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RESUME

Le trait le plus frappant de la géographie de l'activité économique
est le fort degré de concentration spatiale, et ce dans la majorité des pays
et a divers échelles géographiques. Michael Porter (1998, p.197) a introduit
la notion de cluster qu’il définit comme étant « une concentration géogra-
phique d’entreprises liées entre elles, de fournisseurs spécialisés, de presta-
taires de services, de firmes d’industries connexes et d’institutions associées
(universités, agences de normalisation ou organisations professionnelles,
par exemple) dans un domaine particulier, qui s’affrontent et coopérent ».
Au cours des vingt derniéres années, cette notion de cluster a connu un
regain d’intérét aupres des décideurs politiques, des agences de dévelop-
pement et des universitaires. Plusieurs pays et agences de développement
ont construit leur stratégie de développement industriel sur les modeles de
poles de compétitivité. Malgré quelques succes de leur implantation au Bré-
sil, aux Etats-Unis, au Japon, en France, en Finlande et en Italie, plusieurs
études s’interrogent sur l'efficacité colit-bénéfices de telles politiques. En
effet, bien que contribuant a I'augmentation de la productivité, des salaires
et de 'emploi, la concentration spatiale de 1'activité économique entraine
des coflits qui sont trés souvent ignorés ex ante : la congestion, la rareté de
I'espace, la criminalité, la pollution, etc. Il y’a donc trés peu d’évidences
empiriques sur l'impact des politiques de promotion des clusters au ni-
veau macroéconomique (voir Duranton, 2011; Duranton, Martin, Mayer,

and Mayneris, 2012).
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Afin de mieux comprendre les causes et les implications des poli-
tiques de promotion des clusters, il est important de bien mesurer 1’am-
pleur et le degré de concentration observé. Bien que cette question ait
fait 'objet de nombreuses recherches, a ce jour, il n’existe pas d’indica-
teur statistique idéal de mesure de la concentration spatiale de 1’activité
économique. Cette thése propose trois chapitres qui utilisent des données
micro-géographiques et les méthodes d’estimation paramétrique et non-
paramétrique afin (i) de fournir un portrait complet de 1’état, 'ampleur et
la dynamique de la concentration spatiale de 'activité manufacturiére au
Canada (ii) de fournir des évidences empiriques qui permettent de mieux
comprendre les déterminants de la concentration spatiale des industries et
comment ces déterminants ont influencé les changements observés dans
la concentration spatiale; et (iii) de proposer une nouvelle approche non-
paramétrique de mesure de la concentration spatiale de plusieurs indus-

tries technologiquement liées.

Le premier chapitre intitulé “An anatomy of the geographical concen-
tration of Canadian manufacturing industries” est un travail empirique dans
lequel nous analysons a l’aide de mesures de concentration spatiales ré-
centes, les tendances de la concentration spatiale de l’activité économique
et les changements observés au cours de la premiere décennie de 2000.
Nos résultats montrent qu’en fonction des années et du niveau d’agréga-
tion des secteurs, 40 & 60% des industries sont concentrées dans l'espace
géographique. Au cours de cette méme période, on a observé une tendance
a la dé-concentration des activités manufacturiéres au Canada. La contri-
bution majeure du chapitre est qu’il permet de suivre 1’évolution dans le

temps de la concentration spatiale et fait ressortir les schémas de locali-
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sation des exportateurs, des petits et des jeunes établissements qui sont
considérés comme vitaux pour la création d’emploi, et le développement
local et régional. Ce chapitre permet également de faire une comparaison
directe entre les mesures discretes et les mesures continues de concentra-
tion spatiale. Il contribue ainsi a 1’évaluation de I’ampleur du Probléme des
Unités Spatiales Modifiables (MAUP). De plus, & notre connaissance, c’est
la premiere fois que les mesures continues de concentration spatiale sont
appliquées aux données canadiennes en particulier et Nord-américaines en
général (voir Holmes et Stevens, 2004). Cependant, il reste silencieux sur
les causes et les déterminants de cette tendance a la dé-concentration des

industries manufacturieres au Canada.

Dans le second chapitre intitulé “The world is not yet flat : Transport
costs matter !'" nous nous intéressons aux déterminants de la concentration
spatiale. En utilisant un long panel (1992-2008), nous régressons la mesure
de concentration spatiale de Duranton et Overman (2005), sur des mesures
micro-géographiques et spatiales des cotits de transport, de I’exposition
au comumnerce international, et des liens en amont et en aval. Nos résul-
tats montrent que I"augmentation des cofits de transport, la concurrence
accrue du fait des importations en provenance des pays a faibles cofits et
I'accroissement de la distance vers les clients et les fournisseurs sont tous
fortement associés a une baisse de la concentration spatiale des industries
manufacturieres au Canada. Ces effets sont importants. En effet, sur la pé-
riode 1992 — 2008, les changements observés dans les cofits de transport, les
importations en provenance des pays a faibles cofits, et ’acces aux intrants
intermédiaires expliquent entre 20 et 60% de la baisse observée dans la

concentration spatiale des industries manufacturiéres au Canada. La prin-
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cipale contribution du chapitre est qu'il propose des évidences empiriques
sur les déterminants de la concentration spatiale de 1'activité économique
en utilisant des mesures micro-géographiques et spatiales construites a des
échelles industrielle et spatiale trés fines. Ce chapitre révele également un
fait important. En effet, malgré la baisse historique observée dans les cofits

de transport, ils continuent d’étre un facteur déterminant de la structure

industrielle et de la répartition spatiale des industries.

Le dernier chapitre, intitulé “The determinants of localization : a conditio-
nal distance-based approach” s’appuie sur les deux premiers chapitres. Nous
apportons un raffinement a 'approche de Duranton et Overman (2005).
L'idée étant de proposer une approche qui permet d’atténuer le probléme
du découpage sectoriel et de se rapprocher ainsi de 1'indice de concentra-
tion spatial idéal. Nous combinons d’une part 1’approche de mesure de
la concentration spatiale (& la Duranton et Overman, 2005) et l'approche
de co-localisation (a la Ellison, Glaeser et Kerr, 2010), et d’autre part, nous
associons ces mesures au degré avec lequel les industries échangent les
biens, les travailleurs et les idées. L'objectif est de combiner des mesures de
distances technologiques (non-géographiques) a des mesures de distances
géographiques entre secteurs. Plus précisément, nous proposons une nou-
velle approche non-paramétrique de mesure de la localisation de plusieurs
industries similaires. Conditionnellement & la similarité des établissements
dans un espace non-géographique (liens en amont et en aval, type de tra-
vailleurs ou technologie utilisée), notre approche permet de vérifier si ces
établissements sont concentrés ou non dans l'espace géographique. Puisque
I'espace non-géographique est construit a base des mécanismes de la “Tri-

nité Marshallienne’, le test permet également de jauger leur importance.
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Nos résultats permettent de relever 'importance des liens en amont et en
aval, et de I'acces a un bassin d’employés spécialisés dans les décisions de
localisation des industries manufacturiéres. Nos résultats ne soutiennent
pas l'importance de la technologie dans les décisions de co-localisation
des industries. La contribution majeure de ce chapitre a la littérature sur
la mesure de la concentration spatiale est qu’il propose un cadre unique
qui permet de mesurer la co-agglomération des industries et de jauger de
manilre non-paramétrique I'importance des facteurs Marshalliens. Cette
approche permet également d’atténuer le probléme de la sensibilité des
mesures existantes a un changement de nomenclature industrielle. Cepen-
dant, elle demeure sensible au découpage sectoriel en ce sens que la simi-
larité des industries est mesurée a partir des données sectorielles agrégées.
Un moyen de s’affranchir complétement du découpage sectoriel serait de
mesurer la similarité & partir des données établissements et se rapprocher

ainsi de l'indice idéal de concentration spatiale.

Mots-clés : Concentration géographique ; Micro-données géographiques;
Canada ; Industries manufacturiéres; Estimation paramétrique; Estimation
non-paramétrique ; Densité de Kernel Conditionnelle ; Agglomération ; Cofits
de transport; Exposition au commerce international ; Liens en amont et en

aval ; Trinité Marshallienne.



ABSTRACT

The most striking feature of industrial location patterns is geograph-
ical concentration. This has been of interest to economists since Marshall
(1890). Clusters can be defined as a group of firms, related economics ac-
tors, and institutions that are located near each other and have reached a
sufficient scale to develop specialized expertise, services, resources, suppli-
ers, and skills. Over the last two decades, clusters have attracted interest
from policy makers, academics, economic development practitioners, and
development agencies. Many countries and economic development ini-
tiatives have built their industrial development strategies on cluster-based
models. Despite successful implementation in the US, Brazil, Japan, France,
Italy, and Finland, recent economic studies increasingly question the use of
cluster policies: there is indeed little evidence that more clustering will
have significant effects on average productivity or wages in manufacturing
industries (e.g., Duranton, 2011; Duranton, Martin, Mayer, and Mayneris,

2012).

The starting point to better understand the drivers and implications
of cluster-based development is to measure correctly the observed degree
of clustering. Many studies have empirically defined and measured in-
dustrial localization, however, the ideal index of spatial concentration still
seems out of reach. My thesis addresses these challenges through the use of
micro-geographic data, parametric and non-parametric techniques to mea-

sure and to explain changes in the spatial distribution of economic activity.
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Specifically, this thesis proposes three chapters that use micro-geographic
data, parametric and non-parametric estimation methods in order to (i)
provide a comprehensive anatomy of the geographical concentration of
manufacturing in Canada and its dynamics, (ii) provide empirical evi-
dence that allows to better understand the determinants of the geographi-
cal concentration of industries and how these determinants have influenced
changes in that concentration, and (iii) propose a new non-parametric ap-
proach to measuring the localization of ‘closely related’ multiple industries
- i.e.,, a multidimensional way to assess coagglomeration — in continuous

space.

The research proceeds along three chapters. In the first chapter enti-
tled “An anatomy of the geographical concentration of Canadian manufacturing
industries" we use detailed micro-geographic data to dissect the location
patterns of Canadian manufacturing industries and changes in those pat-
terns during the first decade of 2000. Our results show that, depending
on industry classifications and years, 40 to 60 percent of industries are geo-
graphically localized i.e., are spatially clustered relative to overall manufac-
turing. This chapter’s main contribution is that it allows to follow the time
evolution of the pattern of industries localization in Canada and provides a
detail location trend of exporters, small and young plants. These plants are
perceived as being vital for employment growth and local regional devel-
opment, thus making them prime targets for cluster policy. I also allows for
direct comparison between the results based on discrete versus continuous
measures of localization. Finally, to the best of our knowledge, continu-
ous localization measures have until now neither been applied to Canadian

data in particular, nor to North American data in general (see Holmes and
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Stevens, 2004).

In chapter two, entitled “The world is not yet flat: Transport costs mat-
ter!" , we provide evidence for the effects of changes in transport costs,
international trade exposure, and input-output linkages on the geographi-
cal concentration of Canadian manufacturing industries. We document that
increasing transport costs, stronger import competition, and the spreading
out of upstream suppliers and downstream customers are all strongly asso-
ciated with declining geographical concentration of industries. The effects
are large: changes in trucking rates, in import exposure, and in access to in-
termediate inputs explain between 20% and 60% of the observed decline in
spatial concentration over the 1992 — 2008 period. This chapter makes two
contributions. First, we construct new and finer measures of the costs of
trading goods across space than in the previous literature. Second, we are
— to the best of our knowledge — among the first to exploit the time-series
variation in the data to shed light on what drives changes in the spatial

concentration of industries

The last chapter, entitled “The determinants of localization: a conditional
distance-based approach" draws upon the first two chapters. The key idea is
to first combine the measurement approach of localization in continuous
space with a coagglomeration approach, and then relate them to the de-
gree to which industries share goods, people, and ideas. More precisely, I
propose a new non-parametric approach to measuring the localization of
‘closely related’ multiple industries - i.e., a multidimensional way to as-
sess coagglomeration — in continuous space. Conditional on belonging to
industries with similar characteristics (in terms of input-output linkages,

types of workers employed, or technology), 1 check whether plants are lo-
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cated near one another in space. Since the non-geographic space is built
upon Marshallian proxies, my test allows me to gauge non-parametrically
their importance. It allows to answer the following questions: Do pairs
of plants with ‘close or similar’ input-output linkages, types of workers
employed, and that use or exchange similar technology locate near one
another in space? My results show that plants which belong to indus-
tries with similar input-output linkages and which employ similar types of
workers tend to co-locate near one another. I find little evidence that plants
that share similar technologies, as measured using patent citations, cluster
geographically. This chapter makes three contributions into the literature
on measuring localization. First, we propose an approach that allows to
assess coagglomeration of industries and the importance of Marshallian
forces non-parametrically and in a unified framework. Second, we propose
an approach that accounts for both spatial and technological distances be-
tween industries. Third, our approach allows to alleviate the problem of
change in industrial classification. In order to get truly away from indus-
trial classifications, we need to use detailed plant-level data to build finer
non-geographic distance measures, and therefore move towards an ideal

index of localization.

Keywords: Geographical concentration; Micro-geographic data; Canada;
Manufacturing industries; Parametric Estimation; Non-parametric Estima-
tion; Conditional Kernel density; Agglomeration; Transport costs; Interna-

tional trade exposure; Input-output linkages; Marshall Trinity.



INTRODUCTION

La description des phénomeénes d’agglomération d’entreprises a été
popularisée dans les années 1990 par Michael Porter, professeur & la Har-
vard Business School. Porter (1998, p.197) a introduit la notion de clus-
ter qu’il définit comme étant “une concentration géographique d’entreprises
liées entre elles, de fournisseurs spécialisés, de prestataires de services, de firmes
d’industries connexes et d’institutions associées (universités, agences de normal-
isation ou organisations professionnelles, par exemple) dans un domaine partic-
ulier, qui s’affrontent et cooperent”. Dans son livre “Geography and Trade"
(1991, p.5), Krugman rele@ve qu’avec un peu de recul la concentration spa-
tiale est probablement le trait le plus frappant de la géographie de I’activité
économique. Fujita et Thisse (2002) soulignent également que 1'un des faits
marquants du paysage économique est la concentration des activités hu-

maines sur une faible portion du territoire, et en particulier les villes.

Au cours des dernieres années, la concentration spatiale de 1'activité
économique a eu un certain regain d’intérét auprés des chercheurs en
économie et en géographie. C’est un phénomene observé a plusieurs échelles
(mondiale, régionale et locale) et dans la grande majorité des pays. Au
Canada par exemple, les données de Statistique Canada révelent que les
provinces de 1’Ontario et du Québec qui représentent moins de 25% du ter-
ritoire concentrent environ 62% de la population, 69% des sites d’installations
et 72% de la main d’oeuvre du secteur manufacturier. Pour ce qui est de

la concentration a l'intérieur des provinces, les données de 'Institut de la
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Statistique du Québec révelent que la région de Montréal concentre pres
de 35% du PIB du Québec avec une superficie de moins de 0.04% de la
superficie totale du Québec. De plus, la région de Toronto (0.06% du terri-
toire de 1'Ontario) concentre environ 45% du PIB de I'Ontario. Il apparait
ainsi que la majorité des activités économiques (analysées sous 1’angle de
I’emploi ou du PIB) est polarisée au niveau provincial et & l'intérieur des
provinces canadiennes. En France, I'fle-de-France qui représente seulement
2,2% de la superficie du territoire, concentre sur 12,2% de sa surface 18,9%
de la population francaise et contribue & hauteur de 30% du PIB de la na-
tion (Fujita et Thisse, 2002). Méme a des échelles spatiales plus fines, on
observe également une forte concentration de certaines industries. Les ex-
emples les plus frappants concernent: (i) les activités de haute technologie
dans la Silicon Valley en Californie, la Massachusetts Route 128 pres de
Boston, et dans le North Carolina Research Triangle; (ii) les activités du

secteur automobile dans le corridor Détroit-Windsor.

Pourquoi est-il important de mesurer la concentration spatiale des

activités économique?

La question de la mesure des inégalités — de revenu ou le degré de
concentration spatiale — intéresse les économistes et les géographes depuis
tres longtemps. Evaluer ou mesurer la concentration industrielle est im-
portant car ceci permet d’une part d’appréhender le degré d’inégalité ré-
gionale ou sectorielle et d’autre part, d’analyser les différences entre unités
spatiales, secteurs, ou a travers le temps. En effet, autant il est important
pour les économistes de mesurer la croissance économique (par exemple
a travers la mesure de la variation du PIB), autant il est important qu’ils

soient capables de mesurer le niveau et I’ampleur de la concentration spa-
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tiale des activités économiques afin d’informer 1’opinion et les décideurs
publics notamment dans un contexte o le débat sur la subvention des clus-
ters comme outil de développement régional est d’actualité. Cette question
est également importante dans la mesure ou il est nécessaire d’apporter
des évidences sur les mécanismes et les déterminants de cette concentra-

tion spatiale.
Comment mesurer la concentration des activités économiques?

Au cours des vingt dernieres années, la notion de cluster a connu un
regain d'intérét auprés des décideurs politiques, des agences de développe-
ment et des universitaires. Plusieurs pays et agences de développement ont
construit leur stratégie de développement industriel sur les pdles de com-
pétitivité. Malgré quelques succds au Brésil, aux Etats-unis, au Japon, en
France, en Finlande et en Italie, plusieurs études s’interrogent sur l'efficacité
colits-bénéfices de telles politiques. En effet, bien que contribuant a I’augmentation
de la productivité, des salaires et de I’emploi, la concentration spatiale de
I'activité économique entraine des cofits qui sont trés souvent ignorés ex-
ante: la congestion, la rareté de l’espace, la criminalité, la pollution, etc.
Il y a donc tres peu d’évidences empiriques sur l'impact des politiques de
promotion des clusters au niveau macroéconomique (voir Duranton, 2011;
Duranton, Martin, Mayer, and Mayneris, 2012). Ainsi, afin de mieux com-
prendre les causes et les implications des politiques de promotion des clus-
ters, il est important de bien mesurer I'ampleur et le degré de concentration

observé.

Bien que cette question ait fait 1'objet de nombreuses recherches, a ce

jour, il n’existe pas d’indicateur statistique idéal de mesure de la concen-
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tration spatiale. Mesurer la concentration spatiale nécessite 1'élaboration
de mesures qui permettent de comprendre quels sont les secteurs les plus
concentrés, ceux qui ne le sont pas et d’utiliser Vinférence statistique afin de
tester les évidences empiriques trouvées. Idéalement, la construction d’un
indice de concentration spatiale requiert des informations précises sur la
localisation exacte de chaque firme. Cependant, ces informations sont tres
coliteuses et ne sont pas facilement accessibles. A la suite des travaux de
Duranton et Overman (2005), Combes et al. (2008) ont définit six propriétés
que devrait avoir un indicateur idéal de concentration géographique: (i) la
mesure de concentration spatiale doit étre comparable entre secteurs; (ii) la mesure
de concentration spatiale doit étre comparable entre zones géographiques; (iii) la
mesure de concentration spatiale doit étre insensible @ un changement de définition
des unités spatiales; (iv) la mesure de concentration spatiale doit étre insensible a
un changement de définition des secteurs; (v) la mesure de concentration spatiale
doit étre effectuée par rapport a une référence clairement établie; (vi) la mesure doit
permettre de déterminer si des différences significatives par rapport a la référence

ou entre deux situations (zones, périodes ou secteurs) existent.

Une maniere de mesurer la concentration spatiale d’un secteur con-
siste a comparer la distribution spatiale de son emploi a la distribution spa-
tiale de ’emploi total (indice de Gini par exemple). Cependant, ’emploi ou
l’activité économique est réparti entre un nombre limité d’établissements,
il convient alors de corriger pour la concentration industrielle. Ellison et
Glaeser (1997), Maurel et Sédillot (1999) proposent des indices de concen-
tration qui tiennent compte du nombre d’établissements et de la distri-
bution de I’'emploi entre établissements. Ces mesures satisfont seulement

trois des six criteres d'un indice idéal et reposent sur un découpage géo-
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graphique prédéfinit du territoire (provinces, régions économiques, divi-
sions de recensement, etc.). Ce découpage ne dépend pas des caractéris-
tiques économiques, ce qui rend ces mesures sensibles & un changement
dans le découpage géographique. L'indice devient alors sensible a la po-
sition relative des unités spatiales de ce découpage et incapable de capter
les niveaux de concentration qui s’étendent aux unités adjacentes. Ce prob-
léme est plus connu sous le nom de “Probléme des Unités Spatiales Mod-
ifiables" (MAUP). Duranton et Overman (2005) et Marcon et Puech (2003)
ont résolu ce probléme en proposant de tester la concentration spatiale
de l'activité économique en utilisant une approche continue. Cette ap-
proche est basée sur la distribution des distances bilatérales entre paires
d’établissements au sein d'un secteur d’activité. Ils testent si la densité
observée d'un secteur est proche ou non d’'une densité provenant d'une
hypothése ot les établissements du secteur seraient distribués aléatoire-
ment. Cette mesure a le mérite de satisfaire cinq des six propriétés d"un
indice idéal de concentration spatiale énumérées par Combes et al. (2008).
La seule exception étant la sensibilité de la mesure a un changement de

nomenclature industrielle.

Cette these comprend trois chapitres qui auront pour objectif: (i) de
construire les mesures de concentration spatiale afin de fournir un portrait
complet de I’état, I'ampleur et la dynamique de la concentration spatiale de
l’activité économique au Canada; (ii) de s’interroger sur les facteurs expli-
catifs ou les déterminants (question fondamentale pour la mise en oeuvre
des politiques publiques) et sur comment ces déterminants ont influencé les
changements observés dans la concentration spatiale; et (iii) de construire

un test qui permet de se rapprocher de la mesure idéale de concentration



spatiale en mesurant la co-agglomération de plusieurs industries.

Le chapitre 1 est un travail empirique dans lequel nous analysons a
’aide de mesures de concentration spatiales récentes (discréte et continue),
les tendances de la concentration spatiale des activités manufacturiéres en-
tre 2001 et 2009 au Canada. De maniere spécifique, nous utilisons d'une
part I'indice discret d’Ellison et Glaeser (1997) et sa version pondérée d'une
correction spatiale — qui permet de tenir compte de la position des régions
dans l'espace — et d’autre part, la mesure continue de Duranton et Over-
man (2005) qui permet de s’affranchir du “MAUP". Nos résultats montrent
qu’en fonction des années et du niveau d’agrégation des secteurs, 40 a
60% des industries manufacturiéres sont concentrées dans l’espace géo-
graphique. De plus, la plupart de ces industries sont concentrées soit a
de faibles distances (moins de 150km) soit & des distances intermédiaires
(400 — 600km). Au cours de cette méme période, on a observé une ten-
dance a la dé-concentration des activités manufacturiéres au Canada. Ce
chapitre a le mérite de faire ressortir le portrait de la géographie des ac-
tivités manufacturiéres au Canada. La contribution majeure du chapitre
est qu’il permet de suivre 1’évolution dans le temps de la concentration
spatiale en plus de faire ressortir les schémas de localisation des exporta-
teurs, des petits et des jeunes établissements qui sont considérés comme
vitaux pour la création d’emploi, et le développement local et régional.
Ce chapitre permet également de faire une comparaison directe entre les
mesures discretes et les mesures continues de concentration spatiale. Il con-
tribue ainsi a une évaluation indirecte de I’ampleur du Maupr. Finalement, &
notre connaissance, c’est la premiére fois que les mesures continues de con-

centration spatiale sont appliquées aux données canadiennes en particulier
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et Nord-américaine en général (voir Holmes et Stevens, 2004). Cependant,
il reste silencieux sur les causes et les déterminants de cette tendance a
la dé-concentration des industries manufacturiéres au Canada. De plus,
le degré de concentration spatiale mesuré demeure sensible & un change-
ment de la nomenclature industrielle utilisée. Ces deux problémes seront

abordés dans les chapitres 2 et 3.

Dans le chapitre 2, nous nous intéressons aux déterminants de la
concentration spatiale des activités manufacturiéres, avec une emphase
sur le role des cofits de transport et du commerce international dans les
changements observés sur la concentration des activités manufacturiéres au
Canada. En utilisant un long panel (1992-2008), nous régressons la mesure
de concentration spatiale de Duranton et Overman (2005), sur des mesures
micro-géographiques et spatiales des cofits de transport, de l’exposition
au commerce international, et des liens en amont et en aval. Nos résul-
tats montrent que I'augmentation des cotts de transport, la concurrence
accrue du fait des importations en provenance des pays a faibles cofits
et 'accroissement de la distance vers les clients et les fournisseurs sont
tous fortement associés a une baisse de la concentration spatiale des in-
dustries manufacturiéres au Canada. Ces effets sont importants. En ef-
fet, sur la période 1992 — 2008, les changements observés dans les coiits
de transport, les importations en provenance des pays a faibles cofits, et
’acces aux intrants intermédiaires expliquent entre 20 et 60% de la baisse
observée dans la concentration spatiale des industries manufacturieres au
Canada. La principale contribution de chapitre est qu’il propose des év-
idences empiriques sur les déterminants de la concentration spatiale de

l’activité économique en utilisant des mesures micro-géographiques et spa-
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tiales construites & des échelles industrielle et spatiale trés fines. Ce chapitre
révele également un fait trés important. En effet, malgré la baisse historique
observée dans les cofits de transport, ils continuent d’étre un facteur déter-
minant de la structure industrielle et de la répartition spatiale des indus-

tries.

Le dernier chapitre de cette these apporte un raffinement a 1’approche
continue de mesure de la concentration spatiale. L'idée étant de proposer
une approche qui permet d’atténuer le probléme du découpage sectoriel
et de se rapprocher ainsi de l'indice de concentration spatial idéal. De
maniére spécifique, nous combinons d’une part, 'approche de mesure de
la concentration spatiale (a la Duranton et Overman, 2005) et I’approche de
co-localisation (a la Ellison, Glaeser et Kerr, 2010), et d’autre part, nous as-
socions ces mesures au degré avec lequel les industries échangent les biens,
les travailleurs et les idées. L'objectif étant de combiner des mesures de
distance technologiques (non-géographiques) & des mesures de distances
géographiques entre secteurs. Plus précisément, nous proposons une nou-
velle approche non-paramétrique de mesure de la localisation de plusieurs
industries similaires. Conditionnellement a la similarité des établissements
dans un espace non-géographique (liens en amont et en aval, type de
travailleurs ou technologie utilisée), notre approche permet de vérifier si
ces établissements sont concentrés ou non dans l'espace géographique.
Puisque 1’espace non-géographique est construit & base des mécanismes
de la ‘Trinité Marshallienne’, notre test permet également de jauger leur
importance. Une application de ce test au secteur manufacturier canadien,
permet de relever I'importance des liens en amont et en aval, et de I’accés a

un bassin d’employés spécialisés dans les décisions de localisation des in-
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dustries manufacturiéres. Nos résultats ne soutiennent pas l'importance de
la technologie dans les décisions de co-localisation des industries. La con-
tribution majeure de ce chapitre a la littérature sur la mesure de la concen-
tration spatiale est qu'il propose un cadre unique qui permet de mesurer la
co-agglomération des industries et de jauger de maniere non-paramétrique
I'importance des facteurs Marshalliens. Cette approche permet également
d’atténuer le probléme de la sensibilité des mesures existantes & un change-
ment de nomenclature industrielle. Cependant, elle demeure sensible au
découpage sectoriel en ce sens que la similarité des industries est mesurée
a partir des données sectorielles agrégées. Un moyen de s’affranchir com-
pletement du découpage sectoriel et se rapprocher ainsi de I'indice idéal de

concentration spatial serait d’utiliser des données au niveau établissements.



CHAPITRE 1

AN ANATOMY OF THE GEOGRAPHICAL
CONCENTRATION OF CANADIAN MANUFACTURING
INDUSTRIES

Abstract

We use detailed micro-geographic data to document the location patterns of
Canadian manufacturing industries and changes in those patterns during the first
decade of 2000. Depending on industry classifications and years, 40 to 6o percent
" of industries are geographically localized, i.e., are spatially clustered relative to
overall manufacturing. Although some industries are increasingly clustered, loca-
lization has generally decreased in Canada according to our measures. We further
document the locational trends of small plants, young plants, and exporters. Their
location patterns do not differ significantly from that of the other plants in their

industries.

Keywords : Location patterns ; manufacturing industries ; micro-geographic

data; Canada.

JEL classification : R12; Léo.
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s | Introduction

One of the most salient features of the economic landscape is the
strong geographical concentration of economic activity. That concentra-
tion is observed in most countries and at various spatial scales. Famous
examples of ‘clusters’ include the high-technology concentrations of Silicon
Valley, Boston’s Route 128, the North Carolina research triangle, as well as
concentrations of more mature industries like the automotive cluster in the
Detroit-Winsor corridor or the Italian manufacturing ‘districts’. In Canada,
economic activity — measured by either Gpr or employment — is strongly
concentrated across and within provinces. Ontario and Quebec, for example,
host about 60 percent of Canadian Gpr and 75 percent of manufacturing
employment. Within those two provinces, the Toronto metropolitan area,
about 0.06 percent of Ontario’s surface, generates 45 percent of Ontario’s
Gpr; whereas the Montreal metropolitan area generates almost 35 percent

of Quebec’s GDP on about 0.04 percent of Quebec’s surface. *

The resurgence of spatial analysis in economics has led to a renewed
interest in empirically analyzing and theoretically explaining the strong
geographical concentration of industries. Clusters and regional develop-
ment have also often been — and are becoming increasingly more — a mat-
ter of concern for policy makers around the world. Quebec’s government,
for example, has recently launched the ‘Plan Nord’, with the aim to in-
vest around $8o billion over the next 25 years to create 20,000 jobs, gene-

rate $14 billion in government revenue, and $162 billion for Quebec’s GDP.

1. These figures for 2013 are from Statistics Canada and the Institut de Statistiques
du Québec.
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Such huge investment plans — which have a clear regional development
component — are unlikely to leave the geography of economic activity un-
changed. It is, therefore, important to understand which industries tend to
cluster, what location patterns we observe for specific types of plants that
are important targets for economic development (e.g., young plants, small
plants, and exporters), and what the broad trends of geographical concen-

tration have been over the last decade. This is the focus of the present paper.

There is a substantial literature dealing with the measurement of
industrial localization, i.e., the geographical concentration of industries in
excess of the concentration of economic activity in general. Ellison and
Glaeser (1997; henceforth EG) have developed an index that has been wi-
dely applied to that issue. Despite its numerous advantages and appealing
theoretical properties, that index has no strong spatial flavor as it does
not take into account the relative positions of the geographical units. We
address that issue using two alternative strategies. First, we exploit the
micro-geographic nature of our data to compute point pattern based conti-
nuous measures following Ripley (1976, 1977), Duranton and Overman
(2005, 2008; henceforth po), and Marcon and Puech (2003, 2010). Using
continuous measures allows us to sidestep the need for pre-defined ad-
ministrative units, which give rise to the well-known modifiable areal unit
problem (henceforth MmauP; Openshaw and Taylor, 1979; Openshaw, 1983).
Second, we analyze the geographical concentration in Canada by explicitly
integrating ‘neighborhood effects’ into the EG index, following recent work

by Guimaraes, Figueiredo, and Woodward (2011).

To the best of our knowledge, continuous localization measures have

until now neither been applied to Canadian data in particular, nor to North
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American data in general (see Holmes and Stevens, 2004).? The empirical
literature on localization using micro-geographic data, though growing, is
still relatively limited. Using the EG and po indices, we identify the most
and the least localized manufacturing industries in Canada. Consistent
with previous findings for the UK, France, and Japan, industries related
to textiles and to the extraction of natural resources rank among the most
localized industries. We also provide a broad picture of the main trends for
the first decade of 2000. Our key findings can be summarized as follows.
First, depending on industry definitions and years, 40 to 60 percent of ma-
nufacturing industries are clustered, mainly at distances of less than 150
kilometers, and at distances of about 500 kilometers. These figures suggest
that there is less industrial localization in Canada as compared to other de-
veloped countries like France or the UK. Second, since, our dataset spans
a ten year period, we can look at the ‘dynamics’ of localization. We are not
aware of any other study looking at the changes in localization over time
using large micro-geographic plant-level datasets. We find that localization
is decreasing, i.e., manufacturing industries have become less geographi-
cally concentrated in Canada. Yet, there is a lot of heterogeneity across in-
dustries, and some of the most strongly localized industries are becoming
even more localized. The changes in spatial concentration through time are

negatively correlated with changes in industrial concentration.

Two advantages of our dataset is that it contains a large number of

2. Ellison, Glaeser, and Kerr (2010) use a ‘lumpy approximation’ of the Do index for
the US. Riedel and Hyun-Ju (2014) do the same for Germany. It is unclear whether using a
discrete approximation of a continuous measure helps in solving the fundamental spatial

aggregation problems.
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small and young plants, and that it reports plant-level information on ex-
port status. This allows us to document in detail the location trends for
those subgroups, and in particular to look at trends specific to exporter
plants involved in international business. Understanding those trends is
relevant from a policy perspective, since these groups of plants are percei-
ved as being vital for employment growth and local regional development,
thus making them prime targets for cluster policy. Our findings suggest
that they are, in general, not more strongly concentrated than all plants in
their respective industries. The only exception is for exporters, but their
‘excess concentration’ tends to significantly decrease over the first decade

of 2000.

The remainder of the paper is organized as follows. Section 1.2 pro-
vides a snapshot of manufacturing in Canada. Section 1.3 presents our
empirical results using continuous measures of localization. Section 1.4
summarizes our empirical results using discrete measures as a robustness
check, controlling for the relative position of the spatial units. Finally, Sec-
tion 1.5 concludes and places our results into the policy debate about in-
dustry clusters and regional development. We relegate all technicalities,
the description of our datasets, and additional results to an extensive set of

appendices.

1.2 A snapshot of Canadian manufacturing, 2001-2009

To set the stage, we first provide a quick overview of the sectoral and
geographical structure of manufacturing in Canada from 2001 to 2009. To-
tal salaried employment in Canada in 2001 was 12,978,258 jobs, of which

1,974,636 — or 15.21 percent — were in manufacturing. In 2005, the corres-
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ponding numbers were 13,931,343 and 1,837,828 jobs — or 13.19 percent -

respectively; whereas they were 14,570,025 and 1,473,472 jobs — or 10.11

percent — in 2009.3 The downwards trend in manufacturing can also be

seen from Table 1.1, which shows that the number of plants in our data

has fallen from 54,379 in 2001 to 46,391 in 200g. This ‘de-industrialization’

is not specific to Canada and affects most developed countries in a simi-

lar way (see, e.g., Duranton, Martin, Mayer, Mayneris, 2012, for the French

case). As can be seen from Table 1.1, the decrease in the number of plants

went hand-in-hand with an increase in average plant size — as measured by

employment — except for the Atlantic provinces (see Appendix A for details

on the data).

Table 1.1 Descriptive statistics by province.

2001 2005 2009

Province #of plants Avg. empl. | #of plants Avg. empl. | #of plants Avg. empl.
Alberta 3933 36.100 3455 44.430 3,581 52.780
British Columbia 6,219 31.930 5,371 33.730 4,991 34.370
Manitoba 1,654 43.330 1,481 55.230 1,263 57.790
New Brunswick 1,395 35.660 1,258 40.080 1,175 36.940
Newfoundland and Labrador 576 43.830 540 44.830 472 42.500
Nova Scotia 1,676 29.930 1,495 37.140 1,296 35.020
Ontario 21,306 45.010 20,966 46.080 19,637 46.760
Prince Edward Island 328 25.350 327 24.410 280 25.430
Quebec 15,939 41.640 14,166 45.690 12,560 49.550
Saskatchewan 1,353 27.360 1,305 32.520 1,091 36.230
Territories - - 40 5.940 45 10.140
Total 54,379 36.01 50,404 37.28 46,391 38.86

Source : Authors’ computations using Scott’s National All Business Directories.

Table 1.2 summarizes industry-level details of our data, including the

3. Source : Statistics Canada, CANSIM.
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average plant size by industry and the number of exporting plants. There is
clearly substantial cross-industry variation, as extensively documented by
previous studies (e.g., Bernard and Jensen, 1995). Observe that, although
the number of plants has decreased substantially, the share of exporting
plants has increased from 42.3% in 2001 to 45.1% in 2009 in the wake of

increasing globalization.

Turning to the spatial dimension, population is strongly concentrated
geographically in Canada. Indeed, because of historical settlement patterns,
the climatic conditions in the north, and access to the large US mari<et to
the south, about go percent of the Canadian population lives less than 100
miles from the US border. Quite naturally, the overall distribution of ma-
nufacturing is thus also strongly concentrated geographically in Canada -
namely in Ontario and Quebec and, more generally, along the Canada-US
border — as can be seen from Figure 1.7 in Appendix E. We show in Ap-
pendix D that the overall ‘shape’ of the distribution of bilateral distances
between manufacturing plants in Canada has remained - in the aggregate
— fairly stable between 2001 and 2009. This suggests that the localization
measures we compute in what follows for individual industries are com-

parable between the years of our analysis.

Since manufacturing is strongly concentrated geographically in Ca-
nada, we will use its overall distribution as the benchmark against which
we assess localization in a given sector. This avoids picking up localization
patterns that are solely driven by the overall concentration of industries in
large metropolitan areas (Combes, Mayer, and Thisse, 2008) or, in the case
of Canada, in the traditional manufacturing corridor running from Que-

bec City to Windsor via Montreal and Toronto (see Figure 1.7 in Appendix
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Na1cs3 | Industry name # NAICS6 # of plants Avg. plant size (empl.) # of exporters
2001 2005 2009 2001 2005 2009 2001 2005 2009
311 Food Manufacturing 33 4807 4327 3,929 50.114 56.711 62.158 1,667 1,591 1,404
312 Beverage & Tobacco Product Mfg 6 477 426 462 64.522 77-345 64.036 129 134 126
313 Textile Mills 57 539 356 277 51.986 53.858  53.359 246 198 162
314 Textile Product Mills 4 1,413 1,307 1,146 18.340 17.568 17.147 422 488 430
315 Apparel Manufacturing 17 2,364 1,905 1,354 40.631 38.855 36.349 932 819 642
316 Leather & Allied Product Mfg 3 382 308 238 36.728 28.454 29.091 203 163 131
321 Wood Product Manufacturing 14 3,919 3,546 3,127 42826  48.239 48.557 1,733 1,690 1,436
322 | Paper Manufacturing 12 911 854 775 | 119594 114557 115.001 582 588 546
323 Printing & Related Support activ. 6 5,091 4577 4089 18.600  22.935 23.964 1,063 1,174 1,041
324 Petroleum & Coal Products Mfg 4 347 318 301 | 100.009 135365 130.882 123 115 106
325 Chemical Manufacturing 20 2,183 2,034 1,982 47.907  56.685 63.959 1,231 1,205 1,146
326 Plastics & Rubber Products 14 2,206 2,227 2,084 48.950 57.802 54.252 1,375 1,423 1,334
327 Nonmetallic Mineral Products 12 2,608 2,618 2473 27.539 27.651 42.394 778 808 766
331 Primary Metal Manufacturing 13 927 820 8os | 113.145 115373 106.953 587 534 484
332 Fabricated Metal product Mfg 21 8018 7,521 7,255 | 26504 30020 31.093 | 3014 3085 2975
333 | Machinery Manufacturing 17 5237 4758 4583 | 34210 37538 41780 | 3160 3,147 2,994
334 Computer & Electronic Products 9 2,130 1,654 1,643 61.658  50.794 63.845 1,433 1,205 1,201
335 Electrical Equip. & Appliances 12 1,193 1,047 1,007 43489 50.602 47.018 777 749 707
336 Transportation Equipment Mfg 18 2,008 1,907 1839 | 116297 129.609 125.060 990 1,010 918
337 Furniture & Related Product Mfg 10 3,526 3,351 2,869 25.192 29.308 32.065 1,126 1,198 1,001
339 | Miscellaneous Manufacturing 7 4093 4543 4153 | 17.337 16022 15934 | 1,434 1467 1,353
259 54379 50404 4639t | 52647 57.347 57347 | 23,005 22,791 204903
423% 452% 451%

Source : Authors’ computations using Scott’s National All Business Directories.
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E). We will compute both discrete and continuous measures of localization
— for industries in general, but also for certain types of plants like small
plants, young plants, and exporters — and analyze their trends over time.
When looking at specific types of plants, we will use an even more restric-
tive benchmark, namely the spatial distribution of all plants in their own
industry. In other words, we will look at the ‘excess concentration’ of small
plants, youﬁg plants, and exporters as compared to the concentration of
plants in their industry in general. Doing so will provide a very fine pic-
ture of the ‘state of geography’ of manufacturing in Canada, both in terms

of industries and in terms of specific plant types.

1.3 Continuous measures : Methodology and results

While discrete measures of localization, such as the EG index, are
very popular and have been widely used, they are known to be sensitive
to the choice of geographical units. They are also independent of the rela-
tive position of those units. To deal with those two problems, we exploit
the micro-geographic nature of our data and compute continuous mea-
sures of localization, namely the Duranton-Overman index (Duranton and
Overman, 2005, 2008). This index is based on the kernel density of the
distribution of bilateral distances across all plants in an industry — or, in
its weighted version, of all employees in an industry — and compares that
distribution to a counterfactual one that is obtained under the assumption
of ‘spatial randomness’. Concerning the weighted version of the po index
that we use, we need to point out that, contrary to Duranton and Overman
(2005) who use a multiplicative weighting scheme, we use an additive one.

Methodological details and a discussion of the implications of the weigh-
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ting scheme are provided in Appendix B.

The key advantage of the po index is that it retains the desirable
properties of the EG index — namely to control for the size distribution of
plants in an industry — while getting rid of the need to choose specific spa-
tial units for the analysis. 4 Another important advantage of the po index is
that its statistical significance can be tested. Two-sided confidence intervals
that contain go percent of the estimated K-densities can be constructed by
using bootstrap. The upper bound of this interval is given by the g5th per-
centile of the generated values, and the lower bound by the s5th percentile
of these values. If we observe a higher K-density than that of randomly
drawn distributions, we consider the industry as localized. Similarly, if we
observe a lower K-density than that of randomly drawn distributions, we
consider the industry as dispersed. We can also measure the strength of
localization and dispersion by the ‘area’ between the observed distribution
and the upper- and lower-bounds of the confidence bands. We denote these
measures by I'; and ¥; for each industry i. They can intuitively be interpre-
ted as the ‘excess probability’ to find another firm in the same industry
closer than some distance d when controlling for the reference distribution

and accepting a 5% risk level.>

4. That methodology has been recently extended and can be applied to many eco-
nomic problems where space matters and where micro-geographic data is available (see,
e.g., Murata, Nakajima, Okamoto, and Tamura, 2014, for an application to the localization

of patents).

5. Consider a sector that is localized (see, e.g., the upper-left panel of Figure 1.1).
The area below the actual curve up to a distance d, the cDF at d, is the probability for
a firm that a randomly drawn ‘neighbor’ in the same industry is less than d apart. The

same area under the upper bound of the envelope is the maximum probability for a firm
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Stamping (332118) Motor vehicle metal stamping (338370)

Commercial screen printing (323113) ‘Wood window and door mig {321911)

Figure 1.1 Selected location patterns of industries in 2009 (unweighted K-

densities).
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To understand the logic underlying the po index, we illustrate the
possible patterns with the help of Figure 1.1. The observed distribution of
distances in the industry is depicted by the solid line, which we refer to
as the K-density. The figure also depicts the ‘local’ (dashed) and the ‘glo-
bal’ (dotted) confidence bands (see Appendix B for details). These bands
contain go percent of the counterfactual distributions, so that when the so-
lid line lies within them we cannot reject — at the 5 percent level — the null
hypothesis that the observed location pattern of the industry is one of ‘spa-
tial randomness’. If the solid line lies above the upper bound of the confi-
dence band, distances between plants are over-represented as compared
to spatial randomness, which is interpreted as localization ; whereas when
the solid line lies below the lower bound of the confidence band, distances
between plants are under-represented as compared to spatial randomness,

which is interpreted as dispersion.

The four industries depicted in Figure 1.1 display four different geo-
graphical patterns. The top-left panel depicts an industry that is localized
at a regional scale (up to 200 kilometers), however dispersed at longer dis-
tances (around 400 kilometers). This corresponds to the ‘classical’ location
pattern where plants are disproportionately located at short distances, i.e.,
the industry is localized. The top-right panel depicts an industry that is
both significantly concentrated at short distances, and also significantly ag-
glomerated in between major urban areas — 400-500 kilometers corresponds

approximately to the distance between the peripheries of the greater me-

that a randomly drawn ‘neighbor’ in any industry is less than d apart, accepting a 5% risk
level. The difference between the two, which we call I', is therefore the ‘excess probability’
to find a neighbor in the same industry less than d apart, controlling for the reference

distribution. We thank a referee for suggesting this interpretation.
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tropolitan regions of Toronto and Montreal. The bottom-left panel depicts
an industry that is neither significantly localized nor significantly disper-
sed. The location pattern of that industry is not significantly different from
one that would be obtained by a purely random location process of the
plants. Last, the bottom-right panel depicts an industry that is significantly

dispersed, both at short and at long distances.

1.3.1 Baseline results

We first examine the number of industries that are localized or dis-
persed according to the po index. As can be seen from Table 1.3, using a
strict definition of manufacturing plants (see Appendix A), we find that
roughly 31 percent and 55 percent of industries were significantly localized
in 2001 at the 6-digit and the 4-digit levels, respectively. These numbers
were quite stable between 2001 and 2005, but they fall below 25 percent at
the 6-digit level and below 49 percent at the 4-digit level in 2009. On ave-
rage, the share of localized manufacturing industries in Canada is smaller
than the ones reported for the UK (52 percent), France (63 percent), Ger-
many (71 percent), and Japan (50 percent) in earlier studies by Duranton
and Overman (2005), Barlet, Briant, and Crusson (2013), Riedel and Hyun-

Ju (2014), and Nakajima, Saito, and Uesugi (2012), respectively.

There is a clear tendency towards less localization between 2001 and
2009 : the number of localized industries decreases, as well as the strength
of localization (as measured by the average I' across all localized sectors;
see Appendix B for details). This trend affects both the 4- and the 6-digit
industries, with and without employment weights. Although industries
tend to display less localization when using the employment-weighted K-
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4-digit industries
2001, unweighted 2001, weighted
Strict Extended Strict Extended
Number  Percentage Number  Percentage | Number  Percentage | Number Percentage
localized 47 54.651 52 60465 47 54.651 49 56.977
random 26 30.233 20 23.256 29 33921 29 33.721
dispersed 13 15.116 14 16.279 10 11.623 8 9.302
Tlr;>o0 0.051 0.050 0.057 0.059
Fly, >0 0.024 0.026 0.018 0.027
2003, unweighted 2005, weighted
Strict Extended Strict Extended
Number  Percentage | Number  Percentage | Number  Percentage | Number Percentage
localized 48 55814 so s8.140 42 48837 46 53.488
random 24 27.907 17 19.767 3 38.372 30 34.884
dispersed 14 16.279 19 22.093 11 12.991 10 11.628
Tlr;>o 0.043 0.038 0.050 0.045
Ty, >0 0.027 0.027 0.020 0.023
2009, unweighted 2009, weighted
Strict Extended Strict Extended
Number  Percentage | Number  Percentage | Number  Percentage | Number Percentage
localized 42 48.837 47 54.651 34 39535 36 41.860
random 29 33.731 23 26.744 39 45349 % 46.512
dispersed 15 17.442 16 18.605 13 15.116 10 11.628
Tlry>o 0.039 0.035 0.044 0.036
Fly, >0 0.029 0.028 0.017 0.030
6-digit industries
2001, unweighted 2001, weighted
Strict Extended Strict Extended
Number  Percentage | Number  Percentage | Number  Percentage | Number Percentage
localized 79 30.620 100 38.610 88 34.109 105 40.541
random 153 59.302 120 46.332 157 60.853 132 50.965
dispersed 26 10.078 39 15.058 13 5.039 22 8.494
Flr>o0 0.082 0.062 0.072 0.059
¥ly, >0 0.018 0.018 0.008 0.016
2005, unweighted 2005, weighted
Strict Extended Strict Extended
Number  Percentage | Number  Percentage | Number  Percentage | Number Percentage
localized 78 30.116 105 40,541 69 26.641 96 37.066
random 150 57.915 108 41.699 170 65.637 139 53.668
dispersed 31 11.969 46 17.761 20 7.722 24 9.266
Tlr;>o 0.069 0.044 0.085 0.047
Flw, >0 0.016 0.019 0.012 0.014
2009, unweighted 2009, weighted
Strict Extended Strict Extended
Number  Percentage | Number  Percentage | Number  Percentage | Number Percentage
localized 64 24.710 94 36.293 62 23.938 8o 30.888
random 163 62.934 120 46332 180 69.498 148 57.143
dispersed 32 12355 45 17.375 17 6.564 31 11.969
Tlr;>o0 0.071 0.044 0.077 0.047
Zly, >0 0016 0.018 0.012 0.012

Notes : See the Appendix for details on how to compute I'; and ;. We denote their arithmetic average by T and 7.
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densities than in the unweighted case, the key results remain very simi-
lar. Note, however, that employment-weighted K-densities tend to decrease
less through time. This may either be due to the geographical dispersion of
small firms, or to changes in the industrial concentration of industries, or a
mix of both. If, for example, geographically close firms merge, the clusters
loose points (in terms of plant counts), which decreases the unweighted lo-
calization measures. The employment weighted measures would, instead,
not be strongly affected by these mergers since the clusters do not loose
employment. Table 1.4 below summarizes changes in the plant-level Her-
findahl indices of industries over time. As can be seen from that table, the
Herfindahl indices increase, on average, over our study period — the joint
result of fewer plants and larger average plant sizes. As can further be seen
from Table 1.4, there is a systematic pattern in the data : industries that ex-
perienced more dispersion (measured here by a switch from being either si-
gnificantly localized to being random, or from being random to being signi-
ficantly dispersed) saw their Herfindahl indices increase, whereas indus-
tries that experienced more localization (measured here by a switch from
being either random to being significantly localized, or from being signifi-
cantly dispersed to being random) saw their Herfindahl indices decrease.
This provides suggestive evidence that changes in industrial concentration
— through, e.g., mergers and acquisitions of spatially proximate firms ~ cor-
relate with changes in industrial localization. Hence, the tendency towards
more dispersion may not be solely driven by the dispersion of small firms

as compared to large firms.

It is worth noting that the number of industries that do not signifi-

cantly depart from randomness is quite large in our samples — around 59



25

Table 1.4 Changes in the plant-level Herfindahl indices (1) over time.

Change in HI

Mean  Std. dev. Obs.
2001-2005, all industries 0.014 0.097 259
2005-2009, all industries 0.007 0.059 259
2001-2005, increasing localization | -0.010 0.050 19
2005-2009, increasing localization | -0.007 0.128 14
2001-2005, decreasing localization | 0.010 0.038 21
2005-2009, decreasing localization | 0.040 0.087 23

Notes : Changes in the plant-level Herfindahl indices over time.

percent in 2009 — which may be due to either the fine level of sectoral di-
saggregation, or to the presence of a large number of small plants in our
samples, or to the specific structure of the Canadian economy.® Table 1.3
summarizes our results for the different sample definitions (strict vs exten-
ded), different weighting schemes (unweighted vs weighted), and different
industrial aggregation levels (6-digit vs 4-digit).

Since the raw value of the po index is hard to interpret, we report
results using the cumulative distribution function (cpF) associated with the
K-density, evaluated at a distance of 50 kilometers. These results are sum-
marize in Tables 1.5 and 1.6 below. Consider, e.g., ‘Knit Fabric Mills’ (na1cs
313240) in 2001. As can be seen from Table 1.5, the cDF at a distance of 50
kilometers is 0.417. In words, 41.7 percent of plant pairs are located less
than 50 kilometers apart in that sector. Alternatively, we can view this as
the probability that two randomly drawn plants from that industry are less

than 50 kilometers away from each other. Clearly, more than two chances

6. Previous studies for the UK, France, Germany, or Japan, focus on ‘compact coun-

tries’, whereas Canada is geographically all but ‘compact’.
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in five is a large value given the geographical extent of Canada. As can be
seen from Tables 1.5 and 1.6, various textile and metal-related sectors rank

among the most strongly localized industries in the different years.

One advantage of the continuous measures is that they allow us to
finely assess at what distances localization or dispersion actually occur. The
top panel of Figure 1.2 depicts the number of 6-digit industries that are
globally localized at each distance between 1 and 8oo kilometers, both in
the unweighted (left panel) and the weighted (right panel) case in 2001. As
one can see, most industries are localized at relatively short distances (up
to 150-180 kilometers) or at intermediate distances (about 500 kilometers).
The reason is that some industries cluster predominantly in an urban en-
vironment — short distances, or distances of about 500 kilometers between
major urban centers ~ whereas other industries cluster in more rural and
semi-rural areas between major urban centers (about 200-400 kilometers).
These industries are then naturally underrepresented at short distances,
because dispersion at some distances is the flip-side of agglomeration at
other distances. Observe also that : (i) less industries are localized in 2009
than in 2001, especially at short distances and at intermediate inter-city
distances; and (ii) this trend is stronger in the unweighted case, thereby
suggesting that the change in the pattern is driven by smaller plants that
either disappear (exit or M&As) or change location.

Last, Figure 1.3 plots the rank-ordered distribution of the I (solid
line) and the ¥; (dashed line) measures of the strength of localization and
dispersion. As one can see, there are only a small number of highly loca-
lized or dispersed industries. Furthermore, most of the industries do not

have extreme spatial patterns, which is similar to results for the UK and
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Table 1.5 Ten most localized industries according to the po cpF (unweighted).

NAICS6 I Industry name

CDF
2001
315231 | Women’s and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing 0.471
313240 | Knit Fabric Mills 0.417
315210 | Cut and Sew Clothing Contracting 0.258
315292 | Fur and Leather Clothing Manufacturing 0.234
333220 | Rubber and Plastics Industry Machinery Manufacturing 0.206
333519 | Other Metalworking Machinery Manufacturing 0.204
336110 | Automobile and Light-Duty Motor Vehicle Manufacturing 0.178
325991 | Custom Compounding of Purchased Resins 0.175
332118 | Stamping 0.170
336370 | Motor Vehicle Metal Stamping 0.159
NAICs6 | Industry name CDF
2005
315231 | Women'’s and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing 0.536
333220 | Rubber and Plastics Industry Machinery Manufacturing 0.369
332118 | Stamping 0.237
336110 | Automobile and Light-Duty Motor Vehicle Manufacturing 0.230
312210 | Tobacco Stemming and Redrying 0.200
315292 | Fur and Leather Clothing Manufacturing 0.188
333519 | Other Metalworking Machinery Manufacturing 0.188
336370 | Motor Vehicle Metal Stamping 0.168
325991 | Custom Compounding of Purchased Resins 0.166
315110 | Hosiery and Sock Mills 0.158
NaICsé | Industry name CDF
2009
315231 | Women’s and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing 0.513
312210 | Tobacco Stemming and Redrying 0.282
333220 | Rubber and Plastics Industry Machinery Manufacturing 0.256
332991 | Ball and Roller Bearing Manufacturing 0.252
336110 | Automobile and Light-Duty Motor Vehicle Manufacturing 0.241
336370 | Motor Vehicle Metal Stamping 0.228
315292 | Fur and Leather Clothing Manufacturing 0.186
333519 | Other Metalworking Machinery Manufacturing 0.180
332118 | Stamping 0.180
332720 | Turned Product and Screw, Nut and Bolt Manufacturing 0.151

Notes : The cpF at distance d is the cumulative sum of the K-densities up to distance d. Results in this table are

reported for a distance d = 50 kilometers.
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DO CDF (employment

weighted).
NAICS 6 I Industry name CDF
2001
325110 | Petrochemical Manufacturing 0.344
313240 | Knit Fabric Mills 0.309
333220 | Rubber and Plastics Industry Machinery Manufacturing 0.254
315231 Women's and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing 0.247
336370 | Motor Vehicle Metal Stamping 0.216
315110 Hosiery and Sock Mills 0.207
332118 | Stamping 0.199
333519 | Other Metalworking Machinery Manufacturing 0.169
336110 | Automobile and Light-Duty Motor Vehicle Manufacturing 0.166
315233 Women'’s and Girls’ Cut and Sew Dress Manufacturing 0.166
NaICs 6 | Industry name CDF
2005
333220 | Rubber and Plastics Industry Machinery Manufacturing 0.277
312210 | Tobacco Stemming and Redrying 0.241
336370 | Motor Vehicle Metal Stamping 0.192
313240 Knit Fabric Mills 0.179
336110 | Automobile and Light-Duty Motor Vehicle Manufacturing 0.169
332118 | Stamping 0.162
315210 | Cut and Sew Clothing Contracting 0.157
315231 | Women'’s and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing 0.157
333519 | Other Metalworking Machinery Manufacturing 0.156
333511 Industrial Mould Manufacturing 0.155
NaICS 6 | Industry name CDF
2009
315231 | Women's and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing 0.459
312210 | Tobacco Stemming and Redrying 0.249
336110 | Automobile and Light-Duty Motor Vehicle Manufacturing 0.209
336370 | Motor Vehicle Metal Stamping 0.207
333220 | Rubber and Plastics Industry Machinery Manufacturing 0.188
332118 | Stamping 0.158
333519 | Other Metalworking Machinery Manufacturing 0.156
333511 | Industrial Mould Manufacturing 0.142
332991 | Ball and Roller Bearing Manufacturing 0.135
325520 | Adhesive Manufacturing 0.132

Notes : The cor at distance d is the cumulative sum of the K-densities up to distance d. Results in this table are

reported for a distance d = 50 kilometers.
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Japan. One can also see that the number of localized industries decreases
over time, both in the unweighted and in the weighted case, while there is
not much change in the degree and strength of dispersion, as well as in the
number of dispersed industries. Last, it is worth noting that some of the
most strongly localized industries tend to get even more strongly localized.
These findings suggest an interesting insight : over the 2001—2009 period,
manufacturing industries got generally less localized in Canada, but loca-
lization increased at the very top of the distribution. The general trend of
spatial deconcentration thus does not affect all industries in the same way

and there is substantial cross-industry heterogeneity in locational dynamics

1.3.2 Sectoral scope of localization

Does the level of sectoral aggregation matter for our results? Do
NaIcs 4-digit industries exhibit comparable location patterns than Naics
6-digit industries ? The short answers to those two questions are ‘yes’ and
‘no’. As can be seen from Table 1.3, as we move to a more aggregate de-
finition of industries, the degree of concentration changes. There are two
reasons for this. The first is that, as explained in detail in Section 1.4.2 later
on, aggregation tends to mix sub-industries that exhibit different location
patterns. This is problematic, especially since location patterns are often
strong for those sub-industries (see Figure 1.3; and Duranton and Over-
man, 2005). The second reason is that, when breaking down industries into
sub-industries, the number of plants gets smaller. This makes the test wea-
ker against the reference distribution, i.e., the K-density confidence bands

become wider and localization is more difficult to detect.
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In Table 1.7, we compute the ratio of localized 6-digit industries in the
total number of 6-digit industries that make up a particular 3-digit indus-
try. The results of this exercise are summarized in Table 1.7. As can be seen
from that table, 6-digit industries belonging to the 3-digit industries 313
(“Textile Mills’), 315 (‘Clothing Manufacturing’), 323 (‘Printing and Related
Support Activities’), 333 (‘Machinery Manufacturing’), and 334 (‘Computer
and Electronic Product Manufacturing’) are made up of subindustries that
display strong localization patterns. On the contrary, 6-digit sectors belon-
ging to industries 324 (‘Petroleum and Coal Products’), 312 (‘Beverage and
Tobacco’), and 321 (“Wood products’) display only very weak patterns of
localization. These findings are similar to those for the UK, where textile
(s1c 17-19) and publishing (s1c 22) industries are among the most localized
industries, while food and drink (sic 15), wood (siCc 20), and petroleum
(s1c 23) industries are among the least localized ones (see Duranton and
Overman, 2005). The pattern is also similar to that observed in Japan by
Nakajima, Saito, and Uesugi (2012), where the most localized industries
are related to “Textile Mill Products’ (ysic 11), ‘Electrical Machinery’ (ysic
27), whereas the least localized are related to ‘Petroleum and Coal Products’

(sic 18), and ‘Lumber and Wood Products’ (Jsic 13).

These results are useful for two reasons. First, as already mentioned,
they show that industrial aggregation often mixes sub-industries that dis-
play quite different — and fairly strong — location patterns. As we argue in
Section 1.4.2, this can significantly affect the outcome, similar to the maur
in the case of spatial aggregation. Second, it shows that some industries are
characterized by either production processes or outputs that display a ge-

neral tendency to localization. It seems, e.g., that ‘textile related” industries
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generally rely on similar inputs, techniques, and labor that is conducive to
the spatial concentration of plants operating in those industries. However,
in most 3-digit industries, localized, random, and dispersed sub-industries
coexist. Hence, the analysis should be carried out at a detailed industrial
level (or even the product level) in order to pick up the fine sectoral location

patterns.

In a nutshell, Table 1.7 suggests that the finest 6-digit classification is
probably the most appropriate for looking at location patterns. Moving to
a more detailed industry classification allows us to pick up more detailed
location patterns. The cost of this disaggregation is, however, less precision
of the tests against the reference distribution as reflected by the width of
the confidence bands.

1.3.3 Location patterns of small plants, young plants, and

exporters

We now look at the location patterns of specific subsets of plants :
small plants, young plants, and exporting plants. There are good theoretical
reasons to look at those plants in particular. Rosenthal and Strange (2003,
2010) document, e.g., that the marginal effect on the entry of new plants in
an industry generated by an employee at a small establishment is greater
than that generated by an employee at a large establishment. The intuition
is that small firms rely more on their external environment, whereas larger
firms ‘do their own business’ (see also Alcdcer and Chung, 2013, who link
the clustering of small plants to the industrial structure of incumbents in a

cluster). Rosenthal and Strange (2010) also provide an extensive review of
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Table 1.7 Localization patterns by broad industry groups.

NAICS3 | Industry name | #subsectors  #localized #random  #dispersed | % localized
Unweighted K-density estimates
311 Food Manufacturing 32 3 26 3 9375
312 Beverage and Tobacco Product Manufacturing 6 o 5 1 0.000
313 Textile Mills 7 3 4 o 42.857
314 Textile Product Mills 4 [ 3 5 0,000
315 Clothing Manufacturing 17 13 4 o 76.471
316 Leather and Allied Product Manufacturing 3 1 2 o 33.333
321 Wood Product Manufacturing 14 4 6 4 28.571
322 Paper Manufacturing 12 3 8 1 25.000
323 Printing and Related Support Activities 6 3 3 o 50.000
324 Petroleum and Coal Products Manufacturing 4 o 4 [] 0.000
325 Chemical Manufacturing 20 7 12 1 35.000
326 Plastics and Rubber Products Manufacturing 14 4 10 ] 28,571
327 Non-Metallic Mineral Product Manufacturing 12 1 9 2 8.333
331 Primary Metal Manufacturing 13 3 10 o 23.077
332 Fabricated Metal Product Manufacturing 21 8 12 1 38.095
333 | Machinery Manufacturing 17 9 5 3 52.941
334 Computer and Electronic Product Manufacturing 9 5 2 2 55.556
335 Electrical Equipment, Appliance and Component Manufacturing 12 2 10 (<] 16.667
336 Transportation Equipment Manufacturing 18 3 9 6 16.667
337 Fumiture and Related Product Manufacturing 10 4 6 o 40.000
339 Miscellaneous Manufacturing 7 3 3 1 42.857

Weighted K-density estimates

311 Food Manufacturing 32 3 28 1 9.375
312 Beverage and Tobacco Product Manufacturing 6 o 6 o 0.000
313 Textile Mills 7 6 1 (<] 85.714
314 Textile Product Mills 4 1 3 o 75.000
315 Clothing Manufacturing 17 16 o 1 94.118
316 Leather and Allied Product Manufacturing 3 1 2 o 33.333
321 Wood Product Manufacturing 14 2 5 7 14.286
322 Paper Manufacturing 12 7 4 1 58.333
323 Printing and Related Support Activities 6 [ 3 1 0.000
324 Petroleum and Coal Products Manufacturing 4 [ 4 (<] 0.000
325 Chemical Manufacturing . 20 10 10 o 50.000
326 Plastics and Rubber Products Manufacturing 14 7 7 [ 50.000
327 Non-Metallic Mineral Product Manufacturing 12 1 9 2 8.333
331 Primary Metal Manufacturing 13 3 10 [ 23.077
332 Fabricated Metal Product Manufacturing 21 9 12 9 42.857
333 Machinery Manufacturing 17 9 5 3 52.941
334 Computer and Electronic Product Manufacturing 9 8 1 ] 88.889
335 Electrical Equipment, Appliance and Component Manufacturing 12 6 6 [ 50.000
336 Transportation Equipment Manufacturing 18 8 9 1 44-444
337 Furniture and Related Product Manufacturing 10 2 7 1 20.000
339 Miscellaneous Manufacturing 7 3 2 2 42.857

Notes : Results are reported for the year 2001. The measures are computed using the unweighted K-densities (top panel) and the employment-
weighted K -densities (bottom panel). Subsectors are identified at the 6-digit level.
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the theoretical mechanisms that explain the importance of small and young
establishments for clustering and industry dynamics, especially the entry
and clustering of new firms through, e.g., ‘spin offs’ or their greater reliance
on locally sourced external services. Turning to the importance of young
firms for growth, there is abundant evidence that clusters and cities with
younger firms and more entrepreneurship have higher growth rates (see,
e.g., Faberman, 2011 ; Glaeser, Kerr, and Kerr, 2014), thus suggesting that
small and young firms are important for economic development. Given the
widely documented and large effects of small plants and of young plants on
industry dynamics and growth, it seems worthwhile to investigate in more
detail their geographical location patterns. Their spatial concentration may

indicate that clustering is conducive to the creation of new plants and jobs.

Looking at location patterns, industrial concentration, and the pro-
pensity of small US firms to export, Mittelstaedt, Ward, and Nowlin (2006)
find that the greater the geographic concentration of an industry, the higher
the likelihood that firms will export. Greenaway and Kneller (2008) reach a
similar conclusion in a study covering fifteen years of firm-level data in the
UK. Export spillovers — and thus the tendency for exporters to concentrate
geographically — are also documented at length in Koenig (2009) and Koe-

ning, Mayneris, and Poncet (2010).7 Note that the clustering of exporters (if

7. Not all studies find evidence for the existence of export spillovers. By using rela-
tively aggregated measures of agglomeration (regions are approximated by US states and
industries at the 2-digit level), Bernard and Jensen (2004) find no role for either geographic
spillovers or for export activity of other firms in the same industry for a panel of large US
plants. Another example is the paper of Barrios, Goerg, and Strobel (2003), who use a
panel of Spanish firms to document that there is no evidence for spillover effects through

the presence of other exporters or multinationals.
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there are export spillovers) can imply that attracting exporters may have a
beneficial effect on other plants which may subsequently also engage in ex-
port activity. Given the widely-documented fact that exporters pay higher
wages (e.g., Bernard and Jensen, 1995), these plants seem like prime targets

for economic policy.

We define young plants and small plants as those plants that are
below the median employment size or year of establishment in their in-
dustry.8 Instead of using the overall distribution of manufacturing as the
benchmark, we now consider the distribution of all plants in their parti-
cular industry as the benchmark. The question is hence : Do small plants,
young plants, or exporters locate closer to each other than plants in the

industry in general ?

Table 1.8 summarizes our results. Across years, we find that only 7 to
11 industries (3 to 4 percent) exhibit localization of small plants, whereas
13 to 19 industries (5 to 7 percent) exhibit dispersion of small plants. This
leaves more than go percent of industries with location patterns of small

plants that do not differ significantly from randomness. These findings sug-

8. Note that using the median may seem a priori arbitrary. In unreported results,
we have also split the sample at the first quartile. The results (available upon request),
are very similar. Note, however, that stricter definitions yield smaller sample sizes, so
that the estimates are less precise. Note also that we cannot use an absolute criterion
to split the samples. The reason is that the efficient size of plants vastly differs across
industries. A ‘small plant’ in a chemical industry may correspond to a ‘huge plant’ in
a textile sector. For example, in the "Fur and Leather Clothing Manufacturing" industry,
around go percent of plants have less than 20 employees while in the "Alkali and Chlorine
Manufacturing” industry, the average establishment size is 200 employees. Clearly, using

an absolute threshold to classify plants is not meaningful.
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gest that small plants in an industry do not locate differently than its plants
in general. This weak tendency for clustering of small plants is consistent
with Duranton and Overman’s (2008) findings for the UK. We obtain very
similar results for young plants, as can be seen from Table 1.8. Turning
to exporters, these plants exhibit somewhat more localization. There are
indeed 36 to 41 industries (14 to 16 percent) that exhibit localization of
exporters, whereas only 11 to 28 (4 to 11 percent) exhibit dispersion of
exporters. Even though these figures are larger than for small plants and
young plants, three-quarter of industries display no clear pattern with res-
pect to the geographical distribution of their exporters. Hence, there is little
evidence that small plants, young plants, or exporters are more localized
than their industries (see also Table 1.18 in the appendix, which reports
the conditional probabilities of young plants, small plants, or exporters to
be localized /dispersed /random conditional on whether the industry they

belong to is localized /dispersed /random).

One may worry that our finding that many industries display random
patterns is driven by small sample sizes. To check the robustness of our
results, we thus restrict our industries conservatively to subsamples with
at least 25 plants and run our estimations again. Doing so leaves us with 170
to 190 industries — depending on the year and the subsample. As one can
see from the right part of Table 1.8, the results are similar, thus suggesting

that they are not biased because of sectors with small sample sizes.

When looking at the specific industries that underlie the foregoing
figures, we find again a very heterogeneous group of industries. The three
industries with the most localized subgroups of plants in 2009, for example,

are : (i) “All Other Plastic Product Manufacturing’ (NAICS 326198), ‘Other
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Motor Vehicle Parts Manufacturing’ (NAI1CS 336390), and ‘Coating, Engra-

ving, Heat Treating and Allied Activities” (NAICcs 332810) for small plants;

(ii) “Pottery, Ceramics and Plumbing Fixture Manufacturing’ (NAI1CS 327110),

‘All Other Industrial Machinery Manufacturing’ (NAICS 333299), and ‘All

Other Plastic Product Manufacturing’ (Na1cs 326198) for young plants; and

(iii) “Sawmills (except Shingle and shake Mills)” (Na1cs 321111), ‘Prefabri-

cated Wood Building Manufacturing” (NAICS 321992), and ‘Other Animal

Food Manufacturing’ (NAICS 311119) for exporters.

Table 1.8 Summary statistics for small, young, and exporter subsamples.

Small plants l Young plants [ Exporters Small plants r Young plants ] Exporters

2001, all 6-digit industries 2001, restricted 6-digit industries
Status Number % Number % Number % Number % Number % Number %
localized 10 3.891 16 6.226 41 15.953 9 4.945 11 6.077 37 19.271
random 228 88.716 239 92.996 205 79.767 153 84.066 168 92.818 146 76.042
dispersed 19 7.393 2 0.778 11 4.280 20 10.989 2 1.105 9 4.688
Tlrso 0.021 0.003 0.023 0.021 0.004 0.025
Fly, >0 0.008 0.006 0.006 0.007 0.006 0.007

2005, all 6-digit industries 2005, restricted 6-digit industries
Status Number % Number % Number % Number % Number % Number %
localized 11 4264 8 3.113 36 13.900 10 5.464 4 2.210 30 15.306
random 232 89.922 242 94.163 195 75.290 158 86.339 171 94475 141 71.939
dispersed 15 5814 7 2.724 28 10.811 15 8.197 6 3.315 25 12.755
Tlr>o0 0.006 0.062 0.013 0.007 0.123 0.015
lw, >0 0.006 0.003 0.002 0.006 0.003 0.002

2009, all 6-digit industries 2009, restricted 6-digit industries
Status Number % Number % Number % Number % Number % Number %
localized 7 2713 11 4.280 37 14.341 6 3.550 3 1.775 29 15.847
random 238 92.248 238 92,607 198 76.744 152 89.941 159 94.083 133 72.678
dispersed 13 5.039 8 3.113 23 8.915 11 6.509 i/ 4.142 21 11.475
Tr>o0 0.002 0.008 0.020 0.002 0.011 0.026
Ty, >0 0.005 0.002 0.002 0.006 0.002 0.003

Notes : See the Appendix for details on how to compute I'; and ¥;. We denote their arithmetic average by T" and ¥. The restricted industries

case includes only industries with samples of more than 25 plants of that specific type.

Figure 1.4 depicts the global localisation (left panel) and the rank-

order distribution of localized and dispersed industries (right panel) for
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small plants, young plants, and exporters in 2009. Despite some differences
— especially for small and young plants, where there is only very little loca-
lization — the general shape of these graphs is similar to the baseline case :
most industries are localized at relatively short or at intermediate distances.
The number of industries in these ranges is far smaller than the number in
the baseline case. The number of dispersed industries (not shown here) is
increasing over the entire range of distances between o and 8oo kilome-
ters. It is also increasing across years. This mirrors our general finding that
industries — and specific subgroups of plants — have had a tendency to geo-
graphically disperse in Canada over the first decade of 2000. As one can
also see from Figure 1.4, the rank-order distributions of localized and dis-
persed industries are quite similar to those in the baseline case. It is worth
noting that exporters are both more strongly localized in terms of the num-
ber of industries that display a significant localization (bottom left panel of
Figure 1.4), and also substantially more in the strength of localization of the
industries with the most clustered exporting plants (bottom right panel of

Figure 1.4). Thus, there is some evidence that exporters ‘locate differently’.?

1.4 Robustness analysis : Results with discrete measures

To check the robustness of our key findings, we now provide results
on the geographical concentration of industries using discrete measures of
localization. More precisely, we start by computing the ubiquitious Ellison-

Glaeser index (Ellison and Glaeser, 1997). This measure, though somewhat

9. Our analysis does not allow us to assess whether exporting plants have a ten-
dency to cluster, or whether clustering makes plants export. See, e.g., Koenig, Mayneris,

and Poncet (2010) for evidence on the latter.
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sensitive to the way space is subdivided into administrative units, has been
widely used in the literature and will allow us to compare our results to
existing ones. We also compute a ‘spatially weighted” version of the G
index to take into account ‘neighborhood effects’, i.e., the fact that indus-
try concentrations may stretch across several adjacent administrative units.
This spatially weighted version of the EG index, due to Guimaréaes, Figuei-
redo, and Woodward (2011) and henceforth denoted by eGspat, has not
been much used in the literature until now (see Appendix C for methodo-

logical details).

1.4.1 Baseline results

We compute the EG index — and its spatially weighted version — for
2001, 2005, and 2009 at the Naics 6-digit level using three different spa-
tial scales : provinces (PROvV), economic regions (ER), and census divisions
(cp). We implement two spatial weighting schemes. The first is based on
the geographical distance between the centroids of the spatial units. The
second one — which more accurately captures the fact that agglomerations
may extend across borders — is based on the common length of the bor-
der between two adjacent units computed from c1s data. Our key findings,

shown in Table 1.9, can be summarized as follows.

First, about 70 to 75 percent of manufacturing industries are localized
in Canada according to the G index. This fraction is lower than the one re-
ported for the US (97 percent), France (g5 percent), and the UK (94 percent)
in earlier studies by Ellison and Glaeser (1997), Maurel and Sédillot (1999),
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and Duranton and Overman (2005). °

Second, the number of localized manufacturing industries in Canada
has decreased between 2001 and 2009. This can be seen in terms of num-
bers, but also from the decrease in the mean value of the £G index at all spa-
tial scales, safe for the smallest one (cD). We also find that there is a sizeable
share of sectors for which the EG index is negative, thus suggesting that
dispersion prevails — and increases over time — in some industries. When
taken together, these results show that manufacturing industries have be-
come less geographically concentrated over the first decade of 2000, thus

corroborating our findings using continuous measures.

Third, despite some changes across industries, the G index is, on
average, smaller than its spatially weighted counterpart (see the two bot-
tom panels of Table 1.9). Put differently, spatial concentration extends over
multiple adjacent spatial units, and this fact has to be taken into account
when computing the G index. Note that all our results are fairly robust

across years, spatial scales, and to the use of the chosen weighting scheme

10. Duranton and Overman (2005) note that the definition of ‘weak localization’ by
Ellison and Glaeser (1997) picks up manufacturing industries in the UK which have a
pattern that is not significantly different from that of spatial randomness. Our mean value
for the unweighted index at the ER level is very close to the one of 0.034 reported by
Duranton and Overman (2005), whereas our median is somewhat higher. We performed a
one-sided statistical test following Ellison and Glaeser (1997) by assuming that ¥ in the £G
index and g in the EGspat index are asymptotically normally distributed (see Appendix
C for further details). At a 5% significance level we find that, on average, 40-60% of the
and g parameters of industries are significant. Hence, location choices of plants are not
independent in 40-60% of the industries. Note that these figures are lower than the shares

reported in Table 1.9 which are based on Ellison and Glaeser’s (1997) ‘rule of thumb’.
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for computing the EGspat index (see Table 1.17 in Appendix E).

Figure 1.5 summarizes the distributions of the EG and EGspat indices
for the 259 6-digit manufacturing industries in 2001, 2005, and 2009. Ob-
serve that these distributions are quite skewed towards zero, i.e., only few
industries are highly localized, whereas a majority of them are weakly loca-
lized - the EG index is positive but less than 0.05. These results are similar to
the ones reported by Maurel and Sédillot (1999) for French industries, and
by Ellison and Glaeser (1997) for US industries. We can also see that, des-
pite the general trend towards a decrease in localization between 2001 and
2009, the overall distributions of the EG and EGspat indices have remained

fairly stable over time. **

Table 1.10 lists the ten most and the ten least localized industries at
the Narcs 6-digit level for the year 2009. As can be seen from that table,
and in accordance with the results we established using the po index of
localization in the previous section, various industries related to either tex-
tiles or to the extraction and processing of natural resources dominate the
group of the most localized industries. This result is robust across localiza-
tion measures, which suggests that those measures identify the same ‘most
concentrated’ industries. Note that the hierarchy of individual industries is
unchanged when using the eGspat index. Indeed, the Spearman-rank cor-

relation between the EG and the EGspat indices is 0.96. This suggests that,

11. The correlation of the G indices across industries in 2001 and 2009 varies from
about 0.83 at the province level to 0.73 at the census division level. One reason for the dif-
ferences across geographical scales is that the processes generating province-level agglo-
meration are likely to be different from the ones generating agglomeration at the economic

region and census division levels (see, e.g., Rosenthal and Strange, 2001, 2003).



44

EG index at census division level, 6-dight NAICS in 2001 EGspat index at census division level, 6-digit NAICS In 2001
& g
R s
L]
£ §
3o 3
£ z
3 I
20 |
z 2
w 4
e
o = L s ’ = o1 P = -
-2 2 4 K] -2 a2 4 6
EG index EGspat index
EG index at census division level, 6-dight NAICS in 2005 EGspat index at census division level, 6-dight NAICS in 2005
E &1
|
8 A
I.lz 4
g 8
s
i :
£ 2
E B2
2 §
€%
2 2
w4
o
o L= = » — oy — - D, - :
-2 2 4 -2 0 ] 4 8
EG index EGspat index
EG index al census division level, 6-dight NAICS in 2009 EGspat index at census division level, 6-digh NAICS in 2009
8 1 &
w | w |
2 e
§ 2
f £
52 52
g ]
£ £
2 2
0 - n
© L T - 3 ; ; gy Y { —_— T
-2 0 4 B -2 4 6

2 2
EG index EGspat index
Figure 1.5 Distribution of the EG index at the cp level (NA1CS 6-digit), unweighted

EG (left panel) and spatially-weighted Gspat (right panel).



45

Table 1.9 Mean and median EG and Gspat indices at different spatial scales (NaIcs

6-digit).
2001 2005 2009
Geography PROV ER cD PROV ER Cp PROV ER CD
Unweighted G
Mean 0.074 0036  0.021 0.073 0035  0.023 0060 0032 0.020
Median 0.023 0.021 0.010 0.023 0.018 0.010 0.019 0.015 0.010
Share < 0 31.660 23.552 26.255 | 35.521 25483 25483 | 36.154 29.615 29.231
Share € (0,0.05] | 26.255 47.876 58301 | 23.552 47.876 50459 | 27.692 44.231  56.538
Share > 0.05 42.085 28571 15.444 | 40.927 26.641 15058 | 36.154 26.154 14.231
EGspat, weighted by the inverse distance matrix
Mean 0.080 0.047  0.029 0086 0.049 0.032 0.077 0.048 0.031
Median 0.025 0.026 0.017 0.028 0.024 0.0157 | 0.024 0.024 0.016
Share < 0 31.660 17.375 16.602 | 34.363 18.533 16.602 | 33.846 20.769  20.000
Share € (0,0.05) | 25.869 47.876 65251 | 23.552 47.104 64.479 | 26.538 45.769  60.000
Share > 0.05 42.471  34.749 18.147 | 42.085 34.363 18.919 | 39.615 33.462 20.000
EGspat, weighted by the common border length

Mean 0.077  0.051 - 0.093  0.054 - 0.085  0.052 -
Median 0.027 0.030 = 0.026 0.027 - 0.021 0.024 -
Share < 0 32432 17761 - 31.274 19.691 - 33.462  23.846 -
Share € (0,0.05] | 26.641 45.946 - 27.027  44-402 - 28.077 41.538 -
Share > 0.05 40.927  36.203 = 41.699  35.907 - 38.462 34.615 -

Notes : Mean and median values for 259 (resp., 260 in 2009) NAICS 6-digit industries. Share < 0 means
‘not clustered’. Share € (0,0.05] means ‘weakly clustered’. Share > 0.05 means ‘strongly clustered’. See
Ellison and Glaeser (1997) for details.
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in the case of Canada, industrial concentrations do not extend ‘too much’

across geographical units.

Table 1.10 Ten most and least localized 6-digit industries in 2009, G and EGspat

indices.

NAICs 6 | Most localized industries in 2009 EG EGSpat

315231 | Women’s and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing  0.524 0.543

315233 | Women’s and Girls’ Cut and Sew Dress Manufacturing 0.437 0.446
315221 | Men’s and Boys’ Cut and Sew Underwear and Nightwear Manufacturing 0.296 0.334
333130 | Mining and Oil and Gas Field Machinery Manufacturing 0.269 0.286
313240 | Knit Fabric Mills 0.196 0.216
315232 | Women’s and Girls’ Cut and Sew Blouse and Shirt Manufacturing 0.195 0.204
315190 | Other Clothing Knitting Mills 0.174 0.202
325181 | Alkali and Chiorine Manufacturing 0.155 0.251
321112 | Shingle and Shake Mills 0.154 0.214
311111 | Dog and Cat Food Manufacturing 0.151 0.180
NaIcs 6 | Least localized industries in 2009 EG EGspat
315227 | Men'’s and Boys’ Cut and Sew Trouser, Slack and Jean Manufacturing -0.056 -0.034
339930 | Doll, Toy and Game Manufacturing -0.059 -0.056
336330 | Motor Vehicle Steering and Suspension Components (except Spring) Manufacturing -0.063 -0.033
335110 | Electric Lamp Bulb and Parts Manufacturing -0.072 -0.056
311830 | Tortilla Manufacturing -0.100 0.021
333611 | Turbine and Turbine Generator Set Unit Manufacturing -0.109 -0.099
327990 | All Other Non-Metallic Mineral Product Manufacturing -0.139 -0.137
312210 | Tobacco Stemming and Redrying -0.148 -0.072
325110 | Petrochemical Manufacturing -0.155 -0.012
321217 | Waferboard Mills -0.193 -0.129

Notes : EG and EGspat indices computed at the 6-digit NAICs level. The spatial scale used is census divisions (cp), and the

weighting is inverse distance between cp centroids.
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g 405 Sectoral scope of localization

We next look again at the sectoral scope of localization. ** They are
similar to the results using the continuous measures. We find less concen-
tration across both years and geographical scales. At the census division
level, less than 13 percent — around 34 industries — are found to be loca-
lized in terms of small plants, young plants, and exporters. Most of these
industries are, however, strongly localized. Table 1.11 summarizes our re-
sults for the 86 NAICs 4-digit industries. As can be seen from the table,
there are fewer dispersed industries (share < 0) at the 4-digit level as com-
pared to the 6-digit level (11 percent on average in Table 1.11, compared to
17 percent on average in Table 1.9). There are also fewer strongly localized
sectors, but to a smaller extent than for dispersed sectors. As pointed out by
Haedo and Mouchart (2012), when sectors are aggregated, some dispersed
ones are mixed up with concentrated ones to give a ‘medium’ distribu-
tion (Table 1.7 shows that the variation of ‘localization types’ within 3-digit
industries is generally fairly strong; the same holds true for 4-digit indus-
tries). The share of concentrated sectors decreases less because localization
is easier to detect and has higher values (see Figure 1.3), while the share
of dispersed sectors decreases a lot more during aggregation. More gene-
rally, at higher levels of industrial aggregation, it is more difficult to find

departures from the reference distribution.

This result is contrary to findings by Rosenthal and Strange (2001),

12. We also computed the results for young firms, small firms, and exporters, taking
the distribution of industry employment as the benchmark. To save space, these resuits

are available upon request.
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who find that the average level of agglomeration increases as one moves
from 4- to 6-digit industries when computing the £G index. Concerning
the geographical scale, we find that agglomeration increases as we go from
economic regions to provinces, and from census divisions to economic re-
gions. This is a manifestation of the MAUP that we have mentioned earlier.
This finding is in accord with what is know from other studies and coun-
tries (Rosenthal and Strange, 2001), and they are aligned with our findings

using continuous measures of localization.

Finally, Table 1.12 reveals that there are systematic localization pat-
terns by broad industry groups, as in the case of continuous measures.
Some 3-digit industries are made up of many concentrated 6-digit subin-
dustries (e.g., ‘Apparel manufacturing’ or ‘Chemical manufacturing’), whe-
reas others are mostly dispersed (e.g., ‘Beverage and Tobacco Product Ma-

nufacturing’). This shows again that localization extends across different

3-digit groupings.

1.5 Discussion and concluding remarks

We have used extensive micro-geographic data to provide what we
believe is to date the most comprehensive anatomy of the geographical
concentration of manufacturing industries in Canada. Looking at the changes
between 2001 and 2009 allowed us also to examine the ‘dynamics’ of loca-

lization in a detailed way. The following key results stand out.

First, depending on industry definitions and years, 40 to 60 percent
of manufacturing industries are clustered, mainly at short distances and

at distances of about 400-500 kilometers. This finding suggests that there
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Table 1.11 Mean and median EG and EGspat indices at different spatial scales,

NAICS 4-digit industries.

2001 2005 2009
Geography , PROV ER CcD PROV ER CD PROV ER CD
| Unweighted EG
Mean 0.064 0.033 0.019 0.065 0.031 0.020 0.056 0.027 0.015
Median 0.018 0.023 0.012 0.017 0.016 0.011 0.018 0.010 0.007
Share < 0 16279 6.977 6.977 | 22.093 11.628 11.628 | 23.256 16279 15.116
Share € (0,0.05] | 45.349 68.605 82558 | 43.023 60.767 79.070 | 46.512 62,791  76.744
Share > 0.05 38.372 24.419 10465 | 34.884 18605 9.302 | 30.233 20930 8.140

I EG weighted by the inverse distance matrix

Mean 0.066 0.036 0.022 0.068 0035 0.022 0060  0.031 0.018
Median 0019 0027 0014 | 0017 0021  0.013 0020 0013 0011
Share < 0 18.605 5.814 6.977 | 23.256 8.140 5814 | 22.093 12791 11.628

Share € (0,0.05] | 43.023 67.442 82.558 | 41.860 72.093 82.558 | 48.837 65.116 77.907
Share > 0.05 38.372 26.744 10.465 | 34.884 19.767 11.628 | 20.070 22.093 10.465

‘ EG weighted by the common border length

Mean 0.064  0.040 - 0.071 0.039 - 0.064  0.033 -
Median 0.022  0.029 - 0.022  0.023 - 0.021 0.015 -
Share < 0 18.605 5814 - 22.093 8.140 - 23.256  15.116 -
Share € (0,0.05] | 44.186 63.953 - 43.023  65.116 - 38.372 61.628 -
Share > 0.05 37.209  30.233 - 34.884 26.744 = 38.372 23.256 -

Notes : Mean and median values for 86 NAICS 4-digit industries. Share < 0 means ‘not clustered’. Share
€ (0,0.05) means ‘weakly clustered’. Share > 0.05 means ‘strongly clustered’. See Ellison and Glaeser
(1997) for details.
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Table 1.12 Localization patterns by broad industry groups.

# of localized sub # of dispersed subsector

NA1cs3  Industry name Subsectors 2005 2009 Sori 2005 2009

BG index, unweighted

311 Food Manufacturing 33 17 19 18 16 14 15
312 Beverage and Tob Product Manuf; ing 6 3 4 4 3 2 2
313 Textile Mills 7 5 6 5 2 1 2
314 Textile Product Mills 4 2 3 3 2 1 1
315 Apparel Manufacturing 17 15 15 14 2 2 3
316 Leather and Allied Product Manufacturing 3 3 2 3 1
321 ‘Wood Product Manufacturing 14 12 13 11 2 1 3
322 Paper Manufacturing 12 9 11 5 3 1 7
323 Printing and Related Support Activities 6 6 6 3 3
324 Petroleumn and Coal Products Manufacturing 4 4 3 2 1 2
325 Chemical Manufacturing 20 15 16 16 5 4 4
326 Plastics and Rubber Products Manufacturing 14 8 11 12 6 3 3
327 Nonmetallic Mineral Product Manufacturing 12 7 9 7 5 3 5
331 Primary Metal Manufacturing 13 9 9 9 4 4 4
332 Fabricated Metal Product Manufacturing 21 15 13 16 6 8 5
333 Machinery Manufacturing 17 15 14 15 2 3 2
334 Computer and Electronic Product Manufacturing 9 8 7 6 1 2 3
335 Electrical Equipment, Appliances and Comp 12 9 6 7 3 6 5
336 Transportation Equipment Manufacturing 18 14 12 14 4 6 4
337 Fumiture and Related Product Manufacturing 10 9 8 9 1 2 1
339 Miscell Manuf: ing 7 6 6 5 1 1 2
Total 259 191 193 184 68 66 76
% of localized or dispersed 73.745 74517 70769 26255 25.483 29.231
EGspat index, weighted by inverse distance
311 Food Manufacturing 33 23 22 26 10 11 7
312 Beverage and Tobacco Product Manufacturing 6 4 5 4 2 1 2
313 Textile Mills 7 5 7 6 2 1
314 Textile Product Mills 4 3 3 3 1 1 1
315 Apparel Manufacturing 17 15 16 14 2 1 3
316 Leather and Allied Product Manufacturing 3 3 3 3
321 ‘Wood Product Manufacturing 7 14 14 13 1
322 Paper Manufacturing 12 10 12 8 2 4
323 Printing and Related Support Activities 6 6 6 4 2
324 Petroleum and Coal Products Manufacturing 4 4 3 3 1 1
325 Chemical Manufacturing 20 19 19 17 1 1 3
326 Plastics and Rubber Products Manufacturing 14 10 13 12 4 1 2
327 Nonmetallic Mineral Product Manufacturing 12 8 9 8 4 3 4
331 Primary Metal Manufacturing 13 1 1 10 2 2 3
332 Fabricated Metal Product Manufacturing 21 17 15 17 4 6 4
333 Machinery Manufacturing 17 16 15 15 1 2 2
334 Computer and Electronic Product Manufacturing 9 8 8 6 1 1 3
335 Electrical Equipment, Appliances and Components 12 9 7 8 5 4
336 Transportation Equipment Manufacturing 18 15 14 15 3 4 3
337 Furnitureand Related Product Manufacturing 10 10 8 9 2 1
339 Miscell Manufacturing 7 6 6 7 1 1 1
Total 259 216 216 208 43 43 52
% of localized or dispersed 83.398 83398 8o.oo0 16602 16.602 20.000

Notes : The measures are computed using the G index at the cp level (NA1cs 6-digit) unweighted (top panel) and weighted by
inverse distance BGspat (bottom panel). Subsectors are identified at the 6-digit level. Blank cells indicate that there are no subsectors
in the respective category (localized or dispersed or random).
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is less industrial localization in Canada than in other developed countries.
Second, according to all measures we computed — continuous, discrete,
and spatially weighted discrete — localization has been decreasing from
2001 to 2009. Third, industries related to textiles and to the extraction and
processing of natural resources dominate the group of the most localized
industries. This finding is in accord with previous results for other coun-
tries. Fourth, while there has been a general trend towards less geographi-
cal concentration, some of the most strongly localized industries tend to
become even more localized. Last, small plants and young plants are, in
general, not more strongly concentrated than all plants in their respective
industries — there is little evidence that these plants obey a location logic
that is different from that of their industry in general. There is some evi-
dence for ‘excess concentration” of exporters, but that effect tends to get

weaker during the first decade of 2000.

Our analysis leaves three issues unresolved. First, our paper remains
silent on the causes for localization and the changes therein. Yet, we need
to better understand what agglomeration forces contribute to the clustering
of Canadian manufacturing industries. Previous studies — such as Rosen-
thal and Strange (2001, 2003) or Ellison, Glaeser, and Kerr (2010) — have
addressed that question for the US. Disentangling the relative contribution
of the different sources of agglomeration in Canada - labor market poo-
ling, input-output linkages, transportation costs, and knowledge spillovers
- is the next item on our research agenda but clearly beyond the scope of
this paper. We tentatively correlated selected industry characteristics with

‘localization status’ (localized vs dispersed), but did not pick up significant
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differences. 3 Localized industries seem marginally more skilled-labor in-
tensive, but do not differ notably from dispersed industries in terms of
either intermediate input intensity or capital intensity. As explained below,
dispersed industries do, however, seem to be more intensive in Information
and Communication Technologies (ICT) capital, thus suggesting that lower

communication costs may partly be associated with industrial dispersion.

Second, although continuous measures of localization obviate the
need for using rather arbitrary spatial subdivisioné, they still do rely on
equally arbitrary subdivisions of industries. As shown by our analysis, the
results do somewhat depend on industrial classifications. Hence, extending
our measures to analyze location patterns in terms of ‘plant similarity’, like
similarity in terms of labor requirements or in terms of input-output struc-
tures, seems a necessary step for deriving more robust results on agglo-
meration patterns and may provide valuable insights into what is driving
agglomeration more generally. We leave this very important question again

open for future work.

Third, our analysis remains silent on the driving forces for the ob-
served downward trend in the geographical concentration of industries.
This issue is partially addressed in Behrens, Bougna, and Brown (2015)
and in Behrens (2013). In these studies, we show that declining localization

in Canadian manufacturing industries is strongly associated with import

13. We do not report the results, but they are available upon request. For transporta-
tion costs in Canada, see Behrens, Bougna, and Brown (2015). Using a different dataset and
methodology, we show in that paper that changes in trucking rates, in input-output lin-
kages, and in international trade exposure drive substantial changes in industrial location

patters in Canada between 1992 and 2008.
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competition (especially from low-wage Asian countries). After the end of
the ‘Multi-Fibre Arrangement’ in 2005, a surge in textile imports led to a si-
gnificant decrease in the number of textile-related firms and a strong fall in
the degree of localization (as can be seen from the results in Table 4, textile-
related industries are among the most geographically concentrated indus-
tries; see also Ellison, Glaeser, and Kerr, 2010). Holmes and Stevens (2014)
document similar findings for the case of the furniture industry in the US.
Overall, decreasing localization is largely driven by exit of firms, especially
in clusters of industrial activity. Relocations and increased geographical
mobility of workers can likely be ruled out as explanations for the decrease
in localization. *4 Turning to communication costs, we are not aware of any
study that convincingly establishes the impact of ICT on the geographi-
cal concentration of industries (though this is a channel that is often used
in theoretical models). We have tentatively looked at how industry-wide
quantity indices of ICT capital services correlate with industrial location
patterns. > We pick up an effect of this variable : dispersed industries have
a significantly larger average value for that variable for the pooled sample

of years than localized industries. *® While we obviously cannot read any

14. Under the caveat that relocations are very difficult to measure in the data, there
is only little relocation of manufacturing plants between provinces in Canada. Yet, the
general westward shift of population and manufacturing activity following the develop-
ment of the oil industry in the Canadian west may help explain a part of the increasing

de-concentration.

15. To this end, we have used the variable ifgk2 (‘Quantity Index of ICT Capital

Services’) from Statistics Canada’s KLEMS database to proxy for ‘communication costs’.

16. The value for localized industries is 140.96, while that for dispersed industries is

165.63. The T-statistic of a two-sided equality-of-means test is 2.7107, thus showing that
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causal statement out of this simple correlation, it suggests that industries

that operate with a more dispersed structure invest more in ICT capital.

We also cannot rule out the potential impact of cluster policies on our
results. In Canada, like in many other countries, the federal government
has put in place a nation-wide cluster policy program through the Natio-
nal Research Council (NRC). The main objective of these policies is to sti-
mulate lagging regions, to bolster highly performing ones, and to diversify
older industrial areas into higher technology ones. The NRC has initiated
the ‘Technology Cluster Initiatives’ to foster the development and growth
of technological clusters across Canada. These initiatives may partly affec-
ted the observed trends. Note, however, that cluster policies do in general
favor the concentration of industries, not their dispersion. Yet, we observe a
tendency to dispersion over our study period. Thus, de-concentration may
have been even stronger in the absence of these cluster policies. Unfortuna-
tely, we cannot test these propositions directly, and doing so is beyond the

scope of this paper.

One may finally wonder whether the increasing trend towards dis-
persion between 2005 and 2009 is linked to the financial crisis. We do not
think that this is the case. The Lehman Brothers collapse occurred in Sep-
tember 2008, so that our concentration measures in 2009 will hardly be
affected by the financial crisis that really hit off in late 2008 (e.g., the ‘Great
Trade Collapse’ of 2008-2009). Firm exit was gradual over a 2-3 year period

after the collapse, and this should not affect significantly our 2009 results.

industries that disperse have a significantly larger ‘Quantity Index of ICT Capital Services’

than industries that localize.
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To conclude, our findings have a number of implications for ‘clus-
ter policy’ and ‘regional development’. As countries and regions strive to
remain competitive in the face of globalization, governments — both local
and national - seek increasingly to support competitive regional clusters —
see, e.g., Canada’s NRc ‘Technology Cluster Initiatives’, the French ‘Pdles
de compétitivité’ Program, and the German ‘BioRegio’ Program. The 2007
OECD report on ‘National Policy Approaches to Cluster Strategies’ high-
lights the increasing focus on building strategic research capacity in selec-
ted regions as the basis for promoting clusters. Recent economic studies,
however, increasingly question the use of cluster policies. There is indeed
little evidence that more clustering will have significant effects on average
productivity or wages in manufacturing industries (e.g., Duranton, 2011;
Duranton, Martin, Mayer, and Mayneris, 2012; Behrens, 2013).*7 Our fin-
dings show that the general trend in Canada is towards less industrial lo-
calization during the last decade. Although this does not provide per se
evidence that localization economies have become less valuable to firms, it
suggests at least that implementing clusters against this tendency towards

more dispersion might be an uphill battle.
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criticized. See Shane (2009) for a detailed overview of why the ‘average small and young’

firm should not be the target of public policy.
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1.6 Appendix to Chapter 1

This appendix is structured as follows. Appendix A describes in de-
tail our datasets and sources. Appendix B provides details on the Duranton-
Overman K-density approach. Appendix C briefly presents the Ellison-
Glaeser and the spatially weighted Ellison-Glaeser indices. Appendix D
provides information on the comparability of the K-densities through time.

Last, Appendix E contains additional tables and results.

A. Data and data sources

This appendix provides details on the data used in this paper and the

sources.

Plant-level data and industries. Our analysis is based on the Scott’s Na-
tional All Business Directories Database. This establishment-level database
contains information on plants operating in Canada, with an extensive
coverage of the manufacturing sector. It comprises 54,379 manufacturing
plants in 2001, 50,404 in 2005, and 46,391 in 2009 (see Table 3.7 below for
a breakdown by province). Our data cover the years 2001, 2005, and 2009.
For every etablishment, we have information on its primary 6-digit NaICs
code and up to four secondary 6-digit NAICs codes; the opening year of the
establishment; its employment; whether or not it is an exporter; and its

6-digit postal code. The latter allows us to effectively geo-locate the plants.

The Scott’s database constitutes probably the best alternative to Sta-
tistics Canada’s proprietary Annual Survey of Manufacturers Longitudinal Mi-
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crodata File or the micro-level Canadian Business Patterns. As can be seen
from Tables 1.13 and 3.7, which provide a comparison of the Scott’s Natio-
nal All 2001, 2005, and 2009 databases with Statistics Canada’s province-
level data from the 2003 and 2005 Annual Survey of Manufacturers (asM;
cansiM Tables 301-0003 and 301—0006) and from the 2001, 2005, and 2009
Canadian Business Patterns, it has a wide and similar coverage. Those
tables also show that, despite the good coverage of manufacturing plants,
plants in the economic core provinces (Ontario, Quebec, British Columbia,
and Alberta) seem slightly under-represented (at 83% when weighted by
employment). The bottom panel of Table 1.13 also provides summary sta-
tistics across industries for the two datasets. The cross-industry correlations
of the Scott’s Data and the cBp data are very high (about 0.93), thus showing
that the industrial composition of our large samples is very representative.
To summarize, our data are very similar to those of the Asm and the csp
in terms of coverage and both province- and industry-level breakdown of
plants and, therefore, provide a fairly accurate picture of the overall ma-
nufacturing structure in Canada. 18 are of course free to not do so. Also,
small/new establishments may appear in the base with a lag only (and es-
tablishments may exit with a lag only), but this is not a big issue for our

purpose since we do not exploit the time-series variation of the database.

We consider that a plant is a manufacturer in the strict sense if it re-

ports a manufacturing sector (NAICS 31—33) as its primary sector of activity.

18. There is no ‘sampling frame’ strictly speaking (though Scott’s uses the Canadian
Business Register — which contains the universe of entities — to contact the different esta-
blishments in a systematic way to include them into their database). There may be some

selection and updating biases, since firms are contacted to sign up but
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Since plants in our dataset also report up to four secondary NAIcs codes,
we can construct two different industry-level samples for the analysis : (i)
a strict sample, restricted to plants that report a manufacturing sector as
their primary sector of activity; and (ii) an extended sample that includes all
plants that report a manufacturing sector as one of their sectors of activity,
either primary or se condary. We thus can associate plants with industries

at different levels of detail.

Table 1.13 Comparing the Scott’s National All databases to the Canadian Business

Patterns (cBP).

Province CBP 2001  Scott’s 2001 % CBP 2005  Scott’s 2005 % CBP 2009  Scott’s 2009 %
Alberta 5843 3933 67311 5416 3455  63.792 5,351 3,581 66922
British Columbia 8,797 6,219 70.695 8,261 5371 65016 7/697 4991 64.843
Manitoba 1,883 1,654 87.839 1,741 1,481  Bs5.066 1,605 1,263 78.692
New Brunswick 1,446 1,395 96.473 1,195 1,258 105272 1,018 1,175 115422
Newfoundland 757 576  76.090 629 540 85851 508 472 92913
Nova Scotia 1,832 1,676 91.485 1,483 1,495 100.809 1,225 1,296  105.796
Ontario 25,006 21,306 85.204 23,220 20,966  9o0.293 21,673 19,637  90.606
Prince Edward Island 354 328  92.655 292 327 111986 256 280 109375
Quebec 18,349 15,939 86.866 17,026 14,166  83.202 15,238 12,560 82426
Saskatchewan 1,378 1,353 98.186 1,259 1,305 103.654 1,151 1,091  94.787
Territories 68 St P 63 40 63492 57 45 78947
Canada 65,713 54379 82752 60,585 50404 83196 55779 46391 83169
Cross-industry corr cBp/Scott’s 0.908 0.939 0.937

Cross-industry average 253.718 209.958 233.919 194.610 214535 178.431
Cross-industry min 4 1 2 2 3 2
Cross-industry max 3316 3604 3047 2738 2695 2378
Cross-industry std dev. 380.011 346.940 359.400 310.664 ' 339320 282.503

Notes : Province-level breakdown of manufacturing plants (NAICS 31-33) in the 2001, 2005, and 2009 Scott’s National All
databases versus Statistics Canada’s 2001, 2005, and 2009 Canadian Business Patterns (cBP). The descriptive statistics reported
as ‘cross-industry’ in the bottom panel of the table are computed across all industries.

Geographical data. To geolocate plants, we used latitude and longitude
data of postal code centroids obtained from Statistics Canada’s Postal Code
Conversion Files (pccF). These files associate each postal code with different
Standard Geographical Classifications (sGc) that are used for reporting cen-

sus data. We match plant-level postal code information with geographical
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Table 1.14 Comparing Scott’s National All to the Annual Survey of Manufactu-

rers.
Province Statcan AsM 2003  Statcan AsM 2005  Scott’s 2001 Scott’s 2005  Scott’s 2009
Alberta 4,882 7:750 3,933 3455 3,581
British Columbia 6,933 11,942 6,219 5,371 4,991
Manitoba 1,481 2,307 1,654 1,481 1,263
New Brunswick 963 1,533 1,395 1,258 1,175
Newfoundland and Labrador 522 765 576 540 472
Nova Scotia 1,106 1,944 1,676 1,495 1,296
Ontario 21,470 34,184 21,306 20,966 19,637
Prince Edward Island 211 351 328 327 280
Quebec 15,251 23,042 15,939 14,166 12,560
Saskatchewan 1,008 1,804 1,353 1,305 1,091
Territories - = = 40 45
Total 53.827 85,622 54,379 50,404 46,391

Notes : Province-level breakdown of manufacturing plants (NA1Cs 31-33) in the 2001, 2005, and 2009 Scott’s National
All databases versus Statistics Canada’s 2003 Annual Survey of Manufacturers (Asm; caNsiM Table 301-0003) and
2005 ASM (CANsIM Table 301-0006). The 2003 AsM reports only employer plants with sales exceeding C$30,000
whereas the 2005 AsM reports information for manufacturing plants (including forestry, which is absent in the
2003 AsM) without any sales threshold (thus including small establishments that would qualify as ‘self-employed’).
The Canadian Business Patterns 2009 of Industry Canada report 55,779 employer plants in manufacturing (see
Table 1.13).

coordinates from the PccF, using the postal code data for the next year in
order to consider the fact that there is a six months delay in the updating of
postal codes. The census geography of 1996 and the postal codes as of May
2002 (818,907 unique postal codes) were associated with our 2001 sample.
We also matched our 2005 sample with the 2001 Census geography and
the postal codes as of January 2007 (861,765 unique postal codes). Finally,
our 2009 sample was matched with the census geography of 2006, and the
postal codes as of October 2010 (890,317 unique postal codes). Table 3.8
summarizes the geographical structure for the three years and provides

details on postal codes and census geographies.
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Table 1.15 Geographical structure of the Census and pccr data.

Census 1996  Census 2001 Census 2006
in the rccr in the rccF in the rccr
Provinces and territories 13 13 13
Econor;lic regions 74 76 76
Census divisions 285 288 288
Census subdivisions 4,410 4,088 3,692
Dissemination areas 34,940 42,297 45,904
Geographical concordance :
Scott's All year 2001 2005 2009
PCCF version May 2002 Jan 2007 Oct 2010
Census geography 1996 2001 2006
#unique postal codes 818,907 861,765 890,317

Notes : Geography of the 1996, 2001, and 2006 Censuses and concordances
between Scoft’s National All databases and Statistic Canada’s pccrs.

The highest level of geographical aggregation is that of the 10 pro-
vinces and 3 territories (PR); the second-highest level is that of the 76 eco-
nomic regions (ER) ; the third-highest level is the 293 census divisions (cp);
the fourth-highest level is the 5253 census subdivisions (cs); and finally,
the finest level is dissemination areas (pA). Census subdivisions, census
divisions, and economic regions are useful spatial scales for computing
discrete measures of localization like the Ellison and Glaeser (1997) index.
Provinces are too coarse a spatial scale, whereas dissemination areas are too
fine — most of the time, they contain no plants for any 4- or 6-digit NAICS
industries. Note also that each postal code can be associated with multiple
DAs. In that case, only one DA figures in the PccF, so that the total number of
DAs in the PCCF is smaller than that in the Census. This problem does not
arise for larger geographical scales (provinces, regions, census divisions,

and census subdivisions).
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Subsamples. We construct three industry subsamples. The first relates to
small-scale plants. Instead of using Statistics Canada’s definition of small-
scale business — a plant with less than 5o full-time equivalent employees or
having annual sales of less than $2 million — we consider a plant as being
small if its size — as measured by the number of employees — is less than the
industry median. Using a fixed employment threshold makes little sense,
as the minimum operational scale varies widely across different industries.
Based on this criterion, and depending on the year, about 52% of plants in
our database are small. We repeat the same exercise to construct our young
plants subsample. We consider a plant as being young if its age — measured
since the year of its establishment - is less than the industry median. Our
last subsample is for exporting plants. Here, we simply select all plants that

report some exporting activity.

B. The distance-based Duranton-Overman approach

In this appendix, we briefly recall the logic underlying our conti-
nuous measure of localization. Duranton and Overman (2005) propose a
methodology that uses bilateral distances across pairs of plants to iden-
tify localized industries. The idea is to apply sampling and bootstrapping
techniques to determine the distribution of bilateral distances between the
plants in an industry, and to compare it to a set of bilateral distances ob-
tained from samples of randomly drawn plants. There are four steps. First,
we compute the pairwise distances between all plants in an industry and
estimate a kernel density function of the distance distribution. Second, we
construct a distribution of counterfactuals to assess whether the location

pattern of a given industry departs statistically significantly from random-
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ness. The counterfactuals are constructed on the basis that the plants in
a given industry are located randomly among all possible locations where
we do observe manufacturing activity. Third, we construct confidence inter-
vals using our counterfactual random location distributions. Last, we test
whether an industry is localized or dispersed, by comparing the actual dis-
tribution of bilateral distances with the confidence bands derived from the

sampling. We provide more information on the four steps in what follows.

First step (kernel densities). Consider industry A with n plants. We com-
pute the great circle distance, using postal code centroids, between each
pair of plants in that industry. This yields n(n — 1) /2 bilateral distances for
industry A. Let us denote the distance between plants ¢ and j by d;;. Gi-
ven n etablishments, the kernel-smoothed estimator of the density of these
pairwise distances, which we henceforth call K-density as in Duranton and
Overman (2005), at any distance d is :

-3 n—=1 n =
R(d) = i E P (d hd“) , (B.1)

n(n—1)h 5 j=i+1

where h is the optimal bandwidth, and f a Gaussian kernel function. The

distance d;; (in kilometers) between plants ¢ and j is computed as :
dij = 6378.39 - acos [cos(|lon; — lon;|) cos(lat;) cos(lat;) + sin(lat;) sin(lat;)] .

We also compute the employment-weighted version of the K -density, which
is given by

n-1 n ey 7
R (d) 1 Y 3 ke (S52), B2

= =]
Yo Limia (e +€5) =1 j=ta

where e; and e; are the employment levels of plant 7 and j, respectively. As

can be seen from (B.3), contrary to Duranton and Overman (2005) who use
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a multiplicative weighting scheme, we use an additive one. The additive
scheme gives less weight to pairs of large plants and more weight to pairs
of smaller plants than the multiplicative scheme does. Since our sample fea-
tures many small plants and some very large plants — a well-known struc-
tural characteristic of the Canadian economy — this seems preferable to us.
A multiplicative weighting scheme in equation (B.2) gives more weight to
large establishments close to one another. Also, it assumes the equivalence
between industrial and geographical concentration : n firms of 1 employee
at the same place yield the same K, value as 1 firm with n employees. 9
This could imply that our results may be too strongly driven by a few very
large plants in a given industry. The downside of the additive weighting
scheme is that its interpretation (in terms of distance between employees

of an industry) is no longer strictly speaking correct.

The weighted K-density thus describes the distribution of bilateral
distances between employees in a given industry, whereas the unweighted
K-density describes the distribution of bilateral distances between plants
in that industry. Since the K-density is a distribution function, we can also
compute its cumulative (CDF) up to some distance d. The cDF at distance
d thus tells us what share of plant pairs is located less than distance d
from each other. Alternatively, we can view this as the probability that two

randomly drawn plants in an industry will be at most d kilometers away.

Second step (counterfactual samples). Using the overall sample of manu-

facturing plants located in Canada, we randomly draw as many locations

19. We thank a referee for bringing this point to our attention.
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as there are plants in industry A. To each of these locations, we assign
randomly a plant from industry A, using its observed employment. This
procedure ensures that we control for the overall pattern of concentration
in the manufacturing sector as a whole, as well as for the within-industry
concentration. We then compute the bilateral distances of this hypothetical
industry and estimate the K-density of the bilateral distances. Finally, for
each industry A, we repeat this procedure 1,000 times. This yields a set of

1,000 estimated values of the K-density at each distance d.

Third step (confidence bands). To assess whether an industry is signifi-
cantly localized or dispersed, we compare the actual K-density with that
of the counterfactual distribution. We consider a range of distances bet-
ween zero and 800 kilometers. > We then use our bootstrap distribution
of K-densities, generated by the counterfactuals, to construct a two-sided
confidence interval that contains 9o percent of these estimated values. The
upper bound, K (d), of this interval is given by the gsth percentile of the ge-
nerated values, and the lower bounds, K (d), by the 5th percentile of these

values. Distributions of observed distances that fall into this confidence

20. The interactions across ‘neighboring cities’ mostly fall into that range in Canada.
In particular, a cutoff distance of 800 kilometers includes interactions within the ‘western
cluster’ (Calgary, AB; Edmonton, AB; Saskatoon, SK; and Regina, SK); the ‘plains clus-
ter’ (Winnipeg, MN; Regina, SK; Thunder Bay, ON); the ‘central cluster’ (Toronto, ON;
Montreal, QC; Ottawa, ON; and Quebec, QC); and the ‘Atlantic cluster’ (Halifax, NS;
Fredericton, NB; and Charlottetown, PE). Setting the cutoff distance to 8oo kilometers al-
lows us to account for industrial localization at both very small spatial scales, but also at
larger interregional scales for which market-mediated input-output and demand linkages,

as well as market size, might matter much more.
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band could be ‘as good as random’ and are, therefore, not considered to be

either localized or dispersed.

Fourth step (identification of location patterns). The bootstrap procedure
generates a confidence band, and any deviation from that band indicates
localization or dispersion of the industry. If K(d) > K(d) for at least one
d € [0,800], whereas it never lies below K (d) for all d € [0,800], industry
A is defined as globally localized at the 5 percent confidence level. On
the other hand, if K(d) < K(d) for at least one d € [0,800], industry A
is defined as globally dispersed. We can also define an index of global
localization, v;(d) = max{K(d) — K(d),0}, as well as an index of global

dispersion

A { max{K(d) — R(d)} if Y3 (d)=0 o

otherwise.

Intuitively, if we observe a higher K-density than that of randomly drawn
distributions, we consider the industry as localized. Similarly, if we observe
a lower K-density than that of randomly drawn distributions, we consider
the industry as dispersed. Last, the strength of localization and dispersion
can be measured by I; = ¥ 3v(d) and ¥; = ¥ ;4:(d), which corresponds
roughly to a measure of the ‘area’ between the observed distribution and

the upper- and lower-bounds of the confidence band.
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C. The Ellison-Glaeser and spatially weighted Ellison-Glaeser

indices

In this appendix, we briefly recall the logic underlying our discrete
measures of localization. The Ellison-Glaeser index (Ellison and Glaeser,
1997), computed using employment data, is given by the following for-

mula :2* :
G-H(1-XX)
(1 —H,-)(l—X'X)'

5= (C1)
where :
— H; is a Herfindahl index measuring the industry concentration in
terms of plant-level employment;
— G =(S—X)'(S— X) is the raw concentration index;
— S is a vector containing the regional shares of our measure of
interest (employment);
— X' = [x1 z2 ... 2] is a vector containing the elements of the refe-
rence distribution (employment).
Given one well-known limit of the G index — namely that it ignores the
geographical positions of regions in space, the so-called ‘checkerboard pro-
blem’ — Guimaraes, Figueiredo, and Woodward (2011) derived from a pro-
babilistic plant location decision model a ‘spatially weighted’ version of the
EG index. To this end, they introduce ‘neighborhood effects” in the EG in-
dex, which we henceforth refer to as EGspat when it is weighted. The matrix
notation of the spatially weighted version of the £G is given by :
. _ Gs—H(1-X¥X)
W= A-—H)I-XvX)’

(C.2)

21. See Maurel and Sédillot (1999) for the definition of a very similar measure.
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— H;and X' are defined as previous.
— Gs = (S — X)'¥(S — X) is the spatially weighted version of the

raw concentration index;

¥ is a spatial weight matrix with generic element ¥;; and non-
zero elements on the main diagonal. It is designed to account for
spillovers that extend outside of the areal boundaries for- which
the £G index is computed. In general, ¥ = I + W, where I is the
the identity matrix, and where W is a weight matrix for adjacent
units. Adjacent units — also called contiguous units — are usually
considered neighbors. In this study, we use two different matrices
for ¥, where the coefficients are either the inverse distance or
the length of the common border between adjacent areal units.
The latter measure has been computed using Canadian G1s data.
A larger coefficient means that two adjacent units share a larger
common border, so that there is greater potential that economic
activity in one sector straddles the border. The latter effect in-
creases the EGspat coefficient, which takes into account the spatial

concentration across geographical units.

We can also perform a one-sided statistical test by assuming that the pa-

rameters 7 in the EG index and 7g in the EGspat index are asymptotically

normally distributed. Following Ellison and Glaeser (1997, footnote 13), it

can be shown that under the assumption of asymptotic normality of the

vector S — X, the variance of s under the null hypothesis that yg = 0 is

given by :

2H2tr(¥[diag(X) — XX ||@[diag(X) — XX '] -

G = [A-H)(1 - XuX)]2
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Figure 1.6 Distribution of distances between plants, 95% confidence bands, 5

percent sample of plants.

2001 {dashed line), 2005 {dotted line), and 2008 (solid line)
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We test whether the EG and the EGspat indices are larger than o, whereas
Ellison and Glaeser (1997) suggest the ‘rule of thumb’ to check whether the
indices are larger than 0.05 to assess whether or not an industry is ‘strongly

localized’.

D. Comparability of K-densities across years

Despite their numerous advantages, it is unclear whether and how
continuous localization measures are comparable across either time or coun-
tries. The reason is that the underlying benchmark against which we want
to detect localization can be very different. How this impacts on the like-
lihood to detect agglomeration/dispersion is theoretically and empirically
unclear. Can we compare the evolutions of K-densities across time? We
believe that in our case the answer is yes’. To see why this is so, Figure 1.6
plots the overall distribution of bilateral distances in Canada across all in-

dustries for the years 2001, 2005, and 2009. Figure 1.6 depicts the g5 percent
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confidence bands for the Duranton-Overman measures of localization ap-
plied to a 5 percent random sample of all manufacturing plants (it is, unfor-
tunately, computationally infeasible to compute the measure for all 50,000+
plants). The confidence bands in the three years overlap substantially, i.e.,
the observed distributions are not ‘substantially’ different from one ano-
ther. Thus, between 2001 and 2009 — and within Canada - the reference dis-
tribution has not changed much, thus suggesting that the results are com-
parable across time. As can be seen from the figure, the overall spatial dis-
tribution of manufacturing in Canada has remained fairly stable between
2001 and 2009. There is no clear trend towards increasing concentration or
dispersion of manufacturing in general, despite a substantial decrease in

the number of manufacturing plants between 2001 and 2009.

E. Additional figures, tables, and results

This appendix provides additional tables for the po measures for
the most and the least localized industries in 2009 (Table 1.16); for the G
index for young plants, small plants, and exporters (Table 1.17); and for the
frequency of localization, dispersion, or randomness of young plants, small
plants, and exporters conditional on the localization pattern of all plants in

the industry (Table 1.18).
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Figure 1.7 Spatial distribution of manufacturing plants in 2001 (Scott’s All).
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Table 1.16 Ten most and least localized industries according to the po index in

2009.

Nalcsy | Industry name Do
Most localized industries # of plants Ia
3335 Metalworking Machinery Manufacturing 829 0.268
3321 Forging and Stamping 161 0.171
3152 Cut and Sew Clothing Manufacturing 1096 0.153
3361 Motor Vehicle Manufacturing 169 0.145
3372 Office Furni (including Fixtures) Manuf: ing 588 0.092
3359 Other Electrical Equip and Comp Manufacturing 260 0.076
3222 Converted Paper Product Manufacturing 579 0.074
3341 Computer and Peripheral Equip Manufacturing 154 0.059
3344 Semiconductor and Other Electronic Component Manufacturing 358 0.059
3328 Coating, Engraving, Heat Treating and Allied Activities 645 0.043
Least localized industries # of plants [
3273 Cement and Concrete Product Manufacturing 980 0.078
3331 Agricultural, Construction and Mining Machinery Manufacturing 661 0.074
3366 Ship and Boat Building 276 0.062
3219 Other Wood Product Manufacturing 1953 0.044
3121 Beverage Manufacturing 409 0.041
3212 Veneer, Plywood and Engineered Wood Product Manufacturing 284 0.037
3116 Meat Product Manufacturing 682 0.029
3362 Motor Vehicle Body and Trailer Manufacturing 324 0.022
3149 Other Textile Product Mills 764 0.020
3241 Petroleum and Coal Products Manufacturing 276 0.006
Naicsé | Industry name DO
Most localized industries # of plants Ty
315231 | Women’s and Girls” Cut and Sew Lingerie, Loung; and Nigh Manufacturing 37 0.607
336370 | Motor Vehicle Metal Stamping 39 0.386
336110 | Automobile and Light-Duty Motor Vehicle Manufacturing 115 0.382
333519 | Other Metalworking Machinery Manufacturing 619 0.287
333220 | Rubber and Plastics Industry Machinery Manufacturing 33 0.252
315292 | Fur and Leather Clothing Manufacturing 147 0.244
332118 | Stamping 140 0.220
315110 | Hosiery and Sock Mills 21 0.206
335920 | Communication and Energy Wire and Cable Manufacturing 39 0.199
333511 | Industrial Mould Manuf: ing 210 0.163
Least localized industries #ofplants W,
327320 | Ready-Mix Concrete Manufacturing 559 0.085
321215 | Structural Wood Product Manufacturing 183 0.058
336612 | Boat Building 235 0.054
312110 | Soft Drink and Ice Manufacturing 162 0.052
321911 | Wood Window and Door Manufachuring 489 0.035
333120 | Agricultural Impl Manuf ing 75 0.034
311614 | Rendering and Meat Processing from Carcasses 326 0.031
314990 | All Other Textile Product Mills 514 0.029
336310 | Motor Vehicle Gasoline Engine and Engine Parts Manufacturing 170 0.021
312130 | Wineries 140 0.015
Notes : The of localization and dispersion are defined as in Duranton and Overman (2005) : I' = Ly I'(d),
where I'(d) is the maximum between zero and the difft b the empirical K-density and the upper bound of
the global confidence band at di d. Analogously, ¥ = L; ¥(d), where ¥(d) is the maximum between zero and the
difference between the lower bound of the global confidence band and the empirical K-density at di d, provided

that the empirical X -density does not exceed the upper bound aver the whole distance range. See Appendix C.
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2001 2005 2009
Geography PROV ER (@ )] PROV ER cp PROV ER cp
Unweighted EG : NaICS 6-digit industries
Results for small plants
Mean 0301 -0.332 -17.652 | -0.518 -5526 -0314 | 0286 -3.101 -0.727
Median 0.295 -1.010  -1.041 0281 -1.012 -1.051 0281  -1.007  -1.045
Share < 0 16.602 61776 89.922 | 22.780 65.251 91.120 | 21.154 59.615 87.692
Share € (0,0.05] | o.772 2.703 0.388 0.772 1.931 0.772 0.769 3.462 1.923
Share > 0.05 82.625 35.521 9.690 76.448 32819 8.108 | 78.077 36923 10.385
Results for young plants
Mean 0061 -0.833 -1.984 | -3.623 -0.626 -2.449 | 0.254 -0.695 -0.802
Median 0364 -1.072 -1.122 0.328 -1.052 -1.158 0336 -1.049 -1.140
Share < 0 20.463 67.829 88372 | 23.166 62.162 88.417 | 23.462 62.308 86.538
Share € (0,0.05] | 1.158  1.938 1.550 0772 2317 0386 | 0oo0 1923 0.385
Share > 0.05 78.378 30233 10078 | 76.062 35.521 11197 | 76.538 35769  13.077
Results for exporters
Mean 1.335 -1.060 -0.654 0.629 -1.210 -1.319 | -0.452 -0.864 -1.112
Median 0366  -1.061  -1.117 0.358 -1.078 -1.138 0329 -1.066  -1.127
Share < 0 16.602 65251 88372 | 18.533 66.023 91.506 | 21.923 63.462 87.692
Share € (0,0.05) | o772 2.703 0.775 1.158  3.089  1.544 1154  1.923 0.385
Share > 0.05 82.625 32.046 10853 | 80.309 30.888 6.950 | 76.923 34.615 11.923

Notes : Mean and median values for 259 (resp., 260 in 2009) NaICs 6-digit industries. Share < 0 means

‘not clustered’. Share € (0,0.05] means ‘weakly clustered’. Share > 0.05 means ‘strongly clustered’. See

Ellison and Glaeser (1997) for details.
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Table 1.18 Location patterns of small plants, young plants, and exporters by sec-

toral location patterns.

, l Small Young Exporters
Year Industries thatare: | % | R D L R D L R D L
Random 59.302 144 6 3 145 8 129 7 16
2001 Dispersed 10.078 24 [ 23 3 21 o 5
Localized 30.620 60 11 7 71 2 5 55 4 20
Cond. prob. (R/R, D/D, L/L) % 94118 7.692 8.974 | 94771 o0.000 6.410 | 84.868 o0.000 25.316
Random 57.915 142 5 2 141 3 4 122 14 14
2005 Dispersed 11.969 28 3 [ 31 o (] 25 2 4
Localized 30.116 62 7 9 70 4 4 48 12 18
Cond. prob. (R/R, D/D, L/L) % 95.302 9.677 11538 | 95270 o0.000 5128 | 81.333 6452 23.077
Random 62.934 153 8 1 153 2 6 129 13 20
2009 Dispersed 12.355 31 [ 1 30 2 o 22 3 7
Localized 24.710 54 5 5 55 4 5 47 % 10
Cond. prob. (R/R, D/D, L/L) % 94.444 0.000 7813 [ 95031 6.250 7.813 | 79.630 9.375 15.625

Notes: R, D and Lstand for ‘Random’, ‘Dispersed’, and ‘Localized’, respectively. The line ‘Cond. prob. (R/R, D/D, L/L)’ denotes the
conditional probability of a particular subset of firms (small, young, exporter) to be of type y = {D, L, R} conditional of belonging

to an industry that displays that same location pattern y. For example, the value 94.118% in the top panel of the table for small

firms indicates that the probability of small firms in an industry to display a random pattern conditional on being in an industry that

has a random location pattern is about 94%.



CHAPITRE II

THE WORLD IS NOT YET FLAT : TRANSPORT COSTS
MATTER!

Abstract

We provide evidence for the effects of changes in transport costs, international
trade exposure, and input-output linkages on the geographical concentration of
Canadian manufacturing industries. Increasing transport costs, stronger import
competition, and the spreading out of upstream suppliers and downstream cus-
tomers are all strongly associated with declining geographical concentration of
industries. The effects are large : changes in trucking rates, in import exposure,
and in access to intermediate inputs explain between 20% and 60% of the obser-

ved decline in spatial concentration over the 1992-2008 period.

Keywords : transport costs; international trade exposure; input-output lin-

kages; trucking rates ; geographical concentration.

JEL classification : R12; C23; L6o
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2K Introduction

We provide evidence for the effects of changes in the costs of tra-
ding goods across space — as proxied by domestic trucking rates, internatio-
nal trade exposure, and customer-supplier linkages — on the geographical
concentration of Canadian manufacturing industries. Using measures construc-
ted from micro-geographic data, we find that increasing trucking rates,
stronger import competition, and the spreading out of upstream suppliers
and downstream customers are all strongly associated with declining geo-
graphical concentration of industries. The effects are large : holding all
other variables fixed at their 1992 levels, changes in domestic trucking rates
and in import exposure up to 2008 explain about 20% and 60% of the ob-
served decline in spatial concentration, respectively. Hence, contrary to the
widespread belief that the world has become ‘flat’ in the wake of the fall
in transport, trade, and communication costs over the past two centuries,
our key message is the opposite : even though the costs of trading goods
across space may have hit their historical lows, changes in those costs still

drive to a sizable extent changes in the economic geography of countries. *

1. The fallacy of equating ‘low’ with ‘unimportant’ is reminiscent of the ‘kaleido-
scopic comparative advantage’ debate in international trade : “[...] I was arguing that
we now had “kaleidoscopic” comparative advantage — what we call in economic jargon,
“knife-edge” specialization - so that specialization would shift among countries with small
changes in cost conditions. The factors that had produced this situation were several, e.g.
interest rates were less unequal across countries with integrated capital markets; techno-
logy used by multinationals located in different countries became more available across na-
tions ; the spread of technical education also meant that many in India and China read the
same textbooks as Americans and Europeans; and so on. So, with kaleidoscopic (or “thin”

or “knife-edge”) comparative advantage in many activities, we were now confronted with
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The world is not yet flat : transport costs matter ! These results hold up to a
variety of robustness checks and to instrumental variables estimations that

deal with potential endogeneity concerns.

Assessing empirically the impact of transport costs on the spatial
concentration of industries is important for several reasons. First, it is fair
to say that, despite their fundamental theoretical role in spatial modeling,
little is still known empirically on how transport costs drive the geographi-
cal concentration or dispersion of industries. Whereas many models tackle
the questions of why and how spatial structure changes due to changes in
the trading environment, much less is know empirically.? Second, asses-
sing the direction of change in the geographical concentration of industries
is important as there may be a tension between domestic policies that aim at
growing clusters or at alleviating regional imbalances, and policies that aim

at increasing international trade. Should trade be, for example, dispersive,

volatility in, not the end of, comparative advantage.” (Jagdish Bhagwati, “Why the world
is not flat”, 2010; available at http://www.worldaffairsjournal.org/blog/jagdish-

bhagwati/why-world-not~flat).

2. Even theory reaches different conclusions on the effects of changes in trade costs
on the spatial structure of an economy. Krugman and Livas Elizondo (1996), Helpman
(1998), and Behrens, Mion, Murata, and Siidekum (2013) all find that decreasing trade
costs are dispersive. However, Krugman (1991), Krugman and Venables (1995), and Fujita,
Krugman, and Venables (1999) reach the opposite conclusion. Using a richer spatial struc-
ture involving two countries and four regions, Behrens, Gaigné, Ottaviano, and Thisse
(2007) find that increasing international trade exposure is dispersive within countries,
whereas falling domestic transport costs are agglomerative. The reasons underlying these
diverging results are differences in the agglomeration and dispersion forces in the models,

as well as in the modeling frameworks and the spatial structure used.
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pushing both domestic cluster policies and international trade agendas si-
multaneously may not deliver the expected results. Last, disentangling the
effects of domestic shipping costs, international trade exposure, and access
to both customers and suppliers on geographical concentration will also
allow us to assess which components of transport costs are more likely to
affect location patterns. Having an idea on this is important since all three
components usually move simultaneously, thereby making assessments on

the overall effects a rather complex endeavor.

Assessing empirically the impact of transport costs on the spatial
concentration of industries is also a complicated task. First, we need fine
measures of said spatial concentration across time to assess its changes. In
this paper, we employ — for the first time to our knowledge — a long pa-
nel of continuous micro-geographic localization measures, computed from
geo-coded plant-level data using the approach of Duranton and Overman
(2005). 3 Using panel data allows us to go beyond existing studies that have
mainly looked at the cross-sectional variation in the geographical concen-
tration of industries. Instead, we look at the time-series variation over a
nearly 20 year period to better understand what changes in covariates drive
changes in the geographical concentration of industries. Dynamic analyses

of agglomeration and changes therein are rare in the literature. 4 Yet, they

3. See Holmes and Stevens (2004) for an exhaustive survey of location patterns in
North America. They do, however, not report results using continuous measures. Ellison,
Glaeser, and Kerr (2010) use a ‘lumpy approximation’ of the Duranton and Overman (2005)

measure and apply it to us manufacturing data.

4. Dumais, Ellison, and Glaeser (2002) is one exception. They analyze the impact of

entry, exit, and firm growth on the geographic distribution of manufacturing employment
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are required if we want to control for unobserved heterogeneity and omit-

ted variable bias in the estimations.

Secondly, we devote substantial effort to the construction of more
sophisticated measures of transport costs — proxied by domestic trucking
rates, international trade exposure, and input-output linkages among firms.
We build trucking rates time series from the micro-data files on truck ship-
ments within Canada. These measures capture time-changes in domestic
transport costs and are invariant to the spatial structure of industry, the-
reby side-stepping the often endogenous nature of standard transportation
measures (e.g, transportation margins from input-output accounts). Tur-
ning to trade exposure, we investigate in detail the impacts of international
trade — broken down by imports and exports and by trading partners —
on industry location. Last, concerning input-output linkages, we propose
a novel and much more detailed micro-geographic measure than what has
been used before in the literature. Loosely speaking, we construct plant-
level measures that reflect the ‘minimum distance’ of a plant from a dollar
of inputs, or the minimum distance it has to ship a dollar of outputs. Our
proxies will allow us to derive more detailed evidence on the impacts of
transport costs, international trade, and input-output linkages on the spa-

tial structure of the economy.

Finally, as the analysis is at the industry level, we also need to deal
with the possible endogeneity of our main covariates. For example, it is
well documented that productivity rises as an industry concentrates geo-

graphically (see, e.g., Rosenthal and Strange, 2004 ; Combes and Gobillon,

in the us between 1972 and 1992.
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2014). If the productivity gains from agglomeration are passed on to consu-
mers and affect also trucking rates, the causality may actually run from ag-
glomeration to transport costs and not the other way round. Furthermore,
agglomeration may lead to imbalances in shipping patterns, and the latter
may increase the cost of transportation due to standard logistics problems
like ‘backhaul” of empty trucks (e.g., Jonkeren, Demirel, van Ommeren,
and Rietveld, 2009; Behrens and Picard, 2011). Turning to trade exposure,
the spatial concentration of an industry may drive export partipation (via
productivity gains) or may reduce import penetration (via lower prices),
thus potentially biasing the estimated coefficient. To deal with endoge-
neity, we require some form of instrumental variables. Since we have a
large number of industries and a fairly large time dimension, our setting
lends itself well to the construction of internal instruments. We implement
the method suggested by Lewbel (2012), which exploits heteroscedasticity
and variance-covariance restrictions to obtain identification with 2sLs when
some variables are endogenous and when external instruments are either
weak or not available. We also follow Ellison, Glaeser, and Kerr (2010) and
use Us industry price indices - for the transportation sector and for ma-
nufacturing industries — to construct external instruments for the trucking

rate series.

Our paper contributes to the growing literature that investigates how
the geographical structure of national economies changes as trading goods
— both within and across borders — becomes cheaper. Trade influences the
spatial structure of economic activity via changes in market access (e.g.,
Redding and Sturm, 2008; Briilhart, Carrere, and Trionfetti, 2012; Briil-

hart, Carrere, and Robert-Nicoud, 2014), firm entry and exit (e.g., Dumais,
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Ellison, and Glaser, 2002; Behrens, 2014), tougher competition in product
markets (e.g., D'Costa, 2010; Holmes and Stevens, 2014), infrastructure in-
vestments (e.g., Duranton and Turner, 2012; Duranton, Morrow, and Tur-
ner, 2014), cheaper access to foreign-sourced intermediates, changes in local
labor market (e.g., Autor, Dorn, and Hanson, 2013 ; Dauth, Findeisen, and
Suedekum, 2014), or any combination of these. See Briilhart (2011) for a re-
view of the ambiguous theoretical and empirical effects of increased trade

openness on the internal geography of countries.

The remainder of the paper is structured as follows. Section 2.2 brie-
fly documents the evolutions of the geographical concentration of Cana-
dian manufacturing industries. Section 2.3 describes our empirical stra-
tegy, constructs our key variables, and discusses the various identification
issues we face. Section 3.4 presents our key results on the impacts of trade
costs and measures related to customer and supplier access on the geogra-
phical concentration of Canadian manufacturing industries. We provide a
large number of robustness checks and instrumental variables estimates.

Section 3.6 concludes. Technical details are relegated to the appendix.

=5 Trends in industrial localization from 1990 to 2009

As a prelude to the econometric analysis to follow, we first briefly
describe the data and the measures of geographical concentration we use
in this paper. We then provide a quick overview of the broad trends in the

localization of Canadian manufacturing industries from 1990 to 2009.
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224 Measuring localization

Our analysis is based on Statistics Canada’s Annual Survey of Ma-
nufacturers (AsM) Longitudinal Microdata file from 1990 to 2009. This file
contains between 32,000 and 53,000 plants per year, covering 257 NAICS
6-digit manufacturing industries. For every plant, we have information
about : its primary Na1cs industry; its employment; its sales; and its 6-
digit postal code. The latter allows us to effectively geo-locate the plants
using latitude and longitude coordinates of postal code centroids. A detai-

led description of the data is relegated to Appendix A.

We exploit the micro-geographic nature of our data and measure the
geographical concentration of industries using the Duranton and Overman
(2005, 2008 ; henceforth, Do) K-densities (see Appendix B for technical de-
.tails). The po K-densities look at how close plants are relative to each other
by considering the kernel-smoothed distribution of bilateral distances bet-
ween them. We explain in Section 2.3.2 why we use a kernel-smoothed
distribution of bilateral distances and not on the raw distribution. The po
K-densities provide a very detailed micro-geographic description of loca-
tion patterns, and allow for statistical testing of whether those patterns may
be due to chance or not. We estimate the K-densities year-by-year for all
industries at the NA1Cs 6-digit level. For each pair of plants, we compute the
bilateral great circle distance between them using their geographical coor-
dinates. Since the K-density is a distribution function, we can also compute
its cumulative (CDF) up to some distance d. The cDF of the K-density at dis-
tance d tells us what share of plant pairs in an industry is located less
than distance d from each other. Since we are not interested in identifying

at which specific distances localization of firms occurs, the cpF of the K-
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density provides a better measure of the ‘overall degree’ of geographical

concentration.

Table 2.1 summarizes the K-density cpF for the most localized in-
dustries in 1990, 1999, and 2009, respectively. To understand how to read
that table, take “Women’s and Girls’ Cut and Sew Lingerie, Loungewear
and Nightwear Manufacturing’ (NAICS 315231) as an example. In 1990, 62
percent of the distances between plants in that industry are less than 50
kilometers. Put differently, if we draw two plants in that industry at ran-
dom, the probability that these plants are less than 50 kilometers apart is
0.62. If we, however, draw two plants at random among all manufactu-
ring plants, that same probability would only be about 0.08 (see Table 2.2
below). Clearly, this large difference suggests that the location patterns of
plants in the ‘Women’s and Girls” Cut and Sew Lingerie, Loungewear and
Nightwear Manufacturing” industry are very different from those of ma-
nufacturing in general. Plants in that industry are much closer than they

‘should be’ if they were distributed like overall manufacturing.

Figure 2.1 Year-on-year changes in the cDF ratios at 50 kilometers.

«J

CDF ratios
1.2

v T T v —
1990 1995 2000 2005 2010
Year

CDF / CDF count COF sales / COF count

Whereas the standard K-densities are computed based on plant counts,
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Table 2.1 Ten most localized Na1cs 6-digit industries (based on plant counts).

NAICS | Industry descripition

CDR

1990
315231 | Women's and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing  0.62
315233 | Women'’s and Girls’ Cut and Sew Dress Manufacturing 0.55
313240 | Knit Fabric Mills 0.53
315292 | Fur and Leather Clothing Manufacturing 0.42
315291 | Infants’ Cut and Sew Clothing Manufacturing 0.32
315210 | Cut and Sew Clothing Contracting 0.30
337214 | Office Furniture (except Wood) Manufacturing 0.21
332720 | Turned Product and Screw, Nut and Bolt Manufacturing 0.21
313110 | Fibre, Yarn and Thread Mills 0.19
333511 | Industrial Mould Manufacturing 0.18

1999
315231 | Women’s and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing  0.63
313240 | Knit Fabric Mills 0.47
315210 | Cut and Sew Clothing Contracting 0.22
333220 | Rubber and Plastics Industry Machinery Manufacturing 0.20
336370 | Motor Vehicle Metal Stamping 0.18
332720 | Turned Product and Screw, Nut and Bolt Manufacturing 0.18
336330 | Motor Vehicle Steering and Suspension Components (except Spring) Manufacturing 0.17
333519 | Other Metalworking Machinery Manufacturing 0.16
337214 | Office Furniture (except Wood) Manufacturing 0.15
315291 | Infants’ Cut and Sew Clothing Manufacturing 0.14

Z009)
315231 | Women’s and Girls’ Cut and Sew Lingerie, Loungewear and Nightwear Manufacturing  0.61
322299 | All Other Converted Paper Product Manufacturing 0.29
337214 | Office Furniture (except Wood) Manufacturing 0.17
336370 | Motor Vehicle Metal Stamping 0.17
332720 | Turned Product and Screw, Nut and Bolt Manufacturing 0.16
337215 | Showcase, Partition, Shelving and Locker Manufacturing 0.15
321112 | Shingle and Shake Mills 0.14
331420 | Copper Rolling, Drawing, Extruding and Alloying 0.13
336360 | Motor Vehicle Seating and Interior Trim Manufacturing 0.13
315110 | Hosiery and Sock Mills 0.13

Notes : The cpF at distance d is the cumulative sum of the K'-densities up to distance d. Results in this

table are reported for a distance d = 50 kilometers.
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i.e., distances between pairs of plants without any weighting scheme, we
can also compute weighted versions (see Duranton and Overman, 2005). In
particular, we can weight pairs of plants by either plant-level employment
or plant-level sales. For these weighted versions, the foregoing interpreta-
tions remain true, except that the unit of observation is now the employee
or a dollar of sales. We generally report results for the weighted measures
only as robustness checks, since the qualitative patterns are similar to the
ones obtained from using the unweighted measures. However, comparing
the unweighted to the employment- or sales-weighted K-densities reveals
some interesting patterns. As can be seen from Figure 2.1, industries are on
average always more concentrated in terms of employment than in terms of
plant counts, and even more concentrated in terms of sales than in terms of
employment. This is a manifestation of agglomeration economies, and it is
consistent with the findings of Holmes and Stevens (2002, 2014) and others
that more localized plants tend to be larger and more productive than less
localized plants. Note that the ratios are increasing until about 2004, and
slightly decreasing afterwards. In 2009, within 50 kilometer distance, the
concentration of employment exceeds that of plant counts by about 13%,
whereas the concentration of sales exceeds that of plant counts by about

20%.

2 Decreasing localization

There is evidence that the geographical concentration of manufactu-
ring industries has decreased over the first decade of the years 2000 in Ca-
nada (see Behrens and Bougna, 2013 ; Behrens, 2014). This de-concentration

trend can clearly be seen in our data from Table 2.2. There has been a nearly
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monotonic decline in the mean value of the cDF across industries between
1990 and 2009. For example, the average cDF at 50 kilometers distance was
0.076 in 1990, 0.062 in 1999, and 0.056 in 2009, a 27.1% decrease over a
twenty year period. Whereas concentration has decreased at all distances,
the greatest declines, however, were at shorter distances : plants are disper-
sing, but less so at longer distances.> This finding suggests that the incen-
tives for plants to locate in very close proximity to each other are lessening
over time. It also likely reflects the fact that manufacturing industries have
been ‘bid out’ of cities because of higher land and labor costs there, and
that they are moving to smaller nearby urban, sub-urban, or rural areas
as a consequence (see, e.g., Henderson, 1997). Still, the fact that the cpr
continues to fall at 500 km suggests a broader geographic dispersion of
manufacturing activity, which is likely driven by the rising manufacturing
output in western Canada and the associated fundamental shifts in manu-
facturing location away from the ‘traditional corridor’ that runs through
Quebec and Ontario.

Observe that the de-concentration trend also affects the employment-

weighted and the sales-weighted measures of localization (see Table 2.2).

5. Whereas the ¢DF of the K-density is easily interpretable and provides a natural
measure to track the changing concentration of industries, it cannot tell us anything about
whether or not industries are statistically significantly concentrated or not. Table 2.9 in
Appendix E summarizes location patterns by year, based on their statistical significance
(see Duranton and Overman, 2005, and Appendix B for more information). As can be seen
from Table 2.9, the share of statistically significantly localized industries has been decrea-
sing over our study period, thus mimicking the downward trend in the K-density cDss.
In a nutshell, there is a clear trend towards less localization, and that trend is captured by

both the cpF and the statistical tests for localization.
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Yet, as can be seen from Figure 2.2, although industries have in general
become more geographically dispersed according to all three measures, the
size of plant pairs in close proximity has tended to increase in relative terms
regardless of whether size is measured by employment or by sales. Put
differently, the process of dispersion is less pronounced when measured
by either employment or sales, thus suggesting that smaller plants drive a
substantial part of the dispersion process, either through entry and exit or

through relocation.

Table 2.2 Mean of the Duranton-Overman CDFs across industries, 1990 to 2009.

Unweighted I Employment weighted I Sales weighted
CDF at a distance of
Year 1o0km s50km 100km s00km | 10km sokm 100km sookm | 10km s50km 100km 500 km
1990 0.020 0.076 0.139 0.420 0.021 0.083 0.151 0.449 0.022 0.086 0.156 0.453
1991 0.019 0.076 0.139 0.423 0.022 0.083 0.152 0.447 0.023 0.087 0.156 0.453
1992 0.020 0.074 0.135 0.418 0.020 0.079 0.147 0.442 0.022 0.084 0.151 0.448
1993 0.019 0.072 0.132 0.416 0.020 0.079 0.145 0.440 0.021 0.082 0.148 0.446
1994 0.017 0.071 0.131 0.413 0.020 0.077 0.143 0.438 0.021 0.081 0.147 0.443
1995 0.017 0.068 0.126 0.402 0.019 0.076 0.141 0.432 0.020 o.080 0.145 0.438
1996 0.016 0.065 0.122 0.402 0.019 0.073 0.136 0.428 0.020 0.076 0.140 0.435
1997 0.016 0.066 0.123 0.401 0.017 0.072 0.135 0.427 0.019 0.077 0.140 0.433
1998 0.016 0.064 0.120 0.396 0.019 0.074 0.135 0.425 0.019 0.078 0.141 0.433
1999 0.015 0.062 0.118 0.398 0.017 0.072 0.134 0.426 0.018 0.076 0.139 0.434
2000 0.014 0.063 0.120 0.383 0.016 0.073 0.135 0.411 0.016 0.075 0.140 0.421
2001 0.013 0.061 0.118 0.383 0.015 0.072 0.136 0.412 0.016 0.076 0.142 0.421
2002 0.013 0.062 0.119 0.383 0.016 0.073 0.137 0.413 0.017 0.078 0.143 0.422
2003 0.013 0.060 0.117 0.384 0.015 0.072 0.137 0.416 0.016 0.075 0.141 0.422
2004 0.013 0.060 0.115 0.379 0.015 0.070 0.132 0.412 0.017 0.074 0.137 0.418
2005 0.012 0.059 0.113 0.379 0.014 0.068 0.130 0.409 0.016 0.072 0.134 0.415
2006 0.013 0.061 0.116 0.378 0.015 0.069 0.131 0.406 0.015 0.072 0.135 0.412
2007 0.012 0.057 0.110 0.374 0.015 0.064 0.122 0.399 0.017 0.069 0.127 0.406
2008 0.012 0.057 0.110 0.376 0.017 0.067 0.125 0.400 0.017 0.069 0.128 0.405
2009 0.013 0.056 0.107 0.373 0.015 0.063 0.121 0.397 0.017 0.068 0.126 0.403
Mean 0.015 0.064 0.121 0.394 0.017 0.073 0.136 0.422 0.019 0.077 0.141 0.428
Change | -360% -27.1% -22.6% -11.3% | -287% -233% -203% -114% | -21.5% -21.2% -193% -11.0%

Notes : Authors” computations based on the Annual Survey of Manufacturers Longitudinal Microdata file, 1990-2009. The means of
the CDF are based on 257 industries and are not weighted (but the cprs for each industry are weighted by either employment in the
middie columns, or by sales in the right columns; see Appendix B). ‘Mean’ refers to the mean of the K -densities over the 1990-2009
period. ‘Change’ is the percentage change between 1990 and 2009.



CDF ralios

88

To conclude, the descriptive evidence points to a significant decrease
in the geographical concentration of manufacturing industries in Canada
over the last 20 years, no matter whether concentration is measured in
terms of plant counts, employment, or sales. The pace of decline, however,
differs across industries in systematic ways. Understanding which factors
drive that decrease to what extent and for which industries, with a special
focus on transportation costs, trade, and input-output linkages between

plants, is the objective of the remainder of this paper.

Figure 2.2 Ratios of mean employment- and sales-based cpFs to count-based cDF

by distance.
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2.3 Empirical methodology

While the patterns highlighted in Section 2.2 show that there are clear
trends in changes in the geographical concentration of industries, they do
not allow us to isolate the factors that drive those changes. We therefore
now turn to multivariate analysis to identify the sources of those changes
and to measure their relative contribution. We first briefly spell out our em-

pirical specification. We then explain the construction of our main variables



and discuss the different identification problems.

2.3.1 Econometric specification

We work at the industry-year level and take advantage of the pa-
nel nature of our data. More precisely, we estimate the following baseline

model :

Ymt(d) = TmiBr + CmiBc + at + pim + €ms (E.1)

where 7v,:(d) is the K-density cpDF for industry m in year ¢ at distance d;
where T, ; is a vector of ‘trade cost’ correlates that constitute our main va-
riables of interest; where Cp,,; is a vector of time-varying industry controls;
where o; and py, are time and industry fixed effects, respectively; and
where &, is the error term. The latter is assumed to be independently and

identically distributed with the usual properties for consistency of oLs.

One may be worried by the fact that identification in (E.1) comes
from the within variation in the data. The latter may be small given yearly
data, especially for the spatial variables. This point has been raised in other
studies (e.g., Ellison, Glaeser, and Kerr, 2010, p.1200), but those studies usu-
sally use more aggregated measures of agglomeration like the Ellison and
Glaeser (1997) index or similar discrete indices. Those measures change
much more slowly over time than the K-densities, especially at short dis-
tances. The reason is that the micro-geographic measures are constructed
from geo-coded data, and that there is a lot of churning at short distances
that is not picked up by spatially more aggregated measures. This chur-
ning creates a tension. One the one hand, there is substantial year-on-year

variation, which allows for identification using this within variation. On
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the other hand, there is also a lot of noise at a small geographical scale,
which makes the estimates imprecise. As we argue in Section 2.3.2 below,
the K-density cDF measures provide the right tools to balance these two

conflicting points.

Table 2.3 Key variables and summary statistics.

Industry Mean Standard deviation
Variable names and descriptions detail Overall Between Within
T, : Trade, transportation, and input-output variables
Share of industry imports from Asian countries (excluding OECD members) NAICS6 0.12 0.23 0.17 0.06
Share of import s from OECD ber countries (excluding U.S. and Mexico) NAICS6 0.16 0.18 0.3 0.05
Share of impors from NAFTA countries (U.S. and Mexico) NAICS6 0.66 0.33 0.26 0.07
Share of industry exports from Asian countries (excluding oECD members) NAICS6 0.03 0.08 0.05 0.03
Share of export from OECD member countries (excluding U.S. and Mexico) NAICS6 0.09 0.13 0.08 0.05
Share of exports from NAFTA countries (U.S. and Mexico) NAICS6 0.83 0.26 0.19 0,07
Ad valorem trucking costs for an avg. load shipped 500km as a share of goods shipped L-level 0.034 0.035 0.030 0.005
Industry mean of the avg. distance to a dollar of inputs from the 5 nearest plants (km) NAICS6  242.99 152.33 95.04 56.39
Industry mean of the avg. distance to ship a dollar of output to the 5 nearest plants (km)  NAICS6  244.86 17187 104.36 67.51
Minimum average distance to 5 x 257 closest plants NAICSS 64.54 56.63 42.44 1419
Comn,¢ : Industry-year control variables
Share of input from natural resource-based industries L-level 0.11 0.2 0.17 0.03
Sectoral energy inputs as a share of total sector output L-level L-level 0.03 0.057 0.044 0.013
Total industry employment NAICS6 6938 9749.88 774411  2005.76
Herfindahl index of enterprise-level employment concentration NAICS6 0.1 0.126 0.092 0.034
Mean plant size NAICS6 74 181 139 42
Share of plants controlled by multi-plant firms NAICS6 0.21 0.248 0.183 0.065
Share of foreign controlled plants NAICS6 0.15 0.2 0.14 0.06
Share of hours worked by all workers with post-secondary education NAICS6 04 o.115 0.07 0.045
Intramural research and development expenditures as a share of industry sales Llevel o.0111 0039 0.027 0.012
Notes : All descriptive statistics are based on the sample we use in the regressi lysis, which includes 4,369 observations covering 257
industries and 17 years. The standard d is dec d into b and within comp ts, which the cross sectional and

the time series variation, respectively. Some industry-level data are available at the L-level only, which is the finest level of data for public release
in Canada (between the NA1CS 3- and 4-digit levels of aggregation). Additional information regarding our data sources and the construction of
our key variables is provided in Appendix A and in Section 2.3.2.

Table 2.3 summarizes our main variables, provides descriptive statis-
tics, and reports the within and between components of the variance. As

can be seen, there is substantial time variation in our data, although the

bulk of the variation remains cross-sectional, as expected.
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2.3.2 Construction of the key variables

We now describe in detail the construction of our key variables :
(i) our K-density geographical concentration measures; (ii) our industry
measures of transportation costs; (iii) our micro-geographic input-output
linkages; and (iv) our measures of industries’ international trade expo-
sure. We also discuss a number of methodological issues related to their

construction.

Figure 2.3 ‘Excess volatility’ of the raw cDFs, linear trend (left) and autoregressive
(right).
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K-density cDFs

The technical details concerning the construction of the K-density
CDFs are given in Section 2.2.1 and in Appendix B. Here, we discuss a
number of issues linked to the time variability and the smoothing that we
mentioned above. Starting with the former point, Figure 2.3 depicts the
year-on-year ‘excess volatility” at each distance d between 1 kilometer and
800 kilometers. The excess volatility is defined as the ratio of the year-

on-year volatility of the raw distribution and that of the kernel-smoothed
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distribution.® As can be seen from Figure 2.3, the raw distribution is al-
ways more volatile than the smoothed distribution, and especially so at short
distances. Whereas for distances greater than about 200 kilometers the vo-
latility of the raw and the smoothed cpFs are roughly identical, the raw
distribution is up to 11 or 12 times more volatile at short distances. In other
words, due to substantial churning at the plant level, the micro-geographic
measures contain a lot of noise in the time-series at short distances, though
it is at those distances that the effects of transport costs and trade that we
intend to identify are most likely to operate. Thus, smoothing is important

to reduce the noise in the time series.?

Figure 2.4 Example of raw vs kernel-smoothed cp¥s for plant counts.

NAICS 333511 - mould K (2009, igl

Smoothing has, however, the drawback to alter the raw distribution.

Figure 2.4 depicts the ‘raw’ (unsmoothed) cpDF of the bilateral distances as

6. See Appendix B for the formal definition of the ‘raw’ distribution. We use stan-
dard measures of volatility based on the year-on-year variance, the fitting of a linear trend,

or an autoregressive AR(1) model.

7. We ran our analysis using the raw cDFs as dependent variables, but the results
for short distances become very imprecise. Most coefficients are not statistically significant

due to their large standard errors.
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a dashed line, and the K-density cpF (smoothed) as a solid line for a repre-
sentative industry — ‘Industrial mould manufacturing’. Two comments are
in order. First, as can be seen, the smoothed cDFs are less volatile and more
regular than the unsmoothed cpFs, though the two become very similar at
longer distances starting at about 200 kilometers. As can also be seen from
Figure 2.4, the smoothed cDFs tend to underestimate the degree of geogra-
phical concentration at short distances. This point has been recently made
by Murata, Nakajima, and Tamura (2014), who show that there is a down-
ward bias in the Duranton-Overman K-density estimates at short distances

due to ‘reflection’ and the use of a differentiable kernel function.

To summarize, there are costs and benefits of using the smoothed
cDFs compared to the unsmoothed cpFs. The benefit is that the smoo-
thed densities exhibit substantially less year-on-year variability at short
distances, thus reducing the noise due to plant-level churning that shows
up in the data and that affects the micro-greographic concentration mea-
sures. The cost is that the smoothed densities underestimate the degree of
geographical concentration at short distances, thus potentially biasing the
estimated coefficients on the trade cost covariates towards zero. Since iden-
tification stems from the time-series variation in our approach, we believe

that the benefits of using the smoothed cDFs outweight the costs.

8. In a cross-sectional analysis, we would rather use the raw CDFs since there is no
need to smooth out any time-series volatility. However, Duranton and Overman (2005)
argue that even in a cross section smoothing may be required to cope with unobserved

variation in, e.g., the density of the road network.
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Transportation costs

Transportation costs loom large in the theoretical literature on indus-
try location and geographical concentration. Industries with high transpor-
tation costs — either for their inputs, for their outputs, or for both — should
agglomerate production in locations close to their suppliers or customers
to minimize those costs. Despite their dominant theoretical role, it is fair
to say that limited work has gone thus far into the elaboration of good
measures of transportation costs, and even less into their application to
the analysis of changes in agglomeration. Rosenthal and Strange (2001), for
example, use the ratio of inventories to sales at the end of the year as a
proxy for ‘perishability of output’, itself a proxy for transportation costs.
Lu and Tao (2009) use a similar proxy, namely the finished goods to output
ratio, where finished goods are inventories not yet sold. Ellison, Glaeser,
and Kerr (2010) do not even talk about the possible role of transportation
costs in their analysis, the reason being that these costs are assumed to
have become ‘negligible’. While this may be the case in a cross-section of
industries — with transport costs on average around 3—4% of the value of
the shipment according to our estimates — our results show that their time-
series variation is a major driver of the changes in the location patterns of

industries. In other words, transport costs matter !

Our work aims to improve our understanding of how changes in
transportation costs influence changes in the geographical concentration
of industries. To this end, we use direct measures of transportation costs
constructed from detailed micro-data files on shipments within Canada.
To estimate ad valorem rates, we first use a pricing model to predicted

trucking firm revenues for a 500 kilometers trip by commodity for the ave-
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rage tonnage using shipment (waybill) data from Statistics Canada’s Tru-
cking Commodity Origin-Destination Survey (see Brown and Anderson,
2015, for details). We estimate the ‘prices’ charged by trucking firms as a
function of distance shipped, tonnage, and a set of commodity and firm
fixed effects. 9 The prices are then converted into ad valorem trucking costs
by estimating the value of each shipment. This value is derived by multi-
plying the tonnage of the average shipment on a commodity basis by their
respective value per tonne derived from an ‘experiment export trade file’
produced only in 2008. The ad valorem estimates at the commodity level
in 2008, in turn, are used to estimate ad valorem rates 7,008 for L-level
industries in 2008 using a set of industry-commodity concordances. Yearly
trucking industry price indices pirans; and manufacturing industry price in-
dices pm,; from Statistics Canada’s kLEMs database are then used to project
the ad valorem rates backwards and forwards in time, thereby creating an

industry-specific ad valorem transportation rate time series 7, :

DPurans;t
Tt = Ty 2008 (E.2)
Pm,t

Although our measures of transport costs are much more direct and
detailed than those used before in the agglomeration literature, they are by
construction unlikely to be fully exogenous to industrial location patterns
since they depend on price indices. We come back to this point in Sec-
tion 2.3.3 below when we discuss the different identification issues. Note,
however, that we estimate transportation costs for a ‘representative ship-

ment’ by truck, holding distance fixed at 500 kilometers. Hence, variable

9. While we do not directly control for the time costs of transportation they will be,
at least partially, embedded in the transportation prices (which would capture quality of
service for time-dependent trips).
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shipping distances that result from optimal location choices of plants in an

industry have a priori no direct influence on our measures.

Figure 2.5 Changes in average transportation costs, 1990—2009.
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Figure 2.5 depicts the year-on-year changes in the (unweighted) cross-
industry average transportation costs for a 500 kilometers shipment. As can
be seen, transport costs are first decreasing — due, essentially, to reductions
in labor costs at constant fuel prices — and then increasing — due, essentially,
to increasing fuel prices at constant labor costs. They range from about
3.8% of the value of the shipment in the early nineties, to about 3.2% in the
mid-nineties. Since industries tend to localize when their shipping costs are
either high (market access) or low (to exploit other sources of agglomera-
tion economies), we expect transportation costs to have a non-linear and
negative effect on the degree of industrial agglomeration, especially for in-
dustries characterized by intermediate values of transport costs. Since there
is significant time- and cross-industry variation in transportation costs in
our data (see Table 2.3), we will be able to estimate precisely the effect of

transportation costs on the geographical patterns of industries.
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International trade exposure

While transportaﬁén costs capture the ‘domestic’ part of trade in our
model, we also control finely for the role of international trade in the lo-
cation of industries. It is indeed well known theoretically — though less so
empirically — that trade influences the spatial structure of economic activity
via firm entry and exit, tougher competition in product markets, cheaper
access to foreign-sourced intermediates, and changes in local labor markets
(e.g., D’Costa, 2010; Briilhart, Carrére, and Trionfetti, 2012; Autor, Dorn,
and Hanson, 2013; Behrens, 2014 ; Briilhart, Carrére, and Robert-Nicoud,
2014 ; Holmes and Stevens, 2014). We use detailed yearly data on imports
and exports by industry and country of origin and destination to control
for industries’ import and export exposure (the ratio of industry imports or
exports to industry sales). To disentangle the different effects that depend
on whether trade is in intermediates or final goods (on which we have
unfortunately no information in our data), and on whether trade is ‘North-
North’ or ‘North-South’, we break these measures down by countries of

origin : low-cost Asian countries; OECD countries; and NAFTA countries.

The left panel of Figure 2.6 depicts the changes in the average im-
port and export values by industry over our study period. The right panel
provides a snapshot of how import and export shares change across broad
groups of trading partners. As one can see, the importance of international
trade has dramatically increased — at least up to the trade collapse starting
2008 — and there has been a progressively increasing re-orientation of trade

towards Asian countries (especially for imports).
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Figure 2.6 Changes in import- and export trade values (left), and import shares
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Input-output linkages

Another important trade-related source of agglomeration are input
and output linkages. Many studies find that customer-supplier relation-
ships is the most important mechanism to explain the co-location of indus-
tries, which is suggestive of their importance for geographical concentra-
tion. ° Despite their importance, the empirical treatment of input-output
linkages has been rather limited until now. Rosenthal and Strange (2001)
use manufacturing and non-manufacturing inputs purchased by the in-

dustry per dollar of output. Lu and Tao (2009) use the export-intensity of a

10. Holmes (1999) documents that plants in ys manufacturing industries that are geo-
graphically more concentrated are more vertically disintegrated. Their purchased inputs
as a percent of the value of outputs is higher in areas where the industry concentrates, thus
suggesting that input-output linkages may drive industry localization. Note, however, that
he cannot rule out reverse causality : plants in industries that concentrate geographically
for some unobserved reason may vertically disintegrate more because of that concentra-

tion.
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sector as a proxy for input sharing. * Another approach to modelling input
sharing ~ the most widely adopted in the literature — is to use input-output
accounts to measure the extent that industries buy and sell from one ano-
ther (e.g., Duranton and Overman, 2005, 2008; Ellison, Glaeser, and Kerr,
2010). The drawbacks of all these approaches is that the input-output mea-
sure is potentially endogenous, and that it does not take into account any
geographical information.

Figure 2.7 Constructing input-output distances and ‘minimum distance’ mea-

sures.

Our measures of input and output linkages are very different and
make use of the micro-geographic nature of our data. Consider a plant ¢

active in sector §2(¢). Let 12 denote the set of sectors and (2, the set of plants

11. The rationale for this proxy is that, when compared to other industries, export
industries strongly rely on inputs and information sharing like the information on proce-
dures and international markets where they sell their products. This measure thus cannot

disentangle information externalities from input sharing.
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in sector s. Let ks(¢,£) denote the ith closest sector-s plant to plant £. Our
micro-geographic measures of input- and output linkages are constructed

as weighted averages as follows :

: - 1 & .
Idist(¢) = Y we(e),s X N E d(4, ks(i,2)), (E.3)
se2\n2(¢) i=1
for inputs, and
: out 1 3y .
Odist(¢) = Y Wo(s X Zd(é, kg(4,£)), (E-4)
s€2\N(2) i=1

for outputs, where d(:,-) is the great circle distance between the plants’
postal code centroids, and where wj}l‘( ¢),s and “’?2‘?2),3 are sectoral input- and
output shares. ** Figure 2.7 illustrates the construction for the case where

N = 2 and with three industries.

Since by construction Y, wi.(le(e), - “’?2"&), s = 1, we can interpret
Zdist(¢) as the minimum average distance of plant £ to a dollar of inputs
from its N closest suppliers. Analogously, Odist(¢) is the minimum average
distance plant £ has to ship a dollar of outputs to its NV closest (industrial)
customers. 3 The larger are Zdist(£) or Odist(¢), the worse are plant £’
input or output linkages — it is, on average, further away from a dollar
of intermediate inputs or a dollar of demand emanating from the other

industries.

12. Appendix C provides additional details on the input and output shares.

13. Unfortunately, we have no micro-geographic information on final demand and
thus cannot include it in our output linkage measures. Using a population-weighted mar-
ket potential measure as a proxy is infeasible because of the very strong persistence in
time. However, our industry fixed effects are likely to control for slow-changing final de-

mand due to changes in the population distribution.
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Figure 2.8 Changes in average input-output distances, 1990-2009.
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Note that our input and output linkages make use of plant-level lo-
cation information, but only of national input and output shares. The latter
is due to the fact that we do not directly observe input-output linkages
at the plant level. Yet, given this, our procedure has the advantage to si-
destep problems of endogeneity of those measures. Note also that our
input-output measures are computed across all industries except the one
the plant belongs to. Thus, our measures capture finely the whole cross-
industry location patterns, but do not pick up industrial localization of the
sector itself since it is excluded from the computation. This is important
to not confound input-output linkages with other drivers of geographical

concentration.

We compute the measures (E.3) and (E.4) for all years and for all
plants, using the N = 3, 5,7, 10 nearest plants in each industry. We then ave-
rage them across plants in each industry and each year to get an industry-

year specific measure of both input and output distances :

12, 10|
Odist, = = Y Odist(f) and Idisty=— Y Zdist(t), (Es5)
1925 = 19| =

where |§25| denotes the number of plants in industry s. As expected, these
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measures are strongly correlated. Yet, despite that correlation we can in-
clude them simultaneously into our regressions and still identify their ef-

fect on industrial localization.

Figure 2.8 depicts the time-series changes in the (unweighted) ave-
rage input and output measure across all industries. As one can see, in 2000
for example, plants were on average located about 235 kilometers from a
dollar of inputs, and had to ship a dollar of their output on average over a

distance of 260 kilometers. 4

One potential problem with the measures (E.3) and (E.4) is that they
tend to be mechanically smaller in denser areas. To control for this fact, we
also compute a ‘minimum distance measure’, i.e., the distance of plant ¢
from the M = N x 257 closest plants regardless of their industry. Including
that measure into our regressions then controls for the overall plant density
in a location, which implies that our input-output linkage measures pick
up the effect of being closer to a dollar of inputs or outputs conditional on
the overall density of the area the plant is located in. Formally, we compute
for each plant £ the following measure :

1 M
Mdist(¢) = i z; (¢, kyge) (4, £)), (E.6)

where d(¢, k\ o(¢)(i,£)) denotes the distance to the ith closest plant in any

14. Time-series changes in the input- and output-distance measures may reflect three
things : (i) entry or exit of potential suppliers; (ii) changes in the geographical location of
input suppliers and/or clients; and (iii) changes in the input-output coefficients, i.e., the
technological relationships. We cannot dissociate the sources (i) and (ii) in our analysis,
but entry and exit are vastly more important than relocation when looking at plant-level

data.
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industry but £2(¢). We then average this measure across all plants in the

same industry as before.

Industry-level controls

The literature on industrial localization has identified many impor-
tant sources of externalities that cause the spatial concentration of indus-
tries and changes therein (see Duranton and Puga, 2004, for a review).
Knowledge spillovers and labor market pooling are among the most im-
portant ‘Marshallian’ factors, but various other structural characteristics
like industry size, an industry’s dependence on raw materials, the presence

of multi-unit firms, or foreign ownership also affect their spatial structure.

In the subsequent analysis, we control for these confounding time-
varying agglomeration factors as follows. First, we control for knowledge
spillovers using as a proxy an industry’s research and development (R&D)
intensity, i.e., the ratio of R&D expenditure to total output of that indus-
try. By their very nature, knowledge spillovers are very hard to measure
directly. The literature has often proxied them using patent citation data,
i.e., patents originating in industry ¢ that are cited by patents of industry j.
While useful in a cross-sectional context, our twenty year panel does not al-
low us to exploit patent citation data. Second, along with knowledge spillo-
vers, labor market pooling is another important source of agglomeration. To
construct good proxies for labor market pooling, it is important to identify
industry characteristics that are related to the specialization of the indus-
try’s labor force (see Rosenthal and Strange, 2001; and Lu and Tao, 2009).
The literature suggests that agglomeration occurs because workers are able

to move across firms and industries, thus improving the average quality
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of firm-worker matches. Furthermore, idiosyncratic productivity shocks at
the firm level can be better hedged in locations where firms using simi-
lar workers concentrate. Firms also agglomerate to take advantage of scale
economies associated with a large labor pool that allows industries to use
the same type of workers. Since it is difficult to identify these characteris-
tics, we employ a proxy related to workers’ occupations. More specifically,
we use the share of hours worked by all workers with post-secondary edu-

cation in the total number of hours worked. 15

We finally construct numerous time-varying controls that proxy for
the remaining agglomeration factors in our econometric analysis. We firstly
control for the importance of natural advantage in the agglomeration pro-
cess. The importance of doing so has been pointed out, among others, by
Kim (1995) and by Ellison and Glaeser (1999). We use the share of inputs
from natural resource-based industries, and the sectoral energy inputs as a
share of total sector output, as proxies for natural advantage. We secondly
control for basic industry structure and scale effects by including the fol-
lowing controls : total industry employment; mean plant size; the Herfin-
dahl index of firm-level concentration (employment based); *® the share of

plants controlled by multi-unit firms; and the share of plants controlled by

15. We also tried to construct proxies for labor market conditions using the non-
production to production worker ratio and others educational characteristics of the work-
force. The latter are available at a more aggregated industry level (L-level) from Statistics
Canada’s kLEMS database (e.g., the share of hours worked by all workers with a university
degree, and the labor productivity index). These measures, however, proved to not give

significant results in the time series because they change quite slowly over time.

16. Estimates using a Herfindahl index of plant-level concentration are qualitatively

similar.
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foreign firms (see Table 2.3). These controls proxy for sectoral differences
in the size distribution of firms and plants, for potential differences in the
location patterns of multinationals and multi-unit firms, as well as for dif-

ferences in ‘business culture’ (Rosenthal and Strange, 2003).

Note that all these controls are time varying and industry specific.
When combined with both time and industry fixed effects, they will control
for a wide range of factors that may drive changes in the degree of geogra-
phical concentration of industries that are unrelated to changes in transpor-
tation costs, trade, or input and output linkages. This will provide better

identification. We now discuss remaining identification issues.

2.373 Identification issues

The three main problems that plague the identification of agglome-
ration effects are unobserved heterogeneity, omitted variable bias, and si-
multaneity bias. All studies based on cross-sectional data at the industry
level (e.g., Rosenthal and Strange, 2001 ; Ellison, Glaeser, and Kerr, 2010) are
potentially prone to these identification problems and use different strate-
gies to overcome them. The panel nature of our data allows us to control for
industry-specific time-invariant factors and general macroeconomic trends.
Furthermore, the inclusion of a large set of time-varying industry controls
for natural advantage, industry structure, ownership structure, and proxies
for labor demand conditions and knowledge spillovers (see Section 2.3.2)
substantially reduces the risk of omitted variable bias when estimating our
key coefficients Sr for the trade cost correlates. However, neither the pa-
nel structure nor the controls will help with potential problems of reverse

causality. These may affect our three variables of interest, namely transpor-
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tation costs, trade exposure, and input-output linkages.

Transportation costs. It is well documented that productivity rises as an
industry concentrates geographically (see, e.g., Rosenthal and Strange, 2004 ;
Combes and Gobillon, 2014). Because our measure of transportation costs
is computed on an ad valorem basis and includes the industry price index,
the causality may run from agglomeration to lower prices and, therefore, lo-
wer ad valorem transportation costs. At the same time, agglomeration may
lead to imbalances in shipping patterns, and the latter may increase the
cost of transportation due to standard logistics problems like ‘backhaul’ of
empty trucks (e.g., Jonkeren, Demirel, van Ommeren, and Rietveld, 2009;
Behrens and Picard, 2011). Agglomeration would thus increase the trans-
portation price index and affect our estimates. In a nutshell, pirans;¢t/pm,¢ in
expression (E.2) is likely to be endogenous to the degree of geographical
concentration of an industry, with stronger concentration increasing that
ratio due to a combination of rising freight prices and lower output prices.
Thus, the estimated oLs coefficient for transportation costs is likely to be

upward biased in our model. *7

To deal with that problem, we adopt three different strategies. First,
we clear out the effect of productivity growth on prices (the presumed
source of endogeneity) by regressing our transportation cost series on in-

dustry multi-factor productivity indices (from the xLEMs database), as well

17. Industries that agglomerate are also likely to ship their output over different dis-
tances than industries that are less concentrated because of their location choices. This pro-
blem does not affect our estimates since our measure of transportation costs is constructed

for a representative shipment over a fixed distance of 500 kilometers.
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as industry and year fixed effects. We then use the residual from that re-
gression as a proxy for the transportation cost series. By definition, that
residual is orthogonal to any productivity driven price changes that could
stem from the changing geographic concentration of industries. This stra-

tegy does, however, not deal directly with the transportation price index.

Second, as we have a large number of industries and a fairly large
time dimension, our setting lends itself well to the construction of inter-
nal instruments. We implement the method suggested by Lewbel (2012),
which exploits heteroscedasticity and variance-covariance restrictions to
obtain identification with 2s1s when some variables are endogenous and

when external instruments are either weak or not available.

Third, we use us manufacturing industry price indices as external
instruments for the transportation cost series. The instrumentation strategy
is similar to that of Ellison, Glaeser, and Kerr (2010), who instrument the us
input-output matrix and the us industry labor requirements with those of
the uk. The underlying idea is the following. Assume that the geographi-
cal concentration of an industry increases over time because of unobserved
factors that we cannot control for in our analysis. The increasing geogra-
phical concentration then raises ad valorem transportation costs via price
decreases of the industry’s output. Provided that the changes for the us are
not driven by the same unobserved factors that affect the spatial concentra-
tion of the industry in Canada, but that the us price series are correlated
with the changes in pians;t/Pm,zt, they will provide valid instruments for
the Canadian transportation cost series. Two potential limitations of these
instruments are the following : (i) there may be common underlying unob-

served factors that drive changes in the concentration of the same industries
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in Canada and the us; or (ii) the geographical concentration of an indus-
try in Canada affects directly the productivity — and, therefore, the price
indices — in the us. While we cannot completely rule out those possibilities,
neither strikes us as extremely plausible. First, the panel nature and the ex-
tensive set of time-varying controls should pick up most of the unobserved
factors that may drive the increasing concentration of the industry; and se-
cond, the Canadian economy is small compared to the us economy, so that
changes in the degree of concentration in Canada are very unlikely to have

substantial productivity impacts in the us. ¥

Trade exposure. As argued above, the geographical concentration of plants
increases productivity and, therefore, may increase the propensity of an in-
dustry to export and to import. For example, the agglomeration of an in-
dustry may reduce prices, which makes import penetration harder. In that
case, the dispersion of an industry may be associated with increasing im-
ports since productivity falls. Also, the agglomeration of an industry may
be associated with rising exports due to productivity gains — although the
productivity gains reduce unit export values, the total value of exports may
increase. We deal with the potential endogeneity of trade flows using the

Lewbel (2012) estimator with internal instruments.

18. The empirical elasticity of productivity to the density or size of economic activity
is usually in the 3-8 percent range, and thus huge changes in the geographical structure
would be required to obtain large productivity changes. Furthermore, empirical work has
documented that the effects of shocks to Canadian productivity have very limited effects
on the Us, safe for a couple of states relatively close to the border or a couple of border-

spanning industry networks (like the automotive industry).
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Input-output linkages. Our measures of input-output linkages are, by
construction, reasonably exogenous to the spatial stucture of the economy.
First, observe that we compute those measures using national input-output
shares instead of plant-level input-output shares. Hence, we do not pick up
spuriously large values for inputs or outputs — due to substitution effects
- when plants are located in close proximity to plants in related indus-
tries. Second, we exclude the own industry from the computation, so that
the measure only picks up cross-industry links and not the geographical
concentration of the industry itself (which is on the left-hand side of our re-
gressions). Last, for each plant, the input and output distance is computed
using all other 256 industries in Canadian manufacturing. For the geographical
concentration of one industry to drive the input-output linkage measure,
that industry would need to substantially affect the whole location patterns
of most other related industries, which strikes us as fairly unlikely (though
we cannot completely rule out this possibility). Although the input- and
output-measures should be reasonably exogenous, we will also instrument
them following Lewbel (2012) in the subsequent regressions. As we will

see, our results are very stable across specifications.

As should be clear from the foregoing discussion, it is virtually im-
possible to fully solve all endogeneity issues given the level of aggregation
at which we carry out our analysis. Yet, the panel nature of our data, our
extensive set of time-varying controls, as well as the construction and ins-
trumentation strategies for our main variables of interest — transportation
costs, trade exposure, and input-output linkages — all help us to be reasona-
bly confident that we identify causal effects of changes in those covariates

Tm,: ONn our measure vp, :(d) of geographical concentration.
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2.4 Empirical results

We estimate four specifications based on equation (E.1), which differ
by the set of industry characteristics and controls that they include. * Mo-
del 1 includes a measure of industry size, proxies for industry structure (the
Herfindahl index of the firm-size distribution, mean plant size, the share
of plants controlled by multiplant firms, and the share of plants controlled
by foreign-owned firms), and proxies for natural advantages (the share of
inputs from natural resource-based industries, and the share of energy in-
puts in total output). It also includes the ‘Marshallian covariates’, namely
the proxies for the skill composition of the workforce and for knowledge
spillovers. Model 2 adds our trade variables (import and export shares by
broad trading partner groups) to the baseline case. Model 3 includes trans-
portation costs and our input-output distances — the industry mean of the
average minimum distance to a dollar of inputs or outputs computed using
the five nearest plants in each industry — as well as our minimum distance
(density) control. *° Finally, Model 4 — our preferred specification — includes
all the variables and uses the residual transport cost obtained from a first-

stage regression of that cost on industry multi-factor productivities and a

19. We performed the Hausman test for (E.1) to confirm that the appropriate estima-
tor is a fixed-effects estimator and not a random-effects estimator. The result of the test
strongly confirms (at the 1% level) that the fixed-effects estimator is the preferred speci-
fication. Note also that we work with the universe of manufacturing industries, so that

there is no sampling variability with respect to industries.

20. Using N = 3,5, 10 yields qualitatively very similar results.
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set of industry and year fixed effects (see Section 2.3.3 for details). >

2.4.1 Baseline results

Our baseline results are presented in Table 2.4, which uses the un-
weighted (plant count) cpF at 50 kilometers distance as the dependent va-
riable. Robustness checks with respect to that distance are provided in the
next section, whereas robustness checks using the employment- and sales-
weighted cDFs are relegated to Appendix E (see Table 2.10). All variables
except the trade shares and the shares of plants controlled by multiplant
and by foreign firms enter as natural logarithms into the regressions, so

that their coefficients can be interpreted as elasticities.

As can be seen from Table 2.4, in Model 1, which includes only
control variables, only total industry employment and the share of plants
controlled by foreign firms are statistically significant. Put differently, gro-
wing industries and industries with an increasing share of foreign-controlled
plants tend to become more localized. The first finding is at odds with
results by Dumais, Ellison, and Glaeser (2002), who document that gro-
wing Us manufacturing industries tend to disperse, whereas shrinking ones
concentrate (see also Behrens, 2014, for the case of textiles in Canada). The
second finding is in line with previous evidence which documents that fo-

reign firms tend to locate within existing clusters (see, e.g., Head, Ries, and

21. When using the ‘ad valorem trucking cost residual’ from the first-stage regres-
sion, we need to bootstrap the standard errors to control for the presence of an estimated
regressor. We did this for the baseline specification (see Model 4 in Table 2.8), and it makes
virtually no difference. We hence report non-bootstrapped standard errors in most speci-

fications.
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Dependent variable is the cpr at 50 kilometers

Variables (Model1) (Model2) (Model3) (Modely4)
Total industry employment oazg® o.150° 0.288° 0.289%
(0.070) (0.067) (0.039) (0.039)
Firm Herfindahl index (employment based) -0.028 -0.038 0.002 0.001
(0.036) (0.035) (0.021) {0.021)
Mean plant size -0.026 -0.029 -0.280% -0.282°
(0.078) (0.077) (0.045) (0.044)
Share of plants affiliated with multiplant firms -0.301 -0.203 -0.006 -0.005
(0.191) (0.164) (0.100) (0.099)
Share of plants controlled by foreign firm 0.584° 0.660° 0.338° 0.340%
{0.216) (0.214) (0.125) (0.124)
Natural resource share of inputs 0.024 0.034° 0.008 0.008
(0.023) (0.020) (o.014) (o-014)
Energy share of inputs -0.037 -0.024 0.054 0.037
(0.052) (0.026) (0.040) (0.040)
Share of hours worked by all workers with post-secondary education 0.032 0.013 0.036 0.032
(0.078) (0.069) (0.045) (0.045)
In-house R&D share of sales -0.031 0.006 o.011 0.014
(0.020) (0.022) (0.015) (0.015)
Asian share of imports -1.570% -1.132°% -1.119%
(0.456) (0.380) (0.383)
©OECD share of imports -1.032° -0.491 0476
(0412) (0:344) (0345)
NAFTA share of imports -1.114% -0.562° -0.549¢
(0.382) (0:327) (0327)
Asian share of exports 0473 0482 0.482
(0.500) (0-405) (0.412)
OECD share of exports 0.412° 0.440° 0.443"
(0-237) (0-189) (0193)
NAFTA share of exports 0.353 0.319 0.318
(0-267) (0.196) (0-201)
Ad valorem trucking costs -0.291° -0.208"
(0.135) (0.088)
Ad valorem trucking costs (residual) -0.260%
(0.079)
Input distance -0.361% -0.358°
(0.055) (0.055)
Output distance -0.313% -0.318%
(0.042) (0.043)
Average minimum distance -0.26% -0.294°
{0039)  (0.039)
Number of Narcs industries 257 257 257 257
Number of years 17 17 17 17
Year dummies yes yes yes yes
Industry dummies yes yes yes yes
Observations (NATCS years) 4369 4369 4.369 4369
R? 0.089 0.137 0.516 0.518

Notes : The dependent variable is the unweighted (count based) Duranton-Overman K-density cor. 2, ® and ¢ denote

q

coefficients significant at the 1%, 5% and 10% levels, respectively. We use simple ots. S d errors are cl d at the

industry level and given in parentheses. Our measures of input and output distances, as well as average minimum distance,

are computed using N = 5. ‘Ad valorem trucking costs (residual)’ d the residual of the regression of ‘Ad valorem

trucking costs’ on industry multi factor productivity. A constant term is included but not reported.
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Swenson, 1995 ; and Guimaraes, Figueiredo, and Woodward, 2000). The na-
tural resource share of inputs variables are basically never significant across
all four models, i.e., changes in natural advantage is not strongly associa-
ted with changes in localization. One of the reasons for this is that their
time variation is small. The same holds true for the ‘Marshallian covaria-
tes’, which are not significant either. Again, lack of time-series variation

may explain that result.

Turning to Model 2, rising shares of imports are across the board as-
sociated with falling localization. The (non-oEcD) Asian share of imports,
which we use as a proxy for low-wage countries, has the largest estimated
coefficient in absolute value and is the most statistically significant. One
explanation for the dispersive effect of import competition is that firms
become more footlose as they source a larger share of their intermediates
from abroad and no longer rely on (localized) domestic suppliers. Ano-
ther explanation, for which Holmes and Stevens (2014) provide empirical
evidence, is that import competition from low-wage countries leads to si-
gnificant exit of large plants that produce standardized ‘main segment’
goods. 22 If those plants are the ones that are predominantly clustered at
short distances, their exit will significantly reduce the extent of measured

localization. 23 As can be also seen from Model 2 in Table 2.4, rising export

22. We cannot disentangle the impact of exit vs relocation on the spatial structure.
However, we control for the size of the industry, which at least partly picks up entry and
exit dynamics. Note that relocations are quite rare and should have little impact on our

results. The bulk of the variation is driven by entry and exit.

23. This is a somewhat surprising result, because we would expect the producti-

vity enhancing effects of localization to shelter firms from low-wage competition. Yet, one
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shares are across the board associated with increasing localization, though
the effect is only significant for the share of exports to OECD countries. This
pattern may be driven by the fact that more isolated non-exporting plants
have a higher chance to exit the market, or that localization increases the
export participation and performance of plants (e.g., Koenig, Mayneris, and

Poncet, 2010).

Regarding transportation costs, we have no clear prior as to their im-
pact, as stated before. In theory, the effects of changes in transportation
costs on the geographical concentration of economic activity depend on
the underlying dispersion forces in the economy. If, on the one hand, firms
tend to serve a predominantly dispersed immobile demand, lower trans-
portation costs would tend to be agglomerative, as in Krugman (1991). If,
on the other hand, all demand is a priori mobile and dispersion stems from
urban costs due to agglomeration, lower transportation costs would tend
to be dispersive (Helpman, 1998 ; Behrens, Mion, Murata, and Suedekum,
2012). As can be seen from Model 2 in Table 2.4, lower transportation costs

are associated with more geographical concentration in our estimations. >

should keep in mind that clustering provides firms with benefits as long as clusters grow
(positive shocks), but that the unravelling of clusters (negative shocks) may lead to a do-
mino effect as the agglomeration benefits dissipate with the exit of firms. Also, as shown
by Holmes and Stevens (2014), plants in clusters operate on different market segments

than non-clustered plants, and they are more vulnerable to import competition.

24. We also experimented with different non-linear transportation cost specifications.
More precisely, we estimated the effect of transportation costs with a spline, allowing the
coefficients to vary between ad valorem rates of o to 0.05% (low), 0.05 to 15% (mode-
rate), and 15% or greater (high). These are admittedly arbitrary categories, but ones that

we believe make intuitive sense. The results are, by and large, consistent with the sim-
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Model 3 adds our input- and output-linkage measures, whereas Mo-
del 4 uses the residual transport cost instead of the original variable. The
input-output coefficients are highly significant and negative in all specifi-
cations, and they tend to be of similar magnitude (as in Ellison, Glaeser,
and Kerr, 2010) : industries tend to follow their suppliers and customers. If
supplier industries tend to become more dispersed (in the sense of being,
on average, further away from plants in the downstream industry), the
downstream industry becomes less concentrated too. This result suggests
that the geographic concentration of upstream supply and downstream de-
mand goes hand-in-hand with increasing localization of an industry. Note
that this effect is not driven by changes in overall density, since we control
for this (and the associated variable is highly significant). The coefficient
for transportation costs remains fairly stable when introducing the input-
output linkages, as can be seen from Model 3, albeit it slightly decreases in
absolute value, as expected. Last, as can be seen from Model 4, the coeffi-
cient on transportation costs becomes larger in absolute value when using
the productivity-purged residual. This is in line with our expectations dis-
cussed in Section 2.3.3, where we have argued that endogeneity concerns
due to reverse causality are likely to bias the coefficient upwards (towards
zero in this case). Observe that the endogeneity bias does not seem to be too
severe, which is in line with findings related to the endogeneity of wages
in standard ‘wage-density’ regressions (see, e.g., Combes, Duranton, and
Gobillon, 2011, for a discussion). Last, as can be seen from our prefered

specification (Model 4 in Table 2.4), about half of the time-series variation

pler specification that we use. Yet, we find that at low levels, the effect of transportation
costs is positive or insignificant. At moderate levels, the coefficient is negative and always

significant, and at high levels the coefficient is negative and insignificant.
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in localization is explained by the model.

As shown in Section 2.2.2, the degree of localization of manufactu-
ring industries has significantly fallen in Canada between 1990 and 2009.
How much of that change is explained by changes in transportation or
trade costs ? To see how much of the observed change can be attributed to
changes in those variables, we compute the predicted change in the cprs
by holding, one-by-one, the : (i) ad valorem trucking costs; (ii) different
import shares; and (iii) the input or output distances to their 1992 values,
while still allowing the other variables to change through time. The results

are summarized in Table 2.5.

Table 2.5 Predicted contributions to changes in geographical concentration.

Observed avg. cDF changes 1992-2008 Counterfactual avg. cDF changes 1992-2008 for changes in
Ad valorem trucking costs  Import shares  Input distances  OQutput distances
-23.37% -28.36% -14.63% -30.32% -31.86%

Notes : Observed and predicted changes in the unweighted cross-industry average cprs at 50 kilometer distance.

As can be seen, the observed change in the cross-industry average
CDF between 1992 and 2008 at a distance of 50 kilometers is -23.37%. Hol-
ding the ad valorem trucking rate fixed at its 1992 level, the change would
have been -28.36%. Thus, had transportation costs not decreased, the geo-
graphical concentration would have fallen by about 5 percentage points
more (about 20% of the overall change). Turning to imports, holding all
import shares constant at their 1992 level, the change in the cor would
have been -14.63%. In words, had imports remained at their 1992 levels, the
geographical concentration would have fallen by about 9 percentage points
(i.e., 60%) less than what we observed. Clearly, these are large effects, thus
showing that transportation costs and trade exposure have sizable effects on the

spatial structure of economic activity. Last, turning to input and output dis-
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tances, in the former case the change would have been -30.32% (about 7
percentage points more) and in the latter case the change would have been
-31.86% (about 8.5 percentage points more). Had supplier and customer
access not changed ~ these distances fell through time, as can be seen from
Figure 2.8 — the dispersion of industries would have been even greater than

the one we observed.

2.4.2 Robustness checks

We now provide evidence on the robustness of our key findings. To
this end, we run five main types of robustness checks. First, we investi-
gate the robustness of our results to the choice of the dependent variable.
Table 2.10 in Appendix E shows that the effect of transportation costs on
localization is weaker — and the explanatory power of the model lower —
when the latter is measured using either employment- or sales-weighted
cpFs. Although the key qualitative flavor of the results and the sign and si-
gnificance of our key coefficients remain largely unchanged, the estimates
using employment- or sales-weighted K-densities are less sharp. Further-
more, the effect of import competition tends to be more limited to imports
from Asia, and the coefficient tends to be smaller. This suggests that much
of the adaptation to import competition, particularly from low wage coun-
tries which are responsible for the bulk of exit in Canadian manufacturing
(Behrens, 2014), occurs for smaller plants and firms. Turning to the residual
transportation cost variable, it remains significantly negative in all specifi-
cations that we estimate, irrespective of how we construct the dependent
variable. The same holds true for the input-output distances and the ove-

rall density control. In a nutshell, changes in transportation costs and in
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input-output linkages have a significant effect on the spatial concentration

of economic activity, no matter whether we consider plants, employment,

or sales to measure that concentration.

Table 2.6 Estimation results for specification (E.1) by distance and by incremental

change in the cpF.

Model (4), by distance

Model (4), by incremental cprF

Variables CDF 10km  CDF 100km  CDF 500km | Av,,(10,25)  Avn(2550) Avn(50,100) A, (100,500)
Asian share of imports -1.359°% -0.923% -0.307" -1.029° -0724" -0.352 0.583
(0467} (0-299) (0139) (0.433) (0337) (0.235) (0.429)
oECD share of imports -0.666 -0.334 0.018 -0.451 -0.174 0.102 0.721
(0.425) (0.271) (0.158) (0374) (0.285) (0-211) (0-455)
NAFTA share of imports -0.710° -0.411 -0.037 -0.527 -0.284 0.007 0.587
(0:396) (0.254) (0.135) (0:359) (0.268) (0.190) (0372)
Asian share of exports 0.399 0.415 0.096 0.630 0.658 0.421 -0.782
(0.439) (0.345) (0123} (0.426) (0.404) (0-264) (0.714)
oEcD share of exports 0.366° 0.419° 0.265% 0.545% 0.662¢ 0.470% -0.112
(0.219) (0.166) (0.094) (0.197) (0.224) (0.156) (0:304)
NAFTA share of exports 0217 0.314° 0.139° 0.440° o.541° 0.431% -0.191
(0.231) (0.174) (0.080) (0.211) (0.215) (0.162) (0.274)
Ad valorem trucking costs (residual) -0.269% -0.250% -0.212°% -0.253°% -©0.238° -0.229¢ 0.105
(0.080) (0.073) (0.048) (0.079) (0.080) (0.069) (0.090)
Input distance -0.382° -0.340"% -0.242° -0.332° -0.322% -0.315% -0.193°
(0.063) (0-049) (0.033) (0.061) (0.055) (0:054) (0.041)
Output distance -0.307% -0.307% -0.197° -0.341° -0.340° -0.302° -0.122°
(0.046) (0.040) (0.027) (0.045) (0.045) (0.045) (0.039)
Average minimum distance -0.322° -0.268% -0.137°% -0.2982 -0.243°% 0.204% -0.038
(0.046) (0.035) (0.024) (0.041) (0.043) (0.038) (0.036)
R? 0.473 0.540 0.545 0.481 0.417 0.436 0.168

Notes : All estimations for 257 industries and 17 years (4,369 observations). The dependent variable is the unweighted (count based) Duranton-

Overman K-density cDF at the reported distance. 2, ® and © denote coefficients significant at the 1%, 5% and 10% levels, respectively. We use

simple ovs. All specifications include industry and year fixed effects. Standard errors, given in parentheses, are clustered at the industry level. Qur

measures of input and output distances are computed using N = 5. ‘Ad valorem trucking costs (residual)’ denotes the residual of the regression

of ‘Ad valorem trucking costs” on industry multi factor productivity. A constant term is included but not reported. All industry controls (Total

industry employment; Firm Herfindahl index (employment based); Mean plant size; Share of plants affiliated with multiplant firms; Share

of plants controlled by foreign firms; Natural resource share of inputs; Energy share of inputs; Share of hours worked by all workers with

post-secondary education ; In-house R&D share of sales) are included but not reported.

Second, we check the robustness of our results to the choice of the

distance d at which the K-density cpF is evaluated. Doing so allows us

to highlight how our key covariates influence the localization of industries
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at different geographical scales. Furthermore, we can provide plots of the
marginal effects of our variables of interest over the whole distance range,
thus allowing for a fine analysis of the spatial dimensions of the changes
in agglomeration due to changes in the trading environment. The left half
of Table 2.6 summarizes our results for different distances. To save space,
we only report results for Model 4 at three selected distances : 10, 100,
and 500 kilometers. As can be seen, the qualitative results do not depend
on the distance threshold d. This holds true for all our key variables, thus
showing that transportation costs, trade, and input-output linkages matter
at most spatial scales. Furthermore, there is a general tendency for the va-
lues and significance of the covariates to attenuate as the CDF increases in
distance. This can be seen from the right half of Table 2.6, where we de-
fine the incremental distance of the cDF between distance d; and distance
da > dy as follows : Ayp(dy, d2) = Ym(d1) — Ym(d2). We estimate the mar-
ginal effects of our variables by ‘distance bands’. As one can see, there is
basically no more additional effect of our covariates on the degree of locali-
zation beyond about 100 kilometers, except for our input-output measures.
Furthermore, the largest (and statistically most significant results) occur in
the distance bands between either 10 and 25 kilometers, or between 25 and
50 kilometers. This result suggests that many of the agglomeration mecha-
nisms linked to transportation, trade, and input-output linkages operate at
the scale of metropolitan areas. ?> At longer distances — beyond about 200
kilometers — other factors that do not figure in our model drive the clus-

tering of firms, or incremental clustering becomes weak and fairly unim-

25. For example, the island of Montreal is about 50 kilometers long.



120

portant. 26 The decrease in the marginal effects can be clearly seen from
Figure 2.9, which depicts the incremental change in coefficients of our key
variables by 10 kilometers steps increases in distances (since all marginal
coefficient changes are statistically zero after 200 kilometers, we limit the

plots to that range).

Third, we first re-estimate the model by averaging all variables over
five year periods. Doing so reduces the year-on-year volatility of some va-
riables (e.g., the trade variables), and allows for slowly moving variables
like R&D expenditures or localization patterns to be potentially better iden-
tified in the regressions. It also deals potentially with business cycle aspects
that may drive the changes in the geographical concentration of industries.
The last three columns of Table 2.10 in Appendix E show that our basic fin-
dings are unchanged when replacing year-on-year variations with five-year

averages.

Fourth, our results may be partly driven by sectoral ‘outliers’. For
example, as documented by Behrens (2014), the textile industries in Ca-
nada experienced a remarkable downward trend in terms of number of

plants and the geographical dispersion of activity in the wake of the end

26. This result is not really surprising. There are two possible explanations. First,
the determinants of localization may operate at ‘small’ spatial scales, whereas they are
no longer very relevant at longer distances. Second, the cpFs across industries tend to
display less variation the longer is the distance d. The reason is that they are bounded
from above by unity, and we converge by construction to that value for all industries if we
compute them over sufficiently large distances. This problem is similar to the spatial scale
of aggregation issue when using different spatial scales to compute discrete measures like

the Ellison and Glaeser (1997) index used by Rosenthal and Strange (2001).



121

Figure 2.9 Transportation, trade, and input-output coefficients (marginal effect by

distance).
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Table 2.7 Estimation of specification (E.1) excluding textile and high-tech indus-

tries.
Excluding textiles industries Excluding high-tech industries
Variables cor 10km  CDF 100km  CDF 500km | CDF 10km  CDF 100km  CDF 500km
Asian share of imports -0.568¢ -0.508¢ -0.211 -1.517% -1.035% -0.380°
(0.322) (0.282) (0.174) (0.554) (0.350) (0.155)
OECD share of imports -0.035 0.007 0.137 -0.860 -0.474 -0.084
(0.275) (0.241) (0.181) (0:530) (0.333) (0.177)
NAFTA share of imports -0.097 -0.062 0.076 -0.878¢ -0.531° -0.133
(0.251) (0.221) (0.156) (0.499) (0.317) (0.157)
Asian share of exports 0.627 0.505 0.096 0.468 0.469 0.111
(0-440) (0.358) (0.130) (0-490) (0.378) (0.121)
OECD share of exports 0.471% 0.413° 0.249% 0.346 0424 0.271%
(0.186) (0.161) (0.097) (0.236) (0.170) (0.098)
NAFTA share of exports 0.400° 0.348° 0.128 0.149 0.275 0.124
(0.196) (0.170) (0.080) (0.246) (0.179) (0.085)
Ad valorem trucking costs (residual) -0.213° -0.210% -0.193% -0.396% -0.324° -0.205¢
(0.077) (0.072) (0.049) (0.145) (0.128) (0.068)
Input distance -0.458% -0.439°% -0.315% -0.387% -0.346% -0.245%
(0.051) (0.049) (0.036) (0.075) (0.057) (0.038)
Output distance -0.265% -0.245°% -0.155% -0.333% -0.336% -0.216%
(0.043) (0.040) (0.029) (0.051) (0.044) (0.030)
Average minimum distance -0.289% -0.265% -0.142% -0.321° -0.257° -0.128¢
(0.041) (0.038) (0.026) (0.053) (0-038) (0.026)
R? 0.516 0.532 0.539 0.481 0.556 0553

Notes : All estimations for 257 industries and 17 years (4,369 observations). 2, b, ¢ denote coefficients significant at the 1%,

5% and 10% levels, respectively. We use simple ovs. All specifications include industry and year fixed effects. Standard

errors are clustered at the industry level and given in parentheses. Our measures of input and output distances are

computed using N = 5. ‘Ad valorem trucking costs (residual)’ denotes the residual of the regression of ‘Ad valorem

trucking costs’ on industry multi factor productivity. A constant term is included but not reported. All industry controls

(Total industry employment ; Firm Herfindahl index (employment based); Mean plant size; Share of plants affiliated with

multiplant firms ; Share of plants controlled by foreign firms; Natural resource share of inputs; Energy share of inputs;

Share of hours worked by all workers with post-secondary education ; In-house R&D share of sales) are included but not

reported.
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of the Multi-Fibre Arrangement in 2005. Given that these sectors were ini-
tially among the most strongly localized ones (see Table 2.1), and given that
these industries have a tendency to display very strong co-agglomeration
patters (see Ellison, Glaeser, and Kerr, 2010, p.1199), the large changes in
these sectors may drive some of the results. That this is not the case, and
that all of our main findings are robust to the exclusion of those sectors,
is shown in Table 2.7. The left panel provides results when excluding the
textile sectors, whereas the right panel provides results when excluding the
high-tech sectors. 27 In both cases, our key coefficients are qualitatively un-
changed. Note, however, two differences. First, the input-output linkages
become more negative when excluding the textile industries. Second, the
transport cost variable becomes more negative when excluding the high-
tech industries. The former result suggests that textile industries are less
dependent on input-output linkages than other industries (e.g., manufac-
turing durables). The latter result suggests that spatial patterns of high-tech
industries are less impacted by changes in transportation costs, so that their

inclusion tends to reduce the estimated coefficient on transport costs.

As a final series of robustness checks, we ran a number of experi-
ments that we do not report in detail. We used, for example, the ICT invest-
ment variables from the xLEMs database, interacted with the other variables

of the model, to check whether changes in communication costs have the

27. Our definition of high-tech sectors is based on the us Bureau of Labor Statistics
classification by Hecker (2005). This definition of high-tech industries is ‘input based’.
An industry is ‘high-tech’ if it employs a high proportion of scientists, engineers or tech-
nicians. As shown by Hecker (2005), these industries are also usually associated with a
high R&D-to-sales ratio, and they also largely — but not always — produce goods that are
classified as ‘high-tech’ by the Bureau of Economic Analysis.
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same effect than changes in transportation costs. We did not get any signifi-
cant coefficients — neither for the direct effects, nor for the interaction terms.
We also estimated models with heterogeneous coefficients since transpor-
tation costs differ across industries. To this end, we split our sample into
high-vs-low transport cost industries, using a ‘below median’—'above me-
dian’ criteria. The two coefficients were statistically identical. We also trea-
ted decreasing/increasing transportation costs in an asymmetric way as
they may have asymmetric impacts. Again, the two coefficients were fairly
close. We also replaced our measures of input and output linkages with the
industry ‘material share to sales’ ratio, a proxy for reliance on intermediate
inputs. That variable turns out to be insignificant in our regressions, whe-
reas the other coefficients are largely unaffected. We also ran the model in
a pooled cross-section and by year using a between estimator and found
roughly the same signs and significant coefficients for transportation costs
and the input and output distance measures. The cross-sectional results are
summarized by Table 2.12 in Appendix E. It is worth noting that, although
the levels of trade costs do seem to matter for the geographical concen-
tration of industries, the time-series changes in those costs are much more
strongly associated with changes in that concentration. Last, we also tried
to control for the ‘labor intensity’ of an industry (not just highly skilled
workers vs low-skilled workers). We constructed different measures using
the quantity index of labor and the quantity index of capital from the xLEMS
data, but these variables turned out again to be insignificant in our regres-

sions.

To summarize, our key findings are fairly robust and continue to

hold true in a variety of alternative specifications. Imports are mostly dis-
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persive, whereas exports play in the opposite direction. Sectors that see
their transportation costs increase tend to disperse more. 8 Last, our micro-
geographic measures of input and output linkages are across the board the
most significant and stable variables. Since they are computed by taking
into account the relative positions of all industries with respect to each other, our
findings suggest that there are very strong regularities in how industries re-
late spatially to one another and on how changes in the spatial structure of

some industries shape changes in the spatial structure of linked industries.

2.4.3 Controlling for endogeneity

We finally address the potential endogeneity concerns that we dis-
cussed at length in Section 2.3.3. The results of the different estimations are

summarized in Table 2.8.

Model 4 replicates column 4 of Table 2.4. As explained previously,
we use the residual of a regression of ad valorem trucking costs on secto-
ral multifactor productivity — including a set of industry and year fixed ef-
fects — in that specification. The residual from that regression is, by construc-
tion, orthogonal to multifactor productivity. Observe that Model 4 in Table 2.8
differs from Model 4 in Table 2.4 only by the standard errors, which are

bootstrapped using 200 replications. Comparing the results in the two tables

28. Holmes and Stevens (2014) document for the case of us manufacturing that im-
port competition is dispersive for big firms that produce ‘primary segment goods’ in
clusters, whereas small firms outside are less affected since they produce ‘specialty seg-
ment goods’ that are more costly to transport. Higher transport costs shield those small
firms, whereas more trade exposes the larger firms. Our results concerning the impacts of

changes in transportation costs and trade exposure are broadly in line with those findings.
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shows that no coefficient changes its significance level. The coefficient on
the residual ad valorem trucking rate is larger in absolute value than the
coefficient that is not purged from productivity effects (-0.260 instead of -
0.208). The direction of the bias is consistent with an industry price-decreasing
effect of agglomeration (p,; decreases in (E.2)) or a transportation sector
price-increasing effect (pians ¢ increases in (E.2)). Both of these effects could
underlie the upward bias in the coefficient on transportation costs that we

estimate.

Model 5 is a standard 2sLs instrumental variable regression. We ins-
trument the ad valorem trucking rate using formula (E.2), where we replace
Canadian price indices with their us counterparts to construct our instru-
ment. The rationale underlying this instrumentation strategy was explai-
ned before in Section 2.3.3 and is similar in spirit to that in Ellison, Glaeser,
and Kerr (2010). The first-stage results are summarized in Table 2.11 in Ap-
pendix E. As can be seen from that table, the instrument is strong (with
a first-stage F-test value of 19.07 and an R? of 0.62). Table 2.8 shows that
the instrumented coefficient is substantially more negative than the coef-
ficient for the residual ad valorem trucking rate, itself more negative than
the coefficient using the unpurged trucking rate. The direction of the bias
in the estimated coefficients is the same in Models 4 and 5, which sug-
gests that oLs estimates significantly underestimate the impact of changes

in transportation costs on the spatial concentration of industries.

Finally, models 6 and 7 in Table 2.8 use the Lewbel (2012) estimator

with internal instruments for the input-output distances and a set of the
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trade shares (see Appendix D for more details on the implementation). 2
The excluded external instrument is the Us price-based ad valorem tru-
cking costs as before. As can be seen from the results, the instrumented
coefficient on the Asian share of imports increases, as do most of the other
trade share coefficients. At the same time, both the magnitude of trans-
portation costs and of the input and output distances decreases slightly.
However, these variables remain significant and their magnitude is in the
same ballpark than in the case of oLs (-0.194 vs -0.208 from Model 3 in
Table 2.4). Thus, our results appear to be robust. Changes in transportation
costs, in international trade exposure, and in access to suppliers and clients
all affect the geographical concentration of manufacturing industries even

when potential endogeneity concerns are taken into account.

2.5 Concluding remarks

Using a long panel of micro-geographic concentration measures, we
have substantiated evidence for the causal effects of changes in transport
costs — broadly defined - on the geographical concentration of Canadian
manufacturing industries. We find large effects. Holding all other variables
fixed at their 1992 levels, changes in trucking rates explain about 20%,
changes in input-output linkages about 30%, and changes in import ex-
posure about 60% of the observed decline in spatial concentration over

the 1992—2008 period. Our qualitative results are robust to endogeneity

29. Since there is an insignificant correlation between the oEcD export share and the
squared residuals, we did not include it. We substituted instead the NAFTA import share
because it is consistently significant in the baseline set of models and it meets the criteria

for being internally instrumented.
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Table 2.8 Controlling for potential endogeneity of Ty, in specification (E.1).

Dependent variable is the cpF at 50 kilometers
(Model 4 (Model5) (Model 6) (Model 7)

Variables Base IV-25LS Lewbel 1 Lewbel 2
Asian share of imports -1.119% -1.110% -1.589% -1.621°
(0-420) (0:377) (0.533) (0-495)
OECD share of imports -0.476 -0.486 -0.673
(0:393) (0:341) (0.416)
NAFTA share of imports -0.549 -0.558¢ -0.756° -0.850°
(0374) (0.323) (0.435) (0-419)
Asian share of exports 0.482 0.452 0.641
(0-409) (0:398) (0.580)
OECD share of exports 0443° 0.422° 0.638°
(0.202) (0.189) (0.360)
NAFTA share of exports 0.318 0.297 0.532
(0.206) (0.194) (0.365)
Ad valorem trucking costs -0.346° -0.180" -0.194°
(0.095) (0.091) (0.089)
Ad valorem trucking costs (residual) -0.260%
(0.083)
Input distance -0.358¢% -0.359% -0.132° -0.223%
(0.053) (0.054) (0.077) (0.076)
Output distance -0.318% -0.314°% -0.385% -0.349°%
(0.040) (0.042) (0.086) (0.086)
Average minimum distance -0.294% -0.293%
(0.041) (0.039)
R? 0.518 0.514 0.316 0.328

Notes : The dependent variable is the unweighted (count based) Duranton-Overman K-
density cpr. ¢, ® and ¢ denote coefficients significant at the 1%, 5% and 10% levels, res-
pectively. Our measures of input and output distances are computed using N = 5. ‘Ad
valorem trucking costs (residual)’ denotes the residual of the regression of ‘Ad valorem
trucking costs’ on industry multi factor productivity. Model 4 replicates our preferred mo-
del but the standard errors are bootstrapped because of the generated regressor. Model 5
instruments the ‘Ad valorem trucking costs’ using costs constructed from us price indices.
Models 6 and 7 use the Lewbel (2012) methodology to instrument input-output distances
and trade shares. In model 6 only a subset of the import shares is instrumented, while all
trade shares are instrumented in model 7. See Appendix D for details. A constant term
is included but not reported. All industry controls (Total industry employment; Firm
Herfindahl index (employment based); Mean plant size; Share of plants affiliated with
multiplant firms; Share of plants controlled by foreign firms; Natural resource share of
inputs; Energy share of inputs ; Share of hours worked by all workers with post-secondary
education ; In-house R&D share of sales) are included but not reported.
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concerns and to the way we measure the spatial concentration of indus-

tries — in terms of plants, employment, or sales.

Our research makes three distinct contributions. First, we construct
new and finer measures of the costs of trading goods across space than
in the previous literature. We use detailed microdata on freight transpor-
tation to estimate industry-level time-varying measures of transport costs,
and we propose a new way of constructing micro-geographic input-output
linkages based on location patterns and national input-output tables. Se-
cond, we are - to the best of our knowledge — among the first to exploit
the time-series variation in the data to shed light on what drives changes
in the spatial concentration of industries. The panel nature of the data al-
lows us to control for unobserved heterogeneity and a battery of other
time-varying factors. We have highlighted a hitherto unnoticed tradeoff
when using time-varying geographical concentration measures construc-
ted from micro-geographic data : the need to smooth out the time-series
volatility at short distances versus the potential underestimation bias of the
concentration measures due to the smoothing. More work is called for here
to propose better measures of concentration in the presence of substantial
. plant-level churning in the data. Last, by exploiting the spatially continuous
nature of our data, we have also shed light on the spatial scale at which the
aforementioned effects operate. In line with previous research that has loo-
ked at the geographical scale of knowledge spillovers, labor market poo-
ling, and input-output linkages, we find that the costs of trading goods
influence the spatial structure of industries at small geographical scales :
whereas the effects are sizable at short distances up to 50 kilometers, they

basically vanish beyond about 100-200 kilometers.
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We believe that our results are important because they show that,
although the costs of trading goods across space have hit historical lows,
changes in those costs still do shape location patterns of industries. In a
world where profit margins have become tiny, even small changes in trade
costs can have large effects on firm location, specialization patterns, and
trade. In a nutshell, the often heralded ‘death of distance’ is premature.

The world is not yet flat : transport costs matter!
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2.6 Appendix to Chapter 2

This set of appendices is structured as follows. Appendix A describes
our datasets, data sources, and key variables. Appendix B provides details
on the Duranton-Overman K-density computations. Appendix C describes
the construction of the weights used in our input-output measures. Ap-
pendix D provides details for the implementation of the Lewbel (2012) es-

timates. Last, Appendix E contains supplemental tables and results.

A. Data and data sources

This appendix provides details on the data used and the data sources.
A description of the key variables and the associated descriptive statistics

are given in Table 2.3 in the main text.

Plant-level data and industries. Our analysis is based on the Annual Sur-
vey of Manufacturers (asMm) Longitudinal Microdata file. This data cover
the years from 1990 to 2010. Our focus is on manufacturing plants only. For
every plant we have information on : its primary 6-digit NAICs code (the
codes are consistent over the 20 year period); its year of establishment;
its total employment; whether or not it is an exporter in selected years;
its sales; the number of non-production and production workers; and its
6-digit postal code. The latter, in combination with the Postal Code Conver-
sion files (pccF), allows us to effectively geo-locate the plants by associating

them with the geographical coordinate of their postal code centroids.
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The survey frame of the asM has evolved over time. Early in the
period, it was relatively stable with, on average, about 32,000 plants per
sample year. The sample of plants was restricted to those with total em-
ployment (production plus non-production workers) above zero, and plants
must have sales in excess of $30,000. Also, aggregate records were exclu-
ded. These records represent multiple (typically small) plants without lati-
tudes and longitudes. In 2000, however, the number of plants in the survey
increased substantially as the AsM moved from its own frame to Statistics
Canada’s centralized Business Register, increasing the sample to an average
of 53,000 plants. In 2004, however, the number of plants in the frame was
once again restricted, with many of the small plants once again excluded,
or included in aggregate records. With this in place, the sample returned to
near previous levels, averaging about 33,000 plants between 2004 and 2009.
The expanded survey scope in the early 2000s had little effect on trends
in the cpFs, but there was an effect on the number of industries found to
be localized or dispersed (see Table 2.9 in the Appendix). Our econometric
analysis deals with the change in the sample frame through the inclusion

of year fixed effects.

We also use the AsM to construct controls for the labor market va-
riables, for some natural advantage proxies, and for industry ownership
structure variables that we include in the regressions. All variables are

constructed by aggregating plant-level data to the industry level.

L-level input-output tables. We use these tables to construct our plant-
level proxies for the importance of input and output linkages (see Appen-

dix C and Section 2.3.2 for more details). The L-level tables are at a more
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aggregate level than the 6-digit Naics level. We break them down to the

6-digit level based on industries’ weights in terms of sales.

KLEMS database. This database, which covers the period from 1961 to
2008, contains various industry-level informations useful for constructing

proxies for natural advantage (e.g., energy intensity, water usage etc.).

Trucking micro-data. The trucking micro-data comes from Statistics Ca-
nada’s Trucking Commodity Origin-Destination Survey and from the ‘ex-
periment export trade file’ produced in 2008 (see Brown and Anderson,
2015, for details). Section 2.3.2 provides details on the methodology used

to estimate ad valorem rates by industry and year.

Geographical data. To geolocate firms, we use latitude and longitude data
of postal code centroids obtained from Statistics Canada’s Postal Code
Conversion files (pccF). These files associate each postal code with different
Standard Geographical Classifications (sGc) that are used for reporting cen-
sus data in Canada. We match firm-level postal code information with geo-

graphical coordinates from the pccF.

Trade data. The industry-level trade data come from Industry Canada
and cover the years 1992 to 2009. The dataset reports imports and exports
at the Na1cs 6-digit level by province and by country of origin and desti-
nation. We aggregate the data across provinces and compute the shares of
exports and imports that go to or originate from a set of country groups :

Asian countries, OECD countries, and NAFTA countries. Since the trade data
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is available from 1992 on, whereas the kLEMS data is available until 2008, we
restrict our sample to the 1992—2008 period in all estimations to maintain

comparability of results.

Us price indices. We use detailed year-by-year NaICs 6-digit price indices
from the NBER-CES Manufacturing Productivity Database

(http://nber.org/data/nberces5809.html) to construct instruments for
Canadian industry-level transportation costs. Methodological details are

provided in Sections 2.3.3 and 2.4.3.

B. The distance-based approach to measuring localization

Following Duranton and Overman (2005, 2008), hereafter Do, the esti-
mator of the kernel density (probability density function or PDF) of bilateral
distances between plants at a given distance d, is given by :

n—1 n e 5 L
1?(@=ﬁ2 ) f(d hd”), (B.1)

i=1 j=i+1

where h is Silverman’s optimal bandwidth and f is a Gaussian kernel func-
tion. The distance d;; (in kilometers) between plants ¢ and j is computed

as :

dij = 6378.39-acos [cos(|lon; — lon;|) cos(lat;) cos(lat;) + sin(lat;) sin(lat;)] .
(B.2)

Alternatively, rather than using plant counts as the unit of observation in

(B.1), we can characterize the localization of employment or sales at the

industry level. This can be accommodated by adding weights to (B.1) :
1 n—-1 n = dij
h

3 0 (e ey

=]
BF s Bt el Heng Sy

Rw(d) = ) (B3)
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where e; and e; are the employment or sales levels of plants i and j, respec-
tively. 3° The weighted K-density thus describes the distribution of bilateral
distances between plants weighted by either employees or sales in a given
industry, whereas the unweighted K-density describes the distribution of
bilateral distances between plants in that industry. When required, as in
Table 2.9, we follow Duranton and Overman (2005) and implement a Monte
Carlo approach for measuring the statistical significance of localization of

industries.

To construct the K-densities, we need to fix a cutoff distance. Follo-
wing Behrens and Bougna (2014), we choose a cutoff distance of 800 kilo-
meter for computing the K-densities. The interactions across ‘neighboring
cities’ mostly fall into that range in Canada. In particular, a cutoff distance
of 800 kilometer includes interactions within the ‘western cluster’ (Calgary,
AB; Edmonton, AB; Saskatoon, SK; and Regina, SK); the ‘plains cluster’
(Winnipeg, MB; Regina, SK; Thunder Bay, ON); the ‘central cluster’ (To-
ronto, ON ; Montréal, QC; Ottawa, ON ; and Québec, QC); and the ‘Atlantic
cluster’ (Halifax, NS; Fredericton, NB; and Charlottetown, PE). Setting the
cutoff distance to 8oo kilometer allows us to account for industrial localiza-
tion at both very small spatial scales, but also at larger interregional scales
for which market-mediated input-output and demand linkages, as well as

market size, might matter much more.

30. Contrary to Duranton and Overman (2005), who use a multiplicative weighting
scheme, we use an additive one. The additive scheme gives less weight to pairs of large
plants and more weight to pairs of smaller plants than the multiplicative scheme does.
Using a multiplicative scheme would imply that our results may be too strongly driven by

a few very large firms in a given industry.
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While the K-density PDF provides a clear picture of localization at
every distance d, and while it allows for statistical testing, it is not well
suited in capturing globally the location patterns of industries up to some
distance d. This can, however, be achieved by using the K-density cumu-
lative distribution up to distance d. In all our econometric estimations, we

use as dependent variable the cpF of the K-densities. Those are given by :

d d
CDF(d) = ) K(6) and CDFw(d) = )  Kw(9). (B.4)
=1 §=1
Finally, for the purpose of comparision of our results, we also compute the
‘raw’ unweighted cDFs of the distribution of bilateral distances, which are

given by

1 n—-1 n

where 7 is the number of plants in the industry and where x(-) is an in-
dicator function that takes value 1 if the bilateral distance d;; is less than
d and zero otherwise. While (B.4) provides a kernel-smoothed distribution,

(B.5) provides a raw distribution.

Table 2.1 provides the (unweighted) K-density cpFs in 1990, 1999,
and 2009 for the most strongly localized industries in Canada ; while Table 2.2
summarizes the industry-average K-densities across years and using dif-
ferent weighting schemes. Last, Table 2.9 summarizes the year-on-year lo-
cation patterns of industries based on the formal significance test of Du-

ranton and Overman (2005) that we have described in the foregoing.
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C. Input-output shares

We use the L-level national input-output tables from Statistics Ca-
nada at buyers” prices. These tables — which constitute the finest sectoral
public release — feature 42 sectors that are somewhere in between the Na1cs
3- and NAICs 4-digit levels. For each industry, i, we allocate total inputs
purchased or outputs sold in the L-level matrix to the corresponding Na1cs
6-digit sectors. We allocate total sales to each subsector in proportion to that
sector’s sales in the total sales to obtain a 257 x 257 matrix of NaIcs 6-digit
inputs and outputs, which we use in constructing the linkages.3* From
that table, we compute the share «;; that sector i sells to sector j. We also
compute the share f;; that sector ¢ buys from sector j. We systematically
exclude within-sector transactions where ¢ = j, as those may be capturing
all sorts of intra-sectoral agglomeration economies that are conducive to
clustering but not correlated with input-output linkages. Thus, the weights

we use in equations (E.3) and (E.4) are given by

w}’)‘(e)ls = ag(y,s and w?;zte)ls = Boe),s: (C.1)

Using the L-level matrix provides smoother series of input-output linkages
than those obtained using the confidential W-level national input-output

tables (which are directly in the 257 x 257 industries format).

31. Because of confidentiality reasons, we do not use the finer W-level matrices since
this would make disclosure of results more problematic. However, the tests we ran using

those matrices yield very similar results to the ones we report in this paper.
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D. Applying the Lewbel (2012) method

To apply the Lewbel (2012) procedure, we need to verify two condi-
tions : heteroscedasticity and correlation. First, we regress the potentially
endogeneous variables (input and output distances, trade shares, and tru-
cking costs) on all other exogeneous variables of the model. We then predict
the residuals of that regression and run a standard heteroscedasticity test.
We need to reject the homoscedasticity assumption for the Lewbel method
to be applicable. In our case, we strongly reject the null hypothesis of ho-
moscedasticity for all series of residuals (the p-value is zero in all tests). Se-
cond, we take the square of the predict residuals from the foregoing regres-
sion, and check the correlation between the dependent variable of the re-
gression (input distances, or output distances, or the different trade shares,
or trucking costs) and those squared residuals. The correlation needs to be
‘strong’ and statistically strongly significant for the instruments to work
properly. In our case, this condition holds true for transportation costs,
the input and output distances, and for all import shares : the correlation
of the squared residuals with the variable itself is significant at 1% in all
cases. It is 0.067 for transportation costs, -0.081 for input distances, -0.089
for output distances, 0.130 for the Asian share of imports, and -0.079 for
the NAFTA share of imports. We find no statistically significant correlation

for the export shares.

Since the two conditions (heteroscedasticity of the residuals and cor-
relation of the squared residuals with the variable) are met in our case, we
can apply the Lewbel estimator. Since fixed effects cannot be included in
the estimation (see ivreg2h in Stata), we de-mean all variables by industry

first. The exogeneous variables are partialled-out for the Lewbel estimator
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and so their coefficients are not reported. Since we have an exogeneous
instrument for transportation costs, we apply the Lewbel estimator only to
deal with potential endogeneity concerns of trade shares and input-output

distances.

E. Additional tables and results

Table 2.9 summarizes the location patterns by year and by statisti-
cal significance following the methodology developed by Duranton and
Overman (2005). It contains information on the percentage of industries
with random, localized, and dispersed point patterns for all years between
1990 and 2009. Table 2.10 contains robustness checks for the estimation
of model (1) using the employment- and sales-weighted K-density cpFs,
respectively. It also replicates our main results by averaging all variables
over five-year intervals to reduce the volatility of some variables, and to al-
low slow-changing variables to be better identified. Table 2.11 contains the
first-stage estimates for the 1v regression, whereas Table 2.12 contains the
cross-sectional estimates (both pooled and year-by-year) fo.r transportation

costs.
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Table 2.9 Percentage of industries with random, localized, and dispersed point

patterns, 1990 to 2009.

Unweighted (plant counts) Employment weighted Sales weighted
Year | Random Localized Dispersed | Random Localized Dispersed | Random Localized Dispersed
1990 52.53 34.63 12.84 52.53 36.96 10.51 54.86 37.35 7.78
1991 51.36 36.19 12.45 52.92 38.52 8.56 55.25 36.19 8.56
1992 53.70 36.19 10.12 56.42 35.02 8.56 58.37 33.46 8.17
1993 | 53.70 3424 12.06 58.37 33.46 8.17 59.53 31.52 8.95
1994 49.81 36.96 13.23 57.20 33.07 9.73 60.70 30.74 8.56
1995 55.25 33.46 11.28 58.37 33.07 8.56 59.53 32.30 8.17
1996 |  54.09 3541 10.51 56.03 35-41 8.56 59:53 33.46 7.00
1997 55.25 35.41 9.34 60.70 32.30 7.00 61.09 32.68 6.23
1998 55.64 34.24 10.12 58.37 35.02 6.61 61.87 32.68 5.45
1999 55.25 34.63 10,12 58.75 35.41 5.84 61.48 32.30 6.23
2000 | 47.86 37.74 14.40 51.75 4047 7.78 5331 40.47 6.23
2001 43.58 41.25 15.18 52.92 40.86 6.23 50.58 42.41 7.00
2002 | 4591 39.69 1440 50.97 41.63 7-39 54.86 37.35 7.78
2003 47.47 36.58 15.95 50.58 40.86 8.56 55.64 35.41 8.95
2004 60.31 30.35 9.34 60.31 33.07 6.61 60.70 32.30 7.00
2005 58.75 33.46 7.78 62.65 31.13 6.23 64.20 31.52 4.28
2006 60.31 30.35 9.34 60.31 3346 6.23 62.26 33.85 3.89
2007 | 5759 33.46 8.95 60.70 33-85 5-45 62.65 32.30 506
2008 56.03 34.24 9.73 61.48 31.91 6.61 64.59 29.96 5.45
2009 59-53 33.07 7-39 63.04 31.52 545 63.04 3113 5.84

Source : Authors’ computations using the Annual Survey of Manufacturers Longitudinal Microdata file. The statistical
significance of the location patterns is computed using Monte Carlo simulations with 1,000 replications following the
procedure developped by Duranton and Overman (2005).
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Table 2.11 First-stage results for the 1v regression.

Dependent variable : Ad valorem trucking costs

Variables
Total industry employment 0.017
(0.014)
Firm Herfindah! index (employment based) 0.002
(0.010)
Mean plant size 0.006
(0.014)
Share of plants affiliated with multiplant firms 0.026
(0.039)
Share of plants controlled by foreign firm 0.055
(0.044)
Natural resource share of inputs -0.008
(0.006)
Energy share of inputs 0.084*
(0.018)
Share of hours worked by all workers with post-secondary education -0.057°
(0.014)
In-house R&D share of sales 0.024*
(0.009)
Asian share of imports -0.056
(0.107)
OECD share of imports 0.067
(0.095)
NAFTA share of imports 0.021
(0.109)
Asian share of exports -0.156°
(0.089)
OECD share of exports -0.104
(0.072)
NAFTA share of exports -0.065
(0.069)
Ad valorem trucking costs us (instrument) 0.485°
(0.111)
Input distance 0.035°
(0.020)
Qutput distance -0.011
(0.015)
Average minimum distance 0.005
(0.014)
First-stage R* 0.628
First-stage F test of excluded instruments 19.07

Notes : 2, b, ¢ denote coefficients significant at the 1%, 5% and 10% levels, respecti-
vely. OLs regression of ‘ad valorem trucking cost’ on the ad valorem trucking cost
us (our instrument) and all control variables. We report the first-stage R? and note
from the first-stage test that the instrument is strong.

142
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Table 2.12 Cross-sectional estimates, pooled and year-by-year.

Dependent variable : cpF at 50 kilometers

Yearly cross sections (ad valorem

Pooled cross section trucking costs (residual))

Asian share of imports -0.044 | 1992 -0.128%
(0.272) (0.045)

OECD share of imports -0.094 | 1993 -0.116°
(0.268) (0.046)
NAFTA share of imports -0.062 | 1994 -0.097"
(0.207) (0.041)

Asian share of exports 0.531 1995 -0.109"
(0.552) (0.043)

0ECD share of exports 0.288 | 1996 -0.090"
(0.336) (0.041)
NAFTA share of exports 0.201 1997 -0.074°
(0.248) (0.040)

Ad valorem trucking costs (residual) -0.065° | 1998 -0.064
(0.031) (0.041)

Input distance -0.306% | 1999 -0.060
(0.098) (0.046)

Output distance -0428% | 2000 0.008
(0.099) (0.042)

Average minimum distance -0.380% | 2001 -0.039
(0.062) (0.040)

Observations 4,369 2002 -0.038
R2 0.773 (0.041)
2003 -0.041

(0.039)

2004 -0.043

(0.047)

2005 -0.028

(0.045)

2006 -0.044

(0.044)

2007 -0.062

(0.040)

2008 -0.068°

(0.036)

Notes : @, ®, © denote coefficients significant at the 1%, 5% and 10% levels, respec-
tively. oLs regressions, dependent variables is the cpF at 50 kilometers distance.
All specifications include the same controls than in the main text. There are no
time fixed effects in the pooled cross section. Huber-White robust standard errors

in parentheses.



CHAPITRE III

THE DETERMINANTS OF LOCALIZATION : A
CONDITIONAL DISTANCE-BASED APPROACH

Abstract

Do pairs of plants with ‘close or similar’ input-output linkages, types of workers,
and that use or exchange similar technology locate near one another in space? To
answer these questions, I propose a new non-parametric approach to measuring
the localization of ‘closely related” multiple industries - i.e., a multidimensional
way to assess coagglomeration — in continuous space. More precisely, I combine
the measurement approach of localization in continuous space with a coagglo-
meration approach, and then relate them to the degree to which industries share
goods, people, and ideas. My results show that plants which belong to manufac-
turing industries with similar input-output linkages or workforces tend to locate
near one another. I find little evidence that plants that share similar technologies
cluster geographically.

Keywords : Industrial localization; Agglomeration; Manufacturing indus-

tries ; Non-parametric statistics; Conditional kernel density.
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JEL classification : R12; L60; R30; R32; C140.
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“Together these three [input-output links, labor similarity, and technological
similarity] explain more of the variation in coagglomeration than does natural
advantage, which supports the view that agglomeration economies is a more
important determinant of geographic location.” (Ellison, Glaeser, and Kerr,

2010, p.1205).

3.1 Introduction

The most striking feature of industrial location patterns is geographical
concentration. This has been of interest to economists since 18go when Alfred
Marshall pointed out the stylized fact that some industries tend to cluster geogra-
phically whereas others do not. * Marshall identified three sources of agglomera-
tion : firms want to be near their customers and suppliers in order to economize
on transport costs of goods (goods), to reap the benefits of a thicker labor market
(people), and to learn from others and speed their own innovations (ideas). The
extent of this concentration of economic activities is surely the reason why inter-
est in agglomeration has grown in recent years. Over the last two decades, clus-
ters have attracted interest from policy makers, academics, economic development
practitioners, and development agencies. Many countries and economic develop-
ment initiatives have built their industrial development strategies on cluster-based
models. Despite successful implementation in the US, Brazil, Japan, France, Italy,
and Finland, recent economic studies increasingly question the use of cluster poli-

cies : there is indeed little evidence that more clustering will have significant effects

1. Famous examples of industry clusters include information technology firms in
Silicon Valley and Boston’s Route 128 (Saxenian, 1996), the Manufacturing Belt in the
u.s, the Blue Banana’ in Europe, industrial districts in Italy (Pyke et al., 1990), Toronto’s
biopharmaceutical cluster (Martin et al., 2004), advertising firms in Manhattan (Arzaghi
and Henderson, 2008), and furniture producers in western North Carolina (Acharya et al.,

2009).
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on average productivity or wages in manufacturing industries. The starting point
to better understand the drivers and implications of cluster-based development is
to measure correctly the observed degree of clustering. Consequently, many stu-
dies have empirically defined and measured industry localization using different
spatial concentration indices. This is relevant from a policy perspective because
there is an increasing need for cluster-based data to support research, facilitate
comparisons of clusters across regioﬁs and support policymakers in defining re-

gional strategies.

Rigorous empirical tests of industrial agglomeration in space depend on the
availability of micro-geographic data at a fine spatial scale. In most cases, these
data, which enable researchers to determine precise agglomeration patterns, are
not widely available to the public and are fairly expensive. Combes et al. (2008)
discussed six ideal properties for a spatial concentration index. According to these
authors, any test of localization should rely on a measure of spatial concentration
which : (i) is comparable across industries; (ii) is comparable across spatial scales;
(iif) is unbiased with respect to arbitrary changes to a spatial classification; (iv)
is unbiased with respect to arbitrary changes to industrial classification; (v) is
carried out with respect to a well-established benchmark; and (vi) allows one to
determine whether significant differences exist between an observed distribution
and this benchmark. In other words, the measure should provide an indication of
the significance of the results through a variety of statistical tests. The ideal index

of spatial concentration still seems out of reach.

Two main approaches have been followed in the literature. The first treats
space as discrete and the second considers space as continuous. The first approach
was developed by Ellison and Glaeser (1997), it was followed by Maurel and Sé-
dillot (1999), Briilhart and Traeger (2005), and Mori, Nishikimi, and Smith (2005).
Ellison and Glaeser built an index (the EG index) of industrial agglomeration that

is comparable across industries with different industrial levels of concentration
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(i.e., different numbers of plants and different plant size distributions). Their in-
dex takes the value of zero when an industry is as concentrated as one would
expect to result from a random location process; the index takes a positive va-
lue when an industry is more concentrated than what one would expect to occur
randomly. Cassey and Smith (2014) recently improved the interpretation of the
EG index by simulating confidence intervals that can be used for a statistical test.
Another discrete measure is the p-index developed in Mori et al. (2005). This in-
dex is a statistical test based on the Kullback-Leibler divergence measure, derived
from a discrete-space axiomatic model. Despite several advantages, the indices of
Ellison and Glaeser (1997), Maurel and Sédillot (1999), and Mori et al. (2005), rely
on a discrete space (i.e., arbitrary spatial units) and hence are vulnerable to the

well-known modifiable areal unit problem (MAUP).

The maur has been first addressed by Openshaw and Taylor (1979), Ar-
bia (1989), and recently by Duranton and Overman (2005, 2008, henceforth DO),
and Marcon and Puech (2003, 2010, 2014). Based on the seminal work by Ripley
(1976, 1977) who introduced the k function (see Diggle, 1983 and Cressie, 1993),
a famous distance-based method widely used in ecology, Duranton and Overman
(2005) construct a non-parametric test of localization that uses micro-geographic
data and treats space as continuous, thereby effectively eliminating the MauP. The
main idea behind this approach is to determine the distribution of bilateral dis-
tances between all pairs of plants in each industry and to compare that distribu-
tion to a randomly drawn set of bilateral distances. An industry is localized or
dispersed if its distribution of bilateral distances significantly deviates from a se-
ries of simulated random draws. This approach has gained increasing acceptance
because it derives more reliable results and respects five of the six properties of an
ideal measure of concentration (the only exception is the property related to the

arbitrary changes to industrial classification).

Although the Duranton and Overman (2005) index respects most of the
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properties of an ideal measure of concentration, it is still sensitive to industry cha-
racteristics (i.e., the index is biased with respect to arbitrary changes in industrial
classification). Just as the arbitrary carving up of spatial units leads to the MmauP,
by defining a limited number of sectors, an industrial classification may also ar-
bitrarily separate closely related economic activities or reunite activities despite
their differences. Haedo and Mouchart (2012) pointed out that when sectors are
aggregated, some dispersed sectors are mixed up with the concentrated sectors to
provide a ‘medium’ distribution. Applying the Duranton and Overman (2005) me-
thodology to Canadian data, Behrens and Bougna (2015) documented that 50-60%
of the manufacturing industries are localized ‘at the NAICS 4-digit level’, whereas
only 30-40% are localized at NaIcs 6-digit. In the case of the United Kingdom
(UK.), Duranton and Overman (2005) document different proportions of locali-
zed industries ‘at the 4-digit level’ (i.e., 52 percent at a 5 percent confidence level)
and 3-digit industries (i.e., 58 percent at a 5 percent confidence level). Riedel and
Hyun-Ju (2014), and Nakajima et al. (2012) find similar results respectively for Ger-
many and Japan. Concentration levels change because at the Na1cs 6-digit level,
industries are close in space. This suggest that they are subject to the same agglo-
merative forces, therefore, they should not be separated within industrial classi-
fications. Clearly, the measured levels of industrial concentration are sensitive to
changes in industrial aggregation (or alternatively, industrial classification). My
paper partially corrects this by introducing a new conditional test of localization

that accounts for both the spatial and technological distances between industries.

The literature on empirically defining and measuring industry localiza-
tion is growing. However, there are only few rigorous papers about the micro-

foundations that go beyond assessing Marshall’s three forces.> The main reason

2. Exceptions include Duranton and Puga (2001), Strange et al. (2006), Ellison, Glae-
ser, and Kerr (2010), Rosenthal and Strange (2005, 2010), Strange, Faggio, and Silva (2014),

and Behrens, Bougna and Brown (2015).



150

lies with the ‘Marshallian equivalence’ (Duranton and Puga, 2004), i.e., all ag-
glomeration mechanisms predict that plants tend to locate near other plants that
share similar characteristics. Plants do this for productivity gains, irrespective of
the channels through which these gains materialize. Moreover, there are currently
few studies on the coagglomeration of industries into business clusters. Ellison
and Glaeser (1997) document U.S. coagglomeration patterns. Ellison et al. (2010)
use coagglomeration measures to assess the relative importance across industries
of potential sources of agglomeration economies. Klier and McMillen (2008) use
the Duranton and Overman (2005) index to explain concentrations in the U.S. auto
supplier industry. Billings and Johnson (2012) introduce a non-parametric test for
industrial specialization. This specialization test refers to the concentration of an
industry within a given urban area (Denver-Boulder-Greeley). There is also a lite-
rature on industrial complex analysis, that looks at the co-location of plants based
on their input-output (and other) relationships. The basic idea is the identification
of clusters and complexes, or of groups of industries linked by flows of goods
and services, or showing significant mutual locational attraction (Czamanski and
Ablas, 1979; Feser and Bergman, 2000; Feser, 2003; Delgado, Porter and Stern,

2015).

My paper adds to this growing literature on industrial agglomeration. I
exploit information contained in coagglomeration patterns to construct a non-
parametric statistical test of colocalization derived from micro-geographic data.
Unlike other studies on coagglomeration — which only look at pair-wise coag-
glomeration — my ‘conditional test’ is a modified version of the Duranton and
Overman (2005, 2008) test for localization and can be viewed as a non-parametric
multidimensional approach to the measurement of coagglomeration. The key idea
of my test is to first combine the measurement approach of localization in conti-
nuous space with a coagglomeration approach, and then relate them to the degree

to which industries share goods, people, and ideas. More precisely, I propose a
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new non-parametric approach to measuring the localization of ‘closely related’
multiple industries - i.e., a multidimensional way to assess coagglomeration — in
continuous space. My approach allows to measure concentration and explains the
relationship between industrial concentration and its determinants in a single fra-
mework. Conditional on belonging to industries with similar characteristics (in
terms of input-output linkages, types of workers employed, or technology used),
1 check whether plants are located near one another in space. To do so, I use Mar-
shallian proxies to measure the proximity of plants in some non-geographic space
(in order to select a subset of plants with similar characteristics), and I then use a
non-parametric estimation method to see if these similar pairs of plants are located
close to one another in geographical space. Similarity of industries are measured
through Euclidian distances and Pearson correlation coefficients. Since the non-
geographic space is built upon Marshallian proxies, my test allows me to gauge
non-parametrically their importance. It allows to answer the following questions :
Do pairs of plants with ‘close or similar’ input-output linkages, types of workers
employed, and that use or exchange similar technology locate near one another in

space?

My results show that two out of three Marshallian forces find support in
coagglomeration patterns. I find that plants which belong to industries with si-
milar input-output linkages are localized at short distances and dispersed at long
distances — similar to Rosenthal and Strange (2010). I further show that pairs of
large plants are localized at short and intermediate distances, while pairs of small
plants are localized at short distances and dispersed at long distances. My results
also suggest that large plants co-locate with large plants (Holmes and Stevens,
2014 ; Behrens and Sharunova, 2015). Regarding the role of labor market pooling,
I document that plants which employ similar types of workers (in terms of skills
and expertise) tend to co-locate near one another in space. Similarly to Ellison et

al. (2010), and Behrens and Guillain (2015), I find little evidence that plants that
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used or share similar technologies, as measured by patent citations, cluster geo-
graphically. I also find that input-output linkages play a more important role than
labor market pooling in manufacturing location decisions. Last, my results also
reveal that industries are, on average, always more colocalized in terms of em-
ployment than in terms of plant counts. These results are robust to the choice of

the similarity metric, i.e., Euclidean distances or correlation coefficients.

The rest of the pallper is organized as follows. Section 3.2 describes the data
and variables used to generate my conditional kernel density measures of coag-
glomeration. Section 3.3 outlines the methodology. Section 3.4 contains my main
empirical results and deals with potential heterogeneity in agglomeration bene-
fits across plants and industries (co-location patterns of large and small plants). I
provide several robustness checks in Section 3.5. Finally, Section 3.6 serves as the

conclusion.

3.2 Data and measurement

3.2.1 Industries, plants, and geographical data

I briefly discuss my data and explain how I construct my Marshallian proxies.
I relegate a more detailed description of the data to the appendix — in particular
the comparison between the Scott’s National All and the Canadian Business Pat-
terns data of Statistics Canada and information on the geographical structure of

the census and pPccF data.

Industries and plants: My empirical analysis is based on data from the Scott’s
National All Business Directories Database. The biannual data covers the period
from 2001 to 2013. A plant is considered a manufacturer in the extended sense,

if it reports a manufacturing sector (NAICS 31-33) as its primary or secondary
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sector of activity. The Scott’s database contains between 41,000 and 54,000 plants
per year, covering 242 concorded NaIcs 6-digit manufacturing industries — see the
appendix for more details on industry concordances. For every plant or establish-
ment, I have information about : its primary naics 6-digit industry code; up to
four 6-digit secondary NaICs codes; the year of establishment; its employment;
whether or not the plant is an exporter; and its 6-digit postal code. Table 3.1 pre-
sents the descriptive statistics of the data by province. In 2013, the average plant
size by province and/or territory varied between 11.57 in the Canadian Territories
(i.e., Northwest Territories, Yukon and Nunavut) and 57.35 in Manitoba. In 2005,
it was between 6.24 in the Canadian Territories and 52.25 in Manitoba. Quebec
and Ontario concentrated more than 70 of the total employment across the years.
The size distribution of manufacturing plants was very skewed towards small es-
tablishments across the years. On average, only 15% of plants had more than 50
employees; the majority of plants employed between 1 and 20 workers. This is
consistent with what we know from other countries (Lafourcade and Mion, 2007;

Holmes and Stevens, 2004).

Table 3.1 Descriptive Statistics of Canada Manufacturing Industries by province :

2001 — 2013.
2001 2003 2005 2007 2009 2011 2013

Provinces Plants Emp. | Plants Emp. | Plants Emp. | Plants Emp. | Plants Emp. | Plants Emp. | Plants Emp.
Alberta 3924 3609 | 3674 3992 | 3557 4446 | 3779 4B890| 3722 5253 | 3481 58.29| 3312 5035
British Columbia 6165 3209 | 5957 32.39| 5464 3361 | 5328 34.40| 5123 3501 | 4941 3484 4440 3637
Manitoba 1,665 4595| 1,569 4654 ) 1,515 5225) 1,429 5498 1,301 57.62) 1265 5362) Liys 5735
New Brunswick 1424 3560 ( 1401 3751 | 1,286 3992 | 1,196 40.09 | 1,201  39.24 997 38.05 920  43.30
Newfoundland & Lab. | 578 4346 | 582 4240 549 4441 | 515 4793 484 4297 409 4420| 388  46.64
Nova Scotia 1720 2954 | 1,613 3229| 1,563 3282 1,396 3649 1,356 3444 | 1,143 3357 | 1041 3710
Ontario 20,518 4535 | 22,225 46.61 | 21,488 4559 | 20,704 47.82 120,318  46.63 | 18958 45.84 | 17,189  47.63
Prince Edward Island 331 2569 306 25.08 331 2442 310 26.06 286 2542 236 272 225 2870
Quebec 15822 44.29 | 14930 47.27 [ 14,348 4544 | 13175 4653 [ 12914 4859 | 11943 4801 | 11,118  50.59
Saskatchewan 1,393 2770 | 1,309 2786 1,343 3229 | 1,231 34.30| 1,144 3653 | 1,139 3845 1,021  44.59
Territories - - - - 41 6.24 49 8.29 46 8.50 40 12,63 35 1157
Total and average 53540 4148 [53566 4343 | 51485 4355 49112 4528 (47895 4570 | 44552 4558 | 490864 4714
Notes : Emp. is the ge plant size by province. Data on Territories are not available in the database for the years 2001 and 2003.

The Scott’s database probably constitutes the best alternative to Statistics
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Canada’s micro-level Canadian Business Patterns. Table 3.7 in the appendix provides
a comparison between the Scott’s National 2001, 2003, 2005, 2007, 2009, 2011, and
2013 databases and Statistics Canada’s province-level data from the Canadian Bu-
siness Patterns (cBP). Considering that the cBp database is close to the universe of
manufacturing plants, the coverage of manufacturing plants in the Scott’s database
is very good. On average, it covers about 83% of the plants across the years. Note
also that by using cross-industry correlations, Behrens and Bougna (2015) illustra-
ted that there is no strong industrial bias in the data. This implies that the Scott’s
database yields geographical results that are comparable to what can be obtained
with other datasets like the Annual Survey of Manufacturing (ASM) longitudinal

microdata file. 3

Geographical data: The 6-digit postal codes are useful for geo-locating plants.
To this end, I use the latitude and longitude coordinates of the postal code cen-
troids obtained from Statistics Canada’s Postal Code Conversion Files (pccF). These
pccr files associate each postal code with different Standard Geographical Classi-
fications (sGc) that are used by Statistics Canada. I match postal code information
with geographical coordinates by using the postal code data for the following year
in order to consider the fact that there is a six month delay in the updating of
the postal code data. Table 3.8 in the appendix provides more information on the

geographical structure of the census and pccr data.

3.2.2 Data for the Marshallian agglomeration proxies

According to Marshall (1920), firms tend to locate near one another for three

reasons : (i) to reduce the costs of obtaining intermediate inputs and shipping

3. For example, Behrens, Bougna, and Brown (2015), find similar results than Beh-

rens and Bougna (2015), using Statcan and Scott’s data, respectively.
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goods to downstream customers (goods); (ii) to take advantage of workers with
similar skills (people); and (iii) to speed the flows of ideas or technology across
industries (ideas). In order to assess the relative importance of these three Mar-
shallian forces (the flows of goods, people, and ideas) across industry pairs, I use
data from three different sources. I now describe in detail, the construction of my

Marshallian agglomeration proxies.

Firstly, I use Statistics Canada’s yearly L-level input-output tables (hence-
forth I-O), disaggregated to the W-level (NA1Cs 6-digit level) from 1998 to 2010.4
In these tables, I am primarily interested in industry inputs (i.e., the value of inter-
mediate goods, services and other factors of production that were used to produce
the output). Since the national I-O tables are produced on an annual basis with a
30 months lag from the reference year, I apply a three year lag to this data when
matching it to Scott’s data. These tables help to build the Euclidian distances and
the Pearson correlation metrics in order to capture the similarity of plants in terms

of I-O linkages.

Secondly, I use the Occupational Employment Statistics (OES) from the u.s.
Bureau of Labor Statistics (Ls). The BLS occupation tables provide industry level
(NAICS 4-digit) employment data for 555 occupations in the manufacturing indus-
tries. Most of these data are obtained from employer or establishment surveys.
Since oEs data span two different Occupational Classifications, all occupational
codes are adjusted to reflect changes between the 2000 and 2010 Standard Occu-

pational Classification (soc). These data are used to build the Euclidian distance

4. The L-level of the national input-o{.ltput tables from Statistics Canada is the most
detailed sectoral public release level — featuring 42 sectors that are somewhere in between
the NaIcs 3- and NAlcs 4-digit levels — that allows to construct consistent time series of
annual data. The W-level is the most detailed level (not publicly released) which represents

300 industries and 727 commodities.
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and the Pearson metrics in order to capture the similarity of plants in terms of
skills and expertise of their workers. One may raise the problem of using v.s. data.
However, occupation data by industries are not publicly available in Canada and I
do not think this is a significant problem since the u.s. and Canadian Na1cs 4-digit
levels are the same. In addition, the u.s. and Canada are structurally and technolo-
gically similar, hence I expect no significant differences between industries at the
NAICs 4-digit level. A few studies also employed OEs data from other countries as

instruments for domestic measures (see Ellison et al., 2010).

Thirdly, I use NBER u.s. Patent Citations Data. This database contains infor-
mation on all patent applications between 1976 and 2006 (3,209,376 patents). I also
use all of the citations made to these patents between 1976 and 2006 : 23,650,891
citations. I first use the concordance between the u.s. patent class and the u.s. sic
code provided by Kerr (2008). This link is built upon a mapping correspondence
developed by Brian Silverman (2002) and researchers at Statistics Canada. That
mapping helps to build the corresponding concordance between the sic codes and
the NaICs codes. I use this patent citations data to build the Euclidian distance and
the Pearson correlation metrics in order to capture the similarity of plants in terms

of technology.

Data limitations :  First, there are two concerns with using patents as a measure
of innovation : (i) patents reflect the first stage of innovation, that is, invention;
and (ii) the value of patents is highly skewed. However, patent citations are a
good measure of innovation because they are the direct outcome of the invention
process, and these data are released at the micro-level and are the most widely
used data in empirical approaches. See Carlino and Kerr (2015) for a thorough

discussion on the advantages and disadvantages of using patents citations data.

Second, I use industry data to construct my proxies. Specifically, I use Na1cs
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6-digit level data for input-output linkage proxies, NAICS 4-digit level data la-
bor market pooling proxies, and Na1cs 5-digit data level for knowledge spillover
proxies. Since by doing so all plants in the same industry have similar I-O lin-
kages, worker skills and expertise, and patent profiles, there is lumpiness in my
data in the sense that observations are not similar on a plant-by-plant basis, but
only on an industry-by-industry basis (as in Ellison et al., 2010). Hence, my pro-
cedure will select plants in terms of proximity of their industries, but not in terms
of proximity of their plant-level characteristics (as would be desirable in an ideal
world). The lumpiness is then that all plants in two industries will enter my mea-
sure at the same time, or none of them. One could get rid of that lumpiness by
using plant-level data on detailed input-output links, the detailed composition of
the workforce, or the patent output and citation patterns. As should be clear, these
data — which are required to compute proxit'nity between pairs of plants at the
microlevel — are basically non-existent. Hence, the ideal test remains for now out

of reach.

33 Estimation methodology

I propose a non-parametric test of localization in continuous space, based
on the Duranton and Overman (2005, 2008) test for localization. My ‘conditional
test’ can be viewed as a non-parametric multidimensional approach to the measu-
rement of coagglomeration (Duranton and Overman, 2008, Ellison et al., 2010, and
Strange et al., 2014). One drawback of Duranton and Overman (2005) is that their
methodology is silent on the potential causes of localization. In my paper, I stratify
the sample in such a way that I can better reveal the underlying causes. To accom-
plish this, I generate conditional kernel density (henceforth ck-density) measures
of industry coagglomeration and apply them to Canadian manufacturing plants.
The main idea behind my methodology is to measure the similarity of plants in a

non-geographic space in order to select a subset of plants with similar characteristics
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in that space. Then, I use a non-parametric approach to test whether these similar
pairs of plants are located close to one another in geographical space. Since the
non-geographic space is built upon Marshallian proxies, this test allows me to as-
sess the importance of Marshallian forces in shaping the localization of industries
(something that the unconditional Duranton and Overman, 2005, test cannot do).
My test is a ‘conditional test’, because I decide to focus only on pairs of plants
that belong to industries with significantly similar I-O linkages, worker skills and
expertise, and patent profiles. There are on average more than 50,000 plants per
year and it would be cumbersome to estimate my measure for all possible pairs of

industries (see Scholl and Brenner (2014, 2015) for a discussion of the limitations).

The intuition behind my methodology is best illustrated by means of an
example. Let us consider a set of 20 plants denoted by p, pa,..., p20 (see the top box
of Figure 3.3). For each of these plants I have informations on their relationships
in a given non-geographic space. I use these informations to compute the bilateral
distances between each pairs of plants. My first goal is to measure the similarity of
these 20 plants in a given non-geographic space (input-output linkages, labor mar-
ket pooling, or knowledge spillover) and select a subset of plants with relatively
close or similar characteristics. To do so, I use the Euclidian distance (as similarity
measure) to compute the 190 unique bilateral distances between my 20 plants in
the non-geographic space. I denote these non-geographic distances by g;—;. For a
given threshold distance g, two plants i and j are relatively similar if their bilate-
ral distances g;—; < g. Let us assume that the following bilateral distances satisfies
this condition : g1_3, g1-9, g3—9, g5—8, 946, and go—7. Thus, out of my 20 plants, g
plants denoted by pi1, p2,..., and py are related — either by input-output linkages, or
by similar types of workers, or by similar technology — in a non-geographic space
(see the middle box of Figure 3.3). Since my unit of observation is the bilateral
distances, only 6 pairs of distances will enter my estimations. My second goal is to

see if plants with relatively similar characteristics in the non-geographic space are
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locate near one another in the geographic space. Two possible location patterns
are depicted in Figure 3.3. The bottom-left box of Figure 3.3 illustrates a pattern
where my 9 plants with similar characteristics in the non-geographic space are lo-
calized in the geographic space, while the bottom-right box of Figure 3.3 illustrates

a pattern where they are not localized.

My approach allows to alleviate the problem related to the changes in in-
dustrial classification since the non-geographic space is built using the Marshal-
lian proxies. It is, therefore, possible to measure the technological distance between
plants in that non-geographic space. However, its implementation require informa-
tion on Marshallian characteristics at the plant level. Unfortunately, data for these
information are just available at the industry level. Thus, I select plants in terms of
proximity of their industry characteristics. By doing so, I assume that all plants in
the same industry have similar Marshallian characteristics : I-O linkages, worker
skills and expertise, and patent profiles. Hence, my test remains somewhat sensi-
tive to changes in industrial classifications. However, this industrial lumpiness is

attenuated by the within industry variation observed.

Conceptually, my test has five steps. In the first step, I design the similarity
space. In the second step, I define a preselection procedure. In the third step, I
compute the ck-densities of the bilateral distances between all pairs of establish-
ments with similar characteristics. In the fourth step, I compute counterfactuals :
the same number of establishments are randomly reallocated across existing ma-
nufacturing sites. In the last step, I construct local confidence bands and global
confidence bands. These allow for the comparison between the actual distribu-
tion and the counterfactuals in order to assess the significance of departures from

randomness. I now describe these five steps in greater details.
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Figure 3.1 Similarity of plants (non-geographic space) and location patterns (geo-
graphic space).

Step o: Consider a set of 20 plants. My goal is to test whether similar pairs of plants in a non-geographic space
are located near one another in the geographical space.

)
o: o
.
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Step 1: Far a given non-geographic space, | compute technalogicul distance measures between plants in order to
extract closely rdated plants.

H

Step 2: I then use non-paranetric statistics to check whether these simdlar plants are dose in the geographic spece.
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Notes : Similarity of Industries in non-geographic space (middle-panel) and two different location patterns :

Concentrated (bottom-left panel) and non-concentrated (bottom-right panel).
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Step 1 : Design of the similarity space

The non-geographic similarity space is built upon proxies for ‘Marshall’s
trinity” : input sharing, labor market pooling, and knowledge spillovers. I use the
Canadian I-O tables to measure the extent to which industries buy and sell inter-
mediate inputs from one another. I have 242 concorded Naics 6-digit manufactu-
ring industries. 5 I use the 242 x 242 I-O square matrix, to compute the shares IO;;
and JOj; of inputs that each industry buys from others, as fractions of their total
intermediate inputs. I will later use these shares to build my similarity measures.
I consider only the input relationships i.e., I use the column standardization. ® I
apply a three-year lag for the I-O tables to match with Scott’s data (e.g., the 2001
Scott’s data is match with the 1998 input-output table and the 2013 Scott’s data
with the 2010 input-output table).

Finding a proxy for labor market pooling is one of the most difficult tasks.?
In order to assess the importance of labor market pooling as a micro-foundation
of agglomeration, I use the occupational tables from the BLS to measure the extent

to which sectors that use the same types of workers are located near one another.

5. Canadian manufacturing industries are classified into 259 to 260 Na1cs industries,
depending on the classification year. My data span four different industrial classifications :
NAICS 1997, NAICS 2002, NAICS 2007, and NAICs 2012. I have concorded those classification

to a stable set of 242 manufacturing industries.

6. Another possibility is to use output relationships in order to look at the extent to
which industries sell intermediate outputs. As a robustness check, I ran some estimations
with output relations and my results remain fairly similar. This is consistent with Ellison

et al. (2010) who show that the input and output coefficients remain similar in magnitude.

7. The problem in proxying for the importance of pooling in an industry is that it
is difficult to identify industry characteristics that are related to the specialization of the

industry’s labor force (Rosenthal and Strange, 2001, p. 204).
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More precisely, for a given pair of industries i and j and a given occupation o, I
compute the shares of employees of occupation o in total employment in industries
i and j, respectively (LP,; and LP,;). I will use these shares to assess how similar

industries are in terms of labor requirements.

Marshall (1920) argued that firms tend to locate where they are likely to
learn from other firms. However, it is difficult to observe and to measure patterns
of knowledge spillovers and to assess them empirically — see Dumais et al. 2002;
Ellison and Glaeser, 1999; and Carlino and Kerr, 2015, for a recent survey. I use
the NBER patent citations data to measure the extent to which industries use or ex-
change similar technologies i.e., patents from industry i cite patents from industry
j, and vice versa. Using patent citations data, I build a square matrix that contains
either the number or the shares of citations that a patent in sector i is receiving
from patents in sector j (K S;; ) and the number or the shares of patents in sector
j that a patent from sector i is citing (K Sj;). Following Ellison et al. (2010), my
citation measure is a proxy for the importance of exchanging technology (ideas),
rather than a proxy for all forms of intellectual spillovers which are hardly identi-
fiable.® In addition, it is hard to dissociate labor mobility from knowledge spillo-
vers. I use patent citation flows that cover the period 1976 through 2006. I match
this data with my 2001, 2003, 2005, and 2007 samples. NBER data contain the flows
of citations made and received between 1976 and 2006, so I cannot use that data

for later years.

8. Even if many authors employ patent citations to assess intellectual spillovers, it
remains that they are an imperfect measure of intellectual spillovers - see Jaffe, Trajtenberg,
and Henderson (1993), Jaffe, Trajtenberg, and Fogarty (2000), and Thompson and Fox-Kean

(2005) for more details.
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Step 2 : Preselection procedure

I use the Marshallian proxies built in step 1 to precompute the empirical
distances between all industry-pairs in non-geographic space. It is important to
note that my unit of observation is the pair of industries, more precisely, the bila-
teral distances between the pairs of industries. Ideally, I should use the universe
of plants to preselect pairs of plants. However, I need to build a ‘relevant sub-
set of plants’ (restricted sample) with relatively similar characteristics to run my
test for the determinants of localization in continuous space. The importance of
this relevant subset of plants is two-fold. First, it allows to select only plants with
relatively similar industrial characteristics in my first step (and so avoids the in-
clusion of many dissimilar pairs of plants in my test, since my goal is to look at
the location pattern of pairs of plants with relatively similar industrial characte-
ristics). Second, it proved computationally infeasible to work with the distribution
of bilateral distances between all 50,000 plants (see Scholl and Brenner, 2015 for a

thorough discussion).

Let me define {2; as the universe of plants in year t, 24, the relevant subset
of plants with relatively similar characteristics, and g; ; the Euclidian distance bet-
ween industries i and j in non-geographic space (with i # j). For each year ¢, and
for a given threshold distance in non-geographic space g, I impose the following

two restrictions for plant selection :

— 2g:={(3,5) € 2 x 2,such as 0 < g;(4,5) < g }; and

. — $244 >=0.1XN; , where Ny = 192 1.

Formally,
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( \/ Y5 1(I04 —I04)?  in the case of I-O linkages (NaICs 6-digit, k = 242)

9ij = § \/E{;l (LPy— LP;j;)®  case of labor market pooling (k = 555 occupations)

{ \/ YF 1 (KSq— KSy)? case of knowledge spillovers (na1cs 5-digit, k = 180)

In the case of labor market pooling, I have employment data at the NaIcs
6-digit level for 555 occupations, therefore, k = 555 occupations. As a robustness
check, I compute the Pearson correlation coefficient (p) as measure of industries
similarity following Glaeser and Kerr (2009), Ellison et al., (2010), and Strange et
al. (2014). I exclude all pairs of plants within the same Na1cs industry in my com-
putation i.e., I systematically set to zero the own industry elements as those may
capture all sorts of intra-sectoral agglomeration forces that push toward clustering
but are not correlated with the input-output linkages, labor market pooling, or the
knowledge spillovers (e.g., a cluster policy promotion).9 I then use these precom-
puted distributions of distances to define a selection criterion for industries with
similar characteristics. As stated above, I use two criteria to generate my relevant

subsets of plants with relatively ‘close or similar’ industry characteristics :

— the threshold selection distance g between pairs of industries should
allow the selection of plants that belong to industries that are relatively
similar in non-geographic space;

— the threshold selection distance g should also allow to select at least 10%

of the universe of plants each year.

I apply these two criteria to the universe of plants to obtain a restricted

9. Duranton and Overman (2008) pointed out that the colocalization test may fail
despite strong forces pushing toward colocalization if own industry concentration forces

dominate.
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sample of plants with similar characteristics (see Table 3.3). If the non-geographic
threshold distance g = oo, then my restricted sample of plants equals the universe
i.e., all plants will enter my test and therefore I will always find a random location
pattern. If g = o, the restricted sample will be empty. However, setting a small thre-
shold distance will lead to a sample of plants with relatively similar characteristics.

The trade off between sample size and similarity is not trivial.

My strategy for the choice of the threshold distance g is to loop over the non-
geographical distance distributions and to choose the smallest threshold distance
that allows to fulfill the second requirement. Table 3.3 summarizes my preselected
subsets of plants and the average distance in non-geographic (similarity) space
across years.

Table 3.2 Preselection sample and average distance in the similarity space across

years.

Year | Universe I-O links Labor Knowledge

Sample Avg. % |Sample Avg. % |Sample Avg. %

53,540 6,101 0.260 11.4 | 7,097 0.674 133 | 8513 0.617 159

2003 | 53,566 5674 0246 106 | 5,691 0.614 106 | 10,819 0,582 20,2
2005 | 51,485 5661 0.236 11.0| 5,222 0,569 102 | 10496 0.585 204
2007 | 49,112 4,923 0254 100 | 7,734 0.590 158 | 10,011 0.582 204
2009 | 47,896 5393 0.261 11.3| 5,087 0.610 10.62
2011 | 44,552 4,547 0.271 102, 5,149 0.618 11.6
2013 | 40,864 5371 0.246 13.1| 5830 0.657 14.3

Notes :

0.01, 0.2, 0.2 correspond to the threshold distance between industries set in the input-output linkages, labor market

pooling and knowledge spillovers spaces respectively. Patent citations data flows covers the period 1976-2006, this explain why

there is no sample information in 2009, 2011, and 2013 for knowledge spillovers.

The main advantage of my conditional procedure is that it allows for the
construction of ck-density measures of industry coagglomeration between indus-

tries with relatively ‘close or similar’ characteristics. This is the same idea than
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coagglomeration, but while coagglomeration is limited to two industries — Elli-
son and Glaeser (1997), Duranton and Overman (2005, 2008), Ellison et al. (2010),
Strange et al. (2014) — my approach allows to compute these measures using more
than two industries. In addition, my approach to measure the proximity of plants
(Euclidian distance) in the non-geographic space is different. Ellison et al. (2010),
and Strange et al. (2015) define the maximum between two industries input shares
to assess the importance of I-O linkages (max JO;;, IO;;), and the correlation bet-
ween industries shares of employees of a given occupation in the total employment
in two industries (LaborCorrelation; ;) to measure the similarity of employments

in industries 7 and j.

Step 3 : Estimating the conditional K-densities of industries

As explained previously, I follow the methodology proposed by Duranton
and Overman (2005, 2008). The main idea is to determine the distribution of the bi-
lateral distances between plants with relatively similar characteristics and to com-

pare this distribution to a randomly drawn set of bilateral distances.

Let me denote the geographical distance between plants i and j by d;;. The
unconditional estimator of the density of the bilateral distances at any distance d
is given by equation (E.1). The Duranton and Overman (2005) estimator is also

conditional, since it is computed conditional on the plants being in one industry.

R(dley) = N(N 1)h>: Y (d hd”) (E-1)

i=1 j=i+1
This is the Duranton and Overman (2005) kernel density estimator, where :
— 2y is the sampling universe where firms selection occurs.
— N is the number of plants, N = | 25| ;

— [ is a (gaussian) kernel function;



167

— h is Silverman’s (1982) optimal bandwidth i.e., the smoothing parame-
ter;

— d;; is the great circle distance (in kilometers) between plants i and j.*°

For a sample of plants that fulfill my two selection criteria, the conditional

kernel density estimator (Ck-density) is defined by

e L f(d_d"") (E:3)
W NN - D)h & j=it1 h i

All ck-densities are computed using a Gaussian kernel with a bandwidth set ac-

cording to the recommendations in Silverman (1986). **

Step 4 : Constructing counterfactuals

The key question in this step is to assess, for every given distance, to what
extent the location patterns of industries with similar industrial characteristics
depart significantly from randomness. Following Duranton and Overman (2005,
2008), I compute counterfactuals of the conditional kernel density estimates. I then
compare these counterfactuals with the actual conditional kernel density determi-
ned in step three. Since I sample from the overall population of existing manufac-
turing plants, by doing this, I am implicitly controlling for the overall tendency of

economic activity to agglomerate.

Basically, I randomly draw as many plants as the relevant subset of plants

with similar characteristics had and assign each of them to one of any possible

10. The Great circle distance (in kilometers) between plants i and j is given by the

formula :

dij = 6378.39 x acos [cos([lon; — lon;|) cos(lat;) cos(lat;) + sin(lat;) sin(lat;)]  (E.2)

11. See Silverman (1986) for details concerning the choice of the kernel function.
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locations where I observe manufacturing firms. As a robustness check, and follo-
wing Duranton and Overman’s (2008) coagglomeration measures, I also restrict
my counterfactual universe by assuming that my hypothetical similar industries
randomly choose their locations in the existing locations where I observe indus-
tries with similar characteristics. I then compute — conditional on a distance d -
the distribution of the hypothetical sample of pairs of plants and estimate the
conditional kernel density of the bilateral distances. Finally, I repeat the first and
second steps a thousand times. This yields a set of 1,000 estimated values for each

distance.

Step 5 : Constructing local and global confidence bands

For each relevant subset of plants that are similar in non-geographic space,
I test the statistical significance of their departure from randomness. In order to
make a statement about the statistical departure of the localization pattern from
randomness, I compute local and global confidence bands, as in Duranton and
Overman (2005). To do so, I use the simulated counterfactual distributions from
the previous steps to construct two sided confidence intervals that contain 90% of
these estimates. The upper bound of this interval is given by the 95 percentile of
the generated values; the lower bound is given by the 5 percentile of the generated
values. This procedure generates two smooth curves. Hence, any deviation from

randomness can be concluded as indicating localization or dispersion.

Local confidence bands : For each distance d between o and 800 kilome-

ters, > and conditional on a predetermined cutoff distance (in the non-geographic

12. Duranton and Overman (2005) consider a threshold distance of 180 kilometers for
the United Kingdom, which refers to the median plant to plant distance in their sample.
The median plant to plant distance is much larger for Canada. See Behrens and Bougna

(2015) for details concerning the choice of the cutoff distance of 800 kilometers in Canada.
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space), if the distribution of the distances between the pairs of plants observed
after the smoothing procedure exceeds the upper bound of the confidence bands,
the selected pairs of plants are said to be locally concentrated at distance d with a
confidence level of 95%. In other words, the location patterns of plants that use the
same types of workers, or share inputs and technology is significantly different
from a purely random process in space (i.e., pairs of plants with similar types of
workers, similar input-output linkages or that use or exchange technology tend to
locate near one another). If the distribution of distances between plants is smaller
than the lower limit, the selected pairs of plants are said to be locally dispersed at

the distance under consideration.

Global confidence bands : For each sample of pairs of plants, the previous
intervals only allow to make a local statement (i.e., at a given distance) about
the departures from randomness. What about the global location patterns of the
conditional distribution? The key point here is to find out which local upper and
lower bounds would include 90% of the estimated values across all distances. This
requirement will allow all statements to be valid for the overall location pattern.
Thus, global localization is detected when the ck-density of one particular conditio-
nal distribution lies above its upper confidence band and global dispersion occurs
when the ckx-density lies below the lower confidence band and never exceeds the
upper confidence band. These bands contain go percent of the counterfactual dis-
tributions. When the observed distribution lies within them, we cannot reject, at
the 5 percent level, the null hypothesis that the observed location pattern of pairs
of plants with similar characteristics is one of spatial randomness. If the observed
distribution lies above the upper bound of the confidence bands, the distances

between plants are over-represented, as compared to spatial randomness, which

Ellison et al. (2010) choose a cutoff distance between 100 and 1,000 miles (around 161 and
1610 km) in the U.S. case.
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is interpreted as localization. Whereas when the observed distribution lies below
the lower bound of the confidence band, the distances between plants are under-
represented, as compared to spatial randomness, which is interpreted as dispersion

(see Duranton and Overman, 2005, 2008 and Behrens and Bougna, 2015).

Interpretation and examples

I provide four examples of possible localization patterns in Figure 3.2 to
explain what my conditional kernel density measures of coagglomeration capture.
The observed distribution of distances in the sample of pairs of plants with similar
characteristics is depicted by the solid line (ck-density). The dotted lines depict the
global confidence bands.

Figure 3.2 illustrates four different geographical patterns. The top-left panel
represents a location pattern where plants with similar I-O linkages are localized at
short distances and dispersed at intermediate distances. The distribution of these
pairs of plants illustrates a high density for distances between zero and approxi-
mately 150 km. In the top-right panel, we observe location pattern with two peaks
in the distance density. These are pairs of plants with similar I-O linkages that are
localized at short and intermediate distances (i.e., around 500 km), which corres-
ponds to the distance between the two main urban centers in Canada : Montréal
and Toronto. The bottom-right panel represents the location patterns of pairs of
plants that use or exchange similar technology — as proxied by patent citations.
This pattern is not different from one that would arise if location was random.
The bottom-left panel shows the location patterns of pairs of plants with similar
types of worker that are localized at short distances and random at long distances.
All these location patterns illustrate the importance for plants to located near one
another in order to reduce the costs of obtaining their intermediate inputs. This

result on the role of I-O linkages is in line with Marshall (1920) : when inputs are
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far away from the market, firms will trade off the distance between customers and

suppliers based on the costs of moving inputs and finished goods.

Figure 3.2 ck-density and global confidence bands of select industries with simi-

lar characteristics.
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3.4 Industrial colocalization patterns in Canadian manu-

facturing

I now use equation (E.3) to look at the location patterns of plants with
similar characteristics. I first consider input sharing as my non-geographic space
and analyze whether pairs of plants with similar I-O linkages are located near
one another in geographic space. I then look at the location patterns of plants
with relatively similar types of workers and ask whether they are located near one
another or not. I finally look at the location patterns of plants that use or exchange
similar technology (similar patent profiles) and ask whether they are located near

one another.

3.4.1 Location patterns of plants with similar input-output

linkages

I first use the I-O tables to compute the bilateral distances between indus-
tries. To fulfill my two sampling requirements — choice of a threshold distance that
allows for (i) the selection of plants that belong to industries that are relatively
close in non-geographic space; and (ii) to capture more than 10% of the universe
of plants - I fix a threshold distance that allows me to select between 4,547 (10.2%)
plants in 2011 and 6,101 (11.3%) plants in 2001 for my relevant subsets of plants.
I then use these relevant subsets of plants with similar I-O characteristics to esti-
mate my ck-density measures of localization. I later fix a more restrictive selection
distance to see if my results continue to hold. As stated previously and for reasons

of simplicity, only global confidence bands are reported.

My results illustrate that plants tend to reduce the costs of obtaining inter-
mediate inputs and of shipping goods. Figure 3.3 shows the ck-density of pairs

of plants with similar upstream-downstream linkages. As can be seen, they are
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located near one another at short distances in 2001 (less than 150 km). This re-
sult is in line with the findings in Ellison and Glaeser (1999), Ellison et al. (2010)
and Strange et al. (2014), who document that the I-O factor is an important deter-
minant of geographic location. My results also illustrate that plants with similar
input-output characteristics are dispersed at intermediate (between 200 and 400
km) and at long distances (beyond 700 km). Figure 3.4 shows that the observed lo-
cation patterns in 2001 also consistently hold for other years, except in 2013 where
we observe a second peak. This second peak corresponds to pairs of plants with
similar I-O linkages that are localized at intermediate distances (around 500 km),
which roughly corresponds to the distance between Montréal and Toronto.

Figure 3.3 Location patterns of plants with similar I-O linkages in 2001.
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Notes : Estimations are based on the relevant subset of plants that account for 11.3% of the universe of plants.

Despite the restrictions applied to the selection of industries, my relevant
subsets of plants with similar input-output linkages have a good coverage of ma-
nufacturing sectors. As can be seen from Table 3.9 in the Appendix, my sample
covers 28% of the 242 Naics 6-digit industries in the strict definition (the plant

reports the manufacturing sector as its primary sector of activity).
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Figure 3.4 Location patterns of plants with similar I-O linkages.
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2003, 10.8% in 2005, 10.0% in 2007, 11.2% in 2009, 10.2% in 2011, and 13.0% in 2013.
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To get an idea of the composition of the relevant subsets of plants, I now
look at its industrial composition. My unit of observation is the bilateral distance
between the plants. In 2001, my relevant subset of plants with similar I-O lin-
kages contains 921,265 unique bilateral distances, where ‘Cutlery and Hand Tools’
(332210) and ‘Metal Valve Manufacturing’ (332910) are the most represented indus-
tries, with 22.14% of the bilateral distances. In 2007 and 2013, the most represented
industries are related to the printing sector. The two most frequently coagglome-
rated industries are ‘Quick Printing (323114) and ‘Commercial Screen Printing’
(323113), with 28.4% of bilateral distances in 2007 and 33.1% in 2013. Table 3.4.1
illustrates that 6-digit industries mostly source their intermediate inputs within
their NaIcs 3-digit sectors. This result is in line with Ellison and Glaeser (1999)
and Ellison et al. (2010), where the two highest pairwise coagglomerated indus-
tries are within the same two digit sic. More information on the most frequently
co-localized industries in 2001, 2007, and 2013 is provided in Table 3.4.1 where I
report the two most frequently co-localized industries (in columns) and industries

with which they have similar input-output relationship (in lines).

3.4.2 Location patterns of plants using a similar workforce

Alfred Marshall’s (1920) ideas about labor market pooling suggest that “em-
ployers locate around workers with the skills which they require” and workers
seek out places “where there are many employers who need such skill as their”
(Marshall, 1920 p. 225). In order to assess the importance of labor market pooling,
I use the Occupational Employment Statistics (OEs) of the U.S. Bureau of Labor Statis-
tics (BLs). To fulfill my two sampling requirement — choice of a threshold distance
that allows for (i) the selection of plants that belong to industries that are similar
in non-geographic space; and (ii) to capture more than 10% of the universe of
plants — I fix a threshold distance that allows me to select between 5,087 (10.6%

of the universe) plants in 2009 and 7,097 (13.3%) plants in 2001 for my relevant
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Table 3.3 Most frequently co-localized industries in 2001, 2007, and 2013 : Simila-

rity in I-O space
Two Most Co-Localized Industries in 2001
332210 : Cutlery and hand tool mfg 13.57% 332910 : Metal valve manufacturing 6.67%
NAICS  NAICS name Freq. % | NAICS  NAICS name Freq. %
332910 Metal valve manufacturing 34,235 27.39 | 332210 Cutlery and hand tool mfg 25,219 41.05
332720 Turned product and screw, nut mfg 19,951 15.96 | 332311 Prefabricated metal building and comp. 8,892 1448
332311 Prefabricated metal building and comp. 17,363 13.89 | 332420 Metal tank (heavy gauge) mfg 7977 12.66
332420 Metal tank (heavy gauge) mig 15,112 1209 | 332439 Other metal container mfg 4,988 8.12
332439 Other metal container mfg, 9700 776 | 332611 Spring (heavy gauge) mfg 4,388 714
Others industries 28,616 2290 Others industries 10,165 16.55
Total 124,977 100.00 Total 61,429  100.00
Two Most Co-Localized Industries in 2007
323114 : Quick printing 14.18% 323113 : Commercial screen printing 14.17%
NAICS  NAICS name Freq. % | NAICS  NAICS name Freq. %
323113 Commercial screen printing 49806 5547 | 323114 Quick printing 48,287 5382
323115 Digital printing 35854 3993 | 323115 Digital printing 37879 4222
323116 Manifold business forms printing 4137 461 | 323116 Manifold business forms printing 3,550 3.96
Total 89,797 100.00 Total 89,716  100.00
Two Most Co-Localized Industries in 2013
323114 : Quick printing 16.6% 323120 : Support activities for printing  16.6%
NAICS  NAICS name Freq. % | NAICS  NAICS name Freq. %
323113 Commercial screen printing 28,715 2147 | 323115 Digital printing 66,986 50.09
323115 Digital printing 65801 4920 | 323114 Quick printing 33,029 2470
323116 Manifold business forms printing 2810 210 |323113 Commercial screen printing 30,991 2317
323120 Support activities for printing 36,407 2722 | 323136 Manifold L forms printing 2,723 2.04
Total 133,733 100.00 Total 133,729 100.00

Notes : 1 present only the two most co-localized industries which represent more than 20% of the total bilateral distances across years :
20.2% in 2001 ; 284% in 2007 and 33.1% in 2013. These two industries are displayed in columns, while their related industries are displayed

in lines.
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subsets of plants with a similar workforce. I then use these subsets to estimate my
ck-density measure of coagglomeration. Like in the previous case, I will also fix a

more restrictive selection distance to see if my results continue to hold.

My results show that in 2001, at both short and long distance, the location
pattern of pairs of plants using a similar workforce was not significantly different
from one that would be obtained by a purely random location process (see Fi-
gure 3.5). This result also holds in 2003, 2007, and 2009. In 2001, these plants are
significantly dispersed at intermediate distances (200 km). However, in 2005, 2011,
and 2013, I find that manufacturing plants tend to take advantage of groups of
workers with similar skills and expertise. As can be seen from the top right and
the bottom left-panel of Figure 3.6, pairs of plants that use workers with simi-
lar skills and expertise are located near one another at short distances in 200s,
2011, and 2013. This result is reminiscent of the findings in Ellison and Glaeser
(1999), Ellison et al. (2010), and Strange et al. (2014). However, at intermediate and
long distances, the location patterns are not significantly different from those that
would be obtained by a purely random location process. This last result is in line
with the findings by Ellison et al. (2010), who document that labor market pooling
is important at a small spatial scale, but has much less of an effect when we look
at coagglomeration at a broader geographic scale. My result is also reminiscent of
that by Kolko (2010), who shows that labor market effects are larger for either zip
codes or counties, and that an industry benefits from labor market pooling as long

as it is agglomerated within a state.

As can be seen from Table 3.9 in the Appendix, the coverage of industries
within my relevant subsets of plants is also good in the labor case. Across years,
I cover 29% of the 86 Na1cs 4-digit industries using the strict definition. Like in
the I-O case, I now focus my analysis on industries with the highest frequencies to
investigate the most co-localized industries. In 2005, my sample contains 505,282

unique bilateral distances, where ‘Power, distribution and specialty transformers’
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Figure 3.5 Location patterns of a plants using a similar workforce in 2001.
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Notes : Estimations are based on the relevant subsets of plants that account for 13.3% of the universe of plants.

(3353) and ‘Navigational and Guidance Instruments Manufacturing’ (3345) were
the most represented industries, with 49.9% of the bilateral distances. Conditio-
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