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RÉSUMÉ 

Parmi les différentes voies de traitement de l'eau, l'ozonation est la plus prometteuse 
lorsque une minéralisation totale des polluants organiques est ciblée. Ceci est surtout 
le cas de traitements des eaux riches en polluants dans les dérivés d'oxydation 
partielle sont toxiques pour la santé humaine et la biodiversité. L'ozone est un 
oxydant puissant, mais sa faible solubilité dan l'eau est un inconvénient majeur. TI 
existe un intérêt croissant vers des méthodes d'ozonation hétérogènes et catalyseurs 
qui améliorent la rétention de l'ozone dans le milieu aqueux. À cet égard, les 
matériaux microporeux, tels que les aluminosilicates et les minéraux argileux 
présentent de bonnes performances dans les procédés d'ozonation catalytique. Parmi 
les différents échantillons de montmorillonite, CoCmMt et Fe(II)Mt se sont avérés 
être les plus performants dans la minéralisation d'acide oxalique aqueux. Le pH initial 
de la concentration du mélange réactionnel, le temps de traitement à l'ozone et la 
concentration en catalyseur ont montré une forte influence. L'utilisation d'une dose 
élevée d'ozone (90 mg 0 3.L-1

) a permis d'élaborer un 3k plan factoriel avec 27 essais 
d'ozonation pour chaque catalyseur dans des temps raisonnables pour une évaluation 
rapide des effets individuels et de l'interaction du pH initial et de la concentration de 
catalyseurs sur la décomposition de dérivés aussi réfractaires que l'acide oxalique. 
Une minéralisation totale de celui-ci a été obtenue après seulement 15 minutes à pH 
2.87 avec 1.88 g.L- 1 de CoCmMt, et le pH 2.88 avec 1.91 g.L- 1 de Fe(II)Mt. Ces 
conditions opératoires optimales ont été prises comme référence pour une étude 
comparative de la réactivité envers l'ozone de divers polluants conventionnels tels le 
chlorobenzène, l'acide benzoïque, 4-nitrobenzoïque, le 3-hydroxybenzaldéhyde, le 4-
nitrophénol, et le phénol. Ceux-ci ont été utilisés comme molécules sondes qui 
possèdent des structures similaires à celles des intermédiaires d'oxydation du 
sulfaméthoxazole. La technique HPLC-spectrométrie de masse a révélé que le temps 
de dégradation est inversement proportionnel à la taille moléculaire. La 
décomposition de l'acide oxalique est l'étape la plus difficile (déterminante) vers une 
minéralisation totale, étant un "goulot d'étranglement" dans l'oxydation de toute 
molécule organique. Ainsi, une minéralisation totale de l'acide oxalique est un gage 
d'efficacité pour une dégradation avancée de polluants organiques plus complexes. 
Hormis, le bioxyde de carbone, une telle minéralisation produit également des NOx 
et des SOx, qui peuvent être éliminés par des traitements ultérieurs appropriés. 

MOTS-CLÉS: Catalyse hétérogène; Catalyseurs à base d'argile; Ozonation 
catalytique; Polluants organiques; Procédés d'oxydation avancée. 
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ABSTRACT 

Among the various water treatment paths, ozonation is most promising when total 
mineralization of organic pollutants is targeted, more particularly for treating waters 
rich in pollutants whose oxidation derivatives are harmful for human health and 
biodiversity. Ozone is a powerful oxidizing agent, but its low solubility in water is a 
major drawback. There is a growing interest towards heterogeneous ozonation 
methods and catalysts that enhance ozone retention in the aqueous medium. In this 
regard, microporous materials such as aluminosilicates and clay minerais exhibit high 
effectiveness in catalytic ozonation processes. Among the different samples of 
montmorillonite, Co(II)Mt and Fe(II)Mt turned out to be the most efficient in the 
mineralization aqueous oxalic acid. The initial pH of the concentration of the reaction 
mixture, the ozone treatment times and the amount of the catalyst showed stronÎ 
influence. The use of a high dose of ozone (90 mg 0 3.L-1

) allowed to achieve a 3 
factorial design with 27 ozonation tests for each catalyst in reasonable times for a 
quick evaluation of the individual effects and the interaction of the initial pH and 
concentration of the catalysts derived from decomposition as refractory as oxalic 
acid. Total mineralization of the latter was obtained after only 15 minutes at pH 2.87 
with 1.88 gl-1 Co(II)Mt, with pH 2.88 and 1.91 g.L-1 Fe(II)Mt. These optimal 
operating conditions were taken as a reference for a comparative study of the 
reactivity of ozone toward various conventional pollutants such as chlorobenzene, 
benzoic acid, 4-nitrobenzoic acid, 3-hydroxybenzaldehyde, 4-nitrophenol and phenol. 
The latter were used as probe molecules which have similar structures to those of the 
oxidation intermediates of sulfamethoxazole. The HPLC-MS technique revealed that 
the degradation time is inversely proportional to the molecular size. The oxalic acid 
decomposition is the most difficult stage, i.e. a kinetic-controling step towards total 
mineralization, being a 'bottleneck' in the oxidation of any organic molecule. Thus, 
total mineralization of oxalic acid is an efficiency guarantee for advanced 
degradation of complex organic pollutants. Except, carbon dioxide, such 
mineralization al so produces Nüx and Süx which can be eliminated by appropriate 
further treatments. 

KEYWORDS: Heterogeneous catalysis; Clay catalysts; Catalytic ozonation; Organic 
Pollutants; Advanced Oxidation Processes 



CHAPTERI 

INTRODUCTION 

Pollutant organic chemicals in drinking water consist of severa} compounds of 

natural and industrial origin (Daudet al., 2010; Kjellstrom et al., 2006; Nidheesh and 

Gandhimathi, 2012; Elsousy et al., 2007; Giordano et al., 2007; Mantzavinos, 2003). 

Unfortunately, man-made industrial chemicals are increasing in number and in 

concentration in water supplies as a result of effluent discharge, pills and intentional 

dumping (Munter, 2006; Beltran et al., 2005; Negrel et al., 2012). The concern about 

the toxicity of organic compounds in drinking water was justified. These pollutant 

organic molecules in drinking water can be categorized in severa} ways (Wang and 

Fiessel, 2008; Can and Gurol, 2003; Cooper and Burch, 1999). Common procedures 

for classifying the organic chemicals were based on their volatility, polarity, and their 

carcinogenic potential. The latter was a specifie classification of a more general topic 

of organic compounds impact on human ' health (Scholtz and Van Heyst, 2012). The 

organic compounds studied in the present thesis were among the common chemicals 

whose application in industrial plants was necessary as intermediate compounds for 

production of other added value chernical . Besides the type and the nature of these 

molecules, the employed decontamination technique is also a matter of importance. 

There _are numerous methods for their elimination. The problem with biological 

techniques is controlling and monitoring the remediation condition under which the 

bacteria or fungi should continue their normal life (Diez, 201 0; Ito et al., 1996; Ren 

et al., 2007; Azzouz, 2012). Phy ical processe are acceptable for sizeable 

contarninants especially in processes such as filtration. In other physical methods 

such as coagulation and flocculation, toxic sludges are sometimes produced. Even 

aeration 1s not effective enough, smce m this process only 
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volatile compounds are subject to elimination. Besides, in physical processes toxic 

properties of pollutants remain untack.led (Ramirez et al. , 2010; Wang and Fiessel, 

2008; Koohestanian et al. , 2008; Mohan, 2014; Rahni and Legube, 1996; Kwong et 

al. , 2008; Kasprzyk-Hordern et al. , 2003 ; Henry and Beaudry, 1984; Stuber et al., 

2005). In this situation, chemical methods of decontamination may attract the 

attention. In fact, the use of chemicals in the treatment of chinking and (or) waste 

water is unavoidable. Unfortunately, in many practical cases the evaluation of the 

applied chemicals for this purpose was directed primarily at performance and cost, 

not on whether components of the chemicals or by-products of the process might 

present a toxicological hazard to the consumer. This is the reason why oxidation 

methods are preferable to saponification and chlorination techniques. The latter 

produces undesirable by-products. When chlorination techniques are employed, 

chlorinated organic compounds are formed which are among dangerous and toxic 

chemical compounds. Besides, many previous works ·have clearly demonstrated th at 

incomplete oxidative treatment may produce sometimes even more hazardous waters 

than untreated waters (Scholtz and Van Heyst, 2012; Diez, 2010; Numata et al., 

2005). Waste-waters emerging from industrial zones unfortunately enter to the natural 

water streams by one way or another. Therefore, they should be treated in a manner 

that not only the parent pollutants are degraded but also these toxic by-products 

resulting from sorne treatment processes do not exceed the critical level 

(Khankhasaeva et al. , 2004). Unavoidable contamination of potable water sources 

with industrial process waters obliges to lower the organic contamination content of 

waste-waters and ideally to totally mineralize them. Among the existing chemical 

techniques, sorne attract the intention more than others mainly because of safety 

measures. There are es entially some major concerns that have to be addressed to 

evaluate the safety of a chernical compound that is used for remediation of water 

supplies. The most important factor for choosing a chemical compound for treatment 

processes is the safety to humans consuming the water. Carcinogenic and 
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toxicological properties of such remediation chemicals are matter of concern. 

Application of ozone in ozonation processes fulfills the above mentioned conditions. 

Moreover, given its short life time, ozone decomposes readily and quickly in water 

without inducing negative health effects. In water, ozone decomposes almost 

spontaneously into oxygen after 2-3 min at ambient temperature and pressures. There 

exi ts an ample literature in this regard. (Scholtz and Van Heyst, 20 12; Kumar and 

Sathyamurthy, 2013; Rice et al., 1982, p. 255-285). Catalytic ozonation is expected 

to produce higher performances in the ozonation of organic pollutants, because of, at 

least, the additional contribution reagents to solve partly the issue of ozone solubility 

and short lifetime. All these aspects required an ample documentation before 

proceeding to test our catalysts in the oxidative decomposition of the investigated 

organic molecules. For this purpose, the present thesis was structured in five parts, 

namely: 

1. Chapter 1: An introductive section that exposes the context, objectives and the 

approach tackled to attain these objectives. The originality of the present thesis 

resides in an innovative concept that total mineralization of any hazardous and 

refractory organic pollutants is possible only via synergistic parameter interactions. 

The present thesis aims to demonstrate that effective ozonation can be achieved in the 

presence of optimum amount of adequately modified clay-based catalysts in 

moderately acidic media, and that such operating conditions can be adapted to each 

organic substrate to be decomposed. For this pm-pose, the approach adopted consisted 

in structuring the research and the present thesis in five parts: an introduction section 

that explains the context of the issue of total mineralization of organic pollutants, 

objectives and steps for attaining these objectives, followed by three published works 

taken a three consecutive chapters, along with a final conclusion that gather the main 

findings of this research. 
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2. Chapter 2, exposes the main issue to be addressed in this thesis, namely the 

oxidative decomposition of organic pollutants in waters. This chapter consists of the 

first article, which is structured in two part; 1. a first one which provides a deep 

analysis of the achievements made so far in this regard, confers to ozonation a 

privilegied role in future water treatments to be designed, and makes emphasis on the 

relatively high performance of heterogeneous catalysts in the ozonation of a wide 

variety of organic pollutants; 2. a deep analysis of the main findings provided by 

literature, which allow concluding that effective ozonation requires the presence of 1. 

a solid surface that can favor adsorption for compensating the shortcomings related to 

the low solubility and short lifetime of ozone in aqueous media; 2. electric charges on 

the solid surface, which can exert interaction with ozone in all its forms (bubbles, 

dissolved and adsorbed) and dispersed organic molecules and 3. the simultaneous 

presence of both Lewis acidity and conjugated basicity through the mere presence of 

exchangeable cations (Lewis acidity) and surrounding lattice oxygen atoms (Lewis 

basicity). These features appear as essential requirements for achieving both reagents 

adsorption and surface reaction, which already impose as catalyst aluminosilicates 

such as clay minerais and zeolites and other mixed oxides counterparts. Such solid 

catalysts may also promote the formation of active complex on the surface (Azzouz 

et al., 2010; Azzouz, 2012; Canton et al., 2003; Guo et al., 2012; Legube and Km-pel 

Vel Leitner, 1999). Such a surface active complex involves the bridging of bivalent 

cations between negative surface charges belonging to two parallel clay sheets (Fig. 

1.1). Nevertheless, each cations is expected to display specifie physicochemical 

properties, as a results of its electropositivity and solvation grade. Eletropositivity 

increases in the following sequence Cu < Ni< Co<Fe, and appears to play a key role 

in the surface interaction first with the exchangeable site and with the adsorbed and 

non-adsorbed species in the vicinity of the catalyst surface. 
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Fig. 1.1 Cation bridging effect between the negatively charged clay surface and 
organic species with high electron density (oxalate anion, carboxylate anion, alcohol, 
aldehyde, undissociated carboxylic acids). 

Another significant finding resides in the simultaneous occurrence of ozonation 

processes in both the solid porosity and bulk solution, since ozone appears to react in 

ail its adsorbed and dispersed forms, and that there is no essential need to hydroxyl 

radicals in acidic media, as long as the chemical stability of the solid surface is 

preserved. The very structure of the aluminosilicate was found to play a key role 

through the extent of the solid surface and porosity, inasmuch as unlike zeolites and 

pseudo-zeolitic counterparts, lamellar and swellable structures such as clay minerais 

do not display pore diffusion constraints. Clay based catalysts may be suitable for 

achieving ozonation of a wide scope of organic substrates. The state-of-the-ar1 in the 

catalytic ozonation of organic pollutants may be useful to understand the contribution 

of the solid surface. The latter is expected to involve interactions between adsorbed 

and (or) unadsorbed species including mobile cations in the vicinity of the catalyst 

surface. Equilibrium conversion required different ozonation times according the 

exchangeable cation. Under similar operating conditions, different electropositivities 

impose different cation retention strength on the clay surface and different Bronsted 

acidities according to the number of solvating water molecules around each cation. 

These two factors, among many others, produce different cation mobility and loss in 
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time by slight and reversible ion-exchange and leaching in the vicinity of the clay 

surface. One may emphasize that, for the same pH, lar·ger clay amounts enhance clay­

clay interactions and coagulation-flocculation. This phenomenon is strongly 

influenced by the nature of the exchangeable cation. Unlike bivalent cations, which 

display bridging effect on the clay compaction, monovalent cation such as Na+ 

causes clay dispersion because of similar positive charges on both sides of each clay 

lamella as long as clay-clay interactions and, thereby, detrimental coagulation­

flocculation do not play a significant role. Clay-clay interaction may be more or less 

influenced by the nature of the exchangeable cation and pH changes. 

Since in this chapter other oxidative methods such as Fenton was discussed, it should 

be clar·ified that unlike Fe2
+ cations, which act as precursor of "OH radicals in the 

presence of hydrogen peroxide, more particularly at elevated pH, Fe3
+ behaves as 

quencher for H20 2, inducing its decomposition into oxygen and water without 

generating hydroxyl radicals. The latter displays a higher oxidation potential 

(Reaction 1.1). 

(1.1) 

This is higher than that of ozone which is 2.07 volts at pH 0 and a p03/ p02 ratio of 

1. pH showed a significant role in abatement of organic compounds; higher pH 

values were detrimental for all catalysts, but beyond neutral pH, ozonation was found 

to weakly reactivate again mainly because of the enhancement in the formation of 

hydroxyl radicals, which promotes the predominance of radical pathway. 

3. Chapter 3 also consists of a published paper, which uses all these findings and 

others as starting hypotheses for investigating the ozonation process. This wa 

achieved taking oxalic acid, one of the most refractory compounds towards ozone, as 
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a reference probe molecule. In our ozonation attempts an average value of usual 

oxalic acid concentrations in most polluted waters and wastewaters were utilized. 

Higher concentrations cannot be justified, while lower concentration are limited by 

the accuracy of COD measurements. Based on the ample literature reviewed in the 

first part of chapter 2, the issue of total mineralization of organic compound bas been 

tackled using a judicious approach. The latter aims to demonstrate that total 

mineralization of oxalic acid into carbon dioxide can be achieved in the presence of 

optimum concentration of a clay mineral adequately modified at optimum acidity that 

enables cation mobility and slight ion-exchange without affecting the catalyst 

structure. Investigations in this regard revealed a strong interaction between these two 

parameters, whose synergy appears to be much more beneficiai for oxalic acid 

mineralization than their separate individual effects. In other words, this paper 

provides clear evidence that there exists an optimum pH for a given amount of a 

given type of catalyst. Here, one may explain that mathematically, any convexity, 

concavity or inflection point is an optimum point that requires that the first derivate 

function is equal to zero. In scientific language, optimum also means "best 

compromise", since 79.5% Na+ replaced by Fe2
+ gave similar COD removal as 

100%, 79.5% is the best compromise possible affording high COD removal with less 

iron. Lower catalyst amounts are not sufficient for adsorption, while higher values 

enhance lamella-lamella interaction and partial coagulation-flocculation of the clay 

mineral. This finding is of great importance, because it allows envisaging that 

optimum conditions for total mineralization of refractory compounds such as oxalic 

acid may also be suitable for total degradation of heavier organic substrates. Such an 

approach is based on a hypothesis according to which the reactivity towards ozone 

increases with increasing molecular weight but decreasing oxidation state of the 

organic substrate. This approach was verified in Chapter 4, where different catalysts 

were tested for ozonation attempts. In all catalytic ozonation processes Fe(II)Mt 

showed almost similar performances as Co(II)Mt, but slightly higher. This catalyst 
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was selected for deeper investigations due to many reasons, such as: 1. Co(ll) cations 

is more toxic and more expensive than Fe(II); 2. This allows comparison with most 

oxidation and AOP processes in water, which have been tested in the presence of 

Fe(ll) cations as catalysts. There exists an ample literature in this regard. 3. The lower 

oxidation potential of Co2+(aq) -+ Co3+(aq) of -1.81 eV as compared to that Fe2\aq) 

-+ Fe3+(aq), which is of -0.77 eV Such oxidation potentials make that Fe2\aq) can be 

more readily oxidized in the presence of ozone in Fe3+(aq) as compared to Co2+(aq). 

Co3+(aq) precipitation triggers around pH 3, and slight pH increase during ozonation 

may cause catalyst Joss. As a detail for catalyst preparation it is worth mentioning 

that Fe(ll) content in fully ion-exchanged montmorillonite was assessed as the value 

of the cation exchange capacity (CEC) provided by ion-exchange isotherm 

measurements. XR-fluorescence gave also similar Fe(ll) content in fully ion­

exchanged samples. CEC was also used for estimating the M(ll) cation contents with 

a relative error not exceeding 2%. The iron content of the catalyst samples was 100% 

(fully exchanged) unless otherwise stated. 

For the pm-pose of clarity it is worth mentioning that Fig. 3.4 shows the evolution in 

time as determined by periodical measurements, on the other hand Fig. 3.11 shows a 

theoretical curve based on mathematica] mode], whose adequacy and accuracy is 

maximum around the (0,0,0) points . Such models belongs to the centered-rotative 

category, and are usually employed for assessing optimum parameter values around 

a suspected center of cube (or hypercube) that includes the variation ranges of the 

parameters considered. Such models should not be used at the edges of the cube 

because of accuracy Joss . Both figures are in agreement showing an optimum 

ozonation tirne around 15 min. Besides, Quadratic terms express the convexity of the 

response-surface describing the effect of a given parameter (appendix M). High 

values of these coefficients indicate accentuated convexity, which allows accurate 

assessment of the optimum parameter value. Conversely, low values of the quadratic 
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terms gave flattened response-surfaces with difficult localization of the optimum. 

Coefficient a33 bas the highest values, which accounts for the most pronounced 

convexity of the response-surface describing the effect of pH. The negative sign of 

this quadratic term corresponds to a maximum in this response-surface. 

4. Chapter 4 aims to demonstrate this hypothesis, by applying the optimal conditions 

for total mineralization of oxalic acid to a fairly wide scope of organic molecules, 

most of them being recognized as being harmful pollutants for both human health and 

biodiversity. The latter are supposed to show much higher reactivity towards ozone, 

resulting in waters devoid of residual derivatives or persistent toxins, if any when 

highly polluted waters are treated. In other words, larger and less oxidized organic 

molecules are expected to show much higher reactivity towards ozone. Here, it is 

worth mentioning that the oxidation state increases with increasing number of oxygen 

(or halogens) atoms per atom of carbon. Therefore, if oxalic acid is regarded as being 

a bottleneck derivative that arise from oxidation of almost ail organic compounds, its 

total mineralization may be regarded as being a major step for achieving total 

mineralization of any organic molecule. Effective oxidative treatment of bulky 

molecules such as antibiotics and counterparts is expected to result in waters devoid 

of residual derivatives or persistent toxins, if any when highly polluted waters are 

treated. The approach in the present thesis consisted in investigating the degradation 

of sulfamethoxazole (SMX), C 10H 11 N30 3S, and of various aromatic pollutants under 

the same operating conditions as for oxalic acid. The aromatic molecules investigated 

herein are supposed to behave as SMX derivatives. Comparison between their 

different degradation pathways will be useful for adapting the operating conditions 

for each organic substrate and for better understanding why organic pollutant release 

in nature results in incomplete oxidative treatment that may produce even more 

hazardous organic pollutants than the parent molecules. The optimum conditions for 

ozonation differ according to the chemical structure and physicochemical properties 
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of each organic ubstrate. One of these properties is the pKa value, which determines 

the acid-base interactions involved in the adsorption step. This property also govems 

the contribution of protonation-deprotonation and ion-exchange processes, which is 

specifie according to the polarity and (or) organophilic-organophobic character of 

each organic molecules. The adsorption of ionie molecules bearing sulfonate and (or) 

carboxylic groups are supposed to require different pH and catalyst amounts as 

compared to organophobic substrates. The most important finding of the kinetic 

studies comparatively through three different analysis methods demonstrates that 

wh en rigorously and accu ratel y performed, COD and UV-Vis measurements allow 

quick and qualitative assessment of the global arder and rate constant of the 

ozonation process for the different organic substrates studied. Notwithstan~ing their 

low accuracy, bath COD and UV-Vis measurements allowed demonstrating th at the 

1 st arder madel that supposes a constant ozone concentration imposed by its limited 

solubility in water is valid only during the first 2 min of ozone. COD and UV-Vis 

measurements showed this tendency, which was confirmed by HP-ToF-MS. Thus, it 

clearly appears that ozonation triggers and proceeds through direct reaction with 

molecular ozone until the adsorption of sufficient amounts of reagent and first 

intermediates for at most 3-5 min, when another pathway is supposed to be involved. 

Therefore, it appears that quick qualitative investigation of the evolution in time of 

the ozonation for a given organic molecule does not necessarily need sophisticated 

analysis techniques such as HPLC-MS, unless intermediate identification is strongly 

required. In all cases, since COD measurements are commonly used by engineers in 

wastewater treatment plants to assess the amount of organic pollutants, their 

comparison with measurements through different analysis methods was regarded as 

being judicious and useful for showing the discrepancy between these methods. 

Identification of the main ozonation intermediates of sulfamethoxazole, 3-

hydroxybenzaldehyde, and phenol allowed understanding that aromatic pollutants 

decompose almo t similarly, regardless to their molecular weight. The structure of the 
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identified intermediates was established based on comparison of their retention ti·mes 

with commercially available standards and their rn/z ratio. This was supported by 

previously reported information (Rodayan et al. , 2010; Larcher and Yargeau, 2013 ; 

Mar G6mez-Ramos et al. , 2011; Azevedo et al. , 2006; Liu et al., 2013; Farzadkia et 

al ., 2014; Wang et al., 2012; Santos et al. , 2005 ; Schleinitz et al., 2009; Yang et al., 

201 0; Po zn yak et al., 2006). 

The effect of catalyst addition on degradation of organic substrates and COD remova1 

was thoroughly discussed in this chapter. For instance, Fe(II)-Mt addition induced an 

appreciable but slower COD decrease, as compared to the fast depletion of the UV­

Vis bands. Moreover, short required times for total disappearance of an UV-Vis band 

with Co(II)Mt do not necessarily mean higher activity than Fe(II)Mt, but only 

different behavior. In addition, the error in the experimental data does not allow 

clearly distinguishing the cations by their effectiveness in a single measurement. In 

other words, Co(II)Mt sometimes appears to be more effective, but statistically 

Fe(II)Mt showed slightly higher performance in most ozonation attempts. Also, 

regardless to the organic substrate to be degraded, Fe(II)Mt produced higher COD 

removal in less ozonation times, as compared with non-catalytic ozonation of phenol, 

taken as reference. Longer ozonation times without solid catalyst showed that COD 

removal involves a series of successive plateaus. This is likely due to successive steps 

in the oxidative degradation of a given organic substrate. Each plateau appears to be 

an induction period involving ozone accumulation up to minimum amount of level to 

be triggered. One may emphasize that, COD measurements have an error of 2-3%. 

The slight discrepancy between 98 and 100% COD removal should be rather 

regarded as a confirmation of the effectiveness of our ozonation test. Therefore, even 

for longer ozonation times than 30 min, this is still regarded as being an outstanding 

result, given that an ample literature clearly shows that most total mineralization was 

achieved around 180 min (Azzouz et al. , 2010; Azzouz, 2012; Beltran and al., 2002; 
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Beltran et al., 2005; Liu et al. , 2011; Pines et Reckhow, 2002; Roy et al., 2010; 

Yunzheng et al., 2003). Sorne obtained kinetic data may need a detailed explanation. 

For instance, reaction order (n) <1 is a special feature of surface processes where 

adsorption and diffusion play significant roles, while n-values higher than unity 

indicates complex chemical processes. This must be due to a specifie behavior of 4-

nitrophenol. The most plausible explanation that can be provided so far is that 4-

nitrophenol degradation did not obey 1 st arder kinetics, but rather a constant 0.7 -0.8 

arder kinetics from the very beginning of the ozonation process and during the whole 

process, without undergoing any change in the mechanisms pathways (as supported 

by the high R2 value). Such a pathway did not seem to depend on ozone solubility (l st 

arder excluded), and should mainly involve a surface process, where adsorption and 

surface reactions appear to be deterrnining steps more than for the other organic 

substrates. Investigations are still in progress in this direction. Besides, for sorne 

ozonation intermediates of sorne organic substrates exceptionally R 2 n-order > R 2 
1 st-order· 

Based on the fact higher R2 values conespond to the most probable kinetic madel, 

this question may be answered in the same manner as previously. In other words, the 

n-order is more probable for sorne cases where ozonation is either strongly depending 

on the ozone concentration or involved in complex reaction pathways. lt is worth 

mentioning that, the rate constants were calculated for successive intervals in time as 

being proportional to the average concentration of the organic substrate in lieu of the 

instant value, which can be used only for an infinitesimal time interval . This average 

concentration of the organic substrate was expressed in te1ms of average relative 

absorbance for a given UV-Vis band (Ar,mect) or average residu al COD (CODr,mect). 

5. Chapter 5 which is a global Conclusion: this section not only gathers the main 

conclusions made at the different steps of this research, but also provides a deep 

analysis of them. Most of these conclusions allow validating the hypotheses 

considered for tackling the issue related to organic pollutant rnineralization and for 
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adopting this approach whkh considers that total elimination of a bottleneck 

derivative is a necessary step for achieving total mineralization of the parent organic 

substrate. Knowledge advancement in the total mineralization of organic pollutants 

by clay-catalyzed ozonation was the main target of this thesis. This research is 

expected to provide valuable findings for further improvements regardless to the 

water to be treated (drinking water or wastewater treatrnent). The determination of 

the optimum conditions to achieve total rnineralization of a typical refractory short­

chain derivative such as oxalic acid allows assessing the relative reactivity towards 

ozone of various organic molecules that differ by their size and structure. These 

molecules are representative of the main pollutant farnilies in most wastewaters. This 

plan was conceived to hig~light the role of clay-based catalysts for addressing the 

issue of low solubility and short lifetime of ozone, through the major contribution of 

adsorption via Lewis acid-base interactions. However, care should be taken when 

dealing the involvement of adsorption, which does not necessarily mean the retention 

of high amounts of reagents by the catalyst, but rather optimum quantities that 

promote the catalytic act, without blocking the desorption of the ozonation products. 

Therefore, the contribution of adsorption to the assessment of the instant decrease in 

concentration is fairly negligible, as supported by periodical analysis through FTIR 

and X-ray fluorescence of the catalyst in the absence of ozone. Therefore, the value 

of removal yield was evaluated within the accuracy range of the respective analysis 

method. Only traces of organic compounds (sulfamethoxazole, aromatics substrates, 

and short chains acids) have been detected over clay-based catalysts. Higher but still 

low amounts of adsorbed non-acidic organic substrates were detected on mesoporous 

silicates, such as Santa Barbara Amorphous (SBA) and Mobil Crystalline Material 

(MCM), due to their higher organophilic behavior. These data have already been 

subrnitted for publication. Unlike SBA silica, clay catalyst have exchangeable cations 

(Lewis acidity), whose mobility according to the pH level is expected to promote 

chelation processes by the available electron pair (Lewis basicity) of the organic 
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substrates, if any. However, Lewis acid-base interactions are restricted only to S and 

N-containing organic substrates, and more particularly oxygenated molecules. The 

latter usually appear after 2-3 min of ozonation. This is in agreement with our kinetic 

studies, which revealed changes in the 1 st order kinetics once ozonation is triggered. 

Fe(II)Mt catalyst analysis through XRF after 5-10 min ozonation showed a slight 

increase in the amount of carbon atoms, which account for less than 1 wt. o/o of the 

instant concentration measured. The average error in assessing the instant removal 

yield is around 2-3% even by HPLC-ToF-MS. 

The samples analyzed by HPLC-ToF-MS methods originated from batches of 20 to 

100 mL of.aqueous solution of the organic substrate used for ozonation attempts with 

a 6 mg.min-1 ozone throughput. Our calculations gave ozone concentration ranging 

from 300 mg.L-1 to 60 mg.L-1
• It is worth mentioning that, lower ozonation 

concentration did not produce total mineralization with reasonable reaction times. 

This was the main argument that justifies the use of such an ozone concentration. 

Another argument resides in the fact that lower ozone concentration produces low 

amounts of derivatives difficult to be accurately determined even through HPLC­

ToF-MS analysis. The ozone generator produces a constant amount of 6 mg ozone 

per minute, which can be easily conve1ted in ozone dose. Obviously, this ozone 

concentration imposes a certain evolution in time of the ozonation process. This 

deviee was purchased according to our specifie requirements. Nevertheless, certain 

information relative to the evolution in time of the ozonation process will be lost. 

Obviously, such an evolution in time strongly depends on the ozone concentration, 

but for a given concentration, the use of ozone dose will not allow observing changes 

in time of the ozonation pathway. Other experimental details are provided in the 

supplementary mes of suppo1ting information of the papers published and in the 

appendices to the present manuscript. Throughout the entire manuscript in the present 

thesis, whose chapters 2-4 are the exact contents of the three papers published. Here, 
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it should be noticed that all figures of these supplementary files were included in 

these appendices, which were cited in the text through the corresponding figures and 

tables. Also, it is worth mentioning that in the whole thesis manuscript, there is no 

figure taken from the literature and all figures are designed by me, sometimes being 

helped by my professors. The most important objective of the present thesis was to 

demonstrate that natural and widely available clay materials can be conveniently used 

for obtaining low cost catalysts for sustainable water treatment routes that do not 

produce sludges or any other residues. It must be reminded that there are no lower 

cast catalysts than those obtained from clay mineral , which do not need 

sophisticated synthesis procedures. In addition, in our opinion the other oxidative 

methods tested so far throughout the world are not necessarily cheaper than the 

catalytic ozonation. The fact that oxalic acid, for instance, can be thoroughly 

nùneralized after at most 20-25 min, versus 3 hours and even more with other 

oxidative treatments, should regarded as the best justification of such a statement. 

Now, a question stiJl remains to be answered, narnely: Is ozone production during 20-

25 min more expensive than artificial light exposure for much longer photoreaction 

time? The response to this question depends on many factors , among which reduction 

of excess ozone that does not participate to the reaction still remains a major issue to 

be addressed. Attempts to improve ozone solubility and/or adsorption on a solid 

smface are interesting research directions. Since adsorption plays a key role, higher 

ozonation effectiveness requires higher specifie surface area (SSA) . In this regards, 

encouraging results were obtained with SBA-like silica, which display SSA value of 

700-1000 m2.g- 1
. These results have been recently submitted for publication in a high 

impact factor journal. In ali cases, catalytic ozonation in the presence of low cast clay 

based catalysts has major advantages such as fast and effective mineralization 

without water contamination with catalyst, without major investments and bulky 

plants for water treatments. 
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CHAPTERII 

ADVANCES IN CATALYTIC OXIDATION OF ORGANIC POLLUTANTS­

PROSPECTS FOR THOROUGH MINERALIZATION BY NATURAL CLAY 

CATALYSTS 

Abstract 

This chapter is devoted to oxidative water treatments, with emphasis on catalytic 

ozonation. The approach tackled herein resides in highlighting the main findings 

from a wide variety of oxidative treatments, which can be useful for envisaging 

improvements towards total mineralization of organic pollutants. Comparison 

between operating conditions for specifie pollutant-catalyst-oxidizing agent systems 

is quite difficult, and was not targeted in the present work. However, when deeply 

and judiciously analyzed, such a comparison allows demonstrating that, except for 

sorne works, most of these attempts seldom took into accounts basic requirements 

such as the parameter interactions, the role of cation mobility around a solid surface, 

if any, the multiple pollutant-catalyst-oxidizing species interactions and the 

significant contribution of adsorption, etc. Otherwise, how to explain that many 

experiments are still conducted with unsuitable catalysts under totally inadequate 

operating conditions? A better understanding of the essential requirements for a 

catalyst to achieve total mineralization of any organic molecules is the main objective 

of this work 
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The data summarized herein allow devoting a special interest to ozone. In spite of its 

low solubility in water,ozone is a powerful oxidizing agent and probably the easiest 

to handle, being produced in-situ by non cumbersome deviees. The use of catalysts is 

an ultimate strategy to improve the ozonation performance, by reducing the Chemical 

Oxygen Demand (COD), even until total disappearance. However, solid catalysts, 

more particularly those developing high specifie surface areas, such as silicates, 

aluminosilicates, zeolites, pseudozeolites, and clay minerais and derivatives, are 

expected to display appreciable performances in ozonation. The latest findings show 

strong dependency of their catalytic activity on the chernical and physical 

characteristics of their surface, their concentration in the liquid media, the pH leve! of 

the reaction mixture and other parameters. The effects of these factors will be 

systematically examined in this review paper. The state-of-the-art in the catalytic 

ozonation of organic pollutants may be useful to understand the contribution of both 

surface and bulk ozonation reaction in the vicinity of the surface of a solid catalyst, 

and more particularly the role of the catalytic agent and the mobility near the solid 

surface. A rigorous data synthesis, made available in the present paper, allows 

understanding the ozone scavenging by the very species present in water, and 

correlating the highest effectiveness of ozone in the presence of a solid catalyst with 

optimum pH and catalyst concentration. The latter suppose strong interactions 

between the main factors, which remain to be elucidated for each type of catalyst. 

The structure of this rev1ew paper makes emphasis on montmorillonite, which 

exhibits most of the required properties for effective ozonation catalysts. These are 

common features of natural clay minerais and zeolites, which appear as interesting 

candidates for large-scale water treatments, targeting complete mineralization of 

organic pollutants without generating persistent toxins. 
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2.1 Introduction 

Water pollution remams a major issue to be addressed by improving wastewater 

treatment not only from conventional industrie but al o for novel eco-designed 

technologies to be implemented. Among the different water treatment methods tested 

so far, oxidative techniques are undoubtedly the most promi ing routes when total 

mineralization of organic pollutants is targeted. There exists a wide variety of 

oxidative techniques such a Fenton and photo-Fenton processes, ozonation and 

catalytic ozonation, photocatalysis in the presence of hydrogen peroxide with, for 

example titanium dioxide, radioly is, electrochemical oxidations and various 

combination of orne of these procedure . Regardless to their efficiency, all the e 

techniques have a common feature that resides in the unavoidable formation of 

harmful by-products in the case of incomplete decomposition of the organic 

substrates 

Among these, catalytic ozonation is one of the most effective and eco-friendly water 

treatment methods (Munter et al., 2006). Ozone is a powerful oxidizing agent that 

may lead to complete mineralization of organic CxHyOz compounds into carbon 

dioxide under specifie operating conditions (Zhao et al., 2009; Daud et al., 2010), 

sulfate and nitrate anions when S and N atoms are also present. This allows 

envisaging potential applications in industrial processes (Guo et al., 2012). 

Nonetheless, ozone is characterized by a hort lifetime and low solubility in aqueous 

media. These are major drawbacks that reduce considerably the contact time in water 

and interaction with the organic substrates to be decomposed. Ozone alone often 

results in incomplete degradation of the organic substrate (Guo et al., 2012), and, 

paradoxically, even acts a potential source of toxic intermediates. Significant 

improvements can be brought by using solid catalysts, which are also supposed to 
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favor adsorption, prolonging thereby the contact time in the liquid media. Solid 

catalysts displaying high specifie surface area could be of great benefit for 

Ozone 
+ 

montmorlllonite 
(fe2•, Co2•) 

Short chain carboxylic aclds are 
bottleneck for oxldatlve processes 

Scheme 2.1. Effective strategy for total mineralization of organic contaminants 

wastewater treatments aiming to total decomposition of organic contaminants without 

generating persistent by-products (Scheme 2.1 ). This could be regarded as an 

interesting route to explore. 

Nowadays ozonation methods are routine teclmologies in wastewaters treatment, 

more particularly in sorne European countries (Legube and Karpel Vel Leitner, 1999; 

Wu et al., 2008). Ozone has promising prospects in wastewater treatment, because it 

can be easily produced from air by means of compact and small volume deviees that 

operates at ambient pressure and temperature (Fontanier et al. , 2005). According to 

numerous references, in small concentration not exceeding 5-50 ppm for exposure 

times ranging from 30-60 min, ozone is not hazardous for human health and can be 

simply handled. ln addition, it can readily decompose into harmless compounds 

(oxygen and water). Because, different ozone dosages are involved for treating 
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different types of wastewaters, an optimum use of ozone requires a minimum 

knowledge on the origin and the emission source of the wastewaters to be treated. 

This implies that effective oxidative treatment needs sufficient data on the chemical 

composition of the effluents and the nature of the organic pollutants to be 

decomposed. 

A wide variety of hazardous compounds that may cause human diseases such as 

neurological disorders, cardiovascular disease and diarrheal diseases (Kjellstrom et 

al., 2006) can be eliminated by wet oxidative treatments at ambient temperature, 

unlike incineration methods which produce toxic emission flues (Mun ter, 2001 ; 

Beltran et al. , 2005; Negrel et al. , 2012; Nidheesh and Gandhimathi, 2012; Elsousy et 

al., 2007; Giordano et al., 2007). Wet oxidative treatments are confronted to a hard 

challenge, inasmuch as the maximum permissible concentration of sorne persistent 

organic compounds and dyestuffs in sorne wastewaters is much less than 1 ppm, 

while the outlet concentration from chemical plants is often several times higher than 

the allowed threshold (Rarnirez et al. , 201 0; Mantzavinos, 2003 ; Khankhasaeva et 

al. , 2004; Li et al., 2012). Even other attempts through biological and physical water 

decontamination from organic pollutants turned out to be unsatisfactory as compared 

advanced oxidative processes (AOPs) (Diez, 2010; Ito et al. , 1996; Ren et al., 2007; 

Azzouz, 2012; Wang and Fiessel, 2008). 

2.2 Water pollution by organic compounds 

Wastewaters contain a wide variety of chemical compounds such as organic 

pollutants, eutrophication agents (nitrates, phosphates), metal cation and others 

(Scheme 2.2) . Such diversity requires different approaches in wastewater treatments, 

and a special interest is focused herein to organic pollutants. Their common features 
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reside in their high reactivity towards oxidizing agents, more particularly to ozone, in 

spite of their different physico-chemical nature. 

Major organic pollutants arise from chemical and pharmaceutical industrie , food 

technologies, oil refineries, petrochemical plants, dye and textiles manufacturing 

units, agro-industrial activities and others. Petrochemical wastewaters often contain 

oils and grease, phenols, aromatics and chlorinated organic compounds such as 

dioxins. Paper and pulp mills, sugar mills, and leather tanneries are other important 

emission sources of organic pollutants (Daud et al., 2010; Kjellstrom et al., 2006). 

Organic wastes originating from industrial and urban sewages also contain hazardous 

compounds such as aromatic hydrocarbons, petroleum products, halogenated 

solvents, herbicides like 2,4-dichlorophenoxyacetic acid, detergents, phenols and 

derivatives, antibiotics, estrogens, contraceptives, and require treatments before 

being released in soils, ri vers and seas (Munter, 2001; Beltran et al., 2005; Negrel et 

al. , 2012; Nidheesh and Gandhimathi, 2012; Elsousy et al., 2007; Giordano et al., 

2007; Ramirez et al., 2010). 

Phenolic compounds are an important family of wastewater polluting agents. They 

usually arise from chemical industries for the manufacture of pesticides, 

pharmaceuticals, synthetic dyes (Nidheesh and Gandhimathi, 2012), fuel additives 

(Elsousy et al., 2007), and food-processing industries, more particularly from olive 

oil and wine producing plants around the Mediterranean (Giordano et al., 2007; 

Mantzavinos, 2003). They may also originate from incomplete oxidative treatments 

of a wide variety of organic pollutants. 
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Scheme 2.2. Main sources of organic contaminants and oxidative degradation 
strate gy. 

Organic dyes, more particularly of azo type, are also released in wastewaters; most of 

them show carcinogenic, mutagen, and allergie effects for living organisms. Such 

compounds are difficult to remove through physical treatment methods, and only 

oxidative decolourization of the corresponding wastewaters can be considered 

(Khankhasaeva et al. , 2004). However, care should be taken in the case of incomplete 

oxidation, because traces of hazardous derivatives may be generated. The latter are 

usually regarded as being persistent organic pollutants (POP). 

Polyaromatic hydrocarbons (PAHs) are a class of high molecular weight orga.t11c 

compounds with th.ree or more phenyl rings, including bicyclic compounds such as 

naphthalene ru1d biphenyl (Li et al. , 2012). Such compounds are regarded as being 
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particularly toxic, and unless thermally decomposed into heavy asphalt compounds, 

they usually generate phenolic compounds upon oxidative treatment. That is being 

said, as previously stated, each organic pollutant farnily requires specifie elimination 

methods. The latter should be judiciously chosen by imposing minimum traces of 

residual organic pollutant and derivatives, if any, as the main criterion. Obviously, 

this supposes that previous constraints related to energy con umption and C02 

emission considerations are satisfactorily taken into accounts. 

2.3 Removal of suspended and dissolved organic compounds 

The dispersion state of the organic pollutants in the liquid media is a key-factor in 

applying adequate elimination techniques for a given farnily of organic compounds. 

For instance, suspended organic compounds can be conveniently separated from 

wastewaters by different scale filtrations and settling, while emulsified or dissolved 

organic compounds may be removed by either through precipitation, solvent 

extraction or oxidative methods (Scheme 2.3). According to the type of organic 

contaminant to be removed, physical procedures involved adsorption, coagulation 

and (or) flocculation , .or even biological procedures may be applied for wastewater 

remediation. 
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Scheme 2.3. Main approaches for organic pollutant elimination. 
He re, each type of treatment has spec ifie efficiency for spec ifie purposes, and no objective comparison 
can be made without si milar criteria . However, for the spec ifie objective of this research, AOPs and 
more palticularl y, cata lytic ozonation appear a being the most conven ient and promising routes, 
notwithstanding the initial investment costs . 

2.3.1 Conventional techniques for water treatments 

Biological treatment usmg micro-organisms has long been used to eliminate 

eutrophication agents and pollutants. Fungal and bacterial degradation of organic 

compounds is known as bioremediation. Fungi were already found to convert 

pesticides into nontoxic derivatives, which are further degraded by bacteria (Diez, 

201 0). Reportedly, Oxalobacter formigenes, an anaerobie bacterium isolated from 

hw11an feces has the ability to degrade oxalic acid (Ito et al. , 1996), and appreciable 
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mineralization levels were achieved using Coniothyrium minitans fungus or brown 

rot fungus (Ren et al., 2007; Azzouz, 2012). In spite of these performances, 

bioremediation processes are often pH-dependent and fairly difficult to be accurately 

monitored. Appreciable fluctuations in their activity due to frequent contamination 

with other competitive micro-organisms may affect the process efficiency. 

In physical procedures, the dispersed contaminant in both liquid (solution or 

emulsion) and solid state (suspension) is separated from the liquid media without 

changes in chemical structure. Such methods are u ually applied for removing highly 

polluted wastewaters, and have almost no efficiency when dealing with complete 

purification into drinking water. When applicable, microstraining is undoubtedly one 

of the most important physical water treatments, which involves separation via 

filtration of small particles (Wang and Fiessel, 2008) . This method uses of entangled 

wires made of stainless steel or polymers as filters with aperture size of only 60-70 

IJm. Other similar procedures developed so far, utilize membranes and other 

separating systems. In the case of very fine particles, a previous coagulation­

flocculation process is employed to increase the particle size through the formation of 

flocks. 

Coagulation, alone or combined to other methods, is usually employed to alter a 

colloïdal state by modifying the surface charge of the suspended particle. An almost 

similar process is involved with an emulsion of liquid micro-droplets. For this 

pm-pose, coagulating agents such as alum [Ah(S04)2• l8H20], FeCh, FeS04 are 

commonly employed (Wang and Fiessel, 2008; Koohestanian et al., 2008). Devoid 

of their solvation layer, the latter can adhere to each other into bulkier and heavier 

aggregates (flocks). The latter are prone to a settling step, and the residual suspension 

being removed through filtration of the supernatant (Mohan, 2014; Rahni and 

Legube, 1996). 
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Pollutant capture through adsorption on a olid smface is the most comrnonly used 

physical technique for removing dissolved compounds. However, this technique 

should be limited to wastewaters weakly loaded in contaminants and as long a 

adsorbent saturation is not attained. The adsorbent effectiveness is directly related to 

the extent of the surface area available for interaction with the contaminant 

molecules. A classical adsorbent with high affinity towards organic compounds is 

undoubtedly porous carbon (activated carbon, fullerenes , carbon nanotubes, etc.) 

(Kwong et al., 2008) . Nanostructured carbons can display smface area of 1000 m2 .g-1 

and even beyond. Activated carbon is the most affordable carbon-based material from 

the production cost viewpoint, and acts as an effective adsorbent for a wide variety of 

organic substrates (Ramirez et al., 2010; Mohan, 2014; Kasprzyk-Hordern et al., 

2003; Hemy and Beaudry, 1984, p. 56-81; Stuber et al., 2005). 

Sol vent sublation or conunonly "sol vent extraction" is a conventional treatment for 

highly polluted aqueous wastewaters. In this separation technique, the dissolved 

organic compound i transferred and concentrated at the top of a column filled with 

an organic solvent by means of ascendant micro bubbles of air. This method turned 

out to be more effective than the aeration methods, because it prevents the organic 

contaminant to re-disperse into the aqueous phase. In addition, unlike the aeration 

methods, solvent sublation can also eliminate non-volatile pollutants (Bayati et al., 

2009). The evaporation of the organic contaminant into the air stream during the 

aeration treatment can be achieved by increasing the liquid-gas interface. For this 

purpose, bubbling large amounts of air through the wastewater bulk causes air and 

water to disperse into a mixture of fine bubbles and very small droplets (Zhang et al., 

2014; Liu et al., 2012; Nollet, 2007, p. 300- 302). The efficiency of such physical 

methods is however limited by the transfer velocity of the contaminant through the 

liquid-liquid (sublation) or liquid-gas intetface (aeration) . The main drawback of 
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uch a water treatment technique is the use of organic solvents, which unavoidable 

results in traces of organic molecules. That is why even the most performing deviees 

cannot produce total elimination of the organic substrates from the treated 

wastewaters. 

Another route involves the use of chemical methods, i.e. the decomposition of 

organic compounds into products with different chemical structures. An essential 

requirement for such wastewaters treatments resides in achieving weakly 

endothermal chemical reactions. The latter should use powerful oxidizing or reducing 

agents in order to avoid heating and the production of residual amounts of harmful 

products and hazardous derivatives. Here, a special interest is devoted to those 

treatment processes that do not involve fossil energy consomption and greenhouse 

gas emissions. Such degradation reactions should also show fast kinetics and high 

conversions. When such requirements are not fully satisfied, improvements can be 

brought by using suitable catalytic systems, but, in most cases, the operating 

conditions have to be optimized in conelation with the catalyst features. For instance, 

polychlorinated biphenyls (PCBs) are an important kind of persistent organic 

pollutants, which can be degraded by saponification, but the reaction is more efficient 

upon heating (Numata et al., 2005). PAHs may also be removed by saponification, 

but the reaction mixture was found to still contain undesirable by-products even 

under reflux at 95°C (Northcott and Jones, 2003). For such decomposition processes, 

the needs for heating are major shortcomings, which limit their applications for large­

scale batches. 

Theoretically, the presence of carbon atoms in their structure makes that all organic 

molecules are able to react with oxygen and oxidizing agents. The most commonly 

employed oxidizing agents are permanganate and hypochlorite anions, hydrogen 

peroxide or ozone. A wide variety of oxidative decomposition processes have been 
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developed until now, among which chlorination has even been employed in industria1 

facilities for wastewater treatments . Nevertheless, such technique are progressively 

losing interest, because of the unavoidable formation of chlorinated derivatives and 

by-product . 

2.3.2 Oxidative processes for total mineralization 

Oxidative procedures targeting total mineralization of organic pollutants into 

harmless final products, more particularly the so-called Advanced Oxidative 

Processe (AOP) have particularly attracted attention. The most imp01tant AOPs may 

be classified as follows (Kasprzyk-Hordern et al., 2003): 

a. Fenton processes (using the H20 2/Fe2
+ combination as the Fenton's reagent) ; 

b. Ozonation-peroxidation combination (03/H20 2); 

c. Photo-oxidation processes : (03/UV, H20 2/UV, 0 3/H20 2/UV); 

d. Catalytic photo-ozonation: (catalyst/03/UV); 

e. Catalytic ozonation: catalyst/03. 

Regarded as being environmentally clean treatments of wastewaters, they are still 

prone to intensive investigations. When applied to oxygenated organic contaminants 

that do not contain heteroatoms such sulfur or nitrogen , effective AOPs should 

generate C02 and H20 as the final products. Depending on the structure of the 

organic molecules, oxides of other chemical elements are also produced, but, in thi s 

case, pecial consecutive water treatments are needed. In most AOPs, the main 

oxidizing agent is the hydroxyl free radical (OH) , more particularly in alkaline 

media. This radical is even more reactive than chlorine, permanganate and hydrogen 

peroxide, being a non-selective oxidizing pecies that readily and rapidly reacts with 

a wide variety of organic substrates (MW1ter, 2001; Elsousy et al., 2007; Wang and 



- ------------- -------- -- --------------

34 

Fiessel, 2008). Most AOPs involve a direct attack of hydroxyl radicals on the organic 

molecules yielding organic radicals and water (Reaction 2.1) (Stasinakis, 2008): 

(2.1) 

In this reaction, C=C compounds are more reacti ve towards 'OH radical attack than 

saturated molecules, and the reactivity towards oxidative species decreases with 

decreasing molecular weight and increasing oxidation level. This explains why 

partially oxidation of organic molecules generates smaller size derivatives, usually 

oxalic acid and short chain intermediates, which display lower reactivity towards 

oxidation than their parent molecule. The latter usually accumulate as the final 

products, because they are known to be quite refractory even to the most reactive 

oxidizing species. Catalytic oxidation of organic pollutants may produce total 

mineralization into C02 and water, but only in optimum amounts of cataly t and 

oxidizing agent, pH and concentrations of the organic substrate (Shivaraju, 2011). 

Catalytic oxidation of organic molecules containing sulfur, nitrogen and (or) other 

heteroatorns is expected to generate also nitrate and sulphate anions . 

At ambient temperature and pressure, oxidative processes generate sufficient 'OH 

radicals to oxidize the major part of the organic compounds present in polluted water 

(Stasinakis, 2008; Tizaoui et al. , 2008; Iurascu et al. , 2009; Pang et al., 2011), but 

such radicals show limited efficiency, more particularly in flow water treatment, due 

to their extremely short lifetirne. 

One of the most conventional oxidative methods is the Fenton process (Nidheesh and 

Gandhimathi, 2012), which displays highest efficiency around pH 3, due to the 

preponderance of Fe2+ cation at the expense of its ferric counterpart (Fe3+). Here, the 

[Fe2+/ H20 2] ratio, H20 2 concentration, temperature, initial concentration of the 
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pollutant, and, more particularly pH are expected to play key roles. Increasing pH 

was found to be detrimental because it reduces the amount of Fe2
+ cations via 

precipitation. This is expected to attenuate the conversion of hydrogen peroxide into 

"OH radicals (Reaction 2.2) (Barbunsinski, 2009): 

(2.2) 

The major shortcoming of such a process may be a source of water contamination, 

because exhaustive "OH production requires appreciable Fe2
+ concentrations of 50-80 

ppm, while the maximum level allowed in treated wastewaters i only 2 ppm. 

Another drawback is that high Fe2
+ concentrations require continuous pH adjustments 

that raise the operating costs in wastewater treatments (Ramirez et al., 2007). 

Besides, the H20 2 amount should be rigorously monitored to avoid "OH radical 

scavenging even by hydrogen peroxide, resulting in less reactive species such as 

H02" (Reaction 2.3) (Daudet al., 2010; Ramirez et al., 2010; Flores et al., 2008): 

(2.3) 

Photo-catalytic oxidation of orgamc substrates was found to produce higher 

performances when using solid catalysts such as Ti02 in its anatase form, metal 

oxides and sulfides such as a-Fe203, SrTi03, W03, ZnO, and ZnS (Wu et al., 2008). 

A major requirement resides in the chemical stability of such catalysts under light 

exposure. However, light inadiation involves energy consumption and increased 

operating co ts that impede their large-scale implementation, unless using solar light. 

For these reasons, the design of new oxidative methods, more particularly ozone­

based AOPs, turns out to be attractive. 
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2.3.3 The state of the art about ozonation 

Under optimum operating conditions, ozonation and its improved variants appear to 

be the most promising routes for wastewater treatment, even those containing 

complex organic molecules such as antibiotics, estrogens and other drugs. Nowadays, 

a wide variety of mini- and micro-deviees are available for domestic purposes, and 

more particularly for drinking water. Ozonation is progressively becoming an almost 

unavoidable teclmique for quick water purification, notwithstanding the low 

solubility of ozone in water, which barely reaches 570 mg.L-1 at 20°C (Kumar and 

Sathyamurthy, 2013) for pure ozone in the gas phase. Thjs solubility dramatically 

drops down at lower ozone concentrations in the gas phase according to Henry 's law. 

Ozone can be conveniently generated through an electrical discharge using pme 

oxygen. or even air, with an average energy consumption of 8-17 kWh per kg of 

ozone (Rice et al., 1982, p. 255-285). 

Molecular ozone is also fairly unstable in water with a half-life time ranging from 

few seconds up to few minutes, according to the pH of the liqujd media. Between pH 

7 and pH 10, the typical half-life tirne of ozone varies from 15 up to 25 min. The 

ozone reactivity arises from its two fom1s of resonance structures (Scheme 2.4), 

which explains the high probability of different type of chemical reactions such as 

cycloaddition, electrophilic and nucleophilic attacks. 

8+ .. 
~0"' :o :o: . . . ~ 

8-

- /~"-
:o: :o: 

Ô+ ô-

Schenie 2.4. Ozone charge transition between two resonance structures 
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Ozone molecules exhibit a redox potential of 2.07 volts, which is supposed to induce 

sufficient reactivity to oxidize both organic and inorganic compounds (Kasprzyk­

Hordern et al., 2003): 

(2.4) 

In reaction 2.4, hydrogen does not undergo change in the oxidation state, unlike 

oxygen atoms which are reduced to (-2). In the meantime, the equilibrium potential 

of reaction 2.4 is switched to less positive values. The scavenging effect of protons 

pattially impedes direct interaction of ozone with both the substrate and catalysts, and 

explains somehow why excessively acidic media are detrimental for ozonation 

processes. In less acidic media, the mere presence of hydroxyl anions turn out to be 

rather beneficiai, inasmuch as direct ozone attack on hydroxyl anions generates 

highly reactive ·oH radicals (Reaction 2.5): 

(2.5) 

·oH radical displays a higher oxidation potential (2.33 V) (Kasprzyk-Hordern et al., 

2003), and a rate of attack typically 106 to 109 times faster as compar·ed to molecular 

ozone (Munter, 2001). Increasing alkalinity in the reaction mixture should be 

beneficiai, but beyond a certain threshold level, in metal cation-catalyzed ozonation 

the precipitation of catalytically active metal cations may take place. This indicates 

the occurrence of optimum pH. According to the mechanisms pathways proposed so 

far, molecular ozone behaves as a primar·y oxidant, and, once generated, the resulting 

·oH radical act as secondar·y oxidizing agent (Park et al., 2002). Unavoidably, ·oH 

can even react with ozone, thereby annihilating reciprocally their oxidizing capacities 

by generating much less reactive H02• radicals (Reaction 2.6). 



o 3 + ·oH----* o 2 + Ho2· 

o 3 + Ho2· ----* 20 2 +·oH 

o 3 + OI-1 ----* o 2·- + Ho2· 

2H0 2.----* H202+ 0 2 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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The latter may also react with ozone into hydroxyl radical (Reaction 2. 7) , but at a 

lesser extent because of their relatively low reactivity. Since the concentration of 

ozone in aqueous media is lirnited by its low solubility, it clearly appears that 

excessive amount of hydroxyl radicals will enhance their detrimental scavenging 

effect on ozone molecules . Nonetheless, here care should be taken, because too 

alkaline pH's causes an increase in ozone decomposition into radicals with lower 

reactivity (Reaction 2.8). Sorne of these radicals (2H02.) may however behave as a 

valuable source for hydrogen peroxide (Reaction 2.9) . 

These findings constitute the base knowledge for improving the ozonation processes. 

In a first step, to overcome the major drawback related to low ozone solubility the 

contact time of ozone or the extent of the gas-liquid interface in the reaction mixture 

should be significantly increased. For this purpose a series of engineering solutions 

have been developed, e.g. high bubble dispersion and the use of long tubular reactors. 

In such deviees, the overall reaction rate was found to depend on both the transfer 

rate of ozone from the gas bubbles to the liquid and the reaction rate of ozone with 

the organic pollutant (Canton et al., 2003). 

The low solubility of ozone in aqueous media has also stimulated research for 

developing chemical procedures, e.g. by using solid catalysts such as zeolites (Rubin , 

2008). In this regard, fixed beds of porous glass or metal, or the use of solid catalysts 

that also act as adsorbents are also intere ting routes to be explored. So far, free 
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transition metal ions and rnixed oxides have shown interesting catalytic activity in the 

ozonation of organic pollutants (Shiraga et al., 2006). However, catalyst Joss and 

water contamination with metal cations are the main shortcomings in such methods. 

The use of supported metal cations is a possible solution in this regard, but the 

chemical stability of the solid support, more particularly in acidic media, should be 

an essential requirement for this purpose. In addition , metal cations should benefit of 

a certain mobility to be active, and ion-exchangers appear promising supports, but 

metal losses by leaching due to pH fluctuations are still possible. The frequency of 

the interactions occurring between ozone and the ·oH radicals may also be prevented 

by operating in laminar flow processes. Microfluidic processes in tubular reactors 

with internai coating showing catalytic activity in ozonation may constitute an 

interesting route to explore. Investigations should be focused in this direction. 

Ozonation has seldom been applied for large scale purposes, more particularly in 

Europe, except in sorne special cases such as in the cleaning treatment of ship ballast 

water. This came as an alternative to negative impact of chemical compounds used 

for this pmvose in conventional treatments (Goncalves and Gagnon, 2012). Here, 

total mineralization of refractory small molecules is an essential requirement to avoid 

natural water contamination. This can be achieved through powerful treatment 

methods su ch as catalytic ozonation and others (Ramirez et al., 201 0; Ping et al. , 

2002). 

When used in decolorizing textile wastewaters, conventional ozonation involves high 

ozone consumption. The latter is almost 4 times lower by catalytic ozonation (Yong 

et al., 2005). In such purposes, ozone is usually injected at a concentration in the feed 

gas of 12.0 ± 0.5 mg L-1 and gas throughput of 1.0 L min-1 (Trapido et al,. 2005). In 

all possible applications, the electron density (ED) of the targeted molecules plays an 
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important role on the electrophilic attack of ozone. As a general feature, increasing 

ED accounts for increasing reactivity towards ozone. 

This dependence may be significantly influenced by the presence of a catalyst 

(Fontanier et al., 2005). For phenolic compounds, the reactivity towards ozone is 

strongly dependent on the number, type and position of functional groups attached to 

the aromatic ring, and generally decreases with decreasing number of hydroxyl 

groups. Methoxylated compounds were found to undergo lower total oxidation rates 

than phenolic derivatives (Mantzavinos, 2003). 

Ozonation produces only partial degradation of pesticides in coupled chemical and 

biological treatments (Maldonado et al., 2006). This often results in the formation of 

hazardous intermediates (Can and Gurol, 2003) For instance, when ozonated, 

phenolic compounds give rise to common derivatives such as resorcinol, catechol and 

hydroquinone, along with fumaric, maleic, glyoxylic, oxalic and formic acids 

(Beltran et al. , 2005). Such derivatives usually exhibit weak reactivity to oxidizing 

species, because of the presence of oxygen atoms in their structures (Gilbert, 2002). 

Antibiotics are typical organic pollutants in a wide variety of domestic and industrial 

wastewaters at sub-therapeutic concentrations. Seemingly, ozonation attempts at 

alkaline pH gave better performances than acidic media (Bin and Madej , 2012). 

Nonetheless, pH fluctuations during the ozonation process may produce changes in 

the mechanism pathways, making the elimination of the organic contaminant difficult 

to be monitored (Canton et al., 2003; Azzouz et al., 2010). Unless effective catalysts 

are used, drug and estrogen release in nature still remains a major issue to be 

addressed, as supported by an ample literature. 
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2.4 Catalytic ozonation 

In surface catalysis, the overall rate of a physico-chemical process is governed by the 

contribution of different consecutive steps, and more particularly by the kinetic­

controlling step (Fontanier et al., 2005). Depending on the strength of the reagent­

surface interaction, the ozonation process can involve physical or chemical 

adsorption. Too strong interaction of the reagents, intermediates or products lead to 

catalyst poisoning. 

Ali ozonation methods involve heterogeneous processes, because it involves, at least, 

a surface reaction between a gas (ozone) and a liquid media containing the organic 

pollutant (Kasprzyk-Hordern et al. , 2003). The latter may be dissolved or merely 

dispersed a an emulsion (if liquid) or a suspension (if solid) . That is why care should 

be taken when using abusively the terms " homogenous catalytic ozonation" 

(Kasprzyk-Hordern et al., 2003). The latter arise from an incorrect denotation that 

should be avoided as much as possible, whatever the catalyst physical state may be. 

The first catalyst ever used in preliminary ozonation studies were dissolved metal 

. U d 1 f . . 1 h F ?+ F 3+ M 6+ M ?+ N '2+ C 2+ catiOns. p to ay, sa t o transitiOn meta s suc as e- , e , o , n- , 1 , o , 

Cd2+, Cu2+, Ag+, Cr3~ , Zn2+ are stiJl used as catalysts for this purpose (Legube and 

Kru·pel Vel Leitner, 1999; Azzouz et al. , 2010; Shahidi et al. , 2014; Liotta et al. , 

2009). Bivalent cations and more pruticularly Fe2+ ions showed so far the higher 

catalytic performances (Azzouz et al. , 201 0; Liotta et al., 2009). In Fenton process, 

Fe3+ cation is assumed to decompose H20 2 into oxygen and water without generating 

the tru-geted hydroxyl radicals (Elham hary et al., 2011). In the ozonation process, a 

key step resides in the direct interaction between ozone and bivalent iron cations 

(Reaction 2. 10). This reaction is supposed to take place, giving rise to Fe02+ cation. 
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The latter is now recognized as being the main precursors of hydroxyl radical even in 

acidic media (Reaction 2.11). 

Fe2
+ + 0 3 ~ Fe02

+ + 0 2 

Fe02+ + H20 ~ Fe3+ +Ho·+ OH-

(2.10) 

(2.11 ) 

The formation of OH- anions induces unavoidably a pH increase and changes in the 

mechanism pathways (Canton et al. , 2003; Azzouz et al., 20 10). This is expected to 

cause catalyst loss through metal cation precipitation, and to shift equilibrium 

towards an attenuation of reaction 2.11. This is a major drawback that makes the 

implementation of large scale cation-catalyzed ozonation difficult to be achieved. 

Besides, th.e presence of metal cations in the treated wastewaters is another major 

issue to be addressed, and the use of insoluble solid catalyst appears as a more 

promising alternative. Oxide of metals such as Cu, Mn, Co, Cr, V, Ti, Bi, and Zn in 

different oxidation states and supported or free metal particles such as Ir, Pd, Pt, Rh , 

and Ru can be used for this pm-pose. 

The use of solid or supported catalysts a1ms not only to overcome these 

shortcomings, but also to provide extended specifie smiace are for improving the 

contribution of adsorption (Wu et al. , 2008; Canton et al. , 2003). The latter will be 

more or less significant according to acid-base properties of the solid surface. So far, 

a wide variety of solid supports have been tested in ozonation attempts. 

Granular Activated Carbon (GAC) can be used as support for metal oxide 

immobilization. In spite of a series of drawbacks (fast saturation and need to 

regeneration or replacement and low efficiency on COD removal), GAC-catalyzed 

ozonation involves low ozone consumption, owing the· high specifie surface area of 

the solid upport and its high capacity to generate hydroxyl radicals in the aqueous 

phase (Pinget al., 2002). 
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In the presence of solid catalysts, ozonation is assumed to take place not only in the 

bulk solution, but also on all the interfaces involved between the different phases 

present in the reaction mixture (Guo et al. , 2012; Legube and Karpel Vel Leitner, 

1999). Ozonation on the catalyst surface should prevail, as supported by the 

significant enl1ru1cement as compared to the non-catalyzed process. ln this case, the 

adsorption of at least one reagent turns out to be an essential requirement for the 

surface reaction and the formation of ·oH radical s. 

The ozonation of oxalic acid is an interesting exru11ple of oxidative decomposition of 

refractory organic compound. In this case, a first postulated mechruùsm is the one 

involving simultaneously all species adsorbed on the catalyst surface (Scheme 

2.5a-7c). The second reaction pathway (Scheme 2.5a-7b) proposes a prevwus 

dissolution of ozone in the aqueous solution followed by its adsorption from the 

liquid media onto the solid surface. This is supposed to enrich the catalyst surface 

with oxidizing species. The consecutive adsorption of the organic molecules will 

produce their decomposition and possibly the catalyst regeneration by reduction. 

(a) 

(b) 

- ~ ~ Hd \)H 

(c) 

Scheme 2.5. Interfacial radical generation (a) and radical action on oxalic acid in the 
bulk solution (b) and on the catalyst surface (c). 
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Once desorbed, the products of this step will be oxidized by "OH in the bulk solution. 

In both types of mechanisms, chemisorption of at least one of the reagents is 

essential, but simultaneous adsorption of two or more substrates should be more 

beneficiai for the ozonation process. The global ozonation process may 

simultaneously involve both mechanisms and probably other reaction pathways 

involving diverse adsorbed-adsorbed, adsorbed-dispersed and dispersed-dispersed 

species interactions. 

The preponderance of each type of interaction must be strongly dependent on the 

affinity of the catalyst surface towards a given species, and may vary according to the 

operating conditions and chernical composition of the reaction mixture. This implies 

that various interactions between all types of ozone present in the reaction mixture 

(dispersed gas bubbles, dissolved and adsorbed) with the organic substrates in their 

adsorbed and (or) soluble forms, along with dispersed hydrophobie clusters (if 

insoluble) are possible (Sui et al. , 2011). The high complexity of such a 

heterogeneous catalytic process is illustrated merely by the high number of direct 

interactions involving the primary chemical species, i.e. ozone and oxalic acid in the 

vicinity of a solid surface (Scheme 2.6). 

Ozone bubble 

® 0~ 

o, • H•o Dissolved 
ozone . ' 

' , 

o , Adsorbed ozone 

1 -.)-{t. ' 
H~O Ol 

Solid catalyst 

Scheme 2.6. Possible direct interactions between the primary ozone species with 
adsorbed and unadsorbed oxalic acid in the vicinity of a catalyst surface 
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This explains why kinetic study of ozonation in the presence of solid catalysts still 

remains a challenge to be considered. Here, the affinity of the catalyst surface 

towards ozone, water and (or) the organic substrate is expected to determine the 

kinetic-controlling step, once the issues related to the law solubility of ozone and the 

hydrophobie character of the organic substrate in the aqueous media are addressed. 

The type of solid catalyst must be a key factor when applying ozonation in the 

decampa ition of specifie organic molecules. 

2.5 Solid catalysts for ozonation 

A wide variety of catalysts have been tested in heterogeneous oxidative processes, as 

reported by an ample literature succinctly illustrated by sorne attempts summarized in 

Table 2.1. A special attention has been focused on dispersed or supported metal 

oxides, more particularly of titanium, carbon-based materials, zeolites and certain 

microporous aluminosilicates. Among these, clays minerais are the most abundant in 

nature, and appear as promising catalysts for such purposes. 
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Comparison between specifie performances of specifie pollutant-catalyst-oxidizing 

agent systems is quite difficult, and is not targeted in the present work, because of 

specifie operating conditions. However, a deep analysis of the data of Table 2.1 may 

be useful to understand the essential requirements for a catalyst to achieve total 

mineralization of any organic molecules, which remains the main objective of this 

chapter. 

2.5.1 Metal oxides and metals 

Mn02, Ti02, Ab03, Fe203, W03, CuO, Ce02, Nh03, CoO, V20s, Cr203, Mo03, 

CeO, and Cu0-Ce02 mixtures represent typical exan1ples of metal oxide catalysts 

that may exhibit different activities in ozonation processes according to the organic 

substrate to be oxidized. For instance, Ab03 and Mn02 were found to produce 

different decomposition yields with 2-chlorophenol and oxalic acid (Stuber et al., 

2005 ; Matheswaran et al. , 2007). Conversely, for a given organic substrate such as m­

dinitrobenzene, extensive studies (Trapido et al,. 2005; Nawrocki and Kasprzyk­

Hordern, 2010) have shown that the catalyst activity in ozonation varies according to 

the type of the metal oxide used, in the following sequence (Scheme 2.7). 

Increase of degradation yield of m -dinitrobenzene 

Scheme 2.7. Variation of the catalytic activity versus the metal oxide in the 
degradation of m-dinitrobenzene 
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Ti02 is a conventional and low cost catalyst widely used in photo-oxidative processes 

(Gilbert, 2002), but a growing interest is now focused on new photoactive catalysts 

such as CdS , ZnS , a-Fe20 3 (Shivaraju, 2011 ; Tizaoui et al., 2008, Singh et al. , 2011 ; 

Chen et al. , 2009). Several transition metal oxides and their mixtures such as Mn-Ce-

0 showed catalytic activity in the ozonation of phenols (Liotta et al., 2009; Martins 

and Quinta- Ferreira, 2009). When separated, unlike cerium oxide, manganese oxide 

produced a complete degradation of oxalic acid after 45 minutes of ozonation, and 

showed a constant catalytic activity even after three cycles of oxidation (Orge et al. , 

2012). 

These differences in catalytic activity can be partly explained by the specifie features 

of the catalyst surface, more particularly the acid-base properties of each catalyst, 

which must play a key-role in the adsorption of the reagents. For instance, 

moderately acidic surfaces such as clay-supported metal cations were found to 

produce appreciable degradation yields of oxalic acid due to a synergy between 

adsorption and the catalytic activity of the exchangeable cations (Azzouz et al. , 

2010). The latter may act on the catalyst smface and (or) in the bulk solution, 

according to its mobility in the vicinity of the catalyst surface, which strongly 

depends on the pH level of the reaction mixture. Sirnilar synergy was also noticed for 

nano-structured cerium oxide catalysts (Orge et al. , 20 11). 

Effective adsorption supposes high specifie surface area, which usually requires 

increased porosity and (or) high catalyst amount. However, high ozonation levels 

require optimum catalyst quantities in corTelation wit~ adequate pH levels, as 

supported by the complete mineralization of phenanthrene on goethite at pH 7.2 

(Park et al., 2002; Kanel et al., 2003), of oxalic acid on iron-exchanged 

montmorillonite at pH 3.0-3 .5 (Azzouz et al., 2010) or of the diazinon insecticide on 

ZnO nanocrystals at pH 5.2. 
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Under sirrtilar operating conditions, the catalyst characteristics play a key-role even in 

the case of almost sirrtilar structures. For instance, ZnO nanoparticles showed higher 

efficiency in phenol ozonation, as compared to manganese and cerium mixed oxides 

(Daneshvar et al., 2008; Dong, et al., 2011). This was partly explained in terms of 

higher surface area, the other contribution being attributed to the metal 

characteristics. The dispersion state of metal oxides does not seem to play a 

significant role, inasmuch as both dispersed manganese oxide and carbon-supported 

manganese oxides showed high catalytic activities at acidic pH, which is supposed to 

involve mainly the action of molecular ozone (Sui et al., 2012). In sorne ozonation 

processes, metals appear to exhibit higher catalytic activity in their cationic form, as 

supported by the higher ozonation efficiency in the presence of Mn2
+ as compared to 

Mn02, more particularly at pH 2 (Wu et al., 2008). This was also explained by the 

involvement of molecular ozone attack, presumably due to an enhancement of the 

direct interaction with more mobile and available cations in acidic media as a result 

of partial metal oxide dissolution in acid media. 

This explains that, notwithstanding its apparently lower effectiveness, Mn02 is still 

tested in the ozonation in controlled acidic media of a wide variety of organic 

substrates such as oxalic acid, pyruvic acid, sulfosalicylic acid, propionic acid, 

glyoxalic acid, and phenol. Ti02-supported Mn02, FeOOH and Sn02 , brucite and 

magnesia, magnetic cobalt and Mn-doped y-Fe20 3, granular activated carbon have 

also been tested as catalysts in ozonation processes (Chen et al., 2011 ; Lv et al., 

2010; Gul et al., 2007). The growing interest devoted to metal oxides resides, thus, in 

their ability to act as cation sources in moderately acidic pH through partial 

dissolution. Nevertheless, even though metal cations are supposed to act as the main 

catalytic species, many aspects related to their mechani rn pathways still remain to be 

elucidated. 
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Solids may also be used as supports for catalysts. In this regard, except organic solids 

such as polymers and dendrimers, which are known to be highly reactive toward 

ozone, all kinds of materials that exhibit sufficiently high stability against irreversible 

oxidative decomposition can be used as catalyst supports. So far, a wide variety of 

inorganic supports such as zeolites, clay minerais, silica gel, Ab03 or Ti02 have been 

used for this pm-pose (Legube and Km-pel Vel Leitner, 1999). Zeolite and alumina 

showed the lowest catalytic activities (Legube and Karpel Vel Leitner, 1999; Neitner 

et al., 1999; Lin et al., 2000). For instance, Ti02/ Fe2+and Ti02/ Fe3+ turned out to be 

interesting catalysts for the oxidative decomposition of many organic pollutants. 

Alumina-supported Ti02 or Fe20 3 have been employed for removing oxalic acid, 

chloroethanol and chlorophenol from water (Cooper and Burch, 1999), or fulvie acid 

from wastewater (Volk et al., 1997). Ruthenium and cerium oxides have been tested 

for succinic acid removal (Legube and Karpel Vel Leitner, 1999). Reportedly, 

supported noble metals such as Pt/Ti02 and Pt/A}z03 can produce total 

decomposition of organic compounds (Liotta et al., 2009). Ru/Ce02 systems appear 

to produce complete removal of succinic acid from wastewater after only 60 minutes 

(Leitner et al., 2000) taking into account that total decomposition of most organic 

contaminants still remains a difficult challenge to achieve. 

2.5.2 Carbon-based catalysts 

These last years, many types of cm·bon based structures have been tested as catalysts 

or supports in oxidative processes, and have produced more or less satisfactory 

results in the decomposition of a wide variety of organic molecules. Indeed, GAC, 

cm·bon black powder and graphite have been employed as catalysts or catalyst 

supports for Pt, Pd, Ru in the oxidation of phenols and halogenated phenols, 

carboxylic acids such as acrylic, acetic, formic, oxalic, succinic, adipic, propionic, 
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glutaric, and butyric acid (Stuber et al., 2005). Fe20 3 and Ce02 irnmobilized on 

activated carbon turned out to be effective catalysts in the ozonation of antibiotics 

(Akhtar et al., 2011). Activated carbon-supported nickel showed significant catalytic 

activity in the ozonation of p-chlorobenzoic acid as compared to non-catalytic 

processes (Li et al., 2009). 

Ozone-Granulated Activated Carbon (03/GAC) is a typical example of catalytic 

ozonation, which produces intense degradation of pesticides (Munter, 2001; Trapido 

et al, . 2005). In the oxidation of oxalic acid, cerium oxide showed lower activity than 

its carbon-supported counterpart (Orge et al., 2011). Here, the specifie surface area 

and metal oxide particle diameter are supposed to play key roles (Goncalves et al. , 

2012). Another interesting carbon-based structure is the so-called Multiwalled 

Carbon Nano Tubes (MWCNTs), which consists in mesoporous nanomaterials with 

linear channels. Reportedly, oxidation attempts using such rnaterials resulted in 

exhaustive phenol decomposition (Liotta et al., 2009), with interesting behavior 

towards refractory intermediates such as oxalic acid (Liu et al., 2011). As many types 

of solid catalysts, MWCNTs appear to act as initiators for surface bound oxidative 

species (Scherne 2.8). 
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t R 

•oH + R 

Scheme 2.8. Schematic representation of possible interactions for oxalic acid 
ozonation on MWCNTs 

On such materials, oxidation of organic molecules was found to take place not only 

in the bulk solution but at the catalyst surface as well (Nawrocki and Kasprzyk­

Hordern, 2010). The general tendency is that, the use of solid catalysts is beneficiai, 

because the global oxidation process often involves a complementary contribution of 

the smface adsorption steps. Such enhanced oxidation processes may lead to 

complete mineralization of the organic molecules. This implies that the extent of the 

specifie smface areas should play a key role as in any solid-fluid interface processes, 

and that expanded structures having high smface-to-bulk ratio should be strongly 

recommended catalysts or catalyst supports for this purpose. Aluminosilicates such as 

zeolites, clays and clay minerais must be very interesting in this regard. 
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2.5.3 Zeolites and related catalysts 

Aluminosilicate family includes a wide variety of amorphous and crystalline 

phylosilicates such as clays and clay minerais, and tectosilicates such as zeolites. The 

common feature of ali these structures resides in the occurrence of permanent 

negative charges arising from the replacement of [Si04] tetrahedra by [Al04]" 

anions. These charges can be compensated by cations usually belonging to alkali and 

alkaline earth metals. Aluminosilicates are solid acids, which have been used as 

catalysts in many chemical processes. 

Zeolites are crystalline and microporous aluminosilicates that can o:ffer high specifie 

surface area for adsorption and catalysis. Such structures have 3-D frameworks with 

chaJ.mels and cavities that can allow diffusion of a wide variety of organic molecules 

with critical diameter around that of monoaromatic hydrocarbons, such as benzene, 

toluene, xylene and other monoaromatic derivatives (Scheme 2.9). 

0 

Scheme 2.9. Molecular sieving property of zeolites. Here, as 3.11 example, phenol and 
p-benzoquinone can diffuse freely across the zeolite channels aJ.1d cavities, unlike 
bulkier molecules 
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They have already been tested as catalysts in the ozonation of organic molecules. 

Seemingly, this oxidation reaction is related to ozone interaction with Lewis acid on 

the zeolite surface, and an increase in surface acidity through suitable modification 

enhance the process efficiency (Valdesa et al., 2009). Fen·ic ion is well known to 

exhibit a special capacity for decomposing organic molecules in the presence of 

oxidizing agent, and an ample literature is available in this regard. Fe2+ ion 

exchanged zeolites were also found to display the highest effectiveness, by achieving 

almost total removal of organic pollutants from certain wastewaters (Liotta et al. , 

2009). 

Pseudo-zeolites are similar to zeolites by their crystalline 3-D frameworks build with 

cavities and interconnected channels, but are not alurninosilicates like zeolites . 

Mesoporous silicas like MCM and SBA series are regarded as being pseudo-zeolites. 

Sorne of these materials such as MCM-41 produced appreciable toluene removal 

yield of up to 96% from contarninated wastewaters (Kwong et al., 2008). The general 

tendency is that MCM-41 showed higher effectiveness in ozonation attempts as 

compared to zeolites, most likely due to their higher specifie surface area (975 m2.g·1 

versus 530 m2.g-1
) . 

Reportedly, mesoporous Fe3+/SBA-15 silica produced total decomposition of 

dimethylphhtalate through ozonation at pH 5.7. However, such a performance 

account for only 35% removal yield of total organic compounds (TOC), providing 

clear evidence that no thorough mineralization into C02 took place. Raising pH up to 

9.0 was fo und to produce a slight enhancement in TOC removal, suggesting an "OH 

radical mechanism. This is supported by the detrimental effect produced by the 

addition of an "OH radical scavengers (Liu et al., 2011). On such materials, excessive 

amounts of cations and aillons seem to affect the overall SBA-15 activity (Huang et 

al., 2011). Fe/MCM-41 showed appreciable catalytic activity in the ozonation of p-
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chlorobenzoic acid in aqueous media, affording TOC removal yields of more than 

94.5% after 60 minutes of oxidation. Under similar conditions, the TOC removal 

yields were only 61.5 % on MCM-41 and 62.3% without catalyst. Here also, such a 

process seems to occur via 'OH mechanism pathway. Seemingly, the cataly t 

effectiveness is maximum for an optimum iron amount of 0.5% (Huang et al. , 2012) . 

Similar phenomenon was observed on Mn02 supported on mesoporous ilica 

(Mn02/MCM-41). Such catalysts produced a nitrobenzene oxidation yield of up to 

93.3 % after 10 minutes of ozonation in the presence of an optimum Mn02 amount of 

1.15% (Sui et al. , 2011). 

2.5.4 Mixed hydroxide catalysts 

L4yered double hydroxides (LDH) are anionic clay minerais, which have also been 

used as ozonation catalysts. In this regard, Co-Mn-Al -LDH in different Co/Mn 

amount ratio have been tested in the ozonation of nitrobenzene, Co4Mn2-Al-LDH 

sample was found to produce the highest degradation yield of 60% at pH 6.99 and 

room temperature (Sui et al., 20 12). Interestingly, the yield of mineralization into 

C02 did not exceed 20% with the same catalyst under similar conditions, indicating 

the formation of large amount of intermediates. This appears to be a common feature 

of many LDH-based catalyst, and a possible explanation is the surface basicity that 

might not favor adsorption like in acidic media. As a confirmation in this regard, 

deeper insights showed that increasing cobalt amounts enhance the catalytic activity. 

In contrast, increasing Al amounts were found to be detrimental, presumably due to 

an enhancement of the surface basicity (Azzouz et al., 2010). Reportedly, 

hydrotalcite, which consists in an Al-Mg-LDH material, has been tested in phenol 

oxidation (Liotta et al. , 2009), but, seemingly, higher performance in the catalytic 
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ozonation of phenol and oxalic acid in water was registered when used as a support 

for metal oxides such as CuO (Shiraga et al., 2006). Total disappearance of phenol 

was measured after less than 30 minutes and total mineralization of oxalic acid was 

obtained upon 210 minutes of catalytic ozonation. Such a performance still remains, 

by far, below those registered with cationic clay minerais. Performance comparison is 

difficult, because different catalyst-pollutant system require different operating 

conditions, but may be useful for understanding the main approaches in this research 

area. 

Ferrai is natural material composed of aluminum sulfate, ferric sulfate, ferric oxide, 

aluminum oxide, and magnesium oxide. Reportedly, high decomposition yields of 

organic dyes of up to 99% were obtained through wastewater ozonation at acidic pH 

(Hassana and Hawkyard, 2002). Here, the mere presence of Fe cations, most likely 

due to partial dissolution of the material, seems to play a key role in the catalytic 

activity of such material. Thus, it clearly appears that free metal cations in the 

vicinity of a solid surface is an essential requirement for enhancing interaction with 

ail the ozone forms present in the reaction mixture. 

Among the wide variety of solid catalysts tested so far, only aluminosilicates, and 

more particularly clay minerais, appear to fulfill this requirement that favors cation 

mobility and catalytic activity. Interesting and low cost aluminosilicates are those 

belonging to the srnectite clay mineral family, more specifically montmorillonite, tqe 

main component of bentonites. A special interest is now devoted to this clay mineral 

due to its high surface area of up 200 m2.g· 1 and even beyond through suitable 

modification procedures, increased cation exchange capacity, high adsorption and 

swelling capacity, as compared to other counterparts. 



--------

59 

2.5.5 Clays, clay minerais and montmorillonite 

Unlike zeolite , clay minerais are dispersed crystalline frameworks, most of them 

having layered structures but almost similar surface properties as zeolites. Their wide 

abundance in nature makes them to be regarded as low cast alternatives to zeolites in 

many applications. There exist various types of clays, which are natural raw mixtures 

of clay minerais, volcanic ashes, silicas, carbonates and miscellaneous. One of the 

most representative clays is bentonite and one of the most studied clay mineral is 

montmorillonite (Bergaya et al., 2006). Bentonite is a clay material mainly composed 

by smectite and other minerais like feldspar, biotite, quartz, pyroxenes, and zircon 

(Murray, 2007, p. 161-178). Smectite is ·a farnily of severa! minerais such as 

montmorillonite, saponite, vermiculite, nontronite, hectorite, volkonskoite, sauconite, 

and beidellite. Kaolinite is also another clay family that differs from smectites by the 

layer number and arrangements. 

Many examples of clay-catalyzed oxidation processes at room temperature have been 

reported in the literature. Al-Fe pillared clays (Al-Fe PILCs) were found to display 

improved catalytic activity in phenol oxidation at moderately acidic pH values 

(Ramirez et al., 2010; Barrault et al., 2000). Cu-doped alumina-pillared 

montmorillonite have been successfully used for oxidation of toluene and xylenes 

(Wu et al. , 2008; Bahranowski et al., 1999). Phenol oxidation bas also tested on 

metal-exchanged clays and pillared clays (Liotta et al., 2009). (Al-Fe)-PILC showed 

the highest performance, affording removal yields of up to 100%. 

Attapulgite-based catalysts were reported to improve by about 20% the TOC removal 

as compared to the non-catalytic ozonation (Legube and Karpel Vel Leitner, 1999). 

Reportedly, Fe doped laponite produced total removal of phenolic compounds, 
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antibiotics and azo-dyes from wastewaters (Ramirez et al., 20 10). Ceramic 

honeycomb modified by impregnation of metals such as Mn, Cu gave conversion 

yield of about 80% in the ozonation of aqueous solutions of nitrobenzene. This 

conversion yield is three times higher than that of non-catalytic ozonation (Zhao et 

al., 2009). 

Montmorillonite is probably one of the most studied clay mineral (Bergaya et al., 

2006), whose surface properties can be significantly improved through simple 

procedures, providing effective materials for adsorption and catalysis (Nagendrappa, 

2002; Kaur and Kishore, 2012), more particularly in oxidation reactions (Lei et al., 

2007; Pillai and Demessie, 2003 ; Jagtap and Ramaswamy, 2006). The structure of 

each montmorillonite sheet consists of a layer of octahedral alumina [Ah(OH)6] 

sandwiched between two layers of tetrahedral silicates [Si04t (Scheme 2.10). 

In the presence of water molecules, the interlayer spacing enlarge, inducing clay 

swelling that facilitates exchange of the interlayer cations, usually Na+, Ca2+ and 

Mg2+. The smface negative charges originate from isomorphous substitution of Al3+ 

by Mg2+ species in the structure of the octahedral layer. In dry montmorillonite, the 

exchangeable cations are located within the hexagonal cavities of the silica layer, but 

upon hydration, the cations move into the interlayer spacing (Nagendrappa, 2002). 
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Scheme 2.1 O. Structure of montmorillonite 

The strength distribution of these acid sites can be modified by ion-exchange, 

dealumination through acid attack or incorporation of alien molecules or particles. 

Incorporation of heavier metal cations displaying high solvation capacity is known to 

generate Br0nsted and Lewis acid sites. The Br0nsted acidity originates from the 

dissociation of the intercalated water molecules coordinated to cations, as illustrated 

by reaction (2.12): 

(2.12) 

Heating up to 200-300°C is known to induce a decrease in the Br0nsted acidity but an 

increase in Lewis acidity. Excessive heating to around 450°C and above usually 

results in complete dehydroxylation of the aluminosilicate lattice and a thorough 

conversion of Br0nsted ac id sites into Lewis acidity. 
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An additional feature of montmorillonite resides in its double-faced lamella structure. 

The latter offers twice its capacity to retain both adsorbed and dispersed metal cations 

in the vicinity of the solid surface. Moderately acidic pH are already found to favor 

weak ion-exchange by proton, providing, thereby, sufficient released cation that can 

also have interaction with unadsorbed molecules of ozone and organic substrate 

(Azzouz, 2012; Azzouz et al. , 2010; Shahidi et al. , 2014). Besides, both faces of 

montmorillonite lamellae possess sufficient electrostatic charges that improve the 

adsorption capacity. The solid surface can attract and concentrate not only the organic 

substrate molecules, but also ozone in both adsorbed and dissolved forms, along with 

dispersed micro-bubbles (Scheme 2.11 ). 

High catalytic activity requires high number of available clay sheets devoid of dense 

silica phases that do not contribute to the above mentioned surface processes. In sorne 

cases, clay mineral purification turns out to be necessary for ozonation processes 

because of the presence of carbonates, bicarbonates and organic materials may affect 

• .~ 
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Ozone bubble 

e Dissolved ozone 
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Scheme 2.11. Metal cation mobility and ozone concentration in the vicinity of homo­
ionie form of montmorillonite surface. 
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ozone efficiency . . In oxidative processes, carbonates and bicarbonates are known to 

act as radical scavengers, while organic components involve undesired competitive 

ozonation processes. Convenient and effective purification of montmorillonite 

involves full ion-exchange into the de ired homoionic form, combined with a 

selective sedimentation in water under ultrasound exposure and removal of the lower 

. fraction that con tains varions ashes, dense phases like quartz, and other impurities. 

Purification may be completed by either ozone bubbling at room temperature or 

controlled calcination up to 400-450°C to remove possible carbonates and (or) 

organic impurities. The final step involves dialysis in water in order to remove the 

excess salt resulting from ion-exchange (Bergaya et al., 2006). In most cases, 

montmorillonite-based catalysts are prepared starting from the Na+ exchanged 

(NaMt) (Bergaya et al., 2006; Joshia et al. , 2009; Lin et al. , 2002; Boufatita et al. , 

2008). All these purification steps do not use organic solvent, and are fairly easy to 

cany out in water at ambient temperature and pressure. 

2.6 Key paran1eters in catalytic oxidative processes 

2.6.1 Catalyst amount and lifetime 

Ozone appears as being the most convenient oxidizing agent in terms of production, 

handling and consumption constraints, as supported by an ample literature in this 

regard. Indeed, even in the absence of catalyst, cost comparison showed that 

ozonation is much more effective in terms of reaction time than photochemical and 

Fenton oxidative processes or even than adsorption on granulated active carbon in 

dimethylphenol elimination (Munter et al., 2006). Under similar common conditions, 

the required time for total decomposition of dimethylphenol, by Fenton process was 

35 minutes while the same process could be achieved through ozonation in only 13 
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minutes in acidic medium and 7 minutes in alkaline medium. The required amount of 

oxidizing species (H20 2) in Fenton process is 680 mg L-1
, while ozone doses of only 

13 and 25 mg.L" 1 are needed in alkaline and acidic media, respectively (Munter et al., 

2006). In all cases, the use of optimum catalyst concentrations was found to modify 

favorable the reaction mechanisms towards an improvement of the process efficiency 

(Yong et al., 2005), and an increase of the quantities of the oxidizing agents (Yong et 

al., 2005; Elhamshary et al., 2011; Piera, et al. , 2000; Chedeville et al., 2005). 

This allows envisaging large-scale facility implementations, notwithstanding that 

research is still in progress throughout the world to produce high performance 

catalysts for achieving, with minimum ozone consumption, total mineralization of 

organic contaminants, when required, more particularly m drinking or medicinal 

purposes, provided that consecutive removal of S, N and other derivatives is · 

performed. The required catalyst quantity depends on its very chemical structure and 

that of the organic molecules to be eliminated. For instance, ozonation requires an 

optimum concentration of CuS-based catalyst of 400 mg.L-1 for treating textile dye­

containing waters (Yong et al., 2005), but of 500 mg.L-1 of ZoO nanoparticles for the 

decomposition of dichloroacetic acid (Zhai et al., 2010). Municipal sewage treatment 

cao be efficient! y achieved with only 70 mg.L- 1 of Ti02 (Shivaraju, 2011). 

In radical mechanism pathways, like that involved in Fenton processes, the optimum 

amount of free Fe2
+ cations needed was explained by the occurrence of scavenging 

reactions between these ions and hydroxyl radicals (Daudet al. , 201 0; Martins et al., 

2010). When using ash-supported Fe2
+ cations, the detrimental effect of excessive 

catalyst amounts with respect to the optimum value may be explained in terms of 

reduced contact surface through particle aggregation into clusters (Flores et al., 

2008). In clay minerais (Azzouz, 2012; Azzouz et al. , 2010; Shahidi et al., 2014), 

such a phenomenon was attributed to the fact that high catalyst concentrations 
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enhance clay-clay interactions at the expense of those occurring between clay lamella 

and zone and (or) the organic substrates. 

In oxidation processes, the effectiveness of solid catalysts is expected to decrease in 

time with increasing number of reuses (Shivaraju, 2011; Sun et al. , 2005). In sorne 

cases, this must be due to unavoidable alteration by leaching of the catalyst surface, 

more particularly in excessively acidic or alkaline media. Leaching is often observed 

in ion-exchanged catalysts such as zeolites and clay minerais. On hybrid organic­

inorganic catalysts such as metal-containing polyamidoxime grafted on starch, the 

activity decay was explained by a possible accumulation of the reaction products on 

the organic moiety (Elhamshary et al. , 2011). Nonetheless, the authors of this work 

did not emphasize on the possible oxidative decomposition of the organic moiety of 

the solid catalyst. 

For alurninosilicates such clay minerais, cation lasses, even in moderately acidic 

media, were already reported (Azzouz, 2012; Azzouz et al. , 2010; Shahidi et al., 

2014). Irnprovement attempts have suggested catalyst refreshing through periodical 

ion-exchange treatments for maintaining the catalytic activity for more than fifty 

cycles (Shahidi et al., 2014 ). Su ch a treatment targets a re-saturation of the 

exchangeable sites with metal cations. Investigations are still in progress in this 

regard. 

In many cases, slight heating, more particularly between 10 oc to 20 °C, was found 

to enhance the catalytic activity in oxidative degradation processes of organic 

molecules (Daud et al. , 2010; Ramirez et al. , 2010; Yang et al., 2005 ; Elhamshary et 

al. , 2011 ; Chedeville et al., 2005). This was usually explained in terms of an 

acceleration of the reactions that generate "OH radicals (Yong et al., 2005). However, 
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in sorne cases, excessive temperature increase is expected to produce detrimental 

effects, by reducing the ozone solubility in water. This explains why, in most cases, 

room temperature is regarded as being optimum, more particularly for catalytic 

ozonation (Legube and Karpel Vel Leitner, 1999; Azzouz, 2012; Azzouz et al. , 2010; 

Shahidi et al. , 2014; Sun et al. , 2005). Similar observations were made when 

performing the ozonation of dimethylphthalate over Fe/SBA-15 (Huang et al., 2011), 

of p-chlorobenzoic acid over Fe/MCM-41 catalyst (Huang et al., 2012), or of oxalic 

acid on MWCNTs (Liu et al., 2011). Nevertheless, such a detrimental effect of 

temperatures higher than the ambient values may also be explained by a possible 

acceleration of the decomposition of radicalic species, if any, or an attenuation of 

reagent adsorption on the surface of the solid catalyst (Shahidi et al., 2014).Besides, 

higher temperatures may also produce undesired pH modification constraints for 

process monitoring. 

2.6.2 Correlation between catalysts and pH 

In processes involving oxidizing agents and more particularly radicals, the pH level 

of the reaction mixture is expected to strongly influence the mechanisms pathway . 

(Azzouz et al., 2010; Shahidi et al., 2014). High pHs are known to promote the 

formation of hydroxyl radicals, as noticed in a wide variety of oxidation processes, 

more particularly in the ozonation of phenol on activated carbon (Ulson et al., 2012) 

and on starch-supported metal-containing polyamidoxime (Elhamshary et al., 2011), 

or in the oxidative elimination of methylene blue on zeolite (Valdesa et al., 2009). 

In the ozonation of dichloroacetic acid on ZnO nanoparticles, alkaline pHs were 

found to produce much higher degradation yield, due the formation of negatively 

charged Zoo- species, as compared to pH 2, which gave oxidation yield ca. 6 times 
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lower (Zhai et al. , 2010). This detrimental effect of low pH was explained in terrns of 

a predominance of scavenging effect of H+ ions on the produced hydroxyl radicals in 

acidic media. Additional arguments in this regard are provided by attempts in the 

photo-catalytic oxidation of organic compounds (Shivaraju , 2011), more particularly 

when using Ti02 as catalyst, where high degradation yield were obtained in 

conditions favoring the production of hydroxyl radicals (Piera et al. , 2000). The 

catalytic ozonation of nitrobenzene on ceramic honeycomb produced almost total 

decomposition after 10 minutes at pH 9. At acidic pH values the degradation yield 

did not exceeded 20% (Sun et al., 2005). However, alkaline pH may also cau e 

detrimental changes in the structure of sorne catalyst surfaces mainly through 

precipitation processes, as observed for ion-exchanged montmorillonite (Azzouz et 

al., 2010). 

In the presence of supported cations (Rarnirez et al., 2010), a Fenton-like catalytic 

oxidation produced an almost total decomposition of phenol at acidic pH of 2.5-3.0. 

Su ch pH levels are supposed to promo te the production of oxonium ions (H30 2 +) 

(Daud et al., 2010). However, at acidic pHs, care should be taken to prevent catalyst 

decomposition, more particularly when using aluminosilicates, which may undergo 

dealumination. 

In moderately acidic pHs around 3, appreciable decomposition yields are also 

possible, as observed in the photocatalytic ozonation of pyrrole-2-carboxylic acid 

(Gilbert, 2002) and the catalytic ozonation of p-chlorobenzoic acid and phenanthrene 

on ferric oxyhydroxide (FeOOH) (Park et al. , 2002). As previously stated for 

ozonation in the presence of ion-exchanged montmorillonite (Azzouz, 20 12; Azzouz 

et al. , 2010; Shahidi et al., 2014) intermediate pH values ranging from 2.5 to 4.5 

appear to involve a synergistic effect between adsorption and oxidation, and between 

ozonation on the catalyst surface and in bulk solution . 
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In most cases, the oxidizing capacity of ozone is considerably attenuated and 

sometimes even suppressed at neutral pHs. For certain catalysts, pH values around 

neutral produce the lowest activity regardless to the catalyst used (Shivaraju, 2011; 

Shahidi et al., 2014). This must be due to the occunence of pH threshold involving 

changes in the mechanism pathway. Around pH 6-8, the reactive and catalytic species 

involved in both acidic and alkaline pHs must display the lowest concentrations in 

the reaction mixtures. Under these conditions, any slight pH change may produce 

pronounced detrimental interactions between the species present in small amounts in 

the liquid media. In all cases, changes in pHs unavoidably take place during 

oxidation reactions, due to the formation of intermediates and accumulation of short­

chain carboxylic acids (Fontanier et al., 2Q05; Martins and Quinta- Ferreira, 2009; 

Hirvik et al., 2010). This explains somehow, and at least partly, the decay intime of 

the catalytic activity during most oxidation process supposed to be favored by 

moderately acidic pHs. 

The effect of pH variations should be strongly correlated to the presence and 

structures of the catalysts employed. These pH changes may be enhanced by the 

presence of catalyst, which, in turn, may undergo modifications in both chernical 

composition and surface properties. Such modifications are specifie to each type of 

catalyst. For instance, the non-catalytic ozonation of textile dyes showed high 

efficiency at alkaline pHs, due to the production of hydroxyl radicals, but this 

performance shift to moderately acidic pHs when using CuS as catalyst (Pirgalioglu 

and Ozbelge, 2009). 

This clearly indicates that non catalytic ozonation does not proceed via the same 

pathway as in the presence of catalyst, and that the concept of optimum pH for high 

radical production, if any, is specifie to each type of catalysts (Yong et al., 2005). For 

instance, volcanic sand acted as effective catalyst in the ozonation of benzothiazole at 
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pH 7, due to the predominant contribution of a radical mechanism (Valdes et al., 

2008). Effective radical mechanisms seem to be involved at pH 10 in the ozonation 

of aromatic compounds in the presence of porous manganese and cobalt-modified 

diatomaceous materials (Li et al., 2010), but only at pH 4 in the catalytic ozonation 

of molasses on Sn02 (Zeng et al., 2009). On solid catalysts, the optimum pH values 

should be correlated to the acid-base interaction between the catalyst surface and the 

dispersed pecies. Here, the concentrations of ozone (Ping et al., 2002) and of the 

organic substrates (Yong et al., 2005) along with the very acid-base properties of the 

catalyst surfaces (Azzouz et al. , 201 0; Valdesa et al., 2009) must play significant 

roles, more particularly in reagent adsorption. Elucidation of the roles of acid-base 

interactions between all the species dispersed in the liquid media imposes intensive 

investigations in this regard. 

2.7 Conclusion 

The data examined in this chapter allow concluding that effective water treatments 

without traces of persistent hazardous by-products or toxins can be achieved through 

suitable oxidative processes. The results obtained after intensive res'earch have 

succeeded in imposing a new ecologie vision in designing complete oxidative 

treatments of wa tewaters, at least for specifie water uses. In this regard, the total 

absence of any traces of organic by-products has progressively become a major issue 

to be addressed. In other words, a wide variety of catalysts are now studied for 

improving oxidative degradations of organic contaminants in aqueous media. All 

these studies has focused their interest towards thorough mineralization into 

inorganic final products that can be relea ed in the environment (C02 and water), 

easily removed by re-dissolution in water (SOx, NOx and derivatives) or retreated 

into added-value derivatives. Nevertheless, notwithstanding the outstanding 
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achievements made in wastewater treatments, total removal of organic contaminants 

with low energy consumption and without generating traces of persistent toxins still 

remains a challenge difficult to achieve. This is mainly due to the refractory character 

towards oxidation of short chain derivatives, more particularly oxygenated 

compounds. 

The data summarized herein show that, among ali the research directions undertaken 
1 

so far, those targeting the improvements of oxidative procedures, more particularly 

ozonation, are probably the most prornising routes for econornical, technological and 

ecological reasons. Sorne of these procedures, and most specificaliy solid-catalyzed 

ozonations under optimum conditions, have already made possible not only the total 

decomposition of organic compounds containing only hydrogen, carbon and oxygen 

atoms, but also the total rnineralization of their by-products into carbon dioxide. A 

key-step in achieving such a performance resides in the rigorous choices of adequate 

solid catalysts to be used in optimum amount under optimum pH conditions, in 

conelation with the nature of the organic substrates to be decomposed. Ail these 

factors are supposed to produce a synergy in promoting suitable mechanism 

pathways that involve both adsorption and surface reaction for the oxidative 

degradation of a given organic substrate. 

There are no common rules in adopting alkaline or acidic pHs for wastewater 

treatments. However, a deep analysis of the data examined aliows stating that solid 

catalysts with ion exchange capacity are supposed to promote ozonation both on the 

catalyst surface and in the bulk solution in moderately acidic media. The kinetic 

study provided sufficient evidence in this regard. The oxidative techniques, including 

the catalyst types and concentrations and ali the other parameters discussed herein 

should be selected according to the contarninant's nature and the acid-base properties 

of the every wastewater to be treated. For economical reasons, crystalline 
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alurninosilicates and more particularly clay minerais appear as promising catalyst 

supports for such purposes. Through judicious and convenient modifications, their 

acid-base properties, adsorption capacity, affinity towards reagents and others cao be 

willingly modulated for specifie applications in the treatment of specifie organic 

contaminants in specifie wastewaters. This possibility to control the clay mineral 

catalytic activity opens new prospects in wastewater treatments for producing clean 

waters without any traces of harrnful and toxic derivatives. In the next chapters, we 

will design sorne experiments to verify the effectiveness of the clay based catalysts to 

rnineralize organic pollutants and obtain the optimum working conditions to achieve 

total rnineralization. 
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CHAPTERIII 

TOTAL REMO VAL OF OXALIC ACID VIA SYNERGISTIC PARAMETER 

INTERACTION IN MONTMORILLONITE CATALYZED OZONATION 

Abstract 

Oxalic acid ozonation in water at room temperature produced decomposition yields 

of 50-100% in the presence of Na+, Fe2+, Fe3+, Co2+, Ni2+ and Cu2+ ion-exchanged 

montmorillonite as catalysts. Among these, Co(II)Mt and Fe(II)Mt produced the 

highest performances. The appreciable enhancement of oxalic acid removal as 

compared to homogenous ozonation and the ozonation yield decay upon heating 

suggest a significant contribution of adsorption. The initial pH of the reaction 

mixture, ozonation time and catalyst concentration showed strong influence. A 3k 

factorial design with 27 ozonation attempts for each catalyst produced total removal 

of oxalic acid after 15 min at pH 2.87 with 1.88 g.L-1 of Co(II)Mt, and pH 2.88 with 

1.91 g.L- 1 of Fe(II)Mt. Because oxalic acid is well known to be a quite refractory 

intermediate in most oxidation attempts, these results suggest that total mineralization 

of any hazardous organic pollutants from aqueous media is possible in similar 

optimum conditions. Higher pH and catalyst amounts were detrimental, presumably 

due clay compaction, which is supposed to reduce the cation mobility and adsorption 

contribution. The initial pH was found to act also via synergistic interaction with the 

other parameters, presumably by enhancing clay exfoliation and adsorption of oxalate 

anion and ozone. 
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3.1 Introduction 

Chemical, petrochemical, pharmaceutical and food industries, along with agriculture 

and forestry are major ource of organic pollutant in waste-waters (Nidheesh and 

Gandhimathi, 2012; Beltran et al., 2005; (Giordano et al., 2007). Primary treatments 

are not sufficient1y effective because of residual traces of pollutants (Numata et al., 

2005; Northcott and Jone , 2003). Complete decomposition of organic pollutants 

requires powerfu1 oxidati ve treatments to a void the persistent presence of refractory 

short chain intermediates like oxalic acid (OA). The latter is known to display high 

chemical stability even in the so-called Advanced Oxidation Processes (AOPs). The 

main issue to be addressed is that the formation of OA is often the final stage in most 

oxidation methods (Garg and Mishra, 2013; Roy et al., 2010; Santos et al., 2005; 

Azzouz, 2012). Besides, OA is a hazardous compound (Azzouz et al., 2010), and 

shows even more toxicity than most parent pollutants (Iurascu et al., 2009). 

Notwithstanding that sorne plants like rhubarb and sonel contains OA, the latter is 

recognized as being quite poisonous to the kidneys (nephrotoxic), more particularly 

when present in drinking water. OA precipitation in the presence of calcium produces 

kidney stones, which contains calcium oxalate in a proportion of 80%. OA may even 

be fatal around a median lethal dose (LD50) of 375-380 mg/kg body weight for 

humans (Massey, 2003; Savage et al., 2000; Savage, 2002; Savage et al., 2004). In 

human and animal metabolism, OA may also form from excessive use of vitarnin C, 

which is readily oxidized owing to its powerful antioxidizing capacity. This often 

results in gut lining initation, rheumatoid arthritis, certain forms of chronic vulvar 

pains (vulvodynia) and other di seases (Azzouz et al., 2010). However, being quite 

harrnless in low doses, OA is rather regarded as being a precise indicator of 

incomplete oxidation of organic matter. For this reason, total mineralization of 

organic pollutants into carbon dioxide (C02) without generating any traces of OA or 
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any other short chain compounds bas become an essential requirement for effective 

oxidative water treatments. 

So far, attempts to OA oxidative mineralization into C02 have received fairly good 

attention in the publi hed literature, and many advances have been made in this 

regard (Azzouz, 20 12) Photocatalysis and Photoelectrocatalysis have long been 

considered promising approache , but the incomplete decomposition of organic 

pollutants and high operating costs were still major obstacles for commercial 

applications (Nidheesh and Gandhimathi, 2012; Giordano et al., 2007). AOPs 

resulted from continuons irnprovements of conventional oxidative methods (Beltran 

et al. , 2005). One of the e, namely ozonation, more particularly at ·elevated pH, bas 

focused interest. Nonetheles , no prospects can be envisaged as long as the issues 

related to the low solubility of ozone in the liquid media and its weak reactivity as 

compared to radical species still remain to be addressed. The use of metal cations 

produced higher effectiveness as compared to the non-catalytic routes, but water 

contamination by rnetals turned out to be a major drawback (Zhu and Xu, 2004; Pines 

and Reckhow, 2002; Bhattacharyya et al. , 1995). Significant improvements were 

registered in the presence of dispersed olid or supported catalysts. In thi s regard, 

ozonation on activated carbon produced almost total mineralization into carbon 

dioxide (Beltran et al., 2002; Pinker and Henderson, 1996; Kaptijn, 1997; Jans and 

Hoigne, 1998). On solid catalysts, the ozonation process is expected to involve both 

smface phenomena and bulk water reactions between the organic substrate to be 

decomposed and oxidizing agents . Adsorption appears to play a key-role, because the 

catalytic activity was found to increase almost linearly with increasing catalyst 

surface area (Chatterjee et al. , 2006; Beltran et al., 2002). 

Among the wide variety of solid catalysts investigated so far, zeolites ion-exchanged 

with transition metal cations showed interesting performances (Park et al. , 2006). 
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However, more available and lower cost materials such as clay minerais appear to be 

more promising catalysts, which display almost similar smface properties as zeolites. 

Besides, their expandable structures allow them to be also used in the decomposition 

of large size substrates (Azzouz et al. , 2010; Zhu et al. , 1998; Dubey et al. , 2002; 

Ramaswamy et al. , 2002; Perathoner and Centi, 2005 ; Chung et al., 2002) . Previous 

attempts with ion-exchanged montmorillonite (Mt) revealed strong individual 

influences of pH, catalyst and ozone amounts on the decomposition yield (Azzouz et 

al., 2010). Nevertheless, the role of the pararneter interactions has never been tackled 

so far, and the occurrence of synergistic actions of ozone rnontmorillonite still 

remains to be elucidated. The core of the novelty of the present study resides in 

correlating these interactions with the contribution of the adsorption step through the 

role of pH in the global ozonation process. This issue has never been tackled and not 

even been envisaged so far. 

F h. ·11 . . h d . h N + F 2+ F 3+ C ?+ N· 2+ d or t 1s pm-pose, montmon omte wn-exc ange w1t a , e , e , o- , 1 an 

Cu2
+ cations were ernployed as catalysts. OA ozonation in water was shown by a 

mathematical model using a 3k factorial design of experirnents for assessing the 

contributions of the interactions of the initial pH, ozonation time and catalyst amount. 

The synergy involving the ozonation reaction and adsorption will be discussed in 

terms of parameter interactions. 
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3.2 Materials and methods 

3.2.1. Catalyst preparation and characterization 

A crude bentonite (Sigma-Aldrich) was repeatedly impregnated with 2-5 M aqueous 

NaCl solutions at so·c for 4-5 h, under vigorous stin·ing, until full ion exchange. 

After cooling overnight, the clay mineral suspension was repeatedly settled in 

distilled water at room temperature, under ultrasound exposure. Settling was 

performed overnight in a polyethylene cylinder obtained by cutting the tip of a large 

syringe (200mL). After supernatant removal, the resulting paste was then extruded, 

dried and fractionated. XRD analysis of the different fractions was used to select a 

montmorilonite-rich sample, designated as NaMt. The latter was repeatedly dialyzed 

overnight with distilled water in cellulose bags, until the total disappearance of the 

NaCl excess using the conventional AgN03 test. NaMt was then fully ion-exchanged 

through repetitive impregnation with aqueous solutions of transition metal salts 

under vigorous stirring. The resulting Fe(II)Mt, Fe(ill) Mt, Co(II)Mt, Ni(II)Mt and 

Cu(II)Mt samples were then washed, di alyzed and air dried. These catalysts were 

characterized by Siemens D5000 X-ray diffractometer with CuKa, Â-=1.54051 Ao, 

which revealed a broad 001 XRD reflexion for the cru de bentonite, but sharp lin es for 

the ion-exchanged montmorillonite samples. This is a common feature of homo-ionie 

clay minerais, which indicates a perfectly parallel arrangement of the clay sheets. 

Measurements via ammonium acetate saturation method (AMAS) and Kjeldahl 

ammonium distillation technique (Kitsopoulos, 1999) gave a cation exchange capacity 

(CEC) value of 100 meq/100 g. Deeper insights in the catalyst chernical composition 

were achieved before and after ozonation through thermogravimetric analyses (TGA) 

using a Seiko Instrument Inc. TG/DTA 6200 analyses carried out with thermal 

analyzer under a 120 ml.min·1 air stream at 5 oc rnin· 1 scanning rate and energy 

dispersion X-rays analysis (EDX with an EDAX-Sapphire instrument coupled to the 
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S-4300SE/N-VPSEM equipment , using a Si(Li) crystal and an active surface of 10 

mm2
). 

3.2.2. Ozonation of oxalic acid 

Ozonation attempts were performed in a 2 cm x 30 cm cylindrical glass reactor, using 

100 ml of 0 A solution with an initial concentration of 10-3 M (99.5% purity, 

supplied by Anachemia Canada Inc.) and various clay catalyst amounts. Ali 

experiments were performed in triplicate. Ozone was produced from pure oxygen 

(supplied by Parax~ir Canada Inc.) by a Welsbacher ozone generator and injected into 

the batch reactor through a bubbler at 6 mg.min-1
• The ozonation experiments were 

performed at room temperature by bubbling ozone in an aqueous OA solution using 

two different procedures: (1) within a batch reactor, i.e. a flask coupled to a reflux 

cooling deviee to avoid liquid loss by evaporation. Periodic COD measurements 

were made for determining the remaining amount of unconverted OA. Here, small 

number of micro-samples were taken from the reaction mixture, so that the total 

amou nt removed (less than 10%) does not influence greatly the evolution in ti me of 

the ozonation process; (2) When higher number of samples is needed so as the total 

sample amount exceeds 10%, no sampling was made, and a series of small and 

similar reaction mixtures were simultaneous ozonated at the same ozone throughput 

for different bubbling times (Fig. S 1). The samples were further analyzed through 

quantitative COD measurements and qualitative HPLC-MS identification of the 

reaction products and intermediates. 

In order to ultimate studying of pH effect on the conversion of OA, the ozonation 

process was investigated at both intrinsic pH of the reaction mixture and different 

adjusted initial pH values. For this purpose pH was adjusted using concentrated 
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hydrochloric acid (36.5% purity) supplied by Caledon Ltd. and sodium hydroxide 

pills (95% purity) provided by Anachemia Canada Inc. An Accumet 15 pH meter was 

employed for pH measurements. 

3.2.3 Products and intermediates analysis 

The reaction mixture was qualitatively analyzed by liquid-chromatography-mass 

spectrometry (HPLC-MS Agilan-1200 instruments) using a C18 column and a 2:3 

methanol:water mixture. After ozonation in optimum conditions, except carbonic 

acid and carbonates, no traces of any intermediate were detected. In other conditions 

traces formic and acetic acid were identified. 

The OA conversion was evaluated by periodic measurements of the residual amount 

of unconverted reagent via a standard chemical oxygen demand technique (COD) 

(Liotta et al., 2009). For this purpose, concentrated sulphuric acid (98% purity) 

supplied by Caledon Ltd., potassium dichromate 99.5%, iron(II) ammonium sulphate 

99.5%, silver sulphate 99.5% and mercury(II) sulphate 99.5 % all provided by 

Anachemia Canada Inc. were employed. The usual standard deviation (SD) in COD 

measurement is of 4-5%. However, the SD value was reduced to 1% thanks to the 

total absence of intelfering agents such as halide anions and to the use of triplicate 

and different blanks, and even down to 1% through COD calibration curve obtained 

by the introduction of a correction factor assessed by HPLC. 
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3.3 Results and discussion 

3.3.1 Effect of catalyst addition in oxalic acid ozonation 

Preliminary observations showed that ozonation without catalyst produces low OA 

decomposition yield not exceeding 1-2% even after 60 min (Fig. 3.1 ). After addition 

of crude bentonite or NaMt, the OA conversion rose up to 5-6% and to almost 10%, 

respective! y. 

This provides clear evidence of the key-role of the solid surface on the ozonation 

process. The highest OA conversion were obtained after only 15 minutes with 
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Fig. 3 .1. Oxalic ac id conversion after 60 min. The initial reaction mixture contained 
10-3 M OA (±1 %) and 2 g.L-1 of catalyst (average error ± 0.5 mg.L-1

) in distilled 
water, at pH 2.8 ± 2% (intrinsic pH). An ozone stream (6 ± 0.2 mg.min-1

) was 
injected at 25 "c. 
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Fe(II)Mt (100%) and Co(II)Mt (95%). Another bentonite used as starting material 

gave almost simi lar results (Azzouz et al., 201 0). 

3.3 .2 Effect of catalyst amount 

The choice of a 2 g catalyst amount is supported by preliminary investigations on 

Co(II)Mt, which produced maximum OA conversion of 95-98% after only 15 min. of 

ozonation at pH 2.8 (Fig. 3.2) . Here, each catalyst is expected to act e:fficiently at a 

specifie optimum amount, which may vary according to the ozonation time and pH. 

As a general feature, catalyst pre-swelling in distilled water resulted in higher OA 

removal yield. In similar conditions, 1.5 g of Co(II)Mt pre-swollen overnight 

(a) (b) 

100 100 
~ ~ 

>11 
~ 80 t 80 
c: 2 c: 2 
0 0 
'§ 60 3 '§ 60 3 

<1> Q) 

> > c: 
40 4 c: 

40 4 0 0 
(J 5 (J 5 
<{ <{ 

0 20 0 20 
6 6 

15 30 45 60 18.75 37.5 56.25 75 

Ozonation lime (min) Ozone dose (mmol ozone 1 mmol OA) 

Fig. 3.2. (a) Effect of Co(II)Mt amow1t on OA conversion at pH 2.8 ± 2%. 1. 2.0 g.L· 
1
; 2. 1.5 g.L-1

; 3. 1.0 g.L-1
; 4. 0.5 g.L-1

; 5. 2.5 g.L-1
; 6. 0.2 g.L-1

• Initial OA 
concentration = 10"3M (± 1 %). Ozone (6 ± 0.2 mg.min-1

) was injected at 25 oC (b) OA 
conversion in the same conditions as above shawn versus ozone dose. 
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produced ca. 70% OA decomposition yield after on.ly 15 min. , but only 42-43% after 

at least 30 min. when added as dry powder in the reaction mixture. Therefore, full 

clay exfoliation by pre-swelling turns out to be an essential requirement for effective 

ozonation, confirming thereby that adsorption plays a key role in heterogeneous 

ozonation. 

As a conunon feature, for ail fresh catalysts a slight increase in the OA 

decomposition yield was observed after 1-2 ozonation cycles without regeneration by 

impregnation in fresh cation solution (Fig. 3.3). This must be due to the 

disappearance of competitive substrate to oxalic acid in ozonation. In other words, 

100 1 
........... 
~ 0 

80 -c:: 
0 2 .(i) 

60 .... 
Q) 3 > c:: 
0 40 (.) 4 <X: 
0 

20 

0 
0 2 4 6 8 10 

Cycle number 

Fig. 3.3. Effect of the re-use cycle number of Fe(II)Mt on OA conversion at pH 2.8 ± 
2%. Initial OA concentration = 10·3M (± 1 %). Ozone (6 ± 0.2 mg.min- 1

) was injected 
at 25 ° C. The sizes of the experimental points accounts for error bars. (1) 
Regeneration by impregnation in fresh Fe2

+ solution after each ozonation cycle; (2) 
Regeneration by calcination at 450 °C in air stream followed by impregnation in 
fresh Fe2

+ solution after each ozonation cycle; (3) Regeneration by impregnation in 
fresh Fe2

+ solution fo llowed by calcination at 450°C in air stream after each 
ozonation cycle; (4) Without regeneration 
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unlike the spent cataly t, uncalcined clay samples still contain organic impurities 

originatîng from the native eructe bentonite used as raw material for obtained 

montmorillonite-rich materials. 

For higher re-use cycle number, periodical re-impregnation after each in fresh 

aqueous cation olution use appears to completely revive the catalytic activity, which 

remains constant at its maximum level up to ca. 50-60 cycles. (Fig. 3.3, curve 1). 

Without regeneration, the OA conversion dropped dramatically down to 42-45% after 

ten ozonation cycles using Fe(II)Mt or Co(II)Mt as catalysts (Curve 4). This activity 

decay was explained in terms of cation loss via partial ion-exchange at pH 2.8, as 

supported by EDX measurements of the catalyst chemical compositions before and 

after ozonation. This revealed a decrease of the iron content in Fe(II)Mt with 

increasing re-use cycle number. 

Besides, regeneration by calcination at 450°C in air stream followed by impregnation 

in fresh Fe2
+ solution after each ozonation cycle (curve 2) and conversely (curve 3) 

were found to affect the catalytic activity, producing a decay of the OA conversion. 

X-ray diffraction analyses revealed a low cristallinüy, presumably due to cumulative 

irreversible dehydroxylation of the catalyst surface, as supported by TG analysis. 

Thus, one may conclude, that the best and most stable catalysts in time are those 

previously ozonated for removing the organic impurities, and then periodically 

regenerated by impregnation in fresh Fe2
+ solution after each ozonation cycle. 
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3.3.3 Effect of ozonation time 

Deeper insights with 2 g.L-1 of each catalyst indicate that the general tendency is that 

the OA conversion increases in time. A maximum and constant equilibrium value was 

attained after ca. 15 min. for Fe(II)Mt and Co(II)Mt and ca. 30 min. for less effective 

catalysts (Fig. 3.4 ). 

In contrast, 2 g.L-1 ofNaMt showed a conversion not exceeding 7-10% even after 60 

min. (Fig. 3.5). Interestingly, a conversion approximately four times higher (40%) 

was obtained with a catalyst amount of only 1 g.L-1 at the same pH (2.8) . This 

amount seems to be optimum, since the OA conversion rose up to its maximum level 

of 70-75% at pH 3.5 (Fig. 3.6). 

............ 100 
-;R 
0 --c 80 
0 
(/) 60 L.. 
Q) e 40 0 
ü 
<{ 20 
0 

0 
0 15 30 45 

Ozonation time (min) 

60 

• Fe( II )Mt 

•eoMt 

A NiMt 

X CuMt 

~K Fe( lll)Mt 

Fig. 3.4. Evolution in time of oxalic acid conversion. The initial reaction mixture 
contained 10-3 M (±1 %) OA and 2 g.L-1 of catalyst (+ 0.5 mg.L-1

) in distilled water, at 
pH 2.8 ± 2% (intrinsic pH). An ozone stream (6 ± 0.2 mg.müf 1

) was injected at T= 
25 oC. The sizes of the experimental points accounts for error bars. 
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Fig. 3.5 . Effect ofNaMt amount on OA conversion at pH 2.8 ± 2%. 1. 1.0 g.L- 1
; 2. 

0.5 g.L-1
; 3. 1.5 g.L-1

; 4. 2.0 g.L- 1
• Initial OA concentration = 10·3M (±1 %). Ozone (6 

± 0.2 mg.min-1
) was injected at 25 °C. The sizes of the experimental points accounts 

for error bars. 
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Fig. 3.6. Effect ofNaMt amount on OA conversion at pH 3.5 ± 2%. 1. 1.0 g.L-1
; 2. 

1.5 g.L-1
; 3. 2.0 g.L-1 (± 0.5 mg.L-1

) . The sizes of the experimental points accounts for 
error bars. 
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This appears to be a common feature of ali the catalysts tested, suggesting a strong 

interaction between the catalyst amount and pH. In other words, pH fluctuations are 

expected to influence the catalyst activity and conversely. Clear evidence in this 

regard was provided by the fact that the attenuation of ozonation in time is 

unavoidably accompanied by an increase in the pH of the reaction mixture. This is 

most likely due to the progressive formation of weaker acidic species such as C02 at 

the expense of oxalic acid. 

3.3.4 Effect of pH 

Higher pH values were detrimental for all catalysts, but beyond neutral pH, ozonation 

was found to weakly reactivate again. After an ozonation time of 60 min. in the 

presence of Co(II)Mt, the OA conversion dramatically decreased from 95-98% to ca. 

30% by increasing pH from 2.8 up to 6.5 (Fig. 3.7). This decay in the catalytic 

activity is more accentuated for shorter ozonation time (15 min.), since the OA 

conversion dropped from ca. 98% to approximately 18%. 

~ 
100 

~ 100 

c 80 c 80 
0 .Q 
ïii 60 f? 60 (p <Il 
> 40 > c c 40 0 0 
0 0 

<1: 20 <1: 20 0 0 
0 0 

. . 8 3.5 6.5 10 2.8 3.5 6.5 10 
pH pH 

Fig. 3.7. pH effect on the OA conversion for Co(II)Mt at different ozonation times. 
1. after 60 min. ; 2. after 15 min. The sizes of the experimental points accounts for 
enor bars. 



97 

A similar tendency was observed for Fe(II)Mt with decrease in the OA conversion 

from 98-100% to ca. 20% and 22% for ozonation times of 15 and 60 min., 

respectively (Fig. 3.7). The critical pH corresponding to the lowest catalytic activity 

seems to shift to slightly lower values, i.e. from 6.0-6.5 (for 60 min.) to 4.0-4.5 for 

shorter ozonation time (15 min.). This indicates the occurrence of at least a binary 

interaction between the ozonation time and pH. 

For both Co(II)Mt and Fe(II)Mt, acidic pH (2.8-3.0) produced higher OA conversion 

(60-100%) even after only 15 min. of ozonation, as compared to higher pH. This 

result is of great importance, because it opens new prospects to fast ozonation for 

total mineralization of organic pollutants without pH adjustment of the released 

waste-waters. This beneficiai effect of acidic media is supposed to involve both 

molecular ozone and surface bound oxygen as oxidizing agents (Nawrocki and 

Kasprzyk-Hordern, 2010; Yong et al. , 2005). Thus, adsorption is expected to play a 

key-role in the OA ozonation in the presence of solid catalysts. 

3.3.5 Effect of temperature 

Increasing temperature from 10 to 25°C induced a significant improvement of the OA 

conversion, e.g. from ca. 15% to approximately 92-95% for Co(II)Mt (Fig. 3.8). This 

is presumably due to a thermal activation of the ozonation reactions (Daud et al., 

2010). Except for the firs t 5 min of ozonation, pronounced temperature increase up to 

4o·c did not produce any additional improvement, presumably due to a simultaneous 

decrease in the ozone amount in the reaction mixture. 
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Fig. 3.8. Effect of temperature on the OA conversion for Co(II) . Initial OA 
concentration = 10·3 M (±1 %); 2 g.L-1 of catalyst (± 0.5 mg.L-1

) in distilled water. 
Initial pH =2.8 ± 2%. Ozone (6 ± 0.2 mg.min-1

) was injected at 25 °C. 

The latter must involve a decrease in the ozone solubility in the aqueous media 

(Huang et al. , 2011), but a possible decay in the physical adsorption on the catalyst 

surface should also be taken into account. Thus, at 25°C, ozonation appears to be 

optimum, in agreement with other data (Yong et al., 2005; Huang et al. , 2011 ; Sun et 

al., 2005 ; Legube and Karpel Vel Leitner, 1999; Huang et al. , 2012; Liu et al. , 2011). 

This result is of great importance, because effective ozonation may conveniently be 

achieved at ambient temperature. 

3.3.6 Individual effect assessment 

In a second step, deeper insights in the parameter interactions were achieved through 

33 factorial designs of experiments using the most effective catalysts, nan1ely 

Co(II)Mt and Fe(II)Mt. For this ptrrpose, 27 ozonation attempts were perf01med at 

25°C for each catalyst, by varying the initial pH of the OA solution (X1) , ozonation 
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time (X2) , and catalyst amount (X3), around their apparent optimum values 

previously assessed (Table 3.1). 
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A second condition for decomposing more than 91% of oxalic acid also imposes 

medium catalyst amounts around 2 g (Experiments 14 and 17). An ozonation time of 

15 min. gave comparable OA conversion as 25 min, and turned out to be sufficient to 

produce effective ozonation. This opens promising prospects for fast and total 

mineralization of refractory organic pollutants at ambient temperature. As previously 

stated, in all experiments OA ozonation was unavoidably accompanied by pH 

increase in the reaction mixture up to neutral, at most. Here, the OA decomposition 

into C02 appears to be proportional to the final pH. 

On the basis of the data provided by the 27 experimental attempts, the OA conversion 

(Y 1) and final pH (Y2) were modeled for both Co(II)Mt and Fe(II)Mt using a Taylor 's 

second-order polynomial (Bodo et al., 2004; Assaad et al., 2007), as follows: 

Three additional attempts at the central point (0,0,0) allowed estimating the average 

error in the value of each coefficient, on the basis of the random variance (Table 3.3). 

Model accuracy was estimated using conventional Student's t-test and Fisher 's tests 

(Assaad et al., 2007). The calculated errors on the coefficient values (Trust range) for 

Y 1 were of ±1.13 for Co(II)Mt and ±1.02 for Fe(II)Mt. 
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The values calculated for the initial pH were of ±0.13 and ±0.07, respectively. From 

the Student's t-test, it appears that la;l < 11'1a;l for only two coefficients, namely a23 and 

a123 . Thi is a precise index of the high accuracy level of the experimental 

measurements. Thus, both coefficients can be eliminated from the model Y2 for 

Co(II)Mt, because their corresponding effects are shaded by their respective trust 

range. According to Fisher's test with a 95 % confidence, the fact that F >> F0.95,3,4 

indicates that the final mathematical models for the OA conversion (Y 1) and initial 

pH (Y2) for both catalysts are valid within the parameter variation ranges considered 

(Table 3.4). 
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The very close values of the model coefficients suggest almost similar behavior for 

both catalysts in ozonation. The individual effect strength expressed in terms of 

absolute values of the coefficients of the first order terms vary in the following 

sequence a2 > a1 > a3. The reaction time appears to exert on the OA conversion (Y 1) 

an individual effect (10.5 for Co(II)Mt and 9.5 for Fe(II)Mt) ca. twice higher than 

those of pH (5 .3 and 6.6, respectively) and the catalyst amount (4.7 and 4.7, 

respectively). It results that slight increases in the ozonation time within the 

investigated range induce a significant improvement of the OA conversion, more 

particularly for medium values of the initial pH. This suggests a trong interaction 

between these two parameters. 

The signs of these coefficients indicate that unlike the catalyst amount (a3), the 

ozonation time and, to a lesser extent, pH exe1ts favorable effects (a2 and a1) on Y1 

and Y2 for both catalysts. Here, high catalyst amounts are supposed to enhance clay­

clay interactions at the expense of those involving ozone and (or) oxalate adsorption 

on the solid surface. This should result in low clay exfoliation and even coagulation­

flocculation of the clay mineral, which are expected to reduce the contribution of 

adsorption more particularly at high pH and prolonged time (Azzouz et al., 2010). 

The fact that the initial pH exerts the strongest effect on the final alkalinity suggests 

that beyond a certain level increasing pH rather contributes in increasing the amount 

of OR ions in the ozonation mixture instead of intensifying the ozonation process. 

This is supported by the negative impact on the OA conversion for excessive initial 

pH, which suggests the occurrence of optimum value, around which pH interactions 

should be more significant than the individual effect. 
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3.3.7 Assessment of parameter interactions 

The ozonation time and initial pH displayed the most significant interaction 

expressed through the second arder tenns of the polynomial madel for the OA 

conversion (a 12=3.5 for Co(II)Mt and 3. 1 for Fe(II)Mt). This indicates an appreciable 

synergy of these two parameters when increased simultaneously. The two other 

interactions (-2.7 and -1.3 for Co(II)Mt and -2.8 and -1.4 for Fe(II)Mt) appears to be 

weaker and detrimental, and must be due to the occurrence of an optimum catalyst 

amount. Excessive catalyst amount should induce clay compaction, reducing the 

available surface for adsorption and/or ozone decomposition. The latter appear to be 

an essential requirement, becau e of the low intrinsic oxidizing capacity of ozone 

alone (Azzouz et al., 201 0; Büchel et al., 2001). Ozonation is significantly enhanced 

in the presence of clay catalysts, which is supposed to act at least as surface 

concentrator of oxalic acid and/or ozone. Ozone adsorption, if any, must strongly 

depends on pH, and is supposed to occur on weaker Lewis acid si tes, as compared to 

its decomposition into reactive oxidizing species (Alejandro et al., 2011; Chao et al., 

2007; M01meyron et al., 2003; Bulanin et al., 1995). Subsequently, effective 

ozonation requires increasing number of Lewis acid sites, which are electron pair 

acceptor groups, mainly associated with edge sites or metal cations on Mt. Ozone 

should act as a fairly strong Lewis base, owing to a high electron density on one of its 

oxygen atoms due to its resonance structure. This confers to ozone sufficient affinity 

towards certain solid surfaces (Kasprzyk-Hordern et al., 2003). This affinity should 

be governed by acid-base equilibria, in agreement with the key roles of pH effect and 

interactions with the two other parameters. 

Ozone adsorption as atomic oxygen, if any, is expected to induce a progressive 

deactivation of the Lewis sites, which can be readily regenerated by reacting with 

molecular ozone (Azzouz, 20 12; Radhakrishnan and Oyama, 2001; Radhakrishnan et 
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al., 2001; Li and Oyama, 1998). On high number of strong Lewis sites, unadsorbed 

ozone may be directly decompose into atomic oxygen and peroxide ions without 

previous adsorption (Bulanin et al. , 1995). In both cases, ozone diffusion towards the 

surface should be an ozonation controlling step, while the availability of high number 

of Lewis sites is expected to intensify ozone-catalyst interactions (Li and Oyama, 

1998). This explains somehow the interactions of the ozonation time with pH and, to 

a lesser extent, with the catalyst amount. 

The pH interaction with the catalyst amount is explained by the formation of oxalate­

cation-Mt complexes (OCMC) (Azzouz, 2012). This involves cation bridging effect 

between the negatively charged clay surface and HC20 4- anion resulting from oxalic 

acid dissociation (pKa1 = 1.27 and pKa2 = 4.27) in the investigated pH range. Such a 

pathway requires high number of accessible surface cation, i.e. not only optimum pH 

and catalyst amount but also optimum interaction between both parameter. Low 

catalyst amount and pH below the critical coagulation concentration (CCC) favor 

clay exfoliation and dispersion, along with adsorption of ozone and oxalic acid, as 

already reported (Yunzheng et al. , 2003; Beltran et al., 2005). This is due to an 

accentuation of the density of positive charges on Mt and a protonation of the silanol 

and aluminol terminal groups, which enhance coulombic attraction upon ozone 

molecules. Nonetheless, this also promotes cation release by ion exchange, and 

reduces the amount of oxalate anions. Moderate pH increase should attenuate this 

drawback, but simultaneous increase of the cata1yst amount is known to enhance 

clay-to-clay interactions at the expense of heterogeneous catalysis, explaining thereby 

the negative sign of the pH-catalyst amount interactions. 
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3.3.8 Ozone action optimization 

As expected, the initial pH and catalyst amount showed relatively higher values of 

the quadratic terms (a 11 and a33 ) as compared to the ozonation time (a22). This 

indicates accentuated convexity for the corresponding response-surfaces, and predicts 

precise optimum values of initial pH and catalyst amount, in agreement with our 

previous statement (Fig. 3.9-3.11). 
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Fig. 3.9. Response-surface of OA conversion for X2=0 (15 min.). Initial OA 
concentration= 10·3 M (±1 %); Ozone (6 ± 0.2 mg.min-1

) was injected at 25 °C. The 
catalyst amotmt and initial pH are expressed in non-dimensional units in the range [-
1,1]. 
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Fig. 3.10. Response surface of OA conversion for X3=0 (2 g.L-1 ± 0.5 mg of 
catalyst). Initial OA concentration = 10-3 M (±1 %); Ozone (6 ± 0.2 mg.min- 1

) was 
injected at 25 oC. The ozonation time and initial pH are expressed in non-dimensional 
units in the range [ -1,1]. 
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Fig. 3.11. Response surface of OA conversion for X 1=0 (pH 2.8 ± 2%). Initial OA 
concentration = 10-3 M (±1 %); Ozone (6 ± 0.2 mg.min-1

) was injected at 25 °C. The 
ozonation time and catalyst an1ount are expressed in non-dimensional units in the 
range [- 1,1] . 
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Much less accentuated convexity was obtained for the response-surface describing 

the final pH of the reaction mixture for both catalysts (Fig. 3.12-3.13). The most 

significant quadratic term is a33 , indicating the occurrence of an optimum value of the 

catalyst amount (Fig. 3.14). 

6 

ti me 

Fig. 3.12. Response surface of final pH for X3=0 (2 g.L-1 of catalyst). Initial OA 
concentration = 10-3 M (±1 %); Ozone (6 ± 0.2 mg.rnin- 1

) was injected at 25 °C. The 
ozonation time and initial pH are expressed in non-dimensional units in the range [-
1 ' 1]. 
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Fig. 3.13 . Response surface of final pH for X2=0 (15 min.). Initial OA concentration 
= ·10-3 M (±1%); Ozone (6 ± 0.2 mg.min-1) was injected at 25 °C. The catalyst amount 
and initial pH are expressed in non-dimensional units in the range [ -1 ,1]. 
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Fig. 3.14. Response surface of final pH for X1 =0 (pH 2.8). Irùtial OA concentration 
= 10-3 M (±1 %); Ozone (6 ± 0.2 mg.min-1

) was injected at 25 °C. The catalyst amount 
and a zonation time are expressed in non-dimensional units in the range [ -1 ,1]. 

Graplùcal assessment of the optimum parameter values for an ozonation time of 15 

min. (X2=0) showed maximum OA conversion at X1= 0.068 and X3= -0.12 for 
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Fig. 3.15. OA conversion versus initial ~H (X 1) and catalyst amount (X3) for X2=0 
(15 min .) . Initial OA concentration= 10· M (±1 %); Ozone (6 ± 0.2 mg.min-1

) was 
injected at 2_5 °C. The catalyst amount and initial pH are expressed in non­
dimensional units in the range [ -1 , 1]. 

Co(II)Mt, and X 1= 0.08 and X3= -0.09 for Fe(II)Mt (Fig. 3.15). These data are in 

good accordance with those calculated from the respective mathematical models, and 

correspond to pH 2.87 and a catalyst amount of 1.88 g.L-1 for Co(II)Mt, and to pH 

2.88 and 1.91 g.L-1 for Fe(II)Mt. 

Ozonation triplicate tests at these optimum conditions resulted in total disappearance 

of oxalic acid within 15 min. with each catalyst. The occurrence of optimum 

pa.ran1eters within the variation ranges investigated arises from the judicious choice 

of the th.ree variation levels for each parameter. Accurate COD and pH measurements 

provided adequate mathematical models that correlate satisfactorily with the 

evolution of the OA conversion and final pH in the vicinity of the optimum 

1.0 
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conditions. Thus, taking into account the parameters interactions, Co(II)Mt and 

Fe(II)Mt catalysts require up to 90 mg ozone (1.88 mmol ozone) for decomposing 1 

mmol oxalic acid. This result could be improved with higher specifie surface area. 

Investigations are still in progress in this regard. 

3.4 Conclusion 

The results obtained demonstrate that the use of montmorillonite is an essential 

requirement to achieved high decomposition yields of oxalic acid via ozonation in 

water at ambient temperature. The role of montmorillonite must involve not only the 

catalytic effect of the exchangeable cation but also the contribution of adsorption on 

the clay mineral surface. Evidence of the role of adsorption was provided by the 

detrimental effect of increasing temperature, as supported by the decrease in the 

ozonation yield upon heating. Co(II) and Fe(II) exchanged montmorillonites turned 

out to be effective catalyst in the ozonation of oxalic acid, affording up to 98 and 

100% OA conversion, respectively, after only 15 min. The initial pH and catalyst 

amount showed significant individual effects and interaction. Total removal of oxalic 

acid was achieved at pH 2.87 with 1.88 g.L-1 of Co(II)Mt, or at pH 2.88 with 1.91 

g.L- 1 of Fe(II)Mt. At this pH level, ozonation is supposed to proceed preporiderantly 

via heterogeneous catalysis, but the homogenous pathway must also tak:e plac(f 

because of the occurrence of free metal cations resulting from partial ion-exchange. 

The detrimental effect of increasing pH and catalyst amounts must be due to clay 

compaction, which is assumed to hinder the cation mobility and adsorption 

contribution. The synergistic interaction of the initial pH with the other parameters 

can be explained in terms of enhancing adsorption of oxalate anion and ozone at the 

expense of the bulk ozonation reaction . Because oxalic acid turned out to be a 

bottleneck in most oxidation methods, total rnineralization of any hazardous organic 
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pollutants from aqueous media may be envisaged in similar optimum conditions. This 

opens promising prospects for a low cost and convenient water treatment at ambient 

temperature, without residual traces of hazardous derivatives. 
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CHAPTERIV 

TOTAL MINERALIZATION OF SULFAMETHOXAZOLE AND AROMATIC 

POLLUTANTS THROUGH Fé+-MONTMORILLONITE CATALYZED 

OZONATION 

Abstract 

The catalytic activity and selectivity of montmorillonite exchanged with Na+, Fe2+, 

Co2+, Ni2+ and Cu2+ cations were comparatively investigated in the ozonation of 

sulfamethoxazole (SMX). Chlorobenzene, benzoic acid, 4-nitrobenzoic, 3-

hydroxybenzaldehyde, 4-nitrophenol, and phenol were used as probe molecules 

having structural similarity with SMX oxidation intermediates. UV-Vis 

spectrophometry and chemical oxygen demand (COD) measurements showed that 

Fe(II)-Mt and to a lesser extent Co(II)-Mt produce total mineralization of all organic 

substrates in less thari 40 min. Combined HPLC-mass spectrometry revealed a 

reverse proportionality between the degradation time and molecular size of the 

organic substrates. Oxalic acid was recognized as a comrnon bottleneck in the 

ozonation of any organic substrates. Ozonation initially obeyed a first arder kinetics, 

but adsorption took place after 3-5 min, inducing changes in the mechanisms 

pathways. These findings may be useful for tailodng optimum oxidative treatment of 

waters without accumulation of hazardous derivatives . 
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4.1 Introduction 

Human activities have become major sources of a wide variety of organic pollutants 

with more or less hazardous effects on health, environment and biodiversity (Beltran 

et al., 2005; Negrel et al., 2012; Nidheesh and Gandhimathi, 2012; Elsousy et al. , 

2007; Giordano et al., 2007; Daud et al., 2010; Kjellstrëm et al., 2006). At high 

concentrations, common organic contaminants can be eliminated by conventional 

techniques such as adsorption, liquid-liquid extraction, coagulation-flocculation and 

others, but persistent trace amounts are often released in streams, rivers, and seas. 

Total removal of organic pollutants requires effective water treatments, and 

Advanced Oxidation Processes (AOPs) appear as interesting routes for this purpose 

(Diez, 2010; Ito et al. , 1996; Ren et al., 2007; Azzouz, 2012; Wang and Fiessel, 

2008; Shahidi et al., 2014). Among these, ozonation and catalytic ozonation are 

particularly suitable for eco-friendly water treatment that can lead to total 

mineralization of organic pollutants (Shahidi et al., 2014; Azzouz et al., 2010; 

Munter et al., 2006; Zhao et al., 2009; Guo et al., 2012). 

In this regard, a special interest is devoted to aromatic pollutants. Among these, 

phenol and chlorobenzene are major intermediates in the manufacture of insect 

repellents, benzoate plasticizers, cleaning agents, resins, adhesives, alkyde paints, 

inks, dyestuffs, waxes, polishes, fibers, phenolic resins, bisphenol, rubber, leather 

tanning agents, ink, dyes, illurninating gases, disinfectants, antiseptics, lotions, 

perfumes, and intermediates in the production of nylon (Rossberg et al., 2005, p. 

112-114). Other aromatic compound such as 4-Nitrophenol , nitrochlorobenzenes 

and biphenyl oxides, benzoic acid, 4-nitrobenzoic acid and 3-hydroxybenzaldehyde 

and their derivatives are also employed in most of the aforementioned applications. A 

corrunon feature of sorne aromatic compounds is their use in pharmaceutical 

industries as active agents against a wide range of rnicroorganisms, antifungal agents 
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to preserve drugs, and as intermediates in the manufacture of antibiotics and other 

drugs (Rossberg et al., 2005, p. 112-114; Maki and Takeda, 2005, p. 4-7). 

Their antimicrobial activity explains their toxicity for human health and biodiversity. 

For instance, beyond an acceptable maximum contaminant level (MCL) of 0.1 mg/L 

or 100 ppb, chlorobenzene is highly harmful for human health (Rossberg et al., 2005, 

p. 112-114). Benzoic acid and its derivatives may react with vitamin C, giving rise to 

traces of benzene, known to be a carcinogenic compound (Kasper et al. , 2004, p. 618 ; 

Smith, 2010). Dermal and oral contact with Ph-C02H causes nervousness, nausea, 

vorniting, constipation, albuminuria, urticaria, asthma, and rhinitis. 4-Nitrobenzoic 

acid displays antibacterial properties against staphylococci and streptococci 

infections, and sorne mutagenic effects against human, with a LD50 value of 0.77 g/kg 

in rnice (Booth, 2005, p. 9-11). Chronic contact with 4-nitrobenzoic acid may cause 

gastrointestinal irritation, cardiac failure, hepatitis, leukopenia and nephritis . Direct 

contact or inhalation of 3-hydroxybenzaldehyde provokes irritation of the 

gastrointestinal tract, eyes, skin, and respiratory tract (Bruhne and Wright, 2005, p. 9-

10). Exposure to 4-nitrophenol may cause liver and renal dysfunction, headaches, 

drowsiness, nausea, cyanosis, methemoglobinemia, necrosis of the skin and rnucous 

membranes. It is also assumed to be a tumor promoting agent. 4-Nitrophenol was 

reported to have a lethal dose (LD50) of 0.4 g/kg in mice (Brecken-Folse et al., 1994). 

Depending on the concentration, poisoning with phenol may cause insomnia and 

unconsciousness, upper respiratory tract irritation, severe renal failure, wheezing, 

headache, nervousness, weight loss, muscle twitching, partial paralysis, etc. (Park, 

2010). 

The presence of a phenyl ring 111 aromatic pollutants suggests nearly similar 

degradation pathways for antibiotics and other drugs via incomplete oxidative 

treatments or natural oxidation in air under sunlight exposure. This is a major issue to 
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be tackled because of the presence of drugs and hormone regulators in urban 

wastewaters . An attempt in this regard resides in correlating the ozonation of a 

synthetic antibiotic, e.g. sulfamethoxazole (SMX), to that of common aromatic 

pollutants. SMX is widely prescribed to human and animais for infections such as 

pneumonia, coccidiosis and gastroenteritis. Only a small SMX part is metabolized, 

the other part being eliminated by urine. Being present in high concentrations in 

surface waters and household wastewaters (Rodayan et al., 2010), SMX was ranked 

in 2007 the sixth most commonly prescribed antibiotic in Canada (Baquero et al., 

2008). High levels of residual antibiotics in wastewater may increase the resistance of 

certain bacteria (Baquero et al., 2008; Dirany et al., 2011). Despite the SMX level 

allowed by regulatory organizations is limited to 1 ppm (Mar G6mez-Ramos et al., 

2011), SMX concentrations of 370 ppm and beyond have been detected in sewages of 

water-treatment plants. 

SMX, like many pharmaceutical products, cannat be easily eliminated by 

conventional oxidation processes. Its natural degradation by means of biological 

methods usually gave unsatisfactory results (Dirany et al., 2011; Mar G6mez-Ramos 

et al., 2011). SMX decomposition barely reaches 32-49% by treating conventional 

activated sludge (Dirany et al., 2011). Even more oxidative treatments of 

wastewaters failed in producing total mineralization (Martin de Vidal es et al., 20 12; 

Sharma et al. , 2006; Dantas et al., 2008; Hu et al., 2007; Beltra et al., 2009; Trovo et 

al., 2009; Gonzalez et al., 2007; Li et al. , 2008; Boudreau et al. , 2010), generating 

sometimes toxic derivatives (Dirany et al. , 2011). 

We already demonstrated that, in optimum conditions, catalytic ozonation using Fe2
+­

exchanged montmorillonite produces total mineralization of oxalic acid, which is 

renowned to be quite refractory to oxidation (Shahidi et al., 2014).This finding bas 

stimulated our investigations to attempt simi1ar treatment under similar operating 
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conditions to SMX and aromatic pollutants such as chlorobenzene (PhCl), benzoic 

acid (PhC02H), 4-nitrobenzoic acid (p-02N-PhC02H), 3-hydroxybenzaldehyde 

(HOPhCHO), 4-nitrophenol (p-02N-Ph0H) and phenol (PhOH). The presence of an 

aromatic ring is expected to involve similar degradation pathways, and help 

understanding the influence of substituents on the chemical reactivity of persistent 

intermediates towards ozone. Mass spectrometry identification of the main by­

products after incomplete ozonation will certainly provide valuable data for better 

monitoring the successive steps involved in the total mineralization of each organic 

molecule investigated herein . 

4.2 Experimental 

4.2.1. Catalyst preparation and characterization 

Fe2+-montmorillonite (Fe(II)-Mt) samples with different iron contents were 

obtained from bentonite purification into Na+-montmorillonite (NaMt), and 

impregnation with aqueous FeCh solutions for different contact times of l-7 hours. 

The iron content of the Fe(II)-Mt catalysts increased from 0% (pure Na-Mt) to 

27.3%, 52.5%, 79.5 %, and 100% of the cation exchange capacity (CEC), which was 

assessed by ammonium acetate saturation method (AMAS) and Kjeldahl ammonium 

distillation technique (Kitsopoulos, 1999). Co(II)-Mt, Ni(II)-Mt and Cu(II)-Mt were 

prepared via impregnation with their corresponding nitrate metal salt solutions. Ali 

catalysts were characterized through X-ray diffraction (XRD, Siemens D5000 

instrument, Co-Ka at 1.7890 Â), X-Ray fluorescence (XRF, S-4 Pioneer-Bruker), 

nitrogen adsorption-de orption isotherm at 77 K ( Quantachrome Autosorb 

equipment) , thermal gravimetry (DTG-TG, Seiko TGffDA6200 deviee, 120 ml.min-1 

air stream at 5°C.min-1 scanning rate). 
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Bentonite purification and full ion-exchange resulted in a perfectly parallel 

arrangement of the clay sheets, as supported by sharp 001 XRD reflexion reflexion 

(Fig. S2). The d00 1 basal spacing from 13.1 to 10.3 Â. The Si/Al ratio slightly 

decreased from 2.575 (bentonite) to 2.519 (NaMt) (Table S1), due to the elimination 

of denser silica phases such as quartz and cristoballite, as supported by the increase in 

BET surface area from 50 m2.g-1 (bentonite) to 59 m2.g-1 (NaMt). The latter remained 

almost constant after exchange with Fe2+ cations, because no significant change in 

the d001 basal spacing was noticed, presumably due to compensatory effects of 

smaller cation radius but higher hydration grade for Fe2+ as compared to Na+ ion. Ali 

uncalcined catalysts showed a slight improvement in the catalytic activity after 1-2 

ozonation cycles, due to the degradation of organic impurities originating from the 

parent bentonite. This is supported by TG analysis, which revealed an endo process at 

350-450°C assigned to decomposition upon calcination in air stream ( Fig. S3). The 

endo peak at 550-700°C assigned to dehydroxylation was strongly attenuated after 

repeated calcinations, indicating a partially irreversible loss of structural water, but no 

change in the catalytic activity was noticed (Appendix B). Higher re-use number 

beyond 50-60 cycles was found to impose periodic re-impregnation with fresh Fe2
+ 

solution for preserving the catalytic activity. This is due to cation loss via partial ion­

exchange at pH 2.8 (Shahidi et al., 2014). However, this pH level did not produce 

any loss in crystallinity. 

The surface basicity was assessed by thermal programmed desorption measurements 

(TPD) of the C02 retention capacities (CRC) under a 5 mL.min-1 nitrogen stream at a 

5°C.min-1 heating rate between 20 and 400°C, in tubular glass reactor coupled to a Li-

840A C02/H20 Gas detector. 
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4.2.2. Ozonation tests 

Ozonation was performed by ozone bubbling (6 mg.min- 1
) produced by an A2Z 

ozone generator in a glass reactor containing 3x10-4 M solutions of phenol, 

chlorobenzene, benzoic acid, 4-nitrobenzoic acid, 3-hydroxybenzaldehyde, 4-

nitrophenol and sulfamethoxazole. One used similar catalyst amount (1.91 g.L- 1
) in 

powder form (average particle size of 0.1-0.2 mm) and pHs (2.88) as optimized for 

oxalic acid (Shahidi et al., 2014). When necessary, the initial pH was adjusted using 

concentrated hydrochloric acid and periodically measured (Accumet 15 pH-meter) . 

After ozonation and catalyst removal by centrifugation, the supernatant was ana1yzed 

by UV-Visible spectrophotometry (Cary 1 E instrument) and a standard chemical 

oxygen demand method (COD) (Eaton and Franson, 1975, p. 550; Arnerican Society 

for Testing and Materials, 1976, p. 473) using a linear calibration curves, like that 

plotted for phenol taken as the reference (Fig. S4). Almost total COD removal 

corresponds to a complete mineralization (Appendix C). 

4.2.3. Product and intermediate analysis 

Liquid Chromatography-Time of Flight-Mass Spectrometry analyses (LC-ToF-MS) 

were carried out using an Agilent 1200 HPLC system equipped with a binary pump, 

an in-line degasser, a high performance auto-sampler and a thermostated column 

division. These analyses were run using a linear gradient of acetonitrile-0.1% 

HCOOH in H20 (5-85%, v/v) for 14 min with a flow rate of 0.4 ml.min-1 on an 

Agilent SB-Cl8 column (2.1 x30mm; particle size of 3.5!J.m), and a column 

temperature of 25°C. Detailed procedures are provided in the supplementary 

information file, inspired from sorne procedures provided by literature (Moheb et al., 
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2011; Segana et al., 2006). Appendix D described LC-MS analyses set-up in detail. 

4.3 Results and discussion 

4.3 .1 Effect of catalyst addition 

Preliminary ozonation attempts were achieved with SMX and phenol, the simplest 

probe molecules investigated herein, revealed a significant depletion of the main 

UV-Vis band at 269 nm by a factor of ca. 90% in the first 10 min of ozonation 

without catalyst (Fig. 4.1-a). A similar tendency was noticed for sulfamethoxazole 

(Fig. 4.1-b). 

Addition of Fe(II)Mt catalyst produced a total disappearance of this UV bands, as a 

common featme of ali organic substrates investigated herein (Fig. S5). This effect can 

be better illustrated by the evolution in time of the difference between the relative 

absorbances before and after catalyst addition, expressed in terms of (~(A/A0)) (Fig. 

4.2). 
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Fig. 4.1. Decay in time of the relative absorbance for phenol at 269 nm (a) and 
sulfamethoxazole at 266 nm (b ); 0 ozonation without catalyst; • catalytic 
ozonation. Fe(II)-Mt concentration: 1.91 g.L-1

; C0=3.10-4 M; initial pH=2.88. 
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o 3-Hydroxybenzaldehyde at 253 nm 

• 3-Hydroxybenzaldehyde at 314 nm 

• 4-Nitrobenzoic acid at 273 nm 

04-Nitrophenol at 320 nm 

• Benzoic a cid at 297 nm 

oBenzoic acid at 247 nm 

~::.Cl- Benzene at 263 nm 

)( Sulfamethoxazole at 266 nm 

oPhenol at 269 nm 
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Fig. 4.2. Evolution in time of the decrease in the relative absorbance of the main 
UV-Vis band; Fe(II)Mt an1ount: 1.9lg.L-1

; C0=3 .10-4M; initial pH=2.88. 

The highest and fastest catalytic activity of Fe(II)-Mt on the degradation of 3-

hydroxybenzaldehyde (both at 253 nm and 314 nm), nitrobenzoic acid (273 nm) and 

sulfamethoxazole (266 nm) is reflected by the peaks registered after the first 3 min of 

ozonation. This must be due to, at !east, phenyl ring hydroxylation, which appears to 

be the first step in the ozonation of aromatic compounds. The weakest catalytic effect 

was noticed for 4-nitrophenol (at 320 nm). Between these two limits, moderate 

catalytic effects were registered for phenol (at 269 nm) and to a lesser extent, benzoic 

acid (247 and 297 nm) and chlorobenzene (263 nm), but with slower degradation 

rate, inasmuch as the activity peak appeared only after 5 min. This is presumably due 

to their higher oxidation state. Paradoxically, the UV-Vis bands of phenol (269 nm) 

and benzoic acid (297 nm) totally disappeared after 20 min in the presence of 

catalyst. Here, one must expect that the presence of highly electrophilic groups such 

as -N02, -C02H and -Cl contributes markedly to the stabilization of the phenyl ring. 



133 

This finding 1s of great importance, because it demonstrates that the reactivity 

towards ozone increases with increasing molecular complexity, but decreases with 

increasing oxidation states. 

The consecutive decrease of f..(A/ A0 ) indicates a quick decay of the catalyst activity, 

partly due to a pH increase, which is supposed to induce change in the mechanism 

pathways (Azzouz et al., 2010). An additional explanation involves a temporary 

catalyst poisoning due the adsorption of base-like intermediates such as 

hydroquinone (pKa 1 =9 .9), catechol (pKa=9 .48) and resorcinol (pKa=9 .1 5) and others. 

This is well supported by total catalyst regeneration through prolonged or repetitive 

ozonation. 

Fe(II)Mt addition induced an appreciable but slower COD decrease, since no total 

mineralization was achieved in the presence of Fe(II)Mt catalyst even after 20 min 

ozonation (Fig. 4.3). Almost total COD removal (97%) requires ozonation times of at 

least 20-40 min for all the organic substrates investigated herein (Fig. S6-curve 1). 
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Fig. 4.3. Evolution in time of COD removal yield in the catalyzed ozonation of 
various 3x10-4 M substrate solutions (1) as compared to phenol ozonation without 
catalyst (2). Fe(II)-Mt concentration: 1.91 g.L-1

; initial pH= 2.88 

Total degradation of the organic substrate and complete mineralization into C02 were 

expressed in terms of total disappearance of the UV-Vis band and COD, respectively, 

required different ozonation times (Table S2). The latter were significantly shortened 

in the presence of Fe(II)-Mt from more than 100 min to 20-40 min according to the 

organic substrates. 

4.3 .2. Changes in pH 

The final pH of the reaction mixture increased unavoidably during ozonation, being 

more pronounced in the presence of Fe(II)-Mt catalyst (Fig. 4.4). The cmve shape 

suggests at least two ozonation steps, with an ozonation time threshold around 10 

min, for aU organic substrates (Fig. 4.5). 
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Fig. 4.4. pH evolution in time during phenol ozonation with (1) and without (2) 
catalyst. Fe(II)-Mt amount: 1.91 g.L-1

; C0=3.10-4 M; initial pH=2.88 

• Phenol 

• 3-hydroxybenzaldehyd e 

1 6 4-nitrobenzoic ac id 

3. 35 ~ ]~ x Benzo ic ac id 

• 04-nitrophenol 

~ 
1 • CI-Benzene 

i]Z <> Sulfamethoxazole 
I 1 • Cl. 

i (ij 
c 1 i + Sulfamethoxazole iL 3.1 D Phenol 

• o 3-hydroxybenzaldehyd e 
1.!!1 m4-nitrobenzo ic acid w • 4-nitrophenol 

~ -· 
;.: Benzoic ac id 

OCI-Benzene 
2.85 

0 10 20 30 40 

Ozonation time (min) 
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; C0=3.10-4 M; initial pH=2.88 
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This pH increase must be due to the formation of derivatives with higher pKa. This 

agrees with our previous explanation in terms of temporary catalyst poisoning by 

adsorption of amphoteric to alkaline intermediates such as hydroquinone (pKal=9.9), 

catechol (pK3=9.48) and resorcinol (pK3=9.15) during the first 10 min. After 10 min, 

pH increase is attenuated, most likely due to the appearance of buffering processes. 

This can be explained by the formation of weakly acidic derivatives with moderate 

pKa values, such as muconic (pKa=3.87), acetic (pKa=4.75), fumaric (pKa1= 3.03; 

pK32= 4.44) , maleic (pK31= 1.83 - pKa2= 6.59), formic (3.751), malonie (pKa1= 2.83, 

pKa2= 5.69) and oxalic (pKa1= 1.2, pKa2 = 4.3) acids. These results are expected to be 

very useful for investigating the catalytic ozonation of sulfamethoxazole. For this 

pm-pose, emphasis was made on the effect of the cation type and content. 

4.3.3 Sulfamethoxazole degradation 

4.3.3.1 Cation effect 

Deeper insights in this regard revealed marked depletion of the relative absorbance at 

266 nm and COD till total disappearance after 10 min and 30 min ozonation, 

respectively (Fig. S7-S8). Shorter ozonation time of 20 min gave COD removal of ca. 

98-99% with Fe(II)-Mt catalyst (Fig. 4.6). This performance progressively decreased 

to 97% for Co(II)-Mt, 95 % for Ni(II)-Mt, 92% for Cu(II)-Mt and below 85% for Na­

Mt under similar conditions. 
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Fig. 4.6. COD removal in sulfamethoxazole ozonation for different Mt-suppmied 
cations. Catalyst runow1t: 1.91 g.L-1

; C0=3.10-4 M; initial pH=2.88; ozonation time:20 
mm. 

The required times for total disappearance of the highest UV-Vis band (266 nm) was 

8.0, 8.5 , 9.5, 9.5, and 20 min. for Fe(II)Mt, Co(II)Mt, Ni(II)Mt, Cu(II)Mt, and NaMt, 

respectively. The corresponding final pH values were 3.32, 3.31 , 3.28, 3.25, and 3.12 

respectively. In agreement with previous data (Shahidi et al. , 2014; Azzouz et al. , 

201 0), Fe2
+ and, to a lesser extent, Co2

+ exhibited the highest catalytic activity for 

ozonation. Fe2
+ cation turns out to be the strongest ozone scavenger and OH radical 

precursor (Azzouz, 2012). Besides, Fe(II)Mt displayed higher acidity-to-basicity ratio 

(3.81) as compared to Co(II)Mt (2.7) and NaMt (0.23) and toits highest amount of 

strong acid sites (Table S3). The latter are supposed to favor [Fe2
+- organic ligand] 

associations, which are known to behave as very reactive species towards ozone as 

complex. Montmoriilonite-supported Fe2
+ cation can contribute both as free cation 

released upon ion-exchange in acidic media and as exchangeable cation, which still 

behaves as a relatively " fi·ee" cation in the vicinity of the clay surface. In other 

words, Fe(II)Mt promotes ozonation both in the liquid media with and without Fe2
+ 

cations, and on the clay surface on the ex changeable site ( catalytic e:ffect) and aside 

between these sites (mainly adsorption). 
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4.3.3.2 Effect of iron content 

Because iron (II) cations shower higher e:ffectiveness in both dispersed and supported 

forms (Azzouz, 2012; Shahidi et al. , 2014; Azzouz et al. , 2010), deeper insights in 

the e:ffect of Fe(II) content were made (Fig. S9-S10). Fully ion exchanged Fe(II)-Mt 

produced almost total COD removal after 20 min and disappearance of the 266 nm 

band after 8.5 min (Table S4). COD removal after 20 min of ozonation was found to 

increase with increasing iron content, but almost ~otal COD removal was also 

obtained with a minimw11 ion exchange percent of79.5% (Fig. 4.7): 
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Fig. 4.7. COD removal in sulfamethoxazole ozonation with Fe~II)Mt at different iron 
contents. Error in Fe content: 3%. Fe(II)Mt an1ount: 1.91 g.L- ; C0=3.10-4 M; initial 
pH=2.88 ; ozonation time:20 min. 
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This proportionality between the catalytic activity, expressed in terms of COD 

removal yield, and the iron (II) content provides clear evidence that the exchangeable 

Fe2
+ cation belonging to the clay mineral surface is directly involved in the ozonation 

proce s. This ion-exchange threshold must involve optimum ratio between adsorption 

sites and catalytic centers, which is strongly dependent on the equilibria involving 

reactant adsorption, desorption and residual intermediate retention , if any. 

4.3.3 .3 Identification of sulfamethoxazole derivatives 

Complete decomposition without total mineralization of the organic substrate results 

in the formation of intermediates, sorne of them being regarded as key-intermediate 

when involved in key-steps. Their identification and quantification through LC-MS 

(Fig. S 11-S 16) provided valu able information on the decomposition pathway of the 

parent compound. The main intermediates identified after sulfamethoxazole 

ozonation are summarized in Table 4.1. 
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Intermediates 1 to 5 were already reported in the literature (Mar G6mez-Ramos et al., 

2011). The formation of intermediate 1 indicates that SMX ozonation starts with a 

hydroxylation of the phenyl ring, while that of the isoxazole ring generates 

intermediate 2. An rnlz of 160 (C4H4N20 3S) suggests a loss of an aniline group, an 

mlz of 156 (C6H6N02S) - a loss of isoxazole ring along with two hydroxyl groups, 

and an m!z of 108 (C6H7N2)- a release of S02 and isoxazole ring. 

Reportedly, photo-Fenton (Beltra et al., 2009) and photocatalytic (Hu et al., 2007) 

oxidation of sulfamethoxazole also produce this intermediate, which should arise 

from an oxidation of the double bond in the isoxazole ring. Intermediates 3 and 4 

displayed similar m/z values but different retention times. Their oxidation gave rise to 

mlz 174 derivative (nitric oxide group on the phenyl ring) and a rnlz 122 fragments 

(nitrogen dioxide group on the phenyl ring), respectively, both via amino group 

oxidation on the phenyl ring. Oxidation of intermediate 5 generated an rn!z 72 and 

mlz 55 derivatives having an isoxazole-like structure (Mar G6mez-Ramos et al., 

2011 ). This accounts for sulfamethoxazole scission at the S-N (sulphonamide) bond. 

It is worth mentioning that intermediate 5 exhibited the highest stability due to its 

lesser complexity, since it decomposes in more than 13-14 min, as compare.d to its 

other counterparts, which disappear after only 10 minutes of ozonation (Fig. 4.8) . 

The evolution in time of the intermediate distribution confirms that hydroxylation of 

the phenyl and isoxazole rings are the first steps in SMX ozonation. 
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Fig. 4.8. Evolution in time of heavy intermediates in the catalyzed ozonation of 
sulfamethoxazole. Fe(II)Mt amount: 1.91 g.L-1

; C0=3.10-4 M; initial pH=2.88 

Identification of smaller intermediates through LC-ToF-MS and comparison of the 

molecular formula and retention time to reference standards or via the theoretical 

mass calculator (Table S5) revealed the formation of benzoquinone via the oxidation 

of the C1 and C4 carbon atoms of the phenyl ring. This is supposed to generate 

ammonium, nitrate and sulphate ions. Further cleavage of benzoquinone ring should 

give rise to muconic and maleic acids, which, in turn, generate glyoxal and oxalic 

acid (Fig. 4.9). 



144 

10 ......... 
(/) 

ë 
::J 
0 8 /~ (..) 

1 \ (/) 
"'0 \ -+- Benzoquinone 
c 
Ct! 

6 -· Maleic acid 
(/) 

1 ::J - -,t, - · Muconic acid 
0 1 
.r: --x-- Glyoxal 1- 1 - - ·:.< - Oxalic acid c 4 1 1 

0 1 
; 1 ~ 
Ct! J \ ,_ 

[ ., ë 2 (.{ \ 
\ 

Q.) ' (..) ~ 1 \ 
' c ~t' \ 'x 0 ,, ... 

ü 1 ~~ ' ' X. . - - - ~ -
0 - ' .. ..... , 

0 10 20 30 

Ozonation time (min) 

Fig. 4.9. Evolution in time of small size intermediates in the catalyzed ozonation of 
sulfamethoxazole. Fe(II)Mt amount: 1.91 g.L- 1

; C0=3.10"4 M; initial pH=2.88. 

The latter appear to form even from the first seconds of ozonation. Oxalic acid 

accumulates at longer ozonation time (lü min) as compared to muconic acid (4-5 

min), benzoquinone, maleic acid, and glyoxal (7-8 min). This indicates that most 

intermediates act as sources of oxalic acid. Small intermediates completely 

disappeared in less than 12.5 min of ozonation, except glyoxal and oxalic, which still 

persisted up to 20 and 30 min. This is due to their lower reactivity for oxidation as 

compared to heavier organic molecules (Fig. S 17). The succession in time of the 

accumulation peaks confirms, once again, that SMX ozonation proceeds first via 

phenyl ring hydroxylation, isoxazole ring dihydroxylation, phenyl ring hydroxylation 

combined with amino group oxidation, amino group nitration and isoxazole ring 

separation (Scheme 4.1). 
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Scheme 4.1. Suggested decomposition pathway for the catalytic ozonation of 
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4.3.3.4 Intermediates in the ozonation of3-hydroxybenzaldehyde and phenol 

The use of the LC-ESI (+) TOF method in the catalytic ozonation of 3-

hydroxybenzaldehyde and phenol allowed identifying benzoquinone, glyoxal, 

muconic, maleic and oxalic acids as common intermediates with sulfamethoxazole 

(Tables S6-S7). In agreement with previous works on phenol (Azevedo et al. , 2006; 

Liu et al. , 20 13; Farzadkia et al. , 2014; Wang et al., 2012; Santos et al., 2005; 

Schleinitz et al. , 2009; Yang et al., 2010; Poznyak et al. , 2006), here also, the 

succession in time of the accumulation peaks of the identified intermediates (Fig. 

4.10 and 4.11) indicates that, except the specifie formation of 3-hydroxybenzoic acid 

and phenol from 3-hydroxybenzaldehyde (Scheme 4.2) and the possible production 

of catechol, resorcinol and hydroquinone from phenol decomposition (Scheme 4.3), 

the other steps are similar for both compounds and sulfamethoxazole . 
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Fig. 4.1 O. Evolution in time of small size intermediates in the catalyzed ozonation of 
3-hydroxybenzaldehyde. Catalyst an1ount: 1.91 g.L-1

; C0 =3.10-4 M; initial pH=2.88 
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The succession m time of the accumulation peak is explained not only by their 

consecutive appearance, but also by their decreasing oxidation capacity with 

decreasing molecular weight and increasing oxidation state. This is well supported by 

calculations based on a first-order kinetics during the first minutes of ozonation, 

when the contributions of the side-chain reactions were supposed to be negligible. 

One also assumed that the ozone concentration was constant, being determined by its 

solubility in water. Thus, the reaction rate will depend only on the concentration of 

each organic substrate, which acts as the sole reagent. 

4.3.4 Kinetic aspects 

In the kinetic study, both the COD and spectrophometric measurements were used for 

assessing the global rate constant for the global ozonation process and specifie rate 

constant for individual reaction. For all organic substrates, the depletion in time of 

the main UV-Vis band fit a 1 st order kinetics for the first three minutes of ozonation 

(Fig. S 18), as supported by high R 2 values . Linearity loss was noticed for longer 

ozonation times exceeding 4 min, presumably due to the appearance of side-reactions 

and (or) consecutive steps. For both kinetical rnodels, the rate constant of ozonation 

diminished with decreasing molecular weight and ·oxidation state (Table 4.2). The 

lowest rate constant was registered for oxalic acid, and the highest for 

sulfamethoxazole. 
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Interestingly, the closest R2 values to unity were registered for the n-order kinetics 

model. This indicates that 1 st order ozonation reaction, if any, should be accompanied 

by physical steps, most likely diffusion and adsorption. This is supported by the non­

integer values of the reaction order for sulfamethoxazole (1.9), oxalic acid (1.8), 4-

nitrophenol (1.5) and the five other organic substrates (1.6). Application of both 

models to COD resulted in higher linearity for ozonation time below 3 min. (Fig. 

S 19). However, the closest R2 values to unity suggest a 1 st order kinetics for only 4-

nitrobenzoic, benzoic and oxalic acids, but a n-order fo r the other organic substrates. 

The fact that both models gave close values of the rate constant, and that the reaction 

order differs from unity (Table 4.3) indicates a predominance of a 1 st order chemical 

step, presumably in the bulk solution, and a weak contribution of diffusion and(or) 

adsorption during the first 3 min. 
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As expected, COD depletion kinetic howed lower rate constants, the lowest value 

being obtained for oxalic acid (0.07 min-1
), in agreement with its low reactivity 

towards oxidation . Calculations based on HPLC-MS measurements allowed plotting 

the reaction rate expressed in terms of (~X/~t) as a function of X, where X is the 

conversion of each organic substrate taken as probe molecule. High linearity (Fig. 

S20-S22) and R2 values close to unity (Table 4.4) clearly demonstrate that the 

formation of all intermediates from sulfamethoxazole, 3-hydroxy-benzaldehyde and 

phenol obeys a 1 st order kinetics for the fir t 3 min. The high rate con tant of 2.33-

3.41 min-1 confirm that ozonation is initially quite fast, and adsorption, if any, plays a 

minor role. The equations used for calculation of kinetic data were de cribed in 

Appendix K. 



T
ab

le
 4

.4
. 

R
at

e 
co

ns
ta

nt
 a

nd
 r

ea
ct

io
n 

or
de

r 
ba

se
d 

on
 c

on
ce

nt
ra

ti
on

 e
vo

lu
ti

on
 d

et
er

rr
ùn

ed
 b

y 
H

P
L

C
-M

S
. 

O
rg

an
ic

 s
ub

st
ra

te
 

C
om

po
un

d 
3 

m
in

. 
5

m
in

. 
3 

m
in

. 
5 

m
in

. 

ka
 

R
 

ka
 

R
 

ka
 

n 
R

 
ka

 
n 

R
-

In
te

rm
ed

ia
te

 1
 

2.
72

 
0.

99
9 

2.
60

 
0.

99
8 

0.
02

 
4.

2 
0.

95
0 

0.
00

6 
5.

4 
0

.8
99

 

In
te

rm
ed

ia
te

 2
 

2.
87

 
1.

00
0 

2.
65

 
0

.9
90

 
0.

02
 

3.
5 

0.
96

2 
0.

00
9 

4.
8 

0.
87

8 

In
te

rm
ed

ia
te

 3
 

2.
42

 
0.

96
8 

1.
79

 
0

.9
10

 
0.

04
 

2.
4 

0.
99

7 
0.

05
7 

1.
7 

0.
95

4 

In
te

rm
ed

ia
te

 4
 

2.
59

 
0.

99
7 

2.
47

 
0.

99
6 

0.
03

 
2.

7 
0

.9
17

 
0.

00
6 

4.
6 

0.
71

1 

In
te

rm
ed

ia
te

 5
 

3.
09

 
0.

99
5 

2.
53

 
0.

93
4 

0.
05

 
2.

2 
1.

00
0 

0
.0

26
 

3.
1 

0.
97

2 

S
ul

fa
m

et
ho

xa
zo

le
 

B
en

zo
qu

in
on

e 
2.

67
 

0.
99

4 
2.

43
 

0.
98

4 
0.

03
 

3.
1 

0.
98

5 
0.

01
7 

3.
7 

0.
95

8 

M
al

ei
c 

ac
id

 
2.

80
 

0.
99

3 
2.

49
 

0.
97

3 
0.

05
 

2.
1 

0.
99

6 
0.

03
8 

2.
3 

0
.9

80
 

M
uc

on
ic

 a
ci

d 
2.

33
 

0.
99

1 
2.

40
 

0.
99

0 
0.

02
 

2.
4 

0.
86

9 
0.

03
0 

2.
2 

0
.8

55
 

G
ly

ox
al

 
2.

86
 

0.
99

5 
2.

88
 

0
.9

94
 

0.
07

 
1.

6 
0.

92
9 

0
.0

52
 

1.
3 

0.
72

4 

O
xa

li
c 

ac
id

 
2.

95
 

0.
99

9 
2.

78
 

0.
99

3 
0.

03
 

2.
5 

0.
93

0 
0.

02
1 

2.
6 

0.
91

6 

B
en

zo
qu

in
on

e 
3.

16
 

0.
96

9 
2.

37
 

0.
84

7 
0.

03
 

3.
4 

0.
98

6 
0.

08
3 

1.
1 

0.
86

2 

B
en

zo
ic

 a
ci

d 
3.

09
 

0.
99

9 
2.

86
 

0.
98

8 
0.

02
 

3.
8 

0.
96

7 
0

.0
22

 
3.

3 
0.

95
8 

3-
H

O
-

M
uc

on
ic

 a
ci

d 
3.

05
 

0.
99

6 
2.

87
 

0.
99

0 
0.

03
 

2.
9 

0.
93

1 
0.

02
2 

2
.9

 
0.

92
6 

be
nz

al
de

hy
de

 
M

al
ei

c 
ac

id
 

3.
23

 
0.

98
1 

2
.7

1 
0.

91
9 

0.
04

 
2.

7 
0.

97
7 

0
.0

50
 

1.
9 

0.
95

6 

P
he

no
l 

2.
41

 
0.

99
4 

2.
33

 
0.

99
3 

0.
06

 
1.

8 
0.

94
3 

0
.0

48
 

1.
8 

0.
93

7 

15
5 



P
he

no
l 

G
ly

ox
al

 

O
xa

li
c 

ac
id

 

B
en

zo
qu

in
on

e 

M
uc

on
ic

 a
ci

d 

M
al

ei
c 

ac
id

 

G
ly

ox
al

 

O
xa

li
c 

ac
id

 

3.
33

 
0.

96
8 

2.
57

 
0.

91
2 

0.
04

 
2.

4 
0.

99
8 

0.
05

8 
1.

7 
0.

91
2 

3.
06

 
0.

99
9 

2.
98

 
0.

99
6 

0.
03

 
2.

8 
0.

95
2 

0.
02

7 
2.

4 
0.

88
2 

2.
88

 
0.

99
8 

2.
69

 
0.

99
1 

0.
02

 
4.

1 
0.

95
3 

0.
01

5 
3.

8 
0.

94
4 

3.
24

 
0.

99
0 

2.
87

 
0.

95
9 

0.
02

 
4.

1 
0.

97
9 

0.
03

0 
2.

9 
0.

93
1 

2.
42

 
0.

96
8 

2.
58

 
0.

95
3 

0.
08

 
1.

0 
0.

99
7 

0.
09

6 
1.

0 
0.

87
2 

2.
77

 
·0

.9
99

 
2.

74
 

0.
99

9 
0.

04
 

1.
6 

0.
83

2 
0.

09
9 

0.
8 

0.
80

4 

3.
41

 
0.

99
6 

3.
33

 
0.

99
3 

0.
03

 
2 .

7 
0.

95
2 

0.
01

8 
3.

4 
0.

94
6 

a 
k 

is
 e

xp
re

ss
ed

 i
n 

m
in

-
; n

 is
 t

he
 r

ea
ct

io
n 

or
de

r 
fo

r 
th

e 
n-

or
de

r 
ki

ne
ti

cs
 m

od
el

. T
he

 r
at

e 
co

ns
ta

nt
s 

(k
) 

ha
ve

 b
ee

n 
ca

lc
ul

at
ed

 
ba

se
d 

on
 f

ir
st

-o
rd

er
 k

in
et

ic
 m

od
el

 f
or

 t
he

 p
ro

du
ct

io
n 

yi
el

d 
o

f i
nt

en
ne

di
at

es
 (

S
ee

 s
up

po
rt

in
g 

in
fo

rm
at

io
n)

. 

15
6 



157 

The linearity loss and rate constant decrease after 5 mm of ozonation indicate a 

process attenuation, presurnably due to the appearance of kinetic-controlling steps 

such as adsorption and diffusion. Such an attenuation was more pronounced for the 

formation of sorne acidic interrnediates, most likely due to weak interactions with the 

catalyst surface. This remains to be elucidated. 

The rate constant for the formation of oxalic acid increased from 2.95 (from 

sulfamethoxazole) to 3.06 (from 3-hydroxy-benzaldehyde) and 3.41 (from phenol). 

This indicates a faster formation of oxalic acid from phenol than from 3-hydroxy­

benzaldehyde and sulfarnethoxazole, due to increasing step number in the 

degradation process. 

4.4 Conclusion 

Fe2
+ -Montmorillonite acted as effective catalyst for total mineralization of 

sulfamethoxazole and other aromatic substrates by quick ozonation under optimum 

conditions and optimum iron content. Ozonation generates a wide variety of 

intermediates, sorne of them being comrnon to different organic substrates. 

Elucidation of the decomposition pathways of the different aromatic compound 

investigated allowed understanding the different steps involved in the overall 

decomposition pathway of SMX. The succession in time of the accumulation peaks 

of the identified intermediates suggests that ozonation of sulfamethoxazole starts 

mainly via phenyl ring hydroxylation, isoxazole ring dihydroxylation, phenyl ring 

hydroxylation and arnino group oxidation and amino group nitration. The 

accumulation of small size intermediates reflects their lower reactivity for oxidation 

as compared to bulkier and (or) less oxidized counterparts. Kinetic calculations 

revealed that ozonation starts in the bulk solution, while adsorption is progressively 
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enhanced in time by the progressive appearance of intermediates. These findings 

allow envisaging convenient and total mineralization of any organic pollutant by low 

cost clay-based catalysts. 
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CHAPTER V 

GLOBAL CONCLUSION 

Effective water treatments without traces of persistent hazardous by-products or 

toxins can be achieved through catalytic ozonation. The use of montmorillonite is an 

essential requirement for achieving total mineralization of oxalic acid via ozonation 

in water at arnbient temperature within reasonable reaction times. The crude and Na­

exchanged clay samples displayed relatively smaller but stiJl appreciable catalyüc 

activity towards oxalic acid ozonation. Such a result is of great interest, since the clay 

purification can be avoided. A key-step in achieving the total rnineralization resides 

in the rigorous choices of adequate solid catalysts to be used in optimum operating 

conditions. The present study allows drawing a series of conclusions, which will be 

deeply analyzed further: 

• Effective water treatments without traces of persi tent hazardous by-products or 

toxins can be achieved through suitable oxidative processes. 

• A key-step in achieving the total rnineralization resides in the rigorous choices of 

adequate solid catalysts to be used in optimum operating conditions. 

• The application of montmorillonite is an essential requirement to achieved high 

decomposition yields of oxalic acid via ozonation in water at arnbient 

temperature. 

• The role of montmorillonite must in volve not on! y the catalytic effect of the 

exchangeable cation but also the contLibution of adsorption on the clay mineral 

surface. 
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• Co(ll) and Fe(ll) exchanged montmorillonites turned out to be effective catalyst 

in the ozonation of oxalic acid. Fe(ll)Mt gives higher decomposition yields than 

Co(ll)Mt. 

• The initial pH and catalyst amount showed significant individual effects and 

interaction. 

• The detrimental effect of increasing pH and catalyst amounts must be due to clay 

compaction, which is assumed to hinder the cation mobility and adsorption 

contribution. 

• Total removal of oxalic acid was achieved at pH 2.87 with 1.88 g.L· ' of Co(ll)Mt, 

or at pH 2.88 with 1.91 g.L· ' of Fe(ll)Mt. 

• LC-MS analyses revealed that ozonation generates a wide variety of 

intermediates, which are common at the last steps in ozonation of 3-

hydroxybenzaldehyde, phenol and sulfamethoxazole . 

• The increase of the iron content turned out to enhance the decomposition yield 

but only up to an optimum ion exchange level. 

• The first steps in the ozonation of sulfamethoxazole involve mainly phenyl ring 

hydroxylation, isoxazole ring di-hydroxylation, phenyl ring hydroxylation and 

amino group oxidation and nitrilation. 

• Benzoquinone, muconic acid, maleic acid, glyoxal and oxalic acid are common 

intermediates of sulfamethoxazole , 3-hydroxybenzaldehyde, and phenol catalytic 

ozonation. 

• The accumulation of small s1ze intermediates was attributed to their higher 

chemical resistance against oxidation. 

• The final products of rnineralization (C02, SOx, and NOx) may be retreated into 

added-value derivatives. 

A deep analysis of the main observations made in the different steps of this research 

allows explaining the beneficiai effect of optimum pH and catalyst concentration in 
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terms of specifie behavior of clay mineral in water. The detrimental effect of 

increasing pH and catalyst amounts is due to clay compaction and decrease in cation 

mobility. In other words, even though ozonation in the presence of clay minerais 

under acid conditions does not particularly favor hydroxyl radical pathway, light 

ion-exchange on the catalyst surface, and surface interaction between Fe2
+ or Co2

+ 

with traces of oxalic acid is supposed to generate very reactive cation-oxalate species 

towards ozone in both its adsorbed or dispersed forms (insoluble bubbles and 

dissolved). In our ozonation attempts, Fe(II)Mt acted as effective catalyst for total 

mineralization of bullaer molecules such as sulfarnethoxazole and aromatic 

molecule . Elucidation of the decomposition pathways of the different aromatic 

compound investigated in thi thesis allowed ~:~nderstanding the different steps 

involved in the overall decomposition pathway of sulfamethoxazole. The 

accumulation of small size oxygenated intermediates reflects their higher chemical 

resistance, refractory character and reluctance for oxidation as compared to their Jess 

oxidized parent molecules . Kinetic calculations revealed that ozonation starts in the 

bulk solution, while adsorption is progressively enhanced in time by the progressive 

appearance of intermediates. The appearance of carboxylic acids may be regarded as 

being an essential requirement for the formation of Metal (II)-carboxylate in the 

vicinity of the solid surface. Such species are known to be very reactive towards 

ozone. As expected, the required ozone dose for oxalic acid mineralization is higher 

than that for bulky molecules and this proves the primary hypothesis of ozonation for 

refractory short-chain molecules versus bulky organic matter. These findings open 

promising prospects for low cost and convenient water treatment through fast 

ozonation at ambient temperature for total mineralization of organic pollutants 

without residual traces of persistent hazardous derivatives. 

The main findings of this research show that ozonation first triggers with molecular 

ozone (1 st order kinetics) un til adsorption imposes changes in the ozonation pathway 
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(n-order kinetics). Thus, the involvement of the n-order kinetics is a clear evidence of 

the additional contribution of other reactive species beside that of molecular ozone. 

Such an oxidative water treatment may be a promising route notwithstanding the high 

energy consomption. The latter can be significantly reduced through synergistic 

parameter interaction. Such an approach has never been tackled so far. This helps 

understand why nature can self-regenerate, inasmuch as small concentrations of 

organic pollutants can been photo-degraded by sedimentary sludges in oxygenated 

shallow waters and more particularly in tiny water streams. 

It is worth reminding that the total mineralization of organic pollutants was the main 

target of the present work, without taking into account the further application 

(drinking water or wastewater treatment). This involves another objective narrowly 

connected to the first one, and which resides in the assessment of the optimum 

conditions for such a purpose. 

Once known, it is up to technicians, engineers and (or) politicians to decide whether 

catalytic ozonation is strongly recommended for drinking water (and it is) or too 

expensive for treatirig wastewaters before their release in nature. If both human 

health and biodiversity are put at the same priority level, ozonation appears as being 

unavoidable, regardless to the operating costs. Many politics did not proceed so. This 

is a politic vision that can differ from people to others and from a country to another. 

Non ozonated wastewaters produce unavoidably indirect effects of environment 

contamination on human health, as long as humanity still remains at the top of the 

food chain . Is ozonation still expensive or not expensive for wastewater treatment? 

The answer to this question depends on the economie and technological context, 

which evolves intime. 



SUGGESTIONS FOR FUTURE WORK 

The promising results regarding organic pollutants degradation by means of catalytic 

ozonation obtained in this thesis encourages us to propose some ultimate 

experiments. This will allow economizing the production and application of ozone in 

waste-water treatment facilities. In this regard, the following recommendations may 

be suggested as the fuel for further research in this field. 

1. Application of ·gas sensors: It is recommended to apply a C02 gas sensor for 

determination of mineralization yield instead of time consuming COD tests, since 

VOC may enter to gas phase without being mineralized. Application of an ozone 

gas sensor can also be useful to determine and to optimize the required ozone dose 

for mineralization of a special type of pollutant solution. This can economize the 

expenses of costly ozone production. 

2. Toxicity Testing: To obtain nurumum ozone dose, required for a determined 

decrease in waste-water toxicity is another way to economize the decontamination 

processes. For this pm·pose, application of Microtox Acute Toxicity test to study 

the toxicity of the waste-water as a function of ozonation time may be useful. 

3. Application of a continuous ozonation set up: One can propose to design a 

continuous catalytic ozonation set up by applying packed columns using special 

packing materials. This will permit to investigate possible mass transfer 

limitations. A cast analysis will then be fulfilled to study the feasibility of the 

proposed method in industrial scale processes. 
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4. Kinetics study and the role of ad orption: The low ozone solubility and the 

applicability of the 1 sr order model for short ozonation times, and accurate 

assessment of the contribution of reagents adsorption in the global ozonation 

process need to be deeply investigated. Also it should be clarified that if a 

quaternary ozone-cation-clay-organic substrate contact is strongly required for 

effective ozonation processes. The synergy between the solid surface and Fe2
+ 

cation was assessed herein in terms of "pH-clay amount" interaction, but till 

remains to be elucidated. 

5. Understanding the role of pH on reaction mechanism: It is almost clear that 

ozonation in moderately acidic media takes place in both the bulk solution, on 

ozone bubble interface and clay surface A possible future direction in this regard 

should involve investigations of isolated ozone-clay, ozone-Fe2
+ , substrate-clay 

and substrate-Fe2
+ interactions. The use of different radical quenchers and electron 

paramagnetic resonance may also contributes in identifying the main reactive 

species arising from these interactions. This is real challenge, whose solutions may 

help understanding the role of pH levels in the mobility and retention of all the 

involved species. 



APPENDIXA 

OA OZONATION PROCEDURE AND PRODUCT ANALYSIS 

Ozone was bubbled in an aqueous oxalic acid solution usmg two different 

procedures: 1. within a batch reactor, i.e. a flask coupled to a reflux cooling deviee to 

a void liquid loss by evaporation (Fig. S 1. ). 

Fig. S 1. Setup for the ozonation experiments. Small number of micro-sam pl es were 
taken from the reaction mixture, so th at the total amount removed (Jess than 10%) 
does not influence greatly the evolution in time of the ozonation process; 2. When 
higher number of samples is needed so as the total sample amount exceeds 10%, no 
san1pling was made, and a series of small and similar reaction mixtures were 
simultaneous ozonated at the same ozone throughput for different bubbling times. 
The samples were further analyzed through quantitative COD measurements and 
qualitative HPLC-MS identification of the reaction products and intermediates. 



APPENDIXB 

SUPPLEMENTARY DETAILS ON CATALYST PREPARATION AND 

CHARACTERIZATION 

Montmorillonite-rich material (NaMt) with 95 wt. % purity and 2.46 Si/Al weight 

ratio was obtained through purification of commercial crude bentonite supplied by 

Aldrich with a 2.58 Si/ Al weight ratio. The purification procedures in eludes 

ultrasound treatment for improving clay dispersion in water, ozone treatment for 

removing organjc impurities, short acid treatment with 0.01 M HCl for decomposing 

carbonates if any, repeated settling in distilled water, calcination at 400°C, full ion­

exchange through repeated impregnations in 4 M NaCl aqueous solution at 70-80°C. 

NaMt was repeatedly dialyzed overnight in deionized water (40-50°C) though a 

cellophane film in order the remove the physically sorbed salt excess, then filtered, 

and air-dried overnight at 25°C. The supernatant was analyzed by the conventional 

AgN03 test till the total disappearance of the AgCl precipitate.Except loss on 

calcination not exceeding 6-7 wt%, no structural change in the montmorillonite 

framework. N aMt displayed a cation ex change capacity of 100-105 meq/1 00 g. Other 

ion-exchanged samples were obtained by impregnating 40 g of dry NaMt in 1 L of 

various fresh aqueous 1 M solution of nitrate metal salt (Fe2+, Co2+, Ni2+, Cu2+). 

Energy dispersion X-rays analysis was achieved by means of an EDAX-Sapphire 

instrument coupled to a Hitachi S-4300SEN-VP SEM equipment, using a Si(Li) 

crystal and an active surface of 10 mm\ X-ray fluorescence analysis showed 

changes in the chemical composition of the starting material after purification (Table 

S 1 ). Fe(II)Mt samples with different iron contents were obtained by impregnating 

NaMt with aqueous FeCb solutions for different contact times of 1-7 hours. The iron 

content of the Fe(II)-Mt catalysts increased from 0% (pure NaMt) to 27.3 %, 52.5%, 
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79.5%, and 100% of the cation exchange capacity (CEC). XR-fluorescence gave 

sirnilar Fe(II) content in full y ion-exchanged montmorillonite as the value of the CEC 

provided by ion-exchange isotherm measurements. The latter was also used for 

accurate assessment of the M(II) cation contents with a relative enor not exceeding 

2%. 

Table S 1. Chemical composition and sorne features of the cru de bentonite used as 
starting material and purified montmorillonite 

Sam pie 
Chernical composition* 
0 
Na 
Mg 
Al 
Si 
s 
K 
Ca 
Ti 
Fe 
Mn 
Zn 
Sr 
Si/Al (wt) ':' 
doo1 basal spacing (A)** 
Montmorillonite content (wt %)** 
CEC (meg.g· ) at neutra! pH 
BET surface area (m2.i1

) 

Bentonite 
wt % 
48.59% 
2.01 % 
1.54% 
11.93% 
30.73% 
0.24% 
0.36% 
1.12% 
949 ppm 
2.58% 
95 ppm 
53 ppm 
112 pm 
2.575 
13.1 
79 
0 .64 

50 

NaMt 
wt % 
48.94% 
1.77% 
1.43% 
12.37% 
31.17% 
287 ppm 
0.12% 
0.64% 
965 ppm 
2.75 % 

2.519 
10.3 
93 
1.00 
59 

* The chemical composition and Si/ Al ratio were determined through XRF analysis. 
** The d001 basal spacing and montmorillonite content were assessed by XRD and 
mineralogical calculations. 
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Fig. S2-a. XRD patterns of the starting bentonite and fully ion-exchanged NaMt and 
CuMt 
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Fig. S2-b. Closeup on low angle XRD patterns of partially ion-exchanged samples: 1. 
NaFeMt; 2. Bentonite; 3. Partially ion-exchanged bentonite into NaMt; 4. Fully ion­

exchanged NaMt 

Comments to the XRD patterns: 

The 001 reflexion is a special feature of a lamellar mineral, which is montmorillonite 

in the present case. Sharp 001 xrd line is usually obtained after full ion-exchange into 

homo-ionie form, and indicates a fairly ordered structure with perfectly parallel 

arrangement of the clay lan1ellae. Partial ion-exchange produces broad 001 xrd 

reflexion, as a result of the presence of cations that differ in size and hydration grade 

(number of surrounding water molecules per cation). The position (Value of 2-Theta) 

is a precise indicator of the interlayer spacing, taking into account the 4.2-4.3 

angstroms lamella thickness. 
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Fig. S3. DTG (1) and TG (2) patterns in air stream ofuncalcined NaMt 
Thermal programmed desorption measurements (TPD) of the C02 retention 
capacities (CRC) were performed after contacting each sample (40 mg, 
particle size of 0.05 - 0.1 mm) with dry C02 (1.5-500 mL) at 20°C, under a 
nitrogen stream (15 mL.min-1

) . Afte~ saturation, the non-adsorbed C02 
ex cess was evacuated by 15 mL. min· 1 of nitrogen stream un til no C02 was 
detected. 



APPENDIX C 

OZONATION PROCEDURE 

Ozonation was carried out at ambient temperature and pressure in a 4 cm x 30 cm 

cylindrical glass reactors containing 3xl0-4 M solutions of various organic substrates. 

Phenol (99.5% purity, Merck) , chlorobenzene (99.5% purity, Anachernia Canada 

Inc.), benzoic acid (98% purity, Fisher Scientific), 4-nitrobenzoic acid (97% purity), 

3-hydroxybenzaldehyde (98% purity) and 4-nitrophenol (98 % purity) were 

employed as probes to investigate the ozonation of sulfamethoxazole (99% purity). 

Sorne of these compounds were supplied by Aldrich Chemical Company Inc. The 

amount of catalyst (1.91 g.L-1
) and pHs used (2.88) were sirnilar to those already 

optirnized for oxalic acid (Shahidi et al., 2014). When necessary, the pH level was 

adjusted using concentrated hydrochloric acid (36.5 % purity) supplied by Caledon 

Ltd. and sodium hydroxide pills (95% purity, Anachemia Canada Inc.). An Accumet 

15 pH meter was employed for periodical pH measurements during ozonation. 

Various ion-exchanged montmorillonites, nan1ely Co(II)-Mt, Ni(II)-Mt, Cu(II)-Mt 

and Fe(II)-Mt, prepared by similar procedures, were tested as powder catalysts with 

an average particle size of 0.1-0.2 mm. Since Fe(II)-Mt showed highest activity under 

various conditions, deeper insights were achieved with were achieved with various 

iron contents. 

After g1ven ozonation times, the catalyst was separated centrifugation, and the 

supernatant was analyzed by UV-Visible spectrophotometry (Cary 1 E instrument) 
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and a chemical oxygen demand method (COD), using concentrated sulphuric acid 

(98% purity, Caledon Ltd.), potassium dichromate 99.5%, iron(II) ammonium 

sulphate 99.5 %, silver sulphate 99.5% and mercury(II) sulphate 99.5 % (Anachemia 

Canada Inc.). Accurate COD measurements required previous determination of 

optimum concentration ranges of ali organic su bstrates using a linear calibration 

curves, like that plotted for phenol taken as the reference (Fig. S4). Total COD 

removal i assumed to correspond to a complete mineralization of the organic 

compounds. 



APPENDIXD 

LIQUID CHROMATOGRAPHY- MASS SPECTROMETRY ANALYSIS 

(LC-MS) 

LC-MS analyses were run using two LC-ESI-MS systems: i. In system 1, the HPLC 

instrument was connected to an Agilent 6410 quadrupole (triple Q) mass 

spectrometer using electrospray ionization in positive ESI mode with the following 

conditions capillary voltage: 3000 V, nebulizer pressure: 60 Psi, gas temperature 

300°C, drying gas: 5 L.min-1 and a dwell time of 75 micro-seconds. The data were 

processed using the Mass Hunter software; ii. In system 2, the same aforementioned 

column was used. An identical HPLC instrument under the same conditions listed 

above was connected to another mass spectrometer consisting of an Agilent 6210 

electrospray ionization-time-of flight analyzer (ESI-TOF) in positive ESI mode, at a 

capillary voltage of 4000 V, nebulizer pressure of 35 Psi, a gas temperature of 350 

°C, drying gas flow: 11.5 L.min-1 and voltages of 125 V and 60 V for the fragmentor 

and skimmer, respectively. The technical error and mass resolving power of the time­

of-flight mass spectrometer in terms of mass accuracy was 5 ppm. A reserpine 

solution with m/z 609.2807 for [M+Ht ion was used as an internai standard for mass 

reference. When available, commercial reference compounds were used to compare 

the co1Tesponding retention times. 

Tandem mass technique MS-MS in multiple reaction monitoring (MRM) mode and 

exact mass measurements via (ESI-TOF) were applied for identifying most phenolic 

compounds. Multiple reactions monitoring (MRM) is a selective and sensitive LC-
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MS/MS technique in which each ionized compound gives a di stinct precursor-to­

product ion transition. Furthermore, peaks containing co-eluting cornpounds were 

resolved by monitoring for specifie precursor-to-product ion tran itions (Moheb et 

al., 20 11 ; Chiwosha et al. , 2003 ; Pang et al. , 2009; Segarra et al., 2006). Another 

analysis using the sarne conditions was conducted on another in trurnent (ESI-TOF) 

in order to confirm the exact masses and empirical formulae of each of the identified 

structures. For each intermediates , MRM acquisition was carried out by monitoring 

transitions of the combination of the parent ion mass and the fragment ions. Using 

the e protocols allowed the identification of interrnediate compounds in the ozonized 

pollutant olutions. The mass axis was calibrated over the rnlz range of 50-1000 and 

MS spectra were acquired over the rnlz 50-500 range at a scan rate of 0.5 seconds per 

spectrum. The data recorded were processed with Agilent Mass Hunter Workstation 

software. The LC-TOF system was equipped with Agilent software th at allowed 

calculating and generating the molecular formula of each compound according to its 

mass spectrurn obtained during analysis, whereas the triple quadrupole MS/MS 

system was used to confirm the product ion . 

COD calibration curves were plotted for all the organic substrates investigated herein , 

but for the sake of brevity only that e tablished for phenol is presented below (Fig. 

S4). 
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Fig. S4. COD calibration plot for phenol at initial pH adjusted at 2.88. This 
concentration range plotted for phenol was taken as a reference for COD assessments 
for all other organic substrates, because of the constant measurement enor, which did 
not exceed 1%. 
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APPENDIXE 

EFFECT OF CATALYST ON THE DEPLETION OF THE RELATIVE 

ABSORBANCE 

03-hydroxylbenzaldehyde at 314 nm 

• 3-hydro>ybenz.aldehyde at 314 nm with cata lyst 

0.8 \ /:; 3-hydro>ybenza ldehyde at 253 nm 

\ 0 -'- 3-hydroxybenza ldehyde at 253 nm with cata lyst 

\_! OBenzoic acid at 247 nm 

0.6 \0 • Benxo ic a cid at 247 nm with catalyst 

~ 0 ~ nzo ic ac id at 297 nm 

• /),. 
+ Be nzoic ac id at 297 nm wit h cata lyst 

0.4 
ii' ::K ::~: c t-benzene at 263 nm 

\ ::K •c~Benzene at 263 nm wit h catalyst 

0.2 
A 4-nitrophenol at 273 nm 

~ A 4-nitrophenol at 273 nm with cata lyst .. 0 4-n itrophenol at 320 nm 

0 0 4-nitophenol at 320 nm with catalyst 

0 5 10 15 

Ozonation time (min) 

Fig. S5 . Evolution in ti me of the relative absorbance of the main UV-Vis band be fore 
and after Fe(II)Mt addition (1.91 g.L- 1

) at initial pH=2.88. Cinitiai= 3.10-4 M; ozone 
feed: 6 mg.min-1

• The dashed li ne separa tes the ozonation experiments with ( dark 
symbols) and without catalyst (white symbols). 
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APPENDIXF 

COD EVOLUTION INTIME FOR ALL ORGANIC SUBSTRATES 

10 20 

• 3-hydroxybenzaldehyde 

• Phenol wtthout catalyst 

• 4·n•lrobenzoic acid 
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Fig. S6. Evolution in time of the chemical oxygen demand. Fe(II)Mt amount: 
1.91 g.L-1; initial pH=2.88; Cinitia1= 3.10-4 M; ozone feed: 6 mg.min-1. 
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APPENDIXH 

EFFECT OF THE EXCHANGEABLE CATIONS ON THE OZONATION 

OFSULFAMETHOXAZOLE 

0,8 --€> No catalyst 

• NaMt 

.o~. Cu(ll)Mt 

0,6 X Ni(II)Mt 

:KCo(II)Mt 

0,4 -. Fe(II)Mt 

0,2 

10 20 30 40 

Ozonation time (min) 

Fig. S7. Effect of the exchangeable cation on the relative absorbance at 266 nrn in 
the ozonation of sulfamethoxazole . Catalyst amount: 1.91 g.L- 1

; initial pH=2. 88; 
Cinitial= 3.10-4 M; ozone feed: 6 mg.min-1

• 
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Fig. S8. Effect of the exchangeable cation on the COD in the ozonation of 
sulfartlethoxazole . Catalyst amount:1.91g.L-1

; initial pH=2.88; Cinitiai= 3.10-4M; 
ozone feed: 6 mg.miif 1
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APPENDIXI 

EFFECT OF IRON CONTENT ON THE SULFAMETHOXAZOLE 

DECOMPOSITION 

0.8 

0.6 

0.4 
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0 
0 5 10 

+100% Fe 

•79.5% Fe 

•52.5% Fe 

X 27.3% Fe 

;K O% Fe 
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Ozonation time (min) 
20 

Fig. S9. Effect of the iron content on the relative absorbance at 266 mn in the 
ozonation of sulfamethoxazole . Fe(II)Mt amount:l.91g.L-' ; initial pH=2.88 ; Cinitiai= 
3.10-4M; ozone feed: 6 mg.min-1

• Error in Fe content: 3%. 
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Fig. S 1 O. Effect of the iron content on the COD in the ozonation of sulfamethoxazole 
. Fe(II)Mt amount:1 .91 g.L-1

; initial pH=2.88; Cnitiai= 3.10-4 M; ozone feed : 6 
mg.min-1

• Error in Fe content: 3%. 
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APPENDIXJ 

MASS SPECTROrvŒTRY FOR INTERrvŒDIATE IDENTIFICATION 
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Fig. Sll. (a) Identification of SMX, MS-MS of the compound at m/z 254 [M+H]+ 
showing 92, 99 and 160 as major product ions; (b) MRM signal for SMX at 254, 92, 
99 and 160 ions. 
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intermediate 1 at 270, 99, 108, 124 and 172 ions. 
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Fig. S13. (a) Identification of intermediate 2, MS-MS of the compound at rn/z 288 

[M+H]+ showing 108, 156 and 160 as major product ions; (b) MRM signal for 
intermediate 2 at 288, 108, 156 and 160 ions. 

Intermediates 3 and 4 have a same m/z value but different retention times due to 

different structural formulae. In fact, the derivative ion of m/z 174 proposes a nitric 

oxide group on benzene ring for intermediate 3 while that of m/z 122 involves a 

nitrogen dioxide group on the san1e benzene ring for intermediate 4, both arising 

from the oxidation of the amine group on the benzene ring. 
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Fig. Sl4. (a) Identification of intermediate 3, MS-MS of the compound at m/z 284 

[M+H]+ showing 99 and 174 as major productions; (b) MRM signal for intermediate 
3 at 284, 99 and 174 ions. 
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APPENDIXK 

EQUATIONS USED IN THE KINETIC STUDY OF THE OZONATION 

PROCESSES 

1. Kinetic models for the disappearance of the parent organic substrates 

1.1. First order model: 

First order modelfor therelativeabsorbance =>Ar. = (~J 

- M,.. =kxA 
M r.Med. 

Plotting- &\ .. = F(A, M 
1 

) providesthe valueof therateconstantas thelineslope. M . et. 

First order model for the COD => COD L = ( co%oDO) 
ilCODr._ 

- flt - k X COD,. Med . 

CODr.Med. = (CODr., +C0Dr.2 )/2 

Plotting- ilC~D r. = F( COD,. Med ) pro vides the value of the rate constant as the line slope. 



1.2. n- order model: 

n- ordermodelfor therelativeabsorbance :::::>Ar.= (~J 

-~- = k x (A,..Med.)" ,Ar.Med. = (Ar. 1 + A,.z}/2 => v{-~-- )= Ln(k)+n x Ln(A,..Med.) 

Plotting v{-~- )= F(Ln.(A,..M.J) provides 

1) the value of the reaction order as the line slope 
2) the value of the rate constant as the Y -intercept 

n- order modelfor the COD=> CODr. = (co%oDo) 
- ~CODr. = k x (COD )" COD (COD COD ) ~t r.Med. ' r.Med. = r.J + r.2 / 2 

:::::> Lr{- ~C~D,_ ) = Ln(k)+ n x Ln(COD,_Med_) 

Plotting Ln(- ~C~Dr. ) = F(Ln.(COD,_Med_) )provides : 

1) the value of the reaction order as the line slope 

2) the value of the rate constant as the Y -intercept 

202 



2. Kinetic models for the formation of the intermediates 

2.1. First order model: 

First order model for the production yield ~X = (Count2 - Count1 / ) 

j CountMed 

CountMed = (Count2 + Count1 )12 

LU'" 
-=k X (1- XMeJ 
t1t 

Plotting LU'" = F(l- X Med) pro vides the value of the rate constant as the line slope. 
!:l.t 

2.2. n- order model: 

. . (Count - Coun}0 ) n - order model for the production y1eld ~X= 2 1 C t 
oun Med 

CountMed = (Count2 + Count1 )1 2 

~ = k X (1- X Med J' ~ Ln(~ ) = Ln(k) + n X Ln(1- X MeJ 

Plotting Ln(~)= F(Ln(1- X Med )) pro vides: 

1) the value of the reaction order as the li ne slope 

2) the value of the rate constant as the Y -intercept 
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APPENDIX L 

KINETIC STUDY FOR THE OZONATION PROCESSES 

Hypotheses: The kinetic study was achieved usmg bath the COD and 

spectrophotometric measurements for assessing respectively the global rate constant 

for the ozonation process as a whole and specifie rate con tant for individual reaction. 

For this purpose, three hypotheses were taken into account, namely: 1. Given the 

limited s6lubility of ozone in the aqueous media, the ozone concentration will be 

regarded as being constant, and a first arder kinetic mode! will be tested for the first 

3-5 min of ozonation; 2. As the process evolves in time, for the first 3-5 minutes, the 

limited ozone solubility will be supposed to generate constant amounts of oxidative 

species and (or) radicals, if any, regardless to the organic substrates exposed to ozone 

and its derivatives; 3. The n-order madel used will be expected to provide 

information about possible complex degradation process for a single orgamc 

substrate, if any. 
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Fig. Sl8. First-order (a) and n-order (b) models for the depletion in time of the 
relative absorbance (Ar= A! Ao) of the main UV-Vis band; Ar.Med.=(Ar_t+Ar.2)/2. 
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Fig. S20. First-order (a) and n-order (b) mode! for the formation of intermediates of 
sulfamethoxazole monitored by HPLC-MS measurements; X is the conversion 
expressed in terms of molar fraction; X=(Count2-Count1)/Cow1tMed., 
CoW1tMed.=(CoW1tt +Count2)/2 . 
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Fig. S21. First-order (a) and n-order (b) madel for the formation of intermediates of 
3-hydroxybenzaldehyde monitored by HPLC-MS measurements; X is the conversion 
expressed in tenns of molar fraction; X=(Count2-Cow1t,)/CountMed., 
CountMed =(Count1 +Count2)h. 
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