0 . 370 0 . 818 

4 11 4 0.35 0 . 107 0 . 193 0.636 

5 7 4 0 . 15 0.080 0.053 0.426 

6 3 3 0.00 NaN 

Now we can apply the Turnbull (1976) method to this data-set to compute this 

non-parametric estimate of the survival function. 

Step 0 

To = 0, T1 = 1, T2 = 2, T3 = 3, T4 = 4, T5 = 5, T6 = 6; 

Tj 's for 1 ::; j ::; 6, are t he grid of times which includes all the points Li and Ui 

for i = 1, ... , 10. All the o:i/s are shown in th following matrix: 
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Step 1 The probability of an event occurring at time r j, j = 1, ... , 6 is given by 

P1 = S(O) - S(1) = 1 - 0.90 = 0.1 , 

P2 = S(1) - S(2) = 0.9- 0.75 = 0.15 , 

P3 = S(2)- S(3) = 0.75- 0.55 = 0.2 , 

P4 = S(3)- S(4) = 0.55 - 0.35 = 0.2, 

p5 = S(4) = S(5) = 0.35- 0.15 = 0.2, 

P6 = S(5)- S(6) = 0.15- 0.0 = 0.15. 

Step 2 The number of events which occurred at T j, j = 1, ... , 6 is: 

Step 3 The estimated number at risk at time Tj , j = 1, . .. , 6 is: 

6 

Yi= ~dk = 10, 
k= l 

6 

y4 = ~dk = 7, 
k=4 

6 

y2 = ~ dk = 10, 
k=2 

6 

y5 = ~dk = 4, 
k=5 

k=3 

6 

y6 = ~ dk = 3. 
k=6 
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Step 4 The updated Product-Limit estimator using the Pseudo data found in 

Steps 2 and 3 is 

If we repeat t he process, we will have t he same survival estimates , because the 

survival estimates computed by product limit estimator (2.4) , do not depend on 

the initial value of the survival function. Indeed, in Step 2, we can see that the 

actual probabilities (Pi ) 's do not have any effect in the formulas t hat give t he (di ) 's. 

Comparing survival cur,ves through Tu rn bull 's m ethod and empirical survival esti­

mates at the midpoint: 

The result of survival estimates using two different methods, is presented in Figure 

2.3. 

In the first part of this section, t he following conclusion was achieved. Applying 

interval censoring methods does not change the result of the Kaplan-Meier esti­

mate at the midpoint , in the disjoint interval-censored data . In the next part , 

overlapping time intervals are studied through an example. 

2.4.2 Overlapping t ime intervals 

In some interval-censored survival datasets , time intervals are overlapping. In the 

following example we have a dataset with overlapping time intervals. 
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4 5 6 7 

Time (weeks) 

Figure 2.2 Comparing survival curves by applying two different methods to t he 

data in Example 2.4.1. 

Example 2.4.2. Consider the study of the egg white (albumen) allergy, similar to 

Example 2.4. 1. Assume 10 children are in the data- set. An allergy clinic starts this 

study in 2008, and it only does the test in June and December every year. The 

clinic asks parents to bring their children for the allergy tests every six months 

(every June and Decemoer), however not all the children visit the clinic at the 

assigned dates. Therefore, the exact tim e of stopping allergy symptoms for these 

10 children is not known. The following simulated intervals are given by date: 

id 

1 

2 

3 

4 

pre-test 

Jun2008 

Jun2008 

Jun2009 

Jun2010 

negative-test 

Dec2009 

Dec2009 

Dec2010 

Dec2011 
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5 Jun2010 Dec2011 

6 Jun2010 Dec2011 

7 Jun2011 Dec2012 

8 Jun2012 Dec2013 

9 Jun2012 Dec2013 

10 Jun2012 Dec2013 

In t he above data-set, the variable "negative-test" is t he date at which t he allergy 

test was negative . And the variable "pre-test" is the test prior to the negative-test . 

The real time to stop having the allergy symptoms for each child is a time between 

the pre-test date and the negative-test date. So here the event-time of interest is 

interval censored. In order to study this interval-censored data, we can correspond 

numbers to the given dates, as follows. We correspond 0.5 to June 2008 and 1 

to the December 2008. Also 1.5 corresponds to June 2009 and 2 corresponds to 

December 2009 and so on. The result of this correspondence is in the following R 

output . Note that "cens" indicates censoring. 

le ft right cens 

1 0.5 2 1 

2 0.5 2 1 

3 1 . 5 3 1 

4 2.5 4 1 

5 2 . 5 4 1 

6 2.5 4 1 

7 3.5 5 1 

8 4 . 5 6 1 

9 4.5 6 1 

10 4 . 5 6 1 
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Similar to the previous example, we compute the survival estimation using mid­

point and Turnbull 's method. 

Comparing survivals using Turnbull 's method and midpoint m ethod: 

In this example, since time intervals are overlapping, we can not use the Remark 

2.4.1. Survival estimates using interval censoring methods and the midpoint time 

value could be different. Survival curves using both methods are shown in Figure 

2.3. The blue full line is the survival curve using Turnbull 's method and the red 

" 

00 
0 

<D 
0 

Ci) 

"<t 
0 

- - - Empirical at mid-point 

" - TB at interva1s 
0 

0 
0 

0 3 4 6 

lime 

Figure 2.3 Survival curves applying two different methods to the data in Example 

2.4.2. 

dotted line is the survival curve using midpoints of time intervals in this example. 

It is clear in Figure 2.3 t hat these two survival curves are different. In the following 

t able, the survival estimates in the midpoint of above time intervals are given. 

As it is shown in Table 2.4, the result of survival estimates at midpoint is different 
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Table 2.4 Survival estimates using two methods, Example 2.4.2. 

Time (mid-point) 0 1.25 2.25 3.25 4. 25 5. 25 

Empirical Survival estimates 1.0 0.889 0.778 0.444 0.333 0.0 

TB using t ime intervals 1.0 1.0 0.750 0.500 0.375 0.0 

from estimate of survivals using Turnbull 's method. 

Different result of survivals using different methods in Example 2.4.2 , indicates 

that survival estimates u ing midpoint and Turnbull 's method are not the same, 

in interval-censored overlapped data-set. Indeed, overlapping may be used as a 

condit ion for an interval-censored data, to have interval-censored survival esti­

mates different from K-M at left or middle points of t ime intervals. 

2.5 Compari on of two groups of survival data 

In some situation , th survival t ime is available for more than one group of 

individuals. The asiest way to compare t he survival t imes of two different groups 

is to plot the corresponding estimates of th two survival functions on t he same 

axes. 

Figure 2.4 show the survival curve for two groups of women with breast cancer , 

which is explain d in Example 2. 11 of Collett (2015). The survival t imes fo r these 

women is grouped according to wheth r or not s tions of a tumour were posi­

tively stained with HPA. Figure 2.4 shows that the estimated survival function 

for women with n gatively stained tumeurs is always greater than that for women 

with po itively tained tumeurs. It means that for women with n gatively stained 

tumeurs , th stimat d probability of survival i high r t han for women with posi-



~-------

53 

1.0 

c:: 
0 0.8 
"" u c:: 
.2 

0 0.6 
-~ 
&l 
'0 0.4 

* E 
'P 
<n w 0.? 

0 .0 

0 50 1CO 100 200 250 

Survival lime 

Figure 2.4 Kaplan-Meier survival function for women with tumours that were 

positively stained (solid line) and negatively stained ( dotted line) . 

tively stained tumours , Collett (2015). In general, the observed difference between 

the two survival curves can correspond to a real difference or, alternatively, the 

difference between estimated survivais of t he two groups can be interpreted as a 

chance variation. So we say t hat there is no real difference between the survival 

functions of the two groups. A better criterion to compare the survival functions 

is to use a hypothesis testing procedure. 

In the ncxt chapter , we consider comparing the survival functions of different fl.u 

seasons or of different age groups in t he same season, etc. In these comparisons, 

the following is the question of our interest: when can we daim that two or 

more survival curves are the same? To compare two groups of survival data, 

there are many different methods which can be used. In this Section,. the non­

parametric procedure, log-rank, first proposed by Nathan Mantel (1967) will be 

described . Also, whenever we are studying time to event data, and the time may 

only be known partially, the log-rank test is a useful nonparametric test to compare 

survival distributions. In the case that the time to event is interval censored , 
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there are several approaches. One can apply the log-rank test, by considering 

the midpoint of the interval as the event time and do the usual right censored 

weighted log-rank tests; see Law & Brookmeyer (1992). 

In the following sections , 2.5.1 and 2.5.2 , the popular testing method of log-rank 

will be described. In 2.5.3 , interval censored data is considered and an alternative 

method to the log-rank test. In the analysis of our interval cen ored data, an R 

package, called interval is used to perform a weighted log-rank test. 

2.5.1 The log-rank test for two groups 

As discussed above, in sorne sit uations , it is necessary to analyze whether two sur­

vivat curves are identical. For this purpose, doing a statistical test is needed. In 

this section, the construction of log-rank test is illustrated in the following Collett 

(2015) . 

Since we are comparing two groups of survival data (Group 1 and Group 2) , the 

death t imes in each group should be known. Consider there exist m distinct 

death times , in both groups , as t(l ) < tc2) < · · · < t(m ) . At each time t(j), for 

j = 1, ... , j = m , d11 and d21 are the number of individuals who die in Group 
1 1 n '"' , · , T , , , , , , ., .. , • , • . , ,. . .. 

.1 anQ vïüUiJ L-, n:::::;vecLl Vel y. LeL ni oe u1e 1;01;a1 numoer a1; n sK JUSt oetore tne 

t ime t(j). Also let n 1j and n21 be the number at risk just before t (j ) in Group 1 

and Group 2 respectively. It is clear that if d1 is the total number of deaths at 

time t (i), th en we have d1 = d1i + d2i and n1 = n 11 + n2i. In Table 2. 5 all these 

numbers are summarized. 

We suppos that the null hypothesis (H0 ) , is no difference in survival experience 

of people who are in the two group . One solut ion to test the given null hypothesis 
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Table 2 .5 Necessary data for computing log-rank test statistic for two groups of 

individuals. 

Group o. of d aths at o. surv1vmg No. at risk just 

t(j), j = 1, ... , m beyond t(j) before tu) 

1 dlj n1j - d1j nlj 

2 d2j n2j - d2j n2j 

Total dj nj- dj nj 

is to define a deviation, as t he difference of observed number of people in t he two 

groups who die at ach death t ime and the expected number of deaths under H 0 . 

To define t his statistic, we can combine all the deviat ions over each of the death 

t imes. 

Assume that the null hypothesis is true, and indeed the survival is independent 

of group. In Table 2.5, we consider all the marginal totals to be fixed (we work 

conditionally) , therefore all four entries in this table are just determined by t he 

value of d1j (the only random variable in the table), which is t he number of deaths 

in Group 1, at time t(j)· Then , d1j, as a random variable can vary between 0 and 

min ( dj, n1j) and has the hypergeometric distribution with parameters { dj, n 1j, nj} . 

Indeed, the probability that the number of deaths in Group 1 takes the value d1j 

is given in the following equation: 

(2.6) 
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where ( dj ) 
dl j 

d ·l 
= d 1 (/~d )1' j = 1, .. . ' m. l]. J l] . 

The expected number of people who die at t(j) in Group 1, ( e1J) , should be the 

mean of the random variable d1J. By applying the formula of hypergeometric ran­

dom variable d1y's mean , we conclude that, e1J = n~dj . Under H0 , the probability 
J 

of death at time t (J) > does not depend on which group it happens and it is dJ fnJ. 

By multiplying this probability with the number of people in each group , one gets 

the expected number of deaths in that group at time t (j). 

To define t he statistic, we need to combine all the given numbers in Table 2.5 

for all t(j ) 's , 1 ::; j ::; m to find a comprehensive measure of t he deviation of the 

observed values of d1j from their expected values. The easiest way to give this 

overall measure is to sum up the gaps d1J - e1j over the total number of death 

times, m , in both groups. The overall measure of deviations is given by 

m m m 

UL = L (dlJ- e lJ ) = L d1j - L e lJ (2.7) 
j = l j = l j=l 

The ULis t he statistic wc arc looking for , which equals t he difference bctwccn the 

total observed and expect ed numbers of deaths in Group 1. Since E( d1J) = e1J, 

the mean of this tatistic will be zero. Furthermore, one assumes that number of 

deaths , (d1J) 's , are independent and the variance of UL is as follow 

m m 

(2 .8) 
j= l j=l 

where v aT(dlJ) = v1j and v aT (UL ) = VL . Since d1j has a hypergeometric di tribu­

t ian , the variance v1J is calculated as follows 

(2.9) 
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When the number of death times is not too small, it is possible to show that UL 

has an approxima te normal distribution. Therefore, U L/ .J'Vi has an approxima te 

standard normal distribution, N(O, 1). The square of a standard normal random 

variable has a chi-squared distribution with 1 degree of freedom , denoted xi , so 

we have the following 

(2. 10) 

This method in which the information of 2 by 2 tables is combined , is known as 

the Mantel-Haenszel procedure and in the case of survival data the test based on 

this statistic is known as the log-rank test. This name cornes from the fact that 

the test statistic can be related to the ranks of survival times in the two groups, 

and the resulting test statistic is based on the logarithm of the Nelson-Aalen es­

timator of the cumulative hazard rate function. 

In the statistic WL = UJ)VL , all t he deviations of observed survival times and their 

expected values under t he null hypothesis (of no difference between two groups) 

are summarized. A larger value of the statistic is stronger evidence against the 

null hypothesis. Since the test statistic WL under the null hypothesis has ap­

proximately a chi-squared distribution with one degree of freedom, the associated 

p-value with the test statistic can be found in the chi-squared distribution func­

tion. The log-rank test is a large sample chi-square test that is base on an overall 

comparison of K-M curves by comparing the estimated hazard rates. 

The methods of weighted comparison of hazard functions can be extended to the 

comparison of k ~ 2 groups. We need to test the following hypotheses: 

(2. 11) 
Ha : at least one of the hj ( t) 's is different for sorne t ::; T , 

where T is the largest t ime such that all t he groups have at least one subject at 
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risk. In the data analysis of this thesis, we did not apply t he extension of the 

log-rank test to several groups. 

As noted in Collett (2015), t he log-rank test is more appropriate when the hazard 

functions are proport ional. In a more general setting, one can use the Gehan 

(1965) generalization of Wilcoxon test . This Wilcoxon test is based on 

m 

Uw = L nj(dl j - e l j), 

j=l 

(2. 12) 

w here, d1j and e1j are defined as in Section 2. 5 .1. In U w , each difference d1j - e1j 

is weighted by nj , the total number of individuals at risk at t ime tj· T he variance 

of the statistic Uw is given by 

m 

Uw = l:.= nJvlj , (2. 13) 
j=l 

where v1j is given by equation (2.9) . The Wilcoxon test statistic is reduced to 

(2. 14) 

which has an approximate chi-squared distribution with one degree of freedom , 

when the null hypothesis is true. Both Uw and UL are weighted sums of (d1j -e1j), 

j = 1, . .. , m. While t he log-rank test gives a constant weight of approximately 

1, t he statistic Uw gives less weight to t he differences corresponding to small nj 

value in the tail. 

2.5.2 Using the log-rank test for interval censored data 

The mam idea of this section is to present an extension of the log-rank test 

discussed in S ction 2.5.1, to the interval censored data. In S ction 2.5.1 , we 

describ d the numbers needed to compute the log-rank test for two groups of in­

dividuals (Table 2.5). The idea is to find a substitute for these numbers in order 
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to compute the log-rank test for comparing two groups, when the data is interval 

censored. Finkelstein (1986) proposes such an extension that is related to the 

development is Section 2.3. 

In Section 2.3.1 , an algorithm to estimate survival functions , when the time is 

interval censored is given. In this algorithm, in each time interval we need to 

calculate a "pseudo number of events". In Table 2.5, we can replace the number 

of events dj at t (j), by the pseudo number of events at T(j), as given by Equation 

(2 .3). In order to avoid confusion , let 's denote by dj the pseudo number of events 

and by nj the pseudo number at risk at time Tj. Th us, the pseudo number at risk 

1 · t b f · · b 1 '\""'rn d' nj , JUS e ore Tj 1s g1ven y nj = L..,k=j j . 

We apply the same notation as in Section 2.5.1 in order to comparing two groups. 

Consequently, in Group 1 and Group 2 respectively, d~j and d;j are the pseudo 

number of events at Tj and n~j and n;j are the pseudo number at risk just before Tj. 

We can replace the numbers in Table 2.5 by these pseudo numbers to compute the 

proportional hazards model for interval censored failure time data. In Finkelstein 

(1986) , it is shown that , as the time intervals (Tj_1 , Tj] decrease , and the pseudo 

number of events is mall relative to the pseudo number at risk , the score statistic 

resemble the usual log-rank test tatistic, i. e. 

m 

U = 2)d~j- djn~)nj) (2.15) 
j = l 

In the next chapter , in our analysis, we applied a variant of this method as intro-

duced in Fay & Shaw (2010). 





CHAPTERIII 

ILLUSTRATIVE EXAMPLES 

In this chapter , we apply interval censoring as studied in Chapter 2 to the influenza 

surveillance dat a, available on the CDC website. Out of the ILl surveillance dat a, 

we created a cohort by considering only t he affected subjects (ca e-cohort) . There­

fore, we can apply standard survival analysis methods to this cohort data. Since 

different data-sets are available, for each one that is picked, we can create a cohort 

and then we can estimat e its survival function. Also we need to create a specifie 

interval censored event time to apply interval censoring (discussed in Section 3.1). 

The main part of the analysis in this chapter is to compare the estimated sur­

vival curves. To estimate survival functions, we compute the empirical survival 

estimate at t he reported flu t imes and then we take into account t he flu t ime is 

interval cen ored and we use methods like Turnbull 's method (2.3.1) to estimat e 

survival functions in the interval censored case. The reason for estimating the sur­

vival functions using these two methods is to see whether t heir result is different 

and to assess influence of interval censoring on t he analysis. Indeed, first we want 

to illustrate how the treatment of the data proposed in Chapter 2 changes the 

estimates of the urvival probabilities. F'urther , one can apply hypothesis t esting 

and compare survival functions across seasons, regions, etc. Another crucial corn-
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parison is across age groups , as one exp cts differences in survival according to age. 

In arder to perform this analysis , we had to arrange our survival data as to have 

overlapping time intervals and this is explained in Section 3.1. In our analysis we 

focus on the most recent fiu seasons. 

The first comparison t hat one can apply is to compare survival functions across 

different fiu seasons, and this is done in Section 3.2. A priori, one can think that in 

different seasons the results could b very different , because there are many factors 

that can change. For example, the number of people in different age groups is not 

equal in two different seasons; fiu types may also change. As mentioned above, 

ILl data in each season is given by age groups and regions . Comparing seasons 

just among people of a fixed age group or among people who live in a predeter­

mined region, should lead to a better comparison. Indeed , by adding conditions 

like being in a specified age group , we are restricting people in t he comparison to 

have more similar survival functions ( we control for age). Therefore, in Section 

3.3 , we compare survival functions of two recent seasons, namely 2014- 2015 and 

2013 - 2014, across specifie age groups . 

A t hini tvnP. of r.omn::~ .ri~on i~ t.o r.on~irlP.r ~n P.r.ifir r.on t. i rrnon~ RP"P. rrrnnn~ (~prt inn 
v .... .1. ..L u --- --- -·o - o -- -- .1-- , .-- - - - - - -

3.4) . Since some interesting results are obtained in t his section when comparing 

age groups 25 - 49 and 50 - 64 in season 2014- 2015 , we decided to compare 

the e age groups in some other seasons as well. 

A last type of analysis (Section 3.5) , is to compare survival functions among differ­

ent region of U.S. in the recent fiu season 2014-2015 . Given graphs of percentage 
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of ILI for all these regions we picked up a few regions that seemed to be more 

similar in arder to compare t heir survival functions through a test ing procedure. 

Also in Section 3.6 , we compare survival funct ions in two age groups 25- 49 and 

50 - 64 in all 10 regions of U.S. for t he most recent fiu season 2014 - 2015. In 

Section 3.7, t he comparison of survival functions among all available fiu types in 

the recent season 2014 - 2015 is studied. 

3.1 Treatment of the raw dat a: Creating overlapping t ime intervals 

In t his section, we study the survival function on the fiu data provided by CD C, 

which was presented in the first Chapter. In Table 3.1, all needed variables to 

estimate survival probabili t ies are presented for the first 10 weeks. We added the 

variable "Pre-week" to our data-set , which is t he previous week of reported event 

t ime. We need to add "Pre-week" in arder to apply interval censoring to our fiu 

data , as discussed in Sect ion 2.2. 

Since the week 40 is t he first week of study in each fiu season, we can consider it 

1 in the data of our study. So [0, 1] corresponds to [39, 40], [1, 2] corresponds to 

[40, 41] and so on. In t he following "R" out put , we can see t he corresponding data 

for t he first 10 weeks. 

Time Interval Number of Events Censure 

[0' 1] 10374 1 

[1 ' 2] 11297 1 

[2 ' 3] 12127 1 

[3' 4] 12474 1 

[4' 5] 12490 1 

[5 ' 6] 14102 1 
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[6' 7] 14109 1 

[7' 8] 16967 1 

[8' 9] 17911 1 

[9' 10] 23247 1 

As we see in this part of the data shown above , t ime intervals of our survival fiu 

data are disjoint intervals. Due to Remark 2.4.1 , interval censoring methods do 

not change the K-M survival estimates at the reported event time (right end point 

of ti me intervals). 

Table 3 .1 First 10 weeks of the data provided by ILINet , 2014-2015. 

Year Week Pre-week ILITotal 

2014 40 39 10374 

2014 41 40 11297 

2014 42 41 12127 

2014 43 42 12474 

2014 44 43 12490 

2014 45 44 14102 

2014 46 45 14109 

2014 47 46 16967 

2014 48 47 17911 

2014 49 48 23247 

Moreover , as noted above, the event could have occurred before the week where it 

i reported. So we propose to consider t ime intervals in the form of [a , b], so that 

the vent time is between a and b. Therefore, following the ame argument as the 

one in Section 2.2, we consider a as one week before the reported event time, and 

b a the week where the event is reported. To illustrate, we give a and b and the 
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number of events that occurred in the time interval [a, b] by considering t he first 5 

weeks of this data-set. Such overlapping time intervals in the form [a, b] are used 

in this thesis to apply Turnbull 's method. In the following intervals the number 0 

indicates 39th week, 1 presents 40th week and 2 presents 41th week and etc. The 

"R" out put of our data treatment is t he following: 

a 

0 

0 

1 

2 

3 

b 

1 

2 

3 

4 

5 

event 

10374 

11297 

12127 

12474 

12490 

cens 

1 

1 

1 

1 

1 

We apply Turnbull 's method to t he fl.u data provided by ILINet, for t he fl.u season 

2014-2015. Using the other method , we apply K-M at mid points of time intervals 

[a, b]. Mid points of [a, b] 's are the reported event time i.e. the reported week, so 

K-M at midpoints are survival estimates at t he reported event time. In Figure 

3.1 , survival curves using both methods of Turnbull and midpoint, are presented. 

Indeed in t his figure, we can see the difference of survival estimates at reported 

event time with applying interval censoring method to this data-set. 

In Figure 3.1, the red lined curve shows survival curve, obtained by interval censor­

ing method of Turnbull. In this method, we assume the exact event time happens 

in [a , b] . In Figure 3.1 , the blue dotted line represents the survival curve at the 

reported weeks as the exact event time. As we see in Figure 3.1, by considering 

the reported weeks as the time of interest , we underestimate survivals. In t he 

following table, we can see survival estimates for t he first 10 weeks of 2014 - 2015 

fl.u season, calculated by R. 1.000002383091 
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Time (weeks) 

Figure 3.1 Comparing survival estimates in t he fiu season 2014-2015 , usmg an 

empirical survival function and interval censoring method. 

Iu Ta.ule 3.2, TB .inù.icates Turnbulrs estimate of survival and K-M indicates the 

empirical survival estimates at the right point of given [a , b] t ime intervals as the 

exact reported event tim . 

In our analysis we need the R package "int rval" introduc d by Fay & Shaw (2010), 

manely the functions icfit and ictest. 
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Table 3.2 First 10 weeks survival estimates , 2014-2015 , by two methods TB and 

K-M . 

a b (exact ti me) TB K-M 

0 1 1.00 0.9868 

0 2 0.9745 0.9725 

1 3 0.9703 0.9571 

2 4 0.9445 0.9412 

3 5 0.9378 0.9225 

4 6 0.9133 0.9075 

5 7 0.9015 0. 8896 

6 8 0.8778 0.8680 

7 9 0.8581 0.8453 

8 10 0.8325 0.8157 

3.2 Comparing different fiu seasons 

The question of interest in this section is "how the percentage of ILl changes in 

different years (fiu seasons)?, First , as an example of comparing fiu seasons, we 

look at 'Line Chart ILl et" which is available in Flu View. Figure 3.2 shows Line 

Chart ILINet of four recent fiu seasons (2011 - 2012) to (2014 - 2015) . Line 

Chart ILINet shows the percentage of visits for ILl through weeks, by graphie. 

Note that the given percentage of ILl is for all regions and age groups of each fiu 

season together. 

In CDC website, the Line Chart ILINet is given since (1997- 98) fiu season up to 

now. By looking at the percentage of ILl in different fiu season , sorne seasons seem 

to be similar. Line Chart ILl et for seasons of (2012- 2013), (2013- 2014) and 

(2014 - 2015) have their maximum (highest percentage of ILI) at almost the same 
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Figure 3.2 ILl et graphie, Percentage of visits for ILl , seasons 2011-2012 to 

2014-2015. 

week (52). Indeed for these three seasons the maximum number of events happen 

during roughly the same week of the year , which is the last week in December. 

On the other hand, t he ILl activity for t he fiu season (2011 - 2012) seems to be 

very different. 

Table 3.3 Test result to compare percentage of visits for ILl , season 2013-2014 

8nd 2014-2015. 

t-test p-value 

1.3991 0.1652 

We applied the related tests to compare two recent fiu a on and we find that 

they are identical. The result of t-test is given in the Table 3.3. Also we can look 

at the Line Chart ILl et of two recent fiu seasons together. 
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40 50 

Figure 3.3 Percentage (weighted) of visit for ILl, seasons 2013-2014 and 2014-

2015 . 

Figure 3.3 indicates the percentage of ILl for two different seasons 2014-2015 and 

2013-2014. Figure 3.3 gives the impression that two distributions of ILl percent­

age are similar. In Section 3.2.1 , our intcrcst is in comparing fl.u seasons through 

their survival curves. 

As noted in t he first Chapter (Section 1.4.2), the survival function considered in 

our study is not the classical survival function. Since we are not following the 

same people over t ime, as explained in t he first chapt er , only t he reported cases 
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are used in the analysis and they ar tr ated as a cohort. In order to estimate 

the survival function, a fixcd time Ta (typically 30 or 52 weeks) is picked and we 

work conditionally. The conditional survival function S(tiTa) = Pr(T > tiT ::; Ta) 

(Equation 1.10) , is computed. 

3.2 .1 Comparing two recent fiu seasons through their survival curves 

Ba ed on the the result of above mentioned statistical test Table 3.3 the per­

centage of visits due to ILl in (2014- 2015) and (2013- 2014) fiu seasons are the 

same. The interest here is to compar these two recent flu seasons, through their 

survival curve . First we compute the mpirical survival function (K-M) at the 

given event time (reported week). 

Figure 3.4 shows empirical survival curves for t hes two flu seasons , when the 

weekly reported vent tim is consider d to be the event time of interest. In Fig­

ure 3.4, the two ea on ' urvival curv s seem to intersect at sorne time point . 

Looking at the e two K-M curves we can not d cide weather these two curves are 

t he same or diff r. We ne d to do a statistical test in order to compare them. In 

the next step, we will apply the method of Thrnbull. 

Thrnbull 's algorithm was shown in the second Chapter and in Table 3.2, we com­

pared this method to t he empirical survival estimates at th midpoints for fiu 

s ason (2014- 2015). In this step of comparing fiu seasons through their survival 

curves, the algorithm of Thrnbull (T-B) as described in Giolo (2004) and Klein 

& Moeschberger (2005) i applied to e timate the survival curve . We present in 

Figure 3.5 , the T-B urvival curves of two recent fiu easons (2014- 2015) and 

(2013- 2014). 
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Figure 3.4 Empirical survival Estimates for two seasons , 2014-2015 and 2013-

2014. 

Also we apply interval censoring methods using the R package, interval, where the 

result is shown in Figure 3.6. When survival distributions are compared, looking 

at their curves does not provide us the answer to the question of whether they 

are statistically equivalent or not . In the following , sorne st atistical tests will be 

· applied to t he data in either of two cases, first with considering interval censoring 

and second one in considered without interval censoring. 
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Figure 3.5 Survival curves using Turnbull 's method for two seasons, 2014-2015 

and 2013-2014. 

3.2.2 Two different statistical tests for comparing survival functions in different 
seasons 

Similar to t he previous section, first we compute the K-M at the reported event 

time for two different seasons and then we apply the log-rank test to compare them. 

The fo llowing "R" output is t he log-rank test result of comparing (2013 - 2014) 

and (2014- 2015) fiu seasons. 

N Observed Expected (0-E)-2/E (0-E)-2/V 

season=2013-14 668021 

season=2014-15 787492 

668021 

787492 

698029 

757484 

Chisq= 2698 on 1 degrees of freedom, p==O 

1290 

1189 

2698 

2698 
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Figure 3.6 Survival curves using the inter-val "R" package for two seasons , 2014-

2015 and 2013-2014. 

The obtained p-value confirms that the two K-M survival curves are different. 

Using the log-rank test , the Kaplan-Meier survival curve in two flu seasons 

(2013 - 2014) and (2014 - 2015) are different. Iow we apply interval censor­

ing to the data of these seasons and do the test again. Interval package and icfit 

and ictest are used to do t he asymptotic log-rank two sample test. Here is the "R" 

output: 

Asymptotic Logrank two-sample test (permutation form) 

data: Surv(left, right, type = "interval2") by season 

Z = -52 .3132 , p-value < 2.2e-16 

alternative hypothesis : survival distributions not equal 
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n Score Statistic* 

season=2013-14 668021 

season=2014-15 787492 

-29866.46 

29866.46 

* like Obs-Exp, positive implies earlier failures than expected 

This result and the p-value less than 2.210- 16 , shows that one reaches the same 

conclusion in both cases , weather one applies a test to interval censored event 

time data or to the exact event time data. 

3.2 .3 Controlling for age when comparing flu seasons 

In t he previous section, survival curves of two recent flu seasons were compared , 

and their difference was found significant. In two different flu seasons there are 

many different components which are different and can affect the survival func­

t ion. For instance, people of two seasons are not the sarne, flu type are differ nt, 

the number of people in each age group is not the same. If the comparison of sea­

sons is just among patients who are in a specified age group , t hen t he cornparison 

can rnake sense. 

We study two recent flu seasons 2014-2015 and 2013 - 2014, by age group; since 

LlH:::re a.re five àifferent age groups , we have five comparisons to perform. Table 

3.4 gives the results of the statistical tests, log-rank on the original data and re 
log-rank for the interval censored data. 

According to the result of the test statistic and its p-value for each cornparison, 

even limiting our cornparison among people within the same age group , leads to 

a significant difference between two rec:ent flu seasons. In addit ion, we cornpared 

t hese seasons, only among peopl of one specifie region. One concludes that the 
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Table 3.4 Tests for comparing survival functions of two recent fiu seasons by age. 

Age group Test Method tests Statistic p-Values 

0- 4 Log-Rank x2 = 533 p~O 

IC Log-Rank z = -23.2544 p < 2.2e - 16 

5-24 Log-Rank x2 = 2473 p~O 

IC Log-Rank z = -50.2784 p < 2.2e- 16 

25-49 Log-Rank x2 = 53.6 p = 2.42e- 13 

IC Log-Rank z = -7.2855 p = 3.204e - 13 

50-64 Log-Rank x2 = 22.6 p = 2.04e- 06 

IC Log-Rank z = - 4.7326 p = 2.216e - 06 

65+ Log-Rank x2 = 476 p~O 

IC Log-Rank z = -22.0749 p < 2.2e - 16 

survival curves of the two different fiu seasons 2014 - 2015 and 2013 - 2014 are 

always different. F\1rthermore, the comparison of survival curves, among people 

of a fixed age group in a given region of two different recent fiu seasons results in 

a significant difference. 

3.3 Factor age: comparing survival functions across age groups, in the same 
season 

The other comparison that we want to make is to compare reported age groups , 

using t heir survival curves. First we need to choose a fiu season to the study. In 

what follows, we look at a recent fiu season where complete data is available. 
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Figure 3. 7 K-M survival curves 

of 0-4 and 5-24 age groups, flu 

season 2014-2015. 
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Figure 3.8 IC survival curves of 

0-4 and 5-24 age groups, flu sea-

son 2014-2015 . 

3.3. 1 Comparing cont iguous age group in t he flu season 2014- 2015 

In this section the fiu sea ·on (2014 - 2015) is studied . The reported age groups, 

as shown in Table 2.1 , are available in five categories 0 - 4, 5 - 25 , 25 - 49, 

50 - 64, and 65+ . . The following qu stion will be the interest of the study of 

this section. Are survival curves the same in different available age groups of a 

specified flu season? The first age category and the second category seem to be 

different conceptually. Babies and very young children are in t he first age groups 

while children and young people are in the second age group. The immune system 

of individuals in these groups and also the probabili ty of getting the flu is not the 

same. In Figure 3. 7, K-M survival curves of the age groups 0- 4 and 5- 25 , are 

shown. The event time is considered as th reported exact event time in K-M 

curves of Figure 3. 7. Figure 3.8 shows estimated survival curves of the ame age 

groups , but the event t ime is considered to b interval censored as described in 

Section 3. 1. It seems that both Figures 3.7 and 3.8 give the same results when 

comparing the estimated survival curves, but we need to perform a hypothesis 
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test for each comparison and compare the results. 

The value of the two log-rank test , calculated by R , when comparing 0- 4 and 

5- 24 age groups are given below: 

If the reported event time is considered as the event time of interest , we have : 

p < 10- 16 (3.1) 

and the result of t he asymptotic log-rank test shows that the difference between 

two survival curves of two given age groups , is not negligible. 

If interval censoring is applied to t he flu data, we obtain: 

z = -19.0233 ' p < 2.210- 16 (3.2) 

and t he result of the asymptotic re log-rank two-sample test confirms the results 

of the previous test. Therefore it seems that the survival estimates are different in 

two age groups 0- 4 and 5-24 of 2014-2015 flu season, and the results obtained 

through two different methods coïncide. 

If there exists t he possibility to have similar survival curves in two different age 

groups , conceptually it should be between the age groups of 25- 49 and 50- 64. 

People in both of these age groups are adults and they are not very old or very 

young, and their survival functions should not be very cliff rent. 

Figures 3.9 and 3.10 show comparing survival curves of two age groups (25- 49) 

and (50-64) . K-M survival curves at the reported event time are shown in Figure 

3.9 and interval censoring (IC) is applied to the data at the basis of the survival 

curves in Figure 3. 10. Survival curves seem very similar in these age groups, 

namely (25- 49) and (50- 64) , using both methods of K-M at the reported event 
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Figure 3.9 K- 1 survival of age 

groups 25-49 and 50-64, fiu sea­

son 2014-201 5. 
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Figure 3.10 survival curves 

using interval package of age 

groups 25-49 and 50-64, fiu sea­

son 2014-2015. 

time and interval censoring. Doing hypothesis t ests is needed to verify the possi­

bility of not rejecting H 0 . 

The result of the two log-rank tests , calculated by R , to compare (25 - 49) and 

(50 - 64) age groups are given below. 

If t he reported event time is considered as the event time of interest , we have 

,_ (\11') 
jJ- Vo.L.L"-- o 

The value of the log-rank test statistic is very small , 2.5 with one degree of freedom 

and the p-value bigger than 0.05 confirms that the difference of survival curves 

between given age groups is negligible. 

If interval censoring is applied to t he flu data, we have 

z = 1. 5919 , p = 0. 1114, (3.4) 
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Figure 3.11 K-M survival 

curves of 5-24 and 25-49 age 

group , season 2014-2015. 
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Figure 3.12 le survival curves 

of 5-24 and 25-49 age groups, 

season 2014-2015. 

and the result of the asymptotic IC log-rank two-sample t est confirms t he result of 

the previous test. Therefore it seems that the survival estimat es are very similar 

in the two age groups 25 - 49 and 50 - 64 of 2014 - 2015 fiu season. 

Further , we compare other cont iguous age groups among the five available age 

groups of the 2014- 2015 fiu season data. First , we compare th 5 - 24 and 

25 - 49 age groups . 

Figures 3.11 and 3.12 show this comparisons of survival curves using the reported 

event time as the event time of interest and using interval censoring method . 

Two age groups survival curves do not seem very different using both methods, 

but the result of statistical tests and a very small p-value confirms t he difference 

of survival estimates, in the two mentioned age groups. In Table 3.4, the result of 

statistical tests using different methods is given. 
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Table 3 .5 Stati tical test results of comparing survivals in some age groups of 

(2014-2015) flu season 

Test Method Age group Test Statistic p-value 

Log-Rank 5-24 and 25-49 x2 = 165 pc::::.O 

IC Log-Rank 5-24 and 25-49 z = 12.9737 p < 2.2e - 16 

Log-Rank 50-64 and 65+ x2 = 18.1 p = 2.07e - 05 

IC Log-Rank 50-64 and 65+ z = -4.2178 p = 2.467e - 05 

The other comparison of survival functions across age groups which is studied 

here is comparing of 50- 65 and 65+ age groups. Table 3.1 shows the statistical 

R-re ults , when two differ nt methods of K-M (survdiff) and interval censoring 

(ictest) applied to the (2014- 2015) flu season data, to compare survival curves 

of two age groups 50 - 64 and 65+ and of the other contiguou two age groups 

5- 24 and 25 - 49. In Table 3.1 and in fo llowing tables , the interval censoring 

method (icfit) , is showed by IC Log-Rank. As it is clear in the R-results from 

bath indicated methods, show cl in Table 3.4, two age groups 50 - 64 and 65+ 

have different urvival estimates in t he ment ionecl flu season. 

All survival curves through con ecutive age groups of 2014- 2015 flu season data 

were compared in Section 3.4. 1. Considering the reported event t ime as the vent 

time of interest and considering the event t ime to be interval cen ored, we applied 

the proper log-rank test. Consequently for all contiguous age groups, survival 

estimates are cliff rent except for (25- 49) and (50 - 64) . ow the following ques­

t ion arises. In other flu sea ons, are survival curve similar in 25 - 49 and 50 - 64 

age groups? Finding the answer of this question is the aim of the following s ction. 
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Figure 3.13 K-M survival 

curves of 25 - 49 and 50 - 64 

age groups, season 2013-2014. 
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Figure 3.14 IC survival curves 

of 25- 49 and 50-64 age groups, 

season 2013-2014. 

3.3 .2 Comparing adults survival in five flu seasons 

In this section, we compare survival curves between the two adult's age groups 

25 - 49 and 50 - 64. 

Flu season 2013 - 2014: 

Figures 3. 13 and 3. 14 compare survival curves of age groups (25-49) and (50- 64). 

Survival curves through two indicated age groups using both methods seem very 

similar. In Figure 3.13, survival estimates are computed at the reported event 

time, and in Figure 3.14 the event t ime of interest is considered to be interval cen­

sored. The result s of log-rank tests, applied to the original data and considering 

interval censoring is given in the following table. 

The small value of the t est st at istics and having a p-value moderately large con­

firm that we can not reject t he hypothesis of equality of survival estimates in two 
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Table 3 .6 Flu season 2013- 2014, age groups (25- 49)&(50- 64). 

1 Test Method 1 Test Statistic 1 p-value 

Log-Rank xz = 1.92 p = 0.166 

IC Log-Rank z = 1.3829 p = 0.1667 

mentioned age groups of 2013- 2014 flu season. Therefore , in t he 2013- 2014 flu 

season, for the comparison of (25- 49) and (50- 64) age groups, the same conclu­

sion of no difference between survival functions was obtained as in the 2014-2015 

flu season. 

Flu seasons 2012- 2013, 2011- 2012, 2010- 2011: 

Given t hat urvival curves look quite similar, in what follows we study the result 

of tatistical tests. The following Table 3.7 summarizes our results for these flu 

seasons. 

Table 3.7 Test statist ic of three flu s asons, age groups (25- 49)&(50- 64) . 

Flu season Test Method Test Statistic p-value 

2012-2013 Log-Rank xz = 4.1 p = 0.042 

IC Log-Rank z = 1.9526 p = 0.05086 

2011-2012 T ,ni!-R ::..n k 
u 

v 2 = 6.1 
/ \. 

rl = 0.0133 r 

IC Log-Rank z = -2.5909 p = 0.009574 

2010-2011 Log-Rank xz = 7.9 p = 0.00501 

IC Log-Rank z = 2.8031 p = 0.005062 

For the 2012 - 2013 we note that the conclusions of the log-rank and th IC 

log-rank test do not coïncide. Thus applying interval censoring on the data, as 
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explained in Section 3.1 , can change the conclusions in comparing survival esti­

mates. Equivalently, the result of comparing survival is not always the same, 

when the reported event time in the data i considered to be exact or interval 

censored. 

As for the fl.u scason 2011- 2012 and 2010- 2011 the p-value of both tests are less 

than the significance level, and survival curves using both methods seem different. 

Although one expects that survival curves of the two ag groups (25- 49) and 

(50- 64) to be very similar , we cannot conclude that th e two age groups have 

the same survival curves in all fl.u seasons, an interesting fact. 

3.4 Comparing different U.S . regions 

In the Flu View report of CDC, for each season, t he fl.u data is also available 

by U.S regions . Is the percentage of ILl comparable in diferent U.S regions? 

In order to answer this question it would be interesting to compare U.S region 

through their survival curves. lndeed, comparison of the Line Chart ILINet or 

percentage of visits for ILl, t hrough different regions will motivate us to study the 

survival curve in different regions. 

Figure 3.15 shows the percentage of ILl by week, for all 10 U.S regions in the 

recent fl.u season 2014- 2015. In general, since the ILl p rcentage graph is differ­

ent for different regions of U.S. (Figure 3.15), they seem to have different survival 

curves. 

The Line Chart ILlNet report of region 1 and 3 do not seem to be very different, 
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Figure 3.15 ILINet graph, through 10 different regions, 2014 - 2015 flu eason. 

and the ame is true for regions 4 and 5. Indeed we pick these two regions 4 and 

5 to study their survival curve in a given fl.u season 2014-2015. In Figures 3.16 

and 3.17, we present the related survival estimates at the exact event time and in 

the interval censored data. The result of statistical tests is given to confirm the 

conclusion. All t he analysis of t his section is on the rlat,.q, of t.h P. rP.rent fiu sea.son 

2014- 2015. 

3.4.1 Comparing r gions in the flu season 2014-2015 

Regions 1 and 3: 

Figures 3.16 and 3. 17 give survival curves of regions 1 and 3 and they seem to 
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Figure 3.16 K-M survival 

curves of regions 1 and 3 (full 

line), season 2014-2015. 
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Figure 3.17 IC survival curves 

of regions 1 and 3, season 2014-

2015. 

be very different. This is not surprising, as region 1 covers nort hern states and 

region 3 southern ones. 

Table 3.8 Flu season (2014- 2015), Region 1 & 3. 

1 Test Method 1 Test Statistic 1 p-value 

Log-Rank x2 = 46.3 p = 1.03e - 11 

IC Log-Rank z = -7.0255 p = 2.132e - 12 

The result of hypothesis tests, presented in Table 3.8, confirms that survival func­

t ions t hrough region 1 and region 3 are different . 

R egions 4 and 5: 

Survival curves to compare regions 4 and 5 are shown in Figure 3. 18 and 3.19 , 

and t hey seem to be very different. 

The test statistic value x2 and z, in Table 3.9 implies t hat t he difference of survival 
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Figure 3.18 K-M survival 

curves of regions 4 and 5, eason 

2013-2014. 

functions in regions 4 and 5 is not negligible. 
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Figure 3.19 IC survival curves 

of regions 4 and 5, season 2013-

2014. 

Table 3.9 Flu season (2014- 2015) , Region 4 & 5. 

1 Test Method 1 Test Stati t ic 1 p-value 

Log-Rank x2 = 472 p~O 

IC Log-Rank z = 22.2502 p < 2.2e- 16 

Since the survival curves through different regions seem to be very different , we 

-xp -ct t hat perfomüng \.:um_l.J a.ri:;uH Le:;L:; Ll1rough ü .S. regions shoulà only confirm 

this difference. For each region and in a given sea on, the CDC website provides 

al o t he number of ILl in different age groups. Using this number of ev nts given 

in different age groups for a given U.S . region , w an ompare ·urvival functions 

through age groups, in a giv n region and season. 

In the fiu season 2014-2015, we pick a region (region 1), and then the comparison 
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Figure 3 .20 K-M survival 

curves of two age groups in 

regions 1, season 2014-2015 . 
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Figure 3.21 IC urvival curves 

of two age groups in regions 1, 

season 2014-2015. 

of survival curves among two age groups, 25- 49 and 50- 64, are studied. Figures 

3.20 and 3.21 show the compari on of survival curves t hrough the indicated age 

groups and t hey seem very similar . The test values in Table 3. 10 confirms the 

similarity of survival curves . 

Table 3 .10 Region 1, Comparing Age groups (25 - 49)&(50 - 64) . 

1 Test Method 1 t e t Statistic 1 p-Value 

Log-Rank x2 = 1.3 p = 0.261 

IC Log-Rank z = 1.0096 p = 0.3127 

The p-values in Table 3.10 confirm that t h difference between survival curves in 

Figures 3.20 and 3. 21 is not significant . To compare survival functions among the 

25 - 49 and 50 - 64 age groups, the same result is obtained in the data of region 

1 as in the national dat a. 
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In the illustrative examples of Section 3.3, we studied survival curves through age 

groups and found that the 25- 49 and 50- 64 age groups have similar survival 

functions in some fl.u seasons. :\ow, t he following question is t he motivation of 

the following section. In a given U.S. region of a fixed fl.u season, are survival 

functions of th 25 - 49 and 50- 64 age groups still the same? 

3.4.2 Comparing the 25 - 49 and 50- 64 age groups by regions 

In the given season 2014- 2015 , for each of 10 U.S. regions we compare survival 

functions among t hese spccificd age groups using the log-rank tests , and t he rcsult 

of this comparison is given in Table 3. 11. Comparing these age groups in each of 

t he 10 regions separately give us an interesting result. 

As we can see in Table 3. 11 , when comparing the survival function of two age 

groups (25 - 49) and (50 - 64) by region, we no longer have the equality of 

survival function as in the national data. In Section 3.4, we tudied that the 

difference of survival curves between two mention d ag groups is insignificant in 

season 2014-2015, however in t he r gion 2, 4, 5 and 9, the survival curves of the 

t wo age groups arc different . 

3.5 Comparing fl.u type in sea.son 2014- 2015 

F inally, a hown in Chapter 1, the CDC is al o test ing the influenza strain for 

some individuals. Figure 3.22 shows how the given fl.u type graph is posted on 

Flu View, in the 2014 - 2015 ea on. Different color how different availabl fl.u 

typ of the give eason. In Figure 3.22 , the number of positive tests for three 

chosen we ks is given. For the 2014 - 2015 season, available fl.u types are: 
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Table 3 .11 Comparison of the survival in the (25- 49) and (50 - 64) age groups 

by region, 2014- 2015 season. 

Region Test Method Tests Statistic p-values 

Region 1 Log-Rank x2 = 1.3 p = 0.261 

IC Log-Rank z = 1.0096 p = 0.3127 

Region 2 Log-Rank x2 = 16.3 p = 5.3e - 05 

IC Log-Rank z = -3.9443 p = 8.003e - 05 

Region 3 Log-Rank x2 = 1 p = 0.323 

IC Log-Rank z = -1.0495 p = 0.2939 

Region 4 Log-Rank x2 = 14.7 p = 0.000127 

IC Log-Rank z = 3.8743 p = 0.0001069 

Region 5 Log-Rank x2 = 5 p = 0.0256 

IC Log-Rank z = 2.1302 p = 0.03315 

Region 6 Log-Rank x2 = 2.4 p = 0.119 

IC Log-Rank z = 1.4151 p = 0.157 

Region 7 Log-Rank x2 = 3.7 p = 0.0561 

IC Log-Rank z = 1.9336 p = 0.05316 

Region 8 Log-Rank x2 = 1.5 p = 0.219 

IC Log-Rank z = -1.2623 p = 0.2068 

Region 9 Log-Rank x2 = 7.5 p = 0.00629 

IC Log-Rank z = 2.9088 p = 0.003628 

Region 10 Log-Rank x2 = 0.6 p = 0.439 

IC Log-Rank z = 0.7798 p = 0.4355 
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Figure 3.22 FluView report for fiu type, 2014 - 2015 season. 

1. A (H3 ) 

2. A(H1N1) 

3. A(Subtyping not Performed) 

4. B (Lineage Unspecified) 

We characterize the above fiu types by numbers 1 to 4. For example by type 1 we 

mean the A(H3) fiu type. In this section we will compare survival curves bctwcen 

different fiu types . First , we pick two types 3 and 4 to compare their survivais. In 

Figure 3.22 the proportion of type 3 is in yellow and type 4 is in green . Figures 

3.23 and 3.24 show the comparison of survival curves of fiu type 3 and 4 using 

empirical survival curves at t he exact event t ime and survival curves at interval 

censored time (IC survival curves), respective! y. By comparing survival curves 

in Figures 3.23 and 3.24, it seems that survival curves of type 3 and 4 are very 

different, and one (type 4) is definitely above the other. 
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Figure 3.23 Empirical survival 

curves of two fl.u virus types 

(type A, lin d), 2014-2015. 
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Figure 3.24 IC survival curves 

of two fl.u virus types, 2014-2015. 

The statistical comparison of all available fl.u types in 2014-2015 , using t heir sur­

vival estimates is given in Table 3.12. The result of statistical tests in Table 3.12 

confirms the conclusion obtained from Figures 3.23 and 3.24. 

The result of statistical tests and p-values in Table 3.12 shows that different fl.u 

types have very different survival curves and the difference of t heir survival is not 

negligible. 
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Table 3 .12 Results of comparing survival by different fiu types, 2014 - 2015 

season. 

Comparing flu Test Method Tests Statistic p-values 

types 

Type 1 and 2 Log-Rank x2 = 180 p~O 

IC Log-Rank z = 18.4478 p < 2.2e- 16 

Type 1 and 3 Log-Rank x2 = 428 p~o 

IC Log-Rank z = -20.6042 p < 2.2e- 16 

Type 1 and 4 Log-Rank x2 = 19019 p~O 

IC Log-Rank z = 140.363 p < 2.2e - 16 

Type 2 and 3 Log-Rank x2 = 225 p~o 

IC Log-Rank z = - 21.4839 p < 2.2e -16 

Type 2 and 4 Log-Rank xz = 3.9 p = 0.0487 

IC Log-Rank z = - 1.8495 p = 0.06439 

Type 3 and 4 Log-Rank x2 = 22591 p~O 

1 IC Log-Rank 1 z = 150.7147 1 p < 2.2e- 16 



CO CLUSION 

In t his t hesis, we studied ILl (Influenza Like Illness) data available on the CDC 

(Center for Disease Control and Pr vention , USA) website. Using the ILl data, 

we created a cohort and consider d a conditional survival function. Since the 

number of ILl cases is reported once per week, t he exact t im of getting t he flu 

is not known and the event time was considered to be interval censored ; indeed, 

this event can occur during t he week preceding the reported one. Therefore, we 

considered an interval censored approach and interval censoring estimation meth­

ods were applied to this data in order to estimate the survival function; moreover 

we computed the empirical survival function, by let t ing the report ing week as the 

exact event time. 

Since t he percentages of ILl in two recent flu seasons 2013-2014 and 2014 - 2015 

seemed very similar , we applied our survival analysis methodology to the ILl data 

of these seasons in order to assess whether we obtain a similar conclusion or not . 

Computing t he empirical survival est imates at t he reported flu t imes and further 

applying an interval censored estimation rnethod, we concluded that these flu sea­

sons are different . Also, we compared survival functions of the above flu seasons, 

by age group, by region, and for a fix d age group in a giv n region. In every such 

case the result ing estirnators of t he survival functions t urned out to be different . 

A log-rank test was used for the comparison of t he survival functions at an exact 

event t ime and by considering interval censoring. 
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Sorne of the most interesting results were obtained in comparing two contiguous 

age groups (forming the "adults"), whcrc wc found significant differences among 

these groups in sorne regions, but not in the national data. As expected , we 

a lso found that survival fun ctions differ dramatically across flu types. Another 

important finding is that applying interval censoring methods or empirical survival 

estimation can lead to different conclusions in sorne of these cases. We conclude 

that our estimation methodology can prove interesting for further studies of these 

data. 
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