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RÉSUMÉ 

Les cultures intensives à courtes révolutions (CCR) de Salix peuvent être mises à 
profit à des fins diverses, comme la production de biomasse, la phytoépuration, la 
phytoremédiation et la séquestration du carbone dans le sol. L ' établissement de 
CCR constitue également une alternative à la valorisation des terres marginales au 
Québec. Le cultivar Salix miyabeana SX67 est reconnu parmi les plus productifs. 
L'objectif de cette thèse était d'étudier et de quantifier à l'échelle du Québec 
mé~idional les impacts du climat et des propriétés physico-chimiques du sol sur la 
productivité épigée. Il était aussi souhaité de quantifier ces relations par 
l ' entremise de la nutrition foliaire . 

Cette étude a été réalisée en mettant à profit dix CCR établies dans le sud du 
Québec, soumises à des conditions pédoclimatiques hétérogènes. Des analyses 
physico-chimiques ont été effectuées sur les sols de chaque site. Les teneurs des 
éléments dans les feuilles ainsi que la masse foliaire ont été mesurées à différents 
sites au cours des saisons de croissance de 2011 à 2013. Le 813C foliaire a aussi 
été évalué au cours de l'année 2011. Enfm, les climats annuels ont été modélisés 
pour chaque site à l'aide du modèle BioSIM. 

La croissance de SX67 a été quantifiée en tenant compte de l' effet du recépage. 
De ce projet, il résulte une base de données générée à l' aide de mesures effectuées 
entre 2001 et 2013 sur plus de 1100 arbres ayant des âges d'appareils racinaires et 
de tiges compris entre 1 et 15 ans et 1 et 7 ans, respectivement. Des analyses 
dendrochronologiques ont également permis d 'effectuer un suivi de la 
productivité annuelle durant minimalement le dernier cycle de chaque CCR. 
Ainsi , il a été mis en évidence qu ' après un laps de temps nécessaire à 
l ' établissement de l' arbuste (compris entre un minimum de deux ans sur sol 
sableux et un maximum de quatre ans sur sol argileux et compacté), Je potentiel 
de productivité maximal était atteint et a pu être estimé. Le gain de productivité 
entre les deux premiers cycles était relatif à la durée de ce délai et donc aux 
propriétés du sol. 

Certaines propriétés du sol telles que les teneurs en limon et en magnestum 
échangeable ont expliqué significativement 72% et 25% des variations entre les 
sites, respectivement. Uniquement sur sol minéral , le limon, le calcium 
échangeable et le carbone organique ont expliqué 72%, 54% et 41% des 
variations. Au sein de chaque site, les facteurs limitants ont différé relativement 
aux statuts nutritionnels des sols et à leurs propriétés physiques. Sur un site, 
l' historique agricole a engendré des conditions pédologiques qui confment les 
racines proches de la surface du sol. Ceci a engendré un stress hydrique accru, ce 
qui a été mis en évidence par les valeurs foliaires de 813C. Également, les 
variations inter-annuelles de sécheresse estivales étaient négativement liées à la 
productivité, sauf pour un site où il n'a pas semblé y avoir eu de limitation en eau. 
Exceptionnellement, à cette CCR, la relation entre la précipitation et la 
productivité était négative. Globalement, la sécheresse a expliqué 
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significativement 10 à 20% de la productivité entre les sites, alors que les 
propriétés du sol ont expliqué environ 70%. 

Bien qu ' une signature nutritionnelle foliaire spécifique à chaque site ait été mise 
en évidence, les fluctuations climatiques inter-annuelles ont eu des répercussions 
importantes sur la nutrition foliaire. Les variations de nutrition inter-annuelles ont 
été observées et, en partie, expliquées par certaines variables climatiques. De ce 
fait, les nutriments foliaires linéairement liés à la productivité variaients selon les 
années. Dans l' ensemble, l' azote, le calcium et dans une moindre mesure le 
manganèse foliaires étaient les plus fortement liés au rendement. Toutefois, 
l' utilisation d ' arbres de régressions multivariés a permis d ' expliquer la 
productivité annuelle par des seuils nutritionnels et ainsi de passer outre les 
limitations spécifiques aux années. 

Cette étude suggère de modifier certaines pratiques telles que le recépage initial 
ou le labour avant l' établissement d' une CCR. Bien que la productivité de chaque 
CCR soit limitée par des facteurs leur étant spécifiques, la sécheresse et l' acidité 
des sols sont les principaux facteurs limitants dans le sud du Québec. 

MOTS CLÉS : Saule, nutrition foliaire, nutriments du sol , biomasse, culture à 
courte révolution, fluctuation climatiques annuelles 
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INTRODUCTION GÉNÉRALE 

1.1 Le saule 

Le saule (Salix spp.) est utilisé à des fins très diverses depuis des millénaires par 

les Égyptiens, les Romains et les Occidentaux (par ex. usage médicinal, 

fabrication de paniers et de flûtes , stabilisation des berges, (Keoleian 2005)). 

L'utilisation de Salix en régime de production intensive à des fms bioénergétiques 

a connu un engouement en Suède dans les années 70 (Christersson et al. 1993). 

Bien qu ' encore en développement, les utilisations sont aujourd 'hui également 

destinées à d 'autres usages tels la phytoremédiatibn (Kuzovkina & Volk 2009), la 

phytoépuration (Mirck & Volk 201 0), la phytoextraction (Meers et al. 2007) ainsi 

que la revalorisation des boues d ' épuration (Labrecque & Teodorescu 2001 ; 

Kuzovkina & Volk 2009) et du lisier de porc (Cavanagh et al. 2011). Avec la 

contribution d ' un amendement adéquat, les cultures de Salix ont l ' avantage de 

pouvoir être élaborées sur des terres marginales (Christersson 1986), tout en 

améliorant les propriétés du sol (par ex. réduction de l' érosion, amélioration des 

propriétés de filtration, capacité de décompaction du sol et de stabilisation de la 

structure du sol (Kuzovkina & Volk 2009)). De plus, il a été démontré que la 

biodiversité dans les cultures de Salix est accrue comparativement aux cultures 

agricoles conventionnelles ou aux cultures de conifères monospécifiques (Perttu 

1999). Également utilisables à des fins de production de biocarburant de seconde 

génération (Smaliukas et al. 2007), il est aujourd 'hui indéniable que les cultures à 

courtes rotations (CCR) sont une alternative très prometteuse quant à la 

production d'énergie (Volk et al. 2004). De surcroît, les CCR permettent 

d 'augmenter sensiblement la teneur en carbone organique séquestré dans le sol 

(Lockwell et al. 20 12; Routhier et al. 20 14; Lafleur et al. 2015). Salix est un genre 

de début de succession. Caractérisés par une croissance rapide, plusieurs espèces 

et cultivars de Salix profitent d 'une saison de croissance relativement courte. 

Ainsi, de nombreux cultivars de Salix peuvent être cultivés sous les conditions 
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pédoclimatiques du Québec méridional (Labrecque & Teodorescu 2003; Guidi 

Nissim et al. 2013). 

0.2 Les cultures à courtes révolutions et Je recépage 

Pour mettre en place une CCR, des boutures (section de tige d'environ 20-25 cm 

généralement prélevée après un an de croissance) sont plantées à une profondeur 

d ' environ 18 cm (Guidi et al. 2013). Bien que la densité soit variable, les CCR au 

Québec comptent en général entre 18 000 et 20 000 boutures par hectare 

(Labrecque & Teodorescu 2003; Labrecque & Teodorescu 2005; Guidi Nissirn et 

al. 2013). Les tiges qui émergent sont généralement récoltées après 3 à 5 ans 

(Mola-Yudego & Aronsson 2008), bien que cela puisse varier de 2 à 8 ans selon 

les rendements des sites (Guidi et al. 2013). Les souches restantes produisent alors 

de nouvelles tiges qui seront récoltées à nouveau à la fin de cycle suivant et ainsi 

de suite. Il est usuellement accepté qu ' une CCR peut-être exploitée une trentaine 

d ' années. 

L ' effet du recépage sur la croissance de Salix n 'est pas anodin. En fin de première 

année, un recépage initial est fréquemment effectué dans le but d 'augmenter le 

nombre de tiges et la biomasse finale de la première révolution (Guidi et al. 

2013). Également, il a fréquemment été rapporté que Je rendement de la deuxième 

révolution était supérieur à celui de la première (Nordh 2005; Mola-Yudego & 

Aronsson 2008; Guidi Nissirn et al. 2013). De plus, les CCR n 'ont pas un nombre 

maximum de révolution établi. De façon anecdotique, certains auteurs ont même 

observé une augmentation de productivité jusqu ' à la 4 ème révolution (Volk et al. 

2011). Avant que la production épigée soit maximale, un laps de temps est 

nécessaire pour que l' appareil racinaire soit suffisamment bien établi (Kopp et al. 

1993; Mola-Yudego & Aronsson 2008). Kopp et al. (2001) ont observé une 

augmentation asymptotique de la productivité au cours des deux à quatre 

premières saisons de croissance, selon que Je sol ait été fertilisé ou non. Toutefois, 

la durée de ce délai en fonction de la variabilité des sols n'est pas encore élucidée. 
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De la même façon, peu d 'études ont porté sur l' effet du recépage sur la 

productivité en fonction de la variabilité des sols (Abrahamson et al. 2002) et à 

ma connaissance, aucune recherche n' a porté sur les effets du recépage initial. 

0.3 Les conditions de sol régissant la nutrition et la croissance de Salix 

Très adaptable, Salix peut croître quelque soit la texture granulométrique du sol 

(Tahvanainen & Rytkonen 1999; Labrecque & Teodorescu 2001), y compris sur 

sol compacté (Kuzovkina et al. 2004; Souch et al. 2004). Cependant, la 

productivité est supérieure sur les sols à textures fines , bien que les sols argileux 

compactés ne soient pas non plus optimaux (Abrahamson et al. 2002). Sur les 

sols sableux et caractérisés par de faibles teneurs en azote (N), les rendements 

sont plus faibles (Labrecque & Teodorescu 2001 ; Toillon et al. 2013). En culture 

hydroponique, les rendements augmentent avec la disponibilité en N (Ericsson 

198la). Cependant, in situ, les réponses sont très variables selon la nature des sols 

(Labrecque & Teodorescu 2001; Quaye & Vo1k 2011; Simon et al. 2013). L ' effet 

des autres nutriments n'a été que peu étudié. En culture hydroponique, il a été 

démontré que le N, le phosphore (P), le potassium (K), le calcium (Ca) et le 

magnésium (Mg) sont positivement liés à la croissance (Ericsson 198lb). En 

revanche, in situ, les relations sont beaucoup moins triviales et les conclusions ne 

sont pas unanimes (Simon et al. 1990; Labrecque et al. 1998). En effet, les 

facteurs limitants peuvent varier d ' un site à l' autre. En sol acide, les métaux sont 

plus disponibles (Sanders 1983; Martinez & Motto 2000) et sont susceptibles 

d 'être toxiques pour les arbres ainsi que d ' induire des effets antagonistes aux 

prélèvement d 'autre nutriments . Par exemple, dans de telles conditions, il a été 

observé que le manganèse (Mn) limitait la croissance de Populus, de Acer 

saccharum et de Salix (Kovalchik 1992; Houle et al. 2007; Pinno et al. 2010). De 

plus, les sols acides sont généralement carencés en Ca, ce qui peut également 

limiter la croissance de Salix (Hytonen 2005). Pour la majorité des cultivars, il 

semble qu ' une gamme de pH optimale se situe entre 5-5.5 et 7-8 (Mitchell et al. 
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1999; Abrahamson et al. 2002; Guidi et al. 2013). Cependant, une relation 

positive a été observée (sans seuil maximal) entre le pH du sol, le Ca total du sol, 

le K foliaire et la productivité de Salix purpurea sur plusieurs sites ayant des 

valeurs de pH de sol allant jusqu'à 8 (Ens et al. 2013). Concernant le cultivar 

Salix miyabeana SX67, sa sensibilité au pH ainsi que les conditions de nutrition 

optimales restent à définir. 

Les teneurs nutritionnelles des sols se reflètent dans les feuilles plus ou moins 

linéairement (Bau er et al. 1997) et dépendent du mode d' absorption des 

nutriments (Ericsson 1981b). Ainsi, l' augmentation du rendement de Salix après 

l' ajout de fertilisants à base azotée et de chaux se traduit respectivement par une 

augmentation du N foliaire (Labrecque et al. 1998; Labrecque & Teodorescu 

2001) et du Ca foliaire (Hytonen 2005). Également, les nutriments sont 

susceptibles de rentrer en interaction. Par exemple, le ratio Ca:Mg influence 

l' absorption en plomb (Pb) et en cadmium (Cd) qui, en retour, limitent la 

croissance de Salix (Mleczek et al. 2011; Magdziak et al. 2013). De ce fait, afin 

de mieux détecter ce type d ' interaction, différentes méthodes de diagnostique 

foliaire ont été élaborées pour mieux interpréter les teneurs nutritionnelles brutes 

obtenues (Ba tes 1971 ; Beau fils 1973 ; Parent et al. 1994a; Haase & Rose 1995; 

Parent 2011). Dans un espace contraint comme celui d' une feuille, la variation de 

la teneur d' un nutriment a forcément un ou des impact(s) sur la ou les teneur(s) 

d'un ou des autre(s) nutriment(s). Il y a donc une redondance dans l' information 

contenue dans les teneurs brutes des nutriments foliaires parce qu ' elles ne peuvent 

pas être considérées comme indépendantes. Afin de surmonter ce biais, la 

méthode du « Compositional Nutrient Diagnosis » (CND) permet de calculer, 

pour chacun des nutriments, des indices linéairement indépendants qui prennent 

en considération le bilan nutritionnel total de la feuille ou de l' aiguille (Parent & 

Dafir 1992). Bien que cette méthode n' ait pas encore été utilisée pour un cultivar 

de Salix, elle semble tout à fait adaptée au contexte de cette étude. 
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0.4 Le climat comme facteur limitant la croissance de Salix 

Bien que Salix soit très adaptable selon une large gamme de températures et de 

régimes hydriques (Donovan et al. 1988), les contraintes climatiques sont 

susceptibles de limiter la croissance dépendamment de l' aire de l'étude. Dans les 

zones géographiques les plus froides , la température estivale et la longueur de la 

saison de croissance sont généralement limitantes (Wijk 1986; Walker 1987; 

Schmidt et al. 201 0). Dans les zones pl us tempérées, la température est 

positivement liée à la croissance des arbres s'il n'y a pas de limitation hydrique, 

alors que la relation s ' inverse en cas de sécheresses (D'Arrigo et al. 2008). Ces 

tendances se vérifient bien sur Salix. Dans la vallée du Po en Italie, où de fortes 

sécheresses estivales caractérisent le climat (mésogéen), la pluviométrie a été 

identifiée comme facteur limitant le rendement de Salix matsudana (Bergante et 

al. 2010). En revanche, sous un climat n' imposant aucune limitation hydrique 

comme sur l'île de Svalbard (Norvège), par exemple, la pluviométrie est 

négativement liée à la croissance de Salix polaris car elle diminue la température 

et la radiation (Buchwal et al. 2013). Aussi, au sud du Québec, la productivité 

maximale de Salix en CCR (au-delà de 20 t ha-1 an-1
) est supérieure à celle du sud 

de la Scandinavie si les plantations ne sont pas irriguées (Christersson 1987; 

Tahvanainen & Rytkonen 1999; Labrecque & Teodorescu 2003), alors que le 

nombre de degrés jours (base 5°c) est environ le double et que la pluviométrie de 

mai à aout est deux fois moindre (Labrecque & Teodorescu 2003). De ce fait, les 

faibles précipitations ont déjà été soupçonnées de limiter la productivité dans Je 

sud du Québec, bien qu'à ce jour, aucune étude n' a quantifié l' ampleur de l' effet. 

Le ratio 12C: 13C dans les tissus de la plante est un indicateur robuste d~ l' efficacité 

de l'utilisation de l'eau au cours de la saison de croissance (Farquhar et al. 1982). 

Cette information est précieuse parce que les exigences en eau des cultivars de 

Salix cultivés en CCR sont très élevées (Weih 2001). Chez Salix viminalis, 6,3 g 

de matière sèche par kg d' eau transpirée est, en moyenne, produite (Lindroth 

1996). Combinée aux rendements, l' analyse du 8 13C (signature isotopique du 13C) 

a permis de mettre en évidence des sites où un stress hydrique avait fortement 
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limité la productivité et, de manière plus nuancée, de constater si l' efficacité de 

l'utilisation de l'eau limitait la productivité de diverses CCR de Salix (Moukoumi 

et al. 2012; Ens et al. 2013; Toillon et al. 2013). 

En même temps que la croissance, les conditions climatiques annuelles modulent 

la nutrition des arbres (MacKay & Leefe 1962). Notamment, les teneurs en N 

foliaire baissent durant les années de faibles pluviométries et/ou de fortes 

températures (Kudo 2003; Vizcayno-Soto & Côté 2004). Toutefois, très peu 

d ' information est disponible sur le sujet, encore moins sur le Salix. De 

nombreuses interrogations demeurent quant aux effets des interactions entre les 

propriétés pédologiques et les conditions climatiques sur le statut nutritionnel de 

la feuille et sur le potentiel de croissance de Salix . 

0.5 Objectifs, hypothèses et structure de la thèse 

L' objectif de ce doctorat est de mieux comprendre et de quantifier l' influence des 

facteurs pédoclimatiques et nutritifs régissant la production de biomasse épigée de 

Salix miyabeana SX67 dans dix CCR dispersées au sein du Québec méridional. 

Salix miyabeana est une espèce qui pousse naturellement dans les forêts de 

Hokkaido, Japon, (Kudo 2003). Le cultivar Salix miyaneana SX67 a été 

sélectionné pour cette étude car son potentiel de productivité est parmi les plus 

élevés relativement aux autres cultivars de Salix et il est aussi plus résistant aux 

maladies et aux insectes que Salix viminalis, également reconnu pour ses 

rendements élevés au Québec et en Amérique du Nord en général (Labrecque & 

Teodorescu 2005 ; Guidi Nissim et al. 2013). De manière à apprécier au mieux 

cette question de recherche, trois chapitres comprenant chacun des objectifs et des 

hypothèses spécifiques qui traitent de cette question sous différents angles ont été 

rédigés. 

Les objectifs du premier chapitre étaient (1) de reconstruire la productivité 

annuelle de biomasse épigée durant minimalement le dernier cycle de révolution 

des dix CCR dont les âges racinaires et les historiques de recépage sont différents, 
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(2) de comparer le potentiel de productivité des sites et (3) de mettre en évidence 

l' effet du recépage sur la biomasse sèche, le diamètre basal et la hauteur de la plus 

grosse tige ainsi que le nombre de tiges en fonction des propriétés du sol de 

chaque site. Pour ce faire, la signification de la relation linéaire entre la surface 

basale de la tige de plus gros diamètre et la biomasse sèche a été testée. Ensuite, 

via des analyses de dendrochronologie, les dynamiques de croissance annuelle ont 

été étudiées afin de dégager les influences de l' historique de recépage ainsi que 

celles des conditions de site. Enfm, l'effet de l' âge du système racinaire sur la 

productivité a été testé à différents sites en comparant la productivité de tiges de 

mêmes âges récoltées sur des souches d' âges différents . 

Les objectifs du deuxième chapitre étaient (1) de comparer et de quantifier les 

effets intra- et inter-sites des conditions pédoclimatiques sur le rendement et (2) 

de développer des modèles pédoclimatiques afin de comparer les effets du sol et 

du climat. Le but ultime était de pouvoir estimer le potentiel de productivité d ' un 

site en fonction de variables simples afin d 'éclairer le plus possible les 

producteurs sur le potentiel de leurs terres en vue de l ' établissement éventuel 

d'une CCR de Salix. En conséquence, toutes les variables pédoclimatiques ont été 

testées afin de voir si elles étaient en mesure d 'expliquer significativement la 

productivité. Également, l'hypothèse que tous les sites soient limités par les 

mêmes contraintes climatiques a été testée. Finalement, il a été testé si les 

rendements annuels pouvaient être expliqués par des seuils de variables 

pédoclimatiques. 

Les objectifs du troisième chapitre étaient (1) de quantifier dans quelle mesure les 

variations des équilibres nutritionnels foliaires inter-sites et inter-annuels sont 

imputables aux conditions édaphiques et climatiques et (2) de développer des 

modèles capables de prédire le rendement annuel à l'aide de variables foliaires . 

Pour ce faire, il a été testé si une signature nutritionnelle foliaire spécifique au site 

peut-être mise en évidence, indépendamment des fluctuations nutritionnelles 

annuelles. Ensuite, il a été testé si les nutriments foliaires étaient linéairement liés 

aux variables climatiques, pédologiques et à la productivité annuelle. Finalement, 
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il a été testé si des modèles basés sur des effets seuils étaient capables d ' expliquer 

la productivité. 



CHAPITRE 1 

EFFECTS OF COPPICING AND STOOL AGE ON ANNUAL YIELDS OF 
SAUX MIY ABEANA SX67 IN SOUTHERN QUÉBEC 

Fontana Mario 1•2, Benoît Lafleur1, Michel Labrecque2, François Courchesne3, 

Nicolas Bélanger1.4 

1Centre d' étude de la forêt, Université du Québec à Montréal, C.P. 8888, Suce. 

Centre-Ville, Montréal, Québec, H3C 3P8, Canada 

2Institut de recherche en biologie végétale, Jardin botanique de Montréal, 4101 rue 

Sherbrooke est, Montréal, Québec, H1X 2B2, Canada 

3Département de géographie, Université de Montréal, C.P. 6128, Suce. Centre­

Ville, Montréal , Québec, H3C 3J7, Canada 

4UER science et technologie, Téluq, Université du Québec, 5800 rue Saint-Denis, 

bureau 1105, Montréal, Québec H2S 3L5, Canada 



10 

1.1 Abstract 

Aboveground biomass yields of short rotation cultures (SRC) of willow can vary 

substantially depending on site quality. Among others, aboveground biomass 

yields depend on climatic conditions, soil properties, age of the SRC and number 

of harvesting cycles. ln this study, we investigated the effects of coppicing on 

growth variables (i.e. largest basal stem, height and aboveground biomass) at ten 

SRC of Salix miyabeana SX67 established on various soils in southem Quebec. 

More than 1100 shrubs with stool ages varying between one and fifteen years 

were measured. Strain analysis was carried out to calculate past annual 

aboveground productivities, and maximum annual yield potential was quantified 

at each site. Annual growth rates were highly variable and depended on site and 

coppicing history. To achieve optimal stool development and aboveground yields, 

two to three growing seasons following coppicing are necessary for sandy and 

clayey sites, respectively. The delays for reaching maximum yie lds were 

shortened when soi! cation exchange capacity was dramatically low and were 

prolonged when soi] was physically restricting stool development. This lag 

influenced the total yie ld of the first rotation and also modulated the magnitude of 

the increase of aboveground biomass that is generally observed in the second 

rotation. To increase yields in southern Quebec, our results suggest that it is 

preferable to extend the length of the first rotation instead of coppicing at the end 

of the first growing season after establishment. 

Keywords : Willow; short rotation culture, annual yield, soi] texture, coppicing, 

root system age 

1 -
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1.2 Introduction 

The use of willows (Salix spp.) is considered for various ecological applications 

such as bioenergy (Volk et al. 2004; Karp & Shield 2008; Guidi Nissim et al. 

2013), phytoremediation (Weih & Nordh 2002) and waste water and sludge 

filtration (Labrecque et al. 1998; Dimitriou et al. 2006; Cavanagh et al. 2011). 

Willows can colonize and perform relatively weil on various soi! types, which 

makes them an interesting option for landowners with unused marginal land 

(Christersson 1986; Karp & Shield 2008). Short rotation culture (SRC) of willow 

has recently grown in interest in Quebec as yields of Salix viminalis planted at a 

density of 18 000 stools ha·1 in the warm southem region were reported to be as 

high as 70 Mg ha· 1 of dry weight (DW) after a second rotation of three years 

(Labrecque & Teodorescu 2003). This cultivar is also known for its high potential 

productivity in other regions with similar temperate climates [ e.g. , Verwijst 

(1996), Bergkvist and Ledin (1998) in Sweden, and Stolarski (2008) in northern 

Poland], although yields in southern Quebec appear to be in the upper tier of ali 

yields reported for such climates. Cultivars of S. miyabeana also seem to be very 

weil suited for SRC in the southern region because it has a greater resistance to 

insect and disease than S. viminalis and tbus, shows more consistent yields 

(Labrecque & Teodorescu 2005). 

The productivity of willows can nevertheless be negatively impacted by climate 

(e.g. short growing season degree days, and low precipitation and soi! moisture) 

and soi! (e.g. low nutrient availability or contarninants) (Tahvanainen & Rytkonen 

1999; Trapp et al. 2000; Teillon et al. 2013). Onder certain conditions, the 

productivity of SRC of various willow cultivars has been reported to be qui te low, 

i.e. 1 to 5 Mg DW ha year· 1 (e.g. Heinsoo et al. (2009) in Estonia, Tahvanainen 

and Rytkonen (1999) in Finland, and (Ens et al. 2013) and Moukoumi et al. 

(20 12) in different locations in Canada, including the dry Prairie provinces with 

relatively short summers). In particular, climate was shawn to severely impact 

willow biomass production. A meta-analysis conducted in Sweden on SRC of 

willow with high soi! nitrogen (N) contents (75-165 KgN ha- 1
) showed that yields 

----- ----- ---- ---------- --
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could be modeled at the landscape scale with radiation use efficiency as the main 

independent variable (Sannervik et al. 2006), whereas Priee and Clancy (1986) 

and Guidi and Labrecque (20 1 0) demonstrated the importance of having sufficient 

precipitation for optimum willow productivity. Soi! nutrient availability was also 

shown to impact willow biomass production. Increased soi! N availability 

following fertilization generally leads to greater willow yields, especially for soils 

with initially low nutrient availability (Labrecque & Teodorescu 2003). Soi! pH 

and total calcium (CaO) were also shown to control S. purpurea yields of nine 

SRCs established from southem Ontario to central Alberta (Ens et al. 2013). 

Willow aboveground biomass production is normally lower during the first 

growing season compared to subsequent years within the same rotation, whether 

the SRC has just been established (first rotation) or is in its second or third 

rotation (Verwijst 1996; Labrecque & Teodorescu 2005). However, a meta­

analysis from data of 2082 willow SR Cs in Sweden showed that yields increased 

by 60% from the ftrst to second rotation (Mo la-Yudego & Aronsson 2008). 

Similarly, Volk et al. (2011) observed an asymptotic increase of aboveground 

biomass from the first to the fourth rotation. This is likely explained by a delay of 

the rooting system to fully establish and acquire soi! resources (i.e. water and 

nutrients). Moreover, coppicing is often done in the first stage of growth. Despite 

few studies on its effects on willow productivity, coppicing is reported to 

stimulate the production of fine roots (Berhongaray et al. 2015). In tum, it 

decreases competition by weeds and leads to resprouting of multiple and vigo rous 

stems (Guidi et al. 2013). Coppicing of willow at initial stages tends to increase 

stem growth and maximum root diameter (Crow & Houston 2004). In this respect, 

producers will generally coppice after one full growing season of the first rotation 

to increase the number of stems per stool and to promote aboveground biomass 

production for following years. The benefits of coppicing on growth were 

reported to be small on sandy soils , probably because nutrient and water 

availability are intrinsically low. Positive coppicing effects were more frequently 

observed for clayey soils (Abrahamson et al. 2002). The gains on basal main stem 
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diameter, height and weight induced by coppicing also varied among species and 

clones (Guidi Nissim et al. 2013). As a whole, however, studies on the effects of 

coppicing on willow growth remain relatively anecdotic and more robust 

scientific studies are required to identify the conditions (and timing) under which 

it should be conducted. 

Measuring stem diameter and height as weil as total aboveground biomass after a 

rotation of a few years is an integrative measure of site productivity (Brown 1976; 

Labrecque & Teodorescu 2001). Telenius and Verwijst (1995) showed that the 

strong relationships between stem diameter, height and aboveground biomass 

allow for the development of allometric equations for the non-destructive (i.e. 

mostly stem diameter measurements) but diligent estimation of biomass yields of 

specifie cultivars with satisfactory precision. This method could be used to decide 

whether the stands have reached financial maturity and should be harvested. Such 

integrative growth data, however, does not provide the detailed information 

needed to fully elucidate seasonal (climate, water and nutrients), coppicing and 

stool age (rotation associated to harvest) effects on willow growth and biomass 

production. For example, Mola-Yudego and Aronsson (2008) suggested that 

higher annualized yields from the fust rotation were achieved with four growing 

seasons instead of five. Annual yield data could be of significant value to assess 

whether coppicing and number of rotations have a measurable impact on willow 

productivity. In this context, the objective of this study was to reconstruct an nuai 

aboveground biomass production (using a combination of stem diameters and 

dendrochronological measurements) in a series of willow SRCs in southern 

Quebec at various sites and covering different root system ages as a means to 

determine the impact that coppicing and rotation have had on yields. 
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1.3 Material and methods 

1.3.1 Study sites 

This study used a network of eighteen SR Cs of S. miyabeana SX67 established at 

nine different sites in southern Quebec on various soi! types (Tables 1 and 2). In 

ali SRCs, SX67 cuttings of 20 to 25 cm in length were inserted in the soi! to a 

depth of about 15-20 cm at an interval of 30 cm along a single row design with a 

spacing of 1.8 rn between the rows (approximate density of 18,500 stools ha-l) 

using a planting machine. The cuttings were from one-year-old stems of about 3 

rn long and 1-2 cm in diameter that showed no symptom of disease on bark or 

wood. For the ABI, ALB, BOl, LA V, MTL, RXP, SJPJ and STR sites, row 

lengths of SX67 were over 100 meters at a typical monoculture site, whereas 

SX67 was distributed in randomized split-blocks at the HTG site (1 0 x 12 rn), 

which consists of a clonai trial. Coppicing was generally done in the fall of the 

first growing season. However, sorne SRCs were either not coppiced or coppiced 

after the second growing season only (see Tables 1 and 2 for details). Harvesting 

was generally done three to five years after coppicing. Before SRC establishment, 

weeds were controlled using mechanical soi! preparation (i.e. where stoniness was 

low, ploughing in the fall of the previous year was followed by cross-disking just 

before spring planting). Herbicides (i.e. normally glyphosate 2 to 4 L/ha) were 

applied before soil ploughing in the fall (Guidi et al. 2013). The fact that the 

measurements were performed in SRCs with different numbers of coppicing and 

rotations allowed to specifically test their effects on aboveground yields (see 

further details in this section). 

The SRCs established at the ABI, ALB, HTG, LAY, RXP and STR sites were on 

former agricultural soils of varying textures, whereas MTL was planted on a 

sandy (loamy sand) forest soi! after a mixedwood stand was harvested and the soi! 

surface had been cleared from ali residues (Table 1.2). Most sites were 

characterized by slightly acidic soils (pH from 5.2 to 5.6), except for so ils at the 

BOl and HTG sites which were near neutra( (pH from 7.3 to 7.5). Also, the RXP 

site was the only one where SRCs were established on an organic soil (Table 1.2). 
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1.3 .2 Field growth survey 

The SRCs were monitored non-systematically at the end of the growing season 

between 2000 and 2013 (Table 1.1). Each measurement was performed on sixteen 

to fifty shrubs in four to nine plots (5 x 5 rn). Plots were selected along one or two 

randomly selected rows, depending on the number of plots measured . Each plot 

was separated by at )east 20 m. The sampling in each plot consisted of four to ten 

healthy/vigorous successive stools along the row and on which height of the 

largest stem, the basal diameter at about 5 cm above the collar (later referred as 

largest diameter) and the number of stems per stool were measured. For each 

stool, ali stems were then harvested for biomass measurement. Fresh weights 

(including the leaves) were obtained in the field using an electronic scale. 

Subsamples of 3 to 6 kg (integrating whole stems) were then collected, brought 

back to the laboratory and dried to constant weight at 70°C in an oven and 

reweighted to convert fresh weight to dry weight. It should be noted that sampling 

the stem with the largest diameter from healthy/vigorous stools was systematically 

applied as a means to provide a proxy for the maximum yield potential (MYP) of 

a site. This method was used because we were interested in reconstructing annual 

yields and that dendrochronological work could only be conducted on a limited 

number of stems per SRC. It can be considered for SX67 because studies of SX67 

generally show that it produces less stems than other productive clones. For 

example, Guidi Nissim et al. (2013) reported that the number of stems per stool of 

SX67 did not increase significantly between the first and the third rotations, 

unlike Salix eriocephala Mu hl which also has a higher number of stems per stool 

compared to SX67. To sorne extent, our approach is inspired from the 

methodology used in forestry to estimate site quality index for which only 

dominant trees (i .e. the larger stems) are selected for measurement (Carrnean 

1975; Perron et al. 2009). Using our approach could, however, be problematic for 

Salix clones that produce more stems and distribute much of the biomass in the 

smaller stems. 
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1.3.3 Soil sampling and analysis 

SRC in each of the nine sites for which the field growth survey had been 

conducted (see Table 1.2 for specifie SRCs). The samples were first air-dried in 

the laboratory and then sieved to pass through a 2 mm mesh. Soil pH of mineral 

samples were measured using a soi l:water ratio of 1:2, whereas a ratio 1:10 was 

used for organic soil samples ( i.e. RXP). Using a muffle fumace, organic C was 

measured by 1oss of ignition after 15 minutes at 575°C and then inorganic C 

(CaC03) after 10 minutes at 1000°C (Rabenhorst 1988). Soi! parti cie size 

distribution was analyzed using the Horiba Partica LA-950v2 Laser Particle 

Analyzer (Horiba Instruments, Irvine, CA, USA). Samples from BOl, MTL and 

SJPJ were first pre-treated to destroy sesquioxides. In this respect, samples had to 

be bleached twice with NaOCI and thoroughly washed with distilled water. 

Samples from RXP contained more than 60% of organic matter and only small 

amounts of mineral particles. Th us, the bulk of organic matter was first destroyed 

by loss on ignition and then treated with NaOCl before yielding enough particles 

for size analysis. Soil exchangeable cations were measured by atomic absorption 

(Varian AA-1 475, Palo Alto, US) after they were extracted using an unbuferred 

0.1 M BaCb solution (Hendershort et al. 2007a). Cation exchange capacity (CEC) 

was defined as the sum of exchangeables cations (Ca, Mg, K, Na, Mn, Al and Fe). 

1.3 .4 Relationship between area of the largest diameter and dry biomass 

Stem and root system ages ofthese SRCs ranged from 1 to 7 years and from 1 to 9 

years, respectively (Table 1.1 ). He nee, we identified the root age and the stem age 

in a single descriptor (i.e. SaRa where S is stem, Ris root and ais age of the stem 

and root system). A linear relationship between the area of the largest diameter 

and aboveground biomass was tested for ail available measurements. Between 

2000 and 2013 , aboveground biomass was measured twenty-four times at 

seventeen SRCs of the main eight sites. Two additional sites for which three more 

biomass samplings were available (as described above) were also included only 
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for this dataset as a means to build the most robust regression mode!. Points from 

this dataset are not independent considering that more than one SRC was 

monitored within the same site at most of the study sites. Thus, to test the site 

effect as a random factor, a mixed mode! was also performed with the area of the 

largest diameter as a fixed variable using !me function in the nlme package (R 

3.01 , R Core Team 2012). This function allows unbalanced experimental design. 

Normality of residuals of these models was validated with the Shapiro-Wilk test, 

whereas conditions of homoscedasticity were validated visually. 

1.3 .5 Estimation of basal area increment 

Annual productivity of SRCs at the eight sites for which the field growth survey 

had been conducted and sampled for soils (see " Soit sampling year" column in 

Table 1.1 for details) was investigated using estimates of basal area increment 

(BAI). Root system age, numbers of coppicing and rotations varied between these 

SRCs. Dendrochronological analyses were therefore carried out from a set of six 

to twenty-two stem sections per SRC that were sampled at about 5 cm above the 

collar and that also exhibited the largest diameters . This sampling was completely 

distinct from the field growth survey described previously as it was conducted one 

to two years following the main survey (i.e. in 2012 and 2013, depending of site). 

Strain analysis (Rubino & McMarthy 2000; Johnson & Abrams 2009) was 

performed on the disks using a binocular coupled with WinDENDRO (Regent 

Instruments, Québec, Canada) after progressively sanding them with grits of 200, 

400 and 600. For each stem section, a total of six rays were used to estimate the 

BAI of each growing season on the disk. We first calculated the total growth area 

corresponding to the year that the largest diameters were measured during the 

field survey (specifie for each site). This area (i.e. sum of growth areas or BAis) 

was then used as the denominator to calculate the contribution (in %) of BAI of 

each growing season captured on the disk, including the years following the 

growing season that the largest diameters were measured during the field survey. 

The contributions calculated on each disk were averaged by growing season for 
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Figure 1.1 Method to estimate the basal area increments (BAI) of ali growing seasons captured 

within the sampling of a short rotation culture of SX67 

each site (Step 1, Figure 1.1). The areas of the stems with the largest diameter 

measured during the fie ld survey were then multiplied by the average contribution 

of BAI of each growing season captured at the SRC as an estimation of BAI for 

each respective growing season. These estimates of BAI calculated on each disk 

were fin ally averaged by growing season for each site (Step 2, Figure 1.1 ). 

To validate our approach, stems with the largest basal diameters that were 

measured in the field in 2011 at six SRCs (i.e. ABil , BOil, HTG1, MTLl , LAV1 

and RXP 1) and other stems were aga in measured in 2013 in the same SR Cs. The 

area of Iargest diameters measured in 2011 (9 plots x 4 stools per plot= 36 stools) 

were statistically compared to the 2011 estimates (5 plots x 10 stool per plot= 50 

stools) obtained based on hindcasts from the stems with the largest basal 

diameters measured in 2013. To compare the estimated and measured values, a 

mixed mode! was developed with site as a random effect and estimated vs. 

measured as a fixed factor using the function !me of the nlme package (R 3.0 1, R 

Core Team 2012). Because the condition of normality of residuals was not met 



23 

with the raw data (tested with the Shapiro-Wilk test), the mixed mode! was 

performed with log-transformed data. 

1.3.6 Estimation of annual aboveground biomass production and maximum 
potentia1 

The equation of the linear relationship between area of the largest diameter and 

aboveground biomass (Figure 1.2) was used to hindcast annual aboveground 

biomass yields for the nine selected SRCs. Independence of data points was 

accepted based on the non-significant site effect (random factor) in the mixed 

mode! and the fact that the slopes of both models were roughly similar (see 

Results section). Thus, the mode! was used to convert the estimated BAI for each 

growing season to annual dry mass yields per shrub. It was then multiplied by 

18,500 (i.e. the number of seedlings p1anted per hectare) to es ti mate the an nuai 

yields. The estimated annual yields are clearly overestimates because mortality 

was not taken into account, but as indicated earlier, our numbers are proposed as 

an estimate ofMYP. 

At four of the sites, it was also possible to estimate annual aboveground biomass 

production of subsequent rotations using the same dendrochronological approach 

and linear mode! described above. At the RXP site, RXP2 (next to RXP1 and with 

root systems of the same age) was harvested late in the fall of 2012. We thus 

measured the basal diameter of the largest stem of twenty shrubs in the fall of 

2013 (i .e. , first growing season of the second rotation) and calculated the BAI. 

A Iso, ABI2 (next to AB Il and with root systems of the same age) was harvested 

just after snow thaw in the earl y spring of 2012 and the basal diameter of the 

largest stem of twenty shrubs with two growing seasons was measured at the end 

of the 2013 growing season. Producers harvested SJPJl at the end of the 2011 

growing season so that the largest basal d iameter of fifty stems ( 5 plots x 10 

stools per plot) with two growing seasons were measured again at the end of the 

2013 growing season. Finally, at MTLl , we harvested SX67 for biomass 
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measurement at the end of the 2011 growing season. Contiguous shrubs of 

sampled plots were also eut to facilitate handling. The same stools therefore 

regrew without light limitation due to an overalllow height (not shown) and stem 

density of neighbor shrubs. The basal diameter of the largest stem of twenty 

shrubs was again measured on stems with two growing seasons. At ABI2, MTLl 

and SJPJl , stem sections were sampled to reconstruct the BAI of the first and 

second year of growth as explained above. The shrubs measured at this site were 

therefore assumed to be representative of MYP. 

The fact that stem and root system ages were different between sites necessitated 

that we identified a temporal threshold for MYP for comparison, i.e. the year that 

the MYP was reached. On the one hand, for SRCs with only one rotation, the 

MYP threshold was identified as the fust growing season for which the yield was 

not lower from those of subsequent growing seasons. This was done by 

determining whether the upper limit of the range encompassed by the coefficient 

of variation of the estimated BAI (step 2, Figure 1.1) of the second growing 

season reached or exceeded the mean of one of the fol lowing growing season. If 

the second growing season did not fulfil this condition, then the procedure was 

repeated with the third growing season. At that point, the test was conclusive at ali 

SRCs (i .e. MYP was reached in the third growing season or less). On the other 

hand, for SRCs in their second rotation or more, the MYP threshold was identified 

as the second year of growth of the current rotation because the fust growing 

season following establishment or harvest is generally characterized by the lowest 

aboveground biomass yields, due to a high initial C demand of resprouting stems 

which is, in large part, satisfied by root reserves (von Fircks et al. 2001). Based on 

the assumption that annual productivity increases asymptotically (Kopp et al. 

2001) until MYP is reached, the problem of comparing annual productivities 

between one SRC for each of the eight sites is overcome by using yields that 

appeared to be no longer considerably limited by root development. Because the 

coppicing year varied between SRCs (after one or two growing seasons) and that 

sorne SRCs were not coppiced at ali, the year that MYP was reached is later 

-------------------------- -·--- --------' 
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reported in the manuscript as the total number of years since willow 

establishment. 

1.3. 7 Data analysis 

Mixed models were developed to explain the area of the largest diameter-to-height 

ratios with site as a random factor and stem age as a fixed factor. Stem age was 

considered as a quantitatively continuous variable as weil as a binary variable, 

allowing the comparison between the area of the largest diameter-to-height ratios 

of stems with one growing season and stems with more than one growing season. 

Normality of residuals was tested by the Shapiro-Wilk test using the function 

shapiro.test. The R2 of the models were obtained by squaring the r Pearson 

coefficients of the correlation between fitted values and raw data. Also, a linear 

regression was developed using the number of stems per stool as the response 

variable and the age of the root system as the explanatory variable. 

Using one-way ANOV A, we compared growth variables (i.e. basal diameter of 

largest stem height and aboveground dry biomass) between shrubs of the same 

stem age but of different stool (or root system) ages . Because the condition of 

normality was not systematically fulfilled , comparisons were made by ANOV A 

using a permutational test to overcome the deviations in the normality of the data 

(Legendre 2007). This assumes that ANOV A is quite robust against relative non 

homoscedasticity. Data were always grouped and tested by site. ln severa! cases, 

the estimated basal diameters of the largest stems were compared to measured 

basal diameters ofthe largest stems from another SRC of the same site or from the 

same SRC but for a different rotation. This test systematically served to assess the 

age effect of the rooting system on growth within a site (later referred to as the 

stool age effect). By doing so, the effects of coppicing and harvesting were also 

tested. However, this test was not systematically possible at each site. 

In order to test for the effects of stem and stool (or root system) ages on inter­

annual variations in BAI, one-tai! paired t-tests (paired by site and rotation) were 
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performed on the reconstructed annual growth data. We tested whether BAI after 

one growing season differed from BAI after two seasons, BAI after two growing 

seasons differed from BAI after three seasons, and BAI after three growing 

seasons differed from BAI after four seasons. This was done without considering 

whether MYP was reached or not. To statically compare annual aboveground 

biomass yields between sites, estimated yie ld data had to be produced for each 

plot within a site (n = 9). Therefore, the average stem diameter area of ali the plots 

in a SRC was used as the denominator to calculate the difference (in %) with the 

average stem diameter area of each plot. To compute values that reflect MYP, 

only annual yields of growing seasons that had reached MYP were used to 

calculate an average annual yield for the SRC. This average annual yield was then 

multiplied by the percent differences between average stem diameters (i.e. plot vs 

SRC) to obtain a single annual biomass yield value for each plot of each SRC that 

reflects MYP. By doing so, it is recognized that the time to reach maximum yield 

varies depending on the conditions that prevail at a site. It is also representative of 

soi! nutrient availability and global variations of hydroclimatic conditions that 

impact growth at a site. One-way ANOV A with permutational test was also 

performed to compare MYP at plot scale between sites. 

To compare our abi lity to estimate aboveground biomass yield using the area of 

the largest basal diameter as weil as other growth variables such as height, root 

age, stem age, number of rotation and number of stems per stool, we partitioned 

the variance in biomass as proposed by (Peres-Neto et al. 2006). This allowed to 

assess: (1) how much of the variance in biomass yield explained by the area of the 

largest basal diameter is concomitantly explained by another growth variable and 

(2) if that other growth variable could exp lain a part of the variance in biomass 

yield that is not explained by the area of largest basal diameter. Partitioning was 

done using the function varpart available in the vegan package. Variances that 

were explained only by the area of the largest basal diameter or only by another 

growth variables were tested by permutation through partial canonical redundancy 
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analysis. The function rda avai1able in the vegan package was used. Ali statistics 

described above were done using R 3.01 (R Core Team 2012). 

1.4 Results 

1.4.1 Aboveground biomass yields and maximum potential 

A significant relationship was found between the area of the largest stem and 

aboveground dry biomass (Figure 1.2). The intercept of this mode1 was near zero. 

The linear re1ationship between the area of the largest stem and dry biomass was 

also significant with the mixed model (p < 0.001 , n = 28, results not shown), but 

site effect (random factor) was not significant (p = 0.3 8). The slope of the linear 

regression (0.00 1725) was a Iso similar to that of the mixed model (0.00 1718). The 

independence of measurements was therefore assumed and the linear equation in 

Figure 1.2 was used to estimate MYP as explained in the Material and methods 

section. Another series of mixed models did not reveal a significant difference 

between the area of the largest stems measured in 2011 and estimates of area of 

the largest stems for that same year (p = 0.43 , n = 516, results not shown), thus 

confirming the validity of our method to hindcast aboveground biomass. The 

significant site effect (random factor) confirms that yie lds differed between sites. 
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Figure 1.2 Linear regression mode! between the diameter measured on the largest stem and dry 

aboveground biomass of shrubs. Each data point refers to an average of 24 to 36 

shrubs. A different symbol is attributed for each site. Data labels indicate the 

number of growing seasons of the stems (S) and roots (R). For example, the label 

S 1 R5 means a one year-old stem and a five year-old root system. 

Figure 1.3 illustrates growth dynamics of six SR Cs that have completed only one 

rotation, i.e at least four years. The MYP at MTLl was reached in the second 

growing season following coppicing (i.e. S2R3), whereas MYP was reached at 

ABil and RXP1 in the third growing season following coppicing (i.e. S3R4). 

Coppicing was not done at SJPJl , but MYP was also reached in the third growing 

season (i.e. S3R3). At LAV1, MYP was reached in the second growing season 

(i.e. S2R4). For this SRC, because coppicing was performed after the second 

growing season, it is not possible to know if MYP could have been reached in a 

shorter time. Also, annual yields did not decrease after seven years of growth at 

that site (i .e. S7R9). At !east two full rotations were completed at BOil, HTG 1 

and STR1 . The MYP for these SRCs was reached in the second growing season 

following coppicing (i.e. S2R6, S2Rl2 and S2R6, respectively, Figure 1.4). 
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Estimated annual aboveground biomass yields of the six short rotation cultures of 

SX67 that have completed only one rotation (i .e. at !east four years). The values 

correspond to slight overestimations ofactual yields because mortali ty was not taken 

into account. The root age and the stem age are identified in a single descriptor (i.e. 

SaRa where Sis stem, Ris root and a is age of the stem and root system). Error bars 

(standard deviation) were centered on the second growing season to illustrate the 

year that maximum yield potential (MYP) was reached, which is indicated over the 

bar of the appropriate year. 
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Figure 1.4 Estimated annual aboveground biomass yields of the last rotation in three short 

rotation cultures of willow that have completed at !east two rotations. The values 

correspond to slight overestimations of actual yields because mortality was not taken 

into account. The root age and the stem age are identified in a single descriptor (i .e. 

SaRa where S is stem, Ris root and ais age of the stem and root system). Error bars 

(standard deviation) were centered on the growing season for which the diameter of 

the largest stem was measured. The year that maximum yield potential (MYP) was 

reached is indicated over the bar of the appropriate year. 

On average, MYP estimates at MTLl , STRI and ABil were significantly lower 

than ali other sites (i.e. 7.0, 10.1 and 10.4 t ha- 1 year-1
, respectively), whereas 

SJPJland HTG1 bad the bighest MYP estimates (i.e. respectively 23.8 and 21.1 t 

ha- 1 year- 1) (Figure 1.5). The MYP estimates at ALBI and RXPl (i.e. respectively 

20.5 and 18.5 t ha- 1 year- 1) were significantly higher than those at BOil and 

LAVl (i.e. 14.3 and 13.2 t ba- 1 year-1, respectively, Figure 1.5). 
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Mean maximum yield potential (MYP, black bars) and annual aboveground biomass 

yield of the first growing season (white bars) for each site. In the case where there is 

no significant difference in MYP between sites (permutational ANOV A), the same 

letter is assigned. 
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Basal area increments were significantly lower after one growing season 

compared to the second growing season when grouped and compared by site 

(mode! 1, Table 1.3), but no significant effect was found when comparing the 

second and third growing seasons, or comparing the third and fourth growing 

seasons (respectively models 2 and 3, Table 1.3). 

Table 1.3 Results of stat istical differences in basal area increment between growing seaso ns 

(GS). 

Mode! Tested gro ups P value 

GSI < GS2 (n = 26) 0.002 

2 GS2 < GS3 (n = 14) 0.361 

3 GS3 < GS4 (n = 14) 0.20 1 

1.4.2 Partitioning of the variance in aboveground biomass biomass 

Partitioning of the variance showed that the area of the largest diameter was the 

most robust proxy to explain aboveground biomass (Table 1.4). Height shared 

0.81 of the adjusted R2 with the area of the largest diameter, and it added 0.03 (p < 

0.05) to the adjusted R2
, meaning that 3% of the variance was not explained by 

the effect of the area of the largest diameter. The highest adjusted R 2 (0.90) was 

obtained by combining the number of rotations to the area of the largest diameter. 

The adjusted R2 was not improved by combining either root age, stem age or the 

number of stems per stool to the area ofthe largest diameter. 
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Table 1.4 Partitioning of the var iance of dry aboveground biomass between the area of the 

largest diameter and a second explanatory growth variable (i.e. height, root age, 

stem age, rotation number or number of stems per stoo l). 

Adj. R 2 of the a rea of Adj. R2 of the a rea of Adj. R 2 of the 

Mo del n 
largest diameter <t largest diameter n second explanatory 

Adj. R2 

second exp lanatory second explanatory variable <t Area of 
variable variab le largest diameter 

27 0.05 .. 
Height 

0.89 
0.81 0.03. 

2 27 0.49 .. 
Root age 

0.86 
0.38 0.00 

3 27 0.37 .. 
Stem age 

0.86 
0.49 0.00 

Rotation number 
4 27 0.73 .. 0.90 

0.13 o.o4· 

Shoot number 
5 26 0.86 .. 0.86 

0.00 0.00 

Ail linear relationships are positive. Mo dels are significant at a <0.05() and <0.0 1 C). The column 
entitled Adj. R2 of the area of largest diameter ([; second explanatory var iable indicates the adjusted 
R2 of the variance explained by the area of the larges! diameter which does not overlap the effect of 
the second explanatory growth variable. The column entitled Adj . R2 of the area of largest diameter 
n second explanatory variable indicates the adjusted R2 of the variance explained by both the area of 
the largest diameter and the second explanatory growth variable. The co lumn entitled Adj. R 2 of the 
second explanatory variable ([; Area of largest diameter indicates the adj usted R2 of the variance 
exp lained by the second explanatory growth variable which does not overlap the effect of the area of 
the largest diameter. The co lumn entit led Adj . R2 indicates the adjusted R2 of the variance explained 
by the cumulative effect of the area of the larges! diameter and the second explanatory growth 
variable. 

1.4.3 Relationships between growth variables and stem/root ages 

Mixed mode! analysis showed that area of the largest diameter-to-height ratio 

significantly increased with the number of growing seasons, whereas site effect 

(random effect) was not significant (mode! 1, Table 1.5). This ratio changed most 

dramatically from the first growing season to the second growing season. The 

major part of the variance could also be explained with a binary variable 

representing the first and subsequent growing seasons (mode! 2, Table 1.5). Site 

effect was significant in this second mode!. This means that most of the variation 
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in area of the largest diameter-to-height ratios explained by the mixed models is 

due to changes occurring during the first two growing seasons. 

Table 1.5 

Mode! 

2 

3 

n 

Results of mixed mode! analysis of the area of the largest diameter-to-height ratios 

as the response variabl e, site effect as the random factor and stem age as the fixed 

variable. Mode! 1 uses stem age as a continuous variable, whereas mode! 2 uses it as 

a binary variable (mode! 2). Mode! 3 is a linear regression with the number of stems 

per stoo l as the response var iable and the age of the root system as the explanatory 

Response va riable 
R andom 

Fixed variables 
factor 

26 Area of largest diameter-to-height ratio Site NS Stem age 
... 

26 Area of largest diameter-to-height ratio Site .. 1" growi ng season of a 
harvesting cycle ... 

6t Number of stems per stool No Age of root system 
.. 

Models are significant at a. <0.0 1("") and <0.00 1( .. ). 
t 1" growing seaso n of a harvesting cycle. 

1.4.4 Growth differences fo llowing coppicing 

Based on data from SJPJ2 and BOI2, coppicing perfo rmed respectively after one 

and two growing seasons resulted in large increases in the area of the largest 

diameter and aboveground biomass (Table 1.6). At the RXP site, a comparison 

between th ree SRCs suggests that coppicing increased the area of the largest 

diameter and aboveground biomass yield after two growing seasons within the 

fi rst rotation. Coppicing perforrned after the second growing season at the STR 

site had no effect on area of the largest diameter or biomass yields. 

R2 

0.79 

0.6 1 

0.54 
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Table 1.6 Results of statistical differences of the area of the Jargest stems (A) and 

aboveground biomass (Yield) measured before and after the stools were coppiced 

(first rotation only). Di fferences in aboveground biomass yield of those stools are 

a!so reported. The root age and the stem age were identifi ed in a si ngle descriptor 

(i.e. SaRa where Sis ste, Ris root and ais age of the stem and root system). 

Stem and stool 
A Yield n 

ages 
SRC(s) Year of coppicing 

BOI2 2008 72 SIRI vs SIR3 + 192%''' + 734% ... 

SJPJ2 2006 72 SlRl VS S1R2 + 153%*'' + 691% ... 

R.XP4 vs. RXP 1 Not performed vs 2008 72 S2R2 VS S2R3 + 23% .. NA 

RXP4 vs. RXP3 Not performed vs 2006 72 S2R2 VS S2R3 + 148%'" + 151 %"' 

STR3 vs. STR2 Not performed vs 2008 72 S2R2 vs S2R4 + 5% NS + 6% NS 

Differences (coppicing effect) before and after copp1cmg were tested by ANOVA with 
permutational test. Data were always grouped and tested by site or by short rotation culture 
(SRC). The age of the stems that were compared is indicated in the column Stem age. Models 
are significant at a <0.0 1 (") and <0.00 1 ("'). An ID is attributed to each SRC to distinguish 
them between and within sites. The shaded area indicates that the effect of coppicing was tested 
using the same plots within a SRC, whereas the unshaded area indicates that the effect was 
tested between different SRCs within a site. At 80!2 and STR2, coppicing was done after two 
growing seasons, whereas it was done after one year at RXPI , RXP3 and SJPJ2. The number of 
stools measured is indicated (n). 

1.4.5 Growth differences between rotations and stool ages 

At the ABI site, a clear rotation effect was observed. Area of the largest diameter 

at the end of the first and second growing seasons respectively increased by 87% 

and 130% between the first and second rotations (i.e. SIR2 vs S1R5, and S2R3 vs 

S2R6, Table 1.7). At SJPJl where coppice was not done, area of the largest 

diameter at the end of the first growing season did not change significantly 

between the fust and second rotations, but area of the largest diameter at the end 

of the second growing season (the coppice year) increased by 66% between the 

first and second rotations (i.e. S lRl vs S 1 R, and S2R2 vs S2R5, Table 1. 7). In 

contrast, at both RXP 1 and MTLl, shifting from the first rotation to the second 

rotation did not significantly increase the area of the largest diameter at the end of 

the first growing season (i.e. S 1 R2 vs S 1 R5), and at MTL 1 after the second 

growing season (i.e. S2R6, Table 1.7). A special case to study the effects of 

rotation on biomass yields is HTG 1 because four full rotations are accounted for. 

No specifie trend was observed at HTG 1 in terms of rotation effect. Even if area 



35 

of the largest diameter of the fust rotation was lower than the second rotation, the 

number of stems per stool in the second rotation was higher (results not shown), 

which explains the higher yield observed after the fust growing season of the 

second rotation compare to the first rotation (i.e S1R2 vs S1R5 , Table 1.7). The 

third rotation was likely among the !east productive. After four rotations at the 

HGT site, yields remained very high (Figure 1.4). 

At the BOl site, at the end of the first growing season, the area of the largest 

diameter was 38% higher on three year-old stools than on five year-old stools 

(Table 1. 7). However, this difference decreased over time to 34% at the end of the 

second growing season and to 26% at the end of the third growing season (Table 

1. 7). Similarly, differences of area of the largest diameter at HTG 1 decreased over 

the growing seasons when comparing the four rotations. Whether the differences 

were positive (i.e. first vs . third rotations, first vs. fourth , second vs. third and 

third vs. fourth) or negative (i.e. first vs. second rotations), the differences were: 

(1) much larger when comparing the first year of growth to other growth years, 

and (2) dramatically lower when only older stems were compared. At SJPJl, 

however, no significant difference was found at the end of the first growing 

season, although it was strongly significant at the end of the second growing 

season, probably because MYP was already reached in the second rotation. Also, 

at STR site, while no significant difference was found at the end of the second 

growing seasons between the fust and second rotations, area of the largest 

diameter and biomass yield at the end of three growing seasons decreased 

significantly (Table 1. 7). 
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Table 1.7 Results of statistical d ifferences of the area of the largest stems (A) measured from 

stools of the same ages but of di fferent rotations (i.e. different staal ages). 

Differences in aboveg round biomass yield ofthose stools are al so reported. The root 

age and the stem age were identified in a single descriptor (i.e. SaRa where S is 

stem, R is root and a i s age of the stem and root system). 

SRC(s) Rotation 
Stem and stool 

A Yield n 
ages 

56 S!R2 vs SlR5 - 33%". + I34%"' 

1 vs 2 48 S2R3 YS S2R6 -29%' NA 

48 S3R4 VS S3R7 -23%t NA 

I VS 3 48 S2R3 VS S2R9 -28%" -7%NS 

60 S!R2 vs SIRI2 + 37.4 %" NA 

l vs 4 60 S2R3 VS S2Rl3 +23%NS NA 

HTGI 60 S3R4 vs S3Rl4 + 29%NS NA 

2 vs 3 60 S2R4 VS S2R9 + 2%NS NA 

60 S!R5 YS SlRI2 + I07%' '' NA 

2 VS 4 60 S2R6 VS S2RI3 +75%" NA 

60 S3R7 vs S3RI4 + 68%" NA 

60 S2R9 vs S2RI3 +71%" NA 
3 VS 4 

74 S4Rllvs S4Rl5 + 9%i NA 

52 SIR2 vs SIRS -2% NS NA 
MTLI ] VS 2 

52 S3R3 VS S2R6 + 2%NS NA 

RXPl 1 VS 2 56 SIR2 VS SIR6 -4%NS NA 

86 SIRI VS S1R4 - 6%NS NA 
SJPJI I VS 2 

1 86 S2R2 VS S2R5 +66%'" NA 

56 SI R2 VS SIR5 + 87%'" NA 
ABI2 vs. ABil 1 vs 2 

56 S2R3 vs S2R6 + 130%'" NA 

72 S IR3 vs SIR5 - 38%'" NA 

B012 vs. BOil I vs 2 72 S2R4 vs S2R6 -34%"' NA 

72 S3RS vs S3R7 -26%" -14% NS 

72 S2R4 vs S2R6 + 5%NS NA 
STR2 vs. STRl 1 VS 2 

72 S3R5 VS S3R7 -1 6%' - 3 1%'' 

Differences (rotation or harvesting effect) between stools of the same ages but 
of di ffere nt rotations were tested by ANOVA with permutational test. Data were 
al ways grouped and tested by site o r by short rotation culture (SRC). Models are 
significant at a <0.1 (l'), a <0.05 ('), a <0.01 (") and <0.001 ("*). An ID is 
attributed to each SRC to distinguis h them between and within sites. The shaded 
area indicates that the effect of ro ta tian was tested using the same plots within a 
SRC, whereas the unshaded area indicates that the effect was tested between 
di ffe rent SRCs within a site. The co lumn Rotation indicates the rotations that 
were compared with ANOV A. The number of stools measured is indicated (n) . 
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1.5 Discussion 

1.5 .1 Estimation of aboveground biomass yields 

Severa! non-destructive allometric models to estimate Salix spp. aboveground 

biomass using various measurements of living stems as input variables have been 

developed (Heinsoo et al. 2002; Nordh & Verwijst 2004; Arevalo et al. 2007; Ens 

et al. 2009; Rangs et al. 2011). The positive relationship between stem diameter 

and aboveground biomass is normally expressed by an exponential function 

(Tahvanainen & Rytkonen 1999; Amichev et al. 2011). The predictive power of 

these models is generally greater (i.e. up to R2 = 0.99) than that of the mode! used 

in this study to calculate annual aboveground biomass yields. The difference is 

likely due to the fact that we considered only the main stem from each stool in our 

calculations, whereas most other models integrate ali stems from a given stool. At 

HTG 1, for example, the sum of basal areas of ali living stems from each stool (M. 

Labrecque, unpublished data) was strongly related to aboveground biomass (R 2 = 

0.85, data not shown), whereas the area of the largest diameter was more weakly 

related to biomass (R2 = 0.45, data not shown). It should be noted that modeling 

aboveground biomass yield with the area of the largest diameter instead of the 

largest diameter alone has linearized the relationship, most likely because area is 

more representative of biomass accumulation than diameter (Pedersen 1998). 

Similarly, allometric models to estimate aboveground biomass are often based on 

linearized diameter with log transformation, second order polynomial of diameter 

or the area of cross sections (Verwijst & Nordh 1992; Verwijst 1996; Heinsoo et 

al. 2002; Arevalo et al. 2007). 

Pearson correlation coefficients between the area of the largest diameter and 

aboveground biomass yield varied strongly within each site (Table 1.1). Biomass 

yield was correlated with the area of the largest d iameter, but severa! coefficients 

were low. Again at HTG 1, for example, the coefficient of correlation was 0.67 

using data of the first growing season and rotation following coppicing, whereas it 

was 0.3 5 using data of the first growing season but of the second rotation, which 

was characterized by a high number of stems per stool (Table 1.1 ) . To obtain a 
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high fit between stem diameter and aboveground biomass, Seve) et al. (20 12) 

argued that a model must be site-specifie and it must ideally be developed from 

yearly data to fully account for carbon allocation in aboveground components. 

Conversely, Arevalo et al. (2007) reported that, despite aboveground biomass 

being strongly influenced by site and climatic conditions, relatively robust 

regression models between stem diameter and biomass can be developed at the 

Iandscape scale. These authors stated that even if sorne accuracy is lost, the 

approach of measuring stem diameter only overcomes the limitation imposed by 

the energy (time and effort) and cost required to build allometric models specifie 

to the sites and years. Our results corroborate this latter conclusion. This is likely 

because area of the largest diameter is the consequence of maximum growth of ali 

stems ofthe stool, while it is also a large part ofaboveground biomass. The use of 

the general Jinear fonction (Figure 1.2) to estimate aboveground biomass 

production is therefore rationalized for three main reasons : (1) it has a high R2, (2) 

its intercept falls very close to the origin, and (3) the large differences in measured 

total biomass (after three growing seasons) between sites and the non-significant 

site effect when it is considered as a random factor warrant that the mode) is 

suitable to estimate and compare annual aboveground biomass production 

between sites. 

An additional part of the residuals in aboveground biomass was explained by the 

height and the number of rotations (i .e. 3% and 4%, respectively), but the area of 

the largest diameter remained the variable which best exp lained the variance in 

biomass (Table 1.4). Across sites, the variance in aboveground biomass was not 

explained by the number of stems per stool, probably because the biomass of 

SX67 is allocated in a few large stems and especially in the largest stem (M. 

Fontana, persona) observation). For the first growing season, the number of stems 

per stoo l was significantly explained by the age of the root system (Table 1.5), but 

ali the variance in aboveground biomass explained by root age was captured by 

the area of the Iargest diameter (Table 1.4). The residuals of the models in Table 

1.4 Iikely mean that sorne factors influencing biomass yields and specifie to site, 
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growing season and wood quality (e.g. density) were not captured from our 

measurements. For example, HTG 1 was the only case for which the area of the 

largest diameter of the first growing season decreased (i.e. between the first and 

second rotation) , whereas aboveground biomass increased (i.e. S1R2 vs S1R5, 

Table 1. 7). This was due to a concomitant increase in height and number of stems 

per stool by 21% (p < 0.01) and 270% (p < 0.001), respectively (results not 

shown). As a whole, however, our approach of using the area of the largest 

diameter to estimate aboveground biomass holds quite weil for SX67 across the 

network, as indicated by the partitioning of the variance in biomass. 

Soil and climatic variation encompassed by our SRC network (Table 1.2) clearly 

had a large impact on aboveground biomass yields (Figures 1.3 to 1.5). The range 

of our MYP estimates (i.e. from 7 to 23.8 t ha- 1 year- 1, Figure 1.5) roughly covers 

values reported in the literature for SRC of Salix spp. under temperate climates. 

For example, a similar range of biomass yields was reported for S. viminalis in 

northem Europe, i.e. from 10 t ha-1 yr- 1 (Tahvanainen & Rytkonen 1999) to 25 t 

ha-' yr- 1 (Szczukowski et al. 2002). ln Canada, productivity of S. miyabeana was 

rep01ted as dramatically low (i .e. 1.2 t ha-' yr- 1 for a rotation of four years) in the 

dry Canadian Prairies (Moukoumi et al. 2012) or as very high (i .e. beyond 25 t ha-

1 year-1
) on loamy clay soils under a wetter and relatively warmer climate in 

southem Quebec (Guidi Nissim et al. 2013). 

At HTG 1, by the time it was in its fourth rotation, the stools had merged and th us, 

the shrubs could not be easily differentiated in the field . The number of stems per 

surface area was not monitored, but it appeared similar to the other sites. 

However, since a stool density of 18,500 per ha was used to estimate biomass 

yields, it is likely that the bias (i .e. systematic overestimation) is larger for HTG 1 

than for the other sites. Similarly at MTLl, the shrub density was strongly 

overestimated because a significant ground competition resulted in strong 

mortality within micro-sites (for which measurements were not performed). Thus, 

we believe that the yield estimate for this SRC is representative only for healthy 

shrubs without competition. A rapid visual assessment of mortality led to the 
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conclusion that mortality was low for ali other sites. Comparatively, the mortality 

of SRCs of S. viminalis and S. disco/or in southern Quebec bas been estimated at 

Jess than 10% at the end of first rotation, with about 20,000 cuttings per hectare 

(Labrecque & Teodorescu 2003 ). 

1.5.2 Effect of coppicing on growth and yield 

After the first or second growing seasons following willow establishment, it is 

customary to coppice. In this study, the effects of coppicing have been tested for 

the fust growing season at BOI2 and SJPJ2 and for the second growing season at 

the RXP and STR sites (Table 1.6). The benefits of coppicing were obvious at 

sites where soi! CEC was not dramatically low (i .e. the organic soi! at the RXP 

site or the mineral soil with significant silt and clay at BOI2 and SJPJ2), favoring 

major increases in the area of the largest diameter and aboveground biomass 

yield. Conversely, no gain from coppicing was detected at the STR site as the soi! 

is characterized by a low CEC (sandy loam) that supports low yields. We could 

not directly validate our inference on the influence of coppicing for the other 

SRCs supported by sandy soils, i.e. MTL and LA V, because comparison of the 

area of the largest stems and of the aboveground biomass yields before and after 

coppicing was not possible. However, the SRCs at the LA V site allowed for an 

indirect assessment of the effect of coppicing on stem diameter. Both LA V2 and 

LA Vl were established in 2005, but coppicing was performed after one and two 

growing seasons, respectively. The areas of two year-old stems with the largest 

diameters at LAV2 (in 2007, S2R3) were 17% higher (P < 0.05, results not 

shown) than the areas of the largest diameters of two-year old stems at LA Vl (in 

2008, S2R4). This is likely because the growing conditions of the two years 

following coppicing at LA V2, i.e. 2006 and 2007, favored slightly higher 

aboveground biomass yields compared to those following coppicing at LAVl, i.e. 

2007 and 2008. Because the stems with two growing seasons were measured at 

LAV2 on stools that were three years and that stems of the same age at LA VI 
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were measured on stools that were four years, the slightly larger two-year old 

stems at LA V2 compared to LA V 1 suggests that the growth of the largest stem 

was not limited at LA V2. In tum, MYP at LA V2 could also be reached during the 

third growing season after establishment. At the LAY site, we speculate that root 

development did not limit aboveground productivity after two growing seasons as 

we bave no data on roots to support this. 

Our fmdings therefore corroborate previous studies showing a beneficiai effect of 

coppicing on yields of willow shrubs with a young root system when it is 

supported by a soil that has a relatively high CEC (e.g. clay to loam or organic as 

exemplified by the RXP site) and that only small effects of coppicing on yields 

are expected in the case of soils with coarse texture ( e.g. sand) (Abrahamson et al. 

2002). Crow and Houston (2004) showed that the development of the root system 

is highly influenced by harvesting, suggesting that coppicing concomitantly limits 

the maximum root and stem diameters. They tested the rotation length of the 

harvest and did not report any significant difference in the number of fme roots 

(i .e. < 2 mm). Based on our data, it is possible that the yield benefits of extending 

the length of the fust rotation by one year (i.e. four years without any coppice) are 

larger th an introducing coppicing and shortening the length of the rotation by one 

year (i .e. the coppice year combined with the following 3 years) . However, it is 

impossible to fully assess ifthere were any benefits based on our data. 

1.5 .3 Effect of stem age ac ross rotations 

Within one rotation, our results suggest a significant increase in BAI only 

between the first and second growing seasons, independently of the number of 

rotations, but not between the second and the third, nor between the third and the 

fourth growing seasons (models 1, 2 and 3, Table 1.3). Such observations were 

also made in other SRCs within the first rotation (Christersson 1986; Szczukowski 

et al. 2002). A high bark-to-wood ratio for small diameter stems (i .e. under 20 

mm) suggests a mass-relative high nutrient requirement in aboveground biomass 
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during the first growing season compared to the following growing seasons (Adler 

et al. 2005). Furthermore, resprouting of willow stems suggests a strong demand 

on carbon reserves until stems contain enough mature leaves to reach energy 

independence - starch reserves in roots are used after coppicing for initial stem 

growth (Von Fircks & Sennerby-Forsse 1998). Therefore, the low productivity of 

SX67 during the first growing season appears to be a physiological trait that other 

willow cultivars possess. 

At HTG 1 and BOil , the differences in the area ofthe largest diameter between 

stems of the same age (i .e. comparing the first rotation to the second rotation) 

have systematically decreased with stem age (years 1, 2 and 3, Table 1.7). The 

growth difference between stems with one growing season (i.e. between the first 

two rotations) was particularly high. Carbon allocation was probably more evenly 

balanced between the stems within the first growing season after coppicing, while 

sorne stems began to dominate and others died out in the following growing 

seasons (Verwijst 1991). Consequently, the area of the largest diameter-to-height 

ratio decreased dramatically between the first and subsequent growing seasons 

(mode! 2, Table 1.3). This response was also site-specifie. The increase in 

aboveground biomass in the first growing season compared to the following ones 

in the first rotation was larger than the increase in the first growing season 

compared to the following ones in the second rotation (Figures 1.3 and 1.4). 

However, shade is dramatically decreased after coppicing and in tum, strong weed 

regrowth can increase competition for resources (light, water and nutrients) (Sage 

1999). Additionnally, root:shoot ratio can suddenly increase following coppicing, 

which require a strong carbon cast for root respiration compared to subsequent 

growing seasons (Salomon et al. 2013). Total yie ld was, however, generally 

higher during the second rotation (see section below) because, in part, the 

productivity after the first growing season in the second rotation was greater than 

that of the first rotation. This also suggests that the productivity of the first 

growing season of the first rotation is not optimal because of an under-developed 

rooting system. 
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1.5.4 Delays in reaching maximum yields 

Kopp et al. (200 1) reported th at coppicing stems for ten consecutive years 

resulted in asymptotic increases in aboveground biomass and reached maximum 

values after two to three growing seasons in fertilized plots and after four to five 

growing seasons in non-fertilized plots. A similar lag effect to reach MYP was 

also apparent for our sites. Our study generally highlights that MYP could be 

reached after two to three growing seasons after SX67 was coppiced and this 

variation also seems to depend on soi! texture. The sandiest sites (i .e. LA V, MTL 

and STR) reached MYP faster than the clay site at ABI (Figures 1.3 and 1.4). For 

example, MYP at MTL1 was reached two years after coppicing or three years 

after SX67 establishment (i .e. S2R3). Conversely, soi! compaction from extensive 

cultivation was exacerbated by the high clay content at ABI (Fontana, 

unpublished data) . The time to reach MYP at that site was extended to three years 

after coppicing or four years after SX67 establishment (i.e. S3R4, Figure 1.3). The 

soils at the remaining sites were from loam to silty clay loam, excluding RXP 

which was dominantly organic. Their MYP were either reached after the third or 

the fourth growing season following SX67 establishment. Considering that SX67 

in MTL1 and SJPJl is respectively the !east and among the most productive and 

that MYP was reached at both SRCs three years after SX67 establishment (i .e. 

S2R3 and S3R3, respectively), the time to reach MYP appears independent of its 

magnitude. 

As a whole, soi! nutrient and water availability as weil as soi! physical properties 

are likely conditioning the dynamics of earl y willow growth and, in turn, the point 

intime at which a SRC reaches MYP. Based on our data, strong interactions with 

coppicing, stool establishment and soi! texture are apparent. The time needed to 

reach MYP also appears to have an impact on yields over the various rotations. 

Kopp et al. (1993) argued that fertilization did not increase MYP, but rather 

decreased the time to reach MYP. On the contrary, N fertilization was reported to 

increase MYP, especially on acidic sandy soils (Labrecque & Teodorescu 2001). 

Kopp et al. (1993) conducted their study on relatively productive agricultural soils 
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so that plant nutrition was likely not a factor limiting growth. Fertilization had an 

impact on MYP, but it shortened the time needed to reach it, probably because the 

optimal availability of nutrients decreased the need for early root development 

(Heinsoo et al. 2009). 

1.5.5 Effect of rotation on yields 

Lower aboveground yields during the ftrst rotation were frequently (Verwijst 

1996) but not systematically observed (Lindegaard 2001; Nordh 2005). This 

pattern appears to be true on clayey soils at ABI and HTG, but does not seem to 

apply at BOl, STR or MTL where SX67 is supported by coarser soils (Figure 1.3, 

Tables 2 and 7). At SJPJl and the ABI site, the area of the largest diameter of the 

second rotation was larger than that of the ftrst rotation (Figure 1.3, Table 1.7), 

probably due to the delay in reaching MYP. Within site, Larsen et al. (Larsen et 

al. 2014) found that aboveground biomass yields of the second rotation were quite 

homogeneous, independently of the large differences in yields observed for the 

ftrst rotation due to the use of various methods for establishing and harvesting the 

SRC. This suggests that the increase in yields between the ftrst two rotations is 

dependent ofthe yield of the ftrst rotation. 

Again at SJPJl and the ABI site, we speculate that a more established stool, which 

can access the soil resources more effectively, explains the lower estimated annual 

yields of the ftrst rotation compared to those ofthe second rotation (Figure 1.3). In 

southern Sweden, an analysis carried out on more than 2,000 SRCs of willows 

indicated a signiftcant increase in yields from the first to the second rotation 

(Mola-Yudego & Aronsson 2008). However, this study did not report a significant 

increase in yields from the second to the third rotation. Likewise, Labrecque and 

Teodorescu (2003) found that omitting to coppice S. viminalis and S. discolor led 

to a strong gain in yields between the first and second rotations. The differences in 

yields from the first to the second rotation could likely have been reduced if 
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coppicing had been conducted because it would possibly have allowed to reach 

the MYP one year earlier. 

The estimated annual aboveground yield at LA V1 did not decrease after seven 

growing seasons (i .e. S7R9), nor did it decrease at HTG 1 after four rotations with 

stools of fourteen years (i.e. S4R14, Figures 1.3 and 1.4). ln fact, the largest 

diameters in the fourth rotation at HTG 1 were higher than those of the previous 

rotations (Table 1. 7). This is in full agreement with Volk et al. (20 11) who 

reported sorne increases in yields between the first and second rotations (23%) 

and also between the first and fourth rotations (30.8%) for trials established on 

well-drained gravelly silt loam soils. However, the third rotation at HTG 1 was 

among the !east productive (Table 1.7). For nine willow cultivars, including 

SX67, Guidi Nissim et al. (2013) observed a higher annualized aboveground 

biomass production wh en accounting for a second rotation of four years compared 

to a first rotation or a third rotation of three years. Divergence was particularly 

large between the first and second rotations. Differences in annual biomass 

production could also be due to the fact that the first year is generally Jess 

productive than the second or third growing seasons, especially during the first 

rotation (Quaye & Volk 2011), and that adding a fourth productive growing 

season tends to increase the overal l biomass production on an annualized basis. 

This observation is consistent with our findings because the SRCs with a fourth 

growing season were among the most productive (S4R5 for ABil , S4R5 for 

ALB1, S4R8 for BOil , S4Rl4 for HTG1, S4R6 for LAVl , S4R5 for MTLl and 

S4R5 for RXP1, Figures 1.3 and 1.4). 

1.6 Conclusion 

Growth dynamics of SX67 was investigated as a function of stool age, coppicing 

and soi! properties. Over the growing seasons, an asymptotic increase in annual 

aboveground yield is generally assumed until reaching maximum yields. The 

delay required to reach optimal annual yield affects the difference in aboveground 
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biomass yields between the fust two rotations. Growth dynamics also strongly 

varied depending on site (soi!) characteristics. Heavy clay soils restricted stool 

establishment. On compacted clayey soils, a !ag ofthree years after coppicing was 

needed to reach maximum yields. At the sandiest sites, the delay to attain 

maximum yield was shortened to only two growing seasons after SX67 was 

coppiced, suggesting Jess constraining conditions for stool establishment. At sites 

where soils have a higher silt content (sandy loam or loam), the growth dynamics 

is expected to be somewhere between these two cases and the maximum yields 

can be high. In ali soi! types, aboveground biomass yields of the first growing 

season remained lower than subsequent growing seasons, especially during the 

first rotation. The difference was exacerbated at sites where soils restrict stool 

establishment (e.g. clayey soi! with a plough pan). Our results do not support the 

idea that coppicing of SX67 should be performed for the sites that we tested with 

coarser soils because the positive effects on stem growth were negligible or 

inexistent, whereas productivity of stems growing on clayey soils was largely 

improved after coppicing. However, our data did not allow to test if total 

aboveground biomass yield was higher when combining the coppice year and the 

following three years of growth compared to a full four year rotation without 

coppicing. In the case that total aboveground biomass yield would be stronger by 

including coppicing, it would be valuable to perf01m the balance between the 

carbon gained by coppicing and the carbon cost to perform it. 



CHAPITRE II 

QUANTIFYING THE EFFECTS OF SOIL AND CLIMA TE ON 
ABOVEGROUND BIOMASS PRODUCTION OF SALIX MIYABEANA SX67 IN 

QUEBEC 

Fontana Mario 1.2, Michel Labrecque2, Christian Messier', François Courchesne3, 

Nicolas Bélanger1
•
4 

'Centre d 'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Suce. 

Centre-Ville, Montréal, Québec, H3C 3P8, Canada 

2Institut de recherche en biologie végétale, Jardin botanique de Montréal, 4101 rue 

Sherbrooke est, Montréal, Québec, H1X 2B2, Canada 

3Département de géographie, Université de Montréal, C.P. 6128, Suce. Centre­

Ville, Montréal, Québec, H3C 3J7, Canada 

4UER science et technologie, Téluq, Université du Québec, 5800 rue Saint-Denis, 

bureau 1105, Montréal, Québec H2S 3L5, Canada 



48 

2.1 Abstract 

Short rotation cultures (SRC) of Salix are used for bioenergy purpose, but pedo­

climatic conditions for optirnizing aboveground biomass productivity are not 

precisely known. Using ten SRCs of Salix miyabeana SX67 growing in Québec, 

Canada, under heterogeneous conditions, we first identified and quantified the 

limitations induced by soi! (across locations) and climate (across and within 

locations) on annual aboveground yields. We then compared the impacts that soil 

and climate have had on yields and developed pedo-climatic models of yields. 

Renee, soils and leaves were sampled in five plots per SRC. Soi! bulk density, 

exchangeable cations and bulk composition as well as leaf 813C were analyzed. 

Climate during spring, summer and the whole growing season was simulated for 

each location using the BioSIM mode!. Water stress was estimated using leaf 

813C. Annual aboveground biomass yields of the SRCs were modeled using linear 

regressions, partitioning of the variance, mixed models and a multivariate 

regression tree with soi! and climate as explanatory variables. Across SRCs, silt 

content, soi! organic matter and soil exchangeable Ca and Mg levels were ali 

significantly and linearly related to aboveground yields . Yield thresholds of 

organic matter, total P and spring temperature could also be computed. Annual 

yields were generally negatively related to drought within and across sites. This 

study reveals that soi! variables had a greater impact on productivity than climate 

variables. Also, soil properties buffered or exacerbated climatic stress and thus, 

had a preponderant effect on yield. 

Keywords: soil nutrients, pedo-climatic models, water use efficiency, site 

effect, farmland soils. 
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2.2 Introduction 

Among thirty six applications with willows (Kuzovkina & Volk 2009), short 

rotation culture (SRC) was recognized as an alternative to reduce fossil fuels 

(Perttu 1999; Pacaldo et al. 20 13). In southern Que bec, Canada, SR Cs of willows 

(or Salix) are established given that they achieve high yields and have the 

potential to upgrade abandoned farmland (Labrecque & Teodorescu 2003). 

However, defming the optimal growing conditions for specifie cultivars is still a 

major challenge for northern countries (Tahvanainen & Rytkonen 1999). The sites 

with the highest potential for Salix growth in such countries still remain poorly 

identified in part because it can grow relative! y well under a large array of pedo­

climatic conditions (J0rgensen & Blix 1985; Walker 1987; Pezeshki et al. 1998; 

Taillon et al. 2013). A wide range of productivity rates have also been reported 

for a given clone. For example, after one harvesting cycle of three years, the 

productivity of Sa/ix viminalis varied between 10 t ha- 1 in southern Fin land 

(Tahvanainen and Rytkonen 1999) and 70 t ha- 1 in southern Québec (Tahvanainen 

& Rytkonen 1999; Labrecque & Teodorescu 2003). The specifie site conditions 

leading to these large variations in growth rates are not yet fully elucidated. 

Salix species have very high nitrogen (N) requirements compared to other fast 

growing species such as Populus species (Jug et al. 1999). Also, growth of Sa/ix 

cultivars are more sensitive to nutrient changes under SRCs than in natural 

environments (Weih 2001). Except after excessive addition ofN (i .e. over 100 Kg 

ha- 1) , yields of Sa/ix are generally related to soi! N contents (Ericsson 1981 b; 

Labrecque et al. 1998; Taillon et al. 2013). Phosphorus (P) and potassium (K) 

were also shawn to increase aboveground biomass production of Sa/ix under 

SR Cs (Ericsson 1981 b; Adegbidi et al. 2001; Marier et al. 2001 ). However, these 

nutrients have not always been systematically positively correlated with growth 

after sail amendments (Labrecque & Teodorescu 2003). Under acidic soit 

conditions, Salix growth rates were increased following liming (Hytonen 2005). 

Similarly, at nine SRCs established across Canada on neutra] to slightly alkaline 

soils, soi! pH was positively linked to the productivity of Salix purpurea (Ens et 
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al. 2013). Hytonen (2005) suggested that root development of Salix viminalis was 

inhibited in soils with pH values below 4. Optimal pH range for Salix growth 

apparently ranges between 5 and 8 (Abrahamson et al. 2002), 6 and 7 (Mitchell et 

al. 1999) or 5.5 and 7 (Guidi et al. 2013). One possibility for the discrepancies in 

Salix growth relative to soi! pH is that growth interacts with other variables such 

as soi! texture and nutrients as weil as harvesting cycles. On the one hand, Salix 

growth is generally higher in clayey soils compared to sandy soils (Labrecque & 

Teodorescu 2001; Toillon et al. 2013). On the other hand, soils can impede Salix 

productivity if it is too heavy (Guidi et al. 2013). 

The impact of climate on Salix growth depends largely on the regional context. 

Dry conditions frequently limit the growth in low rainfall areas . This has been 

reported by Bergante et al. (20 1 0) in Ital y as weil as by Ens et al. (20 13) in 

Alberta and in Saskatchewan, Canada. In Greenland, snow precipitation was 

negatively related to Salix arctica growth (Schmidt et al. 2010). Water stress and 

water use efficiency (WUE) is linked to 813C values of plant tissues (Farquhar et 

al. 1982). When plant stomata are more closed to reduce transpiration in periods 

of low moisture, 8 13C values tend to increase, and vice-versa. A Jess negative 

value therefore means a higher WUE. On the one hand, 813C of Salix miyabeana 

wood suggested that the highest WUE was linked to greater biomass yields across 

three sites in Saskatchewan, Canada (Moukoumi et al. 2012). Ens et al. (2013) 

highlighted a similar relationship for Salix purpurea across a large climatic 

gradient from western to eastern Canada, although two sites with very high water 

stress did not follow the same trend as other Jess water stressed sites. Finally, 

Schifman et al. (2012) showed small 813C variations in Salix cultivars in tree 

rings, although the cultivars showing the largest variations were more resistant 

(higher survival) to drier conditions. It was therefore proposed that these cultivars 

could increase WUE when needed. Using Salix cultivars with such ability would 

likely be an advantage for SRCs, especially under climate change and potentially 

increasing drought events. 
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Growth of Salix in northern parts of North America or Europe is also Iargely 

Iimited by temperature. In Alaska, annual growth of Salix lanata was positively 

Iinked to temperature in mid-July and thawing degree-days (Walker 1987). In 

southern Finland, Tahvanainen and Rytkonen (1999) observed that biomass 

productivity of ten Salix cultivars was negatively related to May and September 

air temperatures and positively related with th ose of October. In northern Sweden, 

Wijk (1986) showed that shoot increments of Salix herbacea across years varied 

depending on growing season Iength. In turn, this influenced the amount of 

carbohydrates available for the following growing season. Also, in southern 

Sweden, biomass yield of Salix viminalis was modeled using total radiation 

(Sannervik et al. 2006). In Quebec, although a large number of SRCs exist, no 

study linking Salix yields to soi! and climatic conditions was conducted. 

The main objective of this paper was to identify and quantify the pedo-climatic 

factors limiting the growth of Salix miyabeana SX67 within and across ten SRCs 

in southern Quebec, Canada. A second objective was to develop a simple 

mathematical mode! which could be used by producers to determine the potential 

productivity of a site for SR Cs of SX67. 

2.3 Material and method 

2.3 .1 Field sites 

This study was conducted at ten SRCs of Salix miyabeana SX67 in southern 

Quebec, which are characterized by different soi] properties and climatic 

conditions (Tables 2.1-2.2, Figure 2.1 ). Geographical locations, site histories and 

field designs of each SRC are detailed in Chapter 1. 

_j 
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2.3.2 Estimates of annual aboveground biomass 

At each site, five random plots (5 x 5 rn) were delineated. Using the basal area 

increment, annual aboveground biomass yields were estimated for each plot and 

site using the approach described in Chapter 1. Once cuttings are planted, a few 

growing seasons are needed for the stools to fully establish and reach their 

maximum yield potential (MYP). We therefore modeled productivity only for 

growing seasons that had reached MYP. We also excluded from our models the 

first growing seasons of subsequent rotations because they were systematically 

lower than MYP (Chapter 1, Figure 1.3-1.4). These annual yields were averaged 

within each site to produce a set of MYP values that could be used to mode! 

productivity across sites. Because SRCs were not ali established during the same 

year and the delay to reach MYP appeared to be influenced by soi! properties 

(Chapter 1), the number ofyears used to compute MYP varied between SRCs. 

2.3.3 Soi! sampling and analysis 

A soi! sample was collected at both 0-25 cm and 25-50 cm in ali 50 plots. 

Samples were air-dried and then sieved to pass through a 2 mm mesh. Soi! 

particle size distribution was analyzed using the Horiba Partica LA-950v2 Laser 

Particle Analyzer (Horiba Instruments, Irvine, CA, USA). Samples from BOl, 

MTL and SJPJ were pre-treated to destroy sesquioxides. In this respect, samples 

were bleached twice with NaOCl (pH= 8, 1 hour at 25°C), centrifuged (400 rpm, 

15 min) and finally washed with distilled water. Samples from RXP contained 

more than 60% of organic matter. Thus, the bulk of organic matter was first 

destroyed by Joss on ignition and then treated with NaOCI before particle size 

measurement. Soi! pH in water was measured using a soil:solution ratio of 1:2 for 

mineral samples and 1:10 for organic samples. Organic matter and inorganic C 

(CaC03) were measured on ail samples by Joss on ignition in a muffle furnace at 

575°C (15 minutes) and 1 000°C (1 0 minutes), respectively (Rabenhorst 1988). 

Exchangeable Ca, Mg, Mn, K, Na, Fe, Al and Zn (later referred as Xexch) were 
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determined by atomic absorption/emission (mode] AA-555, Agilent technologies, 

Santa Clara, CA, USA) after they were extracted usiog an unbuffered 0.1 M BaCh 

solution (Hendershort et al. 2007b). Total soi! organic C and N (Ntot) were 

determined only on 0-25 cm samples using the .EA1108 CNHS-0 Analyzer. 

Except for ALB and BEL, bulk composition (Si02, AhOJ, CaO, K20, MgO, 

MnO, Na20 , P20 s, Fe2ÜJ, Zn, Ti02 and Ba) of ali samples collected at 0-25 cm 

were analyzed by X-ray fluorescence spectrometry using a Philips PW2440 

system (Panalytical, Almelo, The Netherlands) equipped with a Rhodium 60 kY 

end window X-ray source operating at 3 kW. The fused beads were prepared from 

a 1:4 soi l:lithium tetra(meta)borate mixture which was heated for 18 min at 

1 000°C. For BEL and ALB, bu1k chemical composition was a1so analyzed using 

X-ray fluorescence spectrometry (S8 Tiger WD XRF, Bruker, Billerica, MA, 

USA) but the fused beads were prepared from a 1:10 soii:Iithium 

tetra(meta)borate mixture. Also, at three of the five plots within each site, an 

undisturbed soi! core was collected (with a specially designed corer to perform 

shrinkage curves (Kohler-Milleret et al. 2013) at a distance of 20, 40 and 60 cm 

away from the shrubs and towards the inter rows. This procedure was performed 

at depths of 0-5, 20-25 and 40-45 cm for a total of 270 samples. Undisturbed soi! 

samples were theo air dried and the apparent density was measured following the 

plastic bag method (Boivin et al. 1990). 

2.3.4 Climatic conditions 

The BioSIM mode) was used to simulate climatic conditions at each SRC for ali 

growing seasons covered in the study. Using site elevation, latitude and longitude, 

BioSIM uses multivariate regressions to extrapolate data from the closest climatic 

stations (Régnière 1996). Climatic variables (i.e. lowest temperatures, means of 

minimal temperatures (0 C), means of temperatures (°C), means of highest 

temperatures (0 C), highest temperatures (0 C), degree-days (base 5°C), total so lar 

radiation (MJ m-2), precipitation (mm), means of number of days with 

precipitation, means of consecutive days with precipitation, highest values of 
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consecutive days with precipitation, means of number of days without 

precipitation, means of consecutive days without precipitation, highest values of 

consecutive days without precipitation) were modeled using the five closest 

stations to each SRC: (1) from the beginning of April to the end of June, referred 

as spring, (2) for July and August, referred as summer, and, (3) from the 

beginning of April to the end of November, referred as seasonal. BioSIM yields 

climatic data that are statistically indistinguishable from measured data (Régnière 

& Bolstad 1994). 

2.3.5 Leafsampling and analysis 

At the end of August of 2011 , foliage in the upper ti er of the shrub was sampled 

on two contiguous healthy stools in each of the five plots at seven of the ten 

SRCs, i.e. ABI, BOI, LA V, MTL, RXP, SJPJ and STR (70 samples). Samples 

were oven dried at 40°C for at ]east 16h. Thirty leaves per sample were weighted 

before they were finely ground. A mean mass per leaf was calculated for each 

sample. Total C was analyzed using an elemental analyzer (Varia Micro Cube, 

Elementar, Hanau, Germany) which is coupled with a Micromass isotope ratio 

mass spectrometer (Iso prime 100, Iso prime, Cheadle, UK) in continuous flow 

mode to measure 12C and 13C. These isotopie C values were then expressed as 

813C %o with respect to the international standard V-PDB using the following 

equation: 

R 
013 C = sample _ l 

R standard 

with Rsampte and Rstandard being the 13C/ 12C ratio of the sample and standard, 

respectively. To correct the raw data due to the inherent fractionation of the 

analytical deviee, a calibration was built using two internai reference materials 

that were normalized to NBS19-LSVEC for 813C: urea (-42.16%o) and sucrose (-

11.85%o). A third internai reference material , leucine (-28 .75%o), was included 
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with each batch of samples run on the mass spectrometer to assess the accuracy of 

the calibration. 

Foliage samples were also digested with concentrated HN03 to determine Ca, K, 

Mg, Mn, Zn and Fe concentrations using atomic absorption/emission as indicated 

above. Phosphorus was analyzed colourimetrically (molybdate based method) 

from these digests using a QuickChem 8500 series 2 FIA System (Lachat 

Instruments, Loveland, CO, USA). 

2.3 .6 Statistical analysis 

Datasets were arranged to allow statistical analyses at the site scale as weil as at 

different temporal resolutions. First, to study the effect of soi! and climate on 

productivity across SRCs, average soil and climate variables were computed for 

each SRC (referred as the site-scale dataset, n = 1 0). Climatic variables of each 

growing season for which annual yield values were used to compute MYP (Table 

2.2) were also averaged at the leve! of the SRC to fit the site-scale dataset. 

Secondly, to exami,ne the effects of climate variation on growth across growing 

seasons and SRCs, a dataset was built with ali the annual yield values used to 

calculate MYPs (referred as the inter-annual dataset, n = 30). This dataset is 

unbalanced and data are not independent because we had to pool severa! growing 

seasons that were unevenly distributed for each SRC. The same soil variables as 

for the site-scale dataset were investigated. These variables were assumed to be 

constant over the years . Note that the BEL site was not included in this dataset 

because data was available for only one growing season at the site. 

To visualize the variations of soi! nutrient availability among plots and sites, a 

principal component analyses (PCA) was performed (with Euclidean distances 

between points conserved) using the function rda in the vegan package. The PCA 

was performed by directly using the plot level data (n = 50) to show the variability 

within rather than across SRCs. 
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T-tests were performed to compare climate variables of the 2010, 2011 , 2012 and 

2013 growing seasons between each pair of SRCs (n = 1 0). The conditions of 

normality and homoscedasticity were graphically checked for ali models (i.e. 

parametric linear models) . 

Water use efficiency (WUE) and water stress during the 2011 growing season 

were investigated using foliar 8 13C values. T-tests were performed between ali 

possible pairs of SRCs to verify if 8 13C values significantly differed (p<0.05). 

Using the data for the 2011 growing season only, a forward selection was 

performed to detect if climate variables were related to foliar 813C values across 

SRCs. Foliar 813C at ABI and LA V was dramatically high and low when 

compared to the amounts of precipitation received in 2011. Foliar 813C at these 

two sites clearly responded differently to climatic variables compared to the other 

sites due to specifie soil conditions (see Discussion). Therefore, a linear regression 

was built between foliar 813C and the climate variables previously selected with 

the forward selection procedure, but ABI and LA V were omitted from the 

analysis. 

To test for the effect of climate on productivity within sites and across growing 

seasons, forward selections were fust performed separately for each SRC. This 

allowed detecting climate variables that best explained annual yie lds. Except at 

the LA V site (n = 6), the number of data points was too low to draw robust 

regressions. However, we grouped the data of sites whose significant climate 

variables were collinear. This allowed building a mixed mode! with summer 

degree-days (5°C) and sites as fixed and random factors, respectively. Analyses 

were perfonned using the function !me available in the nlme package. This 

function is quite robust to mode! unbalanced designs (Laird & Ware 1982). 

To identify (1) soil variables and (2) clirnate variables that best explained MYP 

values across SRCs, forward selections were performed across sites. This was 

carried out using the function forward .sel in the packfor package. Chemical 

properties of the organic soil at the RXP site were dramatically different 
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compared to th ose of the mineral soils at ali other sites, and the ABI site showed 

evidence of water shortages compared to other sites (i.e. 813C was dramatically 

less negative compared to ail other sites, see Figure 2.3 and Discussion). 

Therefore, various regression models were built, i.e. with and without the RXP 

data for regressions using soit variables, and with and without the ABI data for 

regressions using climate variables. 

For a better insight on the effects of soi! on productivity compared to those of 

climate, the variance ofMYP was partitioned using both soit and climate variables 

that best explained MYP (i.e. silt and spring drought) (Peres-Neto et al. 2006). 

Partitioning was done using the function varpart available in the vegan package. 

Variances that were explained only by silt or spring drought were tested by 

permutation through partial canonicat redundancy analysis. The function rda 

available in the vegan package was used. The effect of spring drought on 

productivity which was also explained by silt was considered as an overestimation 

that occurred by chance due to the distribution of SRCs in our network (i.e. low 

silt content and high spring drought that are unfavorable for growth were found 

within the same SRCs, see Discussion). Thus, the pedoclimatic model developed 

to estimate growtb prioritized the soil effect. In this respect, the MYP:silt content 

ratio was computed first. The linear relationship between this ratio and drought 

was then tested- it yielded an equation capable of approximating MYP. Modeling 

was performed without the SRC showing significant water shortages (i.e. ABI in 

this study), as similarly carried out by Ens et al. (20 13). 

Finally, to compare the effect of site and climate on annual yields, a multivariate 

regression tree (MRT) was performed by considering ali sites and growing 

seasons. This non parametric method of hierarchical clustering was used to model 

annual yields as a response variable and soi! and climate variables as explanatory 

variables (De'ath 2002). The MRT allowed to sort by order of importance the 

successive thresholds of soi) and climate variables able to exp lain the variance in 

annual yields. The data set was recursively split in two clusters whose sums of 

least squares of the response variable were minimized. The output of the MRT 
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also provided a residual error, which yields the R 2 of the mode) (i.e. 1-error). The 

MRT was performed using the function mvpart available in the mvpart packages. 

Sorne didactic explanations and examples are described in Legendre and Legendre 

(20 12) and Borcard et al. (20 11). 

2.4 Results 

2.4.1 Soil and climate conditions 

The SRCs included in this study are characterized by heterogeneous soil 

conditions (Table 2.1, Figure 2.2). Soils from ni ne SRCs are developed from 

mineral parent materials, whereas the RXP soil is developed from organic 

material. Therefore, the RXP soil has very high exchangeable Ca (Caexch), organic 

matter content and a dramatically low apparent bulk density (Table 2.1) compared 

to other SRCs. Soil pH across the SRCs ranges between 5.1 and 7.5. The coarser 

(sandiest) soils are generally the most acidic and have the highest Alexch (Table 

2.1 ). Soil P20 s at the LA V site is the highest among the SR Cs supported by 

mineral soils. Variability in climate as related to precipitation and maximum 

summer temperature is mostly influenced by the growing seasons rather than the 

sites, whereas the opposite is observed for variables related to degree-days (5°C) 

(Figure 2.1 , Tables 2.2-2.3). The ABI and ALB sites are the coldest, followed by 

the SJPJ and MTL sites. As a whole, climatic conditions are similar between the 

rest of the six more southerly sites. 
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Table 2.3 Climate variables for individual growing seasons. Means are computed from the ten 

SR Cs studied. The coefficients of variation are indicated in parentheses. 

Maximum 
Precipitation Drought Degree-Da ys 

Year 
temperature 

Seasonal Summer Spring Seasonal Summer Seasooal 

(Da ys) (mm) (days) (days) (OC) (°C base 5) 

2010 95 (10%) 176 (23%) a 14 (10%) a 14.0 (JO%) a 33.0 (3%) a 2161 (14%) a 

2011 93 (7%) 231 (19%) b 7.8 (21%) b 10.1 (14%) b 31.5 (6%) be 2190 (15%) a 

2012 78 (13%) 150 (16%) a 10.8 (34%) 13.8 (25%) a 32.7 (2%) ab 2193 (15%) a 

2013 95 (10%) 181 (14%) ab 8.5 (14%) b 8.8 (7%) c 30.9 (2%) c 2051 (15%) a 

Spring, summer and seasonal refer to the averages computed respectively from April to June, July to August and 
April to November. 
Significant differences (p < 0.05, t-test) between SRCs and growing seasons are indicated within a column by 
different letters. 

AB! 
ALB 
B L 
BOl 

V) HTG 
0 LAY 

MTL 
N RXP 
. :2 0 SJPJ 

... 

~ STR 
V"\ 
0 

1 

-1 

""""! Variance re -1 

-2 

...... ... 

-1 0 

Axis 1 

• • 
Caexch 

Organic matter • 
2 3 

Figure 2.2 Principal component analysis of soi! organic matter, exchangeable calcium and 

magnesium (Caexch and Mgexch) and pH. Circle size is proportional to the maximum 

yield potential. 
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2.4.2 Site productivity as related to soi! 

Whether ali SRCs or only the SRCs with soils developed from mineral parent 

materials (thus excluding RXP) are included in the analysis, the silt content is the 

best proxy of productivity (Table 2.4). A iso, Mgexch concentration is a significant 

indicator (P ::; 0.1) of productivity regardless of parent material type. In soils 

developed from mineral parent materials, organic matter, Caexch and total Zn 

concentrations are also related to productivity. However, the strength of the 

relationship decreases notably when the data from RXP site are included in the 

analysis. For mineral soils, at a depth of 25-50 cm, only Caexch concentration is 

significantly linked to MYP. Note that if soi! nutrient concentrations are 

multiplied by the apparent soi! bulk density to obtain a volumetrie unit (per m3
) to 

reflect the availability of nutrients in a specifie soi! volume explored by roots, the 

relationship between MYP and total N content is significant (adjusted R 2 = 0.45 , p 

< 0.05) for soils developed from mineral parent materials. Also, significant 

relationships exist between MYP and soi) Caexch content with (adjusted R2 = 0.54, 

p < 0.01) and without (adjusted R2 = 0.63 , p < 0.01) the RXP data. 

Table 2.4 

Soi! depth 

0-25 cm 

25-50 cm 

Significant linear regress ions between so i! properties and max imum yield potential 

across the ten SRCs studied. Adjusted R2 are presented and positi ve(+) and negative 

(-) relationships are indi cated in parentheses. 

n = 10 n=9 Adj. R 2 

(+) Silt"* 0.72 (+) Si!(• 0.72 

(+) Mgexch(•) 0.25 (+) O.M .* 0.41 

(+) Caexch 
.. 

0.54 

(+) Mgexch(•) 0.25 

(+) Zn,o, 
. 

0.37 

(-) Znexch(*) 0.27 

(-) Feexch(•) 0.26 

(+) Caexch 
. 

0.31 

(+) Feexch(•) 0.26 

For n = 9, mode ls were performed without the RXP data. 
Linear models are significant at p ::; 0.1 ('), p :S 0.05 (') and p :SO.O 1 (**). 
exch and tot refer to exchangeable and total, respectively. O.M. is organi c 
matter. 
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2.4.3 Foliar 813C during the 2011 growing season 

At the ABI site, foliar 813C during the 2011 growing season was significantly Jess 

negative than ali other SRCs (Figure 2.3a). The BOl and MTL sites also tended to 

have Jess negative values than the LA V, STR, SJPJ and RXP sites. For these sites, 

foliar 813C values suggest that the shrubs have the lowest WUE among ali shrubs 

studied. Moreover, when removing the data from the ABI and LA V sites, foliar 

813C is significantly explained by summer precipitation (Figure 2.3b). However, 

across SRCs, no relationship is found between annual yield of the 2011 growing 

season and foliar 813C, whether the data from the ABI and LA V sites is included 

or not (results not shown). 

-28 
~ u 
<,0 

.... -30 
- ~ 
0 
'-'--. -32 

(a) AB! BOl LAY MTL RXP SJPJ STR 

-27.5 

-28 

'~ u -va -28.5 

.5 -29 
ô 
~ 

-29.5 

-30 

(b) 150 

. 
AB! 

y= -27.84- x0.008, p<O.OI , adjustcd R' = 0.92 

100 250 300 

Summer precipitation (mm) 

Figure 2.3 Mean foliar &PC (boxes) and summer precipitation (bru·s) measured for the 20 Il 

growi ng season at each SRC studied (a) and linear regression between fo liar 813 C 

and summer precipitation without considering the data from AB! and LA V s ites (b ). 

In panel (a), different letters were assigned when a significant mean difference 

(p<0.05) was found between SRCs. 
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2.4.4 Site productivity as related to climate 

At the LA V site, there is a positive relationship between the number of days with 

precipitation (i .e. from April to November) and annual yields (R2 = 0.71, p < 0.01 , 

Table 2.5). Conversely, significant relationships between annual yields and 

climate variables at other SRCs suggest a negative impact of air temperature on 

growth. Therefore, mixed models encompassing ali SRCs except the LA V site are 

significant (R2 = 0.89, p < 0.05, Table 2.5) and negatively linked to summer 

degree-days. 

Table 2.5 

Sites 

Mixed mode! with annual aboveground biomass yield as the response variable, s ite 

as a random factor and the mean of the maximum temperature as a fi xed variable. 

The adjusted R2 of the linear regression between summer drought and annual 

aboveground yield at the LA V site is indi cated in the shaded area of the table. 

Positive(+) and negative(-) relationships are indi cated in parentheses . 

Mixed model 

n 

ABI, ALB, BOl, HTG, MTL, 
RXP, SJPJ, STR 

24 tsummer degree-days (5°C)'(-) 0.90 

6 Annual days with precipitation" (-) 0.71 1 
tsummer refers to the average of July to August. 
Linear models are significant at p ::::;0.05 (') and p ::::;0.01 ("). 

Across SRCs, MYP is significantly related to climate variables that are linked to 

drought (Table 2.6). The strength of the relationships increases when the data 

from the ABI site are excluded. 

Table 2.6 Significant linear regressions between climate var iables and maximum yield 

potential across SRCs. Adjusted R2 are presented and negati ve(-) relationships are 

indicated in parentheses. 

Climatic variables Ali SRCs (n = 10) Without ABI (n = 9) 

tSpring drought 0.63" (-) 0.74"(-) 

1Seasonal drought 0.49'(-) 0.65"(-) 

tSpring refers to the averages computed from April to June. 
1Seasonal refers to the averages computed fro m April to November. 
Drought refers to the highest value of consecutive days without 
precipi tation. 
Linear models are significant at p ::::; 0.05 (') and p ::::;0.0 l ("). 
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2.4.5 Pedoclimatic models of productivity 

The variance in MYP is successfully partitioned with two explanatory variables, 

i.e. silt content and spring drought. These are the most robust soi! and climate 

variables detected. They are also easily measured in the laboratory (silt) or 

estimated with BioSIM (drought). A strong collinearity between the two variables 

is present (Figures 2.4 a,b). 

Figure 2.4 Partitioning of the variance of maximum yield potential (MYP) with silt content and 

spring drought ( i.e. the highest number of consecutive days without precipitation 

between April and June) as explanatory var iables with (a) and without (b) the data 

from the AB! site. The rectangles represent the var iance of maximum yield potential 

(MYP), circles represent the variance explai ned by the two explanatory variables 

and the overlapping area between ci rcles shows the variance concomitantly 

explained by both variables . 

Also, the variance in MYP explained by drought increases when the data from the 

ABI site were removed. However, in ali cases, each variable explained a 

significant part of the variance that was not explained by the other variable. After 

detrending for the silt effect, we find that a robust pedo-climatic model (linear 

regression without the data from the ABI site) can be developed to simulate MYP 

for nine of the ten sites (adj . R2 = 0.92, p < 0.001 , Figure 2.5). 
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Figure 2.5 Linear regression between the MYP:si lt ratio and consecutive da ys of spring drought 

is shawn without considering the ABI data point (high lighted by a red circle). The 

relationship between MYP and silt and spring drought is fully detailed in the 

Material and Method section. 

A second pedo-climatic model was developed using MRT (Figure 2.6). In this 

case, among ali soi] and climate variables, a threshold of soil organic matter best 

explained annual yields (R2 = 0.59). This first threshold separates the most 

productive sites (i.e. ALB, HTG, RXP and SJPJ) from the least productive sites 

(i .e. ABI, BOl, LA V, MTL and STR). Annual yields of these two clusters are 

separated again by soil PzOs and the spring minimal temperature, respectively. 

O.M. 
+0.59 

PO SpringTemp l 5 

9.2 < 1 ::;9.2 +0.14 +0.09 

0.2 < 1 ::; 0.2 13.42: > 13.4 

1 1 1 1 
n=9 (8. 7 Mg ha-l) n=lO (14.3 Mg ha-l) n=3 (16.2 Mg ha-l) n=S (22.9 Mg ha-l) 
ABI20ll , ABI2012, ABI2013 BOI2010, BOI2011 , HTG2012 ALB2012, ALB2013 
MTL2010,MTL2011 , BOI2012, B012013 RJCP2010,RJCP2012 HTG2011 , HTG201 3 
MTL2012,MTL2013 LAV2008, LAV2009, RJCP20 11 ' RJCP 20 13 
STR201 0, STR20 11 LAV2010, LAV2011 , SJPJ2011,SJPJ2013 

LAV2012, LAV2013 

Figure 2.6 Variance of annual aboveground biomass yields explained by so i! and climate 

variables through a multivar iate regression tree. The additional contributions to the 

mode! R2 (i.e. 1 - residual error) are presented for each node. The number following 

the site nam e (e.g. ABI2011) refers to the growing season for which annual yield is 

considered. For each cluster, the mean annual yield is reported in bold . O.M. is so i! 

organic matter, P20 s is so i! total P, and Spring Temp. is spring temperatw·e averages 

computed from April to June. 
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2.5 Discussion 

2.5.1 Soil variables as related to yield 

The reliability of soil Caexch concentration as a proxy to estimate growth was 

robust only when the data from the RXP site was omitted from the model (Table 

2.4). This is due to RXP being developed on an organic soil which is 

characterized by the highest Caexch concentration despite exhibiting yields just 

above average the SRCs network studied (Table 2.1). The low soil bulk density at 

the RXP site resulted in a dramatic decrease of Caexch concentration when it was 

calculated volumetrically. This variable was significant for modeling the 

productivity of ali sites, i.e. including RXP. The volumetrie concentration was 

also a better predictor of productivity than mass concentration when only sites 

with mineral soils were considered. This is likely explained by the fact that soil 

Ca availability is better estimated when considering a soi! volume, explored by 

roots, rather th an a soil mass. The high acidity of sorne of the soils in our network, 

formerly forest soils with pH values nearing 5.0, results in high soil exchangeable 

Alexch saturation and th us mu ch lower Caexch concentrations (Table 2.1 ). As in Ens 

et al. (2013) for Salix purpurea, we found that soil chemical properties in the 

upper part of the profile best explained productivity across SRCs (Table 2.4). This 

is probably because fine roots of Salix are generally concentrated within the first 

10 cm ofsoil (Heinsoo 2009; Jerbi et al. 2015). Similarly, Ens et al. (2013) found 

a very strong positive relationship between yields and soil Caexch concentration, 

although the relationship was stronger with total CaO content and pH, indicating a 

significant influence of the nature of the parent material (e.g. acid-base status) on 

growth. 

Soil Mgexch concentration also explained about 25% of the variance in Salix 

growth whether the data from the RXP site was included or omitted from the 

analysis (Table 2.4). Despite being an essential nutrient (Ericsson 1981 b), there is 

no study, to our knowledge, reporting a positive relationship between soi! Mgexch 

concentration and yields of Salix. This positive relationship is likely explained by 



69 

the fact that Jess productive SRCs have both high sand content and low Mgexch 

concentration (Table 2.1). The SRCs supported by sandy soils (i.e. LAY, MTL 

and STR) were also characterized by low soi! pH. In the range of soi! pH values 

detennined in our study (5.15 to 7.51 , Table 2.1), both nitrification rates and base 

cation availability can increase significantly with rising pH (Havlin et al. 2005), 

wh ile solubility of trace metals su ch as Zn or Mn can decrease (Sanders 1983; 

Martinez & Motto 2000). Optimum pH ranges were often assessed for Salix spp., 

but these varied between studies (Mitchell et al. 1999; Abrahamson et al. 2002; 

Guidi et al. 2013). With our data, it is difficult to set minimum and maximum pH 

thresholds because the SJPJ and RXP sites were among the most productive sites 

and had relatively low pH values (5.3 and 5.5, respectively), suggesting that soi! 

pH had no direct impact on SX 67 growth. 

In this study, soi! Mgexch and Caexch concentrations and silt content were collinear 

across sites characterized by mineral soils (results not shown). Ens et al. (2013) 

reported that the most productive SRCs of Salix purpurea had a silt content 

ranging from 40 to 60%, which is equivalent to a loamy soi!. Similarly, Guidi et 

al. (2013) suggested that loamy soils are ideal for optimal Salix productivity, 

whereas Tahvanainen and Rytkêinen ( 1999) found that productivity of Salix 

viminalis was decreased on coarse textured (sandy) soils or heavy compacted 

clays. In our study, this proxy of soi! particle size distribution was also quite 

robust to estimate growth even when the minor mineral fraction of the RXP soi! 

was included in the analysis (Table 2.4). The structured nature of loamy soils 

apparently favours gas and water flow while ensuring water retention (Pachepsky 

et al. 200 1 ). 

2.5.2 Factors limiting yield at low productivity sites 

At SRCs where soils are characterized by coarse textures, i.e. LA V, MTL and 

STR, soi! nu trient availability is generally low, e.g. total N and Caexch (Table 2.1, 

Figure 2.2). This likely explains the low productivity at the MTL site. At the STR 
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site, we suspected that the Ap horizon had been depleted in C and sorne nutrients 

due to a history of intensive farming and tilling which decreased organic matter 

and soi! stability (Lipiec & Stypniewski 1995). A preliminary analysis of three 

soi! profiles of the adjoining grass trips, which were not cultivated or at !east not 

as intensively in the past (as indicated by the absence of a plough pan), confmned 

our hypothesis. Clay content, organic matter levels, exchangeable Ca and Mg 

concentrations and pH were dramatically higher in the A horizon of the grass 

strips (+118, 57, 45 and 106%, respectively) compared to that of the cultivated 

soit (results not shown). 

Also, repeated tilling was reported to increase bulk density until a depth of 40 cm 

on clay loam and sandy Joam soils, which strongly impeded the productivity of 

Salix viminalis during the first growing season (Souch et al. 2004). The following 

years, an increase in growth was observed likely because the root system had 

developed beyond the compacted layer (up to a depth of 2 rn). At the ABI site, a 

plough pan at a depth of about 20 cm (Table 2.1, Figure 2. 7) is evidence of soit 

compaction and this appears to have completely restricted root development 

beyond that depth. Consequently, this was the only SRC for which soi! bulk 

density at 0-5 cm increased with the distance between the inter row and the 

collected sample (i.e. overall, bulk density increased by 7.3% from 20 cm to 60 

cm away from the row, not shown). Hence, the roots were constrained to a 

shallower soi! volume for nutrient prospection and acquisition. This also increased 

the sensitivity of the root system to drought as seen by Jess negative foliar 813C 

values, indicating a greater water shortage at ABI during the 2011 growing season 

despite being a relatively high rainfall year (Table 2.3). Low productivity at the 

ABI site was therefore likely induced by soi! compaction that eventually led to a 

smaller soi! volume for roots to explore and water stress. For this reason, it was 

decided to mode! SX67 yields without the ABI data for sorne variables (Figures 

2.3 -2.4, Table 2.6). Martin and Stephens (2006) proposed that increasing soi! bulk 

density decreased the yield of Salix viminalis as waterlogging was induced by the 

low soit aeration. Establishing SRCs of Salix at sites where conventional tillage 
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was performed on a yearly basis, especially on clayey soils, is also to be avoided 

as this can decrease nutrient and water availability as well as microbial activity 

(Gadermaier et al. 2012; Fontana et al. 2015). Former agriculturalland may create 

restrictions for optimal Sa/ix growth and it is therefore suggested that plough pans 

be mechanically destroyed before SRCs establishment (Borghei et al. 2008). In 

turn, Sa/ix root development could restore sorne structure to the soil as seen with 

Alnus glutinosa (Meyer et al. 2014). 

Figure 2.7 Typical soi! profile at the ABI site where the dominant upward development of 

willow roots is due to the presence of a plough-pan at a depth of 20 cm. The 

embedded picture of willow roots was taken wh ile assessing biomass of the who le 

rooting system in the laboratory for six of the SRCs studied (Tremblay 2014). 

2.5.3 Water stress across growing seasons and SRCs 

In high-latitude forest systems, air temperature is generally positively linked to 

productivity when soil moisture is sufficient, but the relationship can become 

negative under water deficits (D'Arrigo et al. 2008). At the LA V site, the negative 

relationship between yield and precipitation, which followed roughly the same 

annual fluctuation as seasonal degree-days (see Table 2.3), suggests that this SRC 

did not undergo water limitations (Table 2.5). This is likely because the sandy 
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loam soi! at site allows for the development of a deep rooting system reaching at 

!east 70 cm (M. Fontana, persona) observation). Also, a perched water table 

and/or poor water infiltration at many points in time during the growing season 

was visible from water pools at the soil surface, thus reflecting a status of 

recurring high soil moisture (M. Fontana, persona) observation). Similarly m 

Svalbard, Norway, there was no indication of water shortage as the growth of 

Salix polaris was negatively correlated with summer precipitation (Buchwal et al. 

2013 ). The au thors argued th at the negative effect of rainfall on growth was 

probably due to a concomitant decrease of air temperature and solar radiation. 

Summer precipitation and air temperature at the LA V site were similar to that of 

the BOI site; however, foliar 813C was significantly more negative at the LA V site 

compared to the BOl site (Figure 2.3). These results highlight the strong influence 

of soi! type on WUE and water stress (Martin & Stephens 2006; Moukoum i et al. 

2012). 

Except at the LA V site, yields within ali other sites were negative1y impacted by 

summer degree-days (Table 2.5). lncreased degree-days likely triggered more 

frequent episodes of wateJ stress. Such episodes have been linked to declines in 

tree growth in Quebec (Payette et al. 1996; Wheaton et al. 2008). Sirnilar1y, Guidi 

Nissim et al. (20 13) suggested that the coupling of a relatively low seasonal 

rainfall and high air temperature were responsible for the low annual yields of 

various Salix cultivars in southern Quebec. Conversely, the negative response of 

tree growth to precipitation at the LA V site is the reason why it had to be mode1ed 

separately (Table 2.5). Seve! et al. (2012) observed higher yields of four Salix 

cultivars on sand compared to organic soil for a particular year in Denmark, 

whereas the opposite was observed the following year. The yields at these sites 

cou1d have varied due to changes in soil water status such as episodes of water 

Jogging at the LA V site. 

Across SRCs in Canada without high water deficits, a positive relationship was 

observed between foliar and wood 813C and yields of Salix purpurea, suggesting 

tbat WUE (and thus water availability) did not lirnit yields (Moukoumi et al. 
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2012; Ens et al. 2013). In our study, no such relationship was found for the 2011 

growing season (results not shown), whether the data from the ABI and LA V sites 

were omitted or not from the analysis. However, our results suggested that 

summer precipitation mainly affected WUE across the SRCs for the 2011 growing 

season when the ABI and LA V data were removed from the regression analysis 

because WUE at these sites behaved differently due to intrinsic soil conditions 

(Figure 2.3b). When ali sites were computed, a logarithmic regression was 

produced (adjusted R2 = 0.50, p < 0.05). However, the relationship was not 

considered to be biologically meaningful given that the dramatically low foliar 

813C at ABI was mainly due to soils exacerbating water stress for SX67. Except at 

the ABI site and perhaps for the 2012 growing season which was a very hot and 

dry summer in Quebec (Table 2.3), water stress was apparently not large enough 

to significantly limit productivity across sites during the 20Ilgrowing season. 

Nevertheless, when climate variables were averaged on an annual basis, spring 

drought partly limited productivity (Table 2.6, Figure 2.4). lt should be noted that 

even if spring drought was the most robust climatic variable to explain yields, 

seasonal drought also explained 49% of the variation in yield (p < 0.05 , Table 

2.6). 

Despite the strong gradient in degree-days (Table 2.2), no relationship with yield 

was detected. One of the two northernmost SRCs is among the !east productive 

(i.e. ABI), whereas the second is among the most productive (i.e. ALB). Clearly, 

and as discussed above, there are more reliable indicators of growth than degree­

days. In contrast, along a latitudinal transect in the clay belt of Que bec, Lapointe­

Garant et al. (2010) found that seasonal degree-days was the only climatic 

variable with large enough variations across sites to influence the growth of 

Populus tremuloides stands. We suspect that soils were more homogeneous, 

although this information was not provided. 
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2.5.4 Pedoclimatic yield models 

The productivity within sites and across the years was only influenced by climatic 

conditions and varied by up to 44% (Table 2.2). In contrast, the productivity 

across SRCs varied by a maximum of380% (data not shown) and was influenced 

by soil and climate. Since climatic variables limiting yield significantly differed 

between years and not between sites (Tables 2.2-2.3), we therefore assumed that 

soil was a more important limiting factor of Salix growth compared to climate. 

When quantitatively confronting the effects of climate and soil, we found a strong 

collinearity between silt content and frequency of drought episodes (Figure 2.4). 

This is because soils with unfavorable growing conditions were among the driest 

(i.e. ABI, MTL), whereas those with optimal growing conditions (i.e. BEL, HTG, 

SJPJ) had the greatest moisture levels (Table 2.2). When including or omitting the 

data from the ABI and LA V sites, seasonal drought explained respectively 13 and 

20% of the variance in yields that was not explained by silt content. It therefore 

appears more realistic and unbiased to consider only this fraction for the effect on 

climate on yields instead of the whole climate effect (i.e. including the 

collinearity) which is in the same order of magnitude as that of the soil effect 

(Figures 2.4 a,b). 

In this respect, a mode) was developed to forecast the potential of productivity 

without overestimating the drought effect (Figure 2.5). Except under severe 

drought conditions such as Mediterranean climates (Bergante et al. 2010), the soil 

has generally a stronger impact on the productivity of Salix under SRC than 

climate (Weih 2004; Ens et al. 2013). The MRT suggested a similarly larger role 

of soi! (R2 = 0.73 , Figure 2.6) on Salix productivity than climate (R2 = 0.09, Figure 

2.6). It explained 82% of the variance in annual yields, whereas forward selection 

failed to find a significant relationship. This shows the utility of MRT for such a 

context and confirms the relevance of soil organic matter as a proxy to estimate 

SX67 yields. Even if the thresholds detected by the MRT make sense, pedo­

climatic models of productivity are limited by the range of more extreme data 

(Basso et al. 2013). The MRT suggests a threshold of mean air temperature for 
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spring, which splits the annual yie ld values of the most productive sites (i.e. with 

the higher soi] organic matter content), thereby highlighting that the lowest yields 

were observed during the warmer growing seasons (i.e. 2010 and 2012, Table 2.3, 

Figure 2.6). However, the results obtained by the MRT and linear models using 

the various datasets to explain aboveground biomass yie lds are consistent in 

regard to the effect of soil and climate. 

2.6 Conclusion 

Within each of the SRCs studied, different factors limited aboveground biomass 

yie lds of Salix miyabeana SX67. Soi] nutritional balances and soi ] physical 

properties, which were likely influenced by past agricultural practices, appeared 

as significant factors. To estimate the maximum potential biomass yie ld of a site, 

silt content was a reliable indicator as it offers high cation exchange capacity 

without placing the same mechanical constraints for root growth compared to clay 

soils, especially tho se compacted by tilling. Also, 1 inear and non parametric 

approaches highlighted that soil properties are the most robust indicators of 

productivity (i.e. 60-70%), whereas climatic conditions explain yields to a lesser 

extent (i.e. 1 0-20%). This is parti y due to the Jarger heterogeneity of soils 

compared to that of climate in southern Quebec. However, this study confirms 

that water stress limits the productivity in this area. Under a warming climate, 

evapotranspirat ion rates and thus water deficits should increase in southern 

Quebec. Due to its capacity to accumulate soi] organic carbon relative to previous 

land use (Kahle et al. 2007; Lafleur et al. 20 15), Salix grown un der SRC should 

increase nutrient pool and water holding capacity after severa! growing seasons, 

but this depends on initial so i] properties. An increase in so i] organ ic carbon 

alleviate, in part, water shortages under the changing climate. Proper care should 

be taken at ali stages of SRC management to optimize soi! organic matter and 

hydra-structural properties. 



CHAPITRE III 

LEAF CHEMISTRY AND MASS EXPLAIN INTER-ANNUAL VARIATIONS 
IN SALIX MIYABEANA SX67 YIELD IN QUEBEC 

Fontana Mario 1.2, Michel Labrecque2
, Christian Messier 1

, Nicolas Bélanger1
•3 

1Centre d 'étude de la forêt, Université du Québec à Montréal, C.P. 8888, Suce. 

Centre-Ville, Montréal, Québec, H3C 3P8, Canada 

2Institut de recherche en bio logie végétale, Jardin botanique de Montréal, 4101 rue 

Sherbrooke est, Montréal , Québec, H1X 2B2, Canada 

3UER science et technologie, Téluq, Université du Québec, 5800 rue Saint-Denis, 

bureau 1105, Montréal, Québec H2S 3L5, Canada 



77 

3.1 Abstract 

• Aims: Compare the effects of soi! properties and of climate variations 

across three growing seasons on foliar nutrition and mass of nine Salix 

miyabeana SX67 short rotation cultures established over a large 

geographie range in Quebec, and develop models to predict annual 

aboveground biomass yields using leaf chemistry and mass. 

• Methods: Leaf samples were collected over three growing seasons at the 

nine sites. For each site, annual productivity and climate were estimated, 

and general soi! properties (i.e. particle size distribution, organic matter, 

exchangeable cations, bulk chemical composition, including N and P20s), 

leaf mass and foliar nutrients/elements (i.e. C, N, P, K, Ca, Mg, Mn, Zn, 

and Fe) were assessed. 

• Results: Although climatic variations across growing seasons were large, 

specifie foliar signatures were largely imposed by the soi! chemical 

footprint of the site. Foliar N, K, Ca, Mg, Mn and Zn were related with 

their respective soi! concentrations (total or exchangeable), whereas foliar 

C, N, K, Ca and Mg were linearly related to climate. Annual biomass 

yields were linearly related to leaf N, Ca, Mn and mass. However, the 

magnitude of impact of these variables on growth depended on the 

environmental conditions during the growing season. Annual biomass 

yields were better explained by non-linear than linear relationships. 

• Conclusions: This study emphasizes that the foliar signature of Salix 

miyabeana SX67 is more dependent of differences between sites than 

growing seasons, but nutrients lim iting growth can also change depending 

on growing season. Forecasting yields using thresholds of foliar nutrients 

allowed accounting for this last effect. It was therefore poss ible to build 

models that produce highly reliable yield estimates. 

Keywords: Jeaf traits, willow, fo liar nutrients, aboveground biomass, partitioning 

of variance, multivariate regression tree. 
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3.2 Introduction 

Despite the recent decline in oil priees, biomass energy sources such as those 

produced from willow (Salix) short rotation cultures (SRC) still represent a 

strategie interest for severa) countries in Northern Europe as weil as in sorne states 

and provinces of the US and Canada to reduce their dependency on fossil fuels. 

Salix spp. have a high physiological and growth plasticity (He & Dong 2003) and 

can be cultivated from an array of soil and climatic conditions (Tahvanainen & 

Rytkonen 1999; Sannervik et al. 2006; Aylott et al. 2008a; Ens et al. 2013). 

However, productivity of Salix within the same species or genotype can vary 

substantially from one site to another. Genotypes of Salix grown under SRC are 

more nutrient demanding than those growing in the wild (Weih 2001). High N, P, 

K, Ca and Mg contents in biomass have been measured in SRC of Salix (Adegbidi 

et al. 2001). Soil N availability was shown to strongly influence foliar N and 

aboveground yields (Ens et al. 2013; Taillon et al. 2013). Ericsson (1981 b) also 

showed strong causal relationships between soil nutrient availability (including N, 

P, K, Ca and Mg), leaf nutrients and aboveground biomass yields for three Salix 

cultivars grown in hydroponics. The yields of Salix cultivars generally have a 

greater response on sandy soils with low nutrients following fertilization with 

wastewater sludge compared to clayey soils (Labrecque & Teodorescu 2003). 

This study showed that foliar N was, as a whole, improved after sludge 

application, whereas foliar Ca, Mg, K and P increased at sorne sites and remained 

unchanged at others. No clear link could be made between foliar nutrient 

responses and soi! type, although coarse-textured soils tended to respond more 

strongly than clayey soils. Also, following fertilization of Salix viminalis on 

loamy sand soils with qmmonium nitrate, municipal sewage sludge compost, 

municipal biocompost or willow bioash, foliar N and K were increased, while 

foliar P, Ca and Mg were decreased (Simon et al. 2013). No explanation was 

provided for the decrease in foliar P , Ca and Mg, but interferences with other 

nutrients are suspected ( e.g. Ouimet et al. (1996) for Ac er saccharum. Also, 

interactions between nutrients and other elements in the soil were also shown to 



-------------------------

79 

influence Salix foliar nutrition. For exarnple, soils with different Ca-to-Mg ratios 

changes the tolerance of Salix viminalis growing to trace metals (Magdziak et al. 

2011 ; Mleczek et al. 2011; Magdziak et al. 2013 ). 

There are many studies monitoring inter-annua1 variations of fo1iar nutrients 

following fertilization of forests or plantations, but few studies have tried to 

establish the relationships between climatic conditions and foliar nutrition over 

successive years. Generally, inter-annual variations in climate appear to 

substantially influence Salix nutrition and growth. For example, Kudo (2003) 

observed Jess N in leaves of Salix miyabeana during warm summers compared to 

cooler ones. Also, Duquesnay et al. (2000) showed that foliar N, P, K, Ca, and Mn 

(but not Mg) of Fagus sylvatica varied over severa! growing seasons within the 

same plots. The combined inter-annual and plot effects explained more than 70% 

of the variance in foliar nutrition. Models were also developed in order to forecast 

Salix productivity based on seasonal climatic conditions alone (Sannervik et al. 

2006) or in combination with soil properties (Aylott et al. 2008b). 

Salix morphological leaf traits also change based on site nutritional and climatic 

conditions. In three plantations established on heterogeneous soils of n01thern 

France, leaf area of six Salix genotypes was highest on the site with the greatest 

available moisture (Toillon et al. 2013). Higher soi! N availability and 

aboveground biomass yields were also associated with higher soi! moisture. 

Similarly, fertilization with granulated municipal sludge of three SRC of Salix 

discolor and Salix viminalis increased leaf area, leaf mass, leaf N and 

aboveground yields (Labrecque & Teodorescu 2001). In Mediterranean Italy, 

inter-annual climatic variations and site conditions influenced leaf traits of Fagus 

sylvatica L., Quercus cerris L. and Quercus il ex L., which, in tu rn, has had an 

impact on aboveground productivity (Bussotti et al. 2000). In particular, leaf 

surface area, N , P, and S decreased and leaf mass area (g mm2
) increased under 

water stress. Leaf mass area best explained site productivity under such 

conditions. However, relationships among leaf nutrition (and other traits), soi! 
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properties, climatic conditions and yields are poorly documented on an annual 

basis. 

Using various models, we tested whether the nutritional signature of Salix 

miyabeana SX67 Jeaves are controlled by: (1) soil and climatic conditions across 

a range of sites, (2) climatic fluctuations between growing seasons, or (3) both. 

We also developed models that can be used to predict annual aboveground 

biomass yields of SX67 in southem of Quebec based on foliar chemistry and 

mass. 

3.3 Mate rials and methods 

3.3.1 Fieldsites 

This study was conducted at nine SRCs of Salix miyabeana SX67 in southern 

Quebec characterized by different soil properties and climatic conditions (Table 

3.1 ). Geographical location, site history and previous land use, and field design of 

each SRC are detailed in Chapter 1 (see Table 1.1) and Chapter 2 (see Figure 2.1 ). 

3.3.2 Estimation ofannual aboveground biomass yields 

At each site (or SRC), five random plots (5 x 5 rn) were delineated. Using the 

basal area increment, annual aboveground biomass yields were estimated for each 

plot and site using the approach described in Chapter 1. Once cuttings are planted, 

a few growing seasons are needed for the stools to fully establish and reach their 

maximum yield potential (MYP). We therefore modeled productivity only for 

growing seasons that had reached MYP. We also excluded from our models the 

first growing seasons of subsequent rotations because they were systematically 

lower than MYP (Chapter 1, Figure 1.3-1.4). 
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3.3.3 Foliage sampling, leafmass and nutrient analysis 

Foliage was sampled in each selected plot between the last week of August and 

the first week of September of 2011 , 2012 and 2013. However, the number of 

sampled sites varied between growing seasons because ofthe complex logistics of 

sampling nine sites across a large geographical range and within a short period . 

The number of sampled plots and stools also varied between sampling years and 

depended on available resources for sampling and laboratory analysis. 

Nevertheless, coupling the data from the different growing seasons allowed for a 

balanced and relatively weil replicated experimental design for at least five of the 

nine SRCs. In 2011 , four contiguous healthy stools were sampled in each of the 

five plots at seven of the SRCs, i.e. ABI, BOl, LA V, MTL, RXP, SJPJ and STR 

(140 samples). In 2012, one stool in each of the five plots was sampled at six of 

the SRCs, i.e. ABI, BOl, LA V, MTL, RXP and HTG (30 samples). Finally, in 

2013, four contiguous healthy stools were sampled in three of the five plots at 

eight of the SRCs, i.e. ABI, BOl, BEL, HTG, LA V, MTL, RXP and SJPJ. In this 

case only, the four samples collected in each plot were bulked into one sample (24 

samples). For each stool sampled in 2011 , 2012 and 2013, a minimum of ten 

mature and healthy leaves in the upper tier of the canopy (full sunlight) were 

collected on the stem with the largest basal diameter. 

After field sampling, leaves were oven dried at 40°C to a constant weight. For 

each sample, at ]east ten leaves were weighted before they were finely ground. A 

mean mass per leaf was calculated for each sample. Carbon and N concentrations 

were determined on the ground samples with a Vario MicroCube CHNS-0 

Analyzer (Elementar, Hanau, German y) for tho se collected du ring the 2011 

growing season and with a EA 1108 CHNS-0 Analyzer (Thermo Fisons, 

Waltham, MA, USA) for those collected during the 2012 and 2013 growing 

seasons. The ground samples were also digested with concentrated HN03 to 

determine Ca, K, Mg, Mn, Zn and Fe concentrations using atomic 

absorption/emission (model AA-1475, Varian, Palo Alta, CA, USA), whereas P 
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was analyzed colourimetrically (molybdate based method) using a QuickChem 

8500 series 2 FIA System (Lachat Instruments, Loveland, CO, USA). 

3.3.4 Soi! sampling and analysis 

Soi! samples were collected from the five random plots within each SRC at a 

depth of 0-25 cm. Sam pies were air-dried and then sieved to pass through a 2 mm 

mesh. Soi! particle size distribution was analyzed using the Horiba Partica LA-

950v2 Laser Particle Analyzer (Horiba Instruments, Irvine, CA, USA). Samples 

from BOl, MTL and SJPJ were frrst pre-treated to destroy organic matter. In this 

respect, samples were bleached twice with NaOCI (pH = 8, 1 hour at 25°C), 

centrifuged (400 rpm, 15 min) and washed severa! times. with distilled water. 

Sam pies from RXP contained more than 60% of organic matter. Th us, the bulk of 

organic matter was first destroyed by Joss on ignition and then treated with NaOCI 

(as explained above) before particle size measurement. Soit pH in water was 

measured using a soil :solution ratio of 1:2 for mineral sam pies and 1:10 for 

organic samples. Organic and inorganic C (i .e. CaC03) were measured on ali 

samples by Joss on ignition in a muffle fumace at 575°C (15 minutes) and 

1,000°C (10 minutes), respectively (Rabenhorst 1988). Total soit C and N (Ntot) 

were determined on ground samples using the EA1108 CNHS-0 Analyzer. 

Exchangeable Ca, Mg, Mn, K, Na, Fe, Al and Zn (later referred as Xexch) were 

determined by atomic absorption/emission as indicated above after they were 

extracted using an unbufferred 0.1 M BaCb solution (Hendershort et al. 2007b ). 

Bulk chemical composition (Si02, Ab03, CaO, K20 , MgO, MnO, Na20, P20s, 

Fe20 3, Zn, Ti02 and Ba) of ali soil sam pies were analyzed by X-ray fluorescence 

spectrometry using a Philips PW2440 system (Pananalytical, Almelo, The 

Netherlands) equipped with a Rhodium 60 kY end window X-ray source 

operating at 3 kW. The fused beads were prepared from a 1:4 soil:lithium 

tetra(meta)borate mixture which was heated for 18 rn in at 1 ,000°C. 

----- ---------
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3 .3.5 Climatic conditions 

The BioSIM mode! was used to simulate climatic conditions at the nine SRCs for 

each growing season (i.e. 2011 , 2012 and 20 13). Using site elevation, latitude and 

longitude, BioSIM uses multivariate regressions to extrapolate data from the 

closest climatic stations (Régnière 1996). Climatic variables were modeled from 

the beginning of April to the end of August using the five closest stations to each 

site. BioSIM yields simulated climatic data that are statistically indistinguishable 

from measured data (Régnière & Bolstad 1994). 

3.3 .6 Compositional Nutrient Diagnosis 

To improve our understanding of the causal relationship between foliar nutrition 

and SX67 productivity, we modeled annual yields with foliar nutrients using the 

concentrations of foliar nutrients (CFN), which refer to mass concentrations. We 

also used centered logaritlun ratios as a means to obtain Compositional Nutrient 

Diagnosis (CND) scores ((Parent & Dafir 1992), which considers the interactions 

between foliar nutrients. Computing CND scores imply compositional data (e.g. 

foliar nutrients) in a constrained space (e.g. leaf). Because not ali foliar 

nutrients/elements (e.g. S, Al, Si and traces) are usually measured, a filling value 

(FV) was calculated to obtain an estimate of the proportion of the unmeasured 

nutrients/elements: 

Eq. 1 FV = 1 - (C + N + P + K + Ca+ Mg+ Mn+ Fe +Zn) 

where nutrient concentrations were expressed in mass percentages. 

A geometrie mean (GM) of the proportions of al! foliar nutrients, including FV, 

was then computed as followed: 

Eq. 2 GM = (C x N x P x K x Ca x Mg x Mn x Fe x Zn x FV) 1110 

Finally, the CND scores were determined for each nutrient with centered 

logaritlun ratios: 
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C ND _ l Proportion of Nu trient 
Eq. 3 scoreNutr ient - n GM 

where Nutrient refers to the nutrient or element for which the CND score is 

calculated. This approach removes spurious correlation between raw nutrients 

forming the foliage, i.e. a change in concentration of a nutrient means a change in 

the concentration of at !east another nutrient forming the foliage (Parent & Dafir 

1992). The computed CND scores are suitable to visualize the global nutritional 

balance of foliage with multivariate analysis, e.g. PCA (Parent et al. 1994b). 

Compositional nutrient diagnosis scores were calculated with the clr function 

available in the library composition using R 3.01 (R Core Team, 2012). For the 

sake of simplicity, CFN values and CND scores of C, N, P, K, Ca, Mg, Mn, Zn 

and Fe and leaf mass are hereafter referred to as leaftraits. 

3.3.7 Data analysis 

SX67 foliage was unevenly sampled 21 times throughout the three growing 

seasons at the nine SRCs (n = 21 , i.e. 7 sites in 2011, 6 sites in 2012, and 8 sites in 

2013, n = 21). This is latter referred to as the extended dataset. However, for a 

balanced comparison of foliar nutrition and leaf mass between growing seasons, 

the dataset was reduced to the data from the five SRCs for which ali three growing 

seasons were sampled, i.e. ABI, BOl, LAY, MTL and RXP (n = 15). This is latter 

referred to as the reduced dataset. Finally, the dataset generated from the 2011 

sampling was the only one that was large enough to build robust models across 

plots. This dataset uses plots means (n = 35, i.e. 5 plots x 7 sites) instead of site 

means (n = 7). This dataset takes into account the variations within sites and is 

referred to as the plot scale dataset. 

It was frrst tested if leaf traits varied between growing seasons, independently of 

the conditions prevailing across the SRCs. Therefore, paired t-tests between 

growing seasons, i.e. 2011 vs. 2012, 2012 vs. 2013 and 2011 vs. 2013, were 

performed us ing the reduced dataset ( n = 15). A permutation test was used when 
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the condition of normality could not be achieved (Legendre & Blanchet 2009). 

The level of significance of these tests was expressed with the percentage of 

variation, i.e. a positive value if the leaf trait increased from an older growing 

season to a more recent growing season, and a negative value if it decreased from 

an older growing season to a more recent growing season. 

The extended dataset (n = 21) was also used to visualize variations in leaf traits 

between growing seasons within each of the nine SRCs. To do so, means of 

annual CND score were projected onto the first two PCA axes using the rda 

function available in the vegan library, and preserving the Euclidean distance 

between points. With the fanny function available in the cluster library, a fuzzy 

clustering was superimposed (Bezdek 1987). Membership values of two groups, 

i.e. in order to reflect the soi! acid-base contrast between sites, were assigned to ali 

abjects. These values (%) were illustrated proportionally with the size of two 

semicircles (i .e. green and red) associated with annual samplings (Borcard et al. 

2011). 

Sites were also analyzed to determine if they caused specifie foliar nutrition 

signatures, independently of growing seasons. For doing so, the CND scores for 

each growing season were used to perform a linear discriminant analysis with site 

as a grouping factor on the reduced dataset. Prior to this analysis , the multivariate 

homogeneity of variances within groups was tested using the betadisper function 

available in the vegan library. The linear discriminant analysis was then 

performed with the Ida function available in the MASS package. Also, a posteriori 

classification was done using the predict function available in the vegan library. 

Severa! linear models that were developed with the reduced and plot scale (n = 

35) datasets did not respect the condition of independence. To overcome this 

problem, the site effect was modeled simultaneously with the explanatory 

variables. In this respect, a contrast of Helmert (Legendre & Legendre 20 12) was 

performed to represent the site effect with the function contr.helmert available in 

the STATS package. Using the function varpart in the vegan library, the variance 
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of the modeled response variab le was then partitioned with two sets of 

explanatory variables (Peres-Neto et al. 2006): (1) the selected variable(s) with 

which the causal relationship was tested (i.e. soi! or leaf traits), and (2) the site 

effect variables (i.e. the Helmert contrast). The variance of the response 

variable(s) was/were therefore partitioned into three parts : (1) the effect explained 

only by selected variables, (2) the effect explained by selected variables and site, 

and (3) the effect explained only by site. The significance of the fust and third 

partitions was tested by permutation using partial redundancy analysis (Davies & 

Tso 1982) with the functions rda and anova in the vegan library (Legendre & 

Legendre 2012) . 

The hypothesis that foliar CFN values are linearly related to soi! nutrients was 

tested for foliar N, P, K, Ca, Mg, Mn, Fe and Zn using soi! Ntot, P20s, Kexch, 

Caexch, Mgexch, Mn, Feexch and Znexch, respectively. The analysis was conducted 

without considering that soil chemical properties may have changed over the three 

years of foliar sampling. Again, the variance of an nuai CFN means calculated for 

a specifie nutrient using the reduced dataset was partitioned with the respective 

soi! exchangeable cation or oxide (according to the best R2
) as well as the site 

effect. Climate variables generated from BioSIM that best explained CFN means 

of the specifie nutrient were also selected after testing them individually. Mixed 

models were performed with site as a random effect and climate variables as a 

fixed effect using the function !me in the nlme package. Climatic variables were 

also tested individually by simple linear regression using the lm function. In cases 

where CFN means of specifie nutrients were related to both soi! nutrients and 

climate variab les, the variance was partitioned using both components. The 

probability that a climate variable was fortuitously collinear with a soi! variable to 

explain CFN means was taken into account. 

Linear models between foliar nutrients and annual yie lds were developed across 

the sites fo r individual growing seasons using both the reduced and extended 

datasets. These models were built from CFN values, CND scores and leaf mass, 
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whereas annual yield was the response variable. Each significant variable is later 

reported. 

Partitioning of the variance of annual yields was performed with site effect and 

leaf traits as explanatory variables using the reduced and plot-scale datasets. We 

finally partitioned the variance of annual yields with site and foliage using the 

extended dataset to compare the percentages explained by leaf nutrients vs. leaf 

mass. No Helmert contrast was done because the numbers of annual 

measurements carried out at each site were unbalanced. The condition of 

independence was therefore not met, but previous analyses suggested that site 

effect was controlled by leaf traits (see results section). Prior to this analysis, a 

forward selection of explanatory variables had been performed using the 

forward.sel function in the packfor library. 

Multivariate regression trees (MRT) were perfonned in order to explain the 

variance of annual yields with successive thresholds of leaf traits, e.g. leaf mass 

and foliar N (De' ath 2002). This non parametric method of hierarchical clustering 

recursively splits the response variables into two clusters whose sums of !east 

squares are minimized. The output of MRT also provides a residual error, which 

yields the R2 of the mode! (i.e. 1-error). Each MRT was performed with the same 

number of nodes (previously validated by cross validation) as significant variables 

used for partitioning the variance with the same data sets. These analyses were 

performed across sites and years using the extended and plot scale datasets. The 

MR.Ts were performed using the mvpart and MRT functions available in the 

mvpart and MVPARTwrap libraries. Sorne didactic explanations and examples are 

described in Legendre and Legendre (20 12) and Borcard et al. (20 11). 
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3.4 Results 

3.4.1 Variation in soi! and climate 

Ali SRCs were established on mineral soils, except at RXP which was planted on 

a soil with organic C (Corg) exceeding 60% (Table 3.1). Soils vary considerably 

across the SRCs in terms of parti cie size distributions, with sand contents ranging 

from 19 to 74% and clay contents ranging from 4 to 43%. Soil chemistry also 

varies substantially across SRCs (Table 3.1). Soil pH ranges between 5.1 and 7.5 

across the SRCs, with BOl and HTG having a more neutra! pH than the others. 

Except for RXP which shows high N and P concentrations (9.0 mg N kg- 1 and 

1.78 mg P20 s kg- 1), SRCs have relatively low total N (1.7-3.4 mg kg- 1) and P20s 

(0.13-0.39 mg kg- 1
) concentrations. The STR, MTL and LAY sites have the 

lowest Corg values (<7.5%) and exchangeable Ca (<5.1 cmolc kg- 1
) and Mg (<0.8 

cmolc kg- 1
) concentrations, and this seems to be explained by the fact that the soils 

ofthese SRCs have the highest sand contents (>50%). 

Based on degree days (base 5°C) computed with the BioSIM mode!, the 2012 

growing season was warmer than those of 2011 and 2013 (Table 3.1). Also, 

degree days averaged over the three growing seasons varied from 1282 to 1866 

across the SRCs, with the northernrnost site (ABI) showing the lowest value and 

one of the most southerly site (LAY) showing the highest value (Table 3.1). The 

amount of rainfall was the lowest during the 2012 growing season, indicating a 

warrn and relatively dry summer. Variation in rainfall across the SRCs was not as 

large as for degree days. However, rainfall variations across growing seasons were 

higher than variations across SRCs. 
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3.4.2 Variations in foliar nutrients 

Concentrations of foliar nutrients varied across SR Cs mostly for Mn, followed by 

K and Mg, then Ca and N, and finally P (Figure 3.1, Table 5.1). The CFN values 

and CND scores of Mg and N were among the highest at BOl, BEL and HTG and 

the lowest at LAY and MTL (Figure 3.2, Table 5.1). The opposite was observed 

for CND scores and CFN values of Mn. The RXP site (organic) was characterized 

by the highest CND scores and CFN values of Ca and Zn. Foliar nutritional 

structures were illustrated using CND scores (Figure 3.1). The fuzzy clustering 

highlighted a detachment of the SRCs characterized by neutra! (i.e. BOl and 

HTG) or near-neutral (i .e. BEL) soi ls from the SRCs with slightly acidic to acidic 

soils (i.e. ali other SRCs), and a further detachment of RXP and LAY from the 

bulk of SRCs characterized by acidic soils (Figure 3.1). The CND scores from the 

five SRCs belonging to the reduced dataset were also discriminated to 100% by 

cross validation of the linear discriminant analysis, independently of the growing 

seasons (Figure 3 .2) . 
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Figure 3 .l Principal component analysis of annual CND scores of C, N, P, K, Ca, Mg, Mn, Fe 

and Zn measured in 20 LI (blue), 2012 (red) and 2013 (green) at the nine SRCs (i.e. 

ABI, BEL, BOI, HTG, LAY, MTL, RXP, SJPJ and STR). A fuzzy clustering is 

superimposed. For each object, the two clusters (i.e. red and green) equal 100% and 

describe the proportional similarities between two groups. The stars indicate the 

measurements performed on the reduced dataset (n = 15) instead of the extended 

dataset (n = 21). 
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Figure 3.2 Linear discriminant analysis ofCND scores ofC, N, P, K., Ca, Mg, Mn, Fe and Zn by 

SRC (reduced dataset, n = 15). The ellipse surrounds 95% of the theoretical inner 

group dispersion. 
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Variations in foliar nutrients between growing seasons were generally lower than 

variations across SRCs (Table 3.2) . The largest variations in CND scores between 

growing seasons were observed at ABI and RXP (Figure 3.1). The variation in 

leaf mass across growing seasons (22.9%) and SRCs (31.1 %) were in the same 

range as those of CFN values, i.e. 13.4-31.6% and 16.7-68.6% across growing 

seasons and SRCs, respectively. From 2011 to 2012, foliar C, N, Ca, K and Zn 

decreased, whereas fo1iar Mg, P, Fe and Mn as weil as leafmass increased. Paired 

t-tests were significant for CFN values of C, N, Mg, Fe and Mn and CND scores 

ofN, K, Fe, Ca, Mg and P. Foliar Ca, Mg and Mn decreased from 2012 to 2013, 

whereas foliar C, N, K, P, Fe and Zn as weil as leaf mass increased. Paired t-tests 

were significant for CFN values of C, N and Mg, CND scores of N and Mg, and 

leafmass. Finally, foliar N, Ca, K and Zn in 2013 were lower than those in 2011 , 

whereas foliar C, Mg, P, Fe and Mn as weil as leafmass in 2013 were higher than 

in 2011. Paired t-tests were significant for CFN values of C, Ca, K and P, CND 

scores of Ca, P and N, and leaf mass (Table 2.2) . 
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3.4.3 Relationships among foliar nutrients, soil chemical properties and climatic 

variables 

Soil Caexch, MnO, Mgexch, Kexch, Ntot and Znexch were respectively linearly related 

to foliar Ca, Mn, Mg, K, N and Zn (i.e. CFN), independently of the growing 

seasons (Table 3.3). Site effects, which included soil effects, explained an 

additional (and significant) part of the variance in CFN values of K, Mn and Zn. 

When considering site effect as a random factor in mixed models, average air 

temperature, consecutive days with precipitation, radiation and total precipitation 

explained 94%, 81%,93%,92% and 90% ofthe variance in CFN values ofC, N, 

Ca, K and Mg, respectively (Table 3.3). Using linear regression, only the variance 

in CFN values of C, N and K were significantly explained by climatic variables. 

Soil and climate collinearly explained a large part of the variance in CFN values 

of N and K (Table 3.3). The mode) which included the number of consecutive 

days with precipitation and soil Ntot significantly improved the prediction of the 

variance in CFN values of N. In contrast, soi) Kexch explained nearly ali of the 

variance in CFN values of K explained by radiation, and further increased the 

prediction ofthe variance in CFN values of K. 
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3.4.4 Relationships among foliar nutrients, leaf mass and aboveground biomass 

yields 

Both the CFN values and CND scores of Ca and N were linearly related to annual 

yields of the 2011 growing season (Table 3.4). For the 2012 growing season, the 

CFN values and the CND scores of Ca were related to annual yields, whereas leaf 

mass was significantly related to yields only when ail six sites sampled that year 

were considered. In 2013, CFN values and CND scores ofN and leaf mass were 

positively related to annual yields. Also, the CND scores of Ca were positively 

related to yields only when ail eight sites sampled that year were considered . 

Ail of the variance in annual yields explained by the site effect was concomitantly 

explained by selected variables (adjusted R2 = 0.59, Table 3.5). The CFN values 

and CND scores explained an additional 9% and 5%, respectively. Consequently, 

CFN values of Ca, N and Zn explained 68% of the variance in annual yields, 

whereas CND scores of Ca, N and Mn explained 64%. 

Across SR Cs, leaf mass and CFN values of Ca explained 80% of the variance in 

annual yields and nearly overlapped ail of the site effect, whereas leaf mass and 

CND scores of Ca explained only 66% of the variance in annual yields and, 

therefore, did not totally overlap ali of the site effect (Table 3.5). The CNF values 

and CND scores ofN and Ca respectively explained 53% and 56% ofthe variance 

in annual yields . In addition, 33% and 42% of this variance explained by the 

combined CFN values and CND scores of N and Ca were also controiled by leaf 

mass. This latter variable explained another 29% and 20% of the variance in 

annual yields that CFN values and CND scores did not explain, respectively. 



-------------------------------------------------------------------------------------------------------------

Table 3.4 

97 

Canonical redundancy analysis results (adj usted R2
) of annual aboveground biomass 

yields (annual yield) vs. CFN values, CND scores and leaf masses (LM) performed 

across SRCs for the 2011 , 2012 and 2013 growing seasons individ ually. Positive(+) 

and negative(-) relationships are indicated in parentheses. 

Growing N CFN CND LM 
seasons 

7 
Ca 0.74 .. (+) Ca 0.75 .. (+) 

NS 
N 0.63' (+) N 0.74' (+) 

2011 
N 0.94 .. (+) 

5 
Ca 0.82' (+) 

Ca 0.84' (+) NS 

6 
2012 

Ca 0.57(') (+) Ca 0.80 .. (+) 0.70' (+) 

5 Ca 0.61 (' ) (+) Ca 0.75' (+) NS 

8 N 0.51' (+) 
N 0.69" (+) 0.85' .. (+) 

2013 Ca 0.42' (+) 

5 N 0.80' (+) NS NS 

Linear models are s ign ificant at 'p::; 0.05 and .. p::;O.O 1. Models 
are built using either the yearly data of the reduced (n = 5 each 
year) or extended (n = 7 in 20 11 , n = 6 in 20 12 and n = 8 in 
20 13) datasets. 
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The MRTs developed with the CFN values and CND scores as explanatory 

variables yielded two distinct structures (Figure 3.3). The MRT developed from 

the CND scores had a slightly higher R2
- however, whether the CFN values or 

the CND scores were considered, the same nutrients were selected in a matching 

order, i.e. first Ca, then N and ftnally P. When site was considered instead, the 

CFN values and CND scores of N explained 73% and 81% of the variance in 

annual yields, respectively (Figure 3.5). 
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3.5 Discussion 

3.5.1 Foliar signatures are controlled more largely by soil conditions than climate 

In this study, we investigated foliar nutrition across a range of site conditions. In 

agreement with Labrecque and Teodorescu (2001), low CND scores and CFN 

values ofN and Mg were observed at the SRCs with the sandiest soils (i.e. LA V, 

MTL and STR, Figure 3.1 and Table 5.1). As a whole, soi! pH values also 

appeared to have an influence on the balance of nutrients in the leaves. For 

example, the SRCs with the more neutra! soils (i.e. BEL, BOl and HTG) had a 

relatively sim il ar status in foliar nutrients (Figure 3.1 ). 

For Fagus sylvatica in northeastern France, Duquesnay et al. (2000) reported that 

the spatial variability of CFN values was low for C, slightly variable for N and P, 

moderately variable for K and Ca, and highly variable for Mn and Mg. Based on 

the coefficients of variation calculated to describe differences in CFN values 

across the studied SRCs of Salix miyabeana SX67 in southern Quebec (Table 

3.2), it can be concluded that nutrients follow a similar sequence, except that K, 

Ca, Mg and Mn can be pooled into one group with sirnilar coefficients of 

variation. Interestingly, C was the only leaf element for which the variation 

between growing seasons was higher than those between SRCs (Table 3.2). 

We also observed two additional trends for CFN values. For one, variations tn 

CFN values were smaller between growing seasons than across SRCs for Ca, Mg, 

K, Mn and Zn. Second, variations in CFN values between the growing seasons for 

N, P and Fe were quite comparable to those across SRCs (Table 3.2). We 

therefore tested if specifie foliar nutritional signatures could be distinguished for 

the various SRCs, independently of the variations between growing seasons. 

Discriminating the nutritional signatures based on site was highly efficient, 

independently of the growing seasons (see length of vectors in Figure 3.2). 

Compositional nutrient diagnosis scores are generally weil suited for multivariate 

analysis (Parent et al. 1994a). This seems to be verified with our dataset because, 

using that sarne statistical approach, we failed to discriminate site-specifie foliar 
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nutritional signatures with CFN values alone (results not shown). Spurious 

correlations of CFN values can generate interpretation problems when using 

multivariate analysis and can be removed by log-ratio transformations which 

provide variables that are linearly independent (Parent et al. 2013). 

Across SRCs and growing seasons, we found relationships between major foliar 

nutrients and associated soil nutrients for all nutrients except P (Table 3.3). It is 

possible that P20s was not the best indicator of soil P availability, but the 

relationships between soil and foliar P has not always been straightforward (Ling 

& Silberbush 2002; Bowman et al. 2003; Ens et al. 2013). The correspondence 

between soil and foliar nutrients other than P have been reported for various tree 

species, including deciduous species (e.g. Afif-Khouri et al. (2011) for Castanea 

Saliva in Spain; Orgeas et al. (2003) for Quercus suber) and Salix purpurea (Ens 

et al. 20 13). Ericsson (1981 b) suggested a mechanism of diffusion for the uptake 

of Ca and Mg by Salix grown in hydroponics. Similarly, CFN values of Ca, K and 

Mg were depicted for Pinus abies and Fagus sylvatica foliage sampled from Italy 

to Norway (Bauer et al. 1997). They found foliage to be a relatively robust mirror 

of soil Ca, K and Mg availability. Soil Mn availability is negatively related to its 

pH (Sanders 1983; Marti nez & Motto 2000), and higher CND scores of Mn were 

observed at the SRCs characterized by Jower soil pH (Figure 3.1, Table 3.1 and 

Table 5.1 ). In addition, a strong relationship was observed between CFN values of 

Mn and soil pH (adj. R2 = 0.80, results not shown) which perfectly overlapped site 

effect (Table 3.3) and also suggested a diffusive path for Mn. 

In a study conducted across Canada, Ens et al. (2013) observed a strong linear 

relationship (R2 = 0.85, p<0.05) between CFN values ofN and soil Ntot- The data 

collected in our study produced a similar but weaker relationship (Table 3.3), 

perhaps because the dataset included inter-annual variations in CFN values of N 

which were specifie to each growing season (Table 3.2). Independently of soil 

conditions, only CFN values of N (among ali Jeaf nutrients measured) were 

significantly explained by a climate variable (Table 3.3). Our results are consistent 

with a previous study showing that N uptake of Salix was lower under conditions 
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of water stress (Bowman & Conant 1994). Christersson (1986) emphasized the 

relationship between soi! water content and foliar N levels of Salix dasyclados and 

viminalis - foliar N decreased in the following order: irrigation in combination 

with fertilization > fertilization without irrigation > neither irrigation nor 

fertilization (or control). 

Climate had a lesser influence on foliar nutrition compared to soil. This was also 

observed for Salix purpurea in studies conducted from central to eastern Canada 

(Ens et al. 2013) or at the global scale (Ordofiez et al. 2009). For example, the 

study by Ordofiez et al. (2009) showed that total soil N, P and C:N ratio were 

mu ch better predictors of the variance in leaf traits (i .e. specifie leaf surface area, 

foliar N and P) of 474 species across 99 sites compared to climatic variables (i .e. 

precipitation, temperature, irradiance and evapotranspiration). Nevertheless, 

multivariate analysis revealed that predictions of leaf traits, including N and P, 

were irnproved when interactions between soils and climate were considered . 

Thus, using mixed models with site as a random effect allows investigating the 

influence of climatic variables, regard Jess of site specificity. Across 42 locations 

in Australia, for example, mixed models highlighted that the combined effects of 

site and temperature strongly influenced foliar N and secondary metabolites of 

Eucalyptus microcorys (Moore et al. 2004). In our study, mixed mode! analysis 

systematically improved the strength of the relationships compared to simple 

linear regression (Table 3.3). A strong relationship between CFN values of Ca and 

total radiation emerged witb a rn ixed model. lt should be noted th at our study was 

not built to identify causal mechanisms. However, Kobe (1996) suggested that 

CFN values of Ca improved light use efficiency and tolerance to low light 

availability by Fagus grandifolia, Fraxinus americana and Acer saccharum. 

3.5.2 Foliar traits impact annual aboveground biomass yields 

Because foliar nutrient Jevels changed between growing seasons, nutrients 

impacting annual yields also differed between growing seasons (Table 3.4). The 

-------
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positive relationship between foliar N levels and yields observed by Ens et al. 

(20 13) and Ericsson (1981 a) for Salix spp. was also observed in our study for 

SX67 in 2011 and 2013, but not in 2012. The 2012 growing season was the driest 

of the three years (Table 3.1), which could mean that water availability was 

restricting growth. Optimal foliar nutrients of tree species was reported to be 

affected by drought in the past, mainly for macronutrients such as N and P 

(Vizcayno-Soto & Côté 2004). The filling value in Equation 1 was higher for the 

2012 growing season, meaning a lower acquisition of nutrients by SX67. 

However, W eih et al. (20 11) studied 200 Salix genotypes and fou nd that tho se 

with higher CFN values of N were best adapted to withstand water shortages. 

Under such conditions, the growth of Salix genotypes with higher foliar N 

reserves was more impeded by photosynthetic limitations due to drought than due 

to a concomitant decrease in fo liar N. ln our study, water stress due to low rainfall 

in 2012 varied as a function of intrinsic soi t properties (e.g. physical variables 

such as depth, porosity and particle size distribution) and thus, it likely modulated 

the magnitude ofphotosynthetic limitations differently at each SRC. 

ln 2011 and 2012, the CFN values and CND scores of Ca were positively related 

to annual yields (Table 3.4). For Salix purpurea, Ens et al. (2013) found a linear 

relationship between biomass yields and total soit Ca levels across a field design 

that covered a wider spectrum of soit Ca availability (felsic (acid) to carbonate 

(neutra!) soils) compared to our study. These authors, however, did not fmd a 

relationship between CFN values of Ca and total soil Ca levels, nor between CFN 

values of Ca and biomass yields. They concluded that total soi! Ca was probably a 

better reflection of the impact of soi! acidity on Salix purpurea growth than the 

impact of Ca availability on growth perse. Moreover, positive linear relationships 

between basal area increment and foliar Ca of Quercus rubra and Pinus strobus 

were shown for five locations (northern New York to western Maine) 

characterized by sandy acid ic soi ls, whereas foliar N was shown to have a small 

impact on yields only for Pinus strobus (Hallett & Hombeek 1997). The 

availability of Ca is also weil known to limit the growth of Acer saccharum on 
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acidic soils (St.Clair et al. 2008) and liming has both beneficiai outcomes on 

foliar Ca and growth (Horsley et al. 2000; Juice et al. 2006). We cannot easily 

explain the fact that Ca was not linked to willow productivity during the most 

productive growing season. However, it should be noted that the degree-days 

were higher for 2011 and 2012 (Table 3.1) which might have favored greater 

transpiration rates. Because Ca uptake is one of the few nutrients controlled by 

diffusion from the soi! solution (Ericsson 1981 b ), it is possible th at foliar Ca 

levels were a strong fmgerprint of soi! Caexch (adj . R2 = 0.82, Table 3.3). 

At the plot scale, the annual yield models developed from CFN values and CND 

scores had lower adjusted R2 (Table 3.5). ln this case, however, the variability 

within plots was taken into account. These models showed that: (1) site effect was 

completely controlled by the selected leaf traits, (2) variability within plots was 

not wei l explained, indicating that variation in annual yields within the sites was 

mainly influenced by nutritional factors specifie to each site, and (3) CND scores 

of Mn in 2011 were negatively linked to arum al yields, whereas tho se of Ca and N 

were positively related to annual yie lds. 

Our study was conducted on soils that are generally acidic (Table 3.1). As a result, 

soil Mn availability was likely increased under such conditions. Manganese 

activity in the soil solution is further increased under reducing conditions (Gotoh 

& Patrick 1972; Sanders 1983). Salix can survive under relatively high CFN value 

of Mn (Yang et al. 20 15), whereas toxicity symptoms with reduced growth most! y 

appear in poorly drained conditions (Kovalchik 1992). A negative impact of Mn 

on yields has also been reported for hybrid poplar in central Alberta (Pinno et al. 

2010) and Acer saccharum growing on acidic soils in southern Quebec (Houle et 

al. 2007). ln our study, the negative impact of Mn on growth appeared only when 

using the in 2011 data (plot scale analysis). The CFN values of Mn were rather 

homogeneous across the growing seasons, suggesting that the negative effect of 

Mn on SX67 was masked by more important factors restricting annual yields (i.e. 

N and Ca) when analysing at the landscape scale. Across SRCs and growing 

seasons, leaf mass was the most robust predictor of armual yields (Table 3.5). 
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Such an observation was also made by Weih et al. (2006) in Sweden. ln our study, 

leaf mass overlapped a large part of the effects of foliar nutrients on annual yields 

and explained an additional 20% and 29% of its variation using CFN values and 

CND score, respectively. This suggests a proportional investment of C for leaves 

and wood when analyzing at the landscape scale. However, this was not observed 

when using the plot data for the 2011 growing season (Table 3.4 and Figure 3.3). 

Using MRT, a threshold of 22.8 mg N g- 1 was identified for CFN values of N, 

beyond which no annual yield smaller than 20 Mg ha-' yr- 1 was observed (Figure 

3.3c). The threshold suggested by Kopinga and Van den Burg (1995) for Salix 

viminalis (i.e. <20 mg N g-1 means a deficiency, 23-30 mg N g-1 is normal >30 mg 

N g-1 is optimal) were higher than our observations . The observed CFN values of 

N for SX67 were also lower than for Salix viminalis and disco/or after sludge 

application (Labrecque et al. 1998). However, they were in a range of values 

previously reported for other Salix cultivars (Vihera-Aarnio 1994; Ens et al. 

2013). Furthermore, SX67 yields at sorne of our sites (i .e. BEL, HTG and SJPJ) 

were among the highest values reported for Salix cultivars grown in southern 

Quebec (Labrecque & Teodorescu 2005 ; Guidi Nissim et al. 2013) or other 

similar temperate climates around the world, e.g. in Poland (Szczukowski et al. 

2002). These findings suggest that SX67 uses N very efficiently to produce 

biomass compared to other Salix cultivars. 

Moreover, CFN values of Ca for SX67 (i.e. 17-37 mg g-1) were dramatically 

greater than those reported for other Salix cultivars (i.e. 7-19 mg g-1
) supported by 

various soil types (Vihera-Aamio 1994; Labrecque et al. 1998; Simon et al. 

2013). This suggests a high requirement for SX67. This is especially striking 

considering that fast growing species such as Salix or Populus spp. are already 

known for holding large reserves of Ca in the ir foliage (Ericsson 1981 b; Cami ré & 

Brazeau 1998). ln particular, foliar Ca is known to increase physical protection 

against diseases (Franceschi 2001). Our foliar Ca results may provide sorne 

insight as to why Salix viminalis is more sensitive to insect infestation in southern 

Quebec than SX 67 (Labrecque & Teodorescu 2005). 
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3.5.3 Mode! performance to predict annual aboveground biomass yields is high 

In this study, the MRTs were more suitable than linear models to explain annual 

yie lds and to detect variations at the plot scale and across SRCs and growing 

seasons (Table 3.5). ln particular, using CND scores of each plot for the 2011 

growing season, we were able to isolate the three most nutritionally deficient and 

!east productive MTL plots using the MRT approach (Figure 3.3b). Also, at the 

landscape scale, MRT showed a cluster of the three SRCs witb the greatest annual 

yie lds for a given growing season, i.e. BEL, HTG and SJPJ in 2013 (Figure 3.3d). 

The few studies that used regression trees to model tree growth from fo liar 

nutrients have ail reinforced the idea that it is a highly relevant and efficient 

approach (Afif-Khouri et al. 2011 ; Alvarez-Alvarez et al. 2011; Amichev et al. 

2011; Ouimet et al. 2013a). 

Major foliar nutrients that e:xhibited a linear relationship with annual yields of 

SX67 when analyzing the plot data (i.e. N and Ca) also appeared in the MRTs, 

whereas only foliar N was detected by the MRT when analyzing the data across 

SRCs and growing seasons . This is in agreement with the results of Afif-Khouri et 

al. (2011) and Alvarez-Alvarez et al. (2011) who compared the se1ected leaftraits 

by linear mode1s and by regression trees to predict the growth of Pinus pinaster 

and Castanea sativa in Spain. They found a strong correspondence between the 

two methods in regard to selected variables. In both stud ies, the linear 

relationships between growth and foliar P were significant; however, the 

regression trees did not detect criticalleaf nutrient or mass thresholds. In contrast, 

Ouimet et al. (2013b) diagnosed P deficiency for Acer saccharum in southern 

Quebec with regression trees. In our study, CFN values and CND scores ofP were 

significant variables in the MRTs when analyzing the plot data, but they were not 

linearly related to SX67 productivity. The study plots with CFN values above 1.5 

mg P g· ' and 29.3 mg Ca g·' were the most productive (Figure 4.3a). Kopinga and 

Van den Burg (1995) reported that foliar P concentrations above 2.1 mg g· ' were 
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optimal for Salix viminalis . Again, our results suggest that SX67 has a better P use 

efficiency than Salix viminalis. 

The MRTs that were built with CND scores, had higher R2 than those built with 

CFN values (Table 3.5 and Figure 3.3) dataset. In southwestern Quebec, the' 

global imbalance index calculated with the entire CND scores indicated that Iower 

aboveground biomass yields of hybrid poplar were Iinked to nutritional 

imbalances (Lteif et al. 2008). The CND, which considers the nutritional structure 

of foliage, is a suitable and unbiased approach to understand plant nutrition, 

especially when combined with principal composition analysis (Parent et al. 

1994b ). It a Iso allows the detection of nutrient interactions (Raghupathi et al. 

2002; Garcfa-Hernandez et al. 2004). Our MRT results emphasize the need to 

look at foliar nutrition as a whole instead of considering nutrients individually 

(Parent & Dafir 1992). 

3.6 Conclusion 

In this study, climate and site effects on foliar nutrition of Salix miyabeana SX67 

were investigated. Despite climatic variations across growing seasons, specifie 

foliar signatures were Iargely imposed by the soi! chemical footprint of the site. 

Only foliar N and P varied as much across the years as across the sites. As a 

whole, during moist conditions (assurning no large water stress), N was the most 

important nutrient limiting annual aboveground biomass yields of SX67 in 

Quebec, followed by Ca. Manganese had a negative impact on SX67 yields. lt 

was possible to use leaftraits to express the synergy between soi! and climate that 

acted upon SX67 foliar nutrition and annual yields. However, Iinear models 

encompassing severa! growing seasons were not sufficiently robust to forecast 

yields accurately. A threshold approach of foliar nutrients allowed to: (1) deal 

with the variation across growing seasons and sites and (2) forecast yields 

successfully. The possibility to build models that warrant a minimal productivity 

for a given leaf nutrient concentration (in our case N) or mass was also validated . 



CONCLUSIONS GÉNÉRALES 

4.1 Potentiel de productivité et effet du recépage 

De nombreuses CCR de Salix sont établies au sein du Québec méridional. Ce 

travail confirme que le cultivar Salix miyabeana SX67 est parfaitement adapté à 

cette région. En effet, des rendements avoisinant les 30 t ha-1 an- 1 ont été mesurés 

(chapitre 1), ce qui est supérieur aux rendements les plus élevés observés dans 

cette même région avec Salix viminalis, lequel est un cultivar également considéré 

comme très productif (Labrecque & Teodorescu 2003). Un des défis de cette 

étude était de comparer les productivités de CCR ayant des tiges et des systèmes 

racinaires d 'âges différents. L ' utilisation de la dendrochronologie a permis de 

surmonter ce problème en retraçant les productivités annuelles passées, ce qui a 

aussi permis de déterminer un potentiel maximal de productivité. Usuellement, la 

productivité de Salix est estimée à l ' aide de la masse sèche des tiges en fin de 

cycle, donnant ainsi accès à une information intégratrice de plusieurs saisons de 

croissance (Moukoumi et al. 2012; Ens et al. 2013; Toillon et al. 2013). De ce 

fait, l' usage de la dendrochronologie a permis d'enrichir l'information obtenue 

avec les mesures annuelles de biomasse in situ. Le suivi de la dynamique de 

croissance annuelle est une originalité de ce travail qui a permis de mettre en 

exergue les années où les faibles rendements observés étaient dus aux systèmes 

racinaires encore mal établis ou aux conditions climatiques défavorables. Comme 

fréquemment observé (Verwijst 1996; Volk et al. 2011 ), notre étude confume que 

la première année de productivité est toujours plus faible que les suivantes, y 

compris au cours des deuxièmes révolutions pour lesquelles cet effet est moins 

marqué compte tenu des réserves de carbohydrates accumulées dans les racines 

(Von Fircks & Sennerby-Forsse 1998). Cette plus faible productivité est due, 

entre autre, à la demande en carbone nécessaire à la formation de nouvelles tiges 

dont le bilan énergétique devient positif seulement lorsque les premières feuilles 

se développent. 
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Sans contrainte mécanique majeure imposée à l' appareil racinaire et dans des sols 

n ' ayant pas de teneurs nutritionnelles trop élevées (sols sableux), le potentiel de 

productivité peut-être à son maximum à partir de la deuxième saison de 

croissance. En revanche, quand le système racinaire doit faire face à des 

contraintes physiques importantes comme dans des sols compactés à fortes 

teneurs en argile, quatre saisons de croissance peuvent être nécessaires avant que 

la croissance soit optimale (chapitre 1 ). Cet écart est similaire à celui rapporté par 

Kopp et al. (200 1) pour différentes conditions de fertilisation, hormis que ces 

auteurs ont observé que le rendement maximal suite à la fertilisation n ' était pas 

plus élevé, mais le délai pour l' atteindre était plus court. Quoi qu ' il en soit, le laps 

de temps requis pour une production épigée maximale est directement relatif à la 

différence de productivité des deux premières révolutions (chapitre 1). Le 

recépage effectué après la première année d' établissement de la CCR (recépage 

initial) semble raccourcir ce laps de temps que d ' une seule année. On peut donc 

penser que le rendement d 'une révolution après recépage initial ne soit pas plus 

haut (voir plus faible) que le rendement d' une première révolution qui n'aurait pas 

subi de recépage initial parce que cette dernière aurait bénéficié d'une saison de 

croissance supplémentaire. De plus, toute pratique visant à minimiser le nombre 

de recépage permettrait d'optimiser le bilan en carbone des CCR. À noter qu ' à la 

CCR de LA V à la fin de sept saisons de croissance de la première révolution ou à 

la CCR de HTG à la fin de quatre saisons de la quatrième révolution, la 

productivité annuelle n' a pas décliné. Ces observations corroborent les rares 

études ayant suivi les rendements sur plusieurs révolutions (Quaye & Volk 2011 ; 

Guidi Nissim et al. 2013). Par conséquent, il sera f01i instructif de faire le suivi du 

rendement de ces sites au cours des prochaines révolutions. 

4.2 Les limitations nutritionnelles inter-sites 

L ' azote est largement reconnu comme un facteur qui limite la croissance de Salix 

(Ericsson 1981a; Labrecque et al. 1998; Weih & Nordh 2005; Quaye & Volk 
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2011). Dans cette thèse, des relations ont été observées entre le N foliaire et le 

rendement entre les sites (chapitre 3). Les CCR étudiées ici ont été établies sur des 

sols dont les pH variaient de 5,1 à 7,5. Sous de telles conditions, les teneurs en 

Caexch, en Mgexch et les valeurs de pH des sols étaient positivement liées à la 

productivité inter-site (chapitre 2). Par conséquent, le Ca foliaire (chapitre 3) ainsi 

que le Mg foliaire étaient aussi liés à la productivité, mais cela dans une moindre 

mesure. De façon similaire, dans des sols acides, le Ca foliaire a déjà été limitant 

pour des espèces d' arbre comme Quercus rubra, Pinus strobus ou encore Acer 

saccharum (Hallett & Hombeek 1997; St.Clair et al. 2008). Aussi, le Mn foliaire 

était négativement lié à la croissance de Salix miyabeana SX67, mais n'était 

limitant que dans une moindre mesure comparativement à N (chapitre 3). À noter 

que la toxicité du Mn sur la croissance des feuillus est fréquente sur sols acides 

(Houle etal. 2007; Pinno etal. 2010). 

4.3 Les limitations hydriques 

Une limitation de la croissance de Salix due aux faibles précipitations avait déjà 

été suspectée dans le sud du Québec (Labrecque & Teodorescu 2005). Aussi , au 

sein des sites étudiés dans cette thèse, la sécheresse a significativement limité la 

croissance, hormis au site de LA V où la productivité était positivement liée à la 

sécheresse, probablement parce que ce site ne subit pas de carence en eau 

(D'Arrigo et al. 2008). Cette hypothèse est corroborée par le fait que le taux de 

fractionnement du 13C au site de LA V était parmi les plus élevés en 2011 (chapitre 

2). À l'opposé, au site de ABI, le confmement des racines dans l' horizon Ap (voir 

Figure 2.7) a induit d' importants stress hydriques qui se sont traduits par un 

fractionnement du 13C beaucoup plus faible qu'aux autres sites. Néanmoins, au 

sein de notre aire d' éh1de, la pluviométrie est relativement homogène et n 'a donc 

faiblement expliqué le potentiel de rendement au sein des sites (::::: 10 à 20%) 

comparativement aux propriétés pédologiques (:::::70%). En revanche, les variations 

des précipitations interannuelles étaient significatives et ont engendré des écarts 
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de productivité allant jusqu 'à 44% au sein du même site. Toutefois, ces variations 

restent bien inférieures à l' écart maximal de productivité observé entre deux sites, 

soit 380%. 

4.4 Les spécificités des sites 

À 1' instar des observations faites par Pinno et al. (20 1 0), les variables 

pédologiques modulant la productivité étaient spécifiques à chaque site (chapitre 

2). Par exemple, au site de LA V, les fortes teneurs en P total dans le sol ont induit 

une nutrition de luxe et généré un indice CND de P négativement corrélé avec le 

CND de N et la productivité de Salix. Aussi, la CCR de SJPJ est établie le long 

d'une légère pente. Le sol est aussi parmi les plus acides des 10 CCR, très 

caillouteux et drainant. Ces conditions de pente ont probablement favorisé la 

formation d' un gradient de pH inter-placettes (avec le pH le plus acide en amont). 

De plus, les variations de productivité intra-sites étaient fortement liées à l' indice 

CND de Ca ainsi qu 'au Ca total. 

Un des aspects novateur de cette thèse est d' avoir mis en évidence une signature 

nutritionnelle foliaire propre à chaque site, indépendamment des fluctuations 

annuelles (chapitre 3). Mais ceci a pu être démontré qu'avec les indices foliaires 

CND, lesquels sont linéairement indépendants. En prenant en considération la 

teneur du nutriment relativement à la balance nutritionnelle globale, ces indices 

sont parfaitement adaptés aux analyses multivariées (Parent & Dafir 1992; Parent 

et al. 1994a). Également, les variations interannuelles de N et de P étaient 

comparables aux variations inter-sites, tandis que celles de K, Ca, Mg, Mn, Zn et 

Fe étaient jusqu 'à quatre fois plus importantes que les variations annuelles 

(chapitre 3). Par conséquent, ces derniers ont marqué plus fortement la signature 

nutritionnelle foliaire de chaque site. 
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4.5 Variations interannuelles des nutriments foliaires 

Du fait de cette spécificité des sites, des modèles mixtes ont été utilisés et ont 

permis de montrer que les teneurs de certains nutriments foliaires (N, K, Ca et 

Mg) dépendaient directement des conditions climatiques, relativement aux 

caractéristiques intrinsèques du site (prises en considération par l'effet aléatoire) . 

Hormis pour le N, très peu d'études ont été effectuées sur les relations entre les 

variations interannuelles des nutriments foliaires et les variables climatiques. Dans 

cette étude, la teneur foliaire en Ca était négativement liée aux radiations 

annuelles (chapitre 3). Ceci peut être mis en relation avec les observations faites 

sur Fagus grandifolia, Fraxinus americana et Acer saccharum, dont la hausse des 

teneurs en Ca foliaire augmente la tolérance aux conditions pauvres en lumière en 

augmentant l' efficience de son utilisation (Kobe 1996). 

Par conséquent, les facteurs nutritionnels limitant la productivité inter-site ont été 

différents selon les années (chapitre 3). Par exemple, les teneurs foliaires en N ont 

varié significativement au cours des saisons de croissance selon le nombre de 

jours de précipitation. Lorsque les conditions climatiques nécessaires à une 

productivité annuelle optimale étaient réunies, la masse foliaire et le N ont été 

fortement liés à la productivité inter-site. En revanche, la saison de croissance de 

2012 a été caractérisée par des périodes de sécheresse marquées. De ce fait, le 

manque d ' eau semble avoir été plus limitant que la nutrition, cette dernière ne 

semblait alors plus liée à la productivité inter-site. 

Afin de passer outre ces variations annuelles, l' arbre de régression multivarié s ' est 

avéré être un outil de choix. Par exemple, les quatre plus forts rendements 

(enregistrés au cours de l' année 2013) sur les quatre sites les plus productifs ont 

pu être mis en évidence car tous avaient des teneurs supérieures au seuil de 24 mg 

deN par g de feuille (chapitre 3). De plus, bien qu ' aucune relation linéaire n'ait 

été détectée entre le P foliaire et la productivité de Salix, cette méthode non­

paramétrique a permis de définir des seuils nutritionnels foliaires qui suggèrent 

une suffisance en P . Il faut également souligner que les arbres de régression 
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multivariés ont expliqué systématiquement une plus forte proportion de variance 

que les relations linéaires, confirmant ainsi la pertinence d'apprécier le statut 

nutritionnel selon une approche impliquant des seuils (Ouimet et al. 2013a). 

L ' un des points forts de cette étude est que l' information nutritionnelle contenue 

dans les feui lles, laquelle intègre toute la saison de croissance, a pu être 

directement associée à la productivité de l' année considérée. En étudiant les 

interactions entre le climat, la nutrition foliaire et la productivité au cours de trois 

saisons de croissance sur diverses sta6ons soumises à des conditions 

pédoclimatiques contrastées, cette étude fait figure de pionnière. En effet, à ma 

connaissance, aucune étude sur la productivité des arbres et des arbustes ne s'est 

appliquée à étudier simultanément les interactions entre les variations annuelles de 

ces différents facteurs. 

4.6 Retombées pratiques 

Le but pratique de cette thèse de doctorat était de fournir des outils de diagnostic 

simples pour les exploitants de Salix miyabeana SX67 afin qu'ils puissent estimer 

sa productivité in situ . La surface et le N foliaire ont été décrits comme de très 

bons indicateurs pour différents cultivars cu ltivés en pots (Weih & Nordh 2005). 

Dans cette thèse, des équations capables de garantir une productivité annuelle 

minimale à l' aide des teneurs en N foliaire ou avec la masse fo liaire ont été 

établies. De plus, au-delà des seuils de 82 mg feuille-1, 156 mg feuille-' et 21.4 mg 

N g-1, des productivités supérieures à, respectivement, 10 t ha- 1 an- 1, 20 t ha- 1 an-' 

et 14 t ha-' an-' sont attendues . 

Également, un modèle pédoclimatique a été développé dans le but d'estimer la 

productivité maximale d 'un site en fonction de la teneur en limon et du nombre de 

jour de sécheresse . Cette thèse démontre 1 ' impact prépondérant du sol sur la 

productivité comparativement à 1 'effet du climat; avec une simple analyse 

granulométrique de la teneur en limon de ses terres, un exploitant peut déjà avoir 

une très bonne idée du potentiel de productivité de SX67. 
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4. 7 Axes de recherche à développer 

Cette thèse a pennis de faire avancer l'état des connaissances, mais a également 

soulevé un certain nombre de problématiques qui mériteraient, à mon sens, d'être 

creusées davantage. 

Tout d' abord, avant l'établissement d' une CCR, un labour est communément 

effectué en combinaison avec l'application d'un herbicide afin de mieux contrôler 

la compétition (Guidi et al. 2013). Toutefois, compte tenu de son impact sur la 

structure du sol (confinement des racines au-dessus de la semelle de labour, 

diminution de la capacité au champ, etc.) et sur les nutriments (minéralisation du 

Corg, lessivage, etc.), les résultats de mes études remettent en question l'effet 

positif du labour sur la croissance de Salix. Cependant, ces effets n' ont jamais été 

quantifiés. L' étude des conséquences du labour sur la productivité de CCR de 

Salix établies sur différents types de sol me parait des plus pertinente, 

pruiiculièrement pour des zones comme le Québec méridional qui connaissent des 

limitations hydriques. 

De plus, bien que l'on récolte usuellement les tiges après 3 à 5 ans, aucune étude 

n'a rapporté, à ma connaissance, une diminution de croissance en fin de 

révolution. Ainsi, il semblerait utile de mener des études sur différents cultivars 

pour déterminer l'âge maximal à partir duquel la productivité annuelle décline. De 

façon similaire, à ma connaissance, aucune limite sur le nombre de révolutions 

que l' on peut effectuer sur une CCR sans perdre de rendement n'a été clairement 

déterminée jusqu ' à maintenant. 

Comme pour toute culture, suite à la récolte d'une CCR de Salix, des quantités 

non négligeables de nutriments sont exportées. Celles-ci dépendent du type de sol 

et de la productivité du site (Hangs et al. 2014b). Ceci laisse néanmoins penser 

que les rendements devraient diminuer suite aux récoltes successives. Cependant, 

dans cette thèse et comme Guidi Nissim et al. (2013) et Volk et al. (2011) l'ont 

déjà observé (Volk et al. 2011; Guidi Nissim et al. 2013), aucune baisse des 



116 

rendements est observable pour les troisième et quatrième révolutions. On note 

plutôt des augmentations dans les rendements. Ceci peut-être en partie imputable 

à la fertilisation effectuée en théorie après chaque recépage (au moins 100 Kg N). 

Néanmoins, cette recommandation n'a pas été suivie dans la majorité des 

plantations utilisées dans cette étude cas. On peut ainsi suspecter des mécanismes 

capables de contrebalancer les exportations de nutriments suite aux récoltes. 

Ainsi, la minéralisation de la litière (Rangs et al. 2014a) ainsi que l' altération des 

minéraux par l'action des racines (Calvaruso et al. 2006; Lafleur et al. 2013) sont 

des phénomènes connus. De plus, les CCR sont reconnues pour augmenter la 

teneur en matière organique dans le sol (Zan et al. 2001; Routhier et al. 2014; 

Lafleur et al. 20 15). Cependant, à ma connaissance, aucune étude ne s ' est 

intéressée à quantifier l'effet de cette augmentation sur les propriétés du sol (CEC, 

propriétés hydro-structurales, activité biologique, etc.) susceptibles d'optimiser la 

productivité. 

De plus, l' utilisation d'engrais verts (Cherr et al. 2006) et la culture intercalaire 

avec des légumineuses (Moukoumi et al. 2012; Moukoumi et al. 2013) 

permettraient de valoriser la surface de terre cultivée, autant sur le plan des 

propriétés pédologiques que sur le plan économique. Ainsi, étudier les bilans 

nutritionnels de cultures associées soumises à des conditions pédologiques 

hétérogènes pennettrait possiblement d ' optimiser les pratiques de culture et de 

fertilisation. 

Enfin, cette thèse a démontré que les teneurs d ' un certain nombre de nutriments 

foliaires varient d ' une année à l'autre de façon similaire sur tous les sites, comme 

par exemple le N qui dépend des précipitations (chapitre 3). Des variations 

significatives ont été observées concernant la majorité des nutriments foliaires. 

Elles n'ont cependant pas été mises en relation avec les données climatiques . 

Ainsi, les facteurs modulant la variation interannuelle de nutriments foliaires 

(hormis 1 'N) restent à identifier. 



117 

Les résultats publiés dans cette thèse suggèrent que la promotion de Salix 

miyabeana SX67 comme cultivar pour l' établissement de CCR dans le sud du 

Québec est une bonne stratégie, comme ailleurs dans les régions avec un climat 

tempéré, parce qu ' il a de bonnes capacités d'adaptation et permet des rendements 

élevés. Néanmoins, cette thèse suggère également de changer certaines pratiques 

couramment effectuées, bien que des études supplémentaires soient nécessaires 

pour confirmer complètement cette hypothèse. 

Compte tenu de l' investissement énergétique requit par la récolte et des dégâts 

potentiels pouvant être engendrés par la machinerie (compaction et écrasement 

des racines), il semblerait raisonnable de maximiser la longueur des révolutions à 

au moins 5 ans, voire plus. 

De plus, le recépage initial ne semble pas profiter au bilan énergétique des CCR et 

les résultats de cette étude ne confirment pas l ' utilité d ' une telle pratique pour 

augmenter les rendements, en particulier sur les sols sableux. 

Enfin, particulièrement sur les sols argileux, le labour semble à proscrire. 

Toutefois, pour ameublir le sol en surface et mieux contrôler la compétition, 

effectuer un travail réduit à l' aide d ' une charrue rotative à 5 cm de profondeur 

pourrait s ' avérer être un bon compromis (Fontana et al. 2015). 
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