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RÉSUMÉ 

Les méthodes de cartographie fine sont des modèles qui estiment la position 
d'un allèle mutant pouvant causer une maladie dans un groupe d'individus. Le tra­
vail de Larribe et al. (2002, 2003), MapArg, n'a pas tenu compte des paramètres de 
pénétrance jusqu'à maintenant. Ce mémoire démontre les effets de ces paramètres, 
soit la pénétrance et la phénocopie, sur la performance de MapArg, dans des popu­
lations haploïdes. De plus, deux méthodes que nous avons développées seront ensuite 
incorporées à MapArg dans le but d'améliorer son efficacité si il y a pénétrance et/ou 
phénocopie. 

Les résultats démontrent que la phénocopie peut avoir une influence négative sur 
l'efficacité de MapArg. La pénétrance ne semble pas avoir d'effet majeur sur MapArg. 
La première méthode développée est un modèle simple qui n'apporte pas d'amélioration 
majeure de MapArg par rapport à ce même modèle sans ajustement. Par contre, 
cela procure un point de départ pour les développements futurs dans les populations 
diploïdes. La deuxieme méthode améliore l'efficacité de MapArg sous certaines condi­
tions, en particulier, si la taille de l'échantillon est assez grande. La deuxieme méthode 
fonctionne également très bien pour les données réelles de la Fibrose Kystique (Kerem 
et al., 1989). 

Mots clés: phénocopie, pénétrance, pénétrance incomplète, cartographie fine 



ABSTRACT 

Fine mapping methods are models that provide an estimate for locating a muta­
tion causing a given disease among a group of individuals. MapArg, the work of Larribe 
et al. (2002, 2003), did not take penetrance parameters into account to date. This 
thesis shows the effect of these parameters, namely penetrance and phenocopy, on the 
performance of MapArg for haploid populations. Also, two different methods are devel­
oped and incorporated into the MapArg framework with the goal of increasing efficacy 
of MapArg in the presence of penetrance and/or phenocopy. 

Results show that phenocopy can strongly effect MapArg's efficiency while pene­
trance does not have much of an effect. The first Method developed is a simple model 
that does not prove much more efficient than MapArg without any adjustment; however, 
it provides the groundwork for further development when diploid populations will be 
modeled. Method 2 has shown to improve the efficiency of MapArg under certain con­
ditions, in particular, when the sample size is large. This method also greatly improves 
the performance of MapArg with the Cystic fibrosis data (Kerem et al., 1989). 

Keywords: phenocopy, penetrance, incomplete penetrance, fine mapping 



INTRODUCTION 

Gene mapping of complex diseases is an ongoing research in the field of genetics. One 

of the primary goals of this research is to locate the position of a mutation(s) (or causal 

gene(s)), that causes a given disease. Fine mapping, a branch of gene mapping, uses 

information from previous studies that have ascertained an approximate location for 

the mutation(s) or causal gene(s) and concentrates on pinpointing the exact location. 

Larribe et al. (2002) and Larribe (2003) have developed a fine mapping method called 

MapArg that estimates the position along a chromosome of a mutation responsible for 

a given disease. Approximating complex biological processes by means of mathematical 

models is a difficult procedure and usually some hypotheses that are not always realistic 

are necessary in order for these models to be feasible. The research of Larribe, and 

the fine mapping methods of his contemporaries, are constantly evolving over time, 

incorporating models for biological aspects that were not previously accounted for. 

One assumption that MapArg has worked with to date is that the disease being studied 

has complete penetrance and no phenocopy. In biological terms this means the following: 

if individuals are affected by a certain disease they automatically carry the mutation 

causing this disease and likewise, if individuals are not affected by disease they do not 

carry the mutation. It is well known however, that for complex diseases, there exists 

incomplete penetrance and phenocopy, e.g. Breast Cancer: some women suffer from 

breast cancer without carrying the causal gene (phenocopy) and other women carry 

the causal gene but do not suffer from breast cancer (incomplete penetrance). These 

phenomenon collectively known as the penetrance parameters are currently being taken 

into account either directly or indirectly, by McPeek and Strahs (1999), Morris et al. 

(2002) and Zôllner and Pritchard (2005) in different ways. 
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The goal of this thesis is to study the effect of incomplete penetrance and phenocopy 

on the performance of MapArg, and also to develop sorne models that can account for 

these parameters within the MapArg framework. This body of work is composed of three 

chapters. Chapter 1 contains an introduction to the biological notions that are necessary 

to understand fine mapping. The mathematical models upon which MapArg and other 

fine mapping methods are based are also presented in Chapter 1. A detailed explanation 

of MapArg is discussed in Chapter 2 along with a review of the fine mapping methods 

in the literature. Particular attention is given to the way in which other research 

methods have taken incomplete penetrance and phenocopy into account. The third and 

final chapter and is in fact the crux of the thesis and the original work contained here 

encapsulates the main goal of this thesis. The effects of the penetrance parameters 

on MapArg are shown. Following this are two' methods that have been developed to 

take these parameters into account within the MapArg framework. Results of the 

performance of each method are then presented and discussed. Also ideas for future 

development is discussed. 



CHAPTER l 

AN INTRODUCTION TO GENETICS 

1.1 The Human Genome 

1.1.1 Overview 

Although the subject at hand is to develop existing statistical methods for analyzing 

data, we are nonetheless working in the domain of Population Genetics. For this reason, 

it is necessary to introduce sorne basic biological notions. This should facilitate the 

reader in understanding the motivation behind our research and also the methods that 

will be presented in this thesis. 

Within each nucleus of each human ceIl , there are 23 pairs of chromosomes, 22 paired 

autosomes along with two sex chromosomes. These 23 pairs of chromosomes contain aIl 

of the genetic information for this individual. Each chromosome is formed from a long 

piece of DNA (deoxyribonucleic acid), a coiled double-stranded molecule that winds 

itself up inside the chromosome. About 2 % of the DNA in a chromosome represents 

genes. Genes are what determine a person's characteristics and there are between 30 

000 and 40 000 of them in the nucleus. This complete set is called the human genome. 

Each chromosome carries a couple of thousand genes and many of these are cornmon to 

aIl human beings. In fact approximately 99.9 % of aIl humans DNA is identical. It is 

the other 0.1 % that distinguishes us from one another, an example of a characteristic 

or trait is eye color. An important characteristic that is of interest to us throughout this 
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thesis is a person's susceptibility to a disease. Environmental factors, such as lifestyle 

(e.g. smoking and nutrition), also influence our susceptibility to disease. Modeling the 

relationship between a person's genetic makeup and environmental factors is necessary 

to understand how an individual has contracted an illness. If a person is diagnosed with 

a particular illness, and we have information on their lifestyle and environment as well 

as their genetic makeup, it would be very informative and could assist in finding the 

location of the gene(s) responsible for this illness. 

1.1.2 DNA and Bases 

The DNA molecule is a double helix. It has two strands with links between them. Each 

link between the strands is made from a pair of nucleotide bases. There are four types 

of bases called Adenine(A) , Guanine(G), Cytosine(C) and Thymine(T). Each base pairs 

up with its complementary base: 

• A pairs with T 

• G pairs with C 

The sequence of these base pairs is unique to any individual apart from identical twins, 

who have the same DNA. 

The DNA in our chromosomes has 3 000 000 000 base pairs (or 3000 megabases), noted 

3000Mb. A single gene is represented by a few thousand bases, so given that there 

are between 30 000 and 40 000 genes, around 150Mb carry useful information. Thus 

approximately 98 % of our DNA is data that does not carry any genetic information. 

1.1.3 Polymorphisms and Mutations 

Each time a cell divides, the chromosomes in the new cell carry a copy of the original 

chromosomes. A polymorphism occurs when there is an error made during the DNA 

replication. Sequence variations result in different forms of the same gene. These 
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forms of the same gene are called alleles. Polymorphisms are cornmon differences in 

the sequence of DNA, occurring in at least 1% of the population. By definition, Single 

Nucleotide Polymorphisms (SNPs) are the smallest possible change in DNA. Alleles 

that .occur most frequently in the population are referred to as wild type alleles. For 

example, if there are two possible alleles at a locus called A and a, and A is the more 

common of the two then it is called the wild type allele for that particular locus. 

Mutations are less common differences in DNA sequences, occurring in less than 1%of 

the population. They can be passed down from a parent to a child, can occur during 

conception or may even be acquired during an individuals lifetime. A mutation can 

arise in response to an environmental factor such as exposure to toxins or diet. A large 

proportion of DNA variation has no effect but sorne changes within genes can contribute 

to the susceptibility of a disease. 

1.1.4 The Genotype-Phenotype relation 

Each gene or pair of alleles has a particular position along the chromosome. The locus 

is the term used for the position of a gene but it may also refer to the position of a 

marker. A marker is a general term for a trait or DNA segment that is easily identified. 

Markers are useful as they may be closely linked to a gene or trait that is difficult to 

identify. In the work presented here we will be using SNPs, whose positions are weIl 

known, as markers along the chromosome. If we look at a set of loci along a chromosome 

the collective name for the pairs of alleles found at each locus is the haplotype. 

The genetic material transmitted from one generation of humans ta the next is done sa 

in pairs of chromosomes. Therefore, when studying the ancestry of a family, we should 

simultaneously account for the transmission of haplotype on 2 chromosomes, one from 

the mother and one from the father. Rumans are said ta be diploid for this very fact, 

but we shall see in subsequent chapters that modeling diploid populations adds a level 

of complexity to an analysis. Normally, to simplify matters, humans are regarded as 

haploids: instead of looking at pairs of haplotypes, individual chromosomes are studied 
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independent of their pair. In other words, we view the genetic makeup of a human 46 

separate sequences as opposed to 23 pairs of chromosomes. 

The genotype represents the allelic composition of an organism that determines a trait, 

whiles the phenotype is the physical expression of this allelic composition i. e. the 

physical trait. Genotypes and phenotypes are very closely linked: a combination of 

alleles on one or several chromosomes (the genotype) manifests itself physically as a 

trait or characteristic (the phenotype). Unfortunately the relationship between genotype 

and phenotype can be complicated by environmental factors. The phenotype may also 

change over time due to aging or environmental changes. Further complexity may arise 

due to gene interaction, when a physical trait does not express itself unless a particular 

combination of more than one gene is present. 

A dominant relationship may exist between alleles at the same locus. A dominant allele 

is one which automatically influences the phenotype regardless of the other allele type 

at the locus. If an allele is not dominant then it is known as a recessive allele. The only 

way in which a recessive allele can be expressed physically is if an individual carries two 

recessive alleles at the saille time. 

1.1.5 Binary and Quantitative Thaits 

The phenotype of interest may have a binary or quantitative trait. Binary traits are 

ones that have two possible outcornes only: either the characteristic of interest is present 

or not present. It is conventional to say the status of a binary trait phenotype is either 

affected or unaffected. An example of a phenotype with a binary trait is Cystic Fibrosis. 

In this case, if a collection of individuals is tested for the illness, they will be grouped into 

two sets, those who have Cystic Fibrosis (affected) and those who don't (unaffected). In 

statistical terms, affected individuals are considered as cases and unaffected individuals 

as controls. Quantitative traits are those which are measured on a continuous scale. 

Blood pressure is an example of one such trait. We will be working with binary trait 

phenotypes only in our work and henceforth, will refer to individuals as being either 
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cases or controls. 

In gene-mapping, a series of sequences are analyzed to see if it is possible to find the 

location of a gene responsible for a particular trait. UsuaUy the trait we are interested 

in is a disease or illness. We caU the gene responsible for this trait, a trait infiuencing 

mutation (TIM). Assuming a relationship between genotype and phenotype without 

any sort of distortion would lead us to conclude the foUowing: cases possess the TIM 

whiles controls do not possess the TIM. Unfortunately, it is rare that a distortion free 

relationship between genotype and phenotype exists. Moreover, as humans are diploid, 

they have 0, 1 or 2 copies of the TIM; if the model is dominant, people are cases with 

1 or 2 mutations, whereas in a recessive model, if people are controls, they can have 

o or 1 TIM. 80 the relation between the TIM and the phenotype is far from direct. 

We will make sorne simple assumptions regarding diploidicity later, in order to simplify 

development. In Chapter 3, we will introduce a method that models this complex 

relationship within the context of gene mapping. 

1.2 Gene Association and Fine Mapping 

1.2.1 Gene Inheritance 

Genes are passed down from parent to child during a process known as meioses. Figure 

1.1 shows alleles at three loci being transmitted from two parents to seven children. 

Individuals represented by a square are males and those represented by a circle are 

females. We can see that children 3, 4, 7, 8 and 9 receive complete blocks of genetic 

material from the paternal segment. However, children 5 and 6 receive aUeles from both 

chromosomes of the father. This is because DNA segments of the maternaI chromosomes 

have switched during meiosis and thus these children receive material from the paternal 

grandmother and paternal grandfather at the same time. This process of crossing over 

of segments of a parental sequence is known as recombination. 

The probability that there is a recombination between two loci during meioses is known 
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Figure 1.1 An illustration of the transmission of genes within a family. Males are 

represented by squares and females by cirdes. (from Larribe, 2003 ) 

as the recombination fraction, denoted bye. The rate of recombination is a function 

of the distance between two alleles. When two loci are on different chromosomes they 

are not linked as they are transmitted independently of one another, hence the recom­

bination fraction e= ~. This is because either allele has an equal probability of being 

transmitted to an offspring. Loci that are on the same chromosome have a chance of 

recombination. In this case e< ~ and the alleles at these loci are considered linked. The 

further apart the two loci are positioned, the doser eis to ~ and the weaker the linkage 

is between the alleles. This fact leads to the concept of genetic distance. Although 

related to physical distance there is no simple function that relates them. The reason 

for this is that the rate of recombination is not uniform across the chromosomes. More­

over, the recombination rate is different for males and females. We work with genetic 

distances and the unit of measurement for this distance is the Morgan. The Morgan 

is defined as the unit of distance where exactly one recombination event is expected to 

occur (OIson et al. 1999). 
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1.2.2 From Association to Fine Mapping 

Association analysis is widely used to infer an approximate location of a TIM as follows: 

a segment of DNA is genotyped at well known positions called markers (see Section 1.1.4) 

for as many relations as possible within a family. If enough information is available the 

inheritance pattern for this pedigree can then be traced back in time. This pattern is 

then compared to the inheritance pattern of the phenotypes observed. Regions where 

the two patterns are highly correlated are thought to be linked and so an approximate 

location of the TIM is estimated. 

Consider two loci where one is a TIM locus with alleles A and a occurring at relative 

frequencies PA and Pa and the other is a marker locus with alleles Band b occurring 

at relative frequencies qB and qb. There are a total of four possible haplotypes, namely 

AB, Ab, aB and ab, with corresponding relative frequencies hAB, hAb, haB and hab. If 

the two loci are not linked, that is to say independent of one another, we can expect 

that hAB = hAb = haB = hab· 

Denote hABO as the relative frequency of the haplotype AB at the present generation. 

As previously defined, the recombination fraction is e, and (1 - e) is the probability 

of being a non-recombinant in the next generation. Assuming independence of loci, 

if a haplotype is non-recombinant in the next generation, then the probability of the 

haplotype being AB again is hABO. On the other hand, if there is a recombination 

event, the probability of the haplotype being AB in the next generation is the product 

of the two allele frequencies PA qB by the hypothesis of independence. Therefore the 

probability that the haplotype AB is transmitted to the next generation is equal to 

(1.1 ) 

and the change in the frequency of haplotype AB from one generation to the next is 

given by 

(1.2) 

As we know, if there is no association between alleles from different loci then PAPB = 
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hABO and the haplotype frequency does not change between generations. If there is al­

lelic association the haplotype frequencies will change from generation to generation and 

the change is in proportion to e. This non-random association of haplotypes is referred 

to as Linkage Disequilibrium (LD). Over time a population with linkage disequilibrium 

will approach equilibrium. The number of generations this will take is a function of e, 
the recombination fraction. If (1.1) is written as 

hAB! - PAPB = (1 - e)(hABO - PAPB), (1.3) 

it can be seen that the distance between the relative frequency of hAB and its equilibrium 

value PAPB decreases by a factor of (1 - e) at each generation. So if e is small, the 

breakdown of LD between the TIM and marker will take many more generations than 

if e is large. 

In fine mapping studies, researchers make use of the fact that there is linkage disequi­

librium between a TIM and alleles in close proximity to it. Even though the size of 

the segment around the mutation decreases over time due to recombination, there is 

less likelihood of recombination between loci that are positioned closely together on the 

chromosome. Fine mapping as the name suggests, looks at a small area with mark­

ers that are thought to be tightly linked to the TIM, using previous information from 

association studies. 

Figure 1.2 describes the relation of a group of sequences, sorne of which have been 

effected by a TIM. At time to a mutation is produced on one of the sequences. After 

several generations the mutation has been transmitted to offspring during meioses (tl)' 

Notice that most of the chromosomal region about the TIM remains intact, but already 

sorne of the original genetic material has been lost due to recombination. By the time 

t2 is reached, there is only a smaIl area around the TIM that is similar to aIl sequences 

effected by it. If we just look at the segment of the sequences between the two dashed 

lines it is clear that those effected by the TIM are more similar to each other than to 

the population at large. 
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t = ta 

après quelqueslgénérations 

après quelques lgénérations de plus 

Figure 1.2 An illustration of the evolution of a segment of chromosomes over time. At 

t = ta a mutation occurs on one of the chromosomes and the sharing of material on 

this chromosome over several generations is recorded. The further forward in time, the 

smaller the amount of shared ancestral material around this mutation is. This is due ta 

recombination (from Larribe, 2003). 
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1.2.3 Graphical Representation of the Genealogy 

The recording of the ancestry of a group of individuals, that may or may not be related 

to one another, is caBed a genealogy. It is important to note that although these 

individuals may be unrelated, they still share common aBeles, a fact that allows us ta 

construct their genealogy. As the graphical representation of a genealogy resembles a 

tree, we will often refer to the genealogy of a sample as the sample tree. The two most 

important features of the genealogy, for the purposes of fine mapping are the topology 

(shape) and the branch lengths. Figure 1.3 below is an example of a genealogical tree. 

time 
08
 
00
 
@@
 
00
 
G
 
(cj) 
@
@ 

o
 

1 324 5 6 1 324 5 6 

Figure 1.3 An illustration of a genealogical tree in two different forms (from Larribe, 

2003). 

The sequences appearing at the bottom of the tree are often referred to as the leaves of 

the tree, and represent the sample history at the present time or time zero ( TO)' When 

aB of the sequences join together at the top of the tree, this time is denoted as T*. The 

apex of the tree is referred to as the most recent common ancestor (MRCA), as indeed 

it represents the nearest time in history when aB of the sequences have an ancestor in 

cornmon.. Two or more sequences, also referred to as lineages join together at anode 
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and the interval of time between each event or each node is recorded. As previously 

mentioned, it is assumed that sequences possessing the TIM have a common ancestry 

doser back in time than sequences not possessing the TIM have. By looking at the 

leaves of a tree, we are given a good indication as to which sequences have the TIM 

and which don't as the sequences that bunch together at the bottom of the tree (i.e 

the most similar sequences) will be expected to possess the TIM. Furthermore, events 

such as the occurrence of a mutation are recorded at each node, enabling us to trace the 

TIM from the point in time that is occurs to the present. The construction of the tree 

as well as the recording of mutation events has been in effect for several decades and is 

known as coalescent theory. This theory, primarily developed by Kingman (1982) will 

be explained in the following section. 

1.3 Coalescent Theory and the Ancestral Recombination Graph 

1.3.1 Introduction 

The modeling of a genealogy by studying events in the ancestry of the sample is a 

stochastic process that is known as the coalescent. Kingman (1982) developed the 

mathematical model of coalescent theory and it has since proven a useful way to model 

data in population genetics. There are two fundamental insights that result in coalescent 

theory being an effective approach in modeling genetic data. 

1.3.2 Fundamental Insights in Coalescent Theory 

Insight 1 

Every sample of sequences have a genealogy, whether it displays variation or not. Under 

the assumption that all variation is selectiv~ly neutral, i. e. an individual genotype 

has no influence on the number of offspring it produces, the mutation process may be 

separated from the genealogy process. This Ineans that a genealogy may be constructed 

for a sample, after which a mutation model my be superimposed. To quote Nordborg 
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(2001) " In classical terms 'state' may be separated from 'descent'''. 

Insight II 

Starting off with a sample of n sequences, each sequence randomly chooses a parent 

out of n sequences in the previous generation. The genealogy of the sample can be 

constructed by tracing the coalescence of each sequence until there is one ancestor 

common to the sample, the MRCA. Thus the complete genealogy of a sample may be 

modeled without needing to know about the rest of the population. On the left hand 

side of figure 1.4 we see a sample of 6 sequences that randomly choose a parent in the 

previous generation while on the right, the ancestry of these 6 sequences is followed until 

the last generation. This sample shares a common ancestor in the second generation. 

time 

1 2 345 6 1 2 3 4 5 6 

Figure 1.4 Realization of a coalescent process for 6 sequences on 10 generations (from 

Larribe, 2003) 

It can easily be seen that given these insights, modeling a sample of sequences backwards 

in time with the coalescent may be more efficient than modeling forward in time, a 

process which requires looking at a whole population over a long period of time. 
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1.3.3 The Wright-Fisher Model 

Constructing a model which aptly describes our population yet is mathematically tractable 

at the same time, is not an easy task. One such model which is widely used in statistics 

today is the Wright-Fisher Model, so called, as both Fisher and Wright used this model 

when dealing with genetics. The model makes the following assumptions: 

•	 Generations are non-overlapping; 

•	 The population size remains constant, i. e. no migration; 

•	 The population is finite in size; 

•	 There is no selection, i.e. an individuals genotype does not influence the proba­

bility of reproduction. 

It is assumed ancestors of the present generation are obtained by random sampling with 

replacement of the previous generation. Consider two alleles A and a, at a particular 

locus. The population size is N, i alleles of which are A and N - i of which are a. Allele 

frequencies for A and a among this population are -h and (N;;i) respectively. 

The probability that allele A will have j copies in the next generation given that it has 

i copies in this generation happens to be modeled by the binomial distribution: 

(~)pi(l-p)N-j, o::; j ::; N, 

where p is the frequency of allele A, i.e. p = N' Letting Cl represent the number of 

copies of allele A in generation 1, the present generation being 0, then Cl is a binomial 

random variable. Thus 

E(C l ) = Np = i, 

Var(C1 ) = Np(1 - p). 

The frequency of A will drift going from past to present, either becoming extinct or 

reaching the population size N. 
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1.3.4 Coalescence under the Wright-Fisher Madel 

Constructing the genealogy of a sample consists of knowing the topology and branch 

lengths of the tree. Under the Wright-Fisher model and due to selective neutrality, aIl 

sequences are equally likely to coalesce. 

Lets take a sample of n sequences. A sequences randomly chooses a parent from the pre­

vious generation independently of aU other sequences. The probability of two sequences 

having the same parent is -k and the probability that two sequences have distinct par­

ents is 1 - -k. As generations are non-overlapping, the probability of being distinct for 

t generations is (1 - -k)t. If we re-scale the time so that one unit corresponds to N 

generations we have 

1 )NT
P(2 distinct lineages) = 1 - N( 

As N goes to infinity, 

( 1 _ ~ ) NT -> exp -T . 

Thus, the coalescent time for a pair of lineages is Exponential with mean 1. Considering 

k lineages, the probability of k distinct lineages in the previous generation is 

k-l N - i k-l ( i ) m ( 1 ) II 1V= II 1- N =l- N +O N2 . 
,=0 1=0 

Now we want the probability of k distinct lineages for exactly t generations. This is 

the same thing as not having any coalescent event for t generations and then having a 

coalescence in the t + lth generation, which is 

As N tends to infinity, by the same argument as above we have that the time to 

coalescence for k lineages is Exponential with mean k(Ç-l). 
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Each step back in time the number of lineages decreases by one. Thus T(k) is the time 

from k to k - 1 lineages. As each coalescent event is independent, the n - 1 coalescent 

times, T(n), T(n - 1), .. " T(2) are mutually independent exponential random variables. 

Most of the variability in tree height is determined by T(2). Intuitively this makes sense 

as the more lineages there are the more likely it is to have a coalescence. With only two 

sequences left to coalesce, this make take a very long tiille. 

When using coalescent theory to estimate trees for a sample of sequences, thousands of 

trees are constructed. The idea is to find the trees that lead to a lot of information about 

the TIM position. Thus we are looking for informative trees. It is important to note 

that the coalescent is used to estimate genealogies and collectively use this information 

to find the TIM. 

1.3.5 The Ancestral Recombination Graph 

Griffiths and Marjoram (1996a, b) introduced the Ancestral Recombination Graph 

(ARG), an extension of the coalescent that takes recombination events into account. 

As a recombination can result in one sequence branching into two separate sequences 

in the past, we no longer deal with a tree, so a graph is now used. An example of an 

ARG is presented in figure 1.5. 

The graph depicts three possible events that can occur when looking backwards in 

time. A coalescent event can occur resulting in two sequences joining together in a 

previous generation. Mutation events leave the number of lineages unchanged, a single 

marker changes however. One lineage branching into two lineages in the past represents 

a recombination event. Recombination results in both ancestral and non ancestral 

material appearing on the ARG. When a recombination event occurs, the sequence is 

split into two parental sequences, the left parental sequence and the right one. The left 

parental sequence shares the same genetic material as the" child" from the start of the 

sequence to the point of recombination. The right parental sequence shares the same 

genetic material as the child from the point of recombination to the end of the sequence. 



18 

Figure 1.5 An example of the ARC with four markers. Shaded-in boxes represent 

ancestral wild type alleles, un-shaded boxes represent non-ancestral material and half­

shaded boxes, an ancestral mutant allele. (from Larribe, 2003) 
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Recombination is a phenomenon that plays a large role in linkage disequilibrium, the 

non-random association of haplotypes, and consequently in fine mapping genetic se­

quences. Although taking recombination into account when modeling a sample geneal­

ogy can complicate computation, it does provide a more realistic representation of the 

behavior of genes. 

1.4 Penetrance and Phenocopy 

Thus far, the biological notions along with mathematical models involved in estimating 

the location of the TIM have been discussed. This last section of Chapter 1 will describe 

one final biological phenomenon that has a large effect on the ability of fine mapping 

methods to accurately locate the TIM, namely penetrance and phenocopy. 

As already mentioned, the relationship between the genotype and the phenotype may 

be quite complex. If however, sorne additional information was available on the trait 

of interest, if may be possible to model the genotype-phenotype relationship with more 

precision. Let us introduce the following parameters: 

Penetrance fI = Pr(AffectedITIM),
 

Phenocopy fa = Pr(AffectedITIM),
 

where TIM is the compliment of TIM. If fI = 1 and fa = °then we say there is 

complete penetrance and no phenocopy. When dealing with complex diseases however, 

it is usually the case that fI < 1 and fa > o. 

More generally, humans have genes by pair, so we have to define penetrance by three 

probabilities: 

la = Pr(AffectedlO TIM), 

II = Pr(Affected l1 TIM), 

12 = Pr(Affected l2 TIM). 

If a disease is dominant, then 11 = 12, and if a disease is recessive la = 11. We expect 
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that Jo <= JI <= J2. However, as we will see later, we suppose for simplification of 

sorne parts of the present work that penetrance is just defined by fI and fa. 

Linkage disequilibrium (LD) is one of the fundamental insights upon which fine mapping 

methods are built. With LD we make use of the fact that sequences possessing a rare 

mutation (i. e. cases) are likely to share more ancestral material amongst one another 

than with the rest of the sample (i. e. controls). If incomplete penetrance exists among 

the sampie of sequences being modeled, it is no longer clear which cases possess the 

TIM anymore. Likewise, if there are phenocopies among the sample it couId turn out 

that there are cases who have contracted the disease being studied, without actually 

possessing the TIM. This could result in looking for ancestral linkage where it may not 

exist and could render fine mapping methods less accurate. 

Tt is of great importance therefore, to try and estimate these parameters in the context 

of fine mapping. Chapter 3 will discuss the effect of various levels of penetrance and 

phenocopy on the fine mapping method MapArg. AIso, sorne methods for modeling 

these parameters are developed. Here is a short example for il1ustrative purposes 

An Example of the effect of penetrance and phenocopy 

20 people are known to have the TIM for disease A and 40 people are known not to have 

this TIM. Tt is also known that the penetrance for this disease is .85 and the phenocopy 

level it .17. Thus if we want measure the number of people that are sick, a very good 

approximation is 20 * .85 +40 * .17 = 23.8 or 24 people. 



CHAPTER II 

MAPARG AND üTHER FINE MAPPING METHüDS 

In 2002, Larribe et al. developed a fine mapping method using likelihood theOl'y and 

Importance Sampling simulation techniques. This body of work, henceforth called Ma­

pArg, produces a likelihood estimate of the location of the TIM. Up until now MapArg 

has been implemented with the assumption that there are no phenocopies and there 

is complete penetrance i.e., every case has the TIM and no control has the TIM. As 

we know, most illnesses have some level of phenocopy and not necessarily complete 

penetrance. Breast Cancer for example may be contracted due to environmental fac­

tors, resulting in phenocopies and not every female that possesses a gene causing breast 

cancer will actually develop the disease and so there is incomplete penetrance. 

Before we go on to describe our suggested methods for dealing with incomplete pene­

trance and phenocopy in fine mapping, we will describe MapArg in some detail. Other 

researchers that have currently developed fine mapping techniques for locating the TIM, 

have had to model incomplete penetrance and phenocopy also. Theil' methods will be 

described with an emphasis on how they deal with these parameters. In particular, 

the work of McPeek and Strahs (1999), Zallner and Pritchard (2005) and Morris et al. 

(2002) will be discussed. 
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2.1 Simulation Techniques 

Simulation can be used to approximate integrals when no exact solution can be found, 

which is the case in most gene mapping methods, as they involve multi-dimensional 

integration. There are two very popular methods of simulation in use today, Importance 

Sampling (IS) and Markov Chain Monte Carlo (MCMC). MapArg employs IS techniques 

while the authors mentioned above use MCMC methods to deal with their integration. 

ln aH cases, an estimate for the position of the TIM is sought, whether by Maximum 

Likelihood or Bayesian Inference. There are severa! parameters to be estimated in order 

to estimate genealogies, but let us assume for simplicity that we are dealing with one 

parameter 8. If we denote L(8) as the likelihood of the data in a sample i.e. L(8) = 

P(8[D), then ê is the estimate that maximizes this likelihood under maximum likelihood 

inference. In other words ê is the maximum likelihood estimate (MLE) for 8. Bayesian 

inference incorporates a prior distribution about 8 into the model and the distribution 

of 8 is given as 

P(8I D) = L(8)P(8)
P(D) . 

A point estimate for 8 is then reported and is usually the mode of the distribution 

P(8ID), where D represents the data. The previous chapter introduced the idea of 

using a genealogical tree of a sampIe of unrelated individuals to find the position of a 

mutation (see Section 1.3). Estimating the tree, T, at each potential location of the 

TIM is pivotaI in finding its true position. The likelihood of the data can be written in 

terms of the sample genealogical trees as foHows: 

L(8) = P(DI8) = L P(DIT, 8)P(TI8). 
T 

Now P(DIT,8) and P(TI8) can be calculated more easily than P(DI8) as we shaH 

shortly illustrate. The quantities in the tree evaluation are continuous thus giving an 
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integral instead of a sum: 

L(B) = P(DIB) = JP(DIT, B)P(TIB)dT. 

Calculating this integral is extremely complex and time consuming. Stephens (2001) 

notes that the number of tree topologies relating ten chromosomes is 2 571 912 OOO! 

This is where approximation techniques using simulation can be very useful. 

2.1.1 Basic Monte Carlo Integration 

IS and MCMC techniques build on basic Monte Carlo simulation so we shaH describe 

the principles of this before explaining IS and MCMC in detail. Suppose we want to 

evaluate 

J = lb h(x)dx, 

where h(x) is a very complicated function for which no closed form solution can be 

yielded. J can also be written as 

J = lb h(x)dx = lb w(x)f(x)dx, 

where w(x) = h(x)(b - a) and f(x) = (b~a)' Now f '" Uniform(a, b) hence 

J = Ej(w(x)), 

x'" Uniform(a, b). If we generate Xl, X2, ...X n '" Uniform(a, b) where N is large, the 

law of large numbers gives us: 

1 n 

J = N L w(Xi ) !!... E(w(x)) = J. 
i=l 

Applying this method to our problem we have: 

lb h(x)dx = lb w(x)f(x)dx = t P(DIT, B)P(TIB)dT ~ ~P(DIT(i), B), 
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Unfortunately this rather straightforward method has one major drawback it is quite in­

efficient for large data sets. However both IS and MCMC methods improve the efficiency 

of basic Monte Carlo integration. 

2.1.2 Importance Sampling 

When trying to evaluate 

J = lb h(x)dx, 

the basic Monte Carlo method involves sampling from j, which in our problem above 

is P(DIT, 8). By attempting to concentrate on computing trees for which P(DIT, 8) is 

large, the computational effort involved can be reduced. J can be rewritten as follows: 

rvwhere Y = w(;{t)(x). Simulating Xl, X2, ...X n 9 for N sufficiently large, J can be 

estimated approximately by 

and by the law of large numbers Î .!... J. Although we are stillleft with the same problem 

of sampling from an unknown distribution, we now have a proposaI distribution g, which 

in our case we shall denote as Q(T). If Q(T) is chosen wisely, the technique will simulate 

trees that contribute significantly to the likelihood and therefore the computation time 

is reduced. The optimal choice Qê for QO is the post data distribution of the tree T 

given the sampIe data and 8 and is 

Q*(T) = P(TID B) = P(TI8)P(DIT,8) = P(T, D18) 
e , P(DI8) P(DIB) . 

The fact that this method focuses on attempting to estimate L(B) by concentrating on 

"informative" or "important" trees yields the name Importance Sampling and Q(T) is 

referred to as the Importance Sampling distribution. 
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2.1.3 Markov Chain Monte Carlo (MCMC) 

Returning once again to our initial problem, we wish to generate trees from sorne distri­

bution which is difficult to simulate from. Importance sampling offers one way of getting 

around this problem and MCMC offers an alternative approach. The idea in the MCMC 

approach is to construct a Markov Chain Xo,X I , .... whose stationary distribution is f. 

We then have that 
1 N 
N :L H(Xi ) ----t Ej(h(X)) = l, 

i=l 

under certain conditions. There are several MCMC techniques that are in use e.g. The 

Metropolis-Hastings Aigorithm, Gibbs Sampling and Accept-Reject Sampling. However 

the Metropolis-Hastings Aigorithm is the most widely used method and for this reason 

is the one we shall explain in detai1. 

The Metropolis-Hastings Method 

The method works as follows: let Q denote an arbitrary distribution that we are able 

to sample from (in our case Q will move randomly from tree to tree). The Metropolis­

Hastings algorithm ensures that in the long l'un, the sequence of observations sampled 

from Q, i. e. X o,Xl, .... will represent a Markov Chain with f as its stationary distri­

bution. 

The following steps lead to this: 

1. Choose X o arbitrarily. 

2. Given Xi, which has been generated from Xo,Xl, .. X i- l , generate a proposaI value 

3. Evaluate A where 

A= . (f(y)Q(x IY ) 1) 
mm f(x)Q(ylx) ' 
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4. Set X i +1 = 

with probability A, 

with probability l-A. 

Now, a sample of observations that approximate a sample from the distribution f has 

been constructed. Additionally, for k sufficiently large, X o, XO+k, XO+2k> .... may be 

considered independent samples from f. A good choice of Q will increase the efficiency 

of the algorithm whiles a bad choice may render the method ineffective. It is often 

difficult to predict what proposed distribution will be the best one a priori but there 

are sorne pointers to look for during simulations. If Q is found to propose high values 

for the distribution f then it is considered a good distribution, otherwise almost every 

proposed value for X will be rejected and the algorithm will remain at the same value 

for a long time. Also, sorne proposed distributions will result in small changes being 

made over a long period of time. This is not a good property and in fact a distribution 

that does the opposite i.e. an algorithm that moves freely between all possible values 

of X is desirable. To sum up, a proposaI distribution Q which moves through different 

values of X quickly and which also has a high acceptance rate (i.e. high values for A) is 

an ideal candidate. This can be found by simply trying out different distributions until 

a suitable one appears. 

2.2 MapArg 

MapArg, the fine mapping method developed by Larribe (2002), is of primary interest 

to us throughout the rest of this body of work. In fact, the methods we develop to 

correct for incomplete penetrance and phenocopy (described in Chapter 3) are then 

incorporated into the MapArg framework to see if adjusting for these parameters can 

improve the performance of this fine mapping method. It is important, therefore, to 

describe the theory behind MapArg in sorne detai1. 
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2.2.1 The Model 

Consider a sample of sequences where the cases have the status affected and the controls 

non-affected. The status of the phenotype is caused by a single mutation that occurs 

in the history of the population. This model is known as the infinite sites model. It 

is assumed that the infinite sites model describes a sequence of DNA with an infini te 

amount of loci. The mutation rate is so small at each position that it is fairly realistic to 

suppose that only one mutation occurs at one locus throughout the population history. 

It is also assumed that the population is young and isolated. 

There are L markers in a sequence, L - 1 of which are known. Locus m represents the 

position of the marker m in the sequence. The TIM is also a marker in this sequence 

but its exact position is unknown. The methods proposed are intended to estimate the 

location of the TIJv!. Letting rT denote the distance between the start of the sequence 

and the position of the TIM, an estimator for rT is obtained by maximum likelihood 

methods. 

Let r be the total length of a sequence and let Xm denote the position of marker m. 

Without loss of generality, say that the first marker starts at the origin, giving: 

When a coalescent, recombination or mutation event occurs at time t, the ancestral 

material of the sequences at the L loci are affected. Denote the set of ancestral sequences 

at time tT , by H T where T ranges from ato T*, arepresenting the sequence at the present 

time and T* being the last coalescent that results in the MRCA. The following notation 

will be used to describe the events that can occur when going back in time from a to 
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Ci Coalescence of two identical sequences i 

ct Coalescence of sequences i and j into sequence k 

M/(m) Mutation of sequence i into sequence j at marker.m 

Rik(p) Recombination of sequence i into sequences j and k in the interval p 

The probability distribution for Hr, represented by Q(HT) and Q(HT) is a function of 

Q(HT+1). If a recombination event occurs at time T + 1, HT+1 is written as HT+1 = 

HT + R{k(p). Similarly, the occurrence of a coalescent event on step in the past, is 

denoted by HT+1 = HT+Ci , when two identical sequences coalesce and HT+1 = HT+Ct 

when two distinct sequences coalesce. Finally, a mutation that occurs one step in the 

past is denoted HT +1 = HT + M[(m). 

If a recombination event occurs the distribution for the point of recombination is: 

fA z) = -,
1 

If
. 

0 < z < r. (2.1 ) 
r 

A recombination event can happen anywhere along the sequence but the only place 

that such an event effects the ARG is when a recombination occurs on the part of the 

sequence that is ancestral. Consider two sequences SI and s2, each with 5 markers. The 

five markers on SI are ancestral whereas markers 1 and 2 of s2 ancestral and markers 

3, 4 and 5 are non ancestral. Say that the recombination event occurs between locus 2 

and locus 3 which results in two parental sequences: a left sequence containing marker 

1 and 2 and a right sequence containing marker 3, 4 and 5. For SI, the history of the 

sample will be modified as both the left and right parental sequences contain ancestral 

material. However the history of the sample for s2 remains unchanged since the left 

parental sequences is similar to the original sequence and the right parental sequence 

contains only non ancestral sequence which does not change the sampIe history. Define Ci 

as the proportion of sequence i for which a recombination event can effect the ancestral 

material and let b represent the total length of all sequences where a recombination 

event can effect the ancestral material for HT , where 0 ::; b ::; nr. Also, by the same 

reasoning, a mutation event will only effect the sample history if the event occurs at an 
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ancestral marker. We define a as the number of markers out of aIl Hr for which the 

sample history can be effected by a mutation event and n :S a :S nLs. The coalescence 

of two different sequences i and j is possible if the two sequences are similar apart 

from the non ancestral segments. In figure 2.1 for example, SI and s2 are two different 

sequences but they only differ at marker 3, where SI possesses the ancestral wild type 

aIlele and s2 non-ancestral materia1. However, if a sequence i has a mutant allele at 

one marker and sequence j does not have the mutant allele for the same marker but 

carries the ancestral wild type marker, then they are unable to coalesce. Looking at the 

sequences in figure 2.1, we can see that SI and s3 are unable to coalesce since the third 

marker for SI carries the wild type allele and the third marker for s3 carries the mutant 

allele. 

Figure 2.1 Examples of possible coalescent events between different sequences. Shaded­

in boxes represent ancestral wild type aIleles , un-shaded boxes represent non-ancestral 

material and half-shaded boxes an ancestral mutant allele (from Larribe, 2003). 

2.2.2	 The Probability of a Mutation, Coalescent or Recombination 

Event 

Now that the parameters of the model have been introduced, the probabilities of the 

three possible event in the ARG, namely a mutation, the coalescence of two sequences or 

a recombination event, are developed in detai1. Once these probabilities are determined 

they are incorporated into the probability distribution Q(Ht ). 

We shall work with a sample of size n, where there are ni sequences of type i for 

i = 1, ... , d. The rate of mutation per sequence per generation for this sample is f-L and 
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the total rate of recombination is p. The time taken for the first coalescence between 

two sequences to occur, Tc, follows an exponential distribution with mean n(~-1) (See 

section 1.3.4). Since J.L is the rate of mutation per sequence per generation, the rate of 

mutation per generation is 4NJ.L = e. It can be shown in a similar fashion to that of the 

coalescent case, that the time taken for a mutation event to arise follows an exponential 

law with mean nt, denoted by TM. Also the time taken for a recombination, TR to 

happen follows an exponential distribution with mean y. Summarizing: 

n(n-1))
Tc cv Exp(Àc) = Exp 2 ' ( 

TM EXp(ÀM) = Exp (~) ,cv 

TR cv Exp(ÀR) = Exp (~) . 

What we are really interested in calculating is the following: given that an event has 

occurred in the past, what is the probability that it is a coalescent event, a mutation 

even, or a recombination event i. e. 

P(CoICo or Mu or Re), 

P(MuICo or Mu or Re), 

P(ReICo or Mu or Re). 

If X 1 ,X2,X3 are independent exponential random variables with respective rates À1 , 

À2 and À2 , then the following is true: 

À· 
P(Xi = minXj ) = 3 t " 

J 2:j =1 À] 

In our context this gives: 

n(n - 1)
P(CoICo or Mu or Re) = ( ) e ' 

n n -1 + n +np 

P(MuICo or Mu or Re) = ( ) 
ne e ' 

n -1 + n +np 
p

P(ReICo or Mu or Re) = ( )n e . 
n n -1 +n + np 
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If a coalescence occurs then there are n-1 sequences one step in the pasto Two identical 

sequences i coalesce with probability (ni - 1)/(n - 1). If two different sequences i and 

j coalesce to sequence k in the past, we have to account for the fact that k may be 

identical to sequence i or j or even neither sequence. Then, the probability that i and 

j coalesce to sequence k is (nk + 1 - 6ik - 6jk)/(n - 1), where 6jk = 1 if i = k and 0, if 

i i= k. 

Suppose that the first event is a mutation, then there exists a sequence i that cornes 

from sequence j, that may already exist or not, with probability (nj + 1)/n. Note 

that the number of sequences one step in the past do not change if the event occurring 

is a mutation. Given that the mutation rate e is the rate for the whole sequence, 

the probability of a mutation at a given marker it thus (nj + 1)/nL. Furthermore, a 

mutation on the nonancestral material occurs with probability (nL - a)/nL. 

A recombination event can occur anywhere on the sequence and as seen in section 2.1.1, 

if the event occurs in a given interval on sequence i, the left parental sequence j shares 

the same genetic material as i to the left of the point of recombination whereas the right 

parental sequence k shares the same genetic material as i to the right of the point of 

recombination. One step back in time, we have nj + 1 sequences of type j and nk + 1 

sequences of type k and the total number of possible ordered pairs or sequences is 

n(n + 1) (a recombination event results in one more sequence in the sample history one 

step in the past). Furthermore, the probability that a recombination event occurs in a 

certain interval, is proportional to the length of this interval. So, the probability that 

there is a recombination in interval p is rp/r. Thus the probability of a recombination 

event is [rp/r].[(ni + l)(nk + l)Jln(n + 1). The combination of these facts lead to 

.a recursion initially introduced by Griffiths and Marjoram (1996). MapArg uses an 

analogous version of this recursion in order to represent the probability distribution 
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2.2.3	 Recurrence Probability for the distribution of QO 

Bearing in mind we are looking at the state of Hr which depends on Hr +1 , the proba­

bility distribution can be written as follows: 

Q(Hrl ~ n(n; 1) [~~:: ; Q(Hr + Ci: 

+	 2 ~ nk + 'n-_a~ - ajk Q(Hr + ct)] 

+	 ~ [L nj + 1Q(Hr + Mf) 
3 n 

+	 n~~ aQ(Hrl] 

np [~ ( ~ (nj + l)(nk + 1) Q(H Rjk( )))
+	 D ~ ~i Pp n(n + 1) r + t P 

+	 nr - bQ(Hr)] ,
 
nr
 

where D = [n(n - 1) + ne + np] each line refers to the following events: 

Line 1 Coalescence of two sequences of type i,
 

Line 2 Coalescence of sequence i and j to sequence k, where i i- j,
 

Line 3 Mutation of sequence i to sequence j, where j may already exist,
 

Line 4 Mutation in non ancestral material,
 

Line 5 Recombination of sequence i, in interval p, that produces sequences j and k,
 

where j and k may already exist, 

Line 6 Recombination of non ancestral material, 

and the numbers under the summation signs mean: 
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(1) Summation over sequences i = 1, ... , d: i; nI > 1, 

(2) Summation over unordered pairs i, j that possess the same set of mutations in the 

ancestral material, 

(3) Summation over aH singleton mutations. 

The above equation can look quite daunting at first glance, but the essential thing to 

note is that it is a recursive equation that accounts for aH possible events that can occur 

one step back in the generation from which you start at. Thus, starting at time T = 0, 

i.e. the haplotype data in the present generation, the ARG can be constructed one step 

at a time, from T = 0 until the point where aH sequences join to give the MRCA of the 

sample at time T*. 

2.2.4 Importance Sampling Within The MapArg Framework 

Genealogies are produced at each interval along the sample sequence, and they are 

generated using the above recursive equation. As can be seen however, there are sev­

eral parameters to estimate at once and so simulation techniques are employed as it 

is not possible to find an exact solution for the equation. MapArg uses Importance 

Sampling techniques, one of two popular Monte Carlo simulation methods in use by 

fine mapping researchers. Section 2.1.2. gives a general explanation of the ideas behind 

Importance Sampling (IS), and here we shaH describe how it is employed within the 

MapArg framework. 

Define a Markov Chain with transition probabilities from Hr to Hr +l , denoted by 

P(Hr+IIHr ). Now TE(O, ... ,T*) and the chain reaches it's absorbing state then a common 

ancestor is found for aH sequences, at time T*. As the genetic code of the ancestor is 

supposed to be known, then Q(HT*) is 1 for a single sequence and 0 for aH others. From 

Section 2.2.3, we see that the recurrence equation could be written as: 

Q(Hr ) = L Q(HrIHr+I)Q(Hr + 1), 
H r +1 
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but we want to build graphs from the present to the MRCA so we insert a proposaI 

distribution in the recurrence equation: 

Defining 

Q(HrIHr+l)
( )f Hr,Hr+1 = P(Hr+1IH ) ,r 

the recurrence equation can be written in the following form: 

Q(Hr ) = L f(Hr , Hr+1)P(Hr+1IHr)Q(Hr+1). 
Hr+l 

ln particular, 

Q(Ho) L f(Ho, H1)P(H1IHo)Q(H1) 
Hl 

= Lf(Ho, H1)P(H1IHo) [ L f(Hl, H2)P(H2IHdQ(H2)] 
Hl . H2 

= L L'" L f(Ho, H1)j(H1, H2) .. ·f(Hr·_1, Hr·) * 
Hl H2 Hr• 

and therefore 

(2.2) 

This is an importance sampling representation where P(Hr+1IHr ), is known as the 

proposaI distribution for Q(Hr ). Let 8 = (B,rT) be the set of unknown parameters 

of the process. Then given 8 0 = (Bo,rTo) an estimate of Qe(Hr ) can then be found 

for different values of 8, by a second importance sampling procedure (details not given 

here). This method evaluates the likelihood of rT along a sequence of samples with 

L-l known markers. In order to run simulations a driving value must be provided for 

each interval p, which in the case of MapArg is taken to be the middle of the interval 

p where 1 ::::: p ::::: L - 1. Then the IS technique described above constructs graphs with 

the driving value and a likelihood for each region (xp , Xp+l) is evaluated. The maximum 

likelihood estimate is then taken as the estimate for rT, the position of the TIM. 
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2.2.5 Composite Likelihood 

When calculating the likelihoods in the above equation, the simulations of the genealo­

gies may contain a lot of variability and so depending on the sampIe size and the number 

of markers involved the computation time can take days even weeks. Larribe (submitted 

2007) then iiltroduced composite likelihood in order to control for variation. The idea 

behind composite likelihood, as the very name suggests, is to divide the set of markers 

into small sections or windows. Figure 2.2 shows sorne examples of windows using d 

contiguous observed markers. 

(a) d = 2 (b) d = 3 

~ ~ 
-w;- ••--_. • • __ W3_ Wl

W2 W4 .W2 
W3 • 

Figure 2.2 An illustration of window lengths for a sequence of 5 markers , where d 

equals the window length (from Larribe, 2007). 

Consider a sequence with L markers, L - 1 of which have a known position, then G = 

L - d is the total number of windows for this sequence. The interval m, located between 

the m - lth and mth marker, will be included in the window g, for 9 = (1, ... , G), if and 

only if 9 is between ~(m) and g(m) where 

~(m) = max(l, m + 1 - d) 

g(m) = min(m -1, L - d). 

Let Lm,g (TT) represent the marginal likelihood function for the position of the TIM in 

the interval m. The likelihood' is evaluated using the information on the markers in 

window 9 only. A composite likelihood function giving equal weight to each window 

can be defined as 

L-l ( g(m) ) Wm 

CLd(TT) = II II Lm,g(TT) , 

m=2 g=fl.(m) 
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where 

1 
wm =----;-----;------;-----,--­

~(m) + g(m) + 1· 

This function is not weIl defined however, since Lm,g (TT) uses different information from 

on window, g, to the next. A likelihood that is conditional on the d markers in window 

g, denoted Hg, is thus proposed. This conditionallikelihood is defined as 

L ( IHg) _ Q(H~T, Hg) 
m,g TT 0 - Q(Hg) , 

where H~T represents the sample configuration at the TIM including its position TT, in 

interval m. The corresponding composite-conditional-likelihood is 

L-l ( g(m) ) Wm 

CCLdTT = Il Il Lm,g(TTIHg) 
m=2 g=flJm) 

When windows of size d are used, the likelihood function is estimated d - 1 times in 

aIl intervals apart from the first and last d - 2 windows. Looking at the example in 

Figure 2.2 (b), d = 3 and L = 6. In the first and last interval the likelihood function 

is estimated once only, whereas for intervals 2 and 3, the likelihood is estimated twice. 

If the number of markers is large compared to the window size then almost aH of the 

intervals estimate the likelihood function d - 1 times. Results have been produced for 

different window lengths and it appears thus far, that the method is efficient at finding 

the location of the TIM and hence MapArg uses composite likelihood in estimating TT. 

2.3 Other Fine Mapping Methods 

Before developing a method that corrects for incomplete penetrance and phenocopy 

within the MapArg framework, let us discuss sorne of the other fine mapping methods 

that are also based on the coalescent model. It is of particular interest to see how these 

other methods account for the penetrance parameters. 
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2.3.1 Decay of Haplotype Sharing 

Decay of Haplotype Sharing (DHS) is a model that was developed by McPeek and Strahs 

(1999). It is based on the idea that there is a certain segment surrounding the TIM locus 

that is common to all cases originating from the MCRA or founder, that reduces in size 

or "decays" over generations. By this hypothesis, any position on the chromosome that 

is well explained by decay of shared haplotype is likely to be a candidate for the location 

of the TIM. As the name suggests DHS works with haploid data i.e., chromosomes are 

considered as independent sequences and not in pairs. 

The authors start off by looking at an individual haplotype. They model the complete 

ancestral history of this haplotype and then generalize to the complete sample of se­

quences. This generalization is done differently depending on the situation. There are 

two different cases that are modeled namely: 

1. The case where independence across haplotypes is assumed, 

2. The case where there is a dependency or correlation between different haplotypes. 

The genetic distance from the location of the TIM, rT to the end point of the segment 

where the haplotype still shares ancestral data with the founder is denoted x. A function 

R(x) is then defined as A (Ancestral) for any x, a distance from the TIM locus, that 

shares ancestral material with the founder and is N (Non Ancestral) otherwise. The 

function R(x) it then considered a continuous time Markov chain that is indexed by 

position with 

Pr[R(x + <5) = AIR(x) = A], Pr[R(x + <5) = NIR(x) = Nl, 

for x and t > O. Then, a parameter for estimating the rT is introduced so the likelihood 

estimate now estimates both x and rT simultaneously. In order to reduce computation 

time, the likelihood is maximized on a set of candidate values for x. The candidate 

values are obtained by carrying out a branch-and-bound procedure (Baum, 1972). Other 

parameters are .introduced into the model to deal with chance sharing of alleles and 
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to account for multiple origins of the TIM. The latter phenomenon is of interest to 

us and shall be explained in more detail shortly. When DHS is modeled assuming 

independence of sequences, the likelihood of the whole sample is obtained by multiplying 

each individual haplotype likelihood. If on the other hand this assumption is not valid 

a more complex method is employed. Using a sample of unrelated individuals, McPeek 

and Strahs estimated rT with a quasi-likelihood estimate. The usefulness of this being, 

it resembles the likelihood estimate above but takes into account correlation between 

haplotypes. The authors have shown that when using a quasi-likelihood estimating 

equation under the coalescent model that the same estimate as the independent case is 

obtained but the standard error is larger. 

Multiple origins of the TIM can be viewed as a form of phenocopy. Recall the definition 

of phenocopy: 

Phenocopy = fo = Pr(AffectedlTl M) 

MapArg searches for a single position on the chromosome that causes a disease, i. e. 

the TIM locus. Consider the situation where there are two different loci that have 

different TIMs , Tl and T2 and Tl accounts for a large proportion of cases among the 

population. The fine mapping methods discussed will pick up the LD surrounding Tl 

and produce an estimate for the location. However T2 has an aIlele that accounts for 

a small proportion of cases also. Within the MapArg framework the cases that result 

from the TIM at T2 will be viewed as a phenocopies as they are sequences that have a 

mutation but don't share the same aIleles as the set of cases stemming from the locus 

Tl. McPeek and Strahs introduce a parameter p that represents the proportion of cases 

in the population that are nor descended from the founder haplotype, and 1 - P is the 

proportion that does descend from the founder. Then the likelihood is then calculated 

conditional on the sample haplotype being a case. A simplification of their model is 

L(TIM) = (1- p).L(rT,xID) +p.Pnull(D). 

where Pnull(D) is the probability of the sample data estimated from the control pop­

ulation. When p = 0 then there is no other origin of the TIM considered. For the 
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simulations that were run in McPeek and Strahs (1999) the model still seems to per­

form weH then p is non zero. 

2.3.2 Fine Mapping Via The Shattered Coalescent 

Another variation on the coalescent model for estimating the position of the TIM is 

the shattered coalescent model. Morris et al. (2002) developed the idea of modeling 

genealogies that may split into smaHer sections that represent multiple founding mu­

tations or sporadic cases of the disease. Their fine mapping method is implemented 

with Markov Chain Monte Carlo techniques (See Section 2.1.3). A Bayesian approach 

is taken and the authors approximate a posterior probability distribution for rT, condi­

tional on the sample data. As the shattered coalescent accounts for phenocopy it shaH 

be described in detail. An overview of the work of Morris et al. (2002) shall be given 

first. Once the shattered coalescent is modeled and incorporated into the method the 

genealogies are constructed maximizing several parameters needed to generate trees at 

a given candidate locus simultaneously. As in aH fine mapping methods of multi locus 

data the computation is intensive and so an algorithm similar to the Metropolis~Hastings 

one (see section 2.1.3) is developed. The primary parameter of interest in the MCMe 

simulation is rT but several other parameters are also estimated during the process of 

generating genealogies including allele frequencies and LD parameters. 

The Shattered Coalescent can be viewed as a generalization of the coalescent process 

where branches of the genealogical tree can be removed. The likelihood for the controls 

is considered to depend on the control haplotypes only. So the shattered coalescent 

models cases only and not controls. Let 

1, if node b has a parental node in the shattered tree ; 
Zb = 

{ 0, if node b has no parental node in the shattered tree, 

where the node can be internaI or a leaf, where leaf nodes represent the sample hap­

lotypes at the present generation and internaI nodes the sample haplotypes at every 

other point in time in the history of the sample. If there is a leaf node with Zb = 0 
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this represents a phenocopy. The reason is, it represents a haplotype that has no com­

mon ancestors with the rest of the sample, which means that it is a sequence that is 

effected by some disease without having the TIM. Now consider node b that has marker 

haplotype Cb. Two scenarios are considered: 

1.	 Node b has no parent node in the underlying genealogy. Then Zb = 0 and node 

b corresponds to either a founder for a disease mutation at x when the node is 

internaI, or a sporadic case or phenocopy. Founding mutations and phenocopies 

are assumed to occur on random chromosomes from the population and thus are 

modeled in the same way as control haplotypes. The simplest model for controls 

being one assuming no LD in which case the likelihood is given by the product of 

populatio'n proportions for each allele. 

2.	 Node b has a parent node in the underlying genealogy and Zb =1. The distribution 

of Cb now depends on the haplotype of the parental node, the occurrence of 

recombination and also mutations along the branch connecting Cb and the parent 

haplotype. 

Recombination and mutation events, p and f1 are assumed to occur independently across 

the branches of the tree. The overalllikelihood is of the form: 

L(TIM) = IIIL(CbIPb,x,N,h,p,f1)zb+L(Cblh)(l-zb)], 
b 

where Pb represents the haplotype at the parental node, N the population size and 

h the haplotype data. Any unknown parameter is also estimated within the MCMC 

simulation framework. It can be seen from the above equation that haplotypes that are 

thought to be phenocopies are treated similarly to the control haplotypes of the sample. 

2.3.3 Tree LD 

The underlying model for the methods of Zôllner and Pritchard (2005) is also the coa­

lescent, and to take recombination into account an adaptation of the ARG is used. The 
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authors' method is implemented by executing a program called TreeLD and for this 

reason we shall refer to their fine mapping method as TreeLD from now on. Zollner and 

Pritchard work with haplotypes also, but a distinct difference between TreeLD and the 

methods of Morris et al. and McPeek and Strahs is that the genealogies constructed 

within the coalescent framework are done so by using both case and control informa­

tion. This means that more information is being used which can improve the accuracy 

of estimating rT, but it also means that computation will be a lot more involved than 

when just using the cases to construct genealogies. In order to try and reduce the com­

putation time they construct the genealogies of the n sample haplotypes independently 

of the phenotype data and mutation status and then obtain an likelihood of the phe­

notypes conditional on the genealogies and mutation rate: i.e. at a given candidate 

position for the TIM, x, the sample history is constructed for the entire sample of cases 

and controls, after which the mutation rate is superimposed on the genealogy and the 

distribution of the phenotype data is obtained. In estimating the location of the TIM a 

Bayesian approach is adopted using MCMC techniques. As in the DHS method, TreeLD 

constructs the genealogies on a grid of candidate loci across the sampIe sequence. The 

Metropolis-Hastings algorithm is employed to construct genealogies at each candidate 

locus, x, within the simulation. As mentioned before, the phenotype likelihood is calcu­

lated after the trees are simulated so the distribution being modeled within the MCMe 

simulations is P(Txlx, G), where Tx represents the genealogy at x and G is the genotype 

data or haplotypes. Once the distribution P(Tx ) is found, a peeling algorithm (Felsen­

stein, 1981) gives the probability distribution for the phenotype data at x. Then the 

posterior distribution given as: 

P(xl<I>, G) ~ P(<I>lx, G) . P(x). (2.3) 

The prior distribution P(x) is taken as uniform across the entire region of the sample 

but can be modified accordingly and P(<I>lx, G), the probability distribution of the 

phenotypes, will be explained further below. Equation (2.3) is the general form of a 

posterior distribution from standard theory on Bayesian Inference. Once P(xl<I>, G) is 

obtained, the mode is taken to be the estimate of the location of the TIM locus. 
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Since TreeLD uses haploid data, the penetrance parameters are defined as they are for 

MapArg. RecaH that 

Penetrance fI = Pr(AffectedITIM) = Pr(Si = 11Mi = 1),
 

Phenocopy fa = Pr(AffectedITIM) = Pr(Si = llMi = 0).
 

The model for the distribution of phenotypes conditional on the genealogies (P(xl<I>, G)) 

assumes that the disease mutation occurs as a Poisson process with rate v /2 and that 

multiple mutations on the same chromosome have no further effect: every chromosome 

that carries at least one mutation has the same distribution. Let K j , jE(l, 2, ... , 2n - 1) 

be the ordered set of nodes on the genealogy, Tx , so that KI, ... , K n are the external 

nodes or leafs, K n- I is the node of the first coalescent event and K 2n- 1 is the MRCA. 

Furthermore, let B = (b l , ... ,b2n-2) be the vector of branch lengths where bj is the 

branch length between node Kj and its parental node. Denote mi as an indicator 

variable for the mutation status at node Ki where 

mi = {l,if node Ki carries at least one mutation; 

0, otherwise. 

Now if there is a mutation at node Ki, then aH phenotypes that are a descendants of 

this node will be cases. Likewise, phenotype descending form ancestral nodes without 

a mutation will be controls. Therefore, 

where <I>i represents the phenotypes of aH leaf nodes that descend form node Ki. 

To calculate P(<I>i Imi = 1), it must be taken into account that given mi = a at node 

Ki, the ancestral nodes may or may not have the status mi = 0, since a mutation couId 

have occurred on the branch. This is done by using the information that the mutation 

rate v/2 occurs according to a Poisson process. It is therefore possible to calculate the 

probability of every node by starting at the most recent nodes and working iteratively 

backwards in time. It is clear though, that to calculate P(xl<I>, G) with the peeling 

algorithm above, there has to be values given for fI and fa. ZoHner and Pritchard take 



43 

these penetrance parameters as being any value of the bounded set J = [0, 1] * [0,1]. 

The likelihood of the phenotype is calculated for various values of J and the values that 

maximize this likelihood are then used as the penetrance parameters h and fa for the 

data. Note that TreeLD accounts for incomplete penetrance as well as phenocopy which 

was not done in the previous literature. 



CHAPTER III 

ACCOUNTING FOR INCOMPLETE PENETRANCE AND
 

PHENOCOPY
 

3.1 Effeets of Penetrance and Phenocopy 

3.1.1 Introduction 

Penetrance and Phenocopy have been introduced in Chapter 1 (see section 1.4) and 

a small example of their effect on the ability to distinguish people possessing a TIM 

from those who don't was shown. It is of interest to determine exactly how various 

levels of penetrance and phenocopy are expected to influence the efficacy of MapArg in 

producing an estimate of rT. Let Mi denote status of sequence i, (i = 1, ... , n), where 

Mi = 1 when the sequence contains the TIM and 0 otherwise. Let Si denote the affected 

status of phenotype for individual i, where Si = 1 for cases and 0 for controls. The 

parameters are defined as in Section 1.4 but since the notation has been shortened for 

convenience we shall present them again: 

Penetrance fI = Pr(AffectedlTIM) = Pr(Si = 11Mi = 1), (3.1 ) 

Phenocopy fa = Pr (Affected ITI M) = Pr(Si = llMi = 0). (3.2) 

3.1.2 The Structure of the Data 

Initially MapArg needs a data set in a certain format along with certain information 

on this data to execute the computer program. The structure of the data along with 
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parameter information is as fo11ows: 

• A sample of SNPs (haplotypes), of size n, from the population of interest; 

•	 The frequency of each haplotype in the sample; 

•	 A classification of the individuals in the sample, in other words, each sequence is 

classified as being either a case or a control; 

•	 The distance between markers. 

Here is a example of the type of data with which we can implement MapArg. There are 

16 sequences, genotyped at 4 loci i. e. 4 SNPs of which 7 are cases and 9 are controls. 

Sequence Case Control 

0001 1 5 

0011 2 3 

1101 4 1 

Table 3.1 An example of the data MapArg works with. The first column represents 

the sequence in haplotype form, and the other two columns contain the frequency of 

cases and controIs for each haplotype. 

With this information we are able to distinguish cases from controls. MapArg has 

assumed complete penetrance and no phenocopies, i. e. fI = 1 and fa = 0 until now. 

If the TIM in question is such that ft < 1 and fa > 0, we would like to be able 

to take this into account when estimating the position of the TIM along the section 

of chromosome being studied. Before the development of a model to correct for the 

penetrance parameters we sha11 look at how incomplete penetrance and phenocopies 

effect the performance of MapArg. 
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3.1.3	 Simulating data with varying levels of Penetrance and Pheno­

copy 

A program called SimPenPhen, allowing us to simulate data with various levels of fI 

and fa was written in C++. One should note that there is no theoretical way to study 

these effects on the mapping method we are working on, MapArg. A solution is to 

simulate sorne examples where the result is known (i. e. the real position of the TIM), 

under various conditions, and to observe the effect. By taking several random examples, 

one hopes to better understand and illustrate what one is unable to derive directly from 

mathematics. 

Suppose that we have good reason to believe that il = 0.85 and fa = 0.17. SimPenPhen 

takes a sample data set of the form given in table 3.1, and outputs a data set that 

represents data with a penetrance of 85% and 17% phenocopy. Then instead of working 

with a sampIe of sequences that are considered cases or controls, we will work with a 

sample of sequences that are considered mutant, if carrying the TIM or non-mutant 

otherwise. Continuing the example in Section 1.4 (see page 16), we assume that the 

input data for SimPenPhen is as follows: 

Sequence Case Control 

0001 5 9 

0011 2 15 

1100 6 12 

1101 7 4 

Table 3.2 A data set with 5 sequences genotyped at 4 loci, i.e. 4 SNPs per sequence. 

There are 20 cases and 40 controls in total. 

Given il	 = 0.85 and fa = 0.17, one realization of executing SimPenPhen is as in Table 

3.3. Note that the amount of sequences for each haplotype remains unchanged e.g. 

haplotype "0001" has 14 sequences in the data set. However MapArg will use data 

that has 14 mutants and 36 non-mutants as opposed to 20 cases and 40 controls, which 
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Sequence Mutant Non-Mutant 

0001 6 8 

0011 4 13 

1100 7 11 

1101 7 4 

Table 3.3 An example of the output data given from SimPenPhen when fI = 0.85 and 

fI = 0.17. There are 24 mutant and 36 non-mutant sequences in total. 

would have been the case if the data were not adjusted to account for the penetrance 

parameters. 

Here are the main steps that the program executes in order to simulate data sets having 

the same form as table 3.3. In section 3.4 below, we will see how the original samples 

of sequences (i.e. data of the form in table 3.2) we use as input data for SimPenPhen 

are simulated. Let's suppose for now that we have such a sample. 

Main steps involved in the C++ Program, SimPenPhen 

1.	 The input data is a "population" of size 10 000; a given marker is chosen to be 

the TIM, and this information is put aside. 

2.	 For each of these la 000 sequences, if a haplotype is a mutant (as determined by the 

chosen marker in step 1), then it has a probability of fI of being a case, and 1- fI 

of being a control. If a haplotype is a non-mutant, then it has a probability of fa 

of being a control, and 1 - fa of being a case. A random number is generated and 

according to this random number, we "transfer" mutant/non-mutant information 

to case/control status. 

3.	 From this population, a sample is chosen conditional on the the disease status; for 

example, 100 cases and 100 controls. 

Since we already know the real position of the TIM from SimPenPhen we can check the 
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effect of a various rates of penetrance and of phenocopy on the MapArg method. Figure 

3.1 displays results of simulating data with various levels of penetrance whiles the level 

of phenocopy remains at O. A more detailed explanation of the simulation process for 

obtaining results is given in section 3.4 but a brief description of the graphs from the 

data is as follows: each of the nine graphs display a likelihood profile for the MapArg 

method and the small triangle on the bottom axis shows the estimate of the TIM. The 

real position of the TIM is indicated by the vertical dotted line. 
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Figure 3.1 Effect of penetrance on the likelihood profile (Data B, K = 100, d = 5, 

P = 30). The level of phenocopy is O. 

In general, it seems that varying degrees of penetrance do not seem to effect the efficacy 

of MapArg, even when penetrance (fI) is as low as 0.1. Imagine a population with a 
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disease where approximately only 10% of individuals carrying a TIM that predispose 

them to the disease end up being cases. Given the results shown, it appears that MapArg 

will still perform weB in locating the position of the TIM for this population. 

The existence of phenocopies, even if the rate of fo is low, greatly effects the ability of 

MapArg to find an accurate estimate for location of the TIM, as can be seen in figure 

3.2 below. Notice that even for fo = 0.2, the estimate provided by MapArg is quite far 

from the real position of the TIM. 
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Figure 3.2 Effect of phenocopy on the likelihood profile (Data B, K 100, d = 5, 

P = 30). The penetrance level is 1. 

Intuitively, these results are not altogether surprising. Take the hypothetical situation 
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where there are one hundred cases and one hundred controls; 10 of the cases are pheno­

copies and there are 10 of the controls that have the TIM, i.e. il = 0.9 and fa = 0.1. 

Among the population at large the genetic code of individuals is heterogeneous while 

the genetic coding among individuals with the TIM is similar (at least in close proximity 

to the TIM). Therefore if 10 individuals who have similar genetic coding (those with 

the TIM) are distributed among controls it should not be too noticeable as differences 

across the 100 controls are expected anyway. However, if among the cases, 90 have sim­

ilar genetic coding but 10 differ greatly from the rest (those who don't have the TIM), 

the hypotheses of similarity of cases is no longer true. The model of MapArg, and indeed 

any fine mapping method based on LD, relies on homogeneity of cases to approximate 

trees and in turn estimate the location of the TIM. With phenocopies among the cases 

it is no longer clear if cases have differences due to recombination, which is taken into 

account in the model, or simply because the case does not possess the TIM in the first 

place. It is important therefore to develop a method that detects cases among the sam­

pIe that are most likely to be phenocopies and simultaneously, controls that are likely 

to possess the TIM before MapArg estimates the genealogies. Section 3.3 describes two 

different methods that are suggested and their efficiency is tested. 

3.2 Correcting For Penetrance And Phenocopy 

Before going into the details of how we account for penetrance and phenocopy, it is 

necessary to show how the estimation of these parameters is incorporated into the 

methods of MapArg. Section 2.2 explains that rT (the position of the TIM) is estimated 

from the distribution Q(Ho), where Ho is the haplotype state for a given sample of 

sequences at the present generation, for us this is the haplotype with mutation status. 

What we are interested in is the state for the same sample at the phenotype level which 

we will denote as H-1. In short, we are looking for Q(H_d, or to be more precise 

Q(H-1IrT)' Throughout this section, ail calculations are conditional on rT and so to 
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facilitate ease of notation we will drop TT from subsequent equations. We can write: 

Q(H_ 1) = L Q(H-1IHo)Q(Ho). 
Ho 

The distribution of Q(H-IIHo) does not depend on any genetic material, it depends 

only on fI and fo. Suppose we have a sample of n sequences with n cases and ncontrols; 

conditioning on Ho, we know the number of mutants, nm , and non-mutants, nm., so it 

is possible to evaluate: 

Now, let us introduce a proposaI distribution P(HoIH_ 1), which will be evaluated in 

the subsequent section: 

'" fi; Q(H-1IHo)
P(HoIH-l) P(HoIH_dQ(Ho) 

= L f(H_ 1,Ho)P(HoIH_dQ(Ho), 
Ho 

where f(H_ 1, Ho) = Q(H-1IHo)/P(HoIH_d. This gives: 

Q(H-d = L f(H_ 1,Ho)P(HoIH_ 1)L f(Ho, HdP(H1IHo)Q(H1) 
Ho Hl 

L f(H_ 1 , Ho)P(Ho/H_ 1)L f(Ho, HdP(H1IHo) L f(H1,H2)P(H2IHdQ(H2) 
~ ~ ~ 

L LL'" L f(H_ 1,Ho)f(Ho,H1)f(H1, H2).. ·f(HT*-1,HT*) 
Ho Hl H2 HT * 

P(HoIH_dP(HlIHo)P(H2IHd .. ·Q(HT* ), 

and this represents the likelihood function that estimates TT, since: 

(3.3) 

The genealogies are then constructed according to the distribution P. In the above 

expression the only terms that are unknown are P(HoIH_ 1) and Q(H-1IHo), the rest can 

be deduced from the coalescent process. To summarize, we are able to take penetrance 

and phenocopy into account by modeling the sample state at H_ 1 (the phenotype level), 

conditioning on Ho (the genotype level). In order to do this we will evaluate 
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In fact, expression (3.3) is just a generalization of the likelihood of rT, as seen in section 

(2.2). If there is a perfect relationship (i.e. a mathematical one), between the genotypes 

and phenotypes P(HoIH_d and Q(H-1IHo) both equal1. Then there is only one state 

Ho that corresponds to H-1 and expression (3.3) is expression (2.2) exactly. 

Evaluating Q(H- 1IHo) 

The probability that an individual i is a case or a control does not depend on the 

genetic code apart from the TIM, of course. Thus, we are looking at the probability 

of an individual being either sick (a case) or not sick (a control), given that we know 

if they have the TIM or not. So, Q(H-1IHo) depends on the penetrance parameters 

uniquely. Suppose there is a certain number of cases and controls, denoted ne and ne 

respectively, among a sample of n sequences: ne + ne = n. 

For one sequence j which is a mutant (Mj = 1), we want to find 

Pr(Sj = 11Mj = 1) and Pr(Sj = 0IMj = 1), 

where Sj = 1 if a case, 0 if a control. Similarly, for a sequence k, that is non-mutant 

we want 

Pr(Sk = 11Mk = 0) and Pr(Sk = 0IMj = 0). 

These four probabilities are evaluated in section 3.3 below. For now, let us assume that 

they are known. The sample consists of n unrelated individuals and so putting mutant 

and non-mutant sequences together gives: 
nm nm 

Q(H- 1 IHo) = II Pr(SjlMj = 1). II Pr(SklMk = 0). 
j=1 k=1 

If there are equal numbers of cases and controls in the sample, nm = nm = ~ and the 

notation simplifies to: 
n

IIPr(SiIMi) Vi E n, Si = 0,1 and Mi = 0,1. 
i=1 
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3.3 Evaluating P(HoIH_1 ) 

3.3.1 Method 1 

Suppose that we know ç, the frequency of the mutation for a population of haploids, and 

the rate of penetrance and phenocopy, h and 10, respectively. This simple model can 

be considered as an approximation of a genetic model for a recessive disease where the 

disease is rare (the latter representing a diploid population). Let t represent the allele 

responsible for the disease, i.e. the TIM, and T the wild type allele. Let S represent 

the status of an individual who is sick, and S the status of and individual who is not 

sick. Note that: 

P(S) = P(Slt)P(t) + P(SIT)P(T) = h·ç + 10.(1- Ç). 

Thus: 

P(tIS) = 
P(t n S) 

P(S) 
P(SIT)P(T) 

P(S) 

= 
h·ç 

h·ç + 10.(1 - ç) . 

Similarly, we have: 

P(tIS) 
P(t n S) 

P(S) 
P(SIT)P(T) 

P(S) 
(1 - h).Ç 

= 
1 ­ [fI.ç + 10(1- ç)]' 

and P(TIS) and P(TIS) can then be deduced since P(TIS) = 1 - P(tIS) and P(TIS) = 

1 - P(tIS). We have, 

P(TIS) = 10.(1- Ç)
h·ç + 10.(1- ç)' 

and 

P(TIS) = (1 - 10).(1 - ç) . 
h·ç + 10.(1- ç) 

Now, we almost have a probability distribution for P(HoIH-I). Sampling is not random 

however, so we have to make sorne modifications to account for this. Let p' 0 denote the 
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distribution of the sample, and let PO denote the population distribution. Then p' () 

represents the proportion of cases in the sample, and p' (S) = 1 - p' (S) the proportion 

of controls. 

Since the sample selection is a function of the case/control status we have: 

p' (TIS) = P(TIS), 

p' (TIS) = P(TIB). 

Also, we have the following: 

p' (t) = p' (tIS)P' (S) + p' (tIS)P' (S). 

And finally, 

P'(SI ) = p' (tIS)P' (S) p' (SIT) = p' (TIS)P' (S) 
t p' (t) , P'(T) 

p' (Slt) = 1 - p' (Slt), p' (SIT) = 1 - p' (SIT) 

giving a probability distribution for P(HoIH-d. 

3.3.2 Method 2 

Suppose that we know the rates of penetrance and phenocopy, il and fa respectively, for 

a population of haploids. This time we will look at the relationship that exists between 

the penetrance parameters, il and fa, the number of cases versus controls, Ns versus 

Ns, and the number of mutants versus non-mutants, Nt versus NT in the population. 

If we know the number of mutants and non-mutants and the penetrance parameters in 

a given sample, Ns and Ns can be determined heuristically: 

Ns Ndl - il) + NT.(l - fa) 

Note also that 

Ns+Ns =N= Nt + NT, 
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where N is the total population size. Sa Nt and NT can be expressed in terms of Ns, 

Nfi and the penetrance parameters. Indeed 

Ns (N - NT)·h + Nt·fo 

Ns-N·h 
fa - fI ' 

and we also have 

Nt = N - NT· 

Once values for Nt and NT are obtained we can then find the probability of a sequence 

being mutant or non-mutant. 

Denoting the sample distribution p' 0 as in Section 1.3.1, we again make use of the fact 

that the sample selection depends directly on the case/control status and we have: 

(3.4) 

where nt, nT and n represent the sample number of mutant, non-mutant and total 

number of sequences respectively. 

Let's see an example of this procedure. Consider we have 100 mutant haplotypes, and 

10 non-mutant haplotypes; if fa is 0.15 and h is 0.9, the expected number of cases and 

contraIs are: 

100 x h + 10 x fa = 91.5, 

100 x (1 - h) + la x (1 - fa) = 18.5, 

respectively. 

Sa, as we have see in formula (3.4), if we know the penetrance and phenocopy parameters 

and the numbers of cases and contraIs, one can infer the number of mutants and non­

mutants. In this particular case, using formula (3.4) gives of course, 100 mutants and 
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10 non-mutants. We can use these estimates to build a proposaI distribution to infer 

the mutant status that we need in Ho. But this distribution wouId be a bit naive. 

We can do better by using the distribution of haplotypes among cases and controls, 

using the same simple reasoning as above, but conditional on the haplotype. As there 

should be linkage disequilibrium in the data, the distributions of haplotypes among cases 

and controls is informative. Assume we have n haplotypes of d different types (d ::; n). 

Denote hjl :m2 (j = 1, ... ,d) the partial haplotype j from marker ml to marker m2; if 

ml = 1 and m2 = L, then hjl :m2 is just the whole haplotype of an individual of type j. 

Moreover, denote nj and nJ the number of cases and controls among the haplotypes of 

type j, such as nj+nJ = nj' Then, n;, an estimate of the number of mutants haplotypes 

among the haplotypes of type j can be estimated; similarly, nJ can also be estimated. 

Using the same reasoning as above, we have for j = 1, ... , d: 

P[Mi = 1 1 seq i is of type j] 

P[Mi = 0 1 seq i is of type j] 

where 

As we have seen in chapter 2, MapArg builds graphs interval by interval: this means that 

the graphs are generated differently depending on the candidate value of TT at which 

MapArg is currently evaluated. Near the real position of the TIM, mutant haplotypes 

should differ more from non mutant haplotypes than anywhere else in the sequence, 

hence the proposaI distribution should be more accurate around the real position of 

the TIM. At a given position, the length of the haplotypes used to build the proposaI 

distribution is m2 - ml. We can expect the length to have an impact on the quality 
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of the proposaI distribution: too short will not bring enough information, but too long 

would just add noise. 

3.4 Simulations 

Simulating Sample Data Sets 

To implement MapArg whiles correcting for penetrance and phenocopy, we first need 

to simulate a population of sequences and in turn sampIe a data set that resembles a 

real population of individuals with a TIM among them. The program ms of Hudson 

(2002) is used to generate the sequences. This program generates sequences under re­

combination in a neutral population of constant size. Here 1 sample of 10 000 sequences 

is generated. This sample is generated for a fixed value of the scaled recombination 

rate that corresponds to a fixed number of sites (loci) along the whole sequence. The 

scaled recombination rate chosen is P = 100 for 0.25Mb, and the number of sites chosen 

is 80. Even though there are a finite number of sites, mutations are assumed to occur 

according to the infini te sites mode! (See Section 2.2.1), therefore it is assumed that 

the mutation occurs once and once only among the population. The scaled recombi­

nation rate Pm between markers m and m + l, is converted to a genetic scale, using 

r m = Pm/(4N), where N = 10 0000 is the constant population size. Now we have an 

approximation for the distances between markers on the cM scale (See Section 1.2.1 for 

an explanation of the Morgan scale). 

Recall from Section 1.1.3 that polymorphisms are common differences in the sequence 

of DNA, occurring in at least 1% of the population. So the more polymorphie a site is, 

the higher the probability of the less common allele appearing at this loci is. If sites are 

not very polymorphie then we know that the less common allele has a low probability 

of appearing, resulting in most sequences carrying the more common allele (wild type) 

and so sequences are indistinguishable from one another. The most polymorphie sites 

are then chosen. 
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The position of the TIM is chosen such that it is located between the first and the 

third quartiles of the sequence, to ensure there are markers on both sides of the TIM. 

As before, ç is the frequency of the mutation among the population of sequences and 

it is set at 0.1. The sample has a sequence of 0.25cM in length and with a mutation 

rate of 0.1, which corresponds to a sample from a population with a common disease. 

Sequences that carry the mutation at the locus for the TIM are considered cases whiles 

those who don't are considered ta be controls. 

Estimating the position of the TIM is done using a subsample of the larger sample, which 

is assumed to be representative of the population. Ideally a random sample would be 

selected. However, when the disease frequency is low the subsample would have to be 

extremely large if we want to ensure a significant number of cases in our subsample. For 

this reason it is necessary to fix the number of cases and controls so that a minimum 

of information for both groups is obtained. For our analysis, the subsample generated 

called Data B, consists of 100 cases and 100 controls that have been drawn at random 

without replacement from their respective samples. 

Incorporating P(HoIH1 ) into the MapArg Framework 

We have described two different methods that take incomplete penetrance and pheno­

copy into account for the fine mapping method MapArg. AIso, it has been deduced by 

means of simulation that incomplete penetrance does not have too much of an effect 

on MapArg's ability to estimate TT, whereas even smallieveis of phenocopy can have a 

negative effect on its performance. In order to see the effects of Method 1 and Method 

2 above (See section 3.3), we need only extend the C++ program, already in existence 

for MapArg to incorporate each method in turn. Several simulations are run for each 

method in turn, with various values for ft and fa. Results of these simulations are 

presented and discussed in the following section. 
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3.5 Results In MapArg Accounting For The Penetrance Paramaters 

3.5.1 A Description Of The Graphs in MapArg 

AH the analyses have been done with the composite likelihood strategy, with windows 

of length 5 markers, and using 30 markers (or otherwise specified). Every analysis has 

been carried out on the data set Data B (See Section 3.4.1) apart from those of Section 

3.4.3, where the Cystic Fibrosis data is analyzed. The data set B is known to behave as 

expected in the LD theory, so is very useful when exploring new strategies of analysis. 

Figure 3.3 shows the "real" likelihood of the data Data B, i.e. the sample of 50 cases 

and 50 controls from the population B, with no phenocopy and full penetrance (Jo = 0, 

il = 1). The x axis is the location of the the TIM in the sequence, and the y axis is 

the logarithm of the likelihood. The estimate L(rr) is indicated by the triangle at the 

bot tom of the figure, and the real position of the TIM by the vertical dotted lîne. As 

we can see on figure 3.3, in this case, the estimate is just near the real location of the 
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Figure 3.3 The likelihood profile for data B, with windows of 5 markers at a time and 

a total of 30 markers. Here fa = 0 and il = 1. 
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TIM. In the simulations which follows, we should ideally see a similar profile to this 

one, whatever the penetrance and phenocopy are. The little bars at the bottom of the 

graph indicates the position of the markers. 

3.5.2 Results On Simulated Data 

First, we take a look at some output for MapArg when it corrects for the penetrance 

parameters with Method 1 (See Section 3.3.1). Selected results are presented here to 

see the efficacy of Method when levels of penetrance decrease and levels of phenocopy 

increase. Results for Method 2 are then presented. It is hoped that the performance 

of MapArg is better when adjusting for each method in turn, at least for under some 

conditions (e.g. low levels of phenocopy, large sample size etc.). 

MapArg with Method 1 

It seems from figure 3.4 that MapArg remains very efficient for varying levels of pen­

etrance. However, we have already seen that penetrance does not seem to effect the 

efficacy of MapArg, even when there is no method modeling incomplete penetrance. 

When there is a low level ofphenocopy (fa = 0.1), Method 1 works quite weIl. However 

for fa = 0.2 or greater, the method is not too successful as can be seen in figure 3.5. 

This is a refiection of the fact that MapArg has difficult finding the location of the TIM 

when there are phenocopies in the data. We have combined incomplete penetrance and 

phenocopy in Figure 3.6 and it appears that Method 1 is no longer capable of improv­

ing the performance of MapArg. This is most likely due to the very strong effect that 

phenocopy has on the efficiency of MapArg. 
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Figure 3.4 Effect of penetrance on the likelihood profile, where fa a (Data B, K 

la, d = 5, P = 30). 
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10, d = 5, P = 30). 
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Figure 3.6 Method 1 - Combined Effect of phenocopy and penetrance (Data B, K = 

10, d = 5, P = 30). 

MapArg with Method 2 

In the following section of results we present the effects of penetrance and phenocopy 

separately. In each graph the left column represents the likelihood profile with incor­

porating Method 2 into the MapArg framework. The middle and right columns are 

the likelihoods with Method 2 and with partial haplotype used to build the proposaI 

distribution, of length 4 and 8 respectively. In fact l= 2 and l= 4 in the graph repre­

sent the number of makers each side of the TIM that are used and henceforth we shaH 

denote l as the half-window length (not to be confused with d the window length in the 

composite likelihood of MapArg). 
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Figure 3.7 Effect of penetrance on the likelihood profile (Data B, K = H, L = 5, 

P = 30). 

As MapArg is not affected much by incomplete penetrance we present results for fI 

with values between 0.9 and 0.6 only. Method 2 is efficient both when l = 2 and when 

l = 4, as is MapArg without any adjustment for the method. Results are displayed in 



65 

figure 3.7. When there is a low level of phenocopy, Method 2 performs adequately for 

each half-window length. However for higher levels it becomes less and less efficient, 

unfortunately, as can be seen in figure 3.8. When penetrance and phenocopy both exist 
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Figure 3.8 Effect of phenocopy on the likelihood profile (Data B, K H, L = 5, 

P = 30). 
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the conclusion is not any different (Results not shown here). 

3.5.3 Effect of sample size 

It is of interest to see if Methods 1 or 2 prove more efficient for larger sample sizes. To 

see the effect of sample size, we have arbitrarily chosen a given set of parameters, fo = 

0.4 and il = 1. We have seen in Section 3.1 that with a level of phenocopy this high it 

is difficult to locate the TIM. This time the left column in the graph represents Method 

1 and the middle and right columns represent Method 2 with different half-window 

lengths. Each row represents an increase in the sample size. As we can see, from Figure 

3.9, Method 1 does not improve with increasing sample sizes. This is of course expected 

since this method does not use any information on the sample. We clearly see that 

increasing the sample size greatly improves the efficiency of Method 2, for both values 

of l. This is a very positive result as it means that if a population with a disease that 

is expected to have high levels of phenocopy is being analyzed, incorporating Method 2 

along with a large sample size from the given population could prove very efficient. 
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Figure 3.9 Effect of sample size on the likelihood profile, where fa = 0.4 and Ir = 0.1 

(Data B, K = 1t, L = 5, P = 30). 

3.5.4 Effect of half-window length, (l) 

Method 2 uses information from the the sample data to correct for the penetrance 

parameters by means of partial haplotypes, which are equivalent to 2l in our simulations. 
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We expect that if the length of [ is too small that we would not have much of an 

improvement on the efficiency of MapArg. How ever if [ is too large then we are 

using all of the sample and this too could prove inefficient. Figure 3.9 presents the 

effect of different half-window lengths, to give an overview of the effects of the amount 

information around the TIM that is used in Method 2. It seems from the graphs that 

efficiency is improved as [ increases, but only up to a certain point. Once [ is over 15, 

i. e. haplotypes of length 30 are used in Method 2, the results become less and less 

accurate. 
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Figure 3.10 Effect of window size on the likelihood profile, where fa = 0.4 and ft 

0.1 (Data B, K = lt, L = 5, P = 30). 
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3.5.5 Results with the Cystic Fibrosis Data Set 

Cystic Fibrosis (CF) is a recessive disorder occurring in Caucasian populations and it is 

weil known in the literature. The position of the TIM has been located on chromosome 

7q31 and it is well known that .6.F508 accounts for most of the mutations in the same 

gene but that there are other alleles causing the disease also. The CF data have markers 

that are known as microsatellites which are markers that are more polymorphie than 

SNPs but for simplification we consider the markers as SNPs. There are 94 cases and 92 

control haplotypes in the data set as given in Kerem et al. (1989). Let us assume for now 

that the 92 controls are non-mutant, so that fI = 1. Given that there are phenocopies 

in the data we choose a level of phenocopy, fa = 0.25, that is quite plausible as .6.F508 

accounts for most but not all of the mutations that cause CF. Figure 3.11 gives results for 

Method 2. It seems unreasonable to assume that fI = 1, so we try a smaller penetrance 

of fO.8. This gives figure 3.12 

The graphs in figures 3.11 and 3.12 compare the unadjusted likelihood profile with 

Method 2 for half-window lengths of 2 and 4. Composite likelihood is used as in every 

other simulation but these time varying windows lengths denoted d, for the likelihood 

are used. Figure 3.11 shows that when Method 2 is incorporated into the MapArg 

framework the results are very encouraging. Whiles l = 2 is slightly more efficient than 

when l = 4 the two sets of graphs show that the estimate for the TIM location is very 

accurate and is aIso quite consistent across various values for d. Figure 3.12 assumes 

that penetrance is not complete (fI = 0.8) and it can been seen that Method 2 is even 

more efficient than when assuming complete penetrance. In fact for l = 2, we can see 

that MapArg is capable of locating the TIM for several values of d. This finding is 

consistent with results shown in Figure 3.9. The CF data has close to 100 cases and 

controls, and in figure 3.9 we see that Method 2 is very good at finding the true location 

of the TIM. 
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Figure 3.11 Efficiency of Method 2 with the CF data with fa = 0.25 and fI = 1. 

Figure 3.13 shows the effect of Method 2 when using a window size (d), of 10. The 

results are still very accurate with Method 2 and are consistent with Figures 3.11 and 

3.12. We present the middle graph only in Figure 3.14 and it is clear that Method 2 

improves efficiency for the Cystic Fibrosis data. 
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Figure3.12 Efficiency of Method 2 with the CF data with fa = 0.25 and ft = 0.8. 

3.6 Further Developments 

The results shown above indicate that for certain situations Method 2 improves the 

performance of MapArg when there is incomplete penetrance and phenocopy present. 
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Figure 3.14 CF data with a window of size 10 (d = 10) and half window size of 2 

(l = 2). 

In particular, when phenocopies are present Method 2 renders MapArg more accurate 

at estimating rr, for large sample sizes. Method 1 is rather inefficient but seems to be 

able to help in some cases. It is possible to develop other methods that correct for the 

penetrance parameters and it is of particular interest to develop this method for diploid 

data. The approach of Method 1 is rather naive but it is a good starting place for 

modeling the penetrance parameters, particularly when MapArg will correct for fI and 
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fo for diploid data. An extension of Method 1, that works with diploid data is given in 

the following section. 

3.6.1 Method 1 with Diploids 

The Model 

Until now we have supposed implicitly that we are dealing with a recessive model: each 

individual possesses the mutation on each of their two chromosomes. Now, we suppose 

a more general model. Let's suppose a population of N 12 diploids or N haploids, in 

other words N 12 individuals, N haplotypes. As before, t represents the mutant allele 

at the locus of the TIM and T represents the the wild type and Si denote the affected 

status of phenotype for individual i, where Si = 1 for cases and 0 for controls, and 

it(l, .....NI2). Now the penetrance function has three parameters as opposed to two for 

a haploid population. The penetrance function F = (Jo, fI, 12), is defined as: 

fo: P(Si : liT, T) 

fI - P(Si - lit, T) 
{ 

12 = P(Si = lit, t). 

A recessive model corresponds to F = (0,0,1), meaning the only possibility for a diploid 

population to display signs of being effected by a TIM is if both chromosomes carry the 

mutant allele. In fact, until now we have implicitly worked with a recessive model. A 

dominant model is one for which F = (0,1,1). Therefore, even in only one of two the 

chromosomes carry the mutant allele the diploid will be effected. 

As mentioned earlier (See Section 3.2), the graphs in MapArg are produced starting at 

Ho, which is the haplotype data at genotype level. Define the state immediately before 

this one, i. e. the phenotype level and denote it H -1: 

Hl : Haplotype with the trait (i.e. phenotype level), 

Ho: Haplotype with mutant status (i.e. genotype level). 
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Note that H-1 can also represent diploid data as well as haploid data i. e. H-1 represents 

the phenotype associated with whole genotype (two sequences) for each individual in 

diploid data as opposed to one sequence. Suppose for the moment that the haplotypes 

are known. We are looking for Q(H_1), or to be more precise Q(H-1ITT), where TT 

represents the position of the TIM as previously defined; and everything is conditional 

on TT so we drop this parameter form the notation. We can write: 

Q(H-d = LQ(H_1IHo)Q(Ho) 
Ho 

The distribution Q(H-1IHo) depends uniquely on the penetrance function F, and no 

information on the genotype is needed. Now, let us introduce a proposaI distribution 

= '" Q(H-1IHo) P(R IH )Q(R)o P(R IH) 0 -1 0
Ho 0-1 

L f(H_ 1,Ho)P(HoIH_1)Q(Ho), 
Ho 

where f(H_ 1,Ho) = Q(H-1IHo)/P(HoIH_1) and as before, we can write the likelihood 

function that estimates TT: 

(3.5) 

Notice that the development of Q(H_d is analogous to that of Q(H- d for haploid data 

(See expression (3.3)). The only point in which they differ is in the estimation of the 

two unknown terms above, namely: 

Estimation of these two terms for diploid data will soon be explained. Beforehand, it is 

necessary to express ç, frequency of the mutation in the population, as a function of F. 
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3.6.2 The Frequency of the Mutation for Diploid Data 

Suppose the frequency of the mutation among the population of 2N chromosomes is ç. 

Furthermore, suppose the genetic model F = (Jo, fI, 12) is known. Let ne and në be the 

number of cases and controls in the sample, and fe and h, their respective frequencies. 

We need to estimate ç as a function of ne and në. Since ç represents the mutation rate 

at the population level, we deduce that the individuals of the population are: 

tt, with probability (1 _ Ç)2 

tT, with probability 2(1 - Ç).ç 
{ 

TT, with probability ç2. 

Renee, the average frequencies of cases (Je) and controls (h) are: 

fe = (1- Ç)2.fo + 2(1- ç)·ç·fI + ç2·h 

{ h = (1- ç)2.(1- fa) + 2(1 - Ç).ç.(l - fI) + ç2.(1- 12)· 

and it is possible to solve for ç: 

Therefore we can estimate ç as a function of F = (Jo, fI, 12), if we have a random 

sample. Unfortunately, this is not the case, since the mutation is usually rare: so in 

order to have a representative sample we choose ne and në to be similar in size. It is 

reasonable to assume however that the researcher has a good estimate of the frequency 

of the disease at population level, so we can still calculate the frequency of the mutation 

with the penetrance function F. 

Evaluation of Q(H-IIHo) 

Rere, Ho corresponds to the genetic data with information of the TIM. From a written 

viewpoint this is rather delicate, because we need to consider information in pairs of 

haplotypes within Ho. A pair is tt, tT or TT. The probability that a particular pair 

of exhibit the disease or not in Hl depends only on the penetrance function F, which 

we consider known. Denote Si, a random variable that equals 1 if individual i is a case 

and 0 otherwise, and Ci, the genotype of of the individual i, where Ci = (tt, tT, TT). 
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For ease of notation, we will write P(Gi = TT) as P(TT). We have: 

P(Si = liTT) = h 

P(Si = litT) = h 
{ 

P(Si = litt) = fo. 

Evaluation of P(HoIH_ 1 ) 

This proposaI distribution, is the distribution that renders the method efficient if well 

chosen and possibly Iess efficient otherwise. For a given individuai i, we look for the 

probability that there genotype is TT, Tt or tt. This probability depends on the pene­

trance fun.ction F: 

p(TTnSi = 1)
P(TTISi = 1) 

P(S(i) = 1)) 

P(Si) = 1ITTP(TT) 
P(~ = 1) 

f2.ç2 f2.ç2 
= 

f + c (1 - ç)2·fo + 2(1 - ç).ç.h + ç2·h 
The three probabilities for cases are obtained similarly, and we have: 

P(TTISi = 1) = 
(1 - ç)2.fo + 2(1 - ç).ç.h + ç2·h 

f1.2(1 - Ç).ç
P(tTISi = 1) = 

(1 - ç)2.fo + 2(1 - ç).ç.h + ç2·h 
fo.(1 - ç)2

P(TTISi = 1) 
(1 - ç)2·fo + 2(1 - ç)·ç·h + Ç2·h' 

and similarly controls may be deduced. However, the sample is not randomly cho­

sen. Let 9c be the case frequency of the sample, which is known. We are looking for 

p' (HoIH-d, where p'0 represents the proposaI distribution for the sample. Note that 

p' (TTISi = 1) = P(TTISi = 1) 

as we sample with respect to the status cases and controls. The other probabilities are 

obtained similarIy. We now want to find: 

P' (8- = ITT) = p' (TTISi = l)P' (Si = 1) 
t 1 p' (TT) 
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Note that: 

p' (TT) p' (TTISi = l)P' (Si = 1) + p' (TTISi = O)P' (Si = 0) 

P(TTISi = l).ge + P(TTISi = O).g(; 

he + (1 - h)e (1 _ )
·ge _ f' gej e 1 e 

Similarly, 

P'(Tt) = fI2(1 - ç)ç + (1 - fI)2(1 - ç)ç (1 _ )
fe ·ge 1 - fe . ge , 

and 

p' (tt) = fO(1j- ç)2 .ge + (1- fo~(~ - ç)2 .(1 - ge)' 
e 1 e 

Therefore, we are able to calculate 

We use P(GiISi) as the proposaI distribution (P(HoIH-1))' The naive approach consists 

of choosing the two mutations for an individual according to the proposaI distribution: 

if an individual has the genotype TT, we assign a mutation to each of their haplotypes, 

if it is tt, the wild type allele is assigned to each haplotype and in the case where tT is 

chosen a mutation is randomly assigned to one of the two haplotypes whiles the other 

haplotype will have the wild type allele. Then to calculate Q(H-1IHo) we have by 

independence, 
n 

Q(H- 1IHo) = II P(PiIGi)' 
i=l 

Note that in the case of diploid data, it is not true that each ail sequences are inde­

pendent of one another as haplotypes are treated in pairs. Independence is assumed for 

the present, to simply calculations. This method has not yet been implemented but it 

is possible to do so in the future. 

3.6.3 Adaptations of other researchers' methods for MapArg 

Chapter 2 reviewed the fine mapping methods McPeek and Strah's (1999), Morris et 

al. (2002) and Zollner and Pritchard (2005) with an emphasis on their treatment of the 
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penetrance parameters within their methods. The DHS method of McPeek and Strahs 

accounts for phenocopies (i.e. fa> 0), that are a result of multiple origins of the TIM 

and where the data are haploids. Incomplete penetrance (fI < 1) is not taken into 

account as the likelihood of haplotypes from the controls in the sampIe is not calculated 

within the coalescent model. 

Similarly, the shattered coalescent model by Morris et al. (2002) deals only with phe­

nocopy and does not look at incomplete penetrance. Although, the authors go one step 

further and account for sporadic events as well as multiple origins of the disease. This 

is quite important as sorne phenocopy may be caused by multiple origins of the disease; 

however, there are many complex diseases in existence that result from sporadic cases, 

i.e. cases who have no mutation in the ancestry of the sample. These sporadic cases 

are explained by environmental factors e.g. an individual may contract lung cancer 

from smoking (an environmental factor), without carrying a TIM for lung cancer. AI­

though DHS and the shattered coalescent model appear to deal well with phenocopies, 

it is of interest to us to model both incomplete penetrance and phenocopy at the same 

time. Perhaps given the fact that the incomplete penetrance does not effect the perfor­

mance of MapArg too strongly, it may be worth considering concentrating on modeling 

phenocopy only, in which case adaptations of the above methods couId be considered. 

The fine mapping method of Zollner and Pritchard (2005), TreeLD, accounts for both 

incomplete penetrance and phenocopy for haploid data. The authors also mention 

that they are currently adapting their model to work for diploid data also. Recall that 

TreeLD constructs the genealogies independently of the phenotype data. The likelihood 

of the phenotype data is then estimated conditional on the genealogies. It is at this stage 

that a grid of possible levels for fI and fa is introduced, and the function F = (fI, fa) 

that maximizes the phenotype data is chosen as the penetrance levels for the given 

sample. If fa and ft are unknown, a strategy similar to what is done in Zollner and 

Pritchard (2005) can be used: we can integrate over a set of values. If we compare the 

ln L(rT) for the Cystic Fibrosis data, for l = 8 for example, when fI = 1 compared to 

ft = 0.8, we see the ln L(rT) is two times higher when ft = 0.8, suggesting that this 
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model is more probable. 

Recall that as well as constructing genealogies independently of the phenotype data, 

'üeeLD also constructs the genealogies independently of the mutation status. In order 

to model Q(Hr ) (the distribution upon which genealogies are constructed) in MapArg, 

it is necessary to know the status of the haplotype as being mutant or non-mutant. 



CONCLUSION
 

Incomplete penetrance and phenocopy are two important phenomena that occur among 

populations with complex diseases. As MapArg assumed complete penetrance and no 

phenocopy to date,it was of great importance to see the effects, if any, that these 

parameters would have on the efficiency of this fine mapping method in finding the 

TIM. We have shown by way of simulation that incomplete penetrance does not appear 

to effect the performance of MapArg, whereas phenocopies among the sample render 

the method quite inefficient, even for quite low levels of phenocopy. The need to account 

for these parameters, especially phenocopy within the MapArg framework has become 

evident. 

Given that the levels of penetrance and phenocopy are known a priori, two methods 

were developed in order to correct for the penetrance parameters. The first method, 

a rather straightforward approach, proved ineffective in most situations but improved 

efficiency under a few circumstances. However this method provides a starting point 

for the development of a model that works for diploid populations. Until now, MapArg 

works on haploid data but it is of interest to extend the method to diploid data. 

Incorporating method 2 showed sorne improvement in the performance of MapArg. 

The most marked improvement can be seen when the sample size is increased. Also, 

the second method seems to work extremely well on the Cystic Fibrosis data, data that 

is known to have phenocopies resulting from multiple mutations. This result is very 

encouraging as it shows this method can work well for "real" data as well as simulated 

data, where situations are sometimes more ideal than in reality. 

Further discussion as to how other methods of accounting for the penetrance parameters 

might somehow be adapted to suit the MapArg framework, is given. It is clear that there 
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remains a lot of further research in this area and it seems worthwhile to concentrate more 

on modeling phenocopy than penetrance as it is this parameter that has the greatest 

effect on MapArg. 
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