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ABSTRACT

Carbon exported from terrestrial ecosystems to river systems is a critical component
of the global carbon cycle. How much carbon is exported from watersheds, in what
form, and when the exports occur, as well as the future response of riverine carbon
export to climatic change driven naturally and anthropogenically, are major issues of
biogeochemistry. However, few studies in the past simultaneously explored riverine
carbon exported in different forms and thus we still do not have an integrated
perspective of magnitude and regulation of total riverine carbon export at the regional
and global scales. The research presented in this dissertation aims to explore the
composition and drivers of total carbon export from land to rivers, from watersheds to
northern regions to the global scale, and to identify the natural and anthropogenic
controls on the global riverine carbon export to the oceans in the context of climatic
change. In the thesis project, we used the data collected by the CarBBAS group over
the past 5 years from 127 rivers and streams in Quebec, and have combined these
with a newly collated global data set of published carbon concentrations and/or
exports for 566 rivers draining a total of 74% of global exorheic area.

We first explored the influence of topography and land cover on the combined
inorganic and organic carbon export from temperate catchments in southern Québec
(Chapter 1). Our results show that whereas both are primarily driven by regional
runoff, topography is slightly more important than land cover in explaining the
variance in DIC export across watersheds, whereas land cover is much more
important than topography in determining DOC export. The inter-annual differences
in C export are driven mostly by shifts in annual precipitation and regional runoff.
Further, the proportion of the catchment covered by natural vegetation had a negative
effect on DIC export but a positive effect on DOC export, suggesting that a change in
land cover that reduces vegetation (e.g. deforestation) would lead to modest decreases
in TC export, but large increases in the DIC/DOC export ratio. As a follow up of
these studies in temperate regions, we further quantified river-mediated export of
dissolved organic and inorganic C (DOC and DIC), as well as the integrated aquatic
emissions of both CO2 and CHa4, from 44 boreal catchments that range widely in size,
topography and land cover (Chapter 2). The resulting total C export was seasonally
very variable, driven mostly by the annual runoff cycle, and averaged 15.5+£5.3 g C
m2 (watershed) yr''. DOC dominated, on average, this total C export over the annual
cycle (58%), but aquatic CO2 emissions were a major component of export in all
catchments (average 20%). Our results confirm that DOC and DIC exports are mostly
driven by runoff but further regulated by fundamentally different environmental
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factors, and that wetlands are a major source of DOC exported to rivers, but further
demonstrate that lakes within the catchment are a strong DOC sink, such that the net
export of DOC results from the balance between the two. The total annual C exported
via rivers is within the range of net ecosystem production, and has the potential to
fundamentally alter our perception of the role of these boreal landscapes as sources or
sinks of atmospheric COa.

The meta-analysis of global riverine carbon export to the oceans has shown that
beyond the expected hydrologic control over material flow, DOC export is mostly
‘driven by a combination of natural variables, such the extent of wetlands and the
average organic carbon content of the catchment soils, as well as by anthropogenic
alterations of the landscape, such as the extent of croplands and, to a lesser degree,
the presence or large reservoirs. In contrast, DIC export was mainly controlled by the
extent of carbonate rocks (positive) and of water bodies (negative). In addition, the
extent of cropland explained a substantial amount of variability. These models were
then used to estimate carbon export for all exorheic watersheds not present in our
database to derive a new global estimate of carbon export to the oceans of 0.68+0.05
Pg yrl, a substantial revision of the often-cited value of 0.9 Pg yr'. A retrospective
analysis suggests that as much as 40% of the current C export is associated with the
extent of agriculture on the planet.

In conclusion, this thesis has shown that in different landscapes and at different
spatial scales, carbon export is driven by a combination of natural features of the
landscape and human activities. It also highlights the differential regulation of the
inorganic and organic fractions of C export. Anthropogenic impacts due to land
use/cover change may be replacing the natural driving forces as the primary
determinants of the magnitude and composition of both current and future transfers of
carbon from land, through the hydrologic network, and ultimately reaching to sea,
implying the importance of land use and management in controlling riverine carbon
export from terrestrial ecosystems in the context of human-induced environmental
changes, both regionally and globally.

Key words: river carbon export; carbon cycle; greenhouse gases (GHG); dissolved
organic carbon; dissolved inorganic carbon.
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RESUME

L’exportation du carbone (C) des écosystémes terrestres vers les systémes fluviaux
est une composante fondamentale du cycle global du carbone. Combien de carbone
est exporté des bassins versants, sous quelle forme, quand les exportations se
produisent-elles et qu’elle sera la réponse de l'exportation du carbone riverain face
aux changements climatiques naturels et anthropiques sont toutes des questions
biogéochimiques d'intérét majeur. Peu d'études cependant ont explorées
simultanément I’exportation des différentes formes du carbone riverain et nous ne
disposons donc pas encore une perspective intégrée de la magnitude et du contréle
des exportations totales de carbone fluviale & l'échelle régionale et globale. La
recherche présentée dans cette theése vise a explorer la composition et les facteurs qui
contrdlent I'exportation totale de carbone des riviéres, des bassins versants des
régions nordiques jusqu’a l'échelle globale et d'identifier les contr6les naturels et
anthropiques de l'exportation de carbone fluviale globale vers les océans le contexte
des changements climatiques. Dans cette thése, nous avons utilisé les données
recueillies par le groupe CarBBAS au cours des cinq derniéres années provenant de
127 rivieres et ruisseaux au Québec combinées avec un ensemble nouvellement
rassemblées de données mondiales publiées des concentrations et/ou des exportations
de carbone de 566 riviéres drainant un total de 74% de la superficie exoréique
mondiale.

Nous avons d'abord exploré l'influence de la topographie et la couverture terrestre sur
I'exportation combinée de carbone inorganique et organique provenant de bassins
versants tempérées du sud du Québec (chapitre 1). Nos résultats montrent que la
topographie est plus importante que la couverture terrestre pour expliquer la
variabilité du carbone inorganique dissous (CID) exportée des bassins versants, bien
que les deux soient essentiellement contrdlées par le ruissellement régional, alors que
la couverture terrestre est beaucoup plus importante que la topographie dans la
détermination de 1’exportation de carbone organique dissous (COD). Les différences
interannuelles de 1’exportation du C sont principalement régies par des changements
dans les précipitations annuelles et le ruissellement régional. De plus, la proportion
du bassin versant couvert par la végétation naturelle a eu un effet négatif sur
I'exportation du CID, mais un effet positif sur I'exportation du COD, ce qui suggére
qu'un changement de la couverture terrestre qui diminue la végétation (par exemple,
la déforestation) conduirait & des diminutions modérées de I’exportation du C total,
mais de fortes augmentations du ratio CID/COD des exportations. Pour poursuivre
cette étude dans les régions tempérées, nous avons quantifié en outre l'exportation par
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les rivieres du COD et CID, ainsi que les émissions aquatiques de CO2 et de CHa de
44 bassins versants boréaux de différentes tailles, topographie et de couvertures
terrestres (chapitre 2). L'exportation de C total était trés variable entre les saisons et
notamment contr6lé par le cycle annuel du ruissellement, avec une moyenne de
15.5+5.3 g C m* (bassin versant) an’'. Le COD domine en moyenne cette exportation
totale de C sur un cycle annuel (58%), mais les émissions de CO2 aquatiques étaient
une composante majeure de l'exportation dans tous les bassins versants (moyenne
20%). Nos résultats confirment que les exportations de COD et CID sont
principalement contr6lés par les eaux de ruissellement, mais aussi par des facteurs
environnementaux fondamentalement différents et que les zones humides sont une
source majeure de COD exportés vers les riviéres. Nos résultats démontrent aussi que
les lacs situés dans le bassin versant constituent un puits de COD, de telle sorte que
I'exportation nette de COD résulte de I'équilibre entre les deux. Le C total exporté
annuellement par les riviéres est comparable a la production nette de I'écosystéme et a
le potentiel de modifier fondamentalement notre perception du role des paysages
boréaux comme sources ou puits de CO2 atmosphérique.

La méta-analyse des exportations fluviales globales de carbone vers les océans a
montré qu'au-dela du contrdle hydrologique attendue sur le transport de la matiére,
I’exportation du COD est principalement entrainé par une combinaison de variables
naturelles, tels I'étendue des zones humides et de la teneur en carbone organique
moyenne des sols du bassin versant, ainsi que par des modifications anthropiques du
paysage, tels que I'étendue des terres cultivées et, dans une moindre mesure, de la
présence de grands réservoirs. En revanche, I’exportation de CID est principalement
contrdlée par l'étendue de roches carbonatées (positif) et des plans d'eau (négatif). De
plus, l'étendue de terres cultivées expliquait une quantité importante de variabilité.
Ces modeles ont ensuite été utilisées pour estimer I'exportation de carbone pour tous
les bassins exoréiques absents de notre base de données pour établir une nouvelle
estimation globale de I'exportation de carbone vers les océans de 0.68+0.05 Pg an’!,
une révision substantielle de la valeur souvent citée de 0.9 Pg an’!. Une analyse
rétrospective suggére que jusqu'a 40% de l'exportation actuelle est associée a
’étendue de 'agriculture sur la planéte.

En conclusion, cette thése a montré que, dans des paysages différents et a différentes
échelles spatiales, l'exportation de carbone est entrainé par une combinaison des
caractéristiques naturelles du paysage et les activités humaines. Elle souligne
également la régulation différentielle de I’exportation des fractions organiques et
inorganiques du C. Les impacts anthropogéniques en raison des changements de
l'utilisation des terres et des couvertures terrestres peuvent remplacer les pressions
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naturelles comme principaux déterminants de l'ampleur et la composition des
transferts actuels et futurs de carbone provenant de la terre, par le réseau
hydrologique pour finalement atteindre la mer. Cela implique l'importance de
l'utilisation et de la gestion des terres dans le contrdle de I'exportation de carbone
riveraines des écosystemes terrestresde dans le contexte des changements
environnementaux induits par 'homme, régionalement et mondialement.

Mots clés: exportation de carbone, cycle du carbone, gaz a effet de serre (GES),
carbone organique dissous, carbone inorganique dissous



INTRODUCTION
0.1 The role and importance of river system in carbon cycling

Carbon, as the building block of life, plays an important role in a series of processes
that provide food, clothing and fuel for us, and thus we are unavoidably entwined
with its biogeochemical cycle. Particularly in the past 50 years, human activity has
gradually become a crucial driving force in global warming due to the anthropogenic
impacts on regional and global carbon cycling (Vitousek et al., 1997; Ver et al., 1999).
Actually, carbon cycling has been widely regarded as the key to our understanding of
the earth surface system and global environmental change (e.g. climate change, land
degradation and biodiversity loss) because it acts as an essential component linking
abiotic to biotic components of the earth system through photosynthesis and
decomposition, and also regulates biogeochemical cycling of other elements (e.g. N, P,
S) (Himes, 1997; Chameides and Perdue, 1997; Falkowski et al., 2000; Heimann &
Reichstein, 2008).

To date, numerous studies have focused on terrestrial and/or aquatic carbon cycle
from different perspectives using various approaches and methods, aiming to have a
better understanding of what are driving the coupling between global change and
carbon cycling, how it is controlled or influenced naturally and anthropogenically,
and the future response of terrestrial and aquatic ecosystems to it (e.g. Cao and
Woodward, 1998; Cox et al. 2000; Betts, 2000; Feeman et al., 2004; Callaghan et al.,
2010; Grosse et al., 2011; Neigh et al. 2013). Particularly, ecosystems at northern
latitudes have become the focus of recent research (e.g. Callaghan et al., 2010; Tank
et al. 2012; Neigh et al. 2013). This is not only because these ecosystems are large

potential sinks of carbon in the atmosphere but also because they are very sensitive to



climate change (Price and Apps, 1996; Betts, 2000; Callaghan et al., 2010). Therefore,
understanding the role and importance of boreal ecosystems in global carbon cycle is
crucial to our assessment of future global environmental change. Unfortunately,
however, in most cases riverine carbon exported from terrestrial systems, which plays
a key part in linking terrestrial, aquatic and atmospheric carbon cycles, is rarely
mentioned when discussing terrestrial or global carbon budgets. In reality, inland
waters (including streams, rivers, lakes and wetlands) occupy less than 1% of the
Earth’s surface, but their collective contribution to the global carbon fluxes is
disproportionately important, compared with terrestrial and oceanic ecosystems
(Battin et al., 2009). Especially in recent years, the relative contribution of inland
waters to the global carbon budget has been further highlighted (Cole et al., 2007,
Battin et al., 2009; Benstead and Leigh, 2012; Raymond et al., 2013). How much
carbon is exported from watersheds, in what form, and when the exports occur, as
well as the future response of riverine carbon export to global warming have thus
become hot issues of major biogeochemical interest. Although there are aspects of the
role and importance of river system in regional carbon budgets that are relatively well
understood, there are still many uncertainties, particularly in terms of the magnitude
of some of the key processes involved. For example, the estimates of global CO;
evasion from inland waters range from 0.26 to 3 Pg C (Cole et al., 2007;
Aufdenkampe et al., 2011; Raymond et al., 2013; Lauerwald et al., 2015). Although
the estimates of organic carbon transported from land to sea ranging widely from 0.03
to 1 Pg C yr! (Williams, 1971; Reiners, 1973; Richey et al., 1980; Meybeck, 1982;
Ludwig et al., 1996; Schlunz and Schneider, 2000; Aitkenhead and McDowell, 2000)
have been converged to a value of around 0.4 Pg C yr, the exact quantity still

remains elusive because previous studies were based on the limited data, given



similar assumptions, and/or commonly biased to some big rivers, especially tropical
and temperate (Likens et al., 1981; Meybeck, 1993; Ludwig et al., 1996; Cauwet,
. 2002; Dai et al., 2012). As for global particulate carbon export, there may be more
uncertainties in the estimates because almost all the previous estimations were merely
based on an assumed percentage of particulate organic or inorganic carbon (POC or
PIC) in suspended matter, lacking strong supporting data (Garrel et al., 1973;
Likens et al., 1981; Meybeck, 1982; Ludwig et al., 1996; Cauwet, 2002), although
Meybeck (1982) and Galy et al. (2015) estimated global riverine POC export based
on the POC and sediment data of 100 and 70 rivers, respectively. It is thus necessary
to develop a better understanding of the role and importance of river systems or
inland waters in linking atmospheric, terrestrial and aquatic carbon cycling, both

regionally and globally, in the context of global warming.

0.2 Environmental controls on riverine carbon export from watersheds at landscape

scale

River systems connect the atmosphere, hydrosphere, geosphere and biosphere, so
export of carbon from watersheds to river systems is widely regarded as an essential
component of regional and global carbon cycling. Especially, headwater streams, the
sources of river networks, have tight carbon linkages to their surrounding terrestrial
environments from hill slopes to stream channels, and are shaped substantially by
interactions among hydrological, geomorphical and biological processes that are
associated closely with the biogeochemical cycling of carbon. Hence, they are
controlled greatly by landscape variables and regulate the cycling of nutrients (e.g. N,
P, Fe, S) that potentially subsidize the aquatic communities in the downstream

reaches or within the entire watershed (Gomi et al., 2002; Wipfli et al., 2007).



Therefore, the study on landscape controls on carbon export from watersheds scaling
from a headwater catchment to the globe is necessary to integrate inland waters into
the terrestrial and global carbon budgets, undoubtedly beneficial to better
understanding of biogeochemical cycles of carbon and nutrients in the background of

global change.

However, landscapes differentiate at different spatial and temporal scales due to the
heterogeneous combinations of climate, soil, vegetation, lithology, landform and land
use/cover_, thus resulting in different riverine carbon export patterns that are
characterized by different composition of carbon species that are exported from the
watersheds and then transformed along the river. In addition, human activity has
become an important driving force for global change and this further complicates the
study of the controlling effects of landscape on riverine carbon export from the
landscapes due to anthropogenic impacts on the earth surface and regional and global
carbon balances (e.g. deforestation, farming, damming and urbanization) (e.g. Meyer
& Tate, 1983; Carignan et al., 2000; Westerhoff and Anning, 2000; Daniel et al. 2002;
Royer and David 2005; Laudon et al., 2009; Wilson and Xenopoulos, 2009; Hudon
and Carignan, 2008; Barnes & Raymond, 2009; Alvarez-Cobelas et al., 2012; Bauer
et al.,, 2013). Therefore, more attention should be focused on natural and
anthropogenic effects on carbon export from catchments to rivers, mechanistically
and quantitatively, at different temporal and spatial scales, and on integrating of

riverine carbon into terrestrial and global carbon cycles.

The carbon exported from catchments to river systems can generally be classified into
dissolved organic carbon (DOC) (<0.45pum), resulting from leaching and

decomposition of organic carbon in plants and soils, dissolved inorganic carbon



(DIC), such as HCOs, CO32 and H2COs (or dissolved CO2), POC (>0.45um),
including litter, wood debris, insects and soil organics, and PIC, debris of carbonate
minerals. Ultimately, the C that is loaded from land into river networks will in part
evade as CO; and CH4 to the atmosphere, in part will flow downstream to the
receiving water bodies or oceans, and the rest will enter aquatic food webs or be
stored in sediments in streams, rivers, lakes and/or coastal oceans. On a catchment
basis, the carbon from landscapes is finally transported out of the catchment in
dissolved (DOC, DIC and dissolved CHa), gaseous (COz and CH4) and particulate
(POC and PIC) forms. According to Meybeck (1982 & 1993), about 0.9 petagrams
(Pg) C is annually delivered to the oceans via rivers, of which 0.4 Pg of organic
carbon (DOC and POC) is from soil organic carbon, 0.3 Pg of inorganic carbon (DIC
and PIC) is from erosion of carbonate rocks in continental crust, and the other 0.2 Pg
is DIC from soil inorganic carbon. In reality, the main carbon forms in the river are
DOC, DIC and POC since PIC and dissolved CH4 account for a very small fraction of
riverine carbon exported (Aucour et al., 1999; Billett & Moore, 2008; Li et al., 2015)
and few studies were/are focused on them for their relatively less importance in
ecology and environmental science. Figure | shows the biogeochemistry of carbon in
rivers, indicating the sources and fates of riverine carbon from terrestrial organic
carbon may be respired, ingested, stored, exported and flocculated, while DIC may be
lost through CO, evasion. Recently, the global CO, evasion from inland waters is
estimated from 0.26 to 3 Pg C (Cole et al., 2007; Aufdenkampe et al., 2011; Raymond
et al., 2013; Lauerwald et al., 2015), while the global CH4 evasion is estimated as 0.1
Pg (Bastviken et al. 2011). Moreover, due to the landscape heterogeneity, carbon
export from different landscapes to river systems varies widely around the

world----for example, DOC export ranges from 0.5 (Mulholland and Watts, 1982) to



416 g m? yr'' (Charzanowski et al., 1983) while riverine DIC export varies from 0.03

(Stets & Striegl, 2012) to 115.12 g m? yr'! (Tript et al., 2013; Sarma et al., 2012).
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Figure 1 The biogeochemistry of riverine carbon (modified from Likens (1981))



Over the past 30 years, great effort has been, to varying degrees, made to better
understand and quantify riverine TOC (total organic carbon), DOC, POC, DIC (e.g.
Schlesinger and Melack, 1981; Mulholland & Watts, 1982; Hope et al., 1994; Ludwig
et al., 1996; Stets and Striegl 2012; Tank et al., 2012; Lapierre et al., 2013;
Dornblaser & Striegl, 2015; Galy et al., 2015), and evasion of CO2 and CH4 (e.g.
Kling et al., 1991; Battin et al., 2009; Aufdenkampe et al., 2011; Butman & Raymond,
2011; Lapierre et al., 2013; Raymond et al., 2013; Campeau et al., 2014; Lauerwald et
al., 2015). In particular, the export of terrestrial organic carbon (DOC or TOC) to
river systems has been the focus of attention, because it may influence aquatic
metabolism and nutrient cycling, is linked to carbon emissions to the atmosphere, and
close.ly relates to water quality (e.g. influence on the mobility and availability of
metals and contaminants) (e.g. Schlesinger and Melack, 1981; Mulholland & Watts,
1982; Hope et al., 1994; Ludwig et al., 1996; Mulholland, 1997; Lal, 2003;
Alvarez-Cobelas et al., 2012; Lapierre et al., 2013; Larouche et al., 2015). The
influence of landscape variables on riverine DOC export also has been addressed
widely from different perspectives, such as climate (e.g. Prokushkin et al., 2005;
Raymond & Oh, 2007; Tetzlaff et al., 2007; K&hler et al., 2008; Lepisto et al, 2014),
hydrology (e.g. Hornberger et al., 1994; Hein et al., 2003; Johnson et al., 2006;
Dawson et al., 2008; Kawasaki et al., 2008), geology (e.g. Telmer and Veizer, 1999;
Liu et al.,, 2000; Inamdar & Mitchell, 2006; Cai et al., 2008; Lloret et al., 2011),
topography (e.g. D’Arcy and Carignan, 1997; Johnson et al., 2000; Pacific et al.,
2010), soil (e.g. Aitkenhead and McDowell, 2000; Palmer et al., 2001; Haei et al.,
2010), wildfire (e.g. Marchand et al.,2009; Larouche et al., 2015), and land use/cover
(e.g. Carignan et al,, 2000; France et al., 2000; Wilson and Xenopoulos, 2009;
Laudon et al., 2009; Regnier et al., 2015). The export of DIC from watersheds to



aquatic ecosystems, on the other hand, appears to be linked to regional geology,
especially underlying carbonate and siliceous rocks, as well as land-use/cover plays
important roles in controlling riverine DIC export (e.g. Liu et al., 2000; Raymond &
Cole, 2003; Zhang et al., 2009; Li et al., 2010; Regnier et al., 2015). Dornblaser &
Striegl (2015) also found that DIC export greatly depends on subsurface flow in
boreal regions while in tropical region DIC is mainly flushed from surface soil layers
(Markewitz et al., 2001). The effects of other landscape variables on riverine DIC
export are not clear or less explored. Overall, at a regional scale, it would appear that
catchment topography and hydrology (D’Arcy et al., 1997; Inamdar & Mitchell, 2006;
Mengistu et al. 2014), climate (Schindler et al., 1997) and catchment vegetation
(France et al.,, 2000; Lepisto et al, 2014) are the most important drivers of DOC
export, whereas geology is more dominant than land-use in controlling riverine DIC
export (e.g. Liu et al., 2000; Zhang et al., 2011; Tank et al., 2012). Given that the
controls of climate and hydrology on carbon export from catchments have well
understood relatively, topography and land-use/cover inevitably become the main
determinants of the regional differentiation of carbon exports from catchments. In
particular, few studies have simultaneously addressed the controls of topography and
land-use/cover on DOC, DIC and TC exports from watersheds to aquatic ecosystems
and explored the functional and mechanical differences of the variables in controlling

the magnitude and composition of the carbon exported from the landscape.

Furthermore, previous studies on topographical controls on DOC export have shown
that the DOC export has strong negative relationships with catchment slope (e.g.
Eckhardt et al., 1990; D’Arcy et al., 1997; Hazlett et al., 2008) and catchment area
(Agren et al, 2007). However, the opposite findings that Wolock et al. (1997)

reported a strong negative relationship between DOC concentration and catchment



area while Inamdar & Mitchell (2006) separately reported a positive one between
them have further blurred the catchment size effect on DOC export, but indicated tha.t
the relationship is site-specific. As for the studies on the relationship between DIC
export and topography, it was mainly limited to the influence of topographical
position on DIC concentration (e.g. Gburek and Folmar, 1999; Kling et al., 2000;
McGlynn and McDonnell, 2003), accordingly affecting riverine DIC export. With
respect to land-use/cover effect on carbon export, it has been found that the reduction
of natural vegetation due to logging, farming, pasturing or urbanizing could
pronouncedly increase riverine DIC export (e.g. Daniel et al. 2002; Raymond & Cole,
2003; Baker et al., 2008; Barnes & Raymond, 2009; Regnier et al., 2015) but had
varying influence on DOC export to aquatic ecosystems. For example, most studies
found that forest-harvesting in catchments could significantly increase DOC export to
receiving waters (e.g. Carignan et al., 2000; France et al. 2000; Lamontagne et al.,
2000; Nieminen, 2004; O’Driscoll et al., 2006; Laudon et al., 2009; Winkler et al.,
2009). However, some noted that clear-cutting caused little change in DOC export
(Hobbie & Likens, 1973; McDowell & Likens, 1988; Moore & Jackson, 1989;
Piirainen et al. 2002), and several even found that clear-cutting could significantly
reduce DOC export from forested watersheds (Meyer & Tate, 1983; McLaughlin and
Phillips, 2006). As for farming effects on DOC export, some reported that agricultural
streams (affected by crops and livestock grazing) were often of lower DOC export
than streams in forest-, wetland- and heathland-dominated catchments (e.g. Cronan et
al. 1999; Royer and David 2005; Alvarez-Cobelas et al., 2010), while some others
addressed that agricultural land use had no pronounced influence on DOC export
from the watersheds (Vidon et al., 2008; Wilson and Xenopoulos, 2009). Reversely, a

significant positive relationship between agricultural use and catchment DOC export
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was collectively supported by the 24-year survey of cropping effect on organic
discharge from the Rhone river watershed in USA (Correll et al., 2001), the statistical
analysis of varied boreal catchments in Finland (Rantakari & Kortelainen, 2008) and
the field measurements in Zhujiang River, China (Sun et al., 2010; Zhang et al., 2011).
Nevertheless, the relative importance of topography and land-use/cover on DOC, DIC
or TC export and the effects of landscape variables on composition of total riverine
carbon exported from the Iandscape; have been rarely reported. Especially in the
background of global environmental change driven largely by anthropogenic
disturbances, it is thus necessary to further explore the relative effects of topography
and land-use/cover change on the magnitude and composition of the carbon exported
from watersheds to aquatic ecosystems, thus better understanding the role and
importance of the river carbon exported from the watershed in terrestrial and global

carbon cycles.
0.3 Total carbon export from watersheds to river systems

As mentioned above, most previous studies have focused separately on exploring the
loading of individual C components (TOC, DOC, POC and DIC) and degassing of the
total carbon exported from the watersheds (Mulholland and Watts, 1982; Hope et al.,
1994; Alvarez-Cobelas et al.,, 2012; Hossler and Bauer, 2013). Although a
considerable insight into the dynamics of specific carbon forms has been gained with
this approach, it nevertheless has yielded a rather fragmented view of the magnitude
and regulation of TC export from watersheds, and of the relative importance of
different individual carbon species and potential interactions between them. In
addition, the few studies that have quantified TC export and compared dissolved

carbon export and degassed CO, and CH4, most of these, were limited to one or
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several small catchment(s) (Hope et al., 2001; Billett et al., 2008; Dinsmore et al.,
2013; Wallin et al,. 2013). It is currently still difficult to produce an integrated view
of TC exported from landscapes to river systems and to characterize the
spatial-temporal differences of TC and its composition. To develop a better
understanding of the export of terrestrial carbon to river systems requires
simultaneous observation of the main components of riverine carbon from the
landscape across a range of landscape types, watershed sizes and climate, both
theoretically and practically. Only in this way, can the magnitude and composition of
total carbon exported to river systems be quantified at different space/time scales, and
hence a better understanding of carbon export from watersheds be realized from the

integrated perspective.
0.4 Objectives of the thesis

The general objective of this thesis is to explore the magnitude and controls of carbon
export from watersheds to rivers, scaling from regional to global levels. It has been
divided into 3 sub-objectives: 1) to better understand natural and anthropogenic
effects on carbon export from temperate watersheds and the response of riverine
carbon export to human activities in the context of global warming; 2) to identify the
magnitude of TC export from boreal landscape, characterize the spatial-temporal
alteration of ;:arbon composition of the TC exported (DOC, DIC, POC, PIC, CO; and
CH4), and explore the regional TC export pattern in Quebec; 3) to upscale the
regional studies on riverine carbon export to the global scale so as to clarify the major
natural and anthropogenic drivers on global riverine carbon to the oceans through a
meta-analysis. The regional studies in the thesis are based on 127 river catchments

(83 and 44 in temperate and boreal regions, respectively) in Quebec for which the
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Aquatic group at Université du Québec & Montréal had made direct measurements
over the course of past 10 years, and which were used to explore the regional TC
export patterns. In addition, a global dataset of published data comprising 566 rivers
was assembled to revisit the global TC export patterns in the context of global
warming and re-estimate the global riverine carbon budget from the land to the ocean
and to explore natural and anthropogenic drivers on global riverine carbon export at

the global scale.

The three sub-objectives of this thesis have been presented as the three chapters,

which are separately written in the form of scientific article:

Chapter 1 The relative influence of topography and land cover on inorganic and

organic carbon export from catchments in southern Quebec, Canada.

Chapter 2 Magnitude and composition of carbon exported from boreal catchments to

river systems in northern Quebec, Canada.
Chapter 3 A global analysis of riverine carbon export to the oceans.

Through these regional and global studies, the export of carbon from watersheds to
aquatic ecosystems will be better understood and some beneficial bases for the further

study on global carbon cycle and climate change could be provided.
. 0.5 General scopes and approaches

This thesis aims at exploring the carbon export from watersheds to aquatic
ecosystems and integrating river systems into regional and global carbon cycles or
budgets. The scope of the studies is focused on carbon export from land to river
systems, its main climatic, hydrologic, geomorphic and biological drivers, and the

potential influence of human activities at the scales varying from a catchment to the
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globe. Therefore, a series of mixed approaches (e.g. collecting data, characterizing
catchments, making models) are applied to explore the regional spatial-temporal
patterns of carbon export from watersheds to aquatic ecosystem in the natural

environment so as to upscale this study from a catchment to the globe.
0.5.1 Regional riverine carbon export from northern catchments

In this thesis, I used the data of 127 rivers and streams in Quebec, of which 83 and 44
are respectively in temperate and boreal regions (see Figure 2), that had been
intensively sampled, respectively, for 1 to 3 years. For each sampled system, a series
of physical (temperature, discharge, pCO: etc.) and chemical (pH value,
concentrations of DOC, DIC and nutrients, and fluxes of CO, and CHa) were
measured or calculated, so as to link them to riverine carbon exported from the
landscapes. Topographic (e.g. slope, elevation, shape and area of a catchment) and
land use/cover (e.g. forest%, vegetation%, pasture%, wetland%, lake%) variables
were extracted from the digitized maps using ArcGIS 10 and used to characterize
each catchment. Then riverine carbon exported from each catchment was calculated
as the product of discharge and DOC and DIC concentrations. The evasion of CO;
and CH,4 from surface waters was adjusted to the‘ fluxes from the entire catchment
area. Finally, TC export from watersheds to rivers was estimated from the sum of
these components, and I explored the relative contribution of the various C
components (DOC, DIC, CO,) to TC export, and its drivers using a series single or

multiple linear regression models.
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Figure 2 The research areas for the regional studies on riverine carbon export (ET:
Eastern Townships; JB: James Bay; AB: Abitibi. JB and AB, two sub-regions of this

study area, are closely neighbored in northern lowland of Quebec)

0.5.2 A meta-analysis up-scaling to global riverine carbon export to the oceans

I carried out the meta-analysis of published data on river C concentration and export
that were collected from publications and technical reports published mostly after
year 2000, covering 566 rivers worldwide, draining 74% of global exoreic area. The
catchments for which I collected data are shown in the map (Figure. 3 & Appendix
A). The data on catchment area and multi-year average river discharge were taken
mostly from Meybeck and Ragu (1996) (www.unep.org), while others based on the
specific references. All the river mouth coordinates have been identified with Google

Maps. River length and elevation in watersheds were mostly collected from



Figure 3 The total sampled catchment area (in brown) is 56% of the global
terrestrial area, covering 74% of the global exorheic area (excluding
Antarctica)

http://www.waterfootprint.org. Soil organic carbon, percent land cover/use and

percent carbonate in the catchments were extracted respectively from the global land
use/cover and geological map using ArcGIS 10. We only included studies that had
followed riverine DOC, DIC, POC or PIC concentrations and exports for at least one
full annual cycle. Some big rivers studied by different groups, in which case we used
the average of the river carbon concentrations or exports reported in the various
studies. Multiple linear regression model is used to explore the relationships of
riverine DOC, DIC, POC and PIC exports to environmental variables and human
activities. The carbon export models we made are used to estimate the riverine carbon
export of the other watersheds to the oceans and the missing C data of the 566 rivers,
and predict the future trend of global riverine carbon export from land to sea in the

context of global warming and under the pressure of cropland expansion.
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0.5.3 Statistical analysis

Simple and multiple linear regressions and covariance analyses (ANCOVA) were
used to identify the relationships between carbon export/concentration and
environmental variables and test significant differences in the regional and global
patterns of riverine carbon export. Data were logl0 transformed sometimes so as to
satisfy the conditions of homoscedasticity and normality. In all the statistical analyses,
the threshold for significance is P<0.05. Statistical analyses were carried out on JMP

9.3 (SAS institute).

N.B. References cited in the introduction are presented at the end of the thesis.
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1.1 Abstract

Export of carbon (C) from watersheds represents a key component of local and
regional C budgets. We explored the magnitude, variability and drivers of inorganic,
organic and total C export from 83 temperate catchments in southern Québec, Canada.
The average dissolved inorganic (DIC), dissolved organic (DOC) and total C (TC)
exports from these catchments were 4.6, 5.1 and 10.2 g m? yr'!, respectively.
Multiple regression models, using a combination of topographical variables
(catchment area, shape and slope), along with land-cover variables (%vegetation,
%wetland, %lake and building density), explained 34%, 62% and 53% of the
variability in the DIC, DOC, and TC exports, respectively. An examination of
variance partitioning in the models revealed that topography is slightly more

important than land cover in explaining the variance in DIC export (19% vs 15%),
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whereas land cover is much more important than topography in determining DOC
export (44% vs 18%). Interestingly, %vegetation had a negative effect on DIC export
but a positive effect on DOC export, suggesting that a change in land cover that
reduces vegetation (e.g. deforestation) would lead to modest decreases in TC export,
but large increases in the DIC/DOC export ratio. We conclude that topography and
land cover together determine DIC, DOC and TC exports. While topography is static,
land cover can bc_e altered, which will determine the quantity, form and by extension
the fate of C exported from these catchments. Finally, annual differences in export
values that are related to temperature and precipitation suggest that climate change

also have an impact on C export.
Key words: riverine carbon export; DOC; DIC; topography; land cover; carbon cycle
1.2 Introduction

The export of materials from land to fluvial networks and eventually to the ocean has
been a major focus of research for decades (Likens and Bormann, 1974; Dillon and
Molot, 2005; Hossler and Bauer, 2013). Not only are these land-derived materials
transported and transformed during transport, they also influence the functioning of
the receiving aquatic ecosystems (Cole and Caraco, 2001, Aufdenkampe et al., 2011).
More recently, lateral inputs of C from watersheds have been recognized as important
not just to inland and coastal waters, but also to our understanding of the terrestrial C
budget as well (Cole et al., 2007; Battin et al., 2009; Buffam et al., 2011; Stets and
Striegl, 2012; Dornblaser and Striegl, 2015). Most of the dissolved and particulate
organic C exported from watersheds originates from terrestrial primary production
(Kardjilov et al., 2006; Wilkinson et al., 2013; Galy et al., 2015). Similarly, most of

the DIC is ultimately of biological origin because bicarbonate and carbonate ions are
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derived from the interaction between respiratory soil CO2 and soil minerals through
the process of chemical weathering (Liu et al., 2000; Zhang et al., 2009; Tank et al.,
2012; Wang et al., 2012). Regardless of its origin, C export ultimately represents a
loss of terrestrial primary production that needs to be accounted for in regional C
budgets. How much C is lost from watersheds, in what form, and when these exports

occur, are issues of major biogeochemical interest.

The form in which C is exported is of critical importance in determining its fate. It
largely dictates the extent to which the C will either be retained in the local aquatic
system, released to the atmosphere, stored in sediments, or transported downstream,
because different forms are not regulated by the same biological, chemical, and
physical processes. For example, a significant portion of the DOC entering aquatic
systems is transformed by micro-organisms, such that it is either incorporated into
biomass or respired as an energy source (Tranvik, 1992; Neff and Asner, 2001). DOC
is also affected by photo-chemical processes that may mineralize into CO, (Lapierre
et al., 2013), render it more susceptible to microbial processes, or even flocculate into
POC (von Wachenfeldt et al., 2008, 2009). In contrast, the ionic fraction of DIC (i.e.
CO3* and HCOy) is likely to behave in a more conservative manner (Zhai et al.,
2007; MacPherson et al., 2008), whereas the dissolved CO; fraction will be largely
lost to the atmosphere, with some being assimilated during photosynthesis (Striegl et
al., 2012; Wallin et al., 2013). Because DOC and DIC are processed differently in
aquatic systems, the two C species will impact C budgets in different ways and thus
should be examined individually. It follows from this that the export of these two

general forms of C (DIC and DOC) will likely not be driven by the same factors.



20

A review of the literature shows that DOC export is at least partly dependent on
aspects of catchment topography, such as slope (Eckhardt and Moore, 1990; D’Arcy
and Carignan, 1997, Hazlett et al., 2008), area (Mulholland, 1997; France et al.,
2000; Agren et al., 2007), or elevation (Johnson et al. 2000; Hazlett and Foster,
2002). However, land cover changes, such as deforestation, also have an influence on
DOC export (Meyer and Tate, 1983; Carignan et al., 2000; McLaughlin and Phillips,
2006; France et al., 1996; Wilson and Xenopoulos, 2008). Although wetlands are
widely regarded as sources of DOC, wetland loss due to human activities can have
varying effects on DOC export, depending on land use and management practices
(Royer and David, 2005; Armstrong et al., 2010; Stanley et al., 2012). External
forcing, such as hydrology (Eckhardt and Moore, 1990; D’Arcy and Carignan, 1997)
and climate (Freeman et al., 2001; Raymond and Ho, 2007; Rdike et al., 2012;

Lepisto et al., 2014) also strongly modulate DOC export.

Dissolved inorganic carbon export, on the other hand, is influenced by catchment
geology, in particular by the presence of carbonate deposits in the catchment (Liu et
al., 2000; Zhang et al., 2009; Tank et al., 2012). Some studies have noted that
topographical position and basin elevation have a marked effect on concentration and
export of DIC from watersheds (Soranno et al., 1999; Kling et al., 2000; Finlay et al.,
2010). Others have shown that changes in land cover affect DIC export, for example,
through logging, farming, pasturing or urbanization (Daniel et al., 2002; Raymond
and Cole, 2003; Baker et al., 2008; Barnes and Raymond, 2009; Regnier et al., 2013).
Topographical position and land cover likely interact with geology, and collectively
determine the degree of weathering of the underlying rocks, the principal source of
carbonate and bicarbonate ions. This interaction between topography and land cover

underscores the need for an integrated approach.
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Most studies to date have explored DIC and DOC export separately (Hope et al.,
1994; Wallin et al., 2010), and although there is considerable insight to be gained
with this form-specific approach, it nevertheless yields a rather fragmented view of
the magnitude and regulation of total C export from watersheds. Since the relative
influence of topography and land cover may be different for DIC and DOC export,
changes in land cover may lead to shifts not only in total C export, but also in the
DIC/DOC export ratio. Here we explore topographic and land cover predictors of
DIC, DOC, and TC exports in a set of 83 diverse catchments, located in the temperate
landscape of southern Québec. The main objectives of this research were three-fold:
(1) to identify the relative importance of topography and land cover on DIC, DOC,
and TC export from temperate watersheds, (2) to explore the effect of potential land
cover changes on the DIC/DOC export ratio, and (3) to compare DIC and DOC

exports across 3 consecutive years of varying hydrologic regimes.
1.3 Materials and methods
1.3.1 Study area

Estimating carbon export from a large number of catchments over several years
requires a considerable sampling effort and necessarily involves a compromise
between capturing the temporal (within streams) and spatial (among streams)
components of variability. As our focus centered on identifying the landscape drivers
most closely associated with export rates, we opted to maximize landscape variability
while ensuring a sufficient temporal coverage to obtain robust estimates of annual
export of the various carbon forms. We therefore selected 83 catchments in southern
Québec, Canada, about 100 km east of Montreal (45°12°17”N - 45°49°22”N,
71°49°34”W - 72°39°50”W), ranging in area from 0.13 to 520 km? (Table 1). The .
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streams and rivers draining these catchments were sampled in 2004 and 2005, and a
subset (32) were also sampled in 2003. The rivers sampled range from first order
streams to fourth order rivers. Vegetation in the watersheds is characterized by mixed
temperate forest, dominated by native sugar maple trees, mixed with basswood, red
oak, eastern white pine, eastern hemlock, and yellow birch. Land use varied greatly
among catchments, some being largely forested, others dominated by agriculture or
pasturelands (Table 1). Geologically, the study area is located in the transition region
between the Humber and Dunnage Zones of the Appalachian Uplands striking
northeastwards, has rolling topography, controlled by a series of well-developed
faults and folds, is underlain by carbonate-rich and non-calcareous siliceous
sedimentary rocks, imbedded with mudstone and sandstone, and is dotted with
outcrops of metamorphic and igneous rocks (Tremblay and St-Julien, 1990; Robinson
and Fyson, 1976; Paradis and Lavoie, 1996). The geology is thus quite diverse across
the 83 catchments, with the dominant rock type being sedimentary in 56 catchments,
volcanic in 18, and intrusive in the remaining 9. The surface deposits in the region
consist mostly of glacial till and some glacio-lacustrine fine sediment (Prairie et al.,
2002), such that the dominant general formation is till in 19 of the catchments studied,
mud in 6, although rock is the dominant formation in the majority of the catchments
in this study (58). Soils are mainly humo-ferric podzolic and dystric brunisolic, with a
loamy to sandy loam texture and moderate to good internal drainage, such that the
dominant soil order is podzolic in 49 catchments and brunisolic in 23 catchments.
Gleysolic soils dominate in 10 catchments and only 1 catchment is dominated by
younger regosolic soils. Mean annual precipitation in the region is about 1000 mm, of

which 500-600 mm runs off (Natural Resources Canada, 2009), and mean daily
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temperature in July is about 18°C, while in January it is about -10°C (Environment

Canada, 1981-2010).
1.3.2 Sampling, analyses and calculations

The 83 sites were visited 4-6 times each in 2004 and 2003, at about 5-week intervals
during the ice-free period between March and November (totaling around 400 site
visits per year), and a subset of 32 sites were visited an additional 6-7 times in 2003,
at about 4-week intervals between March and October ttotaling around 200 site visits).
At each of these sites, water samples were collected and filtered in situ using 0.45 pm
syringe filters and transported to the lab in 40 mL glass vials with silicone septa
(I-CHEM). DIC and DOC concentrations were determined following acidification
and oxidation with phosphoric acid and sodium persulfate, respectively, using a
TOC1010 total carbon analyzer, equipped with an infrared CO; detector (OI

Analytical, 2% precision of 2 replicates per vial, 3% accuracy at 5mg L' standard).

The carbon export (g m2 yr!) at any given site is defined as the product of discharge
and C concentration per unit catchment area, and it is therefore essential to determine
the first two components accurately. We determined discharge (m?s!) at each site for
each sampling date as the product of the measured stream cross-sectional area and
water velocity (sampled at 0.6 x stream depth at several stations across the stream
width using the two-dimensional FlowTracker acoustic Doppler velocimeter, SonTek).
These point measurements are however, inadequate to capture the seasonal variation
in discharge, and because the vast majority of these rivers are not gauged it was
necessary to develop alternative approaches to reconstruct the full annual discharge
pattern for each river. We developed an empirical calibration that would allow us to

estimate the discharge for any given river at any given point in time, that is based on
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Table 1. Stream and catchment characteristics of the 83 study sites. Statistics for
discharge and water chemistry were determined by first averaging all measured
values from 2004 and 2005 for each of the 83 streams, then calculating the
minimum, maximum, mean and standard deviation of these values (n=83).
Statistics for topography, land cover, geology and soil were obtained from digital
elevation models, and maps of topography, land cover, rock type, surficial
deposits, and soil order, using GIS (n=83).

Variable Min Mean (SD) Max
Stream characteristics

Discharge (m?3 s'!) 0.0021 0.48 (1.0) 6.1
DIC concentration (mg L) 1.5 8.0 (4.1) 28
DOC concentration (img L-!) 1.9 7.7 (4.0) 19
pH 6.0 7.2 (0.38) 8.1
Alkalinity (peq L-Y) 80 530 (280) 1800
TN concentration (mg L) 0.14 0.46 (0.19) 1.1
TP concentration (ug L) 4.1 26 (19) 110
Catchment topography

Catchment area (km?) 0.13 28 (79) 520
Average elevation (m) 150 310 (57) 430
Average slope () 1.2 5.1 (2.8) 12
BS1 1.2 1.6 (0.22) 2.4
Catchment land cover

% vegetation 42 83 (15) 100
% forest 27 77 (18) 100
% pasture (0] 21 (19) 73
% wetland (o) 1.1 (1.9) 9
% lake (0] 3.9 (5.9) 25
Buildings per km? 0o 9.9 (12) 56
Catchment geology and soil

% intrusive (o] 1127) 100
% sedimentary 0 66 (41) 100
% volcanic 0 23 (37) 100
% rock 0 69 (41) 100
% till 0 23 (38) 100
% mud o 7.7 (24) 100
% brunisolic (o] 22 (23) 91
% gleysolic (¢} 15 (22) 83
% organic (0] 2.4 @4.1) 23
% podzolic "0 42 (30) 100
% regosolic (o] 0.95 (2.5) 17
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the relationship between our point discharge measurements and discharge data from a
continuous gauging station located in one of our study watersheds, Trois-Lacs (TR)
(hydrologic station 030101: 45°47°30”N, 71°58°’5”W operated by the Centre
d’expertise hydrique du Québec. The gauging station reports an error of +5% when in
the stage-discharge relationship). Our 612 instantaneous discharge measurements
divided by 158 the corresponding catchment areas were expressed as runoff (mm d-!),
and regressed against daily runoff at the TR gauging station, along with other
site-specific attributes that modulate local discharge. For this region, the best
predictive model of daily runoff at any given site included elevation and catchment,

in addition to the measured daily runoff at the TR station:
logi10Sem = -0.629 + 0.892*logSTR + 0.00188*E + 0.150*log10AD n

where Sgwm is the estimated runoff at a given site (mm d-!), Str is the measured value
at the TR gauging station, E is the elevation of the sampling site (m), and Ap is the
total catchment area upstream of the sampling site (km?). These estimates of daily
discharge generated by the empirical model correlated well with our instantaneous
discharge measurements, explaining 81% of the variability (R?>=0.81, p<0.0001,
n=612). We used this relationship to extrapolate discharge to the entire year, including
winter months, for which we had no samples. While the relationships that we built
between concentration and discharge were based on measurements taken during the
ice-free period, we have no reason to believe that these relationships would not hold
for flows under ice-cover. At the gauged site, where discharge was monitored
year-round, the range of discharges recorded during the sampling season
encompassed the range of discharges seen in winter. Furthermore, on the specific
dates when discharge was measured at various sites and compared to the gauged

discharge at Trois-Lacs on those same dates, the gauged discharges cover nearly the
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full range of discharges seen throughout the year. This allowed us to derive annual
export and to compare our results with the literature, which overwhelmingly reports

annual export.

Daily C export was calculated as the product of daily discharge, estimated as
described above, and DIC and DOC concentrations measured at each site, divided by
catchment area. Applying an average DIC or DOC concentration derived from the 7
to 11 point measurements assumes that discharge and concentration are independent,
which is not always the case (Wallin et al., 2010; Birgand et al., 2011). We tested this
assumption by exploring the relationship between measured DIC and DOC
concentration and measured discharge for each of our 83 sites using the data from all
years combined. For DIC, significant (p<0.05) negative (dilution) relationships were
found for 31 sites (p<0.05), and no sites showed a positive (concentration)
relationship. For DOC, a significant dilution effect was found for only 2 sites
(p<0.05), whereas 5 sites showed a significant concentration effect. For sites with
significant correlation between concentration and discharge, we used the
corresponding site-specific regression to estimate daily concentration from daily
discharge. For sites with no significant relationship between discharge and DOC or
DIC concentration, we applied the average concentration with the estimated daily
discharge in our calculation of DOC or DIC export. Annual DIC and DOC exports (g

m2 yr') were then calculated as the sum of daily export values.

Particulate organic carbon (POC) export from a catchment was not measured but
rather estimated assuming a POC to DOC ratio of 0.1, typical for lotic systems in the
temperate forest (Schlesinger and Melack, 1981; Hope et al., 1994). Particulate
inorganic carbon (PIC) export was not included in TC export because previous

studies have shown that it accounted for a very small fraction of inorganic C (Aucour
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et al., 1999). Thus, in this study, TC export was defined as the sum of DIC, DOC and
POC exports.

1.3.3 Catchment topography and land cover

The variables used to characteriie the 83 catchments are listed in Table 1. Values for
topography and land cover were extracted from 1:50,000 digital topographic maps
(Natural Resources Canada, 2006) as well as 1:50,000 and 1:250,000 land cover
maps (Natural Resources Canada, 1999). Geological data (surficial geology and
surficial materials) were obtained from 1:5,000,000 digital maps (Natural Resources
Canada, 1995) and soil data from an amalgamation of 4 smaller regional maps
ranging in scale from 1:20000 to 1:126720 (IRDA, 2006). Statistics were extracted
from the maps using ArcMap10 (ESRI). Here, average slope (°) was derived from the
digital elevation model with 10m x 10m resolution. Basin shape index (BSI), a
measure of watershed roundness, is defined as the ratio of the perimeter of the

catchment to that of a circle with the same area (Miller, 1953):
BSI = P/(2V(n*(Ap))) )

where P and Ap are the catchment perimeter and catchment area, respectively.
Geological variables are expressed as a percent of total catchment area (Ap).
However, land cover and soil variables are expressed as a percent of total catchment
area (Ap) minus the area of the catchment covered by waterbodies (Aw), leaving only
the terrestrial catchment area (Ap-Aw). We used two different map layers of different
categorical resolution to characterize the land cover properties of our catchments. In
the first land cover classification, the landscape was broadly defined as vegetated,
un-vegetated, and water (BNDT, Natural Resources Canada). The percent vegetated

derived from this layer is a broad category that includes wooded areas and shrublands,
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but excludes pastures and agricultural lands, and wetlands. The non-vegetated land
includes pastures and agricultural lands, as well as bare rock (which is rare in our
landscape), and therefore these two categories roughly correspond to “natural” versus
“managed” landscapes. We further characterized the landscape using another
landcover layer that provided a finer classification (Canada Land Inventory, Natural

Resources Canada, http://sis.agr.gc.ca/cansis/publications/maps/index.html), and we

derived percent forest, pasture, wetlands and mines for each of our catchment. The
areas considered as forest included the zones on land cover maps classified as
“productive woodland”, “non-productive woodland”, and “outdoor recreation”, which
consisted of forested parks in these catchments. The areas considered as pasture were
the zones on land cover maps classified as “improved pasture and forage crops” and
“unimproved pasture and rangeland”. To calculate percent wetlands, regions on land
cover maps that were coded as “swamp, marsh or bog” were merged with "wetlands".
Land cover categorized as cropland or urban was not present in the studied
catchments. Building density is expressed as the number of buildings per square
kilometer of terrestrial catchment area. All the above land cover categories are
expressed as % of the terrestrial area in each catchment, whereas percent lakes is
the water area over the total catchment area.

1.3.4 Statistical analyses

A principal component analysis was performed on the variables describing
topography, land cover, geology and soil in Table 1 to explore the multiple
relationships among variables. They were then offered for inclusion in multiple linear
regression models predicting DIC, DOC and TC export. The models were built using
a mixed step-wise selection process, with p<0.05 as the condition for including a

variable in the model. Both %forest and %pasture from land cover maps were
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excluded from these analyses as they were strongly correlated with the broader
category of %vegetation from topographic maps (%forest: p.ositive, R?=0.73, n=83,
p<0.0001; %pasture: negative, R?>=0.72, n=83, p<0.0001), and were therefore
considered redundant. The inter-annual variability in DIC and DOC export was
examined for a subset of 32 catchments using a one-way analysis of variance and the
Tukey-Kramer post-hoc test to find significant differences among three sequential
years (p<0.05). Exports for the 32 sites were centered by expressing the export from
each site in a given year as the difference relative to that site’s average export over
the 3 years (2003, 2004, and 2005). This procedure allowed us to examine more

robustly inter-annual differences for streams with very different average export.

1.4 Results

1.4.1 Carbon export

We observed a wide range in export rates of both DIC and DOC across the 83
catchments studied. DIC export was 4.6 g m?2 yr! (average of 2004 and 2005 values),
and ranged an order of magnitude, from 1.1 to 11 g m? yr! (Figure 1). Similarly,
DOC export averaged 5.1 g m2 yr! over the same period, and ranged from 1.1to 13 g
m2 yr'! (Figure 1). As a result, TC export averaged 10 g m? yr'!, and ranged from 2.5
to 18 g m? yrl. Combining the uncertainty of both discharge and concentration
estimates, error propagation calculations suggest that the export values have an

associated error of about 25%.
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Figure 1. DOC export versus DIC export for the 83 catchments. Exports are
expressed as the average of 2004 and 2005 measurements in g of C per square

meter of total catchment area per year.
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Figure 2. Carbon exported as DIC (solid squares) and DOC (open circles) in g m™ yr” for the

83 catchments, average of 2004 and 2005 measurements, as a function of total catchment

area. Significant correlations with catchment area are shown for DIC export (thin line), DOC

export (thick line) and TC (dashed line, points not shown).
Despite the similar range and magnitude of DIC and DOC exports, there was no
significant correlation between the export of these two C species. The relative
contribution of the two dissolved constituents to TC export thus varied considerably
among the catchments, with export from some sites being overwhelmingly dominated
by inorganic C, and others by its organic counterpart. The ratio of DIC to DOC export
ranged 20-fold, from 0.19 and 3.9, averaging 1.1, with 56 of the 83 catchments falling

in the range between 0.5 and 2.0. In addition, the range and magnitude of DIC and
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DOC concentrations (in mg L") across the 83 sites were similar (average of 2004 and
2005 values, Table 1), yet there was no relationship between concentrations of these

inorganic and organic components for the region.

Overall, there was a significant positive spatial scale effect on C export (Figure 2),
such that DIC, DOC and TC exports increased with catchment size (logio(DICexport)
= 0.54 + 0.11*logio(Ap), R?*=0.19, p<0.0001, n=83; logio(DOCexport) = 0.56 +
0.12*logi0(Ap), R?=0.16, p=0.0002, n=83; logio(TCexport) = 0.90 + 0.1 1*logio(Ap),
R?=0.33, p<0.0001, n=83).

1.4.2 Factors influencing carbon export

A principal component analysis of DIC, DOC and TC exports (average of 2004 and
2005 values) as well as topographic and land cover variables demonstrates the large
degree of uncoupling between DIC and DOC export, as these two variables are
orthogonal to each other on the summary plot of the first 2 components (Figure 3).
The first two components explained more than 50% of the variance in the data, with
component 1 aligning strongly with topographical variables, such as catchment area,
slope and elevation (34%), and component 2 aligning more with land cover variables,

such as %vegetation and %wetlands (18%).
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Figure 3. Principal component analysis of DIC, DOC and TC exports (average of
2004 and 2005 values) and key topographic and land-cover variables for the 83

catchments.

The position of DIC and DOC exports at 45° to the axes reveals that the export of
either C component is related to a combination of the topographical variables of
component 1 and the land cover variables of component 2. Not surprisingly, TC
export was intermediate between DIC and DOC exports. The multiple linear
regression models presented in Table 2 thus incorporate a combination of topography
and land cover variables, and explain 34%, 62% and 53% of the variance in DIC,

DOC and TC exports, respectively. Both DIC and DOC exports were positively
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related to total catchment area (as shown in Figure 2). BSI and %vegetation both had
a significant negative effect on DIC export, but a significant positive effect on DOC
export. In addition, building density (a measure of human influence) was positively
related to DIC export, whereas wetlands were positively related to DOC export.
Finally, the presence of lakes in the catchment had a negative effect on DOC export
but none on DIC export. Variables describing geology (as either general rock
formation or surface material type) and soil type did not contribute significantly to
predicting C export. As mentioned in Section 2.4, %forest and %pasture were not
offered in the step-wise model-building process, because of their strong correlation

with %vegetation.

Table 2. Multiple linear regression models predicting DIC, DOC, and TC export in g
mr? yr! (=83 for each). Estimates of coefficients and corresponding p values are
given for all variables offered during the step-wise selection process. Variables were
included in the model if p<0.05 (in bold) and the corresponding R? values are shown.

DIC DOC TC
Parameter " : -
Estimatc pvaluc Estimatc Pvaluc Estimatc p valuc
Catchment area (kno?)* 1.069 <0.0001 0672  0.0323 1412  0.0002
Awerage elevation (m) 0.7584 0.2181 0.6454
Topography o
Average slope () 02418 -0.271 00041 -0266  0.0066
BSI -2.088 0.0201 2705  0.0068 0.8220
Yvegetation -0.038 0.0017 0.061  0.0003 0.5486
%wetland 0.8931 0.530 <0.0001 0.690 <0.0001
Land cover
Yolake 03783 -0.139  0.0002 0.0601
Buildings per km” 0.036 0.0116 0.4498 0.8632
Intercept 9914 <0.0001 -3423 0.1072 0.731 <0.0001
R? 0.34 0.62 0.53

* Catchment area is Jog10 transformed.
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Figure 4. Variance partitioning in the multiple linear regression models of DIC and DOC export, showing the percentage
of vanability explained by each component variable and the remaining variability, unexplained by the models.

Figure 4. Variance partitioning in the multiple linear regression models of DIC and DOC
export, showing the percentage of variability explained by each component variable and the
remaining variability, unexplained by the models.

An examination of the sums of squares associated to each variable in the multiple
regression models allows us to determine the relative influence of topographical and
land cover variables on C export (Figure 4). The topographical variables (catchment
area and BSI) were slightly more important than the land cover variables
(%vegetation and building density) in predicting DIC export, wiih topography and
land cover explaining 19% and 15% of the variability, respectively. In contrast, land
cover variables (%vegetation, %wetland and %lake) were more important than the
topographical variables (catchment area, BSI and slope) in predicting DOC export,
land cover and topography explaining 44% and only 18% of the variability in the
DOC model, respectively. In terms of TC export, the topographical variables
(catchment area and slope) and land cover (%wetland) explained roughly the same

amount of variation (24% versus 29%, respectively).
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The positive relationship of catchment size with both DIC and DOC exports resulted
in an overall positive effect of catchment size on TC export (Table 2). In contrast, the
opposing effects of BSI and %vegetation on DIC and DOC export canceled each
other out and as a result, these variables had no overall impact on TC export. The
positive effect of %wetland and the negative effect of slope on DOC export were
strong enough to influence overall TC export, despite their lack of influence on DIC

export.
1.4.3 Inter-annual variation in carbon export

The preceding results were based on the average C export for 83 basins in 2004 and
2005; however, we also examined inter-annual variation in C export from 2003 to
2005 for a subset of 32 basins. Continuous measurements from 13 weather stations in
the study area reveal that 2005 was the warmest and wettest year, with 1°C higher
respectively (ANOVA, R? = 0.59, p<0.0001, n = 96, Tukey-Kramer p<0.0001)
(Figure 5). DOC exports were also significantly higher in 2005 than in 2004 and 2003,
with average DOC exports for the 32 basins of 6.1, 5.0, and 5.2 g m2 yr! in 2005,
2004, and 2003, respectively (ANOVA, R? = 0.31, p<0.0001, n = 96, Tukey-Kramer
p<0.0001) (Figure 5). As a consequence, TC exports were also significantly higher in
2005 than in 2004 and in 2003, with average TC exports for the 32 basins of 13.6,
10.7, and 11.0 g m? yr! in 2005, 2004, and 2003, respectively (ANOVA, R? = 0.67,
p<0.0001, n = 96, Tukey-Kramer p<0.0001). There was no inter-annual difference

between exports in 2003 and 2004 for any C species.
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Table 3. Local climate, gauged daily discharge, as well as discharge and DIC and

DOC concentrations measured in situ at the 32 sites in 2003, 2004 and 2005.

2003 2004 2005
Annual mean air temperature (°C) ® 50 5.1 6.0
Annual precipitation (mm) * 1245 1026 1316
Mean (SD) of mean daily discharges at 13.4 (18.7) 12.7 (15.9) 15.6 (23.9)
Trois-Lacs (m3s™) ®
Mean (SD) of mean daily discharges at 0.57 (0.77) 0.62 (0.81) 0.68 (0.97)
Waterloo (m?® s?) ©
Mean (SD) measured in situ discharge (m?® s) NA 0.30 (0.59) 0.59 (1.4)
Mean (SD) DIC concentration (mg L) 8.7 (4.0) 89@4.7) 9.8 (54)
Mean (SD) DOC concentration (mg L) 83@3.7 82 4.0) 8.7@4.7)

® Data from http://climate.weatheroffice.gc.ca

b Data from https://www.cehg.

¢ Data from https://www.ce

1.5 Discussion

The C exports and DIC/DOC export ratios that we measured for these 83 basins in

southern Québec are well within the range of values found in the literature. Our range

of DOC export (1.1 to 13 g m? yr'') is in very gooa agreement with that estimated by

Eckhardt and Moore (1990) in roughly the same area (1 to 18 g m?2 yr!). The average

DOC export of 5.1 g m? yr! corresponds to the mid-range of DOC exports reported

for Atlantic Canada (1.6 to 12.4 g m2 yr") (Clair et al., 1994), for forested landscapes

in southeastern Canada (0.9 to 13.7 g m? yr!) (Creed et al., 2008), or for forested

watersheds in other temperate regions of North America (0.3 to 41.7 g m*2 yr!) (Hope
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et al., 1994), and very similar to the average DOC export of the 6 g m?2 yr! reported
for wet temperate regions by Meybeck (1993). Similarly, our DIC export range of 1.1
to 11 gm?2 yr!, and average of 4.6 g m? yr', were well within the range of riverine
exports found in Europe (0.5 to 67.8 g m? yr') (Hope et al., 1994), although they
were slightly higher than those found in Atlantic Canada (0.04 to 4.19 g m? yr,
average 0.71 g m2 yr') (Clair et al., 1994) and were much higher than those found in
central Ontario (0.81 to 1.69 g m? yr!, average 1.12 g m? yr!) (Dillon and Molot,
1997). As for TC export, our range of 2.5 to 18 g m yr! and average of 10 g m? yr-!
agree well with TC export from north Atlantic rivers in the United States (3.7to 15 g
m2 yr', average of 7.2 g m? yr!) (Stets and Striegl, 2012), but is lower than TC
exports from European rivers at similar latitudes (e.g. TC exports for the Adige,
Danube and Po Rivers, which were 16.7, 12.4 and 30.1 g m? yr', respectively)
(UNEP, 2003).

The decoupling between DIC and DOC exports that we observed in our systems (Fig
1) has also been observed in other regions, leading to variations in DIC/DOC export
ratios both within and across regions. In this regard, our DIC/DOC export ratio varied
widely across catchments (from 0.2 to 3.9), and the overall mean of 1.14 was much
higher than published DIC/DOC ratios in Atlantic Canada (0.01 to 0.86, average 0.13)
(Clair et al., 1994) and central Ontario (0.13 to 0.32, average 0.27) (Dillon and Molot,
1997). This inter-regional difference is largely attributable to differences in the
amount of wetlands and carbonate rocks, which relate to the production of soil DOC
and DIC, respectively. Atlantic Canada and central Ontario are lithologically
dominated by volcanic and granitic rocks, respectively, whereas most of our study
area, is underlain by carbonaceous sedimentary rocks (Paradis and Lavoie, 1996),

which contribute more DIC by weathering. In addition, most of the catchments



39

studied in Atlantic Canada, are located on islands, where the soils are poorly
developed, thereby producing less DIC from soil respiration. Furthermore, the study
area in central Ontario has more wetlands (up to 25%) than ours (up to 9%), which

contribute more DOC and further lower the DIC/DOC ratio.

We designed this study to maximize spatial coverage and environmental gradients,
while still capturing at least some of the seasonal variability in riverine discharge and
C concentration. Discharge is without doubt the most variable of these two
components, but we were able to reconstruct the annual discharge pattern by relating
our point measurements to a continuous discharge record in one of study streams
(n>600 point measurements). This approach is effective to capture both the total
runoff from each stream and the main features of the annual hydrographs. With
regard to the temporal variability in C concentrations, we examined the
mean-variance relationship for DIC and DOC concentrations, by plotting the variance
of all concentration measurements at a given site in a given year, V, versus the mean
concentration for that site in that year, X. Combining the 32 sites sampled in 2003
with the 83 sites sampled in 2004 and 2005, there were a total of 198 site-years for
which we could compare the variance to the mean. Applying the resulting
mean-variance equations (Vpic=0.032*Xpic?4, R?=0.51, p<0.0001, n=198;
Vpoc=0.019*Xpoc?%2, R=0.67, p<0.0001, n=198) following Cattaneo and Prairie
(1995) allowed us to determine that no more than 4 samples per year were required to
obtain a mean concentration for a given site with a precision of 20%. As we visited
each site 4-7 times per year, the mean concentration calculated for any site should
have an error of 20% or less, thereby confirming the adequacy of our sampling
strategy. Carbon concentrations are less temporally variable than nutrients such as N

and P (Moatar and Meybeck, 2007; Birgand et al., 2011), and a similar precision was
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obtained by Birgand et al. (2011) for total dissolved carbon sampled monthly in a
forested catchment. With our experimental design, we found more variability in
carbon export among sites than within a year at a single site, which allowed us to
explore the drivers of carbon export across catchments of differing topographical and

land cover characteristics.
1.5.1 Drivers of Terrestrial Carbon Export to Aquatic Systems

While topography and land cover together explained only 34% of the variability in
DIC export, they explained 62% of the variability in DOC export, clearly illustrating
that DIC and DOC export are controlled by different biogeochemical processes.
Furthermore, whereas land cover and topography were equally important in
determining DIC export (explaining 15% and 19% of the variability, respectively),
land cover was clearly a stronger driver of DOC export than was topography
(explaining 44% and 18% of the variability, respectively). These results support our
hypothesis that a combination of underlying topographical features and potgntially
more dynamic land cover features are involved in determining the various forms of C

exported.

Despite these differences, there was one driver that was common to all forms of C
export, whether DIC, DOC, or TC: catchment area was positively related to all forms
of C export, either alone (Figure 2), or in combination with other effects in multiple
linear regression models, explaining 15%, 4% and 16% of the variability in DIC,
DOC, and TC export, respectively (Table 2, Figure 4). This is in contrast to the
finding of Agren et al. (2007) that small headwater catchments export the most
terrestrial DOC, in a comparison of 15 sub-catchments in Sweden ranging in size

from 0.03 to 22 km?. It is difficult to explain why catchment area should play a role in



how much C is exported per square kilometer. We found no significant relationship
between carbon concentration (DIC, DOC, or TC) and catchment area (p>0.05, n=83,
using the average of 2004 and 2005 concentrations for each site and using either
terrestrial or total catchment area). This is inconsistent with the positive relationship
with DOC concentration reported by Inamdar and Mitchell (2006) and the negative
relationship with DOC concentration reported by Wolock et al. (1997). Thus, the
ultimate driver is likely hydrology, and in this regard, we find a relatively strong
positive relationship between catchment size and runoff (parameters), and also with
catchment elevation. The reasons underlying this positive relartionship are not clear,
but could be related to shifts in land cover patterns with catchment size. In particular,
there was a trend for larger catchments to have less forest and vegetation cover and
higher proportion of agricultural lands, and it has been suggested that runoff actually
increases with deforestation and human-induced landscape alternations (4/lan, 2004;

Maetens et al., 2012).
1.5.1.1 Drivers of DIC Export

After catchment area, %vegetation in the watershed was the second most important
factor determining DIC export, with less vegetated basins exporting more DIC. This
agrees with previous work that has shown that deforestation or conversion of natural
vegetation into pasture increases DIC export from the landscape, either when
comparing DIC export across basins (Baker et al., 2008; Rantakari and Kortelainen,
2008; Regnier et al., 2013) or when following DIC export within a basin as its land
cover changes over time (Raymond and Cole, 2003; Yan et al., 2013). There are
several processes that can explain the observed pattern between %vegetation and DIC
export. In our study region, unvegetated areas often corresponded to pasturelands

which, in comparison with forest soils, tend to have higher soil respiration rates
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(Smith and Johnson, 2004; Kellman et al. 2007), leading to elevated soil CO, and
greater weathering potential (Likens, 2010; Bayon et al., 2012). Previous studies have
shown that replacing forest species with forage or farm crops results in a decrease in
the soil C/N ratio, leading to a more rapid mineralization of soil organic matter and
litterfall, thus  increasing groundwater DIC and soil CO» (Marland et al., 2004;
Hedley et al., 2009). Moreover, deforestation, due to agriculture or pasture, can
intensify weathering (Likens, 2010; Bayon et al., 2012), thus releasing more
bicarbonate and carbonate ions into river water. Therefore reducing the vegetation
coverage and/or shifting land uses to agricultural or residential may increase DIC

export by increasing soil respiration rates and weathering.

In addition, C geochemistry and water chemistry in river systems are dependent
largely on lithological variability in carbonate/silicate-dominated terrains
(Amiotte-Suchet et al., 2003; Zhang et al., 2009). Our study area is located in the
transition region between the Humber and Dunnage Zoﬁes, underlain by
carbonate-rich and non-calcareous siliceous sedimentary rocks and mafic volcanic
rocks associated marine sediments, respectively. Particularly, in the Humber zone
there are the world’s largest asbestos mine, and several talc mines (Castonguay and
Tremblay, 2003), both of which are hydrous magnesium silicates that are often
associated with carbonates and easily hydrolyzed to release HCOs". The fact that 9 of
the 10 catchments with DIC export of more than 6.6 g m? yr! are in the Humber
Zone (except the stream outflowing Lake Nick), further highlights the importance of
carbonate and silicate rocks in controlling riverine DIC export from the catchment.
DIC export also increased with building density. Buildings and their residents are not
point sources of DIC but higher building density usually results in land clearing and

road construction, causing an anthropogenic increase in erosion and therefore DIC
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export from soils. This positive effect is strongly supported by previous studies

(Daniel et al., 2002; Barnes and Raymond, 2009; Zeng et al., 2011).

Basin shape index, BSI, also played a significant role in controlling DIC export. The
greater the departure from a circular basin (BSI>1.0), the less DIC that is exported.
This negative relationship may be due to hydrological pathways being more
convoluted in basins with more complex shapes. For example, circular catchments are
more prone to flooding than elongated ones (Waugh, 1995; Rasool et al., 2011),

leading to higher erosion and flushing out of various forms of terrestrial DIC.
1.5.1.2 Drivers of DOC Export

The two variables that explained most of the variation in DOC export were %lake and
%wetland. Basins containing more lakes exported less DOC, which highlights the
role of lakes as sinks of terrestrially-derived organic matter (Larson et al., 2007).
Temperate and boreal lakes accumulate large amounts of terrestrial C in their
sediments (Ferland et al. 2012; Tranvik et al. 2009), and also decompose and emit a
portion of this terrestrial DOC as CO, and CH4 (Larson et al., 2007; Dinsmore et al.,
2013). Although the catchments in this study did not contain many wetlands
(maximum 9% coverage), wetlands still played a role in shaping DOC export, as has
been reported for other regions (Eckhardt and Moore, 1990; Dillon and Molot, 1997,
Huntington and Aiken, 2013). These two land cover variables are susceptible to
anthropogenic and climate change through drainage, damming, and changes in the
hydrologic regime. Therefore changes to the amount and extent of wetlands and lakes
in a watershed will affect two important sources and sinks of DOC and thus the

movement of terrestrial C into the aquatic system and the atmosphere.
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We found that DOC export was also correlated with %vegetation and BSI, but the
direction of the correlation was opposite of that for DIC export, highlighting the
independent nature of DOC and DIC exports (Figures 1 and 3). Although the
presence of vegetation lowered DIC export, it increased DOC export in these basins,
which agrees with previous work (Meyer and Tate, 1983; France et al., 1996). The
positive relationship between DOC export and %vegetation reflects the fact that most
riverine DOC is ultimately derived from land vegetation (via direct litter input and
leaching) and soils (via microbial activity, root exudation, leaching and erosion of
organic matter) (Spitzy and Leenheer, 1991). The influence of BSI on DOC export
was opposite to that on DIC export, with elongated more complex high BSI basins
exporting more DOC than round, less complex low BSI basins. Similarly, Pacific et
al. (2010) showed that a more elongated basin often has a higher ratio of riparian to
upland area and can export more DOC to river systems. As mentioned above, that
larger catchments exported more C, but in this region, larger watersheds were also
characterized as having a lower average slope (R?>=0.17, p=0.0001, n=83) and lower
average elevation (R?=0.08, p=0.0080, n=83), although these correlations are weak.
Once entered into a multiple regression with catchment area as a factor, elevation had
no effect on C export; however, watersheds with a flatter average slope exported
more DOC and TC, independent of the effect of catchment size. Gentler slopes
facilitate wetland formation, leading to more DOC production and export (D’ Arcy
and Carignan, 1997), and also have longer water residence times, allowing more time
for soil DOC to leach into soil water and neighboring waterways (Hazlett et al., 2008;

deCatanzaro and Chow-Fraser, 2011).

1.5.1.3 Drivers of TC Export
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We were able to explain 53% of the variation in total C export using two
topographical variables, catchment area and slope, and one land cover variable,
%wetland. The positive effect of catchment area on both DIC and DOC exports
results in a similar influence on TC export, likely through its effect on discharge, as
discussed above. The negative effect of slope on DOC was strong enough to result in
a negative effect on TC export, explaining 8% of its variability, despite the lack of a
relationship between slope and DIC export. Similarly, the effect of increasing TC
export with increasing wetland coverage arose solely because of the important role of
wetlands in controlling DOC export, as wetlands did not play a role in DIC export.
This land cover feature of the catchment explained 29% of the variability in TC
export. In contrast, although BSI and %vegetation played important roles in both DIC
and DOC exports, they acted in opposite directions on the two C species, and as a
result, had no overall impact on TC export. As we observed for DIC and DOC export,
TC export is influenced by a combination of topographic and land cover effects,
explaining 24% and 29% of its variability, respectively. Because the drivers of DIC
export and DOC export are quite different, the model of TC export provides a
simplified summary of what influences the movement of terrestrial C to aquatic
systems, while hiding the coml'alexity of what influences the movement of individual

C species.

Despite there being evidence in the literature for the effect of soil type and geology
on C export, these factors did not emerge as significant drivers in our watersheds. We
used maps of geology and soil to divide the catchments, based on areal percentages
(Table 1), into 3 mutually exclusive categories of rock type (intrusive, sedimentary
and volcanic) as well as 3 mutually exclusive categories of surficial deposits (rock,

till and mud) and 5 mutually exclusive categories of soil (brunisolic, gleysolic,
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regosolic, podzolic and organic). We found one potential model of DIC export that
incorporated the percent coverage of sedimentary rocks and rocky surficial deposits
but it is unclear why DIC export would decline with increasing presence of
sedimentary rocks and rocky surficial deposits. In addition to explaining only a
marginal 4% more of the variability in DIC export than the model in Table 2, it
required removing BSI as an effect and removing one outlier site, and so this model
was considered less appropriate for these catchments. There were no potential models
for DOC or TC export that incorporated geology or soil. In summary, we did not find
that geology or soil type played very important roles in controlling DIC, DOC and TC

export from the landscape.
1.5.2 Influence of Land Cover on the Forms of Carbon Exported

Although vegetation coverage did not play a significant role in total C export, it did
have an impact on the actual nature of this export. We used the models in Table 2 to
project total C export and its partition into DIC and DOC exports, under scenarios of
changing land use in terms of %vegetation, for two of our basins (Figure 6). In the
case of the basin that drains into Lac d’Argent, which currently has 92% vegetation
coverage, reducing the vegetation coverage to 40%, for example due to agriculture or
urbanization, would result in an 11% decrease in C export from the basin (as
DIC+DOC) (our test using DIC+DOC, instead of DIC+1.1*DOC, as TC export
showed the same result although the coefficients are slightly different), but a 3-fold
increase in the DIC/DOC export ratio, from 0.8 to 2.2. The reduction in vegetation
coverage would thus cause a shift in this basin from a system that exports most of its
terrestrial C as DOC, to a basin that exports mostly DIC. Conversely, for an inflow of
Roxton Pond, which currently drains a watershed that is 57% vegetated, increasing

the vegetation coverage to 100% would result in only a 9% increase in C export,
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while the DIC/DOC export ratio would be reduced to half, from 1.1 to 0.5 (Figure 6).
In this case the watershed would shift from exporting equal amounts of DIC and
DOC to exporting mainly DOC. Land use change that modifies vegetation coverage,
such as deforestation or reforestation, would therefore have a modest effect on total C
export, but would greatly alter the form of C exported. Although deforestation is
widely regarded as one of the most common anthropogenically-driven land cover
changes, especially in developing countries (Nagendra, 2007), many of the temperate
regions in Eastern North America and Western Europe have been undergoing
reforestation due to a decline in agriculture (Rudel, 1998; IPCC, 2013). As DOC and
DIC are processed differently in aquatic systems, changes in the form of terrestrial C
exported will lead to changes in the fate of this C, with DOC being more likely to be
mineralized and released to the atmosphere as CO, and CHs4 than DIC, which may be
transported downstream in a more conservative manner. To summarize, reductions in
vegetation coverage will shift the C export to favor the inorganic rather than the
organic forms of C, potentially leading to the terrestrial C being transported further
downstream, rather than being released to the atmosphere through biological

processes in the aquatic system.
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Figure 6. Carbon export as the sum of DIC export and DOC export in g m? yr! and the
DIC/DOC export ratio versus %vegetation for two example watersheds, an inflow to
Lac d’Argent (panels A and C) and an inflow to Roxton Pond (panels B and D). The
current vegetation coverage of the catchment is indicated by an “X” in each panel.

1.5.3 Inter-annual Variation in Carbon Export

The differences in C export observed in 32 basins over 3 consecutive years were

likely driven by inter-annual variations in temperature and precipitation, causing

inter-annual variations in stream discharge (Table 3). Export of both DIC and DOC

was about 25% higher in 2005 (at 6.8 and 6.1 g m™ yr'!, respectively) relative to 2003

and 2004 exports (Figure 5). In terms of temperature and precipitation, 2005 was a .

warm, wet year and 2004 a dry year, as compared to a relatively average 2003. This

resulted in the mean daily discharge at the Trois-Lacs gauged site being higher and

more variable in 2005 than in the two preceding years (ANOVA p=0.0063, n=1096,

2003=A, 2004=AB, 2005=B). Similarly, at the Waterloo gauged site, mean daily
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discharge was higher and more variable in 2005 (ANOVA p=0.0004, n=1096,
2003=A, 2004=B, 2005=B). Discharge was therefore significantly higher in 2005
than in 2003, and this likely drove the differences in C export, a pattern that has been
previously reported (Dillon and Molot, 2005; Dinsmore et al., 2013). As C export is
the product of discharge and C concentration per unit catchment area, we also
examined inter-annual variability in concentration. Average DIC and DOC
concentrations were highest in 2005 (Table 3), yet there were no significant
differences in concentration among years. In other words, variation in C
concentration across the 32 sites was more important than variation_ across the 3 years.
Interestingly, at the scale of the individual site, we found a negative effect of
discharge on DIC concentration within 31 of our 83 sites (dilution effects, outlined in
Section 2.2), yet at the regional scale, the highest discharge year (2005) was
associated to the highest average DIC concentrations, and the highest average DIC
export from all sites combined. We suggest that transient increases in runoff and
discharge within a catchment may not necessarily lead to increased DIC release from
soils, and this may explain the local dilution effects that we sometimes observed.
However, a systematic increase in overall precipitation and temperature, and the
associated sustained increased in runoff and discharge, may act to increase overall

DIC and DOC export on an annual scale.
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CHAPTER 11
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N.B. References cited in this chapter are presented at the end of the thesis.

2.1 Abstract

Rivers play a major role in regional and global carbon (C) cycling by channeling and
processing large amount of C that is derived from land. The form of the C exported
from watersheds to fluvial systems determines the biogeochemical role and fate of
this C, yet few studies have simultaneously assessed the major forms of C exported
from land to rivers. Here we have quantified river-mediated export of dissolved
organic and inorganic C (DOC and DIC), as well as the integrated aquatic emissions
of both CO2 and CHa, from 44 boreal catchments that range widely in size,
topography and land cover. Our results show that DOC and DIC exports averaged
9.1+.3 and 2.8+1.9 g C m2 (catchment) yr', respectively, whereas total aquatic CO:
and CHs emissions averaged 3.1+3.6 and 0.1£0.1 g C yr' per m? catchment,

respectively. The resulting total C (TC) export was seasonally very variable, driven
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mostly by the annual runoff cycle, and averaged 15.6+5.3 g C m? yr!. DOC
dominated on average this TC export over the annual cycle (59%), but aquatic CO»
emissions were a major component of TC export in all catchments (average 20%).
Our results confirm that DOC and DIC exports are mostly driven by runoff but
further regulated by fundamentally different environmental factors, and that wetlands
are a major source of DOC exported to rivers, but further demonstrate that lakes
within the catchment are a strong DOC sink, such that the net export of DOC results
from the balance between them. CO2 emissions replace DOC export as the main
lateral C export with increasing water coverage in the catchment. The annual TC
exported via rivers is within the range of net ecosystem production (NEP) that has
been estimated for these boreal landscapes, but it is it still unclear what components
of this total riverine export, if any, may be includéd in these NEP estimates.
Regardless, this river-mediated lateral loss of C has the potential to fundamentally
alter our perception of the role of these boreal landscapes as sources or sinks of

atmospheric COx.

Key words Riverine carbon; DOC; DIC; greenhouse gases; boreal catchments;

carbon cycle.
2.2 Introduction

Rivers are a fundamental component of the global C cycle, processing C that
originates in the terrestrial biosphere, transporting it to the oceans and returning it to
the atmosphere. It is now recognized that a sizable fraction of watershed terrestrial
net primary productivity (NPP) is channeled to rivers, but whereas there is a
relatively strong consensus that the total amount of C delivered to the oceans by

rivers worldwide is in the range of 0.9 Pg C y! (Meybeck, 1982; Cole et al., 2007);
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there is still much uncertainty regarding how much C is actually exported from land
to rivers. It is now recognized that there is a significant but variable amount of
processing of inorganic and especially organic C of terrestrial origin during transit
within river networks (Cole et al., 2007), such that the amounts of C reaching the
ocean do not necessarily reflect the C that was originally exported from land. In fact,
the estimates of C export from land to rivers have systematically increased over the
past decade, to current estimates that are in the order 2.5 to 3.1 Pg C annually
(Tranvik et al., 2009; Battin et al., 2009), and so have the estimates of the portion of
this C that is buried in aquatic sediments, and returned to the atmosphere as COx. It is
clear that there is still much uncertainty concerning not only the magnitude but also

the regulation of these components of the global C cycle.

The form of the C exported from watersheds to fluvial systems is key not only to the
functioning of these aquatic aquatic ecosystems, but to the actual biogeochemical fate
of this C in the landscape. For example, whereas DIC exported from soils tends to
transit through aquatic networks with relatively little alteration, DOC tends to be
transformed and degraded through biological and photochemical processes, fueling in
situ metabolism in the receiving systems, and further fueling CO, and CH4 emissions
from these ecosystems. Soil-derived CO; and CHs, on the other hand, will tend to
flux out to the atmosphere, although a portion will also be transported downstream
together with the DOC and DIC. Over the past decade, there has been increasing
interest and research seeking to establish the magnitude and the regulation of each of
these components of river C dynamics. For example, studies have identified the main
factors driving DOC export to rivers, including regional precipitation (Clair et al.,
1994; Dinsmore et al., 2013), runoff (Brinson, 1976, Raymond et al., 2007), land use
(Barnes and Raymond, 2009; Regnier et al., 2013), catchment slope (Eckhardt and
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Moore, 1990; Dosskey and Bertsch, 1994; Hazlett et al., 2008; Li et al., 2015), soil
C:N ratio (ditkenhead and McDowell, 2000), pH (Brooks et al., 1999), and the
density of lake and wetland systems in the catchments (Koprivajak and Moore, 1992;

Dillon and Molot, 1997; Ferland et al., 2012).

Dissolved inorganic C (DIC), on the other hand, appears to be strongly influenced by
catchment geology, in particular by the presence of carbonate deposits in the
catchment (Liu et al., 2000; Zhang et al., 2009; Tank et al., 2012), and topographical
position and basin elevation (Soranno et al., 1999; Kling et al., 2000; Finlay et al.,
2010; Li et al., 2015). Others have shown that land cover change affects DIC export.
For example, the reduction of natural vegetation due to logging, farming, pasturing or
urbanizing are all believed to increase riverine DIC export (Daniel et al., 2002;
Raymond and Cole, 2003; Baker et al., 2008; Barnes and Raymond, 2009; Regnier et
al., 2013; Li et al., 2015). Further, it has been known for decades that most streams
and rivers are supersaturated with CO; (Kling et al., 1991; Cole et al., 1994), and CH,4
(Billett and Moore, 2008; Bastviken et al., 2011; Campeau et al., 2014), but the
evasion of CO; and CH4 from river systems has only recently been recognized as an
important regional source of atmospheric greenhouse gases (GHG) (Butman &
Raymond, 2011; Bastviken et al., 2011; Raymond et al., 2013; Campeau et al., 2014),
and the number of studies focusing on river C gas evasion has increased

exponentially in recent years.

One of the main patterns to emerge from this collective body of work is the fact that
the various forms of riverine C (DIC and DOC export, CO; and CHj4 transport and
emission) are regulated very differently from each other, and that therefore the

controls of total C export from land to rivers, and the fate of this C are more complex
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than what were originally thought. One of the main challenges that still remains in
order to resolve this complexity is that the data on C export is still fragmented and
lacking integration, since most studies to date have focused on a specific C species
(Mu{holland and Watts, 1982; Hope et al., 1994; Alvarez-Cobelas et al., 2012;
Hossler and Bauer, 2013), and in a limited range of watershed types. Very few studies
to date have simultaneously quantified all the main components that make up the total
pool of C that is exported from land to rivers (Billett and Moore, 2008; Polsenaere et
al., 2013; Striegl et al., 2012; Abril et al., 2000), and fewer still have done this across
a range of environmental, geographic and climatic gradients (Butman and Raymond,

2011; Stets and Striegl, 2012).

In this study we have explicitly assessed the magnitude, composition and regulation
of total C export from a wide range of catchments that are located in the boreal region
of Québec. The boreal biome represents one of the largest C pool on the earth, where
a large proportion of all terrestrial organic C is stored in soils and in peatlands (Molot
and Dillon, 1996). It is also a landscape with among the highest density of surface
waters in the world, and where freshwaters are more likely to play a key role in terms
of regional C processing and transport. The specific objectives of this study were: 1)
to quantify the dynamics of DOC, DIC, CO; and CHj4 across a wide range of rivers in
the boreal region of Québec; 2) to reconstruct the magnitude of total C export from
these boreal watersheds; and 3) to explore how the magnitude and composition of this
total C export to rivers varies across catchments and along environmental, geographic

and climatic gradients.
2. 3 Materials and methods

2.3.1 Study area
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Our general study area is located in the lowland region of northern Québec, Canada,
within the Northern Clay Belt, which was created by lacustrine deposits from the
proglacial lakes Barlow and Ojibway. The rivers we sampled and their respective
catchments are located in two distinct sub-regions: South Abitibi (47—48°N, 78—79°W)
and James Bay (48—49°N, 78-79°W). Geologically, this area is located in the Abitibi
sub-province of Canadian Shield. The bedrock is composed of granitoid (50%),
volcanic (40%), and sedimentary (10%) rocks formed ca. 2.7 billion years ago and
covered by a thin layer of soil (Asselin et al. 2006). The James Bay region is located
within the black spruce — feather moss bioclimatic domain, and is characterized by
extensive peat bogs and fens, whereas South Abitibi is within the balsam fir (4bies
balsamea L. Mill.) — paper birch (Betula papyrifera Marsh) bioclimatic domain, and
has much less coverage of peat bogs (Bergeron et al., 2004). From south to north
across the study area, mean annual temperature varies from 0 to 1.7 °C, and mean
annual precipitation from 880 to 975 mm (Asselin et al. 2006). Beaver dams are
ubiquitous throughout South Abitibi, especially along 1 to 3™ order streams, while
they are practically absent in James Bay, which is dominated by peatlands. Further

details of the sites and of the sampling regime can be found in Campeau et al., (2014).

The CO; and CH4 dynamics and fluxes to the atmosphere in these boreal rivers have
been previously reported by Campeau et al. (2014) and Campeau and del Giorgio
(2014). Here we combine these previous results on gas dynamics with additional data
on DOé and DIC concentrations and river discharge to assess the magnitude of C
export from these boreal catchments, and in particular to derive estimates of total
watershed C export that include not only DIC and DOC transport by rivers, but also C

gas emissions by both rivers and lakes within these catchments.
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2.3.2 Sampling and chemical analyses

In this study we use data collected from 44 sites, 30 located in South Abitibi and 14
located in James Bay, ranging from Strahler Order 1 to 7. Thirteen of these rivers
were visited 8 times each from May 2010 to May 2011, at around 5 week intervals,
20 were visited three times between May and October 2010, and 11 were visited once
in mid-summer 2010. Water was sampled approximately 10 cm below the water
surface and filtered in situ using 0.45 pm syringe filters and then sealed, refrigerated
and transported to the lab in 40 mL glass vials (I-CHEM) for chemical analyses.
Concentrations of DIC and DOC were determined following acidification and
oxidation with phosphoric acid and sodium persulfate, respectively, using a TOC1010
total carbon analyzer, equipped with an infrared CO; detector (OI Analytical, 2%

precision of 2 replicates per vial, 3% accuracy at 5 mg L-! standard).
2.3.3 Discharge and DOC and DIC flux calculations

Carbon export of each stream was calculated as the product of the water loading and
the water C concentration (mg L'), and therefore it is essential to accurately
determine both components. During the study period, we had pressure sensors
(True-Tracks) installed in four additional rivers and streams for continuous
monitoring of river water level. For each of these streams we developed an empirical
discharge/water level relationship based on the channel morphometry, which we used
to estimate the daily discharge of each of these 4 rivers. In addition, the daily
discharges of Harricana and Kinojévis rivers were obtained directly from the
government-operated continuous gauging stations (hydrologic stations: 043012 and

080101) (http://www.mddelcc.gouv.qc.ca). Based these 6 sampled streams and rivers,

we obtained an average daily runoff (mm d'') curve for the entire water year (Figure
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la), and this average regional curve was then used as the local runoff pattern to
estimate daily discharge of all the sampled rivers based on their respective watershed
areas. There was good overall agreement between the discharge estimated this way,
and the actual measured discharge in our point sampling across all of our rivers

(R2=0.84, n=113, p<0.0001) (Figure 1b).

We measured DOC and DIC concentrations at each sampling date, and these
concentrations need to be extrapolated in time in order to calculate daily export.
Previous studies have shown that there may be both concentration and dilution effects
related to shifts in discharge (Li et al., 2015). We explored this possibility by
assessing the concentration versus discharge relationships of all the individual
streams using ANCOVA, and testing the significance of the resulting slopes. The
results show that the daily runoff had a significant overall negative (dilution) effect
on DIC concentration (R?=0.62, RMSE=0.2481, n=165, p<0.0001), and a significant
positive (concentration) effect on DOC concentration (R*=0.68, RMSE=0.151, n=169,
p<0.0001). We used the resulting slopes and the river-specific DOC or DIC intercept
offset to correct for discharge-related shifts in DOC and DIC concentration for each
river. Daily C export was then calculated as the product of daily runoff and daily C
(DOC and DIC) concentration, and annual DIC and DOC export was calculated as
the sum of daily export values for the whole water year. River POC concentrations
were not measured and therefore POC flux had to be approximated, which we did by
assuming POC roughly equal to 5% TOC for boreal forest eco-region (Ivarsson and
Jansson 1994; Hope et al. 1994). PIC flux was not included in the TC exported from
the catchments because previous studies have shown that it accounts for a very small

fraction of inorganic C (Aucour et al. 1999; Hossler and Bauer 2013).
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2.3.4 Aquatic gas emissions

During the study period, CO2 and CH4 concentrations (ppm) and fluxes (mmol m-2 d)
across the air-water interface were measured in all the rivers (as reported in Campeau
et al. (2014) and Campeau and del Giorgio (2014)). CO2 and CH4 concentrations
were determined in situ using the headspace technique, and fluxes (mmol C m? d})
across the air-water interface were determined using the floating chamber technique,
as described and reported in Campeau and del Giorgio (2014). Measurements were
not made from December to March, when most of these rivers are frozen. The C
fluxes of December 2010 were assumed to be 1/2 of those measured in November
2010, because most rivers and streams were ice-covered for approximately half of the
month, and we assumed zero fluxes for January to March. We also used the average
CO; and CHj4 fluxes measured in over 40 lakes in the same study region and reported
by Rasilo et al. (2015) to estimate the average monthly CO; and CH4 emission from
lakes across the study catchments. Measurements were available for May, June, July
and October 2010, so we linearly extrapolated the measured fluxes to August,
September, November and December, and further used the average lake CO2 and CH4
evasion measured in May 2010 to estimate fluxes for April and May 2011. Average
monthly lake CO; and CH4 emissions within each catchment were estimated by
multiplying the average measured gas fluxes by the total lake area within the
catchment; likewise, average monthly total stream gas emiss'ions were calculated as
the average monthly CO; and CH4 fluxes multiplied by the total stream area within
catchment. Total aquatic CO, and CH4 emissions are the sum of the estimated lake

and stream emissions within each catchment.

2.3.5 Watershed properties
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For each sampled site, the catchment area was delineated from digital maps with a
resolution of 1:50,000 scale (available at Natural Resources 'Canada (National
Topographic Data Base) and average catchment slope, lake area as well as stream
length of each river order within this catchment on the maps were calculated using
ArcGIS 9.3. The stream area for different stream order within the catchment was
calculated separately as the product of total stream length and the average stream
width of the corresponding stream order, the latter derived from the measured width
for 328 across northern Quebec; total stream surface in the catchment is the sum of

the total areas for each stream order existing within the catchment.
2.3.6 Statistical Analyses

In most cases, data input for modeling were logl0 transformed for normality. A series
of simple linear regressions were performed to explore the correlations between
variables. Significance is determined at p<0.05 and results reported as non-significant

have p values >0.05. We used JMP 9.3 (SAS institute) to do the statistical analyses.
2.4 Results
2.4.1 Riverine DOC and DIC exports

The rivers sampled in this study, as well as their respective catchments, span much of
the range in physical, hydrological and chemical characteristics found in the Boreal
region of Québec, summarized in Table 1. The estimated annual DOC export varied
by one order of magnitude across watersheds, from 1.8 to 21.4 g C m? yr!, averaging
9.1 g C m? yr! (Table 2). The annual DIC export was systematically lower than
that of DOC, averaging 2.8 g C m*? y!, also ranging an order of magnitude across

watersheds (from 0.5 to 7.7 g C m yr!, Table 2).
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Table 1 The physical, hydrological and chemical characteristics of the 44 catchments

and the rivers sampled.

Variable Max Min Mecan (SD)
Catchment arca (km?) 60132 0.03 401.3(12612)
Catchment average slope () 5.9 0.3 2.0(1.5)

Total stream length (lm) 10207.7 0.1 694.3(2210.8)
Forest coverage (%) 100 0 72.0(41.1)
Wetland coverage (%) 100 0 27.0(42.1)
Lake coverage (%) 100 0 1.42.6)

DOC concentration (mg L) 352 8.7 16.9(6.2)

DIC concentration (mg L) 32.6 1.9 11.3(7.3)
Total P concentration (pg L) 170.5 2.2 35.4(26.7)
Total N concentration (mg L) 1.6 0.2 0.6(0.2)

pH value 9.9 5.0 7.1(0.6)

CO; evasion flux (mmol m? &)  727.6 -1.6 126.3(156.8)
CH: evasion flux (momol m2 &) 2145 0.03 7.5(27.2)
Average CHL a (pg L") 39.0 0.1 3.2(4.7)

DOC and DIC export were both significantly related, albeit in opposite directions, to
average catchment slope (IogDOCexp, = 2.2—0.5* log-slope, R?>=0.69, n=44, p<0.0001;
logDICexp = 0.61 + 0.45*log-slope, R?=0.31, n=44, p<0.0001) and wetlands%
(logDOCexp = 2.7+ 0.21*log-wetland%, R?=0.71, n=21, p<0.0001; logDICexp = -0.03
— 0.19*log-wetland%, R>=0.37, n=21, p=0.0003). It is clear that DOC and DIC

export fluxes are regulated very differently in these catchments, and interestingly,
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there was a strong negative relationship between both (logDICexp = 2.13 —

0.67*10gDOCexp, R% = 0.25, n = 44, p=0.0005).

Since DOC and DIC export are both driven by the same discharge, the factors
identified above appear to be mostly acting the concentrations of DOC and DIC. In
particular, there was a strong negative relationship between river DOC concentration
and the percentage of water in the catchment (%water), the latter mostly driven by the
density of lakes within the catchment (logDOC = 1.41 — 0.16*log%water, R2= 0.24, n
=25, p=0.01).

Table 2 The ranges, means and medians of the fluxes of DOC, DIC, POC, CO2, CH4
and TC exported annually from the 44 catchments (units: g C m? yr’! on catchment

area basis).

Cspecies  DOC DIC POC COz CH4 G

Max 21.4 7] 1.1 14.7 0.4 273
Min 1.8 0.5 0.1 0.3 0.01 4.7
Mean (SD) 9.1(5.3) 2.8(1.9) 0.5(0.3) 3.1(3.6) 0.1(0.1) 15.6(5.3)

Median 6.29 2.0 0.4 1.3 0.1 14.8

2.4.2 Watershed aquatic CO; and CHg emissions
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Watershed aquatic gas emissions from all aquatic surfaces within the watersheds
averaged 3.1 g C m? yr! for COzand 0.1 g C m? yr! for CH4, and ranged two orders
of magnitude across watersheds for both (Table 2). CO2 and CH4 were significantly
positively related to each other (COzem = -0.70 + 31.4*CHyem, R>=0.88, n=44,
p<0.0001) and both had significant positive relationships with catchment area (COx:
R?=0.39, n=44, p<0.0001; CH4: R?=0.14, n=44, p=0.01), total stream length (COa:
R?=0.44, n=44, p<0.0001; CH4 R?=0.18, n=44, p<0.0001), stream order (COx:
R?=0.49, n=44, p<0.0001; CH4: R?>=0.24, n=44, p=0.0007). In particular, CO, and
CH4 were both strongly positively correlated to the %water in the catchment (COzem =
1.07 + 137.2*%water, R?>=0.97, n=44, p<0.0001; CHsem = 0.07 + 3.65*%water,
R?=0.77, n=44, p<0.0001).

2.4.3 Total C export from boreal catchments

Table 2 shows the average and range of total C export (TCexp) from these boreal
catchments, estimated as the sum of DOC, DIC and POC export and CO; and CH4
fluxes. There was a strong seasonal variation in the magnitude of the average regional
TC export (Figure 2a). TCexp peaked in the early spring, and May and April fluxes
accounting for 38% of the annual TCep, corresponding to a peak in annual discharge
driven mostly by snowmelt (Figure 1a). There was a secondary peak in export in the
fall, this associated to increased discharge driven by precipitation. Export was lowest
in both mid-summer and mid-winter, both periods of base flow (Figure 2a). The
relative contribution of C form to total C export from boreal catchments also varied
greatly along the annual cycle (Figure 2b). DOC dominated TCey, in the fall, winter

and spring, whereas the combined CO, and CH4 emissions dominated TCexp during



65

summer (Figure 2b). The contribution of DIC to TCexp was relatively constant

throughout the annual cycle.
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Figure 2. Total C export (a) and contribution of each C form to total C export (b) for

each month in the water year. Total C export is expressed in g C per m? catchment

area for each month, whereas the latter is expressed as percentage of each C form in

total C export.

The cumulative annual TCexp averaged 15.6 g C m? yr! (Table 2) across all

catchments, with most values concentrating within a narrow range of 12 to 17 g C m*

yr'! (SE around the mean 0.8 g C m? yr!). There were significant positive

relationships between TC export and catchment slope, the proportion of wetlands and

of water in the catchment, and the three combined resulted in the best predictive
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model of annual total C export: TCexp = 15.4 — 1.35*Slope + 116.5*%water +

4.03*%wetlands (R?=0.64, n=44, p<0.0001.
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Figure 3. a. The average contribution of the various C species in the annual total C
export from these boreal watersheds; b. The contribution of DOC export and of
aquatic CO; emissions to total C export from these boreal catchments, as a function
of the proportion of water in each catchment (% water). The latter is mostly driven by
the presence of lakes. The catchments of rivers of order 1 and zero contained no lakes

and were aggregated as %water = 0.

DOC dominated the average annual TCexp (58.5%), whereas DIC contributed on
average < 18% (Figure 3). Gaseous emissions as CO» and CHj4 together accounted for
an average of 20.5% of the annual TC exported from these boreal catchments,
overwhelmingly driven by CO, emissions. The estimated contribution of POC to the
average annual TCexp was small, in the order of around 3% (Figure 3a). The
contribution of the various C species to the annual TCex, varied systematically across
the studied watersheds. In particular, there was strong decline in the contribution of

DOC to TCexp with increasing water surface in the catchment, which was mirrored
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roughly by a proportion increase in the contribution of CO; along the same gradient

(Figure 3b).

We further explored whether there were systematic differences in the magnitude and
composition of TCexp between the two distinct sub-regions that we covered in our
study (Souih Abitibi and James Bay), which are characterized by very different land
cover, particularly in terms of the extent of peatland cover (data summarized in Table
3). The average DOCexp was 2.4-fold higher in James Bay (15 g m?2 yr'') compared to
South Abitibi (6.3 g m2yr!), whereas the average DIC export was 2.6-fold higher in
South Abitibi; the average CO, and CH4 in South Abitibi were 2.5 and 3.9 times
higher than those in James Bay, respectively. Interestingly, CHs was low in James Bay
(< 0.2%), but was a significant component of TCexp in South Abitibi (>1%). As a
result, not only was the average magnitude of the TC., different between the two
sub-regions (18.6 g m? yr! versus 14.0 g m? yr!, James Bay and South Abitibi,
respectively), but also actual composition of the TCexp differed substantially: Whereas
in James Bay DOC overwhelmingly dominated TCexp (80%), and DIC contributed
very little (7%), in South Abitibi the TCexp was more equally distributed between
DOC (45%), DIC (25%), and C gas emissions (27% and 1%, CO: and CHa,

respectively) (Figure 4).
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Table 3 The comparisons of physical, chemical and biological factors between James
Bay and South Abitibi during the measurement period (June 1%, 2010 to May 31%,
2011). The values were annually averaged from the 14 and 30 streams and rivers we

observed in James Bay and South Abitibi, respectively.

Variable James Bay South Abitibi
Average air temperature (°C) 0.6* 203f
Average catchment slope (°) 13 23
Average elevation (m) : 296 304
Forest coverage (%) 20.8 97.5
Peatland coverage (%) 843 0.3
Lake coverage (%) 0.5 19
DOC concentration (mg L) 313 16.8
DIC concentration (mg L) 6.0 12.0
Total P concentration (ug L) 241 378
Total N concentration (mg L) 0.6 0.5
pH valie 71 7.2
Alkalinity (peqL™) 3302 1177.1
CO; evasion flux (mmol m2 d!) 70.6 89.6
CH. evasion flux (mmol m2d?') 3.1 9.1

Average CHLa (pg/L) 12 34
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Figure 4. Comparison of the average contribution of different C forms in the annual

total C export between South Abitibi and James Bay regions.
2.5 DISCUSSION
2.5.1. River-mediated DOC, DIC and CO;, loss from landscapes

The loss of C from land to aquatic ecosystems is increasingly recognized as a
significant component of the regional C budgets (Cole et al. 2007; Tranvik et al. 2009;
Raymond et al., 2013). There is an extensive literature on river-mediated C loss from
terrestrial systems, but relatively few studies to date have given a complete account of
riverine dissolved, particulate and gaseous C exports for regional C budgets of boreal
biomes yet. Our study of 44 rivers was explicitly designed to quantify C loss in
different forms, i.e. DOC, DIC, CO: and CHs, so as to obtain an integrated view of

TC export from the landscape.

The ranges for the export of TC and of the different C species from these boreal

catchments in Québec lie well within the range of values in the literature. Table 4
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summarizes published results on lateral (dissolved) and vertical (gaseous) loss of C
from different landscapes. Our range in DOC export (1.8 to 21.4 g m? yr!) agrees
well with the range between 2.3 and 14.8 g m? yr! for boreal watersheds in Finland
(Rantakari et al. 2010), and our average regional DOC export of 9.1 g m? yr! is close
to the upper limit of the range between 3.1 and 8.4 g m? yr! for Northeast Ca.nada
given by Mulholland and Watts (1982), but somewhat higher than the mean value of
6.1 g m? yr! reported by Huotari et al. (2013) for boreal watersheds in southern
Finland. On the other hand, our average DIC export of 2.8 g m yr'!, ranging from 0.5
to 7.7 g m? yr'!, was significantly higher than that in Sweden (0.3-1.4 g m?2 yr!,
averaging 0.7 g m? yr'') (Wallin et al. 2013) and Finland (TIC: 0.9-1.4 g m? yrl,
averaging 1.1 g m? yr') (Rantakari et al. 2010), but lower than that found in the
Yukon River (5.8 g m?2 yr!) (Table 4). These regional differences in DIC export
most likely reflect local geology (Tank et al. 2012), and to some extent, variations in
terrestrial primary production, since a significant portion of the DIC exported actually
originates from chemical weathering of rock that is mostly mediated by respiratory

soil COa.

Our results confirm the key role of wetlands as sources of DOC to rivers (Houtari et
al. 2013), but further highlight the role of surface waters, and particularly lakes, as
important sinks of DOC in the landscape (Gergel et al. 1999; Xenopoulos et al. 2003),
such that the balance between the relative coverage of wetlands and lakes appears to
be one of the key determinants of the net DOC export from these northern watersheds.
Our study provides further evidence for a differential regulation of DOC and DIC
export from these boreal catchments. Whereas the export of both species is primarily

driven by runoff, as has been reported before (Houtari et al. 2013), there are
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differences in the drivers that determine their respective concentrations, and in
particular, DOC and DIC exports significantly related to catchment slope and percent
wetland, but in opposite directions. This is consistent with previous findings of our
group (Li et al., 2015) and others (Houtari et al. 2013), which demonstrated a
differential control DOC and DIC export in temperate and boreal watersheds. The
resulting strong negative relationship between DOC and DIC export that we report
here is interesting, because it is to some extent compensatory and may contributes to

constraining TC export within a narrower range.

The average emissions of CO, and CH4, on a catchment area basis were 3.1 and 0.1 g
m2 yl, respectively, and both ranged widely (see Table 2). There are only a handful
of reports of total a(iuatic CO: fluxes scaled to the entire watershed, which range from
a minimum of 2 g C m? y’! .in sub-arctic Sweden (Christensen et al. 2007) to a high 9
g C m? y! for the Yukon watershed (Striegl et al. 2012); our own average estimate of
CO; emission (lies well within this range and close to previous boreal studies
(Jonsson et al. 2007). The CH4 value, on the other hand, is within the upper ranges of
emission reported for other river systems (listed in Table 3), and over 3 times more
than the CH4 emissions from a boreal landscape located only 400 km south of our
study area (Billet and Moore, 2008). One of the main reasons underlying these higher
CHa is the widespread damming of rivers by beavers, especially in South Abibiti,
which generates aquatic habitats that are particularly conducive to the production and
emission of CH4 (Ford and Naiman 1988). CO; significantly and positively related to
CHa4 in this regions, as had been previously shown by Campeau and del Giorgio
(2014), who reported a strong positive correlation between the partial pressures of

CO; and CH4 (pCO2 and pCH4 ) in surface water in the same study area. This positive
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correlation is not surprising since CO2 and CHgs are both strongly driven not only by
the average water surface C fluxes but mostly by the relative coverage of water in the
catchment, which in turn is a function of the catchment size and slope, larger
catchments having lower slopes and generally larger lakes, and thus the positive

relationship of both with catchment area as well.
2.5.2 Magnitude and composition of total C export

On the whole, the magnitude of TC export from the landscape was characterized by
spring>fall>winter>summer. This seasonal variation in TC tightly followed the
average daily discharge curve (f‘igure 1), suggesting that TC export was mostly
driven by the seasonal variation in discharge and therefore runoff. In particular, the
TC export from April to May accounted for 38% of the annual TC export, resulting
from a combination of the degassing of CO, accumulated under the ice, and also of
high spring discharge and associated loads of DOC and DIC. Previous studies have
also reported runoff as explaining 60 to over 80% of the variation in DOC and DIC
export from temperate and boreal catchments (Agren et al. 2007; Raymond and Oh
2007; Pumpanen et al. 2014; Li et al.,, 2015), with concentrations explaining the

remainder of both the cross-system and seasonal variability in dissolved C export.

On average, the contribution of the various C species to annual TC export was
DOC>CO2>DIC>POC>CHg, and over 90% of the TCexp accounted for by the first
three, in agreements with previous studies (Striegl et al. 2012; Wallin et al. 2013;
Dinsmore et al. 2013, and see Table 3). On the whole, the gaseous C loss as COz and
CHa, accounted for an average of 20% of the annual TC export in our study area, in
agreement with the values reported for other boreal (Hope et al. 2001; Oquist et al.

2009; Koprivnjak et al. 2010; Striegl et al. 2012; Wallin et al. 2013), but significantly
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higher than the 13% and 6% from temperate watersheds reported by Billett et al.,
(2004) and Abril et al., (2000), respectively. Our results, together with these previous
studies, collectively confirm that gaseous C export iS a major component of

river-driven C loss from boreal landscapes.

Although DOC dominates the average regional annual TCey, its contribution within
individual watersheds declines as a function of increasing water coverage in these
watersheds, reaching a minimum of around 20% at the highest water densities in the
landscape, whereas the contribution of CO; tends to peak at around 65% in these
water rich watersheds. It is interesting to note that these opposing trends in DOC
export and CO; emissions, as well as with DIC discussed above, confers a certain
stability to the total C export from these boreal catchments, and helps explain why
most of the estimates of TCexp hover around a relatively narrow range (12 to 17 g C
m?2 y1), in spite of the large environmental, topographic and morphometric
heterogeneity that exists among these catchments. The best predictive model of TCexp
actually reflects the net balance in the regulation of its main components: The
positive relationship with the proportion of wetlands reflects their strong positive
influence 'on DOC export, whereas the positive effect of the proportion of water
suggests that the enhancement of C gas emissions with increasing water surface is not
offset by the decline in DOC that occurs along the same gradient; the positive effect
of catchment area on TCexp further reflects increases in runoff as a function of
catchment size, as well as in total gas emissions and DIC export. We should note that
in this study POC was not measured and was rather assumed to be a fixed proportion
of DOC, so no actual conclusions can be drawn for this particular C species, but

existing evidence suggests that its contribution to TCep in these mostly
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non-agricultural watersheds should be minor (Ivarsson and Jansson 1994; Hope et al.

1994).

The interplay between the average contribution of DOC and CO: along a gradient of
water density among catchments occurs to some extent within a given catchment in
time. We have shown that there is a clear temporal succession in the relative
contribution of the main C species along an annual cycle, with a peak contribution of
DOC during periods of high discharge, and dominance of CO> during summer low
flow periods. The mechanisms underlying this replacement are probably different:
Whereas the replacement of DOC for CO: across catchments likely reflects the
increased photochemical and biological degradation of terrestrially derived DOC that
occurs with increasing water coverage and thus water residence time, the temporal
succession reflects seasonal shifts in discharge and aquatic metabolism (Vachon and
del Giorgio 2014). The increase in the relative contribution of CO during these low
flow periods results from a combination of declines in the loading of DOC, and
increases in the actual aquatic CO: fluxes, likely driven by temperature- and
light-enhanced DOC degradation within lakes. The seasonal pattern in both CO2 and
CHa4, with marked peaks in mid-summer, also likely reflects a temperature effect,
consistent with Billett et al. (2004), Koprivnjak et al. (2010) and Kosten et al. (2010)

who reported a strong positive correlation between temperature and CO; evasion.
2.5.3 Cross-regional differences in the magnitude and composition of C export

It is interesting to note that there are major differences in both the magnitude and the
actual composition of TCexp between the two sub-regions, James Bay and South
Abitibi, that coexist with our general study area but which are very distinct in terms

of land cover and to some extent climate (see table 4 for a summary). The total CO2
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and CH4 emissions in James Bay were 2.5-fold lower those in South Abitibi, to some
degree, reflecting the effects of regional temperature and water coverage, whereas
DIC export was substantially higher on average in South Abitibi, possibly related to
differences in both underlying geology as well as in temperature-driven soil
respiration and the resulting chemical rock weathering. The largest difference that we
found between the regions, however, was in the DOC export, which was 2.4-fold
higher in James Bay, driven by a 2-fold higher average river DOC concentration there
(Table 3). These elevated DOC concentrations in James Bay are likely related to the
much higher peatland coverage (12.6-100% vs. 0-4% of the total area) and smaller
catchment slope (1.3 vs 2.3 on average), and reinforce the importance of these factors
in determining DOC concentration and export from land (Eckhardt and Moore, 1990;
Dillon and Molot, 1997).

2.5.4 Implications to terrestrial C budgets

The lateral C export from land to water that we report here must be placed in the
context of the whole C budget of this boreal landscape. Much of the recent empirical
and modeling work has focused on better constraining the net CO; exchange between
various landscapes and the atmosphere (i.e., Net Ecosystem Production, NEP), in
order to determine the role of these ecosystems as sources or sinks of atmospheric C.
NEP varies greatly with geographic location and climate, but also within a given site
as a function of stand age, fire history and clear cutting (Bergeron et al. 2008;
Goulden et al. 2011), and also as a function of inter-annual differences in
precipitation and temperature (Litvak et al. 2003). Moreover, there is evidence of
long term shifts in the net C balance of landscapes within the boreal biome. For

example, Dunn et al. (2007) reported a decade-long shift in net C uptake in a boreal



77

landscape dominated by black spruce, from being small source of C (-41 g C m? y')
to more recently become a small sink (+21 g C m* y!). Not surprisingly, there is a
very large range in net CO2 exchange reported for boreal forests, from —100 to

250 g C m™2 yr! (Ryan et al. 1997; Hyvénen et al. 2007).

In this regard, very few current models of terrestrial primary production and C
storage include lateral C losses (i.e. Hayes et al. 2012; Regnier et al. 2013; Wu et al.
2013), and even fewer incorporate aqueous C emissions, although there is ample
evidence that these fluxes are regionally significant, particularly in boreal landscapes
(Battin et al. 2009; Wallin et al. 2013). A key issue is then to what extent current
approaches to estimating NEP include this TCexp, and if they do, what components of
TCexp are included (Fiedler et al. 2006; Hyvonen et al. 2007). Estimates based on
eddy covariance towers may incorporate some of the aquatic C emissions, depending
on the location of the tower, but certainly do not include all the C components lost to
the aquatic network (Kljun et al. 2006). For example, recent studies have reported
that unexpectedly high losses of soil C had to be invoked in order to mass balance the
apparent net COz uptake with the observed long-term ecosystem C accumulation, and
these were attributed to increased respiration (Lindroth et al. 2008), but it is likely
that at least a portion of this soil C loss resulted from the lateral export soil DOC and
DIC to fhe aquatic network. The few previous studies that have explicitly attempted
to integrate the main components of the lateral C export to water all converge to point
out that TCexp is a significant component of regional C fluxes and consistently within
the order of magnitude as the NEP in for their respective regions (5% to over 80% of
the local NEP, Buffam et al. 2011; Fieldler et al. 2006; Christensen et al. 2007;
Jonsson et al. 2007; Striegl et al. 2012).
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In this regard, although there is an extensive literature on boreal terrestrial primary
production net C exchange, there are few direct estimates of NEP for this region in
particular. Girardin et al. (2011) report an average NEP of around 150 g C m2 y! for
the southern portion of the Abitibi region of boreal Québec, whereas Bergeron et al.
(2007) report a much lower NEP, in the order of 4 g C m y’! in the nearby region of
Chibaugamau. Some of this difference may be methodological, because the former
was based on estimates of C stocks and tree productivity, whereas the latter is based
on eddie covariance data. This large range in reported NEP for this region also likely
reflects the large degree of heterogeneity that exists in this boreal landscape, driven
by local climate, fire history and more recently, forestry. Regardless, the estimated
TCexp in the Abitibi region that we report here is likely to play a key role in
determining what portions of this vast boreal landscape act as either a source or a sink
of atmospheric C. This is particularly true for the James Bay region, which is drier
and colder than the adjacent South Abitibi and thus likely approaches the lower
reported range of NEP, and which is nevertheless characterized by a higher estimated
TCexp (18.6 g m? yr! vs 14 g m? yr', James Bay and South Abitibi, respectively).
This implies that the relative contribution of TCexp to the whole landscape C budget is
likely to be even larger in the James Bay region than it is for Abitibi in general.
Interestingly, these TCexp are in the same range of estimated fire-driven CO2 fluxes to
the atmosphere (Van Bellen et al. 2010), yet whereas the latter are incorporated into
most terrestrial C models for these regions, the former are not. More generally, the
large degree of uncertainty that still characterizes most estimates of net terrestrial C
sink or sources may be at least in part related to the non-inclusion of this lateral loss

to the aquatic components of the regional C budget.
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A GLOBAL ANALYSIS OF RIVERINE CARBON EXPORT TO THE OCEANS
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N.B. References cited in this chapter are presented at the end of the thesis
3.1 Abstract

Riverine carbon (C) export to the oceans is a key component in the global C cycle,
yet it is still poorly constrained. This is largely the result of the limited data base used
to derive a global flux and because most studies assessed the inorganic or organic
fraction separately, thus yielding a fragmentary perspective of C exported to oceans.
Here we revisit the global riverine C export, based on the meta-analysis of published
data covering 566 rivers draining 74% of the global exorheic area. This analysis
yields a new global annual riverine C export of 0.68+0.05 Pg yr!, substantially lower
than the widely-cited 0.9 Pg yr!. Our results show that, at a global scale, the organic
and inorganic components of C export are driven by different combinations of natural
and human-derived features of the landscape. Beyond the expected hydrologic control
on material transport, DOC export was mainly controlled by natural characteristics
such as the presence of wetlands as well as the organic carbon content of the surface
soil layer. On the other hand, the natural drivers of DIC export were the extents of

carbonate rocks and water surface in the watersheds. However, all forms of carbon
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were also shown to be dependent on the extent of croplands within the catchments,
and strongly so for the inorganic fraction. A retrospective analysis suggests that 40%
of the current C delivery to the oceans is associated with agriculture. Our multiple
regression models demonstrate that cropland expansion may be a primary driver of
future riverine C export not only in magnitude but also in its composition. This study
further highlights the differential regulation of global inorganic and organic C exports
and can serve as a strong basis for identifying the implications of future climate and
human-induced environmental changes on this important component of the global

carbon cycle.
3.2 Introduction

Riverine transport of C to the oceans is the ultimate leachate of terrestrial carbon.
Following the pioneering assessment of Meybeck and coworkers, it is a significant
component of the global C cycling and quantifying it is essential to a better
understanding of the Earth’s biogeochemical and climatic systems, particularly in the
context of global change (Lal, 2003; Aufdenkampe et al., 2011; Cole et al., 2007;
Battin et al. 2009). How much and in what form continental C is lost to oceans have
thus been of major biogeochemical interests for several decades. Regionally, the main
drivers of carbon export are relatively clear. The combined effects of topography,
hydrology, climate and land use/cover change on riverine C export from landscapes
are well known(D’Arcy and Carignan, 1997; Hazlett et al., 2002; DeCatanzaro and
Chow-Fraser, 2011; Freemanet al., 2004) and the importance of the inland aquatic
processing of this terrestrially-derived carbon is an active research area (Cole et al.
2007; Tranvik et al. 2009; Raymond et al., 2013). Although global estimates of

riverine C export to the oceans have been periodically re-assessed (Richey et al., 1980;
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Meybeck, 1982; Schliinz & Schneider, 2000; Dai et al; 2012;  Seitzinger et al.,
2010), their accounting is surprisingly poorly constrained (Schliinz & Schneider,
2000) because of either differences in approaches or of the limited riverine C data
compilations. Nevertheless, published estimates tend to converge around 0.9 Pg yr!,
a value that has been widely cited as the global total riverine C flux (Cole et al. 2007;

Battin et al. 2009; Tranvik et al. 2009; Bauer et al., 2013).

Most previous estimates considered only some of the four C components (dissolved
and particulate, organic and inorganic carbon species; DOC, POC, DIC and PIC,
respectively), thus yielding a fragmented perspective of riverine C exported to the
oceans and contributing to the uncertainty of the estimate of global C exported in
different forms from the terrestrial biosphere. Moreover, these global estimates are
generally derived from a few to a few dozen large rivers and extrapolated to the rest
of the globe, thereby assuming an untested representativeness. Considering that there
are about 740 rivers draining into the oceans that have individual catchments >10,000
km?, arriving at a more accurate estimate of the global riverine C export to the oceans
will necessarily require a better or complete geographic coverage but will also benefit
from the identification of the main drivers determining the export of the various

carbon forms at the planetary scale.

In this synthesis, we compiled literature C data of field measurements from 566 rivers
worldwide, draining a total of 74% of the global exorheic area (Antarctica is excluded
from this study) and combined it with land cover and other catchment information to
identify the large scale determinants of C export. The resulting models were then
applied to the remaining (unsampled) rivers of the world to better constrain the global

riverine export of different C species to the coastal oceans. In addition, we explored
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the relative roles of natural and human-altered landscape features on the delivery of
various forms of carbon and their potential implications in the context of global

environmental change.
3.3 Results and discussions
3.3.1 Drivers of riverine C export

A review of the literature reveals that riverine C export differs widely among
individual rivers due to the large vari_ation in catchment topography, vegetation,
geology, climate and hydrology (Hope et al. 1994; Pacific, 2009; Tank et al., 2012).
To assess their relative importance at the global scale, we developed multivariate
models to test specifically the importance of catchment characteristics, such as land
cover (amalgamated into broad categories: forests, croplands, wetlands and water, see
Supplemental Information S2), soil organic carbon, mean annual runoff, mean annual
temperature, carbonate rock outcrops, and catchment slope and area. In addition, we
examined the potential influence of some specific human alterations to the landscapes,
such as the increased water residence time and river segmentation induced by the
creation of large dams (SI3). Average population density was also a candidate
variable and was assumed to be a good proxy of human disturbance. The models were
developed using the elastic net variable selection procedure combined with BIC
validation, as implemented in JMP Pro version 12. Variables retained in the final
models each bring independent information useful to the description and prediction of

carbon export.

Without surprise, we found like many regional studies (Hope et al. 1994; Pacific,

2009; Tank et al., 2012) that all forms of carbon export were ultimately constrained
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by the amount of water flushing through the catchments (as runoff, mm yr?).
However, beyond this simple hydrologic control, each form of carbon exported was
determined by different sets of landscape features. At this global scale, the
non-hydrological variations in DOC export was best explained by edaphic
characteristics of their catchments, such as the soil organic carbon (SOC 0-30cm, kg
C m™?) and the extent of wetlands in the catchment. We were also able to detect the
significant influence of two important human alterations to the landscape on DOC
export: the extent of croplands and the presence of large reservoirs within the
catchment (expressed as the additional residence time of water, AWRT, within the
catchment; DOC vs AWRT: R?=0.11, n=442, p<0.0001). Lastly, we found that large
catchments tended to export less somewhat carbon per unit area, suggesting that a
greater mineralization and loss of DOC during the transit through the hydrological
network. At the global scale, the relative importance of the various influences ranked
as follows: Hydrology > Soil organic carbon > %Wetlands > %Croplands =

Catchment size > AWRT.

Variations in DIC export were also best explained by a combination of natural and
human-altered features of the landscape. Like DOC, DIC export is tightly controlled
by the regional hydrology (runoff). However, and not surprisingly, it is also strongly
and positively modulated by the presence of carbonate rocks within its catchment.
Moreover, it is negatively modulated by the fraction of the landscape covered by
water. The mechanisms behind both of these natural drivers are easily understood. In
the former, the chemical weathering of carbonate rocks by soil respiratory CO; is a
primary source of alkalinity (i.e. HCO3 and COs%), which constitutes the bulk of DIC

in most cases. Rivers draining catchments with a large proportion underlain by
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carbonate rocks naturally yield more DIC. Similarly, the negative influence of water
coverage likely reflects the converse mechanism: catchments with a lot of water
surface simple have a smaller surface over which this chemical weathering of soil
minerals can occur. In this respect, inland waters largely act as passive transport pipes
for these conservative ions (HCOj; and COs*). Beyond these natural controls
however, our analysis revealed the important influence of the extent of agricultural
activities on DIC export. Collectively, they explain about 57% of the global variation
in DIC export, including a small but significant positive effect of catchment size.
Their relative importance follows Hydrology > %Croplands =~ %Carbonates >

% Water > Catchment size.

Always in much smaller amounts than its dissolved counterpart, the particulate
fraction of organic carbon (POC) was also a significant multivariate function
(R>=0.47) combining hydrology and both natural (%Water) and human-altered
(%Croplands) features of the catchment landscapes. The inverse relationship between
POC export and water coverage can probably be ascribed to POC deposition and
burial in the sediments, and/or the greater POC potential degradation because of
longer residence time in lakes or reservoirs. Conversely, the positive association
between %Cropland and POC export can result from the greater erosional soil losses
of croplands relative to forest§. Table 1 summarizes the global models for the
different forms of carbon. For PIC export, the limited number of observations (n=36
rivers) precluded the development of a specific multivariate model. Instead, we used
the median ratio of 10% between PIC and DIC export observed in the 36 rivers and
applied it to all the other catchments. This approach, while necessarily coarser, best

captured the observed variability in PIC export.
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While the importance of wetlands and soil organic carbon content to DOC yield is not
new to the literature (Dillon and Molot 1997, Aitkenhead and McDowell 2000), our
global model can be solved (fig. SI4.1) to assess how DOC export varies in different
regions of the world depending on local hydrologic regimes (runoff, mm yr') and soil
organic carbon content (SOC, kg C m2) when all other variables remaining equal at
their mean values. For SOC> 10 kg m?, the relationships are nearly linear, suggesting
DOC export can be viewed as a first-order reaction with the soil organic C reservoir
eluted with different efficiencies depending on the annual runoff. As a general rule,
DOC export corresponds to a rate varying narrowly between 0.02 and 0.07% of the
SOC per year per mm of runoff.  Solving the model further for units of pure
cropland, this removal rate increases only slightly to 0.03-0.1% yr! per unit runoff
(mm) while a pure wetland unit would remove about 0.3-0.5% yr'! per unit runoff

(mm), indicating a much greater removal rate of wetland organic carbon.

To our knowledge, our study is the first to detect a significant influence of large
reservoirs (>0.1 Mm?3 capacity) on DOC yield. Although largely exploratory in scope,
our analysis suggests that the longer water residence time induced by the creation of
large reservoirs for a variety of purposes (flood control, irrigation, hydroelectricity)
may favor a more complete degradation of the DOC, biologically or photochemically,

into DIC (Lapierre et al., 2013; Spencer et al., 2009) during its transit.
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Table 1 Multiple linear regression models predicting DOC, DIC and POC export in g

m?2 yr!. Estimates of coefficients and corresponding p values are given for all

variables offered during the elastic net selection process. Variables were included in

the model if p<0.001 and the corresponding R? values are shown.

DOC export DIC export POC export

Parameter

Estimate )4 Estimate P Estimate )4
Annual runoff (mm) 0.744  <0.0001 0.781  <0.0001  0.899  <0.0001
Catchment area (km?) -0.070  <0.0001 0.102 0.0003
Soil organic carbon (kg m?2)  0.326  <0.0001
%croplands 0.022  <0.0001 0.055 <0.0001 0.049 <0.0001
%wetlands 0.202 <0.0001
Y%water body -0.114  <0.0001  -0.155 <0.0001
%carbonates 0.058  <0.0001
Intercept -1.863 -2.117 -2.652
R? 0.70 0.57 0.47
n 427 404 339

Notes: In the models, C export, annual runoff, catchment area and soil organic carbon

are log 10 transformed, %croplands, %water surface and %carbonates are square root

transformed, and %wetlands is 0.25-power transformed.
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3.3.2 A néw estimate of global riverine C export to the oceans

The development of the statistically robust models at this global scale has not only
further clarified the relative importance of different controls on riverine C export to
the oceans, they also allow us to estimate carbon export to the oceans from the rest
(26%) of the global exoreic area where no measurements of carbon export have been
found in our data compilation. These represent 5098 watersheds of more than 3 km?.
Combining the measured values of the 566 rivers with the modeled estimates for the
unmeasured catchments yielded a new estimate of the global riverine C export to the
oceans. Figure 1 shows the global distribution of measured (solid colors) and

modeled (hatched) DIC and DOC exports (Figure 1a and 1b, respectively).
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Figure 1 Maps of Global Distributions of DIC and DOC Exports

Our assessment yielded a total global C export of 0.68+0.05 Pg yr’!, of which DOC,
POC, DIC and PIC exports represent 0.18+0.01, 0.07+0.01, 0.39+0.02 and 0.04+0.01
Pg yrl, respectively. Our new estimate thus constitutes a significant downward
revision of the widely used global C export value of 0.9 Pg yr!. For comparison,
Table 2 compiles our new estimates with those previously published and it highlights
that the largest differences are in the POC and PIC export. Our POC export estimate
of 0.07 Pg yr! is much lower than the value of around 0.18 Pg yr! reported in
previous studies (Meybeck, 1982; Galy et al.,, 2015; Ludwid et al., 1996) although

consistent with the value of Garrel et al. (1973). We suggest that the global POC



export may have been overestimated in the past primarily because of limited data.
The largest data compilation of global POC export previously published was based on
only 70 rivers, in comparison to the 359 watersheds used in this study, covering a
total of 64% of the global exoreic area. Even our own estimate may be somewhat
inflated. In our data set, 63 POC export values from catchments located in Sweden
and Canada were based on the assumption that POC corresponded to 5% of TOC
though the studies indicated that POC is generally less than 5% of TOC in
concentration (Clair et al., 1994; Clair et al., 2013; Laudon et al., 2004). Furthermore,
it is often reported that small mountainous rivers (basin area: <10,000 km? and
headwater elevation: 1000 to 3000 m) have an extremely high POC flux (Milliman &
Syvitski, 1992; Lyons et al., 2002; Komada et al., 2004), especially in the southwest
Pacific. Our study included 234 small rivers, of which 54 rivers are in the southwest
Pacific, only showed a very weak relationship between POC export and elevation
(R%=0.03, n=254, p=0.007), and this variable was not retained in the POC model

using the elastic net variable selection procedure.
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Table 2 The comparisons of our estimates of global riverine carbon export to the

oceans with those in previous studies

DOC DIC POC PIC TOC TIC TC e
used

This study 0.18 0.39 0.07 0.04 0.25 0.43 0.68 566
Meybeck, 1982 0.22 0.38 0.18 0.17 0.4 0.55 0.95 27
Meybeck, 1993 0.20 0.38 0.18 0.17 0.38 0.55 0.93 §0
Mackenzie etal, 1996 0.61 0.72 1.33
Aitkenhead & McDowell, 2000 0.36 164
Cauwet, 2002 0.25
Dai et al, 2012 0.17 118
Degens et al, 1991 0.33
Duce and Duaursma, 1977 0.13
Galy et al, 2015 0.20 70
Garrel etal, 1973 0.13 0.07 0.20
Handa, 1977 0.30
Harrizon et al., 2005 0.17 68
Kempe, 1979 0.44 0.19
Kempe, 1985 0.28
Ludwig ct al., 1996a 0.21 0.32 0.19 0.40
Ludwig et al., 1996b 0.21 0.17 0.38 438
Mantoura & Woodward, 1983 0.78 1
Michaelis et al., 1986 0.53
Reiners, 1973 0.2~1
Richey et al, 1980 1.00 1
Schlesinger & Melack, 1981 0.39 12
Schlunz & Schneider, 2000 0.43 18
Smith & Hollibaugh, 1993 0.20
Spitzy & Ittekkot, 1991 0.50
Stewart etal., 1978 0.52
Williams,1971 0.03
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For PIC export, significant uncertainty remains given the limited data we were able to
compile (only 36 rivers) and their geographic coverage (about 16% of the global
exoreic area). However, we argue that our estimate of the global PIC export of 0.04
Pg yr'! is nevertheless reasonably constrained from the ratio DIC:TIC observed 111
rivers, (median: 0.95; average: 0.96) suggesting that, on average, PIC represent only
about 5% of the TIC export, lower than the fraction we used to estimate it. Our
resulting estimate can therefore be considered an upper limit but is much lower than
the previous reported value of 0.17 Pg yr! (Meybeck, 1982), which was itself derived
by assuming that PIC is a constant 1% fraction of total suspended matter (Meybeck,

1982; Huang et al., 2012).
3.3.3 Past and future effects of anthropogenic disturbances on global river C export

Human activity is widely regarded as an important driver of global environmental
change, especially in the past five decades, during which the rapid development of
world’s economies is characterized by the expansions of agriculture, industry and
urbanization. Our models all include the fraction of the catchment used as croplands
as a major driver of C export. They can therefore be used to estimate how much of
the current global export may be attributed to agriculture. Recalculating the export of
all 5664 catchments while imposing 0% cropland results in a global estimate of 0.40
Pg yr', suggesting that the current extent of agriculture worldwide accounts for 0.28
Pg yr'! (about 40%) of the present global carbon export to the oceans. According to
our models, the bulk (nearly two thirds) of this carbon associated with agriculture is
inorganic, consistent with the results from the Mississippi basin where the extent of
croplands within various sub-basins was directly related to alkalinity export

(Raymond and Cole 2003). Projections from the FAO of agricultural requirements to
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feed the world's growing population (Alexandratos and Bruinsma 2012) suggest that
croplands will expand at a rate of about 0.1% per year over the 2050 horizon. This
value is the net result of forecasted reduction in croplands in developed countries (at a
rate of -0.14% per year) but a much faster increase in the developing world (+0.24%
per year), particularly in Latin America (+0.49% per year). Depending on the carbon
export profile of agricultural land abandoned because of severe land degradation and
also on the geographical location of this future expansion, our models suggest that
total carbon export could increase by up to 15 % by 2050. Much greater changes can
be expected at local scales. Taking the Changjiang catchment as an ‘example,
if %cropland increases from the current 34% to 80%, and assuming other variables
remain constant, the total C exported to the coastal ocean by this river will increase
by 45%. As a general rule, it is the DIC and POC exports that are the most sensitive
carbon forms to a conversion to cropland. This therefore implies that global cropland
expansion will modify riverine C export not only in its magnitude but also in its
composition. The potential consequences of such compositional changes on the
oceanic carbon processing are currently unknown but may alter significantly the

functioning of the coastal ecosystems receiving these carbon loads.

Similarly we can consider the potential effects of changing climatic regimes on
carbon export.  Using the scenario proposed by Cao et al. (2010) that a doubling in
atmospheric CO2 would results in a 15% increase in runoff, our model would suggest
a commensurate increase of about 12% in total carbon export. While this conclusion
depends strongly on the geographic distribution of the predicted increases in runoff,
such predictions could nevertheless be integrated to our modeling approach to yield

better predictions of climate induced effects on C export. Regardless of the exact
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magnitude of changes, our study highlighted that anthropogenic disturbances, past
and future, may have become the most important factors modifying the magnitude
and composition of riverine C export from terrestrial to aquatic ecosystems,

particularly in the context of global environmental change.

3.4 METHODS

In this study, all the data on C concentrations and exports to the oceans are collected
from journal papers, technical reports and books published after 2000. The complete
data compilation is provided in SI-Table 5.1. All the riverine C concentrations and
exports were field observed for at least 1 year with a frequency of at least 3-4 times.
Some big rivers were measured several times for different studies. In this case, we
use the average of the values for that river. Riverine C export, when not provided
directly, was calculated as C  export (g m? yr') = C concentration (mg L) X
annual discharge (m?)/catchment area (m?). All the data on river discharge and
catchment area are based on Meybeck and Ragu (1996) or the specific references,
while river mouth coordinates are corrected by Google.Maps. The catchment
delineation for each river basin was obtained from the HydroBasins product
(http://www.hydrosheds.org/page/hydrobasins) matching the river mouth locations.
The basin polygons were then used to extract the catchment characteristics using the

global raster files for annual runoff (mm yr'!'), catchment slope and area.

The same process was then applied to all other exorheic catchments draining into the
oceans thereby allowing the application of the multivariate models to all catchments
that had not been sampled in our database. All statistical analyses were performed in
JMP Pro 12. Variable selection for the multivariate regression models was carried out

using the elastic net algorithm coupled with the Bayesian Information Criterion (BIC)
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validation procedure, as implemented in JMP Prol2. Although this procedure does
not necessarily rely on probability levels for variable retention, all the variables

retained in the models were statistically significant (p<0.001 in all cases).
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CHAPTER IV

CONCLUSIONS

4.1 Main contributions:

The common theme of this thesis is to explore the natural and anthropogenic drivers
of carbon export from watersheds to aquatic ecosystems, as well as the relative
importance of individual drivers in controlling the magnitude and composition of the
total carbon exported in different forms to the receiving waters, through
slystematically analyzing the carbon database of 127 rivers and streams in Quebec that
had been sampled for 1-3 years by the Aquatic group of UQAM, and then shifts the
study from a catchment and regional scale to the global scale for a further exploration
of them based on the global carbon dataset that were pooled and integrated from the
previously-scattered knowledge and data in the literature regarding riverine carbon
export to the oceans. On the basis of the combination of the large amounts of regional
and global C data, this thesis has (re)assessed and predicted the magnitude,
composition and trend of the total carbon exported from watersheds to the receiving
waters at different spatial and temporal scales, and developed a better understanding
of the role and importance of riverine carbon export in regional and global carbon

cycles, quantitatively and qualitatively.
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Specifically, the following key points emerge from the different chapters:

4.1.1 The study on the relative influence of topography and land cover on inorganic
and organic carbon export from temperate catchments has simultaneously explored
DOC and DIC export to river systems, based on a large amount of regional
observations that maximize the spatial coverage and environmental gradients and that
captures some of the seasonal variability in river discharge and C concentration. This
study has clarified the role and importance of different individual drivers of DOC and
DIC exports from the watersheds, in particular, that topography is more important
than land cover in explaining the variance in DIC export, whereas land cover is much
more important than topography in terms of DOC export. This further highlights
human activities that lead to land use/cover change, such as urbanization,
deforestation and wetland clearance, can potentially modify the magnitude and
composition of the total C export from watersheds. The exploration of the
inter-annual variation of DIC and DOC export from these temperate catchments
demonstrates that the fluctuations in precipitation and temperature due to climate
change or global warming would to some extent modify TC export and DIC/DOC

ratio, because of the different responses of DOC and DIC exports to precipitation and
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temperature, which could provide some bases for the prediction of C export and
water quality changes triggered by regional or global climate shifts.

4.1.2 As a follow up of the patterns observed in the first chapter and in order to
further understand environmental drivers of carbon export to river systems in the
boreal biome, the second chapter focused on the export of dissolved (DOC and DIC),
and gaseous (CO2 and CHa), so as to quantify the spatial and temporal variations in
the magnitude and composition of the total carbon exported from a wide range of
boreal watersheds.Total export peaked in spring and varied widely in its magnitude
and composition seasonally, but was dominated by DOC on an annual basis. The
integrated aquatic CO2 emissions were also a major contributor to the total C export
from these watersheds, and replaced DOC as the dominant C species in watersheds
with high water densities.

4.1.3 On the basis of Chapters 1 and 2 that addressed the natural and anthropogenic
drivers of carbon export from either temperate and boreal watersheds to river systems
and the composition and magnitude of total carbon exported in different forms at a
regional scale, the third chapter shifts from a catchment and regional scale to the
globe to explore the natural and anthropogenic drivers of global riverine carbon

export to the oceans, and to reassess the global riverine carbon export rate based on a
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synthesis and meta-analysis of the most extensive river carbon dataset assembled to
date. We produce a new annual global riverine carbon export rate of 0.68 Pg C yr’!,
24% less than the widely-accepted value of 0.9 Pg C yr-! (e.g. Battin et al., 2009; Cole
et al.,, 2007; Tranvik et al., 2009). Our revised estimates of global DOC and DIC
export, 0.18 and 0.39 Pg C yr!, respectively, are similar to the widely-used values of
around 0.2 (e.g. Meybeck, 1982&1993; Ludwig et al, 1996; Harrison et al., 2005; Dai
et al., 2012) and 0.38 (Meybeck, 1982&1993) Pg C yr!, respectively. However, we
narrowed the uncertainties of the previous estimations of POC and PIC exports and
obtained the annual global riverine POC and PIC exports of 0.07 and 0.04 Pg C yr',
respectively, using the most extensive POC data coverage to date. This global study
also has further clarified the relative importance of different drivers of riverine carbon
export from terrestrial ecosystems at a global scale. Our multiple regression analyses
have further shown that human activities, especially cropland expansion, may become
a main regulator of the magnitude and composition of total riverine carbon export to
the oceans in the future. Our models predict that a 15% increase in runoff, predicted
under a doubling of atmospheric CO, (Cao et al., 2010) could lead to an increase of
12% in total carbon export to the oceans, whereas increases in the cropland area will

result in proportionately larger shifts in the magnitude and composition of total C
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export. For example, an increase in cropland coverage in the Changjiang catchment
from the current 34% to 80% of the total surface would result in an increase in the
export of DOC, DIC and POC by 17%, 48% and 42%, respectively, with a resulting
increase in total C export from this catchment of 45%.

4.2 Main innovations

4.2.1 Whereas previous studies on watersheds to rivers have focused mainly on
specific C species and on individual drivers of carbon export, this thesis has
comparatively explored the relative influence of the ensemble of topography and land
cover variables on total riverine carbon export and its main components, scaling from
individual watersheds to the globe. At the regional scale, an examination of variance
partitioning in our models revealed that topography is slightly more important than
land-cover in explaining the variance in DIC export (19% vs 15%), whereas
land-cover is much more important than topography in determining DOC export
(44% vs 18%). This difference between topography and land cover in controlling
DOC and DIC exports to rivers would lead to the changes in magnitude and/or
composition of total carbon export because of the difference in anthropogenic impacts

on the two categories of driving forces. Accordingly, the trends in total carbon and its
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components exported from watersheds could be predicted based on the degree of
anthropogenic disturbances.

4.2.2 This thesis has sketched an integrated view of total carbon export from boreal
watersheds to river systems through exploring the spatial and temporal variations in
total carbon and its components (DOC, DIC, POC, CO; and CHy) exported from the
boreal landscape. This study not only explored the intra-annual variation in the
magnitude and composition of total carbon exported from the boreal watersheds also
compared the total carbon between the neighboring sub-regions that are characterized
by different landscapes (James Bay is dominated by peatlands, while in Abitibi
beaver damming is ubiquitous along streams), and thus developed a better
understanding of the spatial and temporal variations in carbon export to river systems
at a regional scale.

4.2.3 This thesis reports a re-estimate of global riverine carbon export to the oceans
based on the most extensive global C dataset to date. This global study yields a new
global riverine carbon export rate of 0.68+0.05 Pg C yr'! to the oceans, 24% lower
than the widely-accepted value of 0.9 yr'! through narrowing the uncertainties in the
previous estimations. Through a series of multiple linear regression analyses, the

relative importance of different natural and anthropogenic drivers of riverine carbon
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exported in different forms from land to sea has been further clarified. Especially, we
found that %croplands in the watershed like runoff (though runoff can explain
40-58% variance in riveerine carbon export) is an important variable influencing all
the different carbon forms (DOC, DIC and POC). In particular, the current cropland
coverage of the global terrestrial area is around 11%, having huge potential of
cropland expansion, while the global runoff has increased less than 4% since 1880
(Labat et al., 2004; Dai et al., 2009), highlighting human activities, especially
cropland expansion around the world, would become a very important variable
influencing the global riverine carbon export to the oceans in the future.

4.3 Important implications

The finding that topography is slightly more important than land-cover in explaining
the variance in DIC export (19% vs 15%), whereas land-cover is much more
important than topography in determining DOC export (44% vs 18%) from the
watershed to rivers implies that how to effectively and rationally use and manage land
resources would be very important to direct the trend of riverine carbon export from
watersheds to aquatic ecosystems scaling from a catchment to the globe. The average
of total carbon exported from the boreal watersheds to the river systems (15.6 gC m

yr'!) is in the order of 5 to 11% of the regional NPP, but of the same magnitude of the
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Net Ecosystem Production that has been estimated for this type of landscape
highlighting the need to integrate carbon export from watersheds to river systems into
terrestrial carbon budgets in order to improve our understanding of landscape C
sources and sinks within the boreal biome. Further, our re-analysis of the global
export dataset resulted in a new estimate of annual global riverine carbon export to
the oceans of 0.68 Pg yr!, which is significantly lower than current accepted figure of
0.9 Pg yr'!, of which DOC, POC, DIC and PIC exports are 0.18, 0.07, 0.39 and 0.04
Pg yr!, respectively, imply that it is necessary to reassess the role and importance of
carbon export from watershed to river systems in terrestrial and global carbon. The
thesis has also contributed to narrowing down the uncertainties in the estimations of
other C reservoirs, which is essential to  better constrain the regional and global
carbon budget. The finding that %cropland in the watershed is closely related to the
riverine carbon export through the global analysis of riverine carbon export to the
oceans further implies that human activities, especially cropland expansion, may be
replacing the natural driving forces as the primary determinants of the magnitude and
composition of both current and future transfers of carbon from land, through the
hydrologic network, and ultimately reaching to sea, further indicating the importance

of land use and management in controlling riverine carbon export from terrestrial to
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aquatic ecosystems in the context of climate and human-induced environmental

changes.

N.B. References cited in this chapter are presented at the end of the thesis.
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Appendix A

Supplementary Information For

A Global Analysis of Riverine Carbon Export to the Oceans

SI-1, List and source of landscape characteristics extracted for each catchment draining into the

oceans

Data

Runoff

Type

Raster

Citation

Fetke, Balazs M. et al (2000). Global Composite Runoff
Fields Based on
Observed River Discharge and Simulated Water
Balances. Complex
Systems Research Center, University of New Hampshire.
UNH-GRDC
Composite Runoff Fields v1.0. Available at
http://www.grdc.sr.unh.edu/.

Land Cover 2010

Raster

European Space Agency (ESA) — Climate Change
Initiative (CCl). The Land Cover CClI Climate Research
Data Package (CRDP). Land Cover Maps —v1.5
(2008-2012 epoch). Available at
http://maps.elie.ucl.ac.be/CCl/viewer/download.php

Soil organic C (Top
0-30 cm)

Raster

Harmonized World Soil Database V1.2 Organic
Carbon density.
http://www.fao.org/soils-portal/soil-survey/soil-maps-a
nd-databases/harmonized-world-soil-database-vi2/en/

Carbonates

Polygon (Shapefile)

Williams & Ford. World map of carbonate rock
outcrops v3.0. SGGES, University of Auckland, New
Zealand. Available at
http://web.env.auckland.ac.nz/our_research/karst/

SI-2. Land Cover categories amalgamation

The land cover classes provided by the ESA CCl land cover product (2010) contains 37 distinct
categories. For the purposes of our carbon export model development, these were simplified to

only 5 classes using the following amalgamation:

% Forests = Sum of (

Tree cover, broadleaved, deciduous, closed to open (>15%})




136

Tree cover, broadleaved, deciduous, open (15-40%)

Tree cover, broadleaved, evergreen, closed to open (>15%)
Tree cover, flooded, fresh or brakish water

Tree cover, flooded, saline water

Tree cover, mixed leaf type (broadleaved and needleleaved)
Tree cover, needleleaved, deciduous, closed (>40%)

Tree cover, needleleaved, deciduous, closed to open (>15%)
Tree cover, needleleaved, deciduous, open (15-40%)

Tree cover, needleleaved, evergreen, closed (>40%)

Tree cover, needleleaved, evergreen, closed to open (>15%)
Tree cover, needleleaved, evergreen, open (15-40%)

Tree or shrub cover)

%Croplands = Sum of (
Cropland, irrigated or post-flooding
Cropland, rainfed

Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%))

%Wetlands = Sum of (
Tree cover, flooded, fresh or brakish water
Tree cover, flooded, saline water
Shrub or herbaceous cover, flooded, fresh/saline/brakish water)

%Shrublands= Sum of (

Mosaic herbaceous cover (>50%) / tree and shrub (<50%)" ),
Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) /
Mosaic tree and shrub (>50%) / herbaceous cover {<50%)
Shrub or herbaceous cover, flooded, fresh/saline/brakish water"

Shrubland,

Shrubland deciduous,

Shrubland evergreen,

Sparse herbaceous cover (<15%)

Sparse shrub (<15%)

Sparse vegetation (tree, shrub, herbaceous cover) (<15%)

% Water bodies = Water bodies

cropland (<50%)
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SI-3. Additional Water Residence Time (AWRT) from large freshwater reservoirs

We developed the metric AWRT to act as a proxy for the amount of additional time water stays
within a catchment because of the added volumes contained in large freshwater reservoirs. This
was accomplished by summing the reservoir water volume capacities of all reservoirs within
each catchment and dividing by the average annual runoff over the catchment. We used the
geolocated GRanD  (Global Reservoir  and Dam) database  available at
http://www.gwsp.org/products/grand-database.html .

Sl-4. Average DOC export = {Runoff, SOC

The generalized DOC export from a catchment can derived by solving the multivariate models
presented in Table 1 of the main text as a function of only Runoff and SOC and replacing the
other variables with their mean values in our data set. The resulting equation as illustrated as a
family of curves representing the relationship between DOC export and Soil Organic Carbon for
different runoff values. For SOC>10 kg m2, the relationships are approximately linear (Fig. SI-4.1)
suggesting that DOC yield can be roughly considered as a first-order reaction with the SOC
reservoir.

Figure S4.1 . Relationship between DOC export and Soil Organic Carbon (kg C m2) for different
levels of annual runoff (mm yr?)
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SI-5. Complete Data set used in this study.
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