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2.2.5 Composite Likelihood 

When calculating the likelihoods in the above equation, the simulations of the genealo­

gies may contain a lot of variability and so depending on the sampIe size and the number 

of markers involved the computation time can take days even weeks. Larribe (submitted 

2007) then iiltroduced composite likelihood in order to control for variation. The idea 

behind composite likelihood, as the very name suggests, is to divide the set of markers 

into small sections or windows. Figure 2.2 shows sorne examples of windows using d 

contiguous observed markers. 

(a) d = 2 (b) d = 3 

~ ~ 
-w;- ••--_. • • __ W3_ Wl

W2 W4 .W2 
W3 • 

Figure 2.2 An illustration of window lengths for a sequence of 5 markers , where d 

equals the window length (from Larribe, 2007). 

Consider a sequence with L markers, L - 1 of which have a known position, then G = 

L - d is the total number of windows for this sequence. The interval m, located between 

the m - lth and mth marker, will be included in the window g, for 9 = (1, ... , G), if and 

only if 9 is between ~(m) and g(m) where 

~(m) = max(l, m + 1 - d) 

g(m) = min(m -1, L - d). 

Let Lm,g (TT) represent the marginal likelihood function for the position of the TIM in 

the interval m. The likelihood' is evaluated using the information on the markers in 

window 9 only. A composite likelihood function giving equal weight to each window 

can be defined as 

L-l ( g(m) ) Wm 

CLd(TT) = II II Lm,g(TT) , 

m=2 g=fl.(m) 
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where 

1 
wm =----;-----;------;-----,--­

~(m) + g(m) + 1· 

This function is not weIl defined however, since Lm,g (TT) uses different information from 

on window, g, to the next. A likelihood that is conditional on the d markers in window 

g, denoted Hg, is thus proposed. This conditionallikelihood is defined as 

L ( IHg) _ Q(H~T, Hg) 
m,g TT 0 - Q(Hg) , 

where H~T represents the sample configuration at the TIM including its position TT, in 

interval m. The corresponding composite-conditional-likelihood is 

L-l ( g(m) ) Wm 

CCLdTT = Il Il Lm,g(TTIHg) 
m=2 g=flJm) 

When windows of size d are used, the likelihood function is estimated d - 1 times in 

aIl intervals apart from the first and last d - 2 windows. Looking at the example in 

Figure 2.2 (b), d = 3 and L = 6. In the first and last interval the likelihood function 

is estimated once only, whereas for intervals 2 and 3, the likelihood is estimated twice. 

If the number of markers is large compared to the window size then almost aH of the 

intervals estimate the likelihood function d - 1 times. Results have been produced for 

different window lengths and it appears thus far, that the method is efficient at finding 

the location of the TIM and hence MapArg uses composite likelihood in estimating TT. 

2.3 Other Fine Mapping Methods 

Before developing a method that corrects for incomplete penetrance and phenocopy 

within the MapArg framework, let us discuss sorne of the other fine mapping methods 

that are also based on the coalescent model. It is of particular interest to see how these 

other methods account for the penetrance parameters. 
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2.3.1 Decay of Haplotype Sharing 

Decay of Haplotype Sharing (DHS) is a model that was developed by McPeek and Strahs 

(1999). It is based on the idea that there is a certain segment surrounding the TIM locus 

that is common to all cases originating from the MCRA or founder, that reduces in size 

or "decays" over generations. By this hypothesis, any position on the chromosome that 

is well explained by decay of shared haplotype is likely to be a candidate for the location 

of the TIM. As the name suggests DHS works with haploid data i.e., chromosomes are 

considered as independent sequences and not in pairs. 

The authors start off by looking at an individual haplotype. They model the complete 

ancestral history of this haplotype and then generalize to the complete sample of se­

quences. This generalization is done differently depending on the situation. There are 

two different cases that are modeled namely: 

1. The case where independence across haplotypes is assumed, 

2. The case where there is a dependency or correlation between different haplotypes. 

The genetic distance from the location of the TIM, rT to the end point of the segment 

where the haplotype still shares ancestral data with the founder is denoted x. A function 

R(x) is then defined as A (Ancestral) for any x, a distance from the TIM locus, that 

shares ancestral material with the founder and is N (Non Ancestral) otherwise. The 

function R(x) it then considered a continuous time Markov chain that is indexed by 

position with 

Pr[R(x + <5) = AIR(x) = A], Pr[R(x + <5) = NIR(x) = Nl, 

for x and t > O. Then, a parameter for estimating the rT is introduced so the likelihood 

estimate now estimates both x and rT simultaneously. In order to reduce computation 

time, the likelihood is maximized on a set of candidate values for x. The candidate 

values are obtained by carrying out a branch-and-bound procedure (Baum, 1972). Other 

parameters are .introduced into the model to deal with chance sharing of alleles and 
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to account for multiple origins of the TIM. The latter phenomenon is of interest to 

us and shall be explained in more detail shortly. When DHS is modeled assuming 

independence of sequences, the likelihood of the whole sample is obtained by multiplying 

each individual haplotype likelihood. If on the other hand this assumption is not valid 

a more complex method is employed. Using a sample of unrelated individuals, McPeek 

and Strahs estimated rT with a quasi-likelihood estimate. The usefulness of this being, 

it resembles the likelihood estimate above but takes into account correlation between 

haplotypes. The authors have shown that when using a quasi-likelihood estimating 

equation under the coalescent model that the same estimate as the independent case is 

obtained but the standard error is larger. 

Multiple origins of the TIM can be viewed as a form of phenocopy. Recall the definition 

of phenocopy: 

Phenocopy = fo = Pr(AffectedlTl M) 

MapArg searches for a single position on the chromosome that causes a disease, i. e. 

the TIM locus. Consider the situation where there are two different loci that have 

different TIMs , Tl and T2 and Tl accounts for a large proportion of cases among the 

population. The fine mapping methods discussed will pick up the LD surrounding Tl 

and produce an estimate for the location. However T2 has an aIlele that accounts for 

a small proportion of cases also. Within the MapArg framework the cases that result 

from the TIM at T2 will be viewed as a phenocopies as they are sequences that have a 

mutation but don't share the same aIleles as the set of cases stemming from the locus 

Tl. McPeek and Strahs introduce a parameter p that represents the proportion of cases 

in the population that are nor descended from the founder haplotype, and 1 - P is the 

proportion that does descend from the founder. Then the likelihood is then calculated 

conditional on the sample haplotype being a case. A simplification of their model is 

L(TIM) = (1- p).L(rT,xID) +p.Pnull(D). 

where Pnull(D) is the probability of the sample data estimated from the control pop­

ulation. When p = 0 then there is no other origin of the TIM considered. For the 
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simulations that were run in McPeek and Strahs (1999) the model still seems to per­

form weH then p is non zero. 

2.3.2 Fine Mapping Via The Shattered Coalescent 

Another variation on the coalescent model for estimating the position of the TIM is 

the shattered coalescent model. Morris et al. (2002) developed the idea of modeling 

genealogies that may split into smaHer sections that represent multiple founding mu­

tations or sporadic cases of the disease. Their fine mapping method is implemented 

with Markov Chain Monte Carlo techniques (See Section 2.1.3). A Bayesian approach 

is taken and the authors approximate a posterior probability distribution for rT, condi­

tional on the sample data. As the shattered coalescent accounts for phenocopy it shaH 

be described in detail. An overview of the work of Morris et al. (2002) shall be given 

first. Once the shattered coalescent is modeled and incorporated into the method the 

genealogies are constructed maximizing several parameters needed to generate trees at 

a given candidate locus simultaneously. As in aH fine mapping methods of multi locus 

data the computation is intensive and so an algorithm similar to the Metropolis~Hastings 

one (see section 2.1.3) is developed. The primary parameter of interest in the MCMe 

simulation is rT but several other parameters are also estimated during the process of 

generating genealogies including allele frequencies and LD parameters. 

The Shattered Coalescent can be viewed as a generalization of the coalescent process 

where branches of the genealogical tree can be removed. The likelihood for the controls 

is considered to depend on the control haplotypes only. So the shattered coalescent 

models cases only and not controls. Let 

1, if node b has a parental node in the shattered tree ; 
Zb = 

{ 0, if node b has no parental node in the shattered tree, 

where the node can be internaI or a leaf, where leaf nodes represent the sample hap­

lotypes at the present generation and internaI nodes the sample haplotypes at every 

other point in time in the history of the sample. If there is a leaf node with Zb = 0 
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this represents a phenocopy. The reason is, it represents a haplotype that has no com­

mon ancestors with the rest of the sample, which means that it is a sequence that is 

effected by some disease without having the TIM. Now consider node b that has marker 

haplotype Cb. Two scenarios are considered: 

1.	 Node b has no parent node in the underlying genealogy. Then Zb = 0 and node 

b corresponds to either a founder for a disease mutation at x when the node is 

internaI, or a sporadic case or phenocopy. Founding mutations and phenocopies 

are assumed to occur on random chromosomes from the population and thus are 

modeled in the same way as control haplotypes. The simplest model for controls 

being one assuming no LD in which case the likelihood is given by the product of 

populatio'n proportions for each allele. 

2.	 Node b has a parent node in the underlying genealogy and Zb =1. The distribution 

of Cb now depends on the haplotype of the parental node, the occurrence of 

recombination and also mutations along the branch connecting Cb and the parent 

haplotype. 

Recombination and mutation events, p and f1 are assumed to occur independently across 

the branches of the tree. The overalllikelihood is of the form: 

L(TIM) = IIIL(CbIPb,x,N,h,p,f1)zb+L(Cblh)(l-zb)], 
b 

where Pb represents the haplotype at the parental node, N the population size and 

h the haplotype data. Any unknown parameter is also estimated within the MCMC 

simulation framework. It can be seen from the above equation that haplotypes that are 

thought to be phenocopies are treated similarly to the control haplotypes of the sample. 

2.3.3 Tree LD 

The underlying model for the methods of Zôllner and Pritchard (2005) is also the coa­

lescent, and to take recombination into account an adaptation of the ARG is used. The 
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authors' method is implemented by executing a program called TreeLD and for this 

reason we shall refer to their fine mapping method as TreeLD from now on. Zollner and 

Pritchard work with haplotypes also, but a distinct difference between TreeLD and the 

methods of Morris et al. and McPeek and Strahs is that the genealogies constructed 

within the coalescent framework are done so by using both case and control informa­

tion. This means that more information is being used which can improve the accuracy 

of estimating rT, but it also means that computation will be a lot more involved than 

when just using the cases to construct genealogies. In order to try and reduce the com­

putation time they construct the genealogies of the n sample haplotypes independently 

of the phenotype data and mutation status and then obtain an likelihood of the phe­

notypes conditional on the genealogies and mutation rate: i.e. at a given candidate 

position for the TIM, x, the sample history is constructed for the entire sample of cases 

and controls, after which the mutation rate is superimposed on the genealogy and the 

distribution of the phenotype data is obtained. In estimating the location of the TIM a 

Bayesian approach is adopted using MCMC techniques. As in the DHS method, TreeLD 

constructs the genealogies on a grid of candidate loci across the sampIe sequence. The 

Metropolis-Hastings algorithm is employed to construct genealogies at each candidate 

locus, x, within the simulation. As mentioned before, the phenotype likelihood is calcu­

lated after the trees are simulated so the distribution being modeled within the MCMe 

simulations is P(Txlx, G), where Tx represents the genealogy at x and G is the genotype 

data or haplotypes. Once the distribution P(Tx ) is found, a peeling algorithm (Felsen­

stein, 1981) gives the probability distribution for the phenotype data at x. Then the 

posterior distribution given as: 

P(xl<I>, G) ~ P(<I>lx, G) . P(x). (2.3) 

The prior distribution P(x) is taken as uniform across the entire region of the sample 

but can be modified accordingly and P(<I>lx, G), the probability distribution of the 

phenotypes, will be explained further below. Equation (2.3) is the general form of a 

posterior distribution from standard theory on Bayesian Inference. Once P(xl<I>, G) is 

obtained, the mode is taken to be the estimate of the location of the TIM locus. 
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Since TreeLD uses haploid data, the penetrance parameters are defined as they are for 

MapArg. RecaH that 

Penetrance fI = Pr(AffectedITIM) = Pr(Si = 11Mi = 1),
 

Phenocopy fa = Pr(AffectedITIM) = Pr(Si = llMi = 0).
 

The model for the distribution of phenotypes conditional on the genealogies (P(xl<I>, G)) 

assumes that the disease mutation occurs as a Poisson process with rate v /2 and that 

multiple mutations on the same chromosome have no further effect: every chromosome 

that carries at least one mutation has the same distribution. Let K j , jE(l, 2, ... , 2n - 1) 

be the ordered set of nodes on the genealogy, Tx , so that KI, ... , K n are the external 

nodes or leafs, K n- I is the node of the first coalescent event and K 2n- 1 is the MRCA. 

Furthermore, let B = (b l , ... ,b2n-2) be the vector of branch lengths where bj is the 

branch length between node Kj and its parental node. Denote mi as an indicator 

variable for the mutation status at node Ki where 

mi = {l,if node Ki carries at least one mutation; 

0, otherwise. 

Now if there is a mutation at node Ki, then aH phenotypes that are a descendants of 

this node will be cases. Likewise, phenotype descending form ancestral nodes without 

a mutation will be controls. Therefore, 

where <I>i represents the phenotypes of aH leaf nodes that descend form node Ki. 

To calculate P(<I>i Imi = 1), it must be taken into account that given mi = a at node 

Ki, the ancestral nodes may or may not have the status mi = 0, since a mutation couId 

have occurred on the branch. This is done by using the information that the mutation 

rate v/2 occurs according to a Poisson process. It is therefore possible to calculate the 

probability of every node by starting at the most recent nodes and working iteratively 

backwards in time. It is clear though, that to calculate P(xl<I>, G) with the peeling 

algorithm above, there has to be values given for fI and fa. ZoHner and Pritchard take 
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these penetrance parameters as being any value of the bounded set J = [0, 1] * [0,1]. 

The likelihood of the phenotype is calculated for various values of J and the values that 

maximize this likelihood are then used as the penetrance parameters h and fa for the 

data. Note that TreeLD accounts for incomplete penetrance as well as phenocopy which 

was not done in the previous literature. 



CHAPTER III 

ACCOUNTING FOR INCOMPLETE PENETRANCE AND
 

PHENOCOPY
 

3.1 Effeets of Penetrance and Phenocopy 

3.1.1 Introduction 

Penetrance and Phenocopy have been introduced in Chapter 1 (see section 1.4) and 

a small example of their effect on the ability to distinguish people possessing a TIM 

from those who don't was shown. It is of interest to determine exactly how various 

levels of penetrance and phenocopy are expected to influence the efficacy of MapArg in 

producing an estimate of rT. Let Mi denote status of sequence i, (i = 1, ... , n), where 

Mi = 1 when the sequence contains the TIM and 0 otherwise. Let Si denote the affected 

status of phenotype for individual i, where Si = 1 for cases and 0 for controls. The 

parameters are defined as in Section 1.4 but since the notation has been shortened for 

convenience we shall present them again: 

Penetrance fI = Pr(AffectedlTIM) = Pr(Si = 11Mi = 1), (3.1 ) 

Phenocopy fa = Pr (Affected ITI M) = Pr(Si = llMi = 0). (3.2) 

3.1.2 The Structure of the Data 

Initially MapArg needs a data set in a certain format along with certain information 

on this data to execute the computer program. The structure of the data along with 
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parameter information is as fo11ows: 

• A sample of SNPs (haplotypes), of size n, from the population of interest; 

•	 The frequency of each haplotype in the sample; 

•	 A classification of the individuals in the sample, in other words, each sequence is 

classified as being either a case or a control; 

•	 The distance between markers. 

Here is a example of the type of data with which we can implement MapArg. There are 

16 sequences, genotyped at 4 loci i. e. 4 SNPs of which 7 are cases and 9 are controls. 

Sequence Case Control 

0001 1 5 

0011 2 3 

1101 4 1 

Table 3.1 An example of the data MapArg works with. The first column represents 

the sequence in haplotype form, and the other two columns contain the frequency of 

cases and controIs for each haplotype. 

With this information we are able to distinguish cases from controls. MapArg has 

assumed complete penetrance and no phenocopies, i. e. fI = 1 and fa = 0 until now. 

If the TIM in question is such that ft < 1 and fa > 0, we would like to be able 

to take this into account when estimating the position of the TIM along the section 

of chromosome being studied. Before the development of a model to correct for the 

penetrance parameters we sha11 look at how incomplete penetrance and phenocopies 

effect the performance of MapArg. 
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3.1.3	 Simulating data with varying levels of Penetrance and Pheno­

copy 

A program called SimPenPhen, allowing us to simulate data with various levels of fI 

and fa was written in C++. One should note that there is no theoretical way to study 

these effects on the mapping method we are working on, MapArg. A solution is to 

simulate sorne examples where the result is known (i. e. the real position of the TIM), 

under various conditions, and to observe the effect. By taking several random examples, 

one hopes to better understand and illustrate what one is unable to derive directly from 

mathematics. 

Suppose that we have good reason to believe that il = 0.85 and fa = 0.17. SimPenPhen 

takes a sample data set of the form given in table 3.1, and outputs a data set that 

represents data with a penetrance of 85% and 17% phenocopy. Then instead of working 

with a sampIe of sequences that are considered cases or controls, we will work with a 

sample of sequences that are considered mutant, if carrying the TIM or non-mutant 

otherwise. Continuing the example in Section 1.4 (see page 16), we assume that the 

input data for SimPenPhen is as follows: 

Sequence Case Control 

0001 5 9 

0011 2 15 

1100 6 12 

1101 7 4 

Table 3.2 A data set with 5 sequences genotyped at 4 loci, i.e. 4 SNPs per sequence. 

There are 20 cases and 40 controls in total. 

Given il	 = 0.85 and fa = 0.17, one realization of executing SimPenPhen is as in Table 

3.3. Note that the amount of sequences for each haplotype remains unchanged e.g. 

haplotype "0001" has 14 sequences in the data set. However MapArg will use data 

that has 14 mutants and 36 non-mutants as opposed to 20 cases and 40 controls, which 
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Sequence Mutant Non-Mutant 

0001 6 8 

0011 4 13 

1100 7 11 

1101 7 4 

Table 3.3 An example of the output data given from SimPenPhen when fI = 0.85 and 

fI = 0.17. There are 24 mutant and 36 non-mutant sequences in total. 

would have been the case if the data were not adjusted to account for the penetrance 

parameters. 

Here are the main steps that the program executes in order to simulate data sets having 

the same form as table 3.3. In section 3.4 below, we will see how the original samples 

of sequences (i.e. data of the form in table 3.2) we use as input data for SimPenPhen 

are simulated. Let's suppose for now that we have such a sample. 

Main steps involved in the C++ Program, SimPenPhen 

1.	 The input data is a "population" of size 10 000; a given marker is chosen to be 

the TIM, and this information is put aside. 

2.	 For each of these la 000 sequences, if a haplotype is a mutant (as determined by the 

chosen marker in step 1), then it has a probability of fI of being a case, and 1- fI 

of being a control. If a haplotype is a non-mutant, then it has a probability of fa 

of being a control, and 1 - fa of being a case. A random number is generated and 

according to this random number, we "transfer" mutant/non-mutant information 

to case/control status. 

3.	 From this population, a sample is chosen conditional on the the disease status; for 

example, 100 cases and 100 controls. 

Since we already know the real position of the TIM from SimPenPhen we can check the 
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effect of a various rates of penetrance and of phenocopy on the MapArg method. Figure 

3.1 displays results of simulating data with various levels of penetrance whiles the level 

of phenocopy remains at O. A more detailed explanation of the simulation process for 

obtaining results is given in section 3.4 but a brief description of the graphs from the 

data is as follows: each of the nine graphs display a likelihood profile for the MapArg 

method and the small triangle on the bottom axis shows the estimate of the TIM. The 

real position of the TIM is indicated by the vertical dotted line. 
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Figure 3.1 Effect of penetrance on the likelihood profile (Data B, K = 100, d = 5, 

P = 30). The level of phenocopy is O. 

In general, it seems that varying degrees of penetrance do not seem to effect the efficacy 

of MapArg, even when penetrance (fI) is as low as 0.1. Imagine a population with a 
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disease where approximately only 10% of individuals carrying a TIM that predispose 

them to the disease end up being cases. Given the results shown, it appears that MapArg 

will still perform weB in locating the position of the TIM for this population. 

The existence of phenocopies, even if the rate of fo is low, greatly effects the ability of 

MapArg to find an accurate estimate for location of the TIM, as can be seen in figure 

3.2 below. Notice that even for fo = 0.2, the estimate provided by MapArg is quite far 

from the real position of the TIM. 
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Figure 3.2 Effect of phenocopy on the likelihood profile (Data B, K 100, d = 5, 

P = 30). The penetrance level is 1. 

Intuitively, these results are not altogether surprising. Take the hypothetical situation 
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where there are one hundred cases and one hundred controls; 10 of the cases are pheno­

copies and there are 10 of the controls that have the TIM, i.e. il = 0.9 and fa = 0.1. 

Among the population at large the genetic code of individuals is heterogeneous while 

the genetic coding among individuals with the TIM is similar (at least in close proximity 

to the TIM). Therefore if 10 individuals who have similar genetic coding (those with 

the TIM) are distributed among controls it should not be too noticeable as differences 

across the 100 controls are expected anyway. However, if among the cases, 90 have sim­

ilar genetic coding but 10 differ greatly from the rest (those who don't have the TIM), 

the hypotheses of similarity of cases is no longer true. The model of MapArg, and indeed 

any fine mapping method based on LD, relies on homogeneity of cases to approximate 

trees and in turn estimate the location of the TIM. With phenocopies among the cases 

it is no longer clear if cases have differences due to recombination, which is taken into 

account in the model, or simply because the case does not possess the TIM in the first 

place. It is important therefore to develop a method that detects cases among the sam­

pIe that are most likely to be phenocopies and simultaneously, controls that are likely 

to possess the TIM before MapArg estimates the genealogies. Section 3.3 describes two 

different methods that are suggested and their efficiency is tested. 

3.2 Correcting For Penetrance And Phenocopy 

Before going into the details of how we account for penetrance and phenocopy, it is 

necessary to show how the estimation of these parameters is incorporated into the 

methods of MapArg. Section 2.2 explains that rT (the position of the TIM) is estimated 

from the distribution Q(Ho), where Ho is the haplotype state for a given sample of 

sequences at the present generation, for us this is the haplotype with mutation status. 

What we are interested in is the state for the same sample at the phenotype level which 

we will denote as H-1. In short, we are looking for Q(H_d, or to be more precise 

Q(H-1IrT)' Throughout this section, ail calculations are conditional on rT and so to 
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facilitate ease of notation we will drop TT from subsequent equations. We can write: 

Q(H_ 1) = L Q(H-1IHo)Q(Ho). 
Ho 

The distribution of Q(H-IIHo) does not depend on any genetic material, it depends 

only on fI and fo. Suppose we have a sample of n sequences with n cases and ncontrols; 

conditioning on Ho, we know the number of mutants, nm , and non-mutants, nm., so it 

is possible to evaluate: 

Now, let us introduce a proposaI distribution P(HoIH_ 1), which will be evaluated in 

the subsequent section: 

'" fi; Q(H-1IHo)
P(HoIH-l) P(HoIH_dQ(Ho) 

= L f(H_ 1,Ho)P(HoIH_dQ(Ho), 
Ho 

where f(H_ 1, Ho) = Q(H-1IHo)/P(HoIH_d. This gives: 

Q(H-d = L f(H_ 1,Ho)P(HoIH_ 1)L f(Ho, HdP(H1IHo)Q(H1) 
Ho Hl 

L f(H_ 1 , Ho)P(Ho/H_ 1)L f(Ho, HdP(H1IHo) L f(H1,H2)P(H2IHdQ(H2) 
~ ~ ~ 

L LL'" L f(H_ 1,Ho)f(Ho,H1)f(H1, H2).. ·f(HT*-1,HT*) 
Ho Hl H2 HT * 

P(HoIH_dP(HlIHo)P(H2IHd .. ·Q(HT* ), 

and this represents the likelihood function that estimates TT, since: 

(3.3) 

The genealogies are then constructed according to the distribution P. In the above 

expression the only terms that are unknown are P(HoIH_ 1) and Q(H-1IHo), the rest can 

be deduced from the coalescent process. To summarize, we are able to take penetrance 

and phenocopy into account by modeling the sample state at H_ 1 (the phenotype level), 

conditioning on Ho (the genotype level). In order to do this we will evaluate 
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In fact, expression (3.3) is just a generalization of the likelihood of rT, as seen in section 

(2.2). If there is a perfect relationship (i.e. a mathematical one), between the genotypes 

and phenotypes P(HoIH_d and Q(H-1IHo) both equal1. Then there is only one state 

Ho that corresponds to H-1 and expression (3.3) is expression (2.2) exactly. 

Evaluating Q(H- 1IHo) 

The probability that an individual i is a case or a control does not depend on the 

genetic code apart from the TIM, of course. Thus, we are looking at the probability 

of an individual being either sick (a case) or not sick (a control), given that we know 

if they have the TIM or not. So, Q(H-1IHo) depends on the penetrance parameters 

uniquely. Suppose there is a certain number of cases and controls, denoted ne and ne 

respectively, among a sample of n sequences: ne + ne = n. 

For one sequence j which is a mutant (Mj = 1), we want to find 

Pr(Sj = 11Mj = 1) and Pr(Sj = 0IMj = 1), 

where Sj = 1 if a case, 0 if a control. Similarly, for a sequence k, that is non-mutant 

we want 

Pr(Sk = 11Mk = 0) and Pr(Sk = 0IMj = 0). 

These four probabilities are evaluated in section 3.3 below. For now, let us assume that 

they are known. The sample consists of n unrelated individuals and so putting mutant 

and non-mutant sequences together gives: 
nm nm 

Q(H- 1 IHo) = II Pr(SjlMj = 1). II Pr(SklMk = 0). 
j=1 k=1 

If there are equal numbers of cases and controls in the sample, nm = nm = ~ and the 

notation simplifies to: 
n

IIPr(SiIMi) Vi E n, Si = 0,1 and Mi = 0,1. 
i=1 
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3.3 Evaluating P(HoIH_1 ) 

3.3.1 Method 1 

Suppose that we know ç, the frequency of the mutation for a population of haploids, and 

the rate of penetrance and phenocopy, h and 10, respectively. This simple model can 

be considered as an approximation of a genetic model for a recessive disease where the 

disease is rare (the latter representing a diploid population). Let t represent the allele 

responsible for the disease, i.e. the TIM, and T the wild type allele. Let S represent 

the status of an individual who is sick, and S the status of and individual who is not 

sick. Note that: 

P(S) = P(Slt)P(t) + P(SIT)P(T) = h·ç + 10.(1- Ç). 

Thus: 

P(tIS) = 
P(t n S) 

P(S) 
P(SIT)P(T) 

P(S) 

= 
h·ç 

h·ç + 10.(1 - ç) . 

Similarly, we have: 

P(tIS) 
P(t n S) 

P(S) 
P(SIT)P(T) 

P(S) 
(1 - h).Ç 

= 
1 ­ [fI.ç + 10(1- ç)]' 

and P(TIS) and P(TIS) can then be deduced since P(TIS) = 1 - P(tIS) and P(TIS) = 

1 - P(tIS). We have, 

P(TIS) = 10.(1- Ç)
h·ç + 10.(1- ç)' 

and 

P(TIS) = (1 - 10).(1 - ç) . 
h·ç + 10.(1- ç) 

Now, we almost have a probability distribution for P(HoIH-I). Sampling is not random 

however, so we have to make sorne modifications to account for this. Let p' 0 denote the 
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distribution of the sample, and let PO denote the population distribution. Then p' () 

represents the proportion of cases in the sample, and p' (S) = 1 - p' (S) the proportion 

of controls. 

Since the sample selection is a function of the case/control status we have: 

p' (TIS) = P(TIS), 

p' (TIS) = P(TIB). 

Also, we have the following: 

p' (t) = p' (tIS)P' (S) + p' (tIS)P' (S). 

And finally, 

P'(SI ) = p' (tIS)P' (S) p' (SIT) = p' (TIS)P' (S) 
t p' (t) , P'(T) 

p' (Slt) = 1 - p' (Slt), p' (SIT) = 1 - p' (SIT) 

giving a probability distribution for P(HoIH-d. 

3.3.2 Method 2 

Suppose that we know the rates of penetrance and phenocopy, il and fa respectively, for 

a population of haploids. This time we will look at the relationship that exists between 

the penetrance parameters, il and fa, the number of cases versus controls, Ns versus 

Ns, and the number of mutants versus non-mutants, Nt versus NT in the population. 

If we know the number of mutants and non-mutants and the penetrance parameters in 

a given sample, Ns and Ns can be determined heuristically: 

Ns Ndl - il) + NT.(l - fa) 

Note also that 

Ns+Ns =N= Nt + NT, 
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where N is the total population size. Sa Nt and NT can be expressed in terms of Ns, 

Nfi and the penetrance parameters. Indeed 

Ns (N - NT)·h + Nt·fo 

Ns-N·h 
fa - fI ' 

and we also have 

Nt = N - NT· 

Once values for Nt and NT are obtained we can then find the probability of a sequence 

being mutant or non-mutant. 

Denoting the sample distribution p' 0 as in Section 1.3.1, we again make use of the fact 

that the sample selection depends directly on the case/control status and we have: 

(3.4) 

where nt, nT and n represent the sample number of mutant, non-mutant and total 

number of sequences respectively. 

Let's see an example of this procedure. Consider we have 100 mutant haplotypes, and 

10 non-mutant haplotypes; if fa is 0.15 and h is 0.9, the expected number of cases and 

contraIs are: 

100 x h + 10 x fa = 91.5, 

100 x (1 - h) + la x (1 - fa) = 18.5, 

respectively. 

Sa, as we have see in formula (3.4), if we know the penetrance and phenocopy parameters 

and the numbers of cases and contraIs, one can infer the number of mutants and non­

mutants. In this particular case, using formula (3.4) gives of course, 100 mutants and 
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10 non-mutants. We can use these estimates to build a proposaI distribution to infer 

the mutant status that we need in Ho. But this distribution wouId be a bit naive. 

We can do better by using the distribution of haplotypes among cases and controls, 

using the same simple reasoning as above, but conditional on the haplotype. As there 

should be linkage disequilibrium in the data, the distributions of haplotypes among cases 

and controls is informative. Assume we have n haplotypes of d different types (d ::; n). 

Denote hjl :m2 (j = 1, ... ,d) the partial haplotype j from marker ml to marker m2; if 

ml = 1 and m2 = L, then hjl :m2 is just the whole haplotype of an individual of type j. 

Moreover, denote nj and nJ the number of cases and controls among the haplotypes of 

type j, such as nj+nJ = nj' Then, n;, an estimate of the number of mutants haplotypes 

among the haplotypes of type j can be estimated; similarly, nJ can also be estimated. 

Using the same reasoning as above, we have for j = 1, ... , d: 

P[Mi = 1 1 seq i is of type j] 

P[Mi = 0 1 seq i is of type j] 

where 

As we have seen in chapter 2, MapArg builds graphs interval by interval: this means that 

the graphs are generated differently depending on the candidate value of TT at which 

MapArg is currently evaluated. Near the real position of the TIM, mutant haplotypes 

should differ more from non mutant haplotypes than anywhere else in the sequence, 

hence the proposaI distribution should be more accurate around the real position of 

the TIM. At a given position, the length of the haplotypes used to build the proposaI 

distribution is m2 - ml. We can expect the length to have an impact on the quality 
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of the proposaI distribution: too short will not bring enough information, but too long 

would just add noise. 

3.4 Simulations 

Simulating Sample Data Sets 

To implement MapArg whiles correcting for penetrance and phenocopy, we first need 

to simulate a population of sequences and in turn sampIe a data set that resembles a 

real population of individuals with a TIM among them. The program ms of Hudson 

(2002) is used to generate the sequences. This program generates sequences under re­

combination in a neutral population of constant size. Here 1 sample of 10 000 sequences 

is generated. This sample is generated for a fixed value of the scaled recombination 

rate that corresponds to a fixed number of sites (loci) along the whole sequence. The 

scaled recombination rate chosen is P = 100 for 0.25Mb, and the number of sites chosen 

is 80. Even though there are a finite number of sites, mutations are assumed to occur 

according to the infini te sites mode! (See Section 2.2.1), therefore it is assumed that 

the mutation occurs once and once only among the population. The scaled recombi­

nation rate Pm between markers m and m + l, is converted to a genetic scale, using 

r m = Pm/(4N), where N = 10 0000 is the constant population size. Now we have an 

approximation for the distances between markers on the cM scale (See Section 1.2.1 for 

an explanation of the Morgan scale). 

Recall from Section 1.1.3 that polymorphisms are common differences in the sequence 

of DNA, occurring in at least 1% of the population. So the more polymorphie a site is, 

the higher the probability of the less common allele appearing at this loci is. If sites are 

not very polymorphie then we know that the less common allele has a low probability 

of appearing, resulting in most sequences carrying the more common allele (wild type) 

and so sequences are indistinguishable from one another. The most polymorphie sites 

are then chosen. 
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The position of the TIM is chosen such that it is located between the first and the 

third quartiles of the sequence, to ensure there are markers on both sides of the TIM. 

As before, ç is the frequency of the mutation among the population of sequences and 

it is set at 0.1. The sample has a sequence of 0.25cM in length and with a mutation 

rate of 0.1, which corresponds to a sample from a population with a common disease. 

Sequences that carry the mutation at the locus for the TIM are considered cases whiles 

those who don't are considered ta be controls. 

Estimating the position of the TIM is done using a subsample of the larger sample, which 

is assumed to be representative of the population. Ideally a random sample would be 

selected. However, when the disease frequency is low the subsample would have to be 

extremely large if we want to ensure a significant number of cases in our subsample. For 

this reason it is necessary to fix the number of cases and controls so that a minimum 

of information for both groups is obtained. For our analysis, the subsample generated 

called Data B, consists of 100 cases and 100 controls that have been drawn at random 

without replacement from their respective samples. 

Incorporating P(HoIH1 ) into the MapArg Framework 

We have described two different methods that take incomplete penetrance and pheno­

copy into account for the fine mapping method MapArg. AIso, it has been deduced by 

means of simulation that incomplete penetrance does not have too much of an effect 

on MapArg's ability to estimate TT, whereas even smallieveis of phenocopy can have a 

negative effect on its performance. In order to see the effects of Method 1 and Method 

2 above (See section 3.3), we need only extend the C++ program, already in existence 

for MapArg to incorporate each method in turn. Several simulations are run for each 

method in turn, with various values for ft and fa. Results of these simulations are 

presented and discussed in the following section. 
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3.5 Results In MapArg Accounting For The Penetrance Paramaters 

3.5.1 A Description Of The Graphs in MapArg 

AH the analyses have been done with the composite likelihood strategy, with windows 

of length 5 markers, and using 30 markers (or otherwise specified). Every analysis has 

been carried out on the data set Data B (See Section 3.4.1) apart from those of Section 

3.4.3, where the Cystic Fibrosis data is analyzed. The data set B is known to behave as 

expected in the LD theory, so is very useful when exploring new strategies of analysis. 

Figure 3.3 shows the "real" likelihood of the data Data B, i.e. the sample of 50 cases 

and 50 controls from the population B, with no phenocopy and full penetrance (Jo = 0, 

il = 1). The x axis is the location of the the TIM in the sequence, and the y axis is 

the logarithm of the likelihood. The estimate L(rr) is indicated by the triangle at the 

bot tom of the figure, and the real position of the TIM by the vertical dotted lîne. As 

we can see on figure 3.3, in this case, the estimate is just near the real location of the 
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Figure 3.3 The likelihood profile for data B, with windows of 5 markers at a time and 

a total of 30 markers. Here fa = 0 and il = 1. 
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TIM. In the simulations which follows, we should ideally see a similar profile to this 

one, whatever the penetrance and phenocopy are. The little bars at the bottom of the 

graph indicates the position of the markers. 

3.5.2 Results On Simulated Data 

First, we take a look at some output for MapArg when it corrects for the penetrance 

parameters with Method 1 (See Section 3.3.1). Selected results are presented here to 

see the efficacy of Method when levels of penetrance decrease and levels of phenocopy 

increase. Results for Method 2 are then presented. It is hoped that the performance 

of MapArg is better when adjusting for each method in turn, at least for under some 

conditions (e.g. low levels of phenocopy, large sample size etc.). 

MapArg with Method 1 

It seems from figure 3.4 that MapArg remains very efficient for varying levels of pen­

etrance. However, we have already seen that penetrance does not seem to effect the 

efficacy of MapArg, even when there is no method modeling incomplete penetrance. 

When there is a low level ofphenocopy (fa = 0.1), Method 1 works quite weIl. However 

for fa = 0.2 or greater, the method is not too successful as can be seen in figure 3.5. 

This is a refiection of the fact that MapArg has difficult finding the location of the TIM 

when there are phenocopies in the data. We have combined incomplete penetrance and 

phenocopy in Figure 3.6 and it appears that Method 1 is no longer capable of improv­

ing the performance of MapArg. This is most likely due to the very strong effect that 

phenocopy has on the efficiency of MapArg. 
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la, d = 5, P = 30). 



62 

·'00 

"20 

-.'" 

-,., 
.,., 

-'00-,., 6' 

0.00 0.05 0.10 Q. ,~ 020 02' 0.00 0.05 0.10 0.\5 0.20 O." 0.00 0.05 0.10 0.15 0.20 O~ 

-110 

-110 

-'20 

-'00 

-,'" 
-.", 

-'00 

-'00 "00 -'70 

-HO ·170 -'00 

0.00 0.05 0.10 O.IS 020 O~ 000 0.05 0.10 0" 020 O." 0.00 0.05 0.\0 0.\5 020 O~ 

-110fa = 0.80-110 

-'20 

-'00 

-,,, 
-,'" 
-,., 

.,'" 
-,'" 

0.00 0.05 0.10 0.15 0.20 0.25 000 0.05 0.10 0.15 020 0.25 0.00 0.05 0.10 0.15 020 02' 
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Figure 3.6 Method 1 - Combined Effect of phenocopy and penetrance (Data B, K = 

10, d = 5, P = 30). 

MapArg with Method 2 

In the following section of results we present the effects of penetrance and phenocopy 

separately. In each graph the left column represents the likelihood profile with incor­

porating Method 2 into the MapArg framework. The middle and right columns are 

the likelihoods with Method 2 and with partial haplotype used to build the proposaI 

distribution, of length 4 and 8 respectively. In fact l= 2 and l= 4 in the graph repre­

sent the number of makers each side of the TIM that are used and henceforth we shaH 

denote l as the half-window length (not to be confused with d the window length in the 

composite likelihood of MapArg). 
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Figure 3.7 Effect of penetrance on the likelihood profile (Data B, K = H, L = 5, 

P = 30). 

As MapArg is not affected much by incomplete penetrance we present results for fI 

with values between 0.9 and 0.6 only. Method 2 is efficient both when l = 2 and when 

l = 4, as is MapArg without any adjustment for the method. Results are displayed in 
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figure 3.7. When there is a low level of phenocopy, Method 2 performs adequately for 

each half-window length. However for higher levels it becomes less and less efficient, 

unfortunately, as can be seen in figure 3.8. When penetrance and phenocopy both exist 
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Figure 3.8 Effect of phenocopy on the likelihood profile (Data B, K H, L = 5, 

P = 30). 
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the conclusion is not any different (Results not shown here). 

3.5.3 Effect of sample size 

It is of interest to see if Methods 1 or 2 prove more efficient for larger sample sizes. To 

see the effect of sample size, we have arbitrarily chosen a given set of parameters, fo = 

0.4 and il = 1. We have seen in Section 3.1 that with a level of phenocopy this high it 

is difficult to locate the TIM. This time the left column in the graph represents Method 

1 and the middle and right columns represent Method 2 with different half-window 

lengths. Each row represents an increase in the sample size. As we can see, from Figure 

3.9, Method 1 does not improve with increasing sample sizes. This is of course expected 

since this method does not use any information on the sample. We clearly see that 

increasing the sample size greatly improves the efficiency of Method 2, for both values 

of l. This is a very positive result as it means that if a population with a disease that 

is expected to have high levels of phenocopy is being analyzed, incorporating Method 2 

along with a large sample size from the given population could prove very efficient. 
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Figure 3.9 Effect of sample size on the likelihood profile, where fa = 0.4 and Ir = 0.1 

(Data B, K = 1t, L = 5, P = 30). 

3.5.4 Effect of half-window length, (l) 

Method 2 uses information from the the sample data to correct for the penetrance 

parameters by means of partial haplotypes, which are equivalent to 2l in our simulations. 
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We expect that if the length of [ is too small that we would not have much of an 

improvement on the efficiency of MapArg. How ever if [ is too large then we are 

using all of the sample and this too could prove inefficient. Figure 3.9 presents the 

effect of different half-window lengths, to give an overview of the effects of the amount 

information around the TIM that is used in Method 2. It seems from the graphs that 

efficiency is improved as [ increases, but only up to a certain point. Once [ is over 15, 

i. e. haplotypes of length 30 are used in Method 2, the results become less and less 

accurate. 
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Figure 3.10 Effect of window size on the likelihood profile, where fa = 0.4 and ft 

0.1 (Data B, K = lt, L = 5, P = 30). 



69 

3.5.5 Results with the Cystic Fibrosis Data Set 

Cystic Fibrosis (CF) is a recessive disorder occurring in Caucasian populations and it is 

weil known in the literature. The position of the TIM has been located on chromosome 

7q31 and it is well known that .6.F508 accounts for most of the mutations in the same 

gene but that there are other alleles causing the disease also. The CF data have markers 

that are known as microsatellites which are markers that are more polymorphie than 

SNPs but for simplification we consider the markers as SNPs. There are 94 cases and 92 

control haplotypes in the data set as given in Kerem et al. (1989). Let us assume for now 

that the 92 controls are non-mutant, so that fI = 1. Given that there are phenocopies 

in the data we choose a level of phenocopy, fa = 0.25, that is quite plausible as .6.F508 

accounts for most but not all of the mutations that cause CF. Figure 3.11 gives results for 

Method 2. It seems unreasonable to assume that fI = 1, so we try a smaller penetrance 

of fO.8. This gives figure 3.12 

The graphs in figures 3.11 and 3.12 compare the unadjusted likelihood profile with 

Method 2 for half-window lengths of 2 and 4. Composite likelihood is used as in every 

other simulation but these time varying windows lengths denoted d, for the likelihood 

are used. Figure 3.11 shows that when Method 2 is incorporated into the MapArg 

framework the results are very encouraging. Whiles l = 2 is slightly more efficient than 

when l = 4 the two sets of graphs show that the estimate for the TIM location is very 

accurate and is aIso quite consistent across various values for d. Figure 3.12 assumes 

that penetrance is not complete (fI = 0.8) and it can been seen that Method 2 is even 

more efficient than when assuming complete penetrance. In fact for l = 2, we can see 

that MapArg is capable of locating the TIM for several values of d. This finding is 

consistent with results shown in Figure 3.9. The CF data has close to 100 cases and 

controls, and in figure 3.9 we see that Method 2 is very good at finding the true location 

of the TIM. 
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Figure 3.11 Efficiency of Method 2 with the CF data with fa = 0.25 and fI = 1. 

Figure 3.13 shows the effect of Method 2 when using a window size (d), of 10. The 

results are still very accurate with Method 2 and are consistent with Figures 3.11 and 

3.12. We present the middle graph only in Figure 3.14 and it is clear that Method 2 

improves efficiency for the Cystic Fibrosis data. 
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Figure3.12 Efficiency of Method 2 with the CF data with fa = 0.25 and ft = 0.8. 

3.6 Further Developments 

The results shown above indicate that for certain situations Method 2 improves the 

performance of MapArg when there is incomplete penetrance and phenocopy present. 
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Figure 3.14 CF data with a window of size 10 (d = 10) and half window size of 2 

(l = 2). 

In particular, when phenocopies are present Method 2 renders MapArg more accurate 

at estimating rr, for large sample sizes. Method 1 is rather inefficient but seems to be 

able to help in some cases. It is possible to develop other methods that correct for the 

penetrance parameters and it is of particular interest to develop this method for diploid 

data. The approach of Method 1 is rather naive but it is a good starting place for 

modeling the penetrance parameters, particularly when MapArg will correct for fI and 



73 

fo for diploid data. An extension of Method 1, that works with diploid data is given in 

the following section. 

3.6.1 Method 1 with Diploids 

The Model 

Until now we have supposed implicitly that we are dealing with a recessive model: each 

individual possesses the mutation on each of their two chromosomes. Now, we suppose 

a more general model. Let's suppose a population of N 12 diploids or N haploids, in 

other words N 12 individuals, N haplotypes. As before, t represents the mutant allele 

at the locus of the TIM and T represents the the wild type and Si denote the affected 

status of phenotype for individual i, where Si = 1 for cases and 0 for controls, and 

it(l, .....NI2). Now the penetrance function has three parameters as opposed to two for 

a haploid population. The penetrance function F = (Jo, fI, 12), is defined as: 

fo: P(Si : liT, T) 

fI - P(Si - lit, T) 
{ 

12 = P(Si = lit, t). 

A recessive model corresponds to F = (0,0,1), meaning the only possibility for a diploid 

population to display signs of being effected by a TIM is if both chromosomes carry the 

mutant allele. In fact, until now we have implicitly worked with a recessive model. A 

dominant model is one for which F = (0,1,1). Therefore, even in only one of two the 

chromosomes carry the mutant allele the diploid will be effected. 

As mentioned earlier (See Section 3.2), the graphs in MapArg are produced starting at 

Ho, which is the haplotype data at genotype level. Define the state immediately before 

this one, i. e. the phenotype level and denote it H -1: 

Hl : Haplotype with the trait (i.e. phenotype level), 

Ho: Haplotype with mutant status (i.e. genotype level). 
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Note that H-1 can also represent diploid data as well as haploid data i. e. H-1 represents 

the phenotype associated with whole genotype (two sequences) for each individual in 

diploid data as opposed to one sequence. Suppose for the moment that the haplotypes 

are known. We are looking for Q(H_1), or to be more precise Q(H-1ITT), where TT 

represents the position of the TIM as previously defined; and everything is conditional 

on TT so we drop this parameter form the notation. We can write: 

Q(H-d = LQ(H_1IHo)Q(Ho) 
Ho 

The distribution Q(H-1IHo) depends uniquely on the penetrance function F, and no 

information on the genotype is needed. Now, let us introduce a proposaI distribution 

= '" Q(H-1IHo) P(R IH )Q(R)o P(R IH) 0 -1 0
Ho 0-1 

L f(H_ 1,Ho)P(HoIH_1)Q(Ho), 
Ho 

where f(H_ 1,Ho) = Q(H-1IHo)/P(HoIH_1) and as before, we can write the likelihood 

function that estimates TT: 

(3.5) 

Notice that the development of Q(H_d is analogous to that of Q(H- d for haploid data 

(See expression (3.3)). The only point in which they differ is in the estimation of the 

two unknown terms above, namely: 

Estimation of these two terms for diploid data will soon be explained. Beforehand, it is 

necessary to express ç, frequency of the mutation in the population, as a function of F. 
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3.6.2 The Frequency of the Mutation for Diploid Data 

Suppose the frequency of the mutation among the population of 2N chromosomes is ç. 

Furthermore, suppose the genetic model F = (Jo, fI, 12) is known. Let ne and në be the 

number of cases and controls in the sample, and fe and h, their respective frequencies. 

We need to estimate ç as a function of ne and në. Since ç represents the mutation rate 

at the population level, we deduce that the individuals of the population are: 

tt, with probability (1 _ Ç)2 

tT, with probability 2(1 - Ç).ç 
{ 

TT, with probability ç2. 

Renee, the average frequencies of cases (Je) and controls (h) are: 

fe = (1- Ç)2.fo + 2(1- ç)·ç·fI + ç2·h 

{ h = (1- ç)2.(1- fa) + 2(1 - Ç).ç.(l - fI) + ç2.(1- 12)· 

and it is possible to solve for ç: 

Therefore we can estimate ç as a function of F = (Jo, fI, 12), if we have a random 

sample. Unfortunately, this is not the case, since the mutation is usually rare: so in 

order to have a representative sample we choose ne and në to be similar in size. It is 

reasonable to assume however that the researcher has a good estimate of the frequency 

of the disease at population level, so we can still calculate the frequency of the mutation 

with the penetrance function F. 

Evaluation of Q(H-IIHo) 

Rere, Ho corresponds to the genetic data with information of the TIM. From a written 

viewpoint this is rather delicate, because we need to consider information in pairs of 

haplotypes within Ho. A pair is tt, tT or TT. The probability that a particular pair 

of exhibit the disease or not in Hl depends only on the penetrance function F, which 

we consider known. Denote Si, a random variable that equals 1 if individual i is a case 

and 0 otherwise, and Ci, the genotype of of the individual i, where Ci = (tt, tT, TT). 
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For ease of notation, we will write P(Gi = TT) as P(TT). We have: 

P(Si = liTT) = h 

P(Si = litT) = h 
{ 

P(Si = litt) = fo. 

Evaluation of P(HoIH_ 1 ) 

This proposaI distribution, is the distribution that renders the method efficient if well 

chosen and possibly Iess efficient otherwise. For a given individuai i, we look for the 

probability that there genotype is TT, Tt or tt. This probability depends on the pene­

trance fun.ction F: 

p(TTnSi = 1)
P(TTISi = 1) 

P(S(i) = 1)) 

P(Si) = 1ITTP(TT) 
P(~ = 1) 

f2.ç2 f2.ç2 
= 

f + c (1 - ç)2·fo + 2(1 - ç).ç.h + ç2·h 
The three probabilities for cases are obtained similarly, and we have: 

P(TTISi = 1) = 
(1 - ç)2.fo + 2(1 - ç).ç.h + ç2·h 

f1.2(1 - Ç).ç
P(tTISi = 1) = 

(1 - ç)2.fo + 2(1 - ç).ç.h + ç2·h 
fo.(1 - ç)2

P(TTISi = 1) 
(1 - ç)2·fo + 2(1 - ç)·ç·h + Ç2·h' 

and similarly controls may be deduced. However, the sample is not randomly cho­

sen. Let 9c be the case frequency of the sample, which is known. We are looking for 

p' (HoIH-d, where p'0 represents the proposaI distribution for the sample. Note that 

p' (TTISi = 1) = P(TTISi = 1) 

as we sample with respect to the status cases and controls. The other probabilities are 

obtained similarIy. We now want to find: 

P' (8- = ITT) = p' (TTISi = l)P' (Si = 1) 
t 1 p' (TT) 
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Note that: 

p' (TT) p' (TTISi = l)P' (Si = 1) + p' (TTISi = O)P' (Si = 0) 

P(TTISi = l).ge + P(TTISi = O).g(; 

he + (1 - h)e (1 _ )
·ge _ f' gej e 1 e 

Similarly, 

P'(Tt) = fI2(1 - ç)ç + (1 - fI)2(1 - ç)ç (1 _ )
fe ·ge 1 - fe . ge , 

and 

p' (tt) = fO(1j- ç)2 .ge + (1- fo~(~ - ç)2 .(1 - ge)' 
e 1 e 

Therefore, we are able to calculate 

We use P(GiISi) as the proposaI distribution (P(HoIH-1))' The naive approach consists 

of choosing the two mutations for an individual according to the proposaI distribution: 

if an individual has the genotype TT, we assign a mutation to each of their haplotypes, 

if it is tt, the wild type allele is assigned to each haplotype and in the case where tT is 

chosen a mutation is randomly assigned to one of the two haplotypes whiles the other 

haplotype will have the wild type allele. Then to calculate Q(H-1IHo) we have by 

independence, 
n 

Q(H- 1IHo) = II P(PiIGi)' 
i=l 

Note that in the case of diploid data, it is not true that each ail sequences are inde­

pendent of one another as haplotypes are treated in pairs. Independence is assumed for 

the present, to simply calculations. This method has not yet been implemented but it 

is possible to do so in the future. 

3.6.3 Adaptations of other researchers' methods for MapArg 

Chapter 2 reviewed the fine mapping methods McPeek and Strah's (1999), Morris et 

al. (2002) and Zollner and Pritchard (2005) with an emphasis on their treatment of the 
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penetrance parameters within their methods. The DHS method of McPeek and Strahs 

accounts for phenocopies (i.e. fa> 0), that are a result of multiple origins of the TIM 

and where the data are haploids. Incomplete penetrance (fI < 1) is not taken into 

account as the likelihood of haplotypes from the controls in the sampIe is not calculated 

within the coalescent model. 

Similarly, the shattered coalescent model by Morris et al. (2002) deals only with phe­

nocopy and does not look at incomplete penetrance. Although, the authors go one step 

further and account for sporadic events as well as multiple origins of the disease. This 

is quite important as sorne phenocopy may be caused by multiple origins of the disease; 

however, there are many complex diseases in existence that result from sporadic cases, 

i.e. cases who have no mutation in the ancestry of the sample. These sporadic cases 

are explained by environmental factors e.g. an individual may contract lung cancer 

from smoking (an environmental factor), without carrying a TIM for lung cancer. AI­

though DHS and the shattered coalescent model appear to deal well with phenocopies, 

it is of interest to us to model both incomplete penetrance and phenocopy at the same 

time. Perhaps given the fact that the incomplete penetrance does not effect the perfor­

mance of MapArg too strongly, it may be worth considering concentrating on modeling 

phenocopy only, in which case adaptations of the above methods couId be considered. 

The fine mapping method of Zollner and Pritchard (2005), TreeLD, accounts for both 

incomplete penetrance and phenocopy for haploid data. The authors also mention 

that they are currently adapting their model to work for diploid data also. Recall that 

TreeLD constructs the genealogies independently of the phenotype data. The likelihood 

of the phenotype data is then estimated conditional on the genealogies. It is at this stage 

that a grid of possible levels for fI and fa is introduced, and the function F = (fI, fa) 

that maximizes the phenotype data is chosen as the penetrance levels for the given 

sample. If fa and ft are unknown, a strategy similar to what is done in Zollner and 

Pritchard (2005) can be used: we can integrate over a set of values. If we compare the 

ln L(rT) for the Cystic Fibrosis data, for l = 8 for example, when fI = 1 compared to 

ft = 0.8, we see the ln L(rT) is two times higher when ft = 0.8, suggesting that this 
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model is more probable. 

Recall that as well as constructing genealogies independently of the phenotype data, 

'üeeLD also constructs the genealogies independently of the mutation status. In order 

to model Q(Hr ) (the distribution upon which genealogies are constructed) in MapArg, 

it is necessary to know the status of the haplotype as being mutant or non-mutant. 



CONCLUSION
 

Incomplete penetrance and phenocopy are two important phenomena that occur among 

populations with complex diseases. As MapArg assumed complete penetrance and no 

phenocopy to date,it was of great importance to see the effects, if any, that these 

parameters would have on the efficiency of this fine mapping method in finding the 

TIM. We have shown by way of simulation that incomplete penetrance does not appear 

to effect the performance of MapArg, whereas phenocopies among the sample render 

the method quite inefficient, even for quite low levels of phenocopy. The need to account 

for these parameters, especially phenocopy within the MapArg framework has become 

evident. 

Given that the levels of penetrance and phenocopy are known a priori, two methods 

were developed in order to correct for the penetrance parameters. The first method, 

a rather straightforward approach, proved ineffective in most situations but improved 

efficiency under a few circumstances. However this method provides a starting point 

for the development of a model that works for diploid populations. Until now, MapArg 

works on haploid data but it is of interest to extend the method to diploid data. 

Incorporating method 2 showed sorne improvement in the performance of MapArg. 

The most marked improvement can be seen when the sample size is increased. Also, 

the second method seems to work extremely well on the Cystic Fibrosis data, data that 

is known to have phenocopies resulting from multiple mutations. This result is very 

encouraging as it shows this method can work well for "real" data as well as simulated 

data, where situations are sometimes more ideal than in reality. 

Further discussion as to how other methods of accounting for the penetrance parameters 

might somehow be adapted to suit the MapArg framework, is given. It is clear that there 
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remains a lot of further research in this area and it seems worthwhile to concentrate more 

on modeling phenocopy than penetrance as it is this parameter that has the greatest 

effect on MapArg. 
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