MÉMOIRE
PRÉSENTÉ
COMME EXIGENCE PARTIELLE
DE LA MAÎTRISE EN ÉCONOMIQUE

PAR
MOHAMED AMMI

DÉCEMBRE 2016
À la suite de l'achèvement de ce travail qui marque la fin de mon cursus universitaire, il m'était difficile de ne pas formuler, en quelques mots, des remerciements envers des personnes qui m'ont soutenu et aidé durant mon parcours à l'UQAM.

Tout d'abord, je tiens à exprimer mes remerciements à mon directeur de recherche, le professeur Steve Ambler, pour sa grande patience et ses commentaires précieux tout au long de l'élaboration de ce mémoire.

Je remercie également les professeurs Suzanne Marcotte, Ygal Bendavid et tout particulièrement Luis Serrano durant son passage à l'UQAM, ainsi que d'autres, je m'excuse de ne pas pouvoir tous les citer. Non seulement, je suis très reconnaissant envers votre confiance en moi et le soutien financier que j'ai eu grâce à vous, mais également, par rapport à cette formidable expérience dans l'enseignement.

Aussi, sans le soutien de ma très chère famille (mes parents, mon frère et mes sœurs), je ne serais jamais arrivé au bout de mon chemin, merci pour votre encouragement.

Un grand merci pour mon « coloc » Maxime, son soutien était apprécié durant mes études, ainsi que tous les autres amis qui n'ont pas épargné un moment pour m'aider ou simplement me soutenir, je vous remercie du fond de mon cœur.

Je tiens à remercier aussi le personnel du département de la comptabilité de l'ESG pour leur aide durant mes études sans oublier la merveilleuse Martine Boisselle du département des sciences économiques.
<table>
<thead>
<tr>
<th>Tableau des matières</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTE DES FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LISTE DES TABLEAUX</td>
<td>vi</td>
</tr>
<tr>
<td>RÉSUMÉ</td>
<td>vii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPITRE I</td>
<td></td>
</tr>
<tr>
<td>REVUE DE LA LITTÉRATURE</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Les liens théoriques entre l’épargne et la croissance</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Faits stylisés et études empiriques</td>
<td>6</td>
</tr>
<tr>
<td>CHAPITRE II</td>
<td></td>
</tr>
<tr>
<td>MÉTHODOLOGIE ET DONNÉES</td>
<td>10</td>
</tr>
<tr>
<td>2.1 Méthode d’analyse</td>
<td>10</td>
</tr>
<tr>
<td>2.1.1 Test de la racine unitaire</td>
<td>10</td>
</tr>
<tr>
<td>2.1.2 Test de coïntégration</td>
<td>12</td>
</tr>
<tr>
<td>2.1.3 Test de causalité</td>
<td>14</td>
</tr>
<tr>
<td>2.1.4 La statistique Wald modifiée</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Les données et application au modèle de l’étude</td>
<td>21</td>
</tr>
<tr>
<td>2.2.1 Le modèle</td>
<td>21</td>
</tr>
<tr>
<td>2.2.2 Les données</td>
<td>22</td>
</tr>
<tr>
<td>CHAPITRE III</td>
<td></td>
</tr>
<tr>
<td>RÉSULTATS EMPIRIQUES</td>
<td>25</td>
</tr>
<tr>
<td>3.1 Tests de la racine unitaire et ordres d’intégration</td>
<td>25</td>
</tr>
<tr>
<td>3.2 Analyse des changements structurels</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1 Test de Chow</td>
<td>31</td>
</tr>
<tr>
<td>3.2.2 Correction du taux d’épargne</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Nombre de retards dans le VAR</td>
<td>35</td>
</tr>
</tbody>
</table>
3.4 Test de cointégration ... 36
3.5 Tests de causalité .. 37
CONCLUSION .. 44
ANNEXE A
STATISTIQUES DESCRIPTIVES ... 46
ANNEXE B
ÉVOLUTION DU TAUX D’ÉPARGNE PAR PAYS ENTRE 1967-2015 49
ANNEXE C
ÉVOLUTION DU TAUX DE CROISSANCE PAR PAYS ENTRE 1967-2015 52
BIBLIOGRAPHIE ... 55
LISTE DES FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Évolution du taux d’épargne brute au monde entre 1977 – 2015</td>
<td>7</td>
</tr>
<tr>
<td>B.1</td>
<td>Évolution du taux d’épargne dans les pays à haut revenu</td>
<td>50</td>
</tr>
<tr>
<td>B.2</td>
<td>Évolution du taux d’épargne dans les pays à faible revenu</td>
<td>51</td>
</tr>
<tr>
<td>C.1</td>
<td>Évolution du taux de croissance dans les pays à haut revenu</td>
<td>53</td>
</tr>
<tr>
<td>C.2</td>
<td>Évolution du taux de croissance dans les pays à faible revenu</td>
<td>54</td>
</tr>
</tbody>
</table>
LISTE DES TABLEAUX

<table>
<thead>
<tr>
<th>Tableau</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Base des données</td>
<td>23</td>
</tr>
<tr>
<td>3.1 Test ADF (Base 1)</td>
<td>26</td>
</tr>
<tr>
<td>3.2 Test ADF (Base 2)</td>
<td>27</td>
</tr>
<tr>
<td>3.3 Valeurs critiques pour les statistiques ADF</td>
<td>28</td>
</tr>
<tr>
<td>3.4 Résultats du test de Chow sur la variable du taux d’épargne</td>
<td>33</td>
</tr>
<tr>
<td>3.5 Résultats du test ADF sur le taux d’épargne corrigé</td>
<td>34</td>
</tr>
<tr>
<td>3.6 Structure des retards du VAR (p)</td>
<td>35</td>
</tr>
<tr>
<td>3.7 Test de coïntégration de Johansen (Espagne)</td>
<td>36</td>
</tr>
<tr>
<td>3.8 Résultats des tests de causalité (Base 1)</td>
<td>38</td>
</tr>
<tr>
<td>3.9 Résultats des tests de causalité (Base 2)</td>
<td>39</td>
</tr>
<tr>
<td>A.1 Statistiques descriptives pour le taux de croissance</td>
<td>46</td>
</tr>
<tr>
<td>A.2 Statistiques descriptives pour le taux d’épargne</td>
<td>47</td>
</tr>
<tr>
<td>A.3 Corrélation entre le taux d’épargne et le taux de croissance</td>
<td>48</td>
</tr>
</tbody>
</table>
Ce mémoire utilise la méthode de Toda et Yamamoto (1995) afin d’expérimenter le lien de causalité entre l’épargne et la croissance économique, il nous permet ainsi de tirer une conclusion sur la direction de ce lien. Cette relation a été examinée entre deux séries chronologiques annuelles, l’épargne exprimée en taux d’épargne intérieure brute et la croissance économique exprimée en taux de croissance du PIB, pour un échantillon de pays assez diversifiés en revenu. Les résultats empiriques ont démontré que ce lien de causalité peut être différent d’un pays à un autre. Cette causalité peut être également unidirectionnelle ou bidirectionnelle indépendamment du revenu du pays.

INTRODUCTION

Le contexte de la dernière crise financière appuie les interrogations sur ce type de relation. Les nouvelles stratégies de développement des systèmes financiers mettent en amont les questions relatives à l’épargne et son impact sur la croissance de l’économie. Ces interrogations restent aussi des préoccupations pour des organismes tels que la Banque Mondiale. Cette dernière, à travers plusieurs enquêtes (World Bank, 1993) sur le développement économique1, révèle un constat assez particulier. En effet, les pays avec des taux d’épargne plus élevés ont vu leur PIB augmenter à un rythme plus rapide par rapport aux pays avec des taux d’épargne plus faibles.

La corrélation positive démontrée par les études empiriques entre l’épargne et la croissance à l’instar de la recherche de (Loayza et al., 1998), laisse penser que la progression des taux d’épargne peut accompagner généralement une forte croissance notamment dans les économies à revenus importants. Encouragé par la forte croissance des pays développés depuis les années 1950, Lewis affirme en 1955 que les économies croissantes permettraient d’accélérer la croissance économique en mettant en jeux, entre autres, la variable d’épargne. Les recherches de Kaldor (1956) montrent comment les différents comportements d’épargne pourraient stimuler la

1 Voir aussi le texte de (Ehrhart, 2006).

Pas uniquement les études empiriques qui nous laissent observer cet effet positif de l’épargne sur la croissance. D’un point de vue théorique, la prédiction du modèle de Solow (1956) affirme que des taux d’épargne plus élevés peuvent être traduits en un investissement important, conduisant ainsi à une augmentation (en niveau) du PIB par tête ce qui stimulera la croissance sur le court terme. Toutefois, cette croissance à long terme ne serait éventuelle que grâce à l’effet d’un facteur entièrement exogène au modèle, il s’agit du progrès technique.

Pareillement, les théories traditionnelles du développement soutiennent aussi l’effet positif de l’épargne sur la croissance tout simplement à cause de la relation transitive entre l’épargne, l’investissement et la croissance économique. En effet, l’identité comptable dans une économie fermée² prévoit que l’investissement doit être équivalent à l’épargne domestique. Ainsi, un pays peut se développer plus rapidement en s’investissant davantage dans le capital humain et physique.

Néanmoins, la relation dynamique ou plus précisément le lien de causalité entre les deux variables est sujet à controverse entre plusieurs auteurs et elle reste ambiguë selon l’étude de (Attanasio et al., 2000), il n’y a toujours pas de consensus sur l’effet prédictible de l’épargne sur la croissance et la situation diffère d’un pays à un autre.

Ce mémoire veut s’inscrire dans ce débat, en particulier, de chercher à comprendre les liens de causalité à travers une étude empirique. Les résultats nous permettront, peut-être, de savoir est-ce que la croissance qui cause le taux d’épargne ou l’inverse ?

² Ou même, sur le long terme, pour une économie ouverte en dehors de la charge de la dette extérieure, voir aussi la discussion dans les pages 29-30.
Notamment dans les pays ayant des revenus plus élevés que d’autres et qui connaissent une croissance plus rapide.

Pour réaliser ce travail, nous utiliserons les développements récents de l’économétrie des séries temporelles. L’objectif reste de tester empiriquement la relation de causalité qui pourrait exister entre deux variables clés, l’épargne et la croissance, à travers un panel de quelques pays à différents revenus. La notion de causalité, dans le domaine des séries chronologiques, est couramment interprétée au sens de Granger (1969). Une définition simple de cette causalité comprend que la connaissance du passé (les retards) d’une variable peut améliorer la prévision de la seconde. Cependant, l’analyse faite dans ce travail donne plus d’importance à la procédure de Toda et Yamamoto (1995) et son apport à la notion de causalité de Granger.

Le plan déployé de ce travail est composé d’une revue de la littérature abordant la relation entre l’épargne et la croissance économique, d’une deuxième partie pour discuter de la méthodologie et le choix des données et une dernière partie dédiée aux résultats empiriques.
La littérature sur l'épargne est très riche dans les sciences économiques, la croissance bénéficie également d'un vaste champ de recherche. Cependant, le but de ce chapitre n'est pas de chercher à définir les concepts et les modèles théoriques, mais plutôt de faire un survol des articles écrits à propos de la relation entre les deux variables.

1.1 Les liens théoriques entre l'épargne et la croissance

La relation entre l'épargne, l'investissement et la croissance économique est très étroite, mais il semble que l'interprétation de ce lien d'influence n'a pas arrêté d'évoluer progressivement.

Dans l'école classique et selon les interprétations d'Adam Smith et de David Ricardo, l'épargne est inévitablement affectée sous forme de consommation. L'agent économique ne détient aucun résidu et il n'y a pas des préférences pour la liquidité. L'épargne ne peut être dans ce cas que le reflet direct de l'investissement et de la croissance. Cette relation a été vérifiée durant la révolution industrielle, une forte portion d'autofinancement issue de l'épargne de l'agriculture et du commerce. Aussi dans des pays comme la Chine durant le communisme et dans certains cycles de temps des pays industrialisés où un rôle accru des marchés financiers a été observé pour un retour vers la croissance (Hausmann et al., 2004).
Par contre, Keynes (1936) dans son livre « Théorie générale de l'emploi, de l'intérêt et de la monnaie » donne toute une nouvelle définition de l'épargne, c'est plutôt le revenu disponible et la propension à consommer qui déterminent la consommation et indirectement l'épargne, cette dernière est considérée comme un résidu lorsque la demande est satisfaite. Keynes s'oppose donc aux classiques, l'épargne est largement indépendante des projets d'investissement puisque le comportement des agents économiques dépend d'autres variables : le revenu, l'efficacité marginale du capital et le taux d'intérêt. Une forte épargne peut générer une faible consommation et ralentir la croissance, car elle diminue la demande globale (Eggoh, 2009).

L'épargne occupe une place importante pour l'évolution des variables par tête dans les modèles de croissance. Le modèle de Solow (1956), en s'appuyant sur les hypothèses des néoclassiques notamment les rendements factoriels décroissants, prédit que l'épargne, entièrement investie, précède et cause une augmentation dans le niveau du PIB par tête. Cependant, l'analyse de Solow attribue l'origine de cette croissance à des facteurs exogènes, tout particulièrement, au progrès technique.

En opposition à Solow, Romer (1986), célèbre pour son premier modèle de croissance endogène de type AK, explique la croissance par des facteurs endogènes tels que l'innovation et l'intervention de l'État, mais l'idée d'une forte épargne comme moteur de la croissance économique est toujours présente dans son modèle. Ainsi, l'épargne permet d'alimenter des investissements supplémentaires, donc des revenus, à condition que la loi des débouchés soit vérifiée, c'est-à-dire toute production supplémentaire se transforme effectivement en revenu.

Dans la continuité des modèles de croissance endogène où l'innovation joue un rôle déterminant, une étude très récente de (Aghion et al., 2009) analyse l'effet implicite de l'épargne sur la croissance économique. La prédiction principale du modèle (schumpétérien) développé dans l'article est que l'épargne a un effet positif sur la croissance si les pays sont loin de la frontière technologique, mais elle n'affecte en
rien la croissance des pays proches de cette frontière. La calibration du modèle a démontré que les pays en développement (loin de la frontière technologique) ont tendance à augmenter leur épargne dans le futur afin de rattraper la frontière ce qui impliquera, in fine, une augmentation dans le taux de croissance.

1.2 Faits stylisés et études empiriques

Plusieurs recherches et études affirment qu’il y a certains faits stylisés et tendances pour l’épargne par rapport aux autres variables macroéconomiques à travers plusieurs pays dans le monde à l’instar de l’étude descriptive menée par (Loayza et al., 1998).

L’étude revient sur quelques aspects liés à l’épargne mondiale. L’analyse des données statistiques est faite sur un échantillon de 112 pays en développement et 22 pays développés sur une période de 35 ans. Elle fait ressortir plusieurs conclusions sur l’épargne. En ce qui concerne les taux de l’épargne intérieure brute, il est indiqué que ces taux ont diminué en moyenne depuis les années 1970, mais ils restent positivement corrélés avec les taux de croissance des pays étudiés (le coefficient de corrélation varie entre 0,29 et 0,40). Cette corrélation est aussi positive avec l’investissement. Par contre, l’épargne souffre d’une grande dispersion à cause des tendances divergentes dans les régions en développement tandis qu’elle est plutôt homogène et fortement corrélée avec la croissance dans les pays développés. Par ailleurs, la part de l’épargne privée a aussi décliné avec le temps dans les pays en développement, mais elle est restée constante dans les pays industrialisés. À titre indicatif, nous présentons dans la figure 1.1 l’évolution de l’épargne intérieure brute mondiale (en % du PIB) à partir des données de la Banque Mondiale.
D’un autre côté, l’étude de (Attanasio et al., 2000) s’intéresse aussi aux corrélations et liens de causalité entre trois variables : le taux de l’épargne, la part d’investissement dans le PIB et le taux de croissance annuel sur un panel de 123 pays couvrant la période 1961 à 1994. Le modèle théorique suggéré « *life cycle model* » permet de cerner la relation de long terme et dynamique entre les trois variables. Les auteurs font référence à trois principaux résultats :

- La corrélation entre l’épargne retardée et l’investissement est positive.
- L’investissement cause, au sens de Granger, la croissance avec un signe négatif.
- La croissance cause, au sens de Granger, l’investissement avec un signe positif.

Cependant, les résultats empiriques de l’étude indiquent que non seulement le cycle de l’épargne et de l’investissement sont plus persistants que celui de la croissance,

mais que l’investissement a un effet de causalité positif sur l’épargne. Cette dernière demeure positivement corrélée à la croissance malgré les réserves émises par les auteurs sur l’effet faible et ambigu de la causalité positive allant de la croissance vers l’épargne.

Plusieurs études ont analysé des petits ensembles de données pour démontrer la relation de l’épargne domestique avec le temps, avec l’agrégation régionale et avec d’autres variables économiques, en occurrence (Masson et al., 1995) et (Schmidt-Hebbel, 1997).

Parmi les premières études empiriques qui s’intéressent à la relation de causalité entre l’épargne et la croissance, nous trouvons l’étude menée par Carroll et Weil (1994). Leur conclusion s’oppose à la prédiction du modèle de croissance néoclassique dont l’effet exogène de la hausse de l’épargne cause la hausse de la croissance. En effet, après avoir examiné le lien de causalité, au sens de Granger, entre le taux de croissance et le taux d’épargne en niveau, ils ont trouvé que la croissance cause positivement l’épargne et pas l’inverse pour le deuxième panel des données constituées principalement des 22 pays de l’OCDE.

L’étude de Sinha et Sinha (1998) sur le Mexique s’est appuyée aussi sur le même concept de Granger pour tester la causalité allant de l’épargne privée et publique vers le PIB. Après avoir vérifié la stationnarité et la coïntégration des séries, les résultats ont montré qu’il y a un lien de causalité inverse allant de la croissance du PIB vers la croissance de l’épargne privée et publique et pas inversement.

Mohan (2006) a employé aussi la méthode de Granger pour plusieurs économies au monde de 1960 à 2001 pour 25 pays très variés en revenus (classés par faible revenu, faible revenu moyen, haut revenu moyen et revenu élevé). Il a trouvé que le taux de croissance de l’économie cause le taux de croissance de l’épargne pour la plupart des pays (en nombre de 13), dont 8 pays à revenu élevé (Suède, Islande, Finlande,

En conclusion, le survol de la littérature empirique fait remarquer que plusieurs études trouvent plutôt une influence de la croissance vers l’épargne à l’inverse de la prédiction classique que l’épargne précède et cause la croissance.
Dans le cadre de notre travail, la méthodologie adoptée pour tester ce lien est basée sur l’analyse faite par Oladipo (2010). L’article repose sur la méthode de Toda et Yamamoto (1995) pour tester la causalité. Dans la première section de ce chapitre, nous expliquerons la démarche qui regroupe trois étapes :

- Test des racines unitaires
- Test de coïntégration
- Test de causalité

Plus loin encore, nous discuterons de l’avantage d’utiliser cette procédure pour tester la causalité au détriment du test classique de Granger, l’article de (Mavrotas et Kelly, 2001) revient largement sur cette question. Enfin, l’application de cette démarche sur le modèle de l’étude avec description des données est présentée à la deuxième section.

2.1 Méthode d’analyse

2.1.1 Test de la racine unitaire

Une série chronologique est stationnaire si elle est la réalisation d’un processus stationnaire. Plus généralement, la série ne comporte aucun facteur évoluant avec le temps. Pour vérifier la stationnarité des séries, en plus de l’observation des corrélogrammes, il faut pratiquer des tests de stationnarité ou des tests de racine
unitaire. Ces tests permettent d’identifier la présence de racine unitaire dans une série temporelle et de vérifier si elle est stationnaire. Plus exactement, nous chercherons à vérifier l’hypothèse nulle d’existence de racine unitaire et que le processus autorégressif est non stationnaire contre l’hypothèse alternative. Parmi les tests qui conviennent à cette fin, nous retenons le test Augmented Dickey-Fuller (ADF) (Smith et Fuertes, 2010).

Si nous supposons que nos données seront générées par un processus autorégressif vectoriel (VAR) d’ordre \(p \), le nombre de retards, le cadre du test ADF prévoit trois modèles pour la régression selon les éléments déterministes rajoutés :

1. Cas sans terme déterministe et sans constante :
 \[
 \Delta y_t = \rho y_{t-1} + \sum_{i=1}^{p} \gamma_i \Delta y_{t-i} + \epsilon_t. \tag{2.1}
 \]

2. Cas avec constante :
 \[
 \Delta y_t = \mu + \rho y_{t-1} + \sum_{i=1}^{p} \gamma_i \Delta y_{t-i} + \epsilon_t. \tag{2.2}
 \]

3. Cas avec constante et tendance :
 \[
 \Delta y_t = \mu + \beta t + \rho y_{t-1} + \sum_{i=1}^{p} \gamma_i \Delta y_{t-i} + \epsilon_t. \tag{2.3}
 \]

Les paramètres des relations sont estimés par MCO, les résultats obtenus permettent de calculer la statistique du test afin de déterminer s’il faut rejeter l’hypothèse nulle de la non-stationnarité.

Dans les trois cas, il revient de vérifier l’hypothèse \(H_0 : \rho = 0 \) contre l’alternative \(H_1 : \rho < 0 \). Les tests sur les variables peuvent être menés en niveau et en différence.
L’hypothèse nulle H_0 de non-stationnarité de la série temporelle est rejetée à un seuil donné lorsque la valeur de la t-statistique conventionnelle sous l’hypothèse nulle est plus négative que la valeur critique tabulée par MacKinnon (1996).

Cependant, l’originalité du test réside dans le choix du nombre de retards du modèle VAR $\langle p \rangle$. Si le nombre de retards est faible, le test risque d’être biaisé et s’il est trop important, le test sera alors moins puissant.

Plusieurs méthodes peuvent être utilisées pour optimiser le nombre de retards, nous retenons le critère d’information d’Akaike (1974) : $I_{AIC} = -2 \log(l/T) + 2(k/T)$ Où l est le logarithme de la fonction de vraisemblance, k est le nombre de paramètres de la fonction et T le nombre d’observations.

Akaike (1974) propose de minimiser la valeur du critère en considérant des retards séquentiels après avoir estimé plusieurs relations du modèle. L’AIC peut être un excellent compromis entre le biais (qui diminue avec le nombre de paramètres) et la puissance du test (avec le plus petit nombre de paramètres possible).

Dans le cadre de ce travail, c’est l’ordre d’intégration $I(.)$ de la série qui nous intéresse tout particulièrement. En effet, une série y_t est :

- intégrée d’ordre 0, $I(0)$, si y_t est stationnaire.
- intégrée d’ordre 1, $I(1)$, si la première différence Δy_t est stationnaire.

Un test sur l’intégration cherche à trouver le nombre de différenciations nécessaires à une variable pour qu’elle soit stationnaire. (Smith et Fuertes, 2010)

2.1.2 Test de coïntégration

La deuxième étape consiste à effectuer un test de coïntégration pour vérifier s’il existe une relation (une combinaison linéaire) de long terme entre les variables non
stationnaires, la coïntégration implique un comportement semblable dans le temps et ne peut durablement diverger.

Le test de Johansen (1988) s’opère dans un univers multivarié des séries temporelles, la méthode propose une analyse des valeurs propres de la matrice du modèle pour tester la coïntégration.

La forme générale d’un processus multivarié peut être écrite de la sorte :

\[X_t = \Pi_1 X_{t-1} + \cdots + \Pi_k X_{t-k} + \mu + \phi D_t + \varepsilon_t. \]

\hspace{2cm} (2.4)

pour \(t = 1, \ldots, T \) et \(\varepsilon_t \) est un bruit blanc. \(D_t \) et \(\mu \) sont des éléments déterministes ou exogènes dans le modèle.

Elle peut être réécrite également comme :

\[\Delta X_t = \Gamma_1 \Delta X_{t-1} + \cdots + \Gamma_{k-1} \Delta X_{t-k+1} + \mu + \phi D_t + \varepsilon_t. \]

\hspace{2cm} (2.5)

\[\Gamma_t = \Pi_1 + \cdots + \Pi_t - I \]

\[\Pi = \Pi_1 + \cdots + \Pi_k - I \]

Le rang « \(r \) » de la matrice \(\Pi (p \times p) \) indique le niveau de coïntégration (le nombre de vecteurs de coïntégration), à cet effet, il devient nécessaire de connaître les valeurs
propres de la matrice afin de les évaluer, elles doivent être significativement différentes de 0.

Deux statistiques nous permettent de calculer deux types de valeurs propres, la trace et la valeur propre maximale :

\[
\lambda_{\text{trace}}(r) = -T \sum_{i=r+1}^{p} \ln(1 - \lambda_i). \quad (2.6)
\]

\[
\lambda_{\text{max}}(r, r+1) = -T \ln(1 - \lambda_{r+1}). \quad (2.7)
\]

Les hypothèses du test sont :

H₀ : "Il existe au plus \(r \) vecteurs de cointégration ».

H₁ : "Il existe au moins \(r \) vecteurs de cointégration ».

2.1.3 Test de causalité

C'est l'étape la plus importante dans la présente démarche puisque la relation de causalité peut néanmoins nous indiquer des informations sur l'antériorité des événements entre les deux variables, l'épargne et la croissance économique. Selon (Hurlin, 2007), deux principes essentiels doivent être vérifiés dans toute relation causale. Il s'agit du principe d'antériorité, la cause précède l'effet et en second lieu, la série causale contient de l'information sur l'effet, qui n'est contenue dans aucune autre série, au sens de la distribution conditionnelle.

Le test classique, à cet effet, est celui de Granger (1969), le théorème repose sur la valeur des prévisions des variables à partir de leur passé. Supposer que la variable \(Y_t \) cause \(X_t \) veut dire que la prédictibilité de \(X_t \) est améliorée lorsque l'information relative à \(Y_t \) est incorporée dans l'analyse. En d'autres termes, une série cause une
autre, si la connaissance du passé de la première améliore la prédiction de la seconde selon Bourbonnais (2002). Une autre définition simple du principe de la causalité de Granger signifie que X peut causer Y au sens de Granger, si Y peut être mieux prédit en usant l'historique de X et Y en même temps que d'utiliser uniquement l'historique de Y tout seul, Giles (2011a).

La définition de Sims (1972) de la causalité stipule qu'une série cause une autre série, si les innovations de la première contribuent à la variance d'erreur de prédiction de la seconde. Le fondement de la définition de Granger est la relation dynamique entre les variables, elle est énoncée en termes d'amélioration de la prédicibilité d'une variable. Il paraît très utile de préciser que c'est le concept de causalité selon la définition de Granger qui sera adopté et testé dans ce travail.

Reprenant maintenant les notations de (Hurlin, 2007) qui découlent des définitions de Granger (1969). Soit X_t et Y_t deux variables aléatoires et A_t un ensemble dénombrable de variables aléatoires de variances finies (ensemble d'informations en t) tel que:

$$\bar{X}_t = \{X_s, s \leq t\} \quad \bar{Y}_t = \{Y_s, s \leq t\} \quad \bar{A}_t = \bigcup_{s \leq t} A_s$$

Nous avons les définitions suivantes :

1. La variable X cause la variable Y, au sens de Granger, si et seulement si, pour au moins une valeur de t :

$$\sigma^2(Y_{t+1} / \bar{A}_t) < \sigma^2(Y_{t+1} / \bar{A}_t - \{X_t\}).$$

(2.8)

4 Pour voir plus la différence entre la causalité de Granger et celle de Sims, nous suggérons de consulter le texte de (Kuersteiner, 2008).
2. La variable X cause la variable Y, instantanément, si et seulement si, pour au moins une valeur de t :

$$\sigma^2(Y_{t+1}/\bar{A}_t, \bar{X}_{t+1}) < \sigma^2(Y_{t+1}/\bar{A}_t).$$

(2.9)

3. Il y a une rétroaction (feedback) entre la variable X et la variable Y, si et seulement si X cause Y et Y cause X au sens de Granger.

4. La variable X ne cause pas la variable Y au sens de Granger, si et seulement si pour tout t :

$$\sigma^2(Y_{t+1}/\bar{A}_t) = \sigma^2(Y_{t+1}/\bar{A}_t - \{\bar{X}_t\}).$$

(2.10)

5. La variable X ne cause pas la variable Y instantanément au sens de Granger, si et seulement si pour tout t :

$$\sigma^2(Y_{t+1}/\bar{A}_t, \bar{X}_{t+1}) = \sigma^2(Y_{t+1}/\bar{A}_t).$$

(2.11)

Dans un processus autorégressif bivarié :

$$X_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i X_{t-i} + \sum_{j=1}^{q} \beta_j Y_{t-j} + \varepsilon_t.$$

(2.12)

La variable Y ne cause pas X signifie que $\beta_j = 0, \ j = 1, ..., q$

Donc, tester l’hypothèse nulle de non-causalité est identique à tester :

$$H_0: \beta_j = 0, j = 1, ..., q.$$

(2.13)

Cependant, cette méthode souffre de plusieurs inconvénients (Mavrotas et Kelly, 2001) expliquent que le test de Granger est basé sur des hypothèses nulles formulées

De nombreux auteurs ont essayé d’améliorer la puissance du test de Granger par la construction de procédures alternatives (Johansen et Juselius, 1990) et (Phillips et Toda, 1993) ainsi que l’approche du test de causalité développée par Toda et Yamamoto (1995). Selon le test de Toda et Yamamoto, l’objectif n’est pas d’étudier la coïntégration, mais plutôt de vérifier les hypothèses théoriques. Leur procédure consiste à étudier la causalité à partir d’un VAR d’ordre \((p + d_{max})\) (où \(p\) est le nombre de retards optimal et \(d_{max}\) est l’ordre d’intégration maximal) en appliquant les tests de restriction uniquement sur les \(k\) premiers coefficients sans tenir compte de la coïntégration.

Toda et Yamamoto (1995) expliquent dans leur article :

We proposed a simple way to test economic hypotheses expressed as restrictions on the parameters of VAR models without pretests for a unit root(s) and a cointegrating rank(s). Hypothesis tests such as (5) in levels VAR’s, in general, involve not only nonstandard distributions but also nuisance parameters if the processes are integrated or cointegrated, and critical values for the tests cannot conveniently be tabulated. So the usual way to proceed is formulating equivalent ECM’s in which most hypothesis testing can be conducted using the standard asymptotic theory. But this requires pretests of a unit root and cointegrating rank, which one may wish to avoid if the cointegrating relation itself is not one’s interest since those tests are known to have low power. Hence, our simple method of adding extra lags intentionally in the estimation should be very useful in practice. (Ibid., p. 246)
La démarche du test de causalité de Toda et Yamamoto implique l'utilisation d'une statistique de WALD modifiée de l'hypothèse de non-causalité du test classique de Granger (1969). Sous cette hypothèse, les coefficients de la composante en question sont nuls $H_0: \beta_j = 0, j = 1, ..., q$ voir modèle (2.12).

La nouveauté est que la statistique WALD modifiée prend une distribution de Chi-deux à degré de liberté (p) correspondant au nombre de restrictions dans le modèle contraint, indépendamment de l'ordre d'intégration des séries et de leur cointégration. (Kayhan et al., 2010) nous expliquent comment le test de Toda et Yamamoto a amélioré celui de Granger en s'assurant que la statistique du test suit une loi asymptotique. Dans cette optique, ils précisent que, ce qui garantirait la loi asymptotique5 de la statistique WALD, est l'estimation d'un VAR $(p+d_{max})$ optimal tel que p soit le nombre optimal des retards et d_{max} soit l'ordre maximum d'intégration et c'est exactement ce qui fait la différence avec le test de Granger.

À cette étape, estimer un modèle VAR d'ordre $p+d_{max}$ revient à estimer le modèle augmenté des termes autorégressifs d'ordres compris entre $p+1$ et $p+d_{max}$ tel que :

$$Y_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i Y_{t-i} + \sum_{i=p+1}^{p+d_{max}} \alpha_i Y_{t-i} + \epsilon_t. \quad (2.14)$$

Or, rappelons que l'ordre optimal des retards p peut être trouvé à l'aide du critère AIC et d_{max} l'ordre d'intégration peut être identifié grâce un test de stationnarité comme ADF.

5 Il s'agit d'une loi de « χ^2 ».
2.1.4 La statistique Wald modifiée

La statistique Wald modifiée trouve origine dans le travail de (Dolado et Lütkepohl, 1996). Pour comprendre comment dériver cette statistique à partir d’un modèle VAR, nous allons exposer le développement de (Hatemi-J et al., 2006).

Soit le modèle VAR(p) suivant

\[y_t = C_0 + C_1 y_{t-1} + \cdots + C_p y_{t-p} + \cdots + C_{p+d} y_{t-p-d} + e_t. \]

(2.15)

\(d \) est l’ordre d’intégration des variables du modèle.

Sous une forme matricielle, nous avons :

\[Y := (y_1, \ldots, y_T) \quad (n \times T) \]

\[D := (C_0, C_1, \ldots, C_p, \ldots, C_{p+d}) \quad [n \times (1 + n(p + d)) \]}

\[Z_t := \begin{bmatrix} 1 \\ y_t \\ y_{t-1} \\ \vdots \\ y_{t-p-d+1} \end{bmatrix} \quad [(1 + n(p + d)) \times 1] \text{ pour } t = 1, \ldots, T \]

\[Z := (Z_0, \ldots, Z_{T-1}) \quad [(1 + n(p + d)) \times T] \]

\[\delta := (e_1, \ldots, e_T) \quad (n \times T) \]

Sous écriture matricielle, le VAR \((p + d_{\text{max}})\) devient

\[Y = DZ + \delta. \]

(2.16)
La statistique Wald modifiée proposée par Toda et Yamamoto (1995) peut être définie comme :

\[
MWALD = (Q_\hat{\beta})' [Q((Z'Z)^{-1} \otimes \Omega_U) Q']^{-1}(Q_\hat{\beta}) \sim \chi^2_p. \tag{2.17}
\]

Tel que

\(\otimes \): Opérateur du produit de Kronecker.

\(Q \): Une matrice indice qui sert à identifier les restrictions sous l’hypothèse nulle.

\(\Omega_U \): Matrice des variances-covariances des résidus estimée à partir de (2.16).

\(\hat{\beta} = vec(\hat{D}) \), vec est l’opérateur du vecteur colonne obtenu en empilant les lignes des estimateurs des paramètres.

Sous l’hypothèse nulle de non-causalité au test de Granger (1969) la statistique MWALD converge vers une loi asymptotique. Néanmoins, la puissance du test Toda et Yamamoto (1995) peut souffrir de la distorsion de la petite taille de l’échantillon considéré. Pour vérifier la robustesse de leurs résultats (les valeurs de p obtenues du test de Wald effectué), (Mavrotas et Kelly, 2001) ont eu recours à utiliser un test d’amorce avec 1000 reproductions. L’idée derrière un test d’amorce est d’utiliser les résidus estimés artificiellement afin de produire des observations supplémentaires qui ont la même distribution que les observations originales, via un processus de type de Monte-Carlo.

Pour bien résumer les étapes à suivre afin de mener le test de causalité selon la méthode de Toda et Yamamoto, nous suggérons les étapes résumées par Giles (2011a) :

- Tester la stationnarité sur chacune des séries (test ADF) et déterminer l’ordre d’intégration « \(d_{\text{max}} \) ». Cet ordre peut être conclu de la manière suivante : si on
suppose que le maximum des ordres d'intégration pour les séries est \(d_{max} \) et nous avons deux séries temporelles affichant un ordre I(1) alors \(d_{max} = 1 \), sinon, si elle est I(0) et l’autre I(1) alors \(d_{max} = 1, \ldots \) etc.

- Construire le modèle VAR avec le nombre optimal des retards «\(p \)» (indépendamment des ordres d’intégrations trouvés dans l’étape précédente), ce nombre peut être trouvé à l’aide du critère AIC.

- Tester la coïntégration (le test de Johansen sur le VAR construit) si les deux séries ont le même ordre d’intégration trouvé.

- Test de causalité : construction de la statistique Wald modifiée. Elle prend asymptotiquement une loi de Khi-deux en estimant le VAR d’ordre \((p+d_{max}) \).

2.2 Les données et application au modèle de l’étude

2.2.1 Le modèle

Dans notre analyse économétrique, nous nous intéressons tout particulièrement aux données sous forme de panel, rappelons que la coupe transversale ne fait pas l’objet de notre étude.

Pour étudier la relation à long terme entre les variables d’intérêt, Toda et Yamamoto (1995) recourent à un modèle vectoriel autorégressif (VAR). En nous inspirant de leur travail, nous définissons \(Y_t \) le vecteur de dimension 2, composé des mesures de la croissance et de l’épargne à la date \(t \). L’étude de la causalité est réalisée sur le VAR d’ordre \(p \) suivant :

\[
Y_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i Y_{t-i} + \varepsilon_t, \quad \text{(2.18)}
\]
\[\varepsilon_t \sim N(0, \Sigma_\varepsilon). \]

et \(t = 1, 2, \ldots, T \)

Le vecteur \(\alpha_i \) de dimension \((2 \times 1)\) est le vecteur des paramètres du modèle, \(\Sigma_\varepsilon \) est la matrice des variances-covariances des erreurs du modèle.

Les mesures adoptées pour la croissance économique et l’épargne découlent du travail de (Mavrotas et Kelly, 2001), les principales variables utilisées sont le taux de croissance du PIB et le taux d’épargne.

\[
\text{Taux de croissance du } PIB_t = \frac{PIB_t - PIB_{t-1}}{PIB_{t-1}} \quad (2.19)
\]

\[
\text{Taux d’épargne}_t = \frac{\text{épargne intérieure brute}_t}{PIB_t} \quad (2.20)
\]

2.2.2 Les données

Dans un travail tel que le nôtre, la construction d’une base de données pose plusieurs problèmes. Le premier défi reste de trouver une base crédible qui couvre une longue période de temps puisque l’objectif est de s’intéresser à une relation de causalité. Une autre contrainte réside dans le fait que les ressources pour des bases types peuvent être multiples sans que leurs données soient homogènes pour autant.

La base des données de la Banque Mondiale, indicateurs du développement dans le monde, semble être un choix propice. Elle englobe plusieurs données annuelles entre 1967 à 2015 et selon la disponibilité dans les pays en questions.

Il faut rappeler aussi que la puissance des tests économétriques peut être probablement faible à cause de l’horizon très court (49 observations) des données annuelles qui permettent de générer le VAR de l’étude.
Les données annuelles sur le PIB et l’Épargne Intérieure Brute sont en devises locales constantes. À noter que si l’épargne intérieure brute n’est pas en devises constantes, elle sera déflatisée par le déflateur du PIB.

En nous appuyant sur la revue de la littérature (Attanasio et al., 2000), (Easterly et Levine, 2001) et surtout l’étude de Mohan (2006), nous prévoyons de décomposer les données en quelques échantillons de pays (selon le revenu) pour des fins de comparaison, nous voulons examiner deux types d’échantillons: des pays à caractère de haut revenu et d’autres avec un revenu intermédiaire ou pauvre. Cette variété de pays est sélectionnée à partir de quelques pays de l’OCDE (8 pays) le reste est réparti entre des pays en développement ou pauvre (9 pays). Ce choix est très semblable à l’étude de Mohan (2006), mais quelques remplacements ont été nécessaires selon la disponibilité des données.

La structure de la base des données utilisée dans cette étude est résumée au tableau 2.1.

<table>
<thead>
<tr>
<th>Bases</th>
<th>Pays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 1 : pays à revenu élevé</td>
<td>Canada, France, États-Unis, Allemagne,</td>
</tr>
<tr>
<td></td>
<td>Royaume-Uni, Espagne, Italie, Japon,</td>
</tr>
<tr>
<td>Base 2 : pays à revenu intermédiaire ou faible</td>
<td>Chine, Algérie, Afrique du Sud,</td>
</tr>
<tr>
<td></td>
<td>Argentine, Inde, Turquie, Nigeria, Gabon,</td>
</tr>
<tr>
<td></td>
<td>Sénégal</td>
</tr>
</tbody>
</table>

Tableau 2.1 Base des données
Quelques remarques à propos du cas chinois s’avèrent utiles. Malgré que son PIB reste très considérable (plus de 8 700 milliards de dollars\(^6\) en 2015), nous relevons que le PIB par habitant est, au-dessous, de 7 000 dollars pour la même année. Encore plus faible que celui de l’Argentine, estimé de plus de 10 000 dollars. Ce constat nous permet de placer confortablement la Chine dans la deuxième base des pays à revenu intermédiaire ou faible. L’autre remarque a trait à la fiabilité des données de la Chine pour la période d’étude. À ce stade, il convient de préciser que toutes les données des pays sont issues directement de la base de la Banque Mondiale. Cette dernière est compétente pour uniformiser ses indicateurs de croissance pour chaque pays.

\(^6\) En dollars constants de 2010, selon les données de la Banque Mondiale.
CHAPITRE III

RÉSULTATS EMPIRIQUES

Le présent chapitre a pour objet de relater les résultats empiriques des tests expliqués dans le chapitre précédent ainsi que leurs interprétations. La réalisation des tests nécessaires à notre travail était appuyée par le travail de (Oladipo, 2010) et en suivant la méthode de Giles (2011a) pour application sur EViews.

3.1 Tests de la racine unitaire et ordres d’intégration

Avant de parler des résultats du test ADF, il convient de préciser, encore une fois, que la puissance du test est relativement faible notamment à cause du nombre réduit des observations, le risque est de ne pas rejeter l’hypothèse nulle de stationnarité lorsqu’elle est fausse. La méthodologie exige de faire a priori des tests de stationnarité sur les deux séries avant de parler de la coïntégration et de la causalité.

Nous allons maintenant tester les trois modèles ADF présentés par les équations (2.1), (2.2) et (2.3) pour chaque série en niveau et en différence sur la période de 1967 à 2015. Le nombre de retards sera optimisé par le critère AIC. À titre de rappel, l’hypothèse nulle du test est de la sorte H_0 "La série est engendrée par un processus contenant une racine unitaire ".

Les résultats du test ADF sont présentés par les tableaux 3.1 et 3.2. Les valeurs critiques correspondantes sont indiquées dans le tableau 3.3.
Tableau 3.1 Test ADF (Base 1)

<table>
<thead>
<tr>
<th>Pays</th>
<th>Variables</th>
<th>ADF statistiques</th>
<th>I(.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En niveau</td>
<td>En différence première</td>
</tr>
<tr>
<td></td>
<td>τ (i)</td>
<td>τ (ii)</td>
<td>τ (iii)</td>
</tr>
<tr>
<td>Canada</td>
<td>Taux de croi.</td>
<td>-2,47</td>
<td>-4,73</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>-0,52</td>
<td>-2,79</td>
</tr>
<tr>
<td>France</td>
<td>Taux de croi.</td>
<td>-2,74</td>
<td>-4,31</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>-1,63</td>
<td>-2,38</td>
</tr>
<tr>
<td>États-Unis</td>
<td>Taux de croi.</td>
<td>-1,00</td>
<td>-5,02</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>-1,49</td>
<td>-0,44</td>
</tr>
<tr>
<td>Allemagne</td>
<td>Taux de croi.</td>
<td>-1,57</td>
<td>-5,48</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>-0,45</td>
<td>-2,74</td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>Taux de croi.</td>
<td>-2,83</td>
<td>-4,92</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>-1,67</td>
<td>-0,28</td>
</tr>
<tr>
<td>Espagne</td>
<td>Taux de croi.</td>
<td>-1,92</td>
<td>-2,81</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>-0,46</td>
<td>-2,89</td>
</tr>
<tr>
<td>Italie</td>
<td>Taux de croi.</td>
<td>-2,37</td>
<td>-4,50</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>-0,88</td>
<td>-1,79</td>
</tr>
<tr>
<td>Japon</td>
<td>Taux de croi.</td>
<td>-1,96</td>
<td>-4,46</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>-2,76</td>
<td>-1,50</td>
</tr>
</tbody>
</table>

Note τ (i), τ (ii), τ (iii) indique, respectivement, le modèle sans constante et sans tendance, avec une constante, avec constante et tendance.
<table>
<thead>
<tr>
<th>Pays</th>
<th>Variables</th>
<th>ADF statistiques</th>
<th>I(.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>En niveau</td>
<td>En différence première</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\tau (i)$</td>
<td>$\tau (ii)$</td>
</tr>
<tr>
<td>Chine</td>
<td>Taux de croi.</td>
<td>-1,69</td>
<td>-7,18</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>1,64</td>
<td>-1,57</td>
</tr>
<tr>
<td>Algérie</td>
<td>Taux de croi.</td>
<td>-5,12</td>
<td>-8,03</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>0,12</td>
<td>-1,76</td>
</tr>
<tr>
<td>Afrique du Sud</td>
<td>Taux de croi.</td>
<td>-3,07</td>
<td>-4,89</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>0,85</td>
<td>-1,33</td>
</tr>
<tr>
<td>Argentine</td>
<td>Taux de croi.</td>
<td>-4,60</td>
<td>-5,42</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>0,59</td>
<td>-2,05</td>
</tr>
<tr>
<td>Inde</td>
<td>Taux de croi.</td>
<td>1,32</td>
<td>-6,26</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>1,68</td>
<td>-0,98</td>
</tr>
<tr>
<td>Turquie</td>
<td>Taux de croi.</td>
<td>-2,41</td>
<td>-4,79</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>0,08</td>
<td>-1,73</td>
</tr>
<tr>
<td>Gabon</td>
<td>Taux de croi.</td>
<td>-4,43</td>
<td>-4,81</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>0,36</td>
<td>-2,82</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Taux de croi.</td>
<td>-2,44</td>
<td>-4,71</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>0,97</td>
<td>-4,46</td>
</tr>
<tr>
<td>Sénégal</td>
<td>Taux de croi.</td>
<td>0,06</td>
<td>-9,77</td>
</tr>
<tr>
<td></td>
<td>Taux d'épar.</td>
<td>0,59</td>
<td>-2,96</td>
</tr>
</tbody>
</table>

Nota $\tau (i), \tau (ii), \tau (iii)$ indique, respectivement, le modèle sans constante et sans tendance, avec une constante, avec constante et tendance.

Tableau 3.2 Test ADF (Base 2)
Tableau 3.3 Valeurs critiques\(^7\) pour les statistiques ADF

<table>
<thead>
<tr>
<th>Seuil de significativité</th>
<th>Modèles $\tau (i)$</th>
<th>$\tau (ii)$</th>
<th>$\tau (iii)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 %</td>
<td>-2,61</td>
<td>-3,57</td>
<td>-4,16</td>
</tr>
<tr>
<td>5 %</td>
<td>-1,94</td>
<td>-2,92</td>
<td>-3,50</td>
</tr>
<tr>
<td>10 %</td>
<td>-1,61</td>
<td>-2,59</td>
<td>-3,18</td>
</tr>
</tbody>
</table>

En considération de la valeur de la statistique t, nous devrons rejeter H_0 à la condition que la valeur de t soit plus négative que la valeur critique du test ADF (arbitrairement à 5 %). En conséquence, si H_0 est rejetée, nous pourrions conclure que la série est stationnaire.

Dans les deux tableaux 3.1 et 3.2, les t-statistiques concernant la plupart des taux d'épargne sont supérieures aux valeurs critiques des trois modèles en niveau, mais cette série est stationnaire lorsqu'elle est testée en différence première. Par contre, le taux de croissance testé en niveau ne possède aucune racine unitaire, la statistique t est inférieure aux valeurs critiques, ce qui permet de rejeter H_0 et conclure que la série est stationnaire.

Donc, les résultats du test ADF révèlent clairement un résultat commun entre les deux bases peu importe le revenu du pays (exception faite pour l'Espagne et le Nigeria), à savoir, l'existence d'une racine unitaire dans les variables d'épargne et la stationnarité du taux de croissance. Pour l'Espagne, les taux de croissance et d'épargne sont tous non stationnaires. Par contre, le Nigeria a deux séries stationnaires.

\(^7\) Ces valeurs sont issues directement d'EViews, ce dernier n'utilise que les valeurs critiques asymptotiques.
À ce stade, nous pouvons conclure que l’ordre maximum d’intégration pour le taux d’épargne est I(1), car les statistiques ADF, pour les variables en niveau (respectivement en différence), sont supérieures (respectivement inférieures) à leurs valeurs critiques arbitrairement à 5 %. Par contre, le taux de croissance s’est révélé être d’ordre I(0) puisque les statistiques ADF, pour les variables en niveau, sont inférieures aux valeurs critiques.

3.2 Analyse des changements structurels

Le fait que le taux d’épargne intérieure brute soit I(1) et le taux de croissance I(0), pour la plupart des pays (sauf l’Espagne et le Nigeria), complique notre travail économétrique.

Rappelons que

\[PIB = C + I + G + (X - M). \] (3.1)

Dans une économie fermée, l’identité comptable est « I = S », en remplaçant l’investissement par l’épargne en (3.1) nous obtenons :

\[PIB = C + S + G + (X - M). \] (3.2)

\[^{8} \text{Tel que qualifié par Obstfeld et Rogoff (2000).} \]
suggèrent que si une parfaite mobilité des capitaux est observée, la corrélation entre l’épargne nationale et l’investissement intérieur devient relativement faible. Cependant, cette hypothèse a été peu vérifiée pour les pays de l’OCDE bien que les flux de capitaux dans ces pays soient libres, l’épargne demeure très fortement corrélée au taux d’investissement.

Pour simplifier notre analyse, nous allons adopter l’hypothèse selon laquelle, abstraction faite du paiement d’intérêts sur la dette extérieure, les deux séries : l’épargne et l’investissement seront coïntégrés sur une relation de long terme, même pour une économie ouverte.

Revenant maintenant à l’équation (3.2) et divisant les deux côtés par le PIB

\[1 = \frac{C}{PIB} + \frac{S}{PIB} + \frac{G}{PIB} + \frac{(X - M)}{PIB} \] (3.3)

Le taux d’épargne devrait, théoriquement, fluctuer entre 0 et 1, nous attendons à un I(0) comme le taux de croissance. Ainsi, avant de confirmer les résultats du test de la racine unitaire pour le taux d’épargne, un autre point important devrait être contesté. Il s’agit de prendre en considération l’existence de bris structurels dans la série du taux d’épargne durant la période d’étude. Le fait est que la situation démographique, économique et les crises peuvent affecter les politiques économiques d’un pays créant ainsi ces bris structurels dans les données, les résultats économétriques peuvent être incertains (Kayhan et al., 2010). Discuter les causes de ces changements d’un pays à un autre relève certainement d’une approche historique pour un travail de recherche. Or, dans une démarche anhistorique telle que la nôtre, nous allons plutôt expliquer la méthodologie qui sera suivie pour détecter et confirmer uniquement l’existence de ces bris dans la série de l’épargne.
Le premier qui a fait remarquer l’influence des bris structurels sur les résultats économétriques était Perron (1989). Il a montré qu’une présence d’un bris éventuel dans les données conduirait à un biais empêchant de rejeter l’hypothèse nulle de non-stationnarité (Glynn et al., 2007).

Conformément à cette approche, nous pensons qu’un changement de la moyenne de la série du taux d’épargne dans notre panel empêche qu’elle soit I(0). Rappelons qu’une série chronologique non-stationnaire devrait avoir une moyenne changeante avec le temps à cause de la présence de deux types de tendances, la tendance stationnaire (TS) pour les modèles avec tendance déterministe et la différence stationnaire (DS) pour les modèles avec une tendance stochastique (Shreyes, s.d.)

Notre objectif est de prouver qu’il existe un bris structurel dans la série pour corriger le taux d’épargne (en tant qu’une série I(0) en déviation de sa moyenne avant la rupture structurelle et après) et procéder ainsi au test de causalité.

Afin de poursuivre notre analyse des bris structurels, nous suggérons un test de Chow pour vérifier l’existence de changements structurels dans la série du taux d’épargne peut être utilisé. L’analyse des graphiques, voir Annexe B, nous donne une idée sur les années (Break-point) clés qui peuvent constituer des changements drastiques dans la politique économique des pays affectant ainsi le taux d’épargne.

3.2.1 Test de Chow

Le test de Gregory Chow (1960) est souvent utilisé pour détecter un changement structurel soupçonné entre les variables durant des périodes différentes. La méthodologie du test consiste à décomposer en deux sous-échantillons avec n_1 et n_2 comme observations avec les hypothèses traditionnelles de la régression à savoir l’homoscédasticité et l’indépendance des termes d’erreurs, voir Giles (2011b).

Par la suite, en faisant la régression séparément pour chaque sous-échantillon, le test est identique à un test Fisher. En effet, sous l’hypothèse nulle que les paramètres estimés sont identiques dans les deux groupes (autrement, il n’y a pas de changement structurel), la statistique du test est distribuée comme F avec k et $n_1 + n_2 - 2k$ comme degrés de liberté. k est le nombre des paramètres à estimer.

L’hypothèse nulle est rejetée si le la statistique F calculée est supérieure à la valeur critique ou la p-value est inférieure au seuil arbitraire de 5 %. Dans ce cas, la stabilité structurelle n’a pas eu lieu.

Pour notre étude, le choix des dates de rupture est fait à partir des graphiques présentés en Annexe B. Les résultats du test de Chow en considérant un seul changement dans la série du taux d’épargne avec un seul paramètre de la régression (la constante) sont résumés au tableau 3.4.

Ces résultats confirment l’existence de changement structurel dans les séries du taux d’épargne pour tous les pays. Donc, l’hypothèse nulle d’inexistence de bris structurel est rejetée, car la probabilité (Prob.F) est inférieure à 5 %. Nous avons exclu de cette analyse l’Espagne puisqu’elle a deux séries du même ordre I(1) et le Nigeria, car les deux séries sont I(0).
Tableau 3.4 Résultats du test de Chow sur la variable du taux d’épargne

<table>
<thead>
<tr>
<th>Pays</th>
<th>Break-point</th>
<th>F-statistiques</th>
<th>Prob.F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>1986</td>
<td>6,680</td>
<td>0,012</td>
</tr>
<tr>
<td>France</td>
<td>1990</td>
<td>15,784</td>
<td>0,0003</td>
</tr>
<tr>
<td>États-Unis</td>
<td>1982</td>
<td>45,491</td>
<td>0,000</td>
</tr>
<tr>
<td>Allemagne</td>
<td>1977</td>
<td>9,029</td>
<td>0,004</td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>1999</td>
<td>107,752</td>
<td>0,000</td>
</tr>
<tr>
<td>Italie</td>
<td>1999</td>
<td>50,379</td>
<td>0,000</td>
</tr>
<tr>
<td>Japon</td>
<td>1991</td>
<td>13,816</td>
<td>0,000</td>
</tr>
<tr>
<td>Chine</td>
<td>1993</td>
<td>89,442</td>
<td>0,000</td>
</tr>
<tr>
<td>Algérie</td>
<td>1991</td>
<td>13,841</td>
<td>0,0005</td>
</tr>
<tr>
<td>Afrique du Sud</td>
<td>1990</td>
<td>165,602</td>
<td>0,000</td>
</tr>
<tr>
<td>Argentine</td>
<td>1986</td>
<td>24,942</td>
<td>0,000</td>
</tr>
<tr>
<td>Inde</td>
<td>2004</td>
<td>119,913</td>
<td>0,000</td>
</tr>
<tr>
<td>Turquie</td>
<td>1978</td>
<td>15,107</td>
<td>0,0003</td>
</tr>
<tr>
<td>Gabon</td>
<td>1985</td>
<td>7,487</td>
<td>0,008</td>
</tr>
<tr>
<td>Sénégal</td>
<td>1978</td>
<td>14,954</td>
<td>0,0003</td>
</tr>
</tbody>
</table>

3.2.2 Correction du taux d’épargne

Il existe plusieurs méthodes pour rendre une série stationnaire (effectuer un filtre H-P, enlever la tendance ou prendre la première différence). Pour notre cas, nous allons redéfinir le taux d’épargne comme une nouvelle série qui fluctue autour de sa moyenne. Tantôt sur une certaine moyenne avant la rupture structurelle et tantôt autour d’une nouvelle moyenne après le changement structurel puisque nous partons de l’hypothèse que la moyenne change à l’intérieur du panel.

Les résultats du test ADF sur la nouvelle série sont résumés par le tableau 3.5.
Tableau 3.5 Résultats du test ADF sur le taux d’épargne corrigé

Sur la lumière du tableau 3.5, les nouvelles valeurs des statistiques du test ADF comparées aux valeurs critiques du tableau 3.3, surtout celles du troisième modèle $\tau(iii)$ (constante avec tendance), nous font remarquer que la série du taux d’épargne est devenue stationnaire (France, Allemagne, Italie, Japon, la Chine, Afrique du Sud, Inde) ou presque (Canada, États-Unis, Royaume-Uni, Algérie, Argentine, Turquie, Gabon, Sénégal). Du fait que la statistique t, arbitrairement à 5 %, est inférieure ou très proche de la valeur citrique (-3,50) pour rejeter l’hypothèse nulle de non-stationnarité.
Notre méthode de sélectionner une date et d’appuyer ce choix par un test de Chow ressemble un peu au travail fait par (Zivot et Andrews, 1992). Ces derniers ont décomposé leur échantillon pour chaque date probable de rupture et en utilisant des variables d’interaction dichotomiques. La date la plus favorisée pour un bris est sélectionnée en fonction de la statistique ADF la plus négative pour rejeter l’hypothèse nulle de la racine unitaire (Glynn et al., 2007).

3.3 Nombre de retards dans le VAR

Nous disposons maintenant de deux séries stationnaires, nous pouvons tester la causalité entre les deux séries à travers un vecteur autorégressif, voir le modèle (2.20). Mais avant cela, nous nous intéressons à déterminer le nombre de retards optimal \(p \) intervenant dans le VAR. Le critère d’information d’Akaike (AIC) est utilisé à cette fin. Il ressort de cela qu’il est minimisé\(^\text{10}\) pour un retard égal à 1 pour la majorité des pays. Le tableau 3.6 présente le retard optimal correspondant.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Retard optimal « p »</th>
<th>Pays</th>
<th>Retard optimal « p »</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>1</td>
<td>Chine</td>
<td>1</td>
</tr>
<tr>
<td>France</td>
<td>1</td>
<td>Algérie</td>
<td>1</td>
</tr>
<tr>
<td>États-Unis</td>
<td>2</td>
<td>Afrique du Sud</td>
<td>1</td>
</tr>
<tr>
<td>Allemagne</td>
<td>1</td>
<td>Argentine</td>
<td>1</td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>1</td>
<td>Inde</td>
<td>2</td>
</tr>
<tr>
<td>Espagne</td>
<td>2</td>
<td>Turquie</td>
<td>1</td>
</tr>
<tr>
<td>Italie</td>
<td>1</td>
<td>Gabon</td>
<td>1</td>
</tr>
<tr>
<td>Japon</td>
<td>1</td>
<td>Nigeria</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sénégal</td>
<td>1</td>
</tr>
</tbody>
</table>

Tableau 3.6 Structure des retards du VAR \(p \)

\(^{10}\) Le choix de retard a été fait sur une plage allant de 1 à 7 retards.
3.4 Test de coïntégration

Tel que mentionné dans le précédent chapitre, l’analyse de la coïntégration n’est pas déterminante dans la méthodologie de (Toda et Yamamoto, 1995). Le fait de procéder par un test de coïntégration est juste de s’assurer qu’il existe une relation stable à long terme, mais sans incidence directe sur la causalité. En effet, deux séries non coïntégrées peuvent manifester un lien de causalité11.

Les deux premières séries (le taux de croissance et le taux d’épargne non modifié) avaient des ordres d’intégration différents I(0) et I(1), voir tableau 3.1 et 3.2. En conséquence, elles ne peuvent pas présenter un lien d’équilibre à long terme et nous ne pouvons pas procéder par un test de Johansen pour détecter la coïntégration12. Identiquement pour les deux séries que nous avons maintenant (le taux de croissance et le taux d’épargne corrigé) puisqu’elles sont stationnaires. Par contre, nous avons un cas exceptionnel de l’Espagne, car il affiche deux séries du même ordre I(1). Un test de coïntégration peut être fait.

<table>
<thead>
<tr>
<th>Pays</th>
<th>H_0</th>
<th>H_1</th>
<th>λ- trace λ- Max</th>
<th>Valeur critique à 5%</th>
<th>Valeur critique à 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espagne</td>
<td>$r = 0$</td>
<td>$r = 1$</td>
<td>12,35</td>
<td>12,32</td>
<td>12,26</td>
</tr>
<tr>
<td></td>
<td>$r \leq 1$</td>
<td>$r = 2$</td>
<td>0,08</td>
<td>4,13</td>
<td>0,08</td>
</tr>
</tbody>
</table>

r : nombre des vecteurs de coïntégration

Tableau 3.7 Test de coïntégration de Johansen (Espagne)

Selon les deux tests, la trace et la valeur propre maximale, les résultats indiquent l’existence d’un vecteur de coïntégration à un seuil de 5% entre l’épargne et la croissance économique pour l’Espagne. Donc, une relation de longue durée est

11 Voir le texte de (Giles, 2011a).

12 Toutefois, un test de coïntégration peut être effectué dans un modèle ARDL (Autoregressive Distributed Lag).

envisageable entre les deux variables. Or, ceci suggère de penser qu’il y a une causalité dans au moins dans un sens.

3.5 Tests de causalité

La procédure de Toda et Yamamoto est faite en deux étapes. D’abord, il s’agit de déterminer l’ordre d’intégration maximal (d_{max}) des séries et le nombre de retards optimal (p) du processus VAR. Ensuite, il faut estimer un modèle de VAR en niveau augmenté d’ordre ($p+d_{max}$). Pour rappel, l’hypothèse nulle (2.13) de non-causalité de l’épargne vers la croissance qui correspond au modèle (2.18) est caractérisée par la nullité de la deuxième composante des coefficients $\alpha_i (i = 1,2, ... p) = 0$.

Si les deux séries sont stationnaires, I(0), aucun retard additionnel n’est introduit dans le VAR ($d_{max} = 0$) et la procédure de test suit l’approche standard de Granger. En revanche, si les séries sont intégrées d’ordre un, alors un seul retard supplémentaire est introduit dans le modèle. (Toda et Yamamoto, 1995). Donc, la même méthode peut être adoptée dans notre cas en prenant juste $d_{max} = 0$.

Le retard optimal du modèle VAR est $p = 1$ ou $p = 2$ selon le pays, voir tableau 3.6, pour l’Espagne ($d_{max} = 1$). Nous cherchons à vérifier l’hypothèse nulle de non-causalité du taux d’épargne modifié vers le taux de croissance et dans le sens inverse aussi. La statistique de Wald modifiée (2.18) est utilisée pour tester la causalité entre le taux de croissance et le taux d’épargne pour l’ensemble des pays pour la période 1967-2015. Les tableaux 3.8 et 3.9 résument la statistique de Wald modifiée et la p-value pour chaque test de causalité.
<table>
<thead>
<tr>
<th>Pays</th>
<th>H₀</th>
<th>χ^2</th>
<th>P-value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>épargne \rightarrow croissance</td>
<td>6,92</td>
<td>0,008</td>
<td>Causalité bidirectionnelle</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>3,89</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>épargne \rightarrow croissance</td>
<td>0,02</td>
<td>0,14</td>
<td>Aucun lien de causalité</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>2,15</td>
<td>0,86</td>
<td></td>
</tr>
<tr>
<td>États-Unis</td>
<td>épargne \rightarrow croissance</td>
<td>2,46</td>
<td>0,11</td>
<td>Causalité de la croissance vers l'épargne</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>4,04</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>Allemagne</td>
<td>épargne \rightarrow croissance</td>
<td>3,70</td>
<td>0,05</td>
<td>Causalité de l'épargne vers la croissance</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>0,48</td>
<td>0,78</td>
<td></td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>épargne \rightarrow croissance</td>
<td>1,22</td>
<td>0,26</td>
<td>Aucun lien de causalité</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>0,72</td>
<td>0,39</td>
<td></td>
</tr>
<tr>
<td>Espagne</td>
<td>épargne \rightarrow croissance</td>
<td>4,02</td>
<td>0,13</td>
<td>Causalité de la croissance vers l'épargne</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>7,09</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>Italie</td>
<td>épargne \rightarrow croissance</td>
<td>3,08</td>
<td>0,07</td>
<td>Causalité de l'épargne vers la croissance</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>0,15</td>
<td>0,68</td>
<td></td>
</tr>
<tr>
<td>Japon</td>
<td>épargne \rightarrow croissance</td>
<td>0,97</td>
<td>0,32</td>
<td>Causalité de la croissance vers l'épargne</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>4,55</td>
<td>0,03</td>
<td></td>
</tr>
</tbody>
</table>

\Rightarrow: Sens de non-causalité

Tableau 3.8 Résultats des tests de causalité (Base 1)
<table>
<thead>
<tr>
<th>Pays</th>
<th>H₀</th>
<th>χ^2</th>
<th>P-value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chine</td>
<td>épargne \rightarrow croissance</td>
<td>0,02</td>
<td>0,86</td>
<td>Causalité de la croissance vers l'épargne</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>4,10</td>
<td>0,04</td>
<td>Causalité de la croissance vers l'épargne</td>
</tr>
<tr>
<td>Algérie</td>
<td>épargne \rightarrow croissance</td>
<td>0,045</td>
<td>0,83</td>
<td>Causalité de la croissance vers l'épargne</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>3,47</td>
<td>0,06</td>
<td>Causalité de la croissance vers l'épargne</td>
</tr>
<tr>
<td>Afrique du Sud</td>
<td>épargne \rightarrow croissance</td>
<td>8,81</td>
<td>0,003</td>
<td>Causalité de l'épargne vers la croissance</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>0,08</td>
<td>0,77</td>
<td></td>
</tr>
<tr>
<td>Argentine</td>
<td>épargne \rightarrow croissance</td>
<td>0,57</td>
<td>0,44</td>
<td>Aucun lien de causalité</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>0,23</td>
<td>0,62</td>
<td></td>
</tr>
<tr>
<td>Inde</td>
<td>épargne \rightarrow croissance</td>
<td>3,82</td>
<td>0,14</td>
<td>Causalité de la croissance vers l'épargne</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>12,87</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>Turquie</td>
<td>épargne \rightarrow croissance</td>
<td>4,19</td>
<td>0,04</td>
<td>Causalité bidirectionnelle</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>2,79</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>Gabon</td>
<td>épargne \rightarrow croissance</td>
<td>3,58</td>
<td>0,03</td>
<td>Causalité de l’épargne vers la croissance</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>0,71</td>
<td>0,87</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>épargne \rightarrow croissance</td>
<td>2,16</td>
<td>0,06</td>
<td>Causalité de l’épargne vers la croissance</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>0,04</td>
<td>0,82</td>
<td></td>
</tr>
<tr>
<td>Sénégal</td>
<td>épargne \rightarrow croissance</td>
<td>2,70</td>
<td>0,10</td>
<td>Causalité bidirectionnelle</td>
</tr>
<tr>
<td></td>
<td>croissance \rightarrow épargne</td>
<td>9,97</td>
<td>0,001</td>
<td></td>
</tr>
</tbody>
</table>

+: Sens de non-causalité

Tableau 3.9 Résultats des tests de causalité (Base 2)
L’analyse des résultats concernant la causalité entre l’épargne et la croissance fait ressortir certaines remarques. Les résultats obtenus montrent que l’hypothèse nulle de non-causalité peut être rejetée pour certains pays.

Si nous comparons la \textit{P-value} au seuil de significativité 5\% (10\%), nous pouvons rejeter l’hypothèse nulle de non-causalité de l’épargne vers la croissance et conclure que le taux d’épargne intérieure brute cause le taux de croissance du PIB pour seulement quelques pays (l’Allemagne, l’Italie, l’Afrique du Sud, le Gabon et le Nigeria).

Cependant, en testant le lien de causalité inverse de la croissance vers l’épargne, l’hypothèse nulle de non-causalité est rejetée à un seuil de 5\% ou 10\% pour les États-Unis, l’Espagne, le Japon, la Chine, l’Algérie et l’Inde. Nous pouvons confirmer que pour ces pays la croissance cause l’épargne et pas l’inverse.

Ce sens de causalité est bidirectionnel (l’hypothèse nulle est vérifiée dans les deux sens à un seuil de 5\% ou 10\%) pour le Canada, la Turquie et le Sénégal.

Enfin, ces résultats ne révèlent aucune causalité pour la France, le Royaume-Uni et l’Argentine puisque nous ne pouvons pas rejeter l’hypothèse nulle de non-causalité à un seuil de 5\% ou même à 10\%.

 Traditionnellement, un taux élevé d’épargne conduisait à une forte croissance. Nos résultats empiriques ne peuvent confirmer ce circuit. Ces tests font découvrir plutôt que le sens de causalité n’est pas le même d’un pays à un autre, ce qui permet d’affirmer qu’il y a une certaine hétérogénéité de la causalité entre le taux d’épargne et le taux de croissance. Néanmoins, nous remarquons aussi que la croissance est très influente sur l’épargne pour beaucoup de pays (7 pays, si on exclut les liens bidirectionnels). Parmi les arguments qui militent en faveur de ce lien, nous pouvons évoquer le fait que l’investissement est la locomotive de la croissance. Si l’épargne n’est pas transformée en accumulation du capital systématiquement, elle suivra la
croissance. Une forte croissance permet l’épanouissement d’un système financier efficace qui mobilise l’épargne (Levine et al., 2000).

Le survol de la revue de la littérature indique qu’empiriquement la relation de causalité entre l’épargne et la croissance peut ne pas exister dans plusieurs pays. D’autres résultats confirment l’existence d’une causalité classique entre l’épargne et la croissance et d’autres confirment plutôt une causalité inverse. Cependant, quelques-uns indiquent une causalité bidirectionnelle dans les deux sens.

Faisant maintenant des comparaisons de nos résultats avec les principaux textes écrits à ce sujet.

Nos résultats sont comparables avec ceux de Mohan (2006) d’autant qu’il a utilisé la même source des données (indicateurs du développement dans le monde de la Banque Mondiale). Cette étude demeure la plus proche de nos résultats.

En effet, ce dernier, après avoir utilisé le test de Granger (1969) pour un ensemble de pays plus diversifiés en revenu par rapport à nos données, a affirmé soit le lien de causalité de la croissance vers l’épargne ou le lien bidirectionnel. Exceptionnellement, le lien inverse de l’épargne vers la croissance a été vérifié que pour deux pays à revenu intermédiaire dans son étude.

les deux sens tandis qu'elle est unidirectionnelle de la croissance vers l'épargne dans le reste des pays. Dans notre étude, les résultats de causalité sont plus mitigés par rapport à la classe de revenu, mais concorde avec l’auteur sur la prédominance du lien croissance-épargne.

Donc, cette prédominance ne peut confirmer la vision conventionnelle que des taux d’épargne plus élevés conduisent systématiquement à une croissance importante. Nous avons fait remarquer plusieurs fois dans ce travail que les théories de la croissance dans un cadre néoclassique maintiennent le fait que la croissance économique est influencée positivement par des taux d’investissement importants13, ce niveau d’investissement est attribué à son tour à plusieurs facteurs, principalement l’épargne nationale. Inévitablement, ces autres facteurs peuvent expliquer la prédominance du lien causal de la croissance envers l’épargne, au moins dans les pays à haut revenu.

En effet, l’analyse suggère que les épisodes d’accélérations de l’épargne sont principalement le résultat de très fortes performances macroéconomiques, en l’occurrence d’une croissance forte et régulière du PIB par tête, d’un faible taux de chômage et des finances publiques saines, les changements de régime et les réformes économiques sont généralement suivis d’une accélération de la croissance, voir l’étude d’Ebeke (2014).

La causalité inverse de la croissance vers l’épargne a été discutée aussi dans l’étude de Carroll et Weil (1994). En comparant les résultats, nous constatons que les pays de l’OCDE traités individuellement peuvent manifester un lien de causalité traditionnel allant de l’épargne vers la croissance (Allemagne, Italie) ou bidirectionnelle (le Canada) contrairement aux résultats des auteurs qui confirment le lien causal de la

13 Toutefois, la démonstration théorique de ce lien à partir d’un modèle macroéconomique ne fait pas objet de la présente étude.
croissance envers l'épargne sur l'ensemble agrégé des 22 pays de l'OCDE. Rappelons que Carroll et Weil (1994) expliquent cette causalité inverse par des mécanismes microéconomiques, notamment par le fait que les ménages qui anticipent une croissance du revenu auront tendance à épargner plus que ceux anticipant une croissance de revenu plus lente.

Concernant le lien de causalité conventionnel de l'épargne vers la croissance, les résultats trouvés sont très proches avec les deux études de (Oladipo, 2010) en ce qui concerne le Nigeria et (Mavrotas et Kelly, 2001) pour l'Inde. Pour le Nigeria, nous avons trouvé un lien de causalité allant de l'épargne vers la croissance et c'est exactement la conclusion de (Oladipo, 2010) bien qu'il a utilisé deux séries non stationnaires et coïntégrées contrairement à notre travail puisque nous avons travaillé plutôt avec deux séries stationnaires. Pour l'Inde, la causalité croissance-épargne, trouvée dans ce travail, est semblable au résultat de (Mavrotas et Kelly, 2001) en ce qui concerne leur test de la causalité entre le PIB et l'épargne intérieure brute sachant qu'ils ont utilisé les mêmes variables, le taux de croissance du PIB et le taux d'épargne.
CONCLUSION

L’objectif de ce travail est d’étudier la relation entre l’épargne et la croissance économique à travers les liens de causalités. Un premier aperçu de la littérature confirme que la direction de ce lien peut être un sujet de controverse. À ce stade, il convient de rappeler que la relation entre ces deux variables peut être traitée selon différentes approches\(^1^4\).

Dans notre travail, nous avons choisi l’analyse par des séries temporelles en construisant un taux de croissance standard pour l’économie et de le jumeler avec un taux d’épargne dans un modèle vectoriel autorégressif (VAR), les données en panel sont issues de la base de la Banque Mondiale pour étendre notre analyse sur un échantillon de pays avec différents revenus.

\(^{14}\) Voir l’étude de Aghion et al. (2008).
Ces résultats démontrent la différence dans la réaction de la croissance du PIB en face du taux d'épargne, nous sommes partis de l'hypothèse qu'un fort taux d'épargne précède et peut causer une forte croissance mais il semble, finalement, que le revenu n'a aucun effet sur la direction du lien à part de confirmer la forte corrélation entre les deux variables dans les pays à revenu élevé, voir Annexe A, tableau A.3.

Il convient de préciser que notre analyse présente quelques limites. D'abord, il faut être prudent par rapport aux mesures, nos résultats sont basés sur le comportement de l'épargne intérieure brute (encore corrigée). Si une substitution peut être faite avec l'épargne privée, les résultats peuvent être différents, voir (Mavrotas et Kelly, 2001). Aussi, pour enrichir l'analyse sur les économies ouvertes, il serait pertinent de rajouter au modèle une mesure pour la contrainte financière afin de tenir compte du financement extérieur. Nos résultats peuvent aussi être critiqués par rapport à l'horizon T relativement réduit, les caractéristiques asymptotiques des tests, dans les séries temporelles, sont généralement vérifiées pour un T qui tend mathématiquement vers l'infini pour un N fixe (Smith et Fuertes, 2010).

Également, l'autre limite qui devrait être discutée a trait à la méthodologie utilisée pour corriger le taux d'épargne tout en permettant un changement de moyenne. En effet, l'hypothèse de Perron (1989) sur les changements structurels a été critiquée par rapport au choix d'une date qui serait la plus probable pour une rupture. Ce choix exogène (sur une connaissance préalable des données) et/ou endogène (à l'aide des tests économétriques) peut invalider les caractéristiques des distributions concernant les statistiques des tests de la racine unitaire. Les nouvelles études sur les changements structurels se penchent de plus en plus vers des méthodes qui permettent des choix endogènes des dates de rupture en adéquation avec les tests économétriques de la racine unitaire (Glynn et al., 2007).
ANNEXE A

STATISTIQUES DESCRIPTIVES

<table>
<thead>
<tr>
<th>Pays</th>
<th>Obs.</th>
<th>Max</th>
<th>Min</th>
<th>Moyenne</th>
<th>Écart-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>49</td>
<td>0,069</td>
<td>-0,032</td>
<td>0,029</td>
<td>0,020</td>
</tr>
<tr>
<td>France</td>
<td>46</td>
<td>0,063</td>
<td>-0,029</td>
<td>0,022</td>
<td>0,018</td>
</tr>
<tr>
<td>États-Unis</td>
<td>49</td>
<td>0,072</td>
<td>-0,027</td>
<td>0,028</td>
<td>0,019</td>
</tr>
<tr>
<td>Allemagne</td>
<td>45</td>
<td>0,052</td>
<td>-0,056</td>
<td>0,019</td>
<td>0,020</td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>49</td>
<td>0,065</td>
<td>-0,041</td>
<td>0,023</td>
<td>0,021</td>
</tr>
<tr>
<td>Espagne</td>
<td>46</td>
<td>0,081</td>
<td>-0,035</td>
<td>0,026</td>
<td>0,024</td>
</tr>
<tr>
<td>Italie</td>
<td>49</td>
<td>0,071</td>
<td>-0,054</td>
<td>0,021</td>
<td>0,026</td>
</tr>
<tr>
<td>Japon</td>
<td>46</td>
<td>0,084</td>
<td>-0,055</td>
<td>0,024</td>
<td>0,027</td>
</tr>
<tr>
<td>Chine</td>
<td>48</td>
<td>0,194</td>
<td>-0,057</td>
<td>0,088</td>
<td>0,046</td>
</tr>
<tr>
<td>Algérie</td>
<td>48</td>
<td>0,274</td>
<td>-0,113</td>
<td>0,041</td>
<td>0,050</td>
</tr>
<tr>
<td>Afrique du Sud</td>
<td>49</td>
<td>0,071</td>
<td>-0,021</td>
<td>0,027</td>
<td>0,022</td>
</tr>
<tr>
<td>Argentine</td>
<td>48</td>
<td>0,126</td>
<td>-0,108</td>
<td>0,028</td>
<td>0,056</td>
</tr>
<tr>
<td>Inde</td>
<td>48</td>
<td>0,102</td>
<td>-0,052</td>
<td>0,055</td>
<td>0,029</td>
</tr>
<tr>
<td>Turquie</td>
<td>49</td>
<td>0,104</td>
<td>-0,056</td>
<td>0,043</td>
<td>0,039</td>
</tr>
<tr>
<td>Gabon</td>
<td>46</td>
<td>0,394</td>
<td>-0,240</td>
<td>0,039</td>
<td>0,103</td>
</tr>
<tr>
<td>Nigeria</td>
<td>34</td>
<td>0,337</td>
<td>-0,131</td>
<td>0,037</td>
<td>0,077</td>
</tr>
<tr>
<td>Sénégal</td>
<td>49</td>
<td>0,089</td>
<td>-0,065</td>
<td>0,029</td>
<td>0,037</td>
</tr>
</tbody>
</table>

Tableau A.1 Statistiques descriptives pour le taux de croissance
<table>
<thead>
<tr>
<th>Pays</th>
<th>Obs.</th>
<th>Max</th>
<th>Min</th>
<th>Moyenne</th>
<th>Écart-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>49</td>
<td>0,265</td>
<td>0,180</td>
<td>0,237</td>
<td>0,019</td>
</tr>
<tr>
<td>France</td>
<td>46</td>
<td>0,287</td>
<td>0,198</td>
<td>0,230</td>
<td>0,023</td>
</tr>
<tr>
<td>États-Unis</td>
<td>49</td>
<td>0,242</td>
<td>0,147</td>
<td>0,200</td>
<td>0,026</td>
</tr>
<tr>
<td>Allemagne</td>
<td>45</td>
<td>0,298</td>
<td>0,203</td>
<td>0,241</td>
<td>0,020</td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>49</td>
<td>0,249</td>
<td>0,129</td>
<td>0,193</td>
<td>0,032</td>
</tr>
<tr>
<td>Espagne</td>
<td>46</td>
<td>0,271</td>
<td>0,198</td>
<td>0,231</td>
<td>0,019</td>
</tr>
<tr>
<td>Italie</td>
<td>49</td>
<td>0,265</td>
<td>0,185</td>
<td>0,225</td>
<td>0,020</td>
</tr>
<tr>
<td>Japon</td>
<td>46</td>
<td>0,400</td>
<td>0,183</td>
<td>0,288</td>
<td>0,056</td>
</tr>
<tr>
<td>Chine</td>
<td>48</td>
<td>0,514</td>
<td>0,243</td>
<td>0,389</td>
<td>0,069</td>
</tr>
<tr>
<td>Algérie</td>
<td>48</td>
<td>0,570</td>
<td>0,201</td>
<td>0,369</td>
<td>0,098</td>
</tr>
<tr>
<td>Afrique du Sud</td>
<td>49</td>
<td>0,378</td>
<td>0,178</td>
<td>0,238</td>
<td>0,051</td>
</tr>
<tr>
<td>Argentine</td>
<td>48</td>
<td>0,339</td>
<td>0,151</td>
<td>0,221</td>
<td>0,044</td>
</tr>
<tr>
<td>Inde</td>
<td>48</td>
<td>0,340</td>
<td>0,133</td>
<td>0,228</td>
<td>0,058</td>
</tr>
<tr>
<td>Turquie</td>
<td>49</td>
<td>0,262</td>
<td>0,108</td>
<td>0,161</td>
<td>0,038</td>
</tr>
<tr>
<td>Gabon</td>
<td>46</td>
<td>0,729</td>
<td>0,238</td>
<td>0,493</td>
<td>0,103</td>
</tr>
<tr>
<td>Nigeria</td>
<td>34</td>
<td>0,393</td>
<td>0,018</td>
<td>0,221</td>
<td>0,079</td>
</tr>
<tr>
<td>Sénégal</td>
<td>49</td>
<td>0,164</td>
<td>0,009</td>
<td>0,069</td>
<td>0,031</td>
</tr>
</tbody>
</table>

Tableau A.2 Statistiques descriptives pour le taux d’épargne
<table>
<thead>
<tr>
<th>Pays</th>
<th>Facteur de corrélation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>0,418</td>
</tr>
<tr>
<td>France</td>
<td>0,698</td>
</tr>
<tr>
<td>États-Unis</td>
<td>0,405</td>
</tr>
<tr>
<td>Allemagne</td>
<td>0,288</td>
</tr>
<tr>
<td>Royaume-Uni</td>
<td>0,295</td>
</tr>
<tr>
<td>Espagne</td>
<td>0,544</td>
</tr>
<tr>
<td>Italie</td>
<td>0,745</td>
</tr>
<tr>
<td>Japon</td>
<td>0,510</td>
</tr>
<tr>
<td>Chine</td>
<td>0,319</td>
</tr>
<tr>
<td>Algérie</td>
<td>0,025</td>
</tr>
<tr>
<td>Afrique du Sud</td>
<td>0,128</td>
</tr>
<tr>
<td>Argentine</td>
<td>-0,086</td>
</tr>
<tr>
<td>Inde</td>
<td>0,422</td>
</tr>
<tr>
<td>Turquie</td>
<td>-0,051</td>
</tr>
<tr>
<td>Gabon</td>
<td>0,349</td>
</tr>
<tr>
<td>Nigeria</td>
<td>-0,083</td>
</tr>
<tr>
<td>Sénégal</td>
<td>0,384</td>
</tr>
</tbody>
</table>

Tableau A.3 Corrélation entre le taux d’épargne et le taux de croissance
ANNEXE B

ÉVOLUTION DU TAUX D’ÉPARGNE PAR PAYS ENTRE 1967-2015
Figure B.1 Évolution du taux d'épargne dans les pays à haut revenu
Figure B.2 Évolution du taux d’épargne dans les pays à faible revenu
ANNEXE C

ÉVOLUTION DU TAUX DE CROISSANCE PAR PAYS ENTRE 1967-2015
Figure C.1 Évolution du taux de croissance dans les pays à haut revenu
Figure C.2 Évolution du taux de croissance dans les pays à faible revenu
BIBLIOGRAPHIE

