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ABSTRACT 

This research was carried out in order to develop new theoretical and applied 
knowledge, to contribute to the development of new technologies with the scope of 
solving the growing problem of soils contaminated with metals. 

This thesis focused on the treatment of soils contaminated with toxic metals, 
principally Pb, from the Pointe-aux-Lièvres site located in Quebec City, Canada, through 
the application of different decontamination processes. More specifically, this 
investigation was divided into three phases. The first phase consisted of treating 
contaminated soil with inorganic acids, HCI, H2S04 and a mixture of H2S04-NaCi as soil­
washing agents to produce the acidic leachate solutions. The experiment results showed 
the effectiveness of the application of these reagents as soil-washing agents for extracting 
metal ions from the soil. Principally, the leachate prepared with the combined H2S04­
NaCi presented a slight increase in metal ion solubilization for sorne ions, such as Cr, Mn 
and Pb, compared to the other washing agents. 

In the second phase, the performance of two commercial nanofiltration (NF) 
membranes, namely Desal 5 and NF-270, were studied to investigate their ability to 
recover metals using the three different leachates prepared in the first phase. The results 
showed that the nanofiltration membranes demonstrated different behaviors according 
ta their chemical nature. Membrane performance was evaluated in terms of 
permeability, metal-ion retention of the feed solution and the effect of various operating 
conditions, such as different pH, pressure, recirculation flow rate and solution 
concentration on the permeate. The results showed that the application of NF 
membranes on leachate solutions is a promising alternative for the removal of metal ions 
stemming from leachate solutions. For example, it was observed that overall the 
membranes presented good retention capacity of multivalent and divalent ions in 
comparison with monovalent ions, which are harmless to the environment. 

The third part of this research consisted of looking for an advanced method for 
treating the concentrate fraction produced by the NF membrane process. ln this case the 
performance of the electrochemical process was investigated. The laboratory study 
demonstrated a high reduction of toxic ions, such as Cu, Mn and Pb, from the leachate 
solutions particularly resulting from the H2S04-NaCi process (~ 97%). ln addition, the 
cast of the electrochemical treatment of the leachates in terms of energy consumption 
and metallic sludge disposaI was presented, as well as the feasibility of the application of 
this process for economical and effective metal removal. 

The results obtained in this study not ooly provide a process for treating 
contaminated soil, thereby directly reducing the volume of contaminated water 
produced, but also offer a new approach in treating complex waste residues generated 
during different industrial processes. 
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RESUME 

Cette recherche a été réalisée dans le but de développer de nouvelles 
connaissances théoriques et appliquées pouvant contribuer à la mise au point de 
nouvelles technologies visant à résoudre le problème croissant de la contamination des 
sols pollués par les métaux. 

Cette thèse a porté sur le traitement du sol du site de Pointe-aux-Lièvres (PAL) 
localisé à Québec, Canada, lequel est pollué par des métaux toxiques, principalement le 
Pb, en utilisant différents processus de décontamination. Plus spécifiquement, cette 
recherche a été divisée en trois phases. 

La première phase consistait à traiter le sol contaminé avec des acides 
inorganiques, HCl, H2S04 et un mélange H2S04-NaCl comme agents de lavage de sol 
pour produire des solutions acides. Les résultats expérimentaux ont montré l'efficacité 
de l'applica tion de ces réactifs comme agents de nettoyage de sols pour extraire les ions 
métalliques des sols. Principalement, le lixiviat préparé avec la combinaison H2S04-NaCl 
a montré une légère augmentation de solubilisation des ions métalliques pour quelques 
ions tel que le Cr, Mn, et le Pb, comparé aux autres agents de lavages. 

Dans la seconde phase, la performance de deux membranes commerciales de 
nanofiltration (NF), nommé Desal 5 et NF-270, a été étudiée pour cOImaître leur habilité 
à récupérer les métaux en utilisant les trois différents lixiviats préparés dans la première 
phase. Les résultats ont montré que les membranes de nanofiltration ont des 
comportements différents selon leur nature chimique. La performance des membranes a 
été évaluée en fonction de leur perméabilité, de leur capacité de rétention d'ions 
métalliques de la solution d'alimentation et de l'effet des conditions d'opérations 
différentes, tel que le pH, la pression, le débit de recirculation, et la concentration de la 
solution sur le perméat. Les résultats ont montré que l'application de membranes NF sur 
les lixiviats de décontamination de sol est une alternative prometteuse pour la 
récupération des ions métalliques. Par exemple, il a été observé que, dans l'ensemble, les 
membranes ont une bonne capacité de rétention des ions multivalents et divalents en 
comparaison avec les ions monovalents, lesquels sont inoffensifs pour l'environnement. 

La troisième partie de cette recherche a consisté à étudier une méthode avancée 
pour traiter la fraction concentrée obtenue par le procédé de NF. Dans ce cas, la 
performance d'un procédé électrochimique a été évaluée. L'étude en laboratoire a 
démontré une élimination importante des ions toxiques tels que Cu, Mn et Pb, provenant 
de lixiviats résultant particulièrement du procédé H2S04-NaCl (~ 97%). De plus, le coût 
du traitement électrochimique des lixiviats en terme de consommation d'énergie et de 
disposition de boues métalliques a été estimé, tout comme la faisabilité de l'application 
de ce procédé pour enlever les métaux de façon effective et économique. 

Les résultats obtenus dans cette étude ne donnent pas seulement un procédé 
pour traiter les sols contaminés, de ce fait, réduisant directement le volume de l'eau 
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contaminée produite, mais offrent également une nouvelle approche pour traiter les 
résidus de déchets complexes produits pendant différents procédés industriels. 

Mots-clés 

Décontamination de sol; Lavage de sol; Acides inorganiques; Lixiviat acide; Membranes 
de NF; Caractérisation de membrane; Perméabilité de l'eau; Perméabilité dynamique; 
Rétention métal-ion; Procédé électrochimique; Enlèvement d'ion métallique 



CHAPTERI 

INTRODUCTION 

1.1 Prob1em statement 

Soils are multi-component systems, which contain a mixture of organic and 

inorganic pollutants from different sources and interact with different environmental 

medias (Manouchehri et al., 2006). These interactions have provoked the accumulation of 

more pollutants due to their transport from source to source and their accumulation and 

retention (Bridges and Van Baren, 1997). Among the pollutants, metals in particular are 

considered harmful to the environment, since they do not biodegrade and remain in the 

soil for many years, until they are transported by different chemical and/ or physical 

mechanisms to a different environmentai compartrnent (Hong et al., 2002; MoIinari et al., 

2007). Consequently, a number of processes have been deveioped to remove metais from 

soil, including physicaI, chemical and bioiogical h·eatrnents. However, soil 

decontamination has remained a challenge, because many technologies are expensive, 

disruptive and efficient for only certain contaminants and concentrations. As a result, 

attention has been diverted towards the development and application of reliable, 

affordable and environmentally friendly technologies. 

Technologies such a soil washing have been used in order to remove metals from 

the solid phase to a liquid matrix. They have brought many advantages not only for their 

successful implementation in the removal of toxic metals contaminated soils, but a1so for 

the fact that the clean soil can be returned to the affected site, and the contaminants can 

be reduced to regulatory limits or perhaps below those Iimits (Masscheleyn et al., 1999; 

Peters, 1999). On the other hand, the washing process itself produces large volumes of 

contaminated wastewaters that must be treated by another remediation technique 

(Molinari et al., 2007; Sikdar et al., 1998). 
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Consequently, separation processes for the removal of metal ions from aqueous 

solutions, such as membranes filtration (reverse osmosis (RO), nanofiltration (NF), 

ultrafiltration (UF) and microfiltration (MF)), can represent a good alternative. These 

technologies have been effectively implemented for the removal of metals coming from 

various industrial applications (pharmaceutical, biotechnology, chemical and so on), 

complying with the increasingly stringent standards enforced in sorne countries. 

Additionally, these techniques can offer benefits such as low operational costs, 

conceptual simplicity, modularity and optimal quality of treated water (Molinari et al., 

2004). 

Hence, the conjunction of both technologies can be a significant advance in soil 

decontamination, because of the possibility of removing different types of pollutants. 

While the NF concentrate remains a challenge, because most of the cases resulted in 

unusable waste, a new approach, an electrochemical treatment, can be applied to 

decontaminate the concentrated waste solution. This new treatment not only is able to 

remove toxic metals in high percentage without production of metallic sludge residue 

from different effluents but also reduce the operating cost when is applied in large scale 

application. 

Therefore, the aim of this work is to update theoretical and practical knowledge 

with the scope of developing and optimizing an economic process for soil 

decontamination by combining chemical leaching, nanofiltration membranes and an 

electrochemical treatment. 
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1.2 Context of the thesis 

The objective of this research was to reduce enviranmental risks arising from 

metal pollution in soils that consisted of the removal of metal ions fram contaminated 

soil using a combination of teclmiques, namely soil washing followed by the application 

of nanofiltration membranes and electrochemical b-eatrnents. 

The research was divided into three phases. The first phase deals with selecting 

and treating a contaminated soil with inorganic acids (HCl, H2S04 and a combination of 

H 2S04-NaCl) to produce the leachate solutions. The second phase evaluates two NF 

membranes according to their ability to recover metals using the three acidic leachates, 

previously mentioned. The third phase involves the application of electrochemical 

process in order to decontaminate the concentrate praduced by the NF b"eatrnent. 

More specifically, the selected soil for this study cornes from the Pointe-aux­

Lièvres site, located in Quebec City_ This site is mainly contaminated by metals, due to 

industrial activities. According to the methodology proposed for this research, the soil 

will be treated with HCI, H2S04 and a combination of H 2S04-NaCl (pH appraximately of 

2), which will be used to extract the metals from the soil. These washing agents were 

selected due ta their effectiveness in the removal of metals fram the soil, their low cost 

for soil remediation and their rapid remediation pracess (Djedidi et al., 2005). 

Consequently, these solutions will be treated by two commercial NF membranes (Desal 

5 and NF-270). The selection of these membranes was based on the fact that they 

presented different surface charges_ Desal 5 was a negatively-charged membrane, and 

NF-270 was positively charged when the pH > lp. Also, both membranes presented a 

wide pH resistance, ranging between 3 and 11 (Platt et al., 2004; Tanninen et al., 2004). ln 

this part, membrane performance will be evaluated and will be expressed by water 

permeability, dynamic permeability, ionic separation, membrane interaction with 

pollutants and membrane fouling. Finally, in order to treat the concentrate praduced by 

the nanofiltration treatrnent, an electrochemical pracess will be applied. This treatrnent 

will be applied for this research due to its effectiveness in the removal of metals from 

solutions and its low cost compared ta other technologies. During this phase, the 
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performance of this process using solutions with high concentration of toxic metals will 

be investigated. For the experimental part, it is important to take into account that the 

concentrate is coming only from the membrane Desal 5. This membrane was selected for 

this experiment due to its better performance in terms of permeability and ionic 

retention, compared with NF-27ü membrane. 

1.3 General objective 

The general objective of this research was to apply a membrane process for the 

removal of metal ions resulting from an acidic leachate produced during soil 

decontamination. In order to achieve this general objective, the following specifie 

objectives were pursued: 

1.	 To chemically characterize the leachate produced during soil decontamination 

using different analysis such as ICP-AES, ionic chromatography, 

oxydoreduction potential, conductivity, AAS, etc. Additionally, to predict the 

forms of the metals present in the effluents by the software MINEQU that will 

contribu te to the analysis of the chemical characterization. 

2.	 To select and to study the performance and behaviour of each membrane under 

several conditions using a specific leachate produced during soil 

decontamination. The membranes will be selected based on structure and acidic 

separation considerations. 

3.	 T0 evaluate the potential of membrane technologies for the recovery of 

different metals after chemicalleaching. 

4.	 To evaluate the effectiveness of elecb·ochemical deposition in the treatment of 

the NF concentrate. 

5.	 To reach low levels of toxic metals in the wastewater based on government and 

local (community) standards. 
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6.	 To recover metals for beneficial further use and to reuse water from membrane 

processes. 

These objectives were met by conducting a number of successive studies, for 

which each finding was reapplied to the subsequent experiments. 

1.4 Thesis structure 

This thesis is composed of six chapters, including an introduction, literature 

review, three scientific articles, conclusions and suggestion for future works. 

The organization of the thesis is as follows: 

CHAPTER 2 gives a generalliterature review concerning this research study, followed 

by the general objective and a listing of the specifie objectives. 

CHAPTER 3 deals with the treatrnent of an acidic leachate containing metal ions with 

nanofiltration membranes. This paper has been published in Separation and Purification 

Technology. 

This chapter presents the experiment results for the preparation of the acidic 

leachate (pH = 1.97), coming from a contaminated soil using HCI as a washing agent to 

extract metal from the soil, as weil as the results from the treatrnent of the leachate by NF 

membranes using two different types of membranes, Desal 5 and NF-270. Furthermore, 

the membrane performance is investigated for its use with a NaCl-HCI solution at 

different pH and with the main solution of this research, the HCI-Ieachate solution. 

CHAPTER 4 describes the removal of metal ions from an acidic leachate solution by 

nanofiltration membranes. This paper was accepted for publication in Desalination. 
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The main objective of this paper was to study the performance of two 

nanofilhation membranes (previously mentioned in Chapter 1) when used with the 

acidic leachate (pH = 3.15) prepared with H2S04 as a soil-washing agent. To study 

membrane performance, different criteria were evaluated, such as membrane 

permeability and ionic retention in the tank and permeate, and different operating 

conditions were taken into account, such as pressure, flow rate and pH. 

CHAPTER 5 deals with the effectiveness of soil washing, nanofiltration and 

electrochemical treabnent for the recovery of ions from a contaminated soil. This paper 

was submitted to Water Research journal. 

For this investigation, laboratory experiments were conducted in order to study 

the performance of three technologies applied to decontaminate the soil: first of ail, soil 

washing to evaluate the extraction efficiency of metal ions using HCl and H2S04-HCl as 

washing agents. Second the influence of the leachate solution on the nanofiltration 

membranes performance, in terms of ionic retention and membrane permeability. 

During this filtration treabnent, only the Desal5 membrane was studied, due to its better 

performance with inorganic pollutants, compared with the NF-27ü membrane. Finally, 

the application of electrochemical process to evaluate the effectiveness of this technology 

applied to decontaminate the concentrate produced by the NF treatrnent. In this case, it 

was inhoduced an economic study of this treabnent in terms of energy consumption and 

sludge disposaI. 

CHAYIER 6 gives the main conclusions and offers comments based on the findings of 

the investigation. It concludes by suggesting future research work. 
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CHAPTER2 

LITERATURE REVIEW 

Over the past five decades, the world has released 22 000 tons of cadmium, 939 

000 tons of copper, 783 000 tons of lead and 1 350 000 tons of zinc into the envirorunent. 

According to the National PoIlu tant Release lnventory (NPRl), about 33 tons of 

cadmium, 13 300 tons of copper, 1 300 tons of lead and 9 500 tons of zinc have been 

released to the air, water and soil (NPRl, 1995) in Canada. Once released, these elements 

circulate in the envirorunental media (soil, water and air) and become bioavaiIable to 

plants, animaIs and humans. PrincipaIly, metals affect human health, because humans 

are exposed to metaIs in soil through the food chain and by direct ingestion of soil 

particIes, inhalation or skin contact (Bertin and Averbeck, 2006; Satarug and Moore, 

2004). 

Many of these metals at numerous government and private sites have been 

found to be toxie, mutagenic and carcinogenic (Harvey et al., 1990). For example, 

cadmium is known to cause renal and bone injuries (Bertin and Averbeck, 2006; Satarug 

and Moore, 2004) and osteoporosis (Jarup and Alfvén, 2004; Staessen et al., 1999). AIso, 

according to the International Agency for Research on Cancer (IARC), cadmium has 

been cIassified as a carcinogen (Bertin and Averbeck, 2006; Waalkes et al., 1991). Lead 

can cause neurological and behavioural disturbances in children (WHO, 1995) as weIl as 

intellectual impairment in children (Canfield et al., 2003). Arsenic is a strong carcinogen 

that produces skin cancer and cancer of various internaI organs (NRC, 2001). Table 2.1 

summarizes the toxicity of sorne metals foIlowing cmonic exposure. 

Sources of soil contamination include rapid industrialization, increased 

anthropogenic activities, modern agricultural practices and faulty waste disposaI 

methods that cause serious envirorunental and health issues (Hani, 1990). Table 2.2 gives 

an example of the main metals found in sorne industries (Dean et al., 1972). According to 
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the US Environmental Protection Agency's (US EPA) through the list of priority 

pollutants cadmium, copper, lead, mercury, nickel and zinc are considered the most 

hazardous pollutants. Consequently, soils have suffered from degradation produced by 

the deposition of toxic metals in the soil system, which leads to their accumulation and 

creates a long-term impact on the sail (Bridges and Van Baren, 1997). 

For that reason, this contamination has resulted in restricted utilization of sorne 

sites and, in sorne cases, a complete prohibition on cultivation or other potential use of 

the area. Therefore, a necessity ta remove the contaminants From the soil through 

different approaches has come about in order to remove the potential sources of 

contamination and ta create strict regulatians. Table 2.3 presents the inventory of 

contaminated terrestrial sites in sorne industrialized countries. 
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Table 2.1 Target organs of sorne metals and their compounds after chronic exposure (adapted from Wardenbach, 2006) 

Target organ Metal and metalloid 

As Be Cd Co Cr Cu Fe Hg Mn Mo Ni Se Ti Pb 

Liver 

Respiratory Tract 

Blood 

Nerves 

Kidney 

Skin 

Reprod uctive Organs 

Heart 
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Table 2.2 Metals found in major industries (adapted from Dean et al., 1972) 

Industry Inorganic contaminant 

Al Ag As Cd Cr Cu F Fe Hg Mn Pb Ni Sb Sn Zn 

Pulp, paper, paperboard, building paper, 
board 

Organic chemicals, petrochemicals 

Alkalis, chlorine, inorganic chemicals 

Fertilizers 

Petroleum refining 

Basic steel works, foundries 

Basic non-ferrous metal-works foundries 

Motor vehicles, aircraft-plating, finishing 

Plate glass, cement, asbestos products, 
etc. 

Textile mill products 

Leather tanning, finishing processes 

Steam generation power plants I~  EJ 
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Table 2.3 Inventory of contarninated terrestrial sites in sorne industrialized countries (adapted from White and Claxton, 
2004) 

Country 

Canada 

United States 

Current NPL sites 

Germany 

Denmark 

Switzer1and 

Austria 

Finland 

Belgium 

Sweden 

Spain 

Norway 

Lithuania 

Romania 

Estonia 

Total area 
(krn2) 

9976140
 

9656345
 

356910
 

43090
 

41290
 

83850
 

338130
 

30518
 

449960
 

504780
 

323900
 

65300
 

238381
 

45227
 

Population 
(millions) 

31.6 

288.4 

82.8 

5.3 

7.3 

8.1 

5.2 

10.2 

8.9 

40.0 

4.5 

3.6 

22.4 

1.4 

Number of 
contaminated sites 

15000-40000
 

45516
 

1238
 

202880
 

37000
 

35000
 

28,000 

10396
 

7728
 

7000
 

4,902 

2121
 

4430
 

1634
 

1565
 

Sites 
per1000 krn2 

1.5-4.0 

4.7 

0.1 

568.4 

858.7 

847.7 

333.9 

30.7 

253.2 

15.6 

9.7 

6.5 

67.8 

6.9 

34.6 

Sites 
per 106 people 

475-1266
 

157.8 

4.3 

2450.2 

6981.1 

4794.5 

3456.8 

1999.2 

757.6 

786.5 

122.6 

471.3 

1230.6 

72.9 

1117.9 
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2.1 Soil protection and contaminated site rehabilitation policy 

Soil cleanup has become a major concern in industrialized countries, and the 

application of reliable teclmiques is necessary in order to remove the contaminants. 

However, some techniques have brought disappointing results due to high cost, long 

decontamination process, large volumes of liquid wastes and harmful effects on soil 

sh'ucture and fertility. In addition, some teclmiques have been effective for certain 

concentrations only (Ho et al., 1995; Kramer, 2005), and have resulted in the transferring 

of pollution to other environmental media. For this reason, many companies have 

tended to postpone cleanup operations as long as possible, either by delaying 

expenditures or by waiting for new developments (Boopathy, 2000). These 

considerations have led the goverrunent to develop different approaches for soil 

cleanup, such as the imposition of stricter regulations to address the effectiveness and 

efficiency of soil remediation. 

For example, in the United States management of the environment is a collective 

responsibility of federal and state goverrunents (De Sousa, 2001). Sites are cleaned up 

under the supervision of government agencies such as the United States Envirorunental 

Protection Agency. US EPA satisfies the requirements of the Comprehensive 

Envirorunental Response Compensation and Liability Act (CERCLA) known as 

Superfund. Sites not on the Superfund list need to satisfy federal and state requirements 

for cleanup operations. ln addition, through regulations such as the Clean Water Act 

(control of water discharges from soil-washing activities), the Resource Conservation 

and Recovery Act (RCRA) (control of hazardous wastes), and the Superfund 

Amendments and Reauthorization Act (SARA) (importance of permanent remedies and 

innovative treatment teclmologies in cleaning up hazardous waste sites), pollution is 

regulated and controlled to improve soil quality (De Sousa, 2001). US EPA has estimated 

that approximately more than 20 million cubic yards of soil at current NPL (National 

Priorities List) are contaminated with metals (Griffiths, 1995). 

ln Canada, the provinces and terri tories are responsible for developing site­

specifie cleanup approaches. For example, in Quebec, the provincial govermnent, 
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through the Ministère de l'Envirormement et de la Faune du Québec (MEFQ) has 

provided guidelines for soil rehabilitation. According to MEFQ and the document "Soil 

Protection and Rehabilitation of Contaminated Sites" approximately 150 sites are 

contaminated with metals, representing an average volume of 17,500 m3 and a total 

volume of 2,625,000 m 3 of soil to be restored (MEFQ, 1999). Therefore, the MEFQ has 

established controls to preserve the health of future users and protect the environment 

(MEFQ, 1999). Table 2.4 presents the grid of generic criteria (A, B, C) for soils given by 

the MEFQ. These letlers represents the maximum concentration for each type of land 

used. The levels (A, B, C) may be defined as follows: 

•	 Level A: Natural concentration or normallevels of inorganics in the soil. 

Range A: At this level, the soil is slightly contaminated. It is not necessary to 

decontaminate the soil; however, it is convenient to know the sources of 

contamination and verify if new sources of contaminants exist. Soil with this 

type of contamination can be used for residential purposes. On tl1e other hand, it 

will be necessary to take protective measures (excavation of a surface layer, 

addition of a layer of clean ground, etc). 

•	 Level B: Maximum tolerable levels for residential, recreational and 

institutional sites (hospitals, schools and daycare centers), incIuding 

commercial sites located in residential districts. 

Range B-C: At this level, the soil is considered contaminated. However, the soil 

will not automatically be subjected to decontamination, unIess the impact of the 

contaminants on the groundwater does not require such type of work. This level 

of contamination restricts its use on certain levels. Consequently, restoration 

could be necessary before this soil is used for agricultural, residential or 
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recreational purposes. Other uses, such as industrial and commercial activities, 

couId however be considered without necessarily undertaking restoration 

techniques. 

In ail cases, it is necessary to take into account that the decontamination to be 

carried out depends on the nature of the contaminants, the intended soil use and 

the impact on both the groundwater and the surrounding environment. 

•	 Level C: Maximum acceptable limit for industrial sites and for commercial 

sites not located in a residential area. At this level, it is necessary to take 

action to decontaminate the soil. 

Range> C: At this level, the soil is entirely contaminated and it will be necessary 

to carry out a detailed study and restoration process before allowing any use of 

the sail. This soil carmot be used for any purpose. 

According to the MEFQ, the levels presented in Table 2.4 indicate that soils 

having a higher level of contamination than these must be treated, excavated and 

managed carefully, until the concentration of metals diminishes or remains equal to the 

generic criteria values. 
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Table 2.4 Grid of generic criteria for soils (adapted from MEFQ, 1999) 

Metal and metalloid Soil criteria (mg!kg) of dry material 

A B C 

Silver (Ag) 2 20 40 

Arsenic (As) 6 30 50 

Barium (Ba) 200 500 2000 

Cadmium (Cd) 1.5 5 20 

Cobalt (Co) 15 50 300 

Total chromium (Cr) 85 250 800 

Copper (Cu) 40 100 500 

Tin (Sn) 5 50 300 

Manganese (Mn) 770 1000 2200 

Mercury (Hg) 0/2 2 10 

Molybdenum (Mo) 2 10 40 

Nickel (Ni) 50 100 500 

Lead (Pb) 50 500 1000 

Selenium (Se) 1 3 10 

Zinc (Zn) 110 500 1500 

Available bromide (Br-) 6 50 300 

Available cyanide (CN-) 2 10 100 

Total cyanide (CN-) 2 50 500 

Available fluoride (F-) 200 400 2000 

Total sulphur (S) 400 1000 2000 
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2.2 Soil, metals and restoration techniques 

Soils are natural mixtures of mineraI and organic particles and their derivatives, 

which contain different types of weekly- and strongly-bonded pollutants (Masscheleyn 

et al., 1999). The typical particle size of soil dis tribu tions are: oversize fraction, sand 

fraction (74 pm) and fine particle, which consists of materials smaller than the size of silt 

(Mann, 1999). 

Pollutants frequently remain in the upper horizons and in trapped phases as a 

residual (Wang and Mulligan, 2004) where they cause adverse effects on microbial 

activities in soil and crop productivity, thereby resulting in the added risk of 

contamination of the food chain. More specifically, several contaminants are 

concentrated in the fine particle fraction, while lower concentrations of the main 

contaminants are usually found in the sand and oversize fractions (Ko et al., 2005). 

Generally, metals are bound to the soil because cationic metals associate with the anionic 

components of the soils (Wang and Mulligan, 2004), such as colloidal clays and humus. 

These are present in the soil in several chemical forms and bindings, which can influence 

their reactivity with the soil and therefore affect not only the mobility and bioavailability 

of metals, but also the pH and organic matter content of the soil (Abollino et al., 2006). 

For example, copper is mainly organically bound and exchangeable, cadmium and zinc 

are principally organically bound and are exchangeable and water soluble, while lead is 

slightly mobile and strongly bound to the residual fraction (Mulligan et al., 2001). In 

soils, metal ions can be present in different forms, such as soluble compounds like ions 

and metal complexes or as exchangeable forms. Also, they can be immobile, because 

they are associated to different sail fractions and compartrnents, such as carbonate, 

oxide, hydroxide, organic matter and residual materials (Tan, 1998). The availability and 

mobility of metals are controlled by several factors such as: 

•	 Soil chemical properties. For example: pH and redox potential, which in tum 

can affect the chemical speciation and solubility (Lindsay, 1979); 
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•	 Solute-solute interactions. For example, metal complexation with either 

orgaIÙc or inorganic species (Vulkan et al., 2002). Metal complexation 

reactions and metal-soil interactions are consecutively affected by pH and 

redox conditions, which affect metal solubility (McLean and Bledsoe, 1992); 

•	 Surface characteristics of soil (pore fluid chemisb)') and metal-soil 

interactions, which influence sorption reactions (Sparks, 2005); 

•	 Physical properties of soil that have an effect on water movement 

(Camobreco et al., 1996); 

•	 Bond strength. For example some metals with weak bond strength can be 

mobilized more easily than metals with a stronger bond strength 

(Masscheleyn et al., 1999). 

Knowing the type and concentration of the metals and their distribution in the 

various particle size fractions could be a key factor in predicting soil contamination and 

treating the soil. It is also important to know the background information about the soi1, 

which can provide important insight regarding possible treatments that can help 

decontaminate the soil. Nevertheless, the choice of a soil treatment depends on several 

factors, such as the chemical structure and concentration of the present pollutants, the 

characteristics of the soil (e.g., its granulomeb)', porosity and humic matter content), the 

geology of the site, and the presence of groundwater (Hamby, 1996). Principally, the 

extraction of metals from soil is a complex task, because metals are difficult to 

decompose either biologically, chemically, or by physical treatment (Bosecker, 2001). The 

options for soil decontamination can be divided into four categories: biological 

h'eatments, inc1uding bioremediation and phytoremediation; chemical treatments, 

including solidification/ stabilization; physical treatments, including flotation, density or 

gravity separation, particle size separation, magnetism and gravimeb'ic method; or a 

combination of these as a physicochemical treatment, namely soil washing. 

Nevertheless, the review of literature demonstrates that current technologies must be 
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developed to achieve a low-cost remediation process and an ecological alternative which 

does not alter the physical and chemical properties of soils. 

The goal of soil treatments should be to reduce the metal content in the soil 

medium, so that these metals no longer pose potential hazard to public health and the 

envirorunent. In their investigations, US EPA (1997) and Mulligan et al. (2001), described 

several available and current remediation technologies for soils contaminated with 

metals. Table 2.5 gives the cost of some soil remediation techniques. 
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Table 2.5 Cost of sorne soil remediation technologies (adapted from Mulligan et al., 
2001) 

Soil remediation technique 

In situ 

Bioremediation 

Sail fIushing 

SolidificationjStabilization 

Phytoremedia tion 

Vih'ification 

Ex situ 

Physical separation 

Soil washing 

Pyrometallurgical separation 

Electrokinetic 

Description 

Use of micro-organisms to 
remove different pollutants 

Use of water or chemicals to 
extract the metals 

Mobility reduction of metal 
by addition of an agent that 
solidifies and then 
immobilizes the metals 

Use of plants to extract the 
metal from the soil 

Application of electrical 
energy to vitrify the 
pollutant 

Includes: froth fIotation, 
gravity separation, 
screening, etc. 

Addition of water and 
additives to solubilize the 
pollutants 

Use of elevated temperature 
to extract metals 

Application of electrical 
current 

Cost ($USfTon) 

15-200 

100-200 

30-250 

50000 -200 000 
(acre) 

400-870 

60-245 

25-300 

200-1000 

No information 
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2.3 Soil washing 

Among the more popular remediation processes, soil washing has been widely 

used to remove toxic metals. According to US EPA (US EPA, 2001), this technique is 

applied to large contaminated areas, because of its rapid kinetics, ease of operation and 

economic efficiency (Tuin and Tels, 1990). 

Soil washing is the transfer of contaminants to the liquid phase through 

desorption and solubilization (Peters, 1999) (Figure 2.1). This technique generates a large 

volume of toxic liquid waste that must be treated before it is discharged along with 

desorbed pollutants requiring disposaI and/or subjection to further treatrnents for 

complete detoxification (Mann, 1999). 
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Figure 2.1 Schematic diagram of Soil Washing (US EPA, 2001) 
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The efficiency of this technique depends chiefly on the target contaminants, bond 

strength, characteristics of the soil and selection of a good extractant or washing agent 

that will increase metal solubility, which helps raise the concentration of cations in the 

leachates (Davis and Singh, 1995; Min et al., 2007). The most commonly used washing 

agents are: inorganic salts (potassium phosphate, potassium chloride, potassium nitrate, 

potassium sulphate or sodium perchlorate), inorganic acids (sulphuric acid, nitric acid, 

phosphoric acid, hydrochloric acid or mixed acid) organic acids (citric or acetic acids) 

and alkaline agents (sodium hydroxide) (Cline and Reed, 1995; Neale et al., 1997; Reed, 

1996; Tuin and Tels, 1990). 

During the removal of metals by dissolution with a soil washing agent, extraction is 

affected by: 

•	 pH. The extraction of metals increases with increasing acid strength. 

Generally, the acid extraction occurs when the pH drops below 6; 

•	 Valency of the element removed. For example, metals with a valence of two 

are generally more soluble at a low pH (Kuhlman and Greenfield, 1999). 

Therefore, metals such as mercury (Hg), lead (Pb) or cadmium (Cd) can be 

eXb'acted using acids; 

•	 Metal-soil partic1e bond. Metals with weak bond strength can be mobilized 

and solubilized by the washing agent and be available for uptake. On the 

contrary, metals bonded strongly to soil mineraIs are less exchangeable (Ko 

et al., 2005). AIso, it is important to understand the chemical forms of metals 

for the remediation process; 

•	 Size of soil partic1es. Since fine partic1es have a high surface area, they absorb 

more contaminants; therefore, contamination levels in fine partic1es are high. 

On the other hand, exb'action of toxic metals in fine partic1es is very poor, 

and toxic metals are available for uptake in the ecosystem (Ko et al., 2005); 
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•	 Separation of particles. vVhen fine particles are properly separated from the 

sail, the efficiency of soil washing can increase. 

Even though strong acids are effective in the removal of toxic metals from the 

soil, these agents are not environmentally friendly since they are toxie and disturb the 

physical, chemical and biological properties of soils. Thus, it is necessary to apply a 

reliable wastewater technique in order to decontaminate the wastewaters produced by 

these treatments. 

2.4 Pressure-driven membrane processes 

The pressure-driven membrane process is a promising and growing teclmology 

that has been applied successfully in various indush"ies (drinking water production, 

textile industry, food industry, mining industry, metallurgical industry, etc.). This 

teclmique offers a purified product, outstanding quality of permeate, moderate 

temperatures (varies according to the system), no added chemicals to the system and 

generally low energy requirements, according to its application (Van der Bruggen et al., 

2003). Membrane filtration can be classified according to different criteria, such as 

membrane permeability, applied pressure, chemical nature of the membrane, rejection 

and separation mechanism of particles and membrane application (Sikdar et al., 1998). Its 

performance can be affected by different factors (Capar et al., 2006): 

•	 Characteristics of the membrane, such as molecular weight eut-of( porosity, 

charge of the membrane and hydrophobicity; 

•	 Solute characteristics, such as pH, hardness, organic matter, etc.; 

•	 Operating conditions, such as flow rate, pressure and separation rate. 
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Depending on the size of particle that can be retained, various types of 

membrane filtration can be employed for metal removal, such as reverse osmosis (RO), 

nanofiltration (NF), ultrafiltration (UF) and microfiltration (MF). They are presented as 

follows: 

2.4.1 Reverse osmosis (RO) 

RO membranes are also known as ultra-low-pressure membranes. Their pore 

size is as small as 10-4 }lm (Bohdziewicz et al., 1999). They are dense membranes without 

predefined pores. Therefore the rejection and separation is due to the diffusion-solution 

mechanism. RO are the finest, and/ or tightest, level of aqueous filtration available today. 

RO have the lowest permeability compared to other membranes, and bear the 

highest pressure (between 1 400-6 800 kPa). Consequently, high energy consumption is 

required. RO works efficiently with a pH range of 3-11 (Madaeni and Mansourpanah, 

2003). 

2.4.2 Nanofiltration (NF) 

Nanofiltration has a performance characteristic between that of ultrafiltration 

and reverse osmosis. NF membranes have a pore size measuring approximately 1 nm in 

diameter with fixed charges developed by dissociation of groups as sulphonated or 

carboxyl acids. They can vary according to morphology, material separation 

mechanisms and applications. 

Typically, NF membranes are either positively or negatively charged and are 

therefore ion permselective. During NF, transport is influenced by different mechanisms, 

such as convection (applied pressure difference over the membrane), diffusion 

(concentration gradient across the membrane) and charge effects (electrostatic repulsion 

between ions or charged molecules and the membrane surface). The separation process 

involves a combination of charge (Donnan exclusion) and size exclusion (sieving 
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mechanism) (Childress and Elimelech, 2000). The combination of these mechanisms 

aIlows a high rejection of multivalent ions and a relatively small amount of organic 

solutes combined with a low retention of monovalent ions. 

The advantage of using an NF membrane is that it requires lower operating 

pressures (between 350 and 1 000 kPa), it has higher fluxes than RO membranes, it has 

better retention than a UF membrane and it can effectively remove metal ions at a wide 

pH range of 3-8 (Madaeni and Mansourpanah, 2003). PrincipaIly, the pH of the solution 

affects the membrane charge; that varies according to various pH values. Therefore, NF 

membranes are positively charged in acidic conditions and negatively charged in neutral 

and alkaline conditions (Rautenbach and Groschl, 1990). GeneraIly, acids can permeate 

the membrane easily. On the other hand, monovalent ions can be more or less retained, 

depending on the feed solution, Donnan effects and sieving mechanism. At a low pH, 

the selectivity of the membrane can be affected by the protonation and deprotonation of 

the functional groups of the thin film (Childress and Elimelech, 2000). 

2.4.3 Ultrafiltration (UF) 

Ultrafiltration membranes are porous membranes. The pore size is 

approximately 5-20 IUn, the range of operating pressure is between 70 and 500 kPa, and 

the molecular weight of the separating compounds is between 1 000 and 100 000 Da. 

(Vigneswaran et al., 2004). These unique characteristics enable UF membranes to aIlow 

the passage of water and low-molecular-weight solutes, while retaining the 

macromolecules, which have a larger size than the pore size of the membrane (Sablani et 

al., 2001). The major dominating mechanism in UF separation is sieving. UF membranes 

have been amply used in water and wastewater treatrnent processes, as weIl as in the 

pharmaceutical and liquid food industries. 
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2.4.4 Microfiltration (MF) 

MF is the oldest filtration process, and it has been applied in a variety of 

industrial applications, such as biotechnology and the pharmaceutical industry (Haneda 

et al., 2006). Compared to the other membranes, trus membrane has the largest pores and 

the highest permeability, ranging from 0.1 !lm to 10 !lm (Fabris et al., 2007). Therefore, 

lower pressure is applied and less energy is consumed than in other membrane filtration 

processes. MF is applied to separate fine particles, colloids, and micro-organisms (Fabris 

et al., 2007). The principal mechanism involved in particle retention is therefore sieving. 

2.4.5 Membrane fouling 

Among aIl membrane processes, fouling is one that presents major challenges in 

membrane applications, because it causes significant loss of productivity as flux declines, 

a possible decrease in permeate quality, and an increase in operational cost (higher 

energy demand and a shorter membrane life )(Akbari et al., 2002). 

Fouling is produced by the accumulation of rejected inorganic or organic 

components, colloids, bacteria or suspended solids, which can generate membrane pore 

plugging and external pore blocking (Van der Bruggen et al., 2002). When fouling occurs, 

an increase in applied pressure and the need for frequent cleaning or replacement 

becomes an essential option. Membrane fouling has been amply investigated by 

numerous researchers (Kwon et al., 2006; Lee et al., 2004; Peng et al., 2004; Rice et al., 2006; 

Shon et al., 2004). 

Fouling can be reversible (external) or irreversible (pore blocking fouling). 

Reversible fouling occurs when the membrane recuperates the flux after cleaning (Van 

der Bruggen et al., 2002). Contrarily, irreversible fouling occurs in three different ways: 

•	 Particle pore blocking, which has approximately the same size as the pore 

size; 
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•	 lncomplete pore blocking (intermediate fouling); 

•	 Standard pore blocking, meaning the pores are continuously narrowed by 

particles smaller than the pore size (Knyazkova and Maynarovich, 1999). 

The types of membrane fouling include (Van der Bruggen et al., 2002): 

•	 Scaling: precipitation of inorganic salts in the feed water; 

•	 Colloidal fouling: clay mineraIs, colloidal silica, iron, aluminum, manganese 

oxides, organic colloids and suspended matter, and calcium carbonate 

precipitates; 

•	 Chemical reaction of solutes and the membrane boundary layer or with the 

membrane polymer; 

•	 Adsorption of low-molecular-weight solutes at the membrane polymer; 

•	 Bacteria fouling. 

Principally a serious problem in NF and Rü systems is scaling formation. As 

mentioned before, scaling is produced when spare inorganic compounds exceed their 

solubility product and precipita te on the membrane surface, thereby decreasing 

membrane permeability. Therefore higher feed pressure must be applied in order ta 

maintain the desired flux, and consequently the membrane must be cleaned more 

frequently, thus increasing the operational cost of the membrane. The most common 

compounds in scaling formation are calcium carbonate, calcium sulphate, silica, calcium 

phosphate and barium sulphate (Bremere et al., 1999; Schaefer et al., 2004). Figure 2.2 

shows the scale formation mechanism for NF membranes (Shon et al., 2004). 

The precipitation mechanism of scaling depends on many factors, such as pH, 

temperature, and the presence of different metal ions in the bulk solution that will 
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provoke concentration polarizatian. However, it involves two major mechanisms 

(Bremere et al., 1999; Schaefer et al., 2004): 

•	 Surface crystallization: When minuscule particles (nuclei) are formed at 

specifie sites, for example in the pores and/or at the membrane surface 

(blockage of the membrane surface), a decline in flux is produced; 

•	 Bulk crystallization: The forming ions diffuse ta the crystal surface and 

attach themselves to the membrane surface, leading to a decline in flux. 

No reliable methods of predicting and/or monitoring scaling in RO and NF 

membrane systems exist. On the ather hand, several alternatives exist to reduce scale 

formation, such as increasing the fluid velocity, adding antiscalants, performing 

chemical pretreatments, and applying microfilters to remove organic particles. 
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Figure 2.2 Scale formation mechanisms in NF. (a) Cake formation by bulk 
crystallization. (b) Surface blockage by surface crystallization. (c) Both 
mechanisms 
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3.1 Abstract 

An acidic leachate obtained from a contaminated soil was generated using 

hydrochloric acid (HCI) as a soil washing agent and treated by nanofilb'ation 

membranes. This solution was studied in terms of different parameters, such as 

transmembrane pressures and flow rate, to evaluate membrane permeabilities and ion 

separation. The experimental results showed that the application of NF membranes is a 

promising alternative for the removal of metal ions from washing-solutions. For 

example, both membranes demonstrated a retention capacity higher for multivalent ions 

such as A13+, Ca2+, Mg2+ and Mn2+(between 84 and 100%) compared to monovalent ions 

such as K+ and Na+ (Jess than 68%). Additionally, variation in dynamic permeability 

using the acidic leachate solution due to concentration polarization is presented. 

Furthermore, the permeation of NaCI-H20 solutions at different feed pH values (5.8, 3.7 

and 2.2) was investigated. 

This study will not only ou t1ine a process for treating contaminated soils and 

waste waters directly but will also offer a new approach to treating industrial residues 

produced during mining or leather processes. 

Keywords 

Leachate; NF membranes; Dynamic permeability; Metal ion removal; pH 
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3.2 Introduction 

Enormous quantities of pollutants are discharged into the soil as a result of 

different human activities such as dumping of hazardous substances, wastes fram 

industrial or/and chemical processes, and the spillage of different pesticides and 

fertilizers (Sikdar et al., 1998) which represent a long-lasting source of contamination. 

The principal contaminants found in the soil are the following: organic 

compounds (such as trichloroethylene (TCE), polyaromatic hydrocarbons (PAHs), 

polychlorinated biphenyls (PCBs» and inorganic compounds such as toxic metals (e.g. 

cadmium (Cd), copper (Cu), zinc (Zn) and lead (Pb)) (Sikdar et al., 1998). Both types of 

contaminants represent a great environmental concern because of their toxicity and 

persistence, affecting soil fertility and the complete ecosystem. 

The main differences between them is that organic pollutants can be degraded by 

natural process while toxie metals are difficult to treat using biologieal chemical or 

physical treatrnents (Bosecker, 2001). In addition, the soil-metal remediation is one of the 

most difficult tasks for environmental engineering (Sun et al., 2001). 

The most frequent method for toxic metal-remediation is soil washing (Meunier 

et al., 2002). Soil washing is an ex-situ technology characterized as inexpensive (Kuhlman 

and Greenfield, 1999). It is based on the desorption of pollutants using inorganic acids, 

organic acids, surfactants, biosurfactants, and the use of chelating agents or oxidative 

agents (Masscheleyn et al., 1999; Mulligan et al., 2001). These chemical agents help to 

increase the metal solubility and raise the cation concentration in the leachate produced 

(Davis and Singh, 1995). The result of this process is a complex waste water solution rich 

in metal ions (especially cations) that have to be decontaminated and/or disposed 

carefully. 

It is therefore important to apply reliable remediation technologies in 

conjunction with soil washing to deal with the contaminants. Those techniques can 

include precipitation, coprecipitation, electrodeposition, electrocoagulation, membrane 

processes (e.g. reverse osmosis, nanofiltration, ultrafiltration and microfiltration), 
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adsorption and biosorption, activated carbon adsorption (Patterson, 1989) or a 

combination of them. Among them, membrane processes, and particularly NF, can be 

promising alternatives for the removal of contaminants from wash-solutions of polluted 

soils. This process can bring about a successful wash-solution treatment which not only 

produces high quality permeates but which also can be run at lower pressures compared 

to RO membranes with lower operating costs. 

For that reason, the principal objective of this study was to evaluate the 

effectiveness and feasibility of nanofiltration membranes (using two commercially­

available NF membranes Desal 5 and NF-270) applied to an acidic leaching from 

contaminated soil. 
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3.3 Materials and methods 

This research was divided in two phases. The first phase is the generation of the 

acidic leachate from a pol1uted soil. The second phase is the treatment of this solution by 

NF membranes. 

3.3.1 Experimental sail 

The sail sampie was col1ected from the Pointe-aux-Lièvres site in Quebec, 

Canada. Sorne characteristics of the sail are summarized in Table 3.1. The fraction of sail 

(sand, silt and clay) superior ta 20 ~m (but less than 2 mm), which was obtained with a 

hydrocyclone, has been used for this work. The separation of the soil in fractions> 2 mm 

and < 2 mm was accomplished by sieving. 

Table 3.1 Characteristics of sail used in this study 

Component Sand Silt Clay
 

Particle size (%wt) 73 21 6
 

3.3.1.1 Washing procedure 

The extraction of metals from soils was performed using hydrochloric acid (HCl). 

This inorganic acid was used due ta its inexpensive cost and because it is one of the most 

effective soil-washing agents (Neilson et al., 2003). The leachate was prepared as follows: 

Preparation of HClleachate 

500 g of soil were added to 5 Lof water agitated by a variable speed mixer at 800 

l'pm (rotations pel' minute) with a stainless steel propel1er (SS-316L, Labcor Tedmical 

Sales, Montreal, QC., Canada) fixed to a caframo RZR50 rotor (Labcor Teclmical Sales). 
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To this suspension was added 160 mL of HCl until a pH of 2 was obtained. This leachate 

was agitated for 2 hours. 5 mL of the reactant Percol E-10, an anionic polymeric solution 

(Ciba Specialty Chemicals Canada lnc., Mississauga, Ont.), was added to facilitate the 

decantation. This leachate was passed through a filter whatman no 4 (Whatman 

Bioscience Inc., Newton, MA, USA) under a vacuum, to remove large particles from the 

leachate solution. This acidic leachate was not subjected to pre-treatment to remove any 

type of foulants, including suspended solids or organic and inorganic colloids, as it was 

a virtually colorless solution. Subsequent to the generation of the acidic leachate, this 

solution was subjected to the treatment with NF membranes. 

3.3.1.2 Membranes materials 

The commercial nanofiltration membranes used in this study were Desal 5 

membranes, manufactured by GE-Osmonics (Minnetonka, MN, USA). Desal 5 is a 

polymeric membrane, in which a polyamide selective layer is supported on a 

polysulfone layer (Bandini et al., 2005). It is a positively charged membrane, with an iso­

electric point of 4 and a pH resistance (20°) between 2-11 (Hagmeyer and Gimbel, 1998; 

Tanninen et al., 2004). The other membrane used was NF-270 supplied by FilmTec 

Corporation (FilmTec Corporation, Dow Chemical Co., Midland, Ml), which is a semi­

aromatic piperazine-based polyamide layer on top of a polysulphone micro porous 

support reinforced with a polyester non-vowen backing layer. NF-270 is a negatively 

charged membrane (pH 3.5 and 7.7), with an iso-electric point of 3.3 and pH resistance 

(20°) between 3-11 (Hagmeyer and Gimbel, 1998). 

3.3.2 Experimental set-up 

The experiments were carried out in a laboratory scale set-up. The schematic 

diagram of the filtration equipment is illustrated in Figure 3.1. This apparatus was 
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designed to test different membranes using the same operating conditions and also to 

test solutions using low pHs. 

In this study, the experiments were realized in a batch mode with recirculation of 

substances. The feed solution from the tank was pumped through 4 different membrane 

cells (made of polyvinyl chloride (PVC)), obtaining itself a retentate that went back into 

the tank and a permeate that was collected into a beaker for permeate flux calculation. 

This permeate was not recirculated into the system. The effective membrane surface area 

of each membrane was 1.26 x 10-3 m2. 

The membranes tested were two of each type (NF-270 (4), (5) and Desal5 (4), (5)) 

used for comparison purposes. Supplementary details about the experimental set-up can 

be found in the investigation made by Noel et al., (2000). 



44 

4 

Figure 3.1 Schematic diagram of NF set-up 

1. feed tank, 2. pump, 3. manometer, 4. membrane ceIl, 5. permeate outlet, 

6. pressure valve, 7. flowmeter 

3.4 Methodology 

The membranes were characterized in terms of pure water permeability, 

dynamic permeability, and rejection of ions present in the solutions. 

Before starting the experiments, the membranes were pressurized or compacted 

using deionized water at room temperature. The operating conditions used for 

membrane compaction were high pressure (1 x 106 Pa) and a constant recirculation flow 

rate (0.32 x 10-4 m3/ s) until the pure water permeability (A ,Pw ) was constant. 

After the compaction, tl1e pure water permeability of each membrane was 

measured before and after the test of each solution. The pressures used were 0.5 x 106, 

0.8 x 106 and 1 x 106 Pa with a constant recirculation flow rate (0.32 x 10-4 m3/s). 
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Following the measure of pure water permeability (A,pw) the dynamic 

permeability (Aiti) of the membranes was determined using NaCI-water solutions at 

different pHs (neutral, 3.7 and 2.2) adjusted with HCl at constant NaCl concentration 

(3.42 x 10-2 moljl) and the principal solution of this study, the acidic leachate solution. 

The operating conditions--pressure and recirculation flow rate--utilized to measure 

dynamic permeability were the same as pure water permeability. The permeate flux 

values for pure water and the inorganic solutions including the leachate at different 

operating pressures were measured and plotted against applied pressure. lt is important 

to note that the slope of the curve (straight line) was the value to determine the 

membrane permeabilities. 

After the measure of membrane permeability, the system was rinsed with 

deionized water to diminish the experimental errors. The sequence of experiments is 

presented in Table 3.2 
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Table 3.2 Values of permeability (Aipw) and dynamic permeability (Aid) of the membranes 

NF-270 (xl0-14)(4) NF-270 (xlG-14)(5) Desal5 (xl0-14)(4) Desal 5 (xl0-14)(5) 

Aipw (m) Aid (m) Aipw (m) Aid (m) Aipw (m) Aid (m) Aipw (m) Aid (m) 

1. Compaction 

2. Water 2.51 2.61 0.72 0.69 

3. NaCI 2.37 2.45 0.93 0.87 

4. Water 2.42 2.51 0.88 0.81 

5. NaCI + HCI 2.20 2.29 0.91 0.84 

6. Water 1.82 1.74 0.86 0.79 

7. NaCI + HCI 1.71 1.81 1.21 1.13 

8. Water 1.74 1.92 1.02 0.94 

9. Leachate 2.02 2.11 1.43 1.29 

10. Water 1.72 1.85 1.13 1.03 
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3.4.1 Reference solute 

The reference solute used to prepare the inorganic solutions was NaCl. As 

mentioned before, HCI was used for pH adjustments. The chemicals were analytical 

grade, purchased from the Aldrich Chemical Company, Milwaukee, Wl. 

3.4.2 Sample analysis 

The chemical analysis of the soil and aqueous solutions coming from feed and 

permeate were determined by a conductivity meter (model CDM 81, Radiometer, 

Copenhagen, Germany), a pH meter (Fisher Acumet model 915, Pittsburgh, PA), and 

plasma emission spectroscopy with a simultaneous (lCP-AES), Varian model (Varian 

Canada, Inc., Mississauga, Ont.). Quality controls were performed with certifjed liquid 

samples (multi-elements standard, catalogue number 900-Q30-002, lot number 

SC0019251, SCP Science, Lasalle, Quebec) to ensure the conformity of the measurement 

apparatus. 
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3.5 Calculation methods 

3.5.1 Pure water permeability (A ipw ) 

Pure water permeability (A,pw) through a membrane was calculated using the 

following equation: 

Equation 3.1 

Where fi is water viscosity, J p is water permeate flux and M is the transmembrane 

pressure. 

J p was defined by: 

Where Qp is the permeate fIow rate and Sm is the surface of the membrane. 

3.5.2 Dynamic permeability (A id ) 

According to Lebrun and Xu (1999), the transport of an inorganic solution 

through the membranes (A id ) was calculated by: 
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A _ )1Jp
Equation 3.3 

id - M 
"If 

Where M = M - L'ln 
eff 

Equation 3.4 L'ln =n(xA2)- n(xA3) 

Where Me is the effective pressure gradient and L'ln is the difference in 
ff 

osmotic pressure between the molar fraction of the concentra ted boundary (X A2 ) and 

the permeate solutions (XA3)' When the circulation velocity is high enough to reduce 

the concentration polarization on the surface of the membrane, X A2 tends towards X AI 

(molar fraction of the feed and in the reservoir) and therefore!lP. = M . L'lPa is the 
eff a 

apparent gradient pressure. 

Thus: 

Equation 3.5 Ma =M - n(xAI)+ n(xA3) 

Consequently: 

Equation 3.6 

For diluted solutions, the osmotie pressure was calculated in correspondence with the 

concentration values in the feed and permeates using Van't Hoff's equation: 

Equation 3.7 n = IiRTC 
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Where Ii is the number of ions per molecule of solute, R is the universal gas constant, T 

is the absolu te temperature and C is the concentration of the inorganic solution (mollI). 

3.5.3 Global and intrinsic separation factor (f,.f') 

The global separation factor (f) of the solutes was calculated by the next 

equation: 

f = X AI - X A3 =1_ X A3Equation 3.8 
X A1 X A1 

This equation was also used to calculate the rejection of individual ions. The Intrinsic 

separation factor (f') was expressed by: 

f'= X A2 -XA3 =1- X A3Equation 3.9 
X A2 X A2 

Where X A2 is the molar fraction of the solute in the membrane surface. 
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3.6 Results and discussion 

3.6.1 Composition of the leachate 

Soil-washing is a difficult task due to the strong bonds presented between soil 

and metals. The efficacy of this method depends on the capability of the extractants ta 

dissolve the metals from a soil-washing solution (Tejowulan and Hendershot, 1998). 

Table 3.3, shows the effectiveness of the soil washing treatrnent using HCI as an 

extractant in removing different type of metal ions. The main characteristics of the acidic 

leachate are listed in the same table. 

As shown in this table, the acidic leachate is contaminated with a great variety of metal 

ions. Particularly the leachate is a virtually colorless solution characterized by a high 

conductivity, partly due to the presence of hydrochloric acid (HCI) used as a soil­

washing agent. 
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Table 3.3 HClleachate characterization before NF treatment 

Parameter 

pH
 

ORP (mV)
 

Conductivity (ms/ cm)
 

TOC (mg/I)
 

Ions (moI/I)
 

H+ 

AJ3+ 

AS5+ 

B3+ 

Ba2+ 

Ca2+ 

Cd2+ 

Cr3+ 

Cu2+ 

Mg2+ 

Mn2+ 

Na+ 

Ni2+ 

P042­

Pb2+ 

S042­

Se042­

2n2+ 

Value 

1.97
 

456
 

13.55 

15.9 

1.07 X 10-2
 

8.02 X 10-4
 

9.34 X 10-7
 

3.14 x 10-5
 

1.97 x 10-5
 

5.39 X 10-2
 

5.33 X 10-7
 

1.15 x 10-6
 

3.35 x 10-5
 

3.31 x 10-5
 

2.44 x 10-4
 

2.44 x 10-3
 

1.97 x 10-4
 

6.91 X 10-4
 

2.73 x 10-6
 

2.50 x 10-4
 

9.00 x 10-5
 

4.53 x 10-4
 

1.39 X 10-4
 

2.45 X 10-4
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3.6.2 Membrane characterization 

3.6.2.1 Water and dynamic permeability 

Permeability values of NF-270 and Desal 5 membrane coupons at different feed 

solutions are shown in Table 3.2. It can be seen that the NF-270 membrane type displays 

superior permeate fluxes compared to the Desal 5 membrane (experiment 2, on 

Table 3.2). These data give emphasis to the disparity between the behaviour of the tvvo 

membranes. 

Comparing the values of initial and final water permeability, it is clear that the 

feed concentration can influence the membrane permeabilities. For Desal 5 (4) and (5) 

membrane, it was observed that A,pw values increased 56.9% and 49.3% respectively, 

over the initial A,pw value (experiment 2 and 10, on Table 3.2). This behavior suggest that 

the presence of ions in the solution screens the charge density of the membrane, 

changing pore size and thus increasing membrane flux (swollen effect) (Hamza et al., 

1995). 

The opposite behavior was presented by NF-270 (4) and (5) membranes, where 

Aipw decreased 31.5% and 29.1% respectively (experiment 10, on Table 3.2). This 

decrease in A,pw indicated that the NF-270 membranes underwent an irreversible 

shrinkage that affected not only the pore structure (reduction of pore size) but also the 

nature of the pore surface (Ortega et al., 2005). 

3.6.2.2 Dynamic permeability ofa binary system: NaCI-H20 

An experiment with NaCl-H20 at neutral pH was carried out to characterize the 

membranes. As shown in Figure 3.2, for both membranes, a linear increase of the 

permeate flux (jiJ p) was presented according to the applied pressure (Ma)' In this 
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particular case, this linear evolution suggests that the recirculation flow rate was high 

enough to remove the particles on the surface of the membranes. For that reason, the 

differences in osmotic pressure of the bulk and the boundary solution were considered 

equal (flX2 ~ flX 1 ). It was assumed, for both membranes, that the intrinsic separation 

factor was equal to the overall separation factor f ~ f' . 

3,OE-08 

• NF-270 (4)
 

2,5E-08
 • Desal5 (4) 

A Desal5 (5)
2,OE-08 

x NF-270 (5)E 
l1l 

1,5E-08e:.. 
~Q.
 

~
 
1,OE-08 

5,OE-09 

O,OE+OO 

O,OE+OO 3,OE+05 6,OE+05 9,OE+05 1,2E+06 

~Pa (Pa) 

Figure 3.2	 Permeate flux vs. apparent transmembrane pressure for NaCI 
(experiment 3). Salt concentration = 3.42 x 10-2 moIf1; pH = neutral, 

Qc = 0.32 m3Js; 22 < T (oC) < 27 
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3.6.2.3 Salt separation at different pH values 

Salt rejections of Desal 5 and NF-270 membranes at different pH and pressure 

values are shown in Figures 3.3 to 3.5. The separation factors for the sodium cllloride 

solution (tank and permeate) were obtained as a function of their conductivity. 

The separation factor of the solutions varying the pH indicates that the 

membrane is greatly influenced by the electrolyte concentration and by the acidic 

characteristics existing in the feed solution. Generally, it was observed that the 

membrane rejection went through a minimum values as feed pH decreased. For 

example, in the case of NF-270 (4), the highest separation was obtained at 42.5%, for tl1e 

run conducted at pH = 5.8 and the lowest separation approximately at 2.4% at the lowest 

pH (2.2). For Desal 5 membranes the differences in separation were small (Figures 3.3 to 

3.5). 

In general, the higher the electrolyte concentration, the higher the osmotic 

pressure and the lower the permeate flux (Xu and Lebrun, 1999). This behavior was 

shown by NF-270 membranes, where the lowest permeability values were obtained at 

low pH (2.2) due to the effect of the osmotic pressure (experiments 3, 5 and 7, on 

Table 3.2). This behaviour was expected since the dynamic permeability value of a 

membrane decreased when the concentration increased. ln this case it is assumed that 

NF-270 membrane underwent preferential sorption. 

On the other hand, Desal 5 membrane coupons displayed a slight increase in 

dynamic permeability compared with the values of water permeability (experiments 3, 5 

and 7, on Table 3.2). This membrane appears to be dependent upon the presence of 

electrolytes. According to Lebrun and Xu (1999), in the presence of ions, the pore size 

may induce dynamic changes in permeability. 
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Figure 3.3	 Overall separation factor of NaCl-H20 vs. apparent transmembrane 

pressure. Salt concentration = 3.42 x 10-2 molfl; pH = 5.8, Q, = 0.32 

m3/s; 22 < T (oC) < 27 
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Figure 3.4	 Overall separation factor of NaCl-HCl vs. apparent transmembrane 

pressure. Salt concentration = 3.42 x 10-2 molfl; pH = 3.7, Qc = 0.32 

rn3/s; 22 < T (oC) < 27 
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Figure 3.5	 Overall separation factor of NaCl-HCl vs. apparent transmembrane 

pressure. Salt concentration = 3.42 x 10-2 molf1; pH = 2.2, Qc = 0.32 

m3/s; 22 < T (oC) < 27 

3.6.2.4 Na+ retention 

Figures 3.6 to 3.9 show the retention of Na+ at different pH values. In the case of 

Desal 5 membranes, as the pH decreased, an increase in Na+ retentions was observed. 

Similar behaviour has been described by several authors (Bandini et al., 2005; Hagmeyer 

and Gimbel, 1998; Quin et al., 2004). In this case it is assumed that the feed pH affected 

the separation performance of the membrane. This behaviour possibly could be due to 

the fact that the surface of Desal 5 membrane was positively charged at pH below the 

iso-electric point and negatively charged at pH above the iso-electric point. 

For NF-270, it was observed that the minimum retention was presented at pH 

around 3.8, close to the iso-electric point of the membrane. This membrane displayed its 

normal behaviour, acting as a positively charged membrane at pH below the iso-electric 

and as a negatively charged membrane at pH above the iso-electric point. 



58 

Figure 3.6	 Na+ separation factor (%) vs. pH for the membrane Desal 5 (4). Salt 

concentration = 3.42 x 10-2 molf1; pH :: 5.8, 3.7 and 2.2, Qc = 0.32 m3Js; 

22 < T (oC) < 27 

Desal5 (5) 

5 6 7 

Figure 3.7	 Na+ separation factor (%) vs. pH for the membrane Desal 5 (5). Salt 

concentration = 3.42 x 10-2 molf1; pH :: 5.8, 3.7 and 2.2, Qc = 0.32 m3Js; 

22 < T (oC) < 27 



59 

Figure 3.8	 Na+ separation factor (%) vs. pH for the membrane NF-270 (4). Salt 

concentration =3.42 x 10-2 moljl; pH =5.8, 3.7 and 2.2, Qc = 0.32 m3/s; 

22 < T (oC) < 27 

Figure 3.9	 Na+ separation factor (%) vs. pH for the membrane NF-270 (5). Salt 

concentration =3.42 x 10-2 moljl; pH =5.8,3.7 and 2.2, Qc = 0.32 m3/s; 

22 < T (oC) < 27 
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3.6.2.5 Acidic retention 

The retention values of H+ ions at different pH values are shown in Figures 3.10 

to 3.13. In general, the results obtained in these experiments for Desal5 membrane 4 and 

5 shows that H+ rejection went through a maximum value, which approximately 

corresponds to a pH of 4.3 (close to the membrane iso-electric point), showing after that 

a decrease that went to a minimum retention (negative rejection) obtained at high pH 

values. This tendency has been observed in other investigations (Bandini et al., 2005; 

Quin et al., 2004). 

In this particular case where the membrane charge was influenced by the pH, it 

is assumed that Desal5 membrane was acting as a negatively charged membrane at high 

pH values, and, consequently, the H+ rejection increased as the H+ concentration 

increased, decreasing the concentration of H+ in the permeate (Bandini et al., 2005). 

In the case of NF-270 membranes, a negative rejection of H+ ions was generally 

observed. This behaviour suggests that the membrane surface rejects Na+ leading it to 

enhance the permeation of H+. 
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Figure 3.10	 H+ separation factor (°/cl) vs. pH for the membrane Desal 5 (4). Salt 

concentration = 3.42 x 10-2 moljl; pH = 5.8, 3.7 and 2.2, Qc = 0.32 m3/s; 

22 < T (oC) < 27 
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Figure 3.11	 H+ separation factor (%) vs. pH for the membrane Desal 5 (5). Salt 

concentration = 3.42 x 10-2 moljl; pH = 5.8, 3.7 and 2.2, Qc = 0.32 m3/s; 

22 < T (oC) < 27 
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Figure 3.12	 H+ separation factor (%) vs. pH for the membrane NF-270 (4). Salt 

concentration = 3.42 x 10-2 mol/l; pH =5.8, 3.7 and 2.2, Qc = 0.32 m3js; 

22 < T (oC) < 27 
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Figure 3.13	 H+ separation factor (%) vs. pH for the membrane NF-270 (5). Salt 

concentration = 3.42 x 10-2 mol/l; pH = 5.8, 3.7 and 2.2, Qc = 0.32 m3js; 

22 < T (oC) < 27 
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3.6.3 Nanofiltration of the acidic leachate 

3.6.3.1 Dynamic permeability of the acidic leachate 

Membrane fouling was investigated by measuring pure water fluxes before and 

after the filtration of the acidic leachate solu tion. As shown in Table 3.2, for aIl 

membranes, an increase in dynamic permeabiIity was observed (Experiment 9, on 

Table 3.2). This behaviour was attributed to the influence of concentration polarization 

and high osmotic pressure on the surface of the membrane produced by the presence of 

inorganic components that generated changes in pore size caused by the electrostatic 

repulsions within the membrane pore structure, resulting From variations in solution 

chemistry. Furthermore, this behaviour is corroborated in Figure 3.14. In this particular 

case as it was not observed a linear increase of the permeate flux (flJ p) according to the 

appIied pressure (Ma)' it is assumed that aIl the membranes were affected by the high 

concentration of electrolytes on the surface of the membranes. 

After the run with the acidic leachate solution, it was observed that the increase 

in dynamic permeability was reversible due to the pure water permeabiIity measured 

foIIowing this experiment was recovered (experiments 9 and 10, on Table 3.2). 
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Figure 3.14	 Permeate flux vs. effective pressure for the acidic leachate solution. pH 

=1.97, Q, = 0.32 m 3Js; 22 < T (oC) < 27 

3.6.3.2 Separation of metals ions from leachate solution by NF membranes 

The separation efficiency of the NF membrane process in the removal of metal 

ions from the acidic leachate is presented in Table 3.4. 

This table shows that the membrane treabnent was effective in the removal of 

AI3+, Ca2+, Cu2+, Fe2+, Mn2+ and Zn2+ with recuperation between 84% and 100%. This 

implies the effective application of NF in the metal ion removal. Other ions that 

presented lùgh to moderate retentions were K+, Na+ and P043-. Additionally, metal ions 

such as As3+, B3+, Cd2+, Cr3+, Mg2+, Ni2+, Se2+, S042- and Pb2+ were found in the feed 

solution. These separations depended on the characteristics of the membranes used and 

the acidic characteristics and cation concentration of the leachate solution, as weIl as the 

ion size. 

As the pH of the feed solution can change the nature of the membrane surface 

charge, it can consequently affect the membrane retention performance (Hagmeyer and 

Gimbel, 1998). In tlùs case the lùgh retention presented by the cations suggests that both 
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membranes were acting as positively charged membranes due to the highly acidic 

conditions and high concentration of the feed solution, leading to a repulsion of cations 

induced by charge effects. Furthermore, this behaviour was presented in the permeation 

of NaCI at different pHs. 

Another factor that could influence the retention of cations in the membranes 

was the presence in the leachate solution of multivalent ions or metal complexes that 

were easily retainable by the membrane due to their sizes. 
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Table 3.4 Separation factors of ions CYo) present in the acidic leachate 

Membrane Pressure Ion separation factor (%) 

(PSI) Al3+ Ca2+ Cu2+ Fe2+ K+ Mn2+ Na+ P043- Zn2+ H+ 

NF-270 (4)	 75 100 97.7 93.0 92.4 60.7 98.1 55.5 72.8 95.3 20.6 

110 100 98.4 95.0 95.5 68.3 98.7 67.5 72.4 96.0 50.5 

150 100 98.3 94.5 96.0 66.0 98.5 64.5 70.7 95.5 23.3 

NF-270 (5)	 75 100 98.4 95.5 92.5 64.7 98.7 60.8 73.2 95.8 24.1 

110 100 98.9 96.4 95.5 68.9 99.0 61.4 71.0 96.0 50.5 

150 100 99.1 94.9 93.4 50.9 99.2 58.2 68.2 94.4 28.4 

Desa15 (4)	 75 100 98.9 91.3 90.8 48.7 99.1 42.0 70.3 92.3 36.9 

110 100 99.3 93.5 94.2 51.2 99.4 47.7 63.9 93.1 56.8 

150 100 99.5 91.8 96.6 51.2 99.5 63.2 71.6 94.1 31.6 

Desa15 (5)	 75 100 98.4 92.0 84.0 52.1 98.7 49.7 78.2 93.8 36.9 

110 100 99.0 93.4 85.9 38.7 99.1 46.5 65.6 92.6 60.6 

150 100 98.9 94.7 93.4 60.6 99.2 59.1 67.3 94.4 37.6 
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3.6.4 Soil washing, NF membranes and industrial application 

The presence of toxic and hazardous compounds is the main reason to apply 

reliable process to decontaminate soils and waste-waters. However, sorne processes have 

been demonstrated to be expensive and inappropriate, generating more contamination. 

Particularly waste-waters coming from soil washing are difficult to treat by sorne 

methods. These waste-waters are complex solutions, rich in metal ions, which, due to 

their composition, are comparable to industrial waste-waters (Peters, 1998). Therefore, 

the use of soil washing combined with membrane filtration can be a solution to the 

contamination problem. However, literature concerning the application of soil washing 

with NF membranes is scarce. 

The two processes described in our research constitute reliable prOcesses that can 

be applied at the industriallevel. There are a number of industrial benefits: (1) the use of 

sorne inorganic acids, such as HCl, used as a soil washing agent is inexpensive. HCl is 

considered one of the most effective soil-washing agents (Neilson et al., 2003). (2) the 

application of NF membranes requires lower pressures compared to Rü (according to its 

application). Therefore less energy is required for the process. Generally, the capital cost 

of membranes tends to be high, while, on the other hand, the operating cost is 

comparatively low (Sikdar et al., 1998). (3) It is possible to reuse the acidic water during 

the process. (4) The use of NF membranes allows the fractioning of pollutants. NF is able 

to separate monovalent ions from multivalent ions, and it also allows acid recuperation. 

Consequently, they can be applied in further processes. Those characteristics make of 

soil washing and principally NF membranes successful processes in the purification of 

waste water streams. 

However, it is important to take into account that the application of pressure­

driven membrane processes as nanofiltration generates large volumes of concentrated 

liquid wastes that need to be disposed or discharged carefully. For that reason, those 

concentra te waste waters need an adequate treatrnent as a function of its origin and 

composition (Van der Bruggen et al., 2003). 
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3.7 Conclusions 

These experimental results have demonstrated the feasibility of using NF 

membranes applied to an acidic leachate solution coming from contaminated soil. This 

investigation has been performed using two commercial membranes, Desal 5 and NF­

270. These membranes have been characterized in terms of permeability and retention of 

several ions. Principally Desal 5 membrane coupons showed good performance in terms 

of membrane permeability. This membrane, in the presence of electrolytes, displayed an 

increase in dynamic permeability. On the other hand, the NF-270 membrane displayed a 

decrease in permeability. Furthermore, it was observed that the feed pH of the solutions 

significantly influenced the charge of the membrane as observed in sorne experiments. It 

is possible that the acidity of the solution contributed to the membrane charge formation. 

Using the acidic leachate solution, both membranes demonstrated high retention 

capacity, especially with multivalent ions rather than monovalent ions. Furthermore, in 

using this solution, it was observed that the dynamic permeability for ail the membranes 

increase due to the high presence of ions provoked by the concentration polarization on 

the surface of the membrane. 

Finally, these results obtained might offer a new approach in treating complex 

industrial residues. 
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Abbreviations and Symbols 

A;pw Pure water permeability of membrane, (m) 

A'd Dynamic solution permeability of membrane, (m) 

C Concentration, (mollI)
 

j,j, Overall and intrinsic separation factor, (dimensionless)
 

J Solution permeate flux, (mis)
p 

M Molar concentration (mol/l) 

ORP Oxydoreduction potential, (mV) 

P Pressure, (Pa) 

Po Apparent pressure (Pa) 

M Effective pressure (Pa) 
eff 

Qc Feed flow rate, (m3/s) 

Qp Permeate flow rate, (m3/s) 

Sm Membrane area, (m2) 

T Temperature, (K) 

TOC Total organic carbon, (mg.02/1) 

X Molar fraction 

X Al Molar fraction of the feed 

X A2 Molar fraction of the concentrated boundary 

X A3 Molar fraction of the permeate 
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Greek letters 

Gradient 

Ji Fluid viscosity, (Pa.s) 

TI Osmotic pressure, (Pa) 

Number of ions per molecule of solute 

Acknowledgements 

Sincere thanks are due to FQRNT, NSERC and the Canada Research Chair 

program for their financial support and the HAYKA Industry for the experimental set­

up. Thanks also due to STEPPE-ETS (Station expérimentale des procédés pilotes en 

environnement - École de technologie supérieure). The au thors are very grateful ta 

Myriam Chartier INRS-Eau (Institut national de la recherche scientifique - Eau, terre et 

environnement) for her technical assistance. 



71 

3.8 References 

Bandini, S., Drei J., and Vezzani, D., 2005. The raIe of pH and concentration on the ion 
rejection in polyamide nanofiltration membranes. J. Membr. Sei. 264, 65-74. 

Bosecker, K., 2001. Microbial leaching in envirorunental clean-up programmes. 
Hydrometallurgy 59, 245-248. 

Davis, A.P., and Singh, 1.,1995. Washing of zinc (Zn) from contaminated soil column. J. 
Environ. Eng. 121,174-185. 

Hagmeyer, G., and Gimbel, R, 1998. Modeling the salt rejection of nanofiltration 
membranes for ternary ion mixtures and for single salts at different pH values. 
Desalination 117, 247-256. 

Hamza, A., Chowdhury, G., Matsuura, T., and Sourirajan, S., 1995. Study of reverse 
osmosis separation and permeation rate for sulfonated poly(2,6-dimethyl-1,4­
phenylene oxide) membranes of different ion exchange capaeities. J. AppL 
Polymer Sei. 58, 613-620. 

Kuhlman, M.L, and Greenfield, T.M., 1999. Simplified soil washing processes for a 
variety of soils. J. Haz. Mat. 66,31-45. 

Lebrun, RE., and Xu, Y., 1999. Dynamic characterization of nanofiltration and reverse 
osmosis membranes. Sep. Sei. Technol. 34, 1629-1641. 

Masscheleyn, P.H., Tack, F.M., and Verloo, M.G., 1999. A model for evaluating the 
feasibility of an extraction procedure for heavy metal removal fram 
contaminated soils. Water Air Soil Pollut. 113, 63-76. 

Meunier, N., Blais, J.B., and Tyagi, RD., 2002. Selection of a natural sorbent to remove 
toxic metals from acidic leachate produced during soil decontamination. 
Hydrometallurgy 67, 19-30. 

Mulligan, eN., Yong, R.N. and Gibbs, B.F., 2001. Surfactant-enhanced remediation of 
contaminated soil: a review. Eng. Geol. 60,371-380. 



72 

Neilson, J.W., Artiola, J.F., and Maier, RM., 2003. Characterization of lead removal from 
contaminated soils by nontoxic soil-washing agents. J Environ. QuaI. 32, 899-908. 

Noët I.M., Lebrun, RE., and Bouchard, C, 2000. Electro-nanofilb'ation of a textile direct 
dye solution. Desalination 129, 125-136. 

Ortega, L.M., Lebrun, R, Noët l.M., and Hausler, R, 2005. Application of nanofiltration 
in the recovery of chromium (Ill) from tannery effluents. Sep. Purif. Technol. 44, 
45-52. 

Patterson, J.W., 1989. lndustrial wastes reduction. Environ. Sei. Technol. 23,1032-1038. 

Peters, T.A., 1998. Purification of landfillleachate with membrane filtration. Filb'ation & 
Separation 35, 33-36. 

Quin, LOo, M.H., Lee, H., and Coniglio, B., 2004. Effect of feed pH on permeate pH and 
ion rejection under acidic conditions in NF process, J. Membr. Sei. 232, 153-159. 

Sikdar, S.K., Grosse, D., and Rogut, L 1998. Membrane technologies for remediatiating 
contaminated soils: a critical review. J. Membr. Sei. 151, 75-78. 

Sun, B., Zhao, F.L Lombi, E., McGrath, S.P., 2001. Leaching of heavy metals from 
contaminated soils using EDTA. Environ. pollution 113,111-120. 

Tanninen, L Platt, S., Weis, A., and Nysb'om, M., 2004. Long-term acid resistance and 
selectivity of NF membranes in very acidic conditions. J. Membr. Sei. 240, 11-18. 

Tejowulan, RS., and Hendershot, W.H., 1998. Removal of trace metals from 
contaminated soils using EDTA incorporating resin trapping techniques. 
Environ. Pollution 103, 135-142. 

Van der Bruggen, B., Lejon L., and Vandecasteele, C, 2003. Reuse, treatment, and 
discharge of the concentrate of pressure-driven membrane. Processes. Environ. 
Sei. Technol. 37,3733 -3738. 



73 

Xu, Y., and Lebrun, R.E., 1999. Investigation of the solute separation by eharged 
nanofiltration membrane: effeet of pH, ionie strength and solute type. J. Membr. 
Sei. 158,93-104. 



CHAPTERIV 

REMOVAL OF METAL IONS FROM AN ACIDIC LEACHATE SOLUTION BY
 

NANOFILTRATION MEMBRANES
 

Desalination 

Lina M. Ortega1, Rémi Lebrun2*, Jean-François Blais3 and Robert Hausler4 

1 Institut des sciences de l'enviroIUl.ement, Université du Québec à Monh'éal, c.P. 8888,
 

Suce. Centre-Ville, Montréal, Qc, Canada, H3C 3P8.
 

E-mail: ortegahurtado.linamaria@courrier.uqam.ca
 

2 Département de Génie Chimique, École d'ingénierie, Université du Québec à Trois­


Rivières, c.P. 500, Trois-Rivières, Qc, Canada, G9A 5H7.
 

E-mail: Remi.Lebrun@uqtr.ca
 

3 Institut national de la recherche scientifique (INRS-Eau Terre et EnviroIUl.ement),
 

Université du Québec, 490 rue de la CouroIUl.e, Québec, Qc, Canada, GIK 9A9.
 

E-mail: blaisjf@irns-ete.uguebee.ca
 

4 Station expérimentale des procédés pilotes en enviroIUl.ement, École de technologie
 

supérieure, 1100, rue Notre-Dame Ouest, Montréal, Qc, Canada, H3C lK3.
 

E-mail: robert.hausler@etsmtI.ca
 

Corresponding author * Remi.Lebrun@ugh·.ca 

mailto:blaisjf@irns-ete.uguebee.ca


75 

4.1 Abstract 

This paper presents the feasibiIity of the application of two commercial 

nanofiltration (NF) membranes (Desal 5 and NF-270) in the removal of metal ions from 

an acidic leachate solution generated from a contaminated soil using H2S04 as a soil 

washing agent. The experimental results of soil washing indicated that H2S04 is highly 

effective in removing metal ions from contaminated soil. Following this process, the 

treatment of this acidic solution by nanofiltration membranes showed good metal ion 

rejection (between 62 to 100%), where divalent ions were better rejected than monovalent 

ions. For characterization purposes, the membrane experiments were conducted using 

K2S04 solutions at different pHs. Membrane performance criteria were evaluated 

according to membrane permeability and ionic retention in the tank and permeate, 

taking into account different operating conditions such as pressures, flow rate and pH. 

These results demonstrated the effectiveness and feasibility of the application of 

nanofiIh'ation treatments in the cleaning-up of contaminated water residues generated 

during soil washing processes. 

Keywords 

Nanofiltration; Soil washing; Acidic leachate; Ionie separation factor; Dynamic 

permeability 
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4.2 Introduction 

Every year, millions of tons of metals are generated and spilled into the 

environment, making an enormous impact on it. In 2002, industries worldwide released 

22000 tons of cadmium, 93 900 tons of copper, 783 000 tons of lead, and 135 000 tons of 

zinc (Singh et al., 2003). 

Although metals are naturally present in soils, this contamination is attributed to 

human activities such as vehicle emissions, use of fertilizers and pesticides, mining 

activities, and, principally, industrial processes (Kiem et al., 2003). Once released into the 

soil, they are mobilized either by leaching or by uptake into plants, persisting for many 

years because metals are not biodegradable and are generally not mobile (Vassilev et al., 

2004). ln high concentrations, metals can affect aIl groups of organisms and different 

ecosystems, including microbial activities (Baath, 1989). These wastes are dumped 

arbitrarily, without waste management techniques. For example, in the United States, 

approximately 1200 sites on the National Priority List (NPL) contain a mix of organic­

metal contamination, of which 63% are polluted with metals (Mulligan et al., 2001). ln 

Quebec (Canada), according to the Ministère de l'Environnement et de la Faune du 

Québec (MEFQ, 2001),5125 sites are polluted, and 11 % of these sites are contaminated 

with metals. 

During the last decades, several technologies have emerged that try to give 

innovative solutions to the soil contamination problem. Sorne examples are soil washing, 

soil flushing, vitrification, bioremediation, phytoremediation, or a combination of them 

(Mulligan et al., 2001). However, despite numerous promising decontamination options, 

many technologies have not been successfully implemented. This is because sorne of 

them are inadequate to reduce the metal concentration to acceptable regulatory 

standards, or because of the extreme cost of the removal process, excavation and landfill 

disposaI, or simply due to disappointing results (Mulligan and Eftekhari, 2003). For that 

reason, much effort has been made to find ways to remove metals from soil. One of the 

most common and simple treatments for soil metal remediation is soil washing (Meunier 

et al., 2003). This technique extracts metals from contaminated soils by solubilizing them 
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in a washing solution (Barona et al., 2001; Peters, 1999). This technique usually uses 

washing agents such as inorganic acids, organic acids, bases, chelating agents, or a 

combinatian of them (Mulligan and Eftekhari, 2003). However, the problem with the 

application of these reagents is that they generate secondary waste products that may 

require additional waste-water treabnents. 

For that reason, in the search for waste water techniques, there has been a 

growing interest during the last decade, for IlcIeaner" treabnents such as membrane 

filtration (reverse osmosis, nanofiItration, ultrafiltration, and microfiltration). Principally 

the application of NF membranes after sail treabnent has been seen as a favorable option 

due ta the fact that soil treatment operations (e.g., sail washing) generates large volumes 

of contaminated water (Sikdar et al., 1998). 

Hence, the present work evaluates the performance of two commercial 

nanofiltration membranes (Desal 5 and NF-270) for the removal of metal ions from an 

acidic leachate solution generated from contaminated sail. 

4.2.1 Nanofiltration 

Nanofiltration with a molecular weight cut-off (MWCO) ranging between 200 

and 1000 g/moI, displays separation characteristics between reverse osmosis and 

ultrafiltration membranes (Ku et al., 2005). The major separation mechanism in salt 

separation using NF process can be explained in terms of steric (organic solutes) and/or 

charge effects (inorganic solutes) (Schaep et al., 1998). Principally charge effect is 

responsible of the removal of ions from waste waters. Other factors that couId influence 

membrane performance are the electrolyte concentration and the acidic characteristics 

existing in the feed solution (Bandini et al., 2005). 
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4.3 Experimental 

This section is divided into two parts: generation of the acidic leachate solution 

coming from contaminated soil, followed by membrane characterization and 

nanofiltration experiments of the acidic leachate solution, to evaluate membrane 

performance. 

4.3.1 Site information 

Contaminated soil from the Pointe-aux-Lièvres site located in Quebec, Canada 

was collected and used for this work. The fraction of soil used was superior to 20 Jlm and 

less than 2 mm. The initial metal concentrations in the soil were as follows: 1.4 mg/kg of 

Cd, 120 mg/kg of Cr, 175 mg/kg of Cu, 457 mg/kg of Mn, 80 mg/kg of Ni, 817 mg/kg 

of Pb and 565 mg /kg of Zn. Cu, Pb and Zn concentrations were above the criteria B 

given by the Ministry of Envirorunent and Fatma of Quebec (MEFQ, 1999) which are, 

respectively, 100, 500 and 500 mg/kg. For that reason, this soil cannot be used for 

agricultural, residential or recreational purposes. 

4.3.2 Soil experimental procedure 

500 g of soil was added to 1.51 of water agitated by a variable speed mixer at 800 

rpm (rotations per minute) with a stainless steel propeller (SS-316L, Labcor Technical 

Sales, Montreal, QC., Canada) fixed to a caframo RZR50 rotor (Labcor Technical Sales). 

T0 this suspension was added H2S04 (36 N) until a pH of 3 was obtained. This leachate 

was agitated for 25 min. Following this procedure, 5 ml of the reactant Pereol E-10, an 

amomc polymeric solution (Ciba Specialty Chemicals Canada Inc., Mississauga, Ont.), 

was added to facilitate the decantation. 

This acidic solution was passed through a Whatman no. 4 membrane fil ter with a 

porosity between 20 and 25 ~m (Whatman Bioscience Inc., Newton, MA, USA) under a 
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vacuum, to eliminate any trace of soil particles from the leachate solution. The leachate 

was kept at room temperature until membrane filtration experiments were realized. 

H2S04 was used for this study as a soil washing agent not only for its 

inexpensive cost but also because in practice, acid washing is a frequent and effective 

method for metal-contamination removal (Meunier et al., 2002; Rampley and Ogden, 

1998). 

4.3.3 Membrane procedure 

The steps used in membrane experiments are as follows: 

4.3.3.1 Membrane compaction 

The membranes were compacted with distilled water for 3 hours at room 

temperature, a constant recirculation flow rate (1.01 x 10-4 m3 j s), and a pressure of 1.0 x 

106 Pa. 

4.3.3.2 Membrane pure water permeabilih) (AipW ) 

After membrane compaction, the pure water permeability of each membrane 

was measured before and after the test of each solution. The operating conditions for aU 

the experiments were the following: three different pressures of 0.5 x 106, 0.8 x 106 and 

1.0 x 106 Pa and a constant feed flow rate 1.01 x 10-4 m3js at room temperature. Pure 

water permeability was measured before and after the measurement of the dynamic 

permeability of each inorganic solution to evaluate membrane integrity in terms of 

permeabili ty. 

Between each NF run with a solution (K2S04 (at different pHs) and acidic 

solution), the membranes were washed by circulating distilled water with a electric 
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conductivity of ~ 2 ~IS/ cm, for approximately half an hour without pressure in order ta 

minimize experimental errors. 

The permeate flux values for pure water and the inorganic solutions, including 

the leachate, at different operating pressures were measured and plotted against applied 

pressure. The slope of the curve (straight line) was the value to determine the membrane 

permeabilities. 

A,pw was calculated using the following equation: 

Equation 4.1 

Where Ji is water viscosity, JI' is water permeate flux and M is the transmembrane 

pressure. 

J p was defined by: 

Where QI' is the permeate flow rate and Sm is the surface of the membrane. 

4.3.3.3 Membrane dynamic permeability (Aid ) 

Following the determination of the water permeability, the dynamic 

permeability and selectivity of each membrane was measured in the following order 
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K2S04 + H2S04 at pH 6.7,3.7 and 2.2, and the principal solution of this study, the acidic 

leachate solution. The concentration of K2S04 was kept constant (1.1 x 10-2mollI). 

Ai" was calculated by the next equation [17]: 

A =f1J p
Equation 4.3 

id M 
e 

Where: 

Equation 4.4 ~ = M - L1TI 

Equation 4.5 L1TI = TI(X A2)- TI(X A3) 

Where L1~ is the effective pressure gradient and L1TI is the difference in 

osmotic pressure between the molar fraction of the concentrated boundary layer (X A2 ) 

and the permeate solutions (XA3)' 

When there is no concentration polarization on the surface of the membrane, 

X A2 tends towards X Al (molar fraction of the feed and in the reservoir), and, therefore, 

Me = Ma' L1Pa is the apparent gradient pressure. 

Thus, 

Equation 4.6 Ma = M - TI (X AI) + TI (XA3) 
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Consequently, 

The osmotic pressure for dilute solutions was calculated using the Van' t Hoff equation: 

Equation 4.8 TI = IiRTC 

where, Ii is tlle number of ions per molecule of solute, R is the universal gas constant, 

T is the absolute temperature, and C is the concentration of the inorganic solution 

(mollI). 

Rejection rate (f) was calculated using the foIIowing equation: 

Equation 4.9 

4.3.3.4 Membrane materials 

Two types of thin-film commercial nanofiltration membranes: Desal 5 and NF­

270 were studied for their permeation and ionic selectivity. Desal 5 manufactured by GE­

Osmonics (Minnetonka, MN, USA) is a polymerie membrane, in which a polyamide 

selective layer is supported on a polysuIfone layer (Bandini et al., 2005). NF-270 supplied 

by FilmTec Corporation (FilmTec Corporation, Dow Chemical Co., Midland, MI) is a 

semi-aromatic piperazine-based polyamide layer on top of a polysulphone micro-porous 

support reinforced with a polyester non-vowen backing layer. Supplementary details 

about the membranes characteristics are found in Table 4.1 (Hagmeyer and Gimbet 

1999; Tanninen and Nystrom, 2002). 
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Table 4.1 Characteristics of the membranes used in this study 

Membrane DesaI5 NF-27ü 

Manufactured GE-Osmonics Dow (FilmTec) 

Isoelectric point 4 3.3 

pH resistance (20°C) 2-11 3-10 

Temperature resistance 90 45 

Charge positive negative 

4.3.3.5 Experimental set-up 

The filtration experiments have been carried out at room temperature, in batch 

mode with recirculation of substances. The schematic representation of the equipment is 

illustra ted in Figure 4.1. 

In this investigation, the feed solution from the tank was pumped through 4 

different membrane cells (made of polyvinyl chloride (PVC)), obtaining itself a retentate 

that went back into the tank and a permeate that was collected into a beaker for 

permeate flux and rejection rate calculation. This permeate was not recirculated into the 

system. The effective membrane area was 1.26 x 10-3 m2. The same NF membranes were 

used in aIl experiments. 

This apparatus was designed to test different membranes using the same 

operating conditions and also to test solutions using different pHs. Additional details of 

the experimental set-up were presented and described in the investigation made by Noël 

et al. (2000). 
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2 

Figure 4.1 Schematic diagram of NF set-up 

1. feed tank, 2. pump, 3. manometer, 4. membrane ceIl, 5. permeate outlet, 

6. pressure valve, 7. flowmeter 

4.3.4 Reference solutes 

During membrane characterization, certified analytical grade K2S04 and H2S04 

were used, purchased From the Aldrich Chemical Company, Milwaukee, Wl. H2S04 was 

used in the experiments to decrease the pH. 

4.3.5 Analytical methods 

AlI the solutions coming from feed and permeate used during tlus study were 

determined by a conductivity meter (model CDM 81, Radiometer, Copenhagen, 

Denmark), a pH meter (Fisher Acumet model915, Pittsburgh, PA), and plasma emission 

spectroscopy with a simultaneous (ICP-AES), Varian model (Varian Canada, Inc., 

Mississauga, Ont.). Quality controIs were performed with certified liquid samples 
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(multi-elements standard, catalogue number 900-Q30-002, lot number SCOOl9251, SCP 

Science, Lasalle, Quebec) to ensure the conformity of the measurement apparatus. 

4.4 Results and discussion 

4.4.1 Characterization of the membranes 

4.4.1.1 Waterpermeability (A/PlV) 

lrùtial and final water permeability for the membranes is reported in Table 4.2. 

This permeability was measured at different b'ansmembrane pressures. As can be seen 

from Table 4.2, the membrane permeability is significantly different for the two 

membranes. The NF-270 membrane type exhibits higher permeate flux values compared 

to the Desal5 membrane. 

As presented in this table, NF-270 (6) and (7) showed a decrease in permeability 

of 28.2% and 36.8%, respectively. This behaviour suggests that the membranes 

underwent preferential sorption (irreversible phenomenon). 

On the other hand, it was observed that the Desal 5 membranes presented an 

increase in permeability over the initial values (Table 4.2). This data suggests that the 

electrolyte solutions contributed to the increase in membrane permeability (swollen 

effect) (Hamza et al., 1995). 

The NF-27ü membrane was more permeable during aIl the experiments than the 

Desal5, as seen from whole permeability results (Tables 4.2 and 4.3). 
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Table 4.2 Values of initial and final water permeability (Aipw) of the membranes 

Membrane Aipw (m) (x 10-14) 

Initial Final 

NF-270 (6) 2.55 1.83 

NF-270 (7) 2.47 1.56 

Desal5 (6) 0.72 0.88 

Desal5 (7) 0.67 0.79 

4.4.1.2 Evolution of the dynamic penneability ( A,,,) 

Generally it is observed for a membrane that in the presence of electrolyte 

solutions under the same operating conditions, the dynamic permeability (Ai") is lower 

than pure water permeability (A ipw )' This behaviour was presented for the NF-27ü 

membrane coupons (Tables 4.2 and 4.3). 

On the other hand, the Desal 5 membranes presented the opposite behaviour. It 

was observed that under the same operating conditions, the dynamic permeability was 

higher than pure water permeability (Tables 4.2 and 4.3). In this case the dynamic 

permeability increased as the electrolyte concentration increased (in function of pH). Tt 

seems that the membranes were dependent on the elecb'olyte solution. As presented in 

the investigation made by Lebrun and Xu, (1999), they proposed that the pores can 

suffer changes or dynamic changes due to the presence of ions in the solution. 
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Table 4.3 Values of dynamic permeability (Aid) 

Membrane Aid (m) (x 10-]4) 

K2S04 K2S04+ H2S04 K2S04+ H2S04 

(pH=2.9) (pH=2.32) 

NF-270 (6) 2.26 2.01 1.96 

NF-270 (7) 2.10 1.98 1.61 

Desal 5 (6) 0.83 0.93 1.15 

Desal5 (7) 0.77 0.85 1.01 

4.4.1.3 Ionie rejeetion 

Figures 4.2 to 4.5 iIIustrate the rejection of K+ and 5042- ions at different pHs. It 

can be seen from these figures that both membranes exhibited an excellent retention of 

sulphate and potassium ions at pH=6.76 (>95%) and good to medium retention at 

pH=2.9 and 2.32. 

In general it was observed that the rejection of 5042- and K+ decreased with the 

increasing of eIectrolyte concentration (in function of pH) (Figures 4.2 to 4.5). Similar 

data were obtained by the Desal 5 (6) and NF-270 (6) membrane coupons. 

As observed in these figures, the membrane retention was dependent on the 

electrolyte concentration of the feed solution. In this case higher rejection at lower feed 

concentration and lower rejection at higher feed concentration was observed, 

characteristic of charged membranes (Xu and Lebrun, 1999). 

For the Desal 5 membrane, generally similar retentions for S042- and K+ ions at 

the same pH were observed (Figures 4.2 and 4.3). This behaviour can be attributed to the 

DOlman exclusion phenomena, where these close retentions keep the electroneutrality of 

the solution on both sides of the membrane. Similar behaviour has been observed by 

sorne authors using different solutions (Ku et al., 2005; Mehiguene et al., 1999). 
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At pH=6.76 for NF-270, similar retentions for 5042- and K+ ions are also 

presented. As mentioned before, in arder to keep electroneutrality, 5042- and K+ are 

repelled by the membrane. However at pH < Ip (pH =2.9 and 2.32), as the membrane is 

charged positively, it is observed that the membrane repelled the co-ion (K+), and the 

counter-ions are rejected (5042-) (Figures 4.4 and 4.5). 
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Figure 4.3 K+ separation factor vs. apparent transmembrane pressure for the 
Desal 5 (7) membrane at different pHs. Salt concentration =1.1 x 10-2 

moljl; Qc = 0.32 m 3Js; 24 < T (oC) < 25 



• • 

90 

Figure 4.4 

Figure 4.5 

NF-270 (7) 

100% 

80% 
~ 

.s 
(,) 
CIl 60%-c: 
0 
:;; 
~ 
CIl 40%c- ~ 
CI> .------=,

1/) ----+- pH=6.7


N .. 
0 _-pH=2.9
en 20%
 

----.- pH=2.32
 

0% -t-------,------,-----.-----,-----,--------i 

2,OE+05 4,OE+05 6,OE+05 8,OE+05 1,OE+06 1,2E+06 1,4E+06 

6Pa (Pa) 

5042- separation factor vs. apparent transmembrane pressure for the 
NF-270 membrane (7) at different pHs. Salt concentration := 1.1 X 10-2 

mol/l; Qc = 0.32 m3/s; 24 < T (oC) < 25 

NF-270 (7) 

100% 

80% 
~ 

.s 
(,) 

CIl 60%-c: 
0 
:;;
 
~ 40%
 
CIl ----+- pH=6. 76 
c-
CI> 
1/) _pH=2.9 
~ 20% 

----.- pH=2.32 

0% +-------,----,----,..----.------,-----1 
2,OE+05 4,OE+05 6,OE+05 8,OE+05 1,OE+06 1,2E+06 1,4E+06 

~Pa (Pa) 

K+ separation factor vs. apparent transmembrane pressure for the NF­
270 membrane (7) at different pHs. Salt concentration := 1.1 X 10-2 molfl; 

Qc = 0.32 m3/s; 24 < T (oC) < 25 



91 

4.4.1.4 Acidic retention 

Figures 4.6 and 4.7 represent the evolution retention of H+ as a function of the 

applied pressure. From these figures, it can be seen that the membrane Desal 5 (7) 

presented the highest retention at pH=2.9 and lower retention of H+ at pH 6.7. As this 

membrane is charged negatively at pH< Ip, the high ion retention presented by it at low 

pH suggests that due ta the acidic solution, the protons are able ta neutralize the 

negative sites on the membrane surface, thus reducing the anion repulsion effect caused 

by the membrane surface charge (Mehiguene et al., 2000). On the other hand, the NF-27ü 

(7) membrane presented an average H+ retention. Figure 4.7 shows that an increase in 

pH results in an increase of membrane retention. It is assumed that the membrane 

surface charge becomes less negative as the pH increases. 
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Figure 4.6 

Figure 4.7 
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4.4.2 Soil washing treatment 

Soil washing has been widely used for many years as a technique for 

decontaminating soil. As mentioned before, this method is a water-based soil treatment 

that consists of the exboaction of organic and inorganic contaminants using a washing 

solution (Barona et al., 2001; Peters, 1999; Sikdar et al., 1998). Soil washing agents such as 

organic acids (ci tric acid, acetic acid, etc), chelating agents (EDTA, ADA, NTA, DTPA), 

oxidative agents (KMn04, H202, etc) and principally inorganic acids (H2S04, HO, HN03, 

etc), have been widely applied to extract metal ions from soil (Meunier et al., 2002; 

Peters, 1999; Tuin and Tels, 1991). The result after this method is a multi-component 

system mixture, characterized by richness in organic and principally inorganic 

compounds. 

Commonly the application of inorganic acids such as HCL, HN03, etc., or, as in 

this case, the use of H2S04, is done to remove metal ions from soils; however, the 

particular washing solution applied to the soil can depend on the metal involved, the 

specifie metal compound and the species involved in the removal (Peters, 1999). 

4.4.2.1 Leaching ofions with H2S04 

Values of the acidic leachate solution characterization before NF treatment are 

depicted in Table 4.4. The results reported in this table indicate that the acidic leachate 

contains a variety of ions, indicative of the effectiveness of the washing solu tion (H2S04). 

The electric conductivity presented by this solution principally came from the high 

concentration of H2S04. The leachate produced is a yellowish solution due to the 

presence of humic acids. This acidic solution is not subjected to filtration pre-treatment 

for the removal of any type of contaminants. 
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Table 4.4 Characterization of the acidic leachate solution before NF treatment 

Parameter 

pH 

ORP (mV) 

Conductivity (ms/ cm) 

TOC (mg/l) 

Ions (mol/l) 

H+ 

AS5+ 

B3+ 

Cr3+ 

Cu2+ 

Fe2+ 

K+ 

M g2+ 

Mn2+ 

Na+ 

Ni2+ 

Zn2+ 

Value 

3.15
 

451
 

3.36 

19.4 

7.08 X 10-1
 

1.82 x 10-3
 

5.30 x 10-2
 

3.60 x 10-3
 

9.76 x 10-2
 

2.09 X 10-1
 

6.73 X 10-1
 

5.92 

5.20 x 10-1
 

9.64 

1.09 x 10-2
 

7.71 X 10-1
 

2.47 X 10-2
 

3.26 X 10-1
 

7.87 X 10-1
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4.4.3 Membrane dynamic permeability of the acidic leachate solution 

As presented in Figure 4.8, the flux increased with increasing pressure with no 

linearity. This evolution clearly indicates that the membranes are dependent on the 

solution concentration. This trend is possibly due to the presence of the accumulation of 

inorganic and organic molecules and suspended macromolecules on the membrane 

surface. This behaviour was expected due to the high concentration of the solution 

measured by electric conductivity (Table 4.4). 

As can be seen from Table 4.5, the membranes perform differently. Membrane 

pore clogging by organic or inorganic compounds probably occurs particularly for the 

NF-270 membrane because the permeability was not recuperated after the run with 

deionized water. 

On the other hand, for the Desal 5 membrane, it was observed that the dynamic 

permeability increased comparing to pure water permeability (Table 4.5). As mentioned 

before, the pores can suffer changes or "dynamic changes" due to the presence of ions in 

the solution, thus producing an increase in permeability (Lebrun and Xu, 1999). This 

behaviour indicates that the dynamic permeability of this membrane is dependent on the 

electrolyte solution. Similar behaviour has been observed by some authors using 

different solutions (Lebrun and Xu, 1999; Noël et al., 2000). 
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Figure 4.8	 Permeate flux vs. effective pressure for the acidic leachate solution. pH 
=3.15, Qc = 0.32 m3/s; 24 < T (oC) < 25 

Table 4.5 Values of dynamic permeability (A;ti) and final water permeability (A;pw) 

Membrane Aipw, (m) Aiti, (m) A;pw, (m) final 

(x 10-14) (x 10-14) (x 10-14) 

NF-270 (6) 1.99 1.74	 1.83 

NF-270 (7) 1.71 1.52	 1.56 

Desal5 (6) 0.86 0.99	 0.88 

Desal5 (7) 0.76 0.92	 0.79 

4.4.4 Removal of metal ions: permeate quality 

The permeate quality is expressed in terms of membrane retention during the 

nanofiltration of the acidic leachate solution. In this case, for a11 membranes the permeate 

obtained was a clear and colourless solution with relatively low amounts of ions 

measured by ICP-AES. Table 4.6 exhibits the permeation results. As presented in this 
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table, in general divalent ions were better rejected than monovalent ions, a typical 

behaviour of charged membranes. 

As the feed pH can considerably influence the ion rejection during filtration 

processes due to the change of membrane surface charge, in the case of Desal 5 it seems 

tha t the good ion retention indicates tha t the increased protons (due to the low pH) in 

the acidic solution might neutralize the negative sites on the membrane surface. 

The high retention presented by NF-27ü can be explained by the charge of this 

membrane. In this case, the cations are rejected by the membrane charge, as this 

membrane is positively charged at pH< Ip. 

Those results present the efficacy of NF membranes in the treatment of soil washing 

solutions. 
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Table 4.6 Ionie separation factor of the acidic leachate solution 

Membrane Pressure Ion separation factor (%) 

(PSI) Cu2+ Fe2+ K+ Mg2+ Mn2+ Na+ 5042- Zn2+ 

NF-270 (6) 75 99 100 85 100 100 87 90 100 

110 99 100 100 100 99 78 83 99 

150 100 100 100 100 100 98 100 99 

NF-270 (7) 75 98 89 80 99 98 83 89 98 

110 100 100 100 100 100 98 100 99 

150 100 100 100 100 100 98 100 99 

Desal5 (6) 75 98 84 86 100 99 80 93 99 

110 98 100 69 100 99 62 89 100 

150 100 100 100 100 100 98 100 99 

Desal5 (7) 75 98 89 80 99 98 83 89 98 

110 100 100 100 100 100 98 100 99 

150 100 100 100 100 100 98 100 99 
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4.4.5 TOC analysis 

It is difficult to specify the type of organic contaminants present in the soil and at 

the same time in the acidic leachate solution. However, in this type of contaminated soil, 

one of the major components of the total organic carbon is composed of non-specifie 

humic-type substances principally humic acids such as tarmins, lignins, fulvic acids, etc. 

Figure 4.9 presents the removal of TOC retention as a function of the applied 

pressure. The result shows that all the membranes presented similar retentions (between 

65 and 90%). As mentioned before, due to the yellowish color in the feed solution (acidic 

leachate) given by humic acids and soils containing humic-type substances, it is assumed 

that this retention is due to the presence of those organic components and mainly by 

humic acids due to their chelating ability to bind different metal ions. 

100% ,-------------.----------, 

~ 80% 
... 
.8 
o 
.ll! 60% 
c 
g 
~ 
[ 40% 
QI 
VI 

(j 
o 
1­

20% ----+---- NF-270 (6) -.- Desal S (6) 

-A- Desal S (7) NF-270 (7) 

0% -+------,----.-----r---....,-----~---_1 

2,OE+OS 4,OE+OS 6,OE+OS 8,OE+OS 1,OE+06 1,2E+06 1,4E+06 

ôPa (Pa) 

Figure 4.9 TOC separation factor ('%) vs. apparent pressure for the acidic leachate 

solution. pH =3.15, Qc = 0.32 rn3/s; 24 < T (oC) < 25 
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4.4.6 H+ separation factor 

During the filb'ation of the acidic leachate solution, H+ retention increased with 

an increase in pressure for both membranes, showing negative retentions as depicted in 

Figure 4.10. As presented in this figure, the retention of H+ ions was slightly higher for 

the Desal 5 than for the NF-270 membrane. This behaviour suggests that in acidic 

conditions, the positive surface charge rejects cations, leading to enhanced permeation of 

acid (Tanninen et al., 2004). 

This negative proton retention when the membrane is positively charged has 

been investigated by several authors (Bandini et al., 2005; Childress and Elimelech, 2000; 

Hagmeyer and Gimbe11999; Tanninen and Nystrom, 2002) and this behaviour has been 

atb'ibuted to the higher mobility of the H+ compared to other cations in solution. This 

low retention of acid and the high retention of metal ions, suggest the possibility of acid 

recuperation through NF treatrnent. 

30% i;:::===============::;-------------l 
-+--- NF-270 (6) 

_Desal5 (6)20% 
-----6- Desal 5 (7) 

~- NF-270 (7) Ci 10% 
tî 
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g 0% +------.--__~=._-r=____:_rr__r_---.----_____r-----1 

~ 2,0 +05	 1,2E+06 1,4 +06.. 
g. -10% 
<Il
 

+::I:
 

-20% 

-30% J	 -' 

ôPa (Pa) 

Figure 4.10	 H+ separation factor (%) vs. apparent pressure for the acidic leachate 

solution. pH =3.15, Qc = 0.32 rn3/s; 24 < T (oC) < 25 
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4.4.7 Soil washing integrated to NF process 

Several studies, at both laboratory and indush'ial scale, have investigated the 

performance of the membrane process (Ra, NF, UF) on the separation of organic and 

inorganic pollutants from waste waters coming from soil treatments. These results have 

demonsh'ated the effectiveness of incorporating membrane processes into soil h'eatrnents 

(Peters, 1998, 1999; Linde and ]6nsson, 1995; Volchek et al., 2002). 

Soil washing techniques have been characterized to be an economical and 

feasible process due to the applica tion of effective and low cost chemicals (particularly 

the use of inorganic acids). The application of this method can lead to the reduction of 

the volume of hazardous materials and at the same time the transformation of 

contaminants to non-hazardous substances (Peters, 1999; Semer and Reddy, 1996). 

On the other hand the advantages of the application of NF membranes among 

other filtration processes not only are higher fluxes, low operating pressures, relatively 

low operation and maintenance cost but also higher removal efficiency of organic and 

inorganic components, reducing the volume of waste products and a possibility for acid 

reuse (Lu et al., 2002; Semer and Reddy, 1996; Volchek et al., 2002). Forthat reason, the 

combination of soil treatments in the NF process can bring about the removal and 

recovery of contaminants from a great variety of aqueous streams and a total water 

recirculation in the system, eliminating the negative problems related with the release of 

trace contaminants into the environment as a result of soil washing processes (Volchek et 

al., 2002). 
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4.5 Conclusions 

The removal of pollutants from soils is one of the most challenging 

environmental tasks. For that reason, this study was intended to evaluate two NF 

membranes for the recovery of ions coming from contaminated soil. The experimental 

results have successfully demonstrated that the use of the washing solution H2S04 has a 

high extraction efficiency in the removal of ions from contaminated soils. During the 

application of NF membranes in the treatrnent of the acidic leachate solution, the 

commercial membrane showed high ion selectivity. Additionally it demonsb'ated a good 

removal of TOC during the filtration experiment (65 to 90%). During the filb'ation 

experiments, the Desal 5 membrane demonstrated an increase in dynamic permeability, 

showing its dependence to the electrolyte solutions. On the other hand, the NF-270 

membrane presented an opposite behaviour: a decrease in dynamic permeability. These 

results indicate that the best candidate for the removal of metal ions was Desal 5, which 

presented good membrane permeability combined with good ion retention and acidic 

resistance. 

During this investigation it has been demonstrated that the application of 

nanofiltration processes will bring about the elimination of metal ions from waste 

waters, a possible recovery of acid during the process and a reduction of the amount of 

inorganic and organic waste. 
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Abbreviations and Symbols 

Pure water permeability of membrane, (m) 

Dynamic solution permeability of membrane, (m) 

c 

j,j' 

Concentration, (mollI) 

Overall and intrinsic separation factor separation, (dimensionless) 

lsoelectric point 

Solution permeate flux, (ml s) 

Molar concentration (moljl) 

Oxydoreduction potential, (mV) 

Pressure, (Pa) 

Apparent gradient pressure (Pa) 

Effective pressure gradient (Pa) 

Feed flow rate, (m3/s) 

Permeate flow rate, (m3/s) 

T 

TOC 

X 

Membrane area, (m2) 

Temperature, (oC) 

Total organic carbon, (mg.Odl) 

Molar fraction 

Molar fraction of the feed 

Molar fraction of the concentrated boundary layer 
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Molar fraction of the permeate 

Greek letters 

Gradient 

Ji Fluid viscosity, (Pa.s) 

TI Osmotic pressure, (Pa) 

Li Number of ions per molecule of solute 
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5.1 Abstract 

This research was conducted to integrate soil washing, nanofiltration membranes 

and electrochemical treatrnent as feasible methods for the remediation of contaminated 

soils. For this investigation, two acidic leachates (pH=2) were prepared using HCl and 

H2S04-NaCi as soil-washing agents. The results of the soil washing indicated that HCl 

and the combined H2S04-NaCl were effective for the extraction of ions resulting from a 

contaminated sail. lt was observed that both leachates presented similar chemical 

compositions. Following this procedure, the leachate solutions were pre-filtered by 

microfilb'ation, followed by nanofiltration using the Desal 5 membrane. The experiment 

results showed that nanofiltration membranes presented a high ion-retention rate for the 

two leachates. ln general, better retentions were observed with the leachate prepared 

with HCl than H2S04-NaCI. In order to treat the concenb'ate resulting from the 

nanofiltration treatrnent, it underwent an electrochemical procedure (elecb'ochemical 

deposition) as an alternative method for safe disposaI. The results showed a high 

reduction of toxic ions, such as Pb and Cu, from the solution. 

These three processes applied in conjunction not only indicated that the 

treatrnent of solutions heavily-contaminated with inorganic pollutants resulting from 

contaminated soils were feasible, but aIso suggested the possibility of treating different 

types of heavy industrial effluents. 

Keywords 

Soil washing; Leachate; Nanofiltration; Suifuric acid; Hydrochloric acid; Sodium 

chloride; Ion removal; Electrochemical treatrnent 
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5.2 Introduction 

The cleanup of soils contaminated with toxic ions has been one of the most 

difficult tasks, due to its toxicity and the long-lasting adsorption of ions by soils. For 

example, in Western Europe there are 1400 000 sites contaminated with inorganic 

and/or organic pollutants (ETCS, 1998). According to the US EPA, 31 000 sites in the 

United States are contaminated with metals, and according to the Ministère de 

l'Environnement et de la Faune du Québec (MEFQ, 2001), 5 125 sites are polluted in 

Canada, in the province of Quebec, 11% of which are contaminated with inorganic 

pollutants. 

Among many technologies used to decontaminate soils with inorganic 

pollutants, soil washing has been one of the most-used treatments because of its rapid 

remediation process (Tuin and Tels, 1990) and its low cost in comparison to other 

remediation techniques (Kuhlman and Greenfield, 1999). The successful application of 

this technique depends mainly on the use of the washing agent. The following chemicals 

are the most-used washing solutions for extracting metals from soils: 

(1) EDTA (Ethylenediaminetetraacetic acid) is the most commonly used chelate agent, 

due to its strong metal-complexing ability (Norvell, 1991). lts efficiency relies on the 

solubilization of poorly available metals in soils, such as Pb, Cr and Cu (Sarret et al., 

2001). lt is expensive and toxic, and presents a low level of biodegradability (Dirilgen, 

1998; Finzgar et al., 2006). (2) NTA (Nitrilotriacetic acid) is highly biodegradable under 

environmental conditions. lt is also toxic and considered a class 11 carcinogen (Peters, 

1999). It is not recommended for soil cleanup (Davis and Singh, 1995). (3) HCI 

(hydrochloric acid) is a very efficient reagent for the removal of Pb, Zn, Cd and, in sorne 

cases, Cu and Ni. HCl is the most-used acid in ion-metal recuperation (Tampouris et al., 

2004). Applied in-situ, HCI can alter soil properties, due to mineraI dissolution and 

increased mobility of contaminants (Neilson et al., 2003). It presents a low cost. (4) HN03 

(ni tric acid) is effective in the removal of inorganic pollutants from the soil. As an acid, it 

is lethal to soil micro-flora and destructive to the physical and chemical properties of 

soil, due to mineraI dissolution (Neilson et al., 2003). (5) H2S04 (sulphuric acid) is a very 
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efficient and economical reagent for the removal of ions from soil (Djedidi et al., 2005). 

(6) Citric acid is a nontoxic acid that forms relatively strong complexes. lt is easily 

biodegradable, but it presents a lower effectiveness in the removal of metal ions (Di 

Palma and Mecozzi, 2007). 

The problem with soil washing is the production of a complex solution that 

requires an additional treatment. Therefore, it is important to remove leached ions from 

soil leachates. 

Among the many liquid-separation techniques, nanofiltration (NF) is an 

attractive approach for the treatment and removal of contaminants from wastewaters. 

NF is able to separate different ions according to their valence, and it has the ability to 

remove inorganic substances through electrostatic interactions between the ions and 

membranes. With the application of NF, it is possible to obtain an outstanding quality of 

permeate. On the other hand, the concentrate represents a barrier, due to its high 

concentration of pol1utants. 

An alternative and effective process to reduce the levels of pollutants in the 

concentra te is an electrochemical treatment. This technique allows a decrease in the 

amount of metal1ic sludge produced, by generating compact and less voluminous 

sludge, thereby resulting in a cost-saving process (Rajeshwar and lbanez, 1997). This 

process can work at different pHs according to the eharacteristies of the eleetrodes 

(Subbaiah et al., 2002). lt has been amply applied to treat municipal and industrial 

effluents (Meunier et al., 2004). During the investigation performed by Djedidi et al. 

(2005) and Beauehesne et al. (2005), the effeetiveness of the eleetrochemical process in 

treating acidic soilleachates strongly-Ioaded with several ions was demonstrated. 

The objective of this study was to evaluate the performance of soil washing, 

nanofiltration membranes and the electroehemical treatment as remediation sh'ategies 

for soil and wastewater contaminated with toxie ions. 
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5.3 Soil methods 

5.3.1 Site description 

Soil samples used in the experiments were collected from the Pointe-aux-Lièvres 

site located in Quebec City (QC, Canada). It was chosen as a typical soil contaminated 

with inorganic and organic pollutants, due to industrial activities. The fraction of soil 

used was superior to 20 ~m and less than 2 mm (Meunier et al., 2004). Supplementary 

details about the soil can be found in the investigation carried out by Meunier et al., 

(2002). 

5.3.2 Washing procedure 

The extraction of metals from soils was performed using two different methods. 

•	 Hydrochloric acid (HCl). The leachate was prepared as follows: 2 kg of soil 

was added to 20 1 of water, agitated by a variable speed mixer at 800 rprn 

with a stainless steel propeIIer (SS-316L, Labcor Technical Sales, Montreal, 

Canada) fixed to a Caframo RZR50 rotor (Labcor Technical Sales). To this 

suspension, 640 ml of HCl (Fisher scientific, ASC reagent) was added until a 

pH of 2 was obtained. This leachate was agitated for about 2 h. A volume of 

20 ml of a polymer solution (1 g 1-1 of Percol E-10, an anionic polymer made 

of sodium acrylate and acrylamid copolymer, Ciba Specialty Chemicals 

Canada Inc., Mississauga, Canada) was added to facilitate the soIid/Iiquid 

separation. This leachate was filtered using Whatrnan no. 4 membrane 

(Whatrnan Bioscience Inc., Newton, MA, USA) under a vacuum to remove 

soil particles from the solution. 



114 

•	 Sulphuric acid and NaCl (HzS04-NaCI). HzS04 and NaCI were in 

combination, based on their successful application as a solubilized agent 

(Djedidi et al., 2005). To prepare the saline leachate, 6 kg of soil was added to 

18 1of water, agitated by a variable speed mixer at 800 rpm with a stainless 

steel propeller fixed to a Caframo RZR50 rotor. Subsequently, 6.5 kg of NaCI 

was added, followed by HzS04 (36 N) (Fisher scientific, ASC reagent) until a 

pH of 2 was obtained. This leachate was agitated for about 25 min. A volume 

of 5 ml of a polymer solution (1 g 1-1 of Percol E-10) was added to facilitate 

the settling. This leachate was passed through a Whatman no. 4 membrane 

under a vacuum. 

Following this procedure, the solutions were pre-filtered through microfiltration 

(MF) using a pore size of 2 ~m (GE-Osmonics, Minnetonka, MN, USA) for the removal of 

suspended solids and high-molecular-weight colloidal compounds to minimize NF 

membrane blocking. 
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5.4 Nanofiltration membrane 

The selected nanofiltration membrane was a Desal 5 manufactured by GE­

Osmonics. This membrane is a polymerie membrane, in which a polyamide selective 

layer is supported on a polysu1fone layer (Platt et al., 2004). According to the 

manufacturer, it is a positively-charged membrane, having an iso-electrie point of 4, a 

pH resistance (20 oC) between 2 and 11 (Hagmayer and Gimbel, 1998; Tanninen et al., 

2004) and a moleeular weight eut-off of the membrane of 200-300 Da. 

5.4.1 NF pilot-scale for sail washing experiment 

The performance of the tubular Desal 5 membrane was evaluated in a filtration 

equipment manufactured by Hayka Industry (Montreal, Canada). The equipment was 

made for operation in acidie conditions. The schematic diagram of the filtration 

equipment is illustrated in Figure 5.1. 

In this study, the experiments were realized in a bateh mode with recirculation of 

substances. Each filtration experiment was done with the same membrane. During the 

experiments, the feed solution from the tank was pumped to the membrane, obtaining a 

concentra te that was recycled the feed tank and a permeate that was not recirculated into 

the system (Fischer, 2006). The effective surface area of the membrane was 2 m2. 
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Figure 5.1 Schematic diagram of NF set-up 

1. Feed tank 2. Pump 3. Pressure valve 4. Tubular membrane 5. Permeate fiowmeter 

6. Permeate 7. Pressure valve 8. Concentrate fiowmeter 

5.4.2 Determination of water permeability (A ipw ) 

Membrane permeability was determined using distilled water that was 

measured before and after testing each inorganic solution. The pressures used were 3.45 

x 105,6.89 x 105 and 1.03 x 106 Pa with a constant recirculation fiow rate of 1.21 x 10-4 m3 

S-l at room temperature. 

The determination of water permeability (A,plI,)' dynamic permeability of 

solutions (A'd ) and ionic separation factor (f ) can be found in the investigation made 

by Lebrun and Xu, 1999. 
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5.4.3 Determination of dynamic permeability (A'J ) 

Dynamic permeability of the membranes was determined using the two acidic 

leachates. For the HCl leachate, the operating conditions - pressure and recirculation 

flow rate- were 1.72 x 106 Pa and 1.87 x 10-4 m3 S-l respectively. For the H2S04-NaCl 

leachate, the same pressure was used for the HCl run and a recirculation flow rate of 2.23 

x 10-4m3 S-l. Between each NF run, the membrane was washed with deionized water in 

order to avoid experimental errors. 

5.5 Elechochemical heatment 

The electrochemical treatment was conducted using the concentra te 

(approximately 1.5 1 of each leachate) coming from the NF treatment. For this 

experiment, it was used a batch electrolytic cell made of acrylic material with a 

dimension of 12 cm (width) x 12 cm (length) x 19 cm (depth). The electrode sets (anode 

and cathode) consisted of eight parallel pieces of metal plates each, having a surface area 

of 220 cm2, situated 1.5 cm apart and submerged in the soil leachate. Titanium coated 

with platinum (Ti/Pt) was used as the anode, whereas stainless steel (SS, 316L) was used 

as the cathode. Four anodes and four cathodes alternated in the electrode pack. The 

electrodes were installed on a perforated acrylic plate placed 2 cm from the bottom of the 

cell. Mixing in the cell was achieved by a Teflon-covered stirring bar installed between 

the perforated plate and the bottom of the ceU. A working volume varying from 1.3-1.51 

was used for ail experiments. Samples of 10 ml were drawn at 30 min intervals and 

monitored for pH and residual metal concentration. Between the assays, electrolytic cells 

(including the electrodes) were cleaned with 5% (v V-1) hydrochloric acid solution and 

then rubbed with a sponge and rinsed with tap water. 

The anode and cathode sets were connected to the negative and positive outlets 

of the DC power supply Xantrex XFR40-70 (Aca Tmetrix inc., Mississauga, Canada). The 

current of 3.0 A was held constant for each run with a retention time of 90 min. The 

electric current was divided between aU the electrodes. The anode and cathode 
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electrodes were not consumed during the electrolysis. The diagram of the electrolytic cell 

can be found in the investigation made by Beauchesne et al., (2005). 

5.6	 Analysis of the samples 

The conductivity of the solutions coming from the feed and permeate was 

determined by a conductivity meter (model CDM 81, Radiometer, Copenhagen, 

Denmark). The pH of the solutions was measured using a pH meter Fisher Acumet 

model 915 (Pittsburgh, PA, USA). The ions in solutions were measured by a Varian ICP­

AES (model Vista-AX, Varian Canada lnc., Mississauga, Canada). Quality controIs were 

performed with certified liquid samples (multi-elements standard, catalogue number 

900-Q30-002, lot number SC0019251, SCP Science, Lasalle, Canada) to ensure the 

conformity of the measurement apparatus. To determine the metal concentration in 

sludge resides (generated during electrolysis), the latter was first digested in HN03, HF, 

and HCl04 according to APHA et al. (1999). 

5.7	 Economie aspects 

The economic study of electrochemical treatrnent incorporated only energy 

consumption and sludge disposaI. The energy consumed was estimated at a cost of 0.06 

USD kW h-1. The disposaI cost for the residual sludge, including, transportation 

(excluding drying costs) were evaluated at 300 USD t-1 of dry residue by assuming that 

the residues were considered as hazardous materials. The total cost was assessed in 

terms of US. dollars (USD) spent per cubic meter of treated effluent (USD m-3). 
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5.8	 Results and discussion 

5.8.1	 Soil washing 

During this study, a pH of approximately 2 was preferred to extract the metals 

from the soil. The main mechanisms for metal removal under acidic conditions are 

dissolution and solubilization enhanced by low pH, and dissolution of specific soil 

components containing metals (Neale et al., 1997). 

The two leachates obtained during this investigation were complex solutions 

containing different inorganic pollutants, varying in concentration (Table 1). Both 

solutions presented a brownish-yellow color as a result of the natural organic matter 

dissolved in water. Principally, the high conductivity of H2S04-NaClleachate was partly 

due to the presence of NaCl added to the leachate (6.5 kg). As depicted in Table l, these 

results indicate that strong acids are not always able to remove a great amount of ions 

from the soil. Sorne acids tend to attract metal ions better than others. This tendency 

depends on many factors such as the nature of the soil, the solvent used, the ionic and 

acid concentration, the metal mobilization, and so on. This explains the low 

concentrations that can be observed in Table 5.1. Nevertheless, the high concentration of 

calcium compared with the other ions could be to the dissolution of carbonates that 

result in the high release of Ca in the solution (Di Palma and Ferrantelli, 2005). In 

addition, it can be observed from Table 5.1 that Pb, considered a toxic ion for the 

environment, obtained better results using H2S04-NaCl than HCl. In fact, sorne studies 

have demonstrated that NaCI is a good solubilization agent (Nedwed and Clifford, 2000; 

Djedidi et al., 2005). As the authors mentioned in their investigation, chIoride ions are 

able to react with Pb to form soluble salt complexes such as PbCl42., PbCh- or PbCh (aq). 

Also, the lower extraction presented by Pb could be to the fact to the higher humic 

substance content in the leachate solutions. COOH groups on humic substances have 

higher affinity for Pb than other groups on mineraI surfaces (HohI and Stumn, 1976). 
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5.8.2 Leachate treatment by NF membrane 

As both the HCI and H2S04-NaCl leachates were highly contaminated with 

inorganic contaminants, the samples were treated with a Desal 5 membrane in order ta 

study membrane performance in terms of ionic retention and membrane permeability. ft 

was observed that bath permeates consisted of clear and colourless solutions. 

Table 5.2 shows that both leachates contain a high salt concentration containing 

different ions. Conductivity was reduced by more than 50% for both leachates (HCI 

leachate final conductivity 6.1 mS/cm and H 2S04-NaCI 144 mS/cm), and many 

inorganic ions were retained by more than 65%. 
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Table 5.1 Chemical composition of HCl and HzS04-NaCl leachates before NF
 
treatment
 

Parameters HClleachate HzS04-NaClleachate
 

pH 2.4 2.2
 

ORP (mV) 545 514
 

Ions (moljl)
 

Ca 1.17 X 10-1 3.93 X 10-z
 

Na 2.06 X 10-3 3.38
 

S 9.53 X 10-4 5.97 X 10-z
 

Conductivity (mS/cm) 26.6 317
 

NH4 (mg/l) 149 156
 

H 3.98 x 10-3 6.31 X 10-3
 

Al 4.77 X 10-3 4.61 X 10-4
 

B 9.62 X 10-5 1.31 X 10-4
 

Ba 7.57 X 10-6 6.56 X 10-6
 

Cd 3.02 X 10-6 6.11 X 10-6
 

Co 3.52 X 10-6 2.58 X 10-6
 

Cr 4.78 X 10-6 1.87 X 10-6
 

Cu 1.38 X 10-4 1.54 X 10-4
 

Fe 4.26 X 10-5 1.44 X 10-5
 

K 8.19 X 10-4 7.61 X 10-3
 

Mg 8.47 X 10-3 9.80 X 10-3
 

Mn 6.39 X 10-4 1.55 X 10-3
 

Ni 1.22 x 10-5 2.31 X 10-5
 

P 4.24 X 10-4 1.94 X 10-4
 

Pb 4.10 X 10-4 2.29 X 10-3
 

Se 1.40 X 10-6 2.91 X 10-6
 

Si 3.49 X 10-3 1.22 X 10-3
 

Zn 1.33 X 10-3 3.41 X 10-3
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Table 5.2 Ionie separation factor (°ltl) for the HCl and H2S04-NaClleaehates 

Ion HClleaehate (%) H2S04-NaClleaehate (DilI) 

Initial conductivity (mS/cm) 26.6 317 

NH4 -1.3 -9.2 

H -127.9 35.7 

Al 98.4 91.7 

Ba 67.7 38.0 

Ca 84.2 42.6 

Cd -7.2 27.4 

Co 87.1 69.4 

Cr 97.2 88.3 

Cu 23.4 11.8 

Fe 98.2 96.7 

K -41.8 -0.4 

Mg 92.2 79.2 

Mn 86.2 66.6 

Na 5.6 5.8 

Ni 89.0 76.6 

Pb -107.2 35.8 

S 96.5 88.7 

Si 12.9 2.7 

Zn -4.1 19.8 
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5.8.2.1 HClleachate 

ln general, Table 5.2 shows that metals such as Co, Cr, Fe, Mn and Ni were better 

rejected than K and Na, which are relatively harmless for the environment. This low 

retention presented by K and Na were due to the characteristics of the Desal 5 

membrane. On the other hand, the high retention presented by sorne metals was due to 

its binding with functional groups, provoking the repulsion of co-ions by the membrane 

surface and the retention of counter-ions, satisfying Ù1e electroneutrality condition. Also, 

due to its binding the degree of retention rose due to a heightened repulsion by the 

membrane (sieving mechanism). Another reason that could influence the ion retention 

was the diffusion coefficient. Sorne ions, such as K+, Na+, Ca2+ and Mg2+ with diffusion 

coefficients of 1.96 x 109, 1.33 x 109, 0.79 x 109, 0.71 x 109 m2 s-1 respectively (Atkins, 

1990), show that the higher the diffusion coefficient, the lower the retention rate. 

Moreover, it was observed a negative rejection of H. This behaviour may be 

attribu ted to the Donnan effect. This effect was possibly responsible for Ù1e low retention 

presented by K and Na. This phenomenon was also observed in the investigation made 

by Volchek et al. (2002) and Bandini et al. (2005). The negative retention presented by 

sorne ions can be possible when mixed solutions that contain sufficient amounts of 

easily-retainable multivalent ions or organics are fiItered by NF (Gilron et al., 2001). ln 

addition, a negative retention for ammonia was observed. This retention was expected, 

considering the molecular weight eut-off of the membrane (200-300 g moI-1). According 

to Marttinen et al., (2002), the retention of ammonium saIts in NF depends on the size of 

the complex. 

5.8.2.2	 H2S04-NaClleachate 

Retention values for H2S04-NaCl after NF treatrnent are also depicted in Table 

5.2. As the retention of metal was strongly dependent on the pH, due to a stronger 

binding with the polymerie ligands, it was observed that sorne ions were retained by the 
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membrane in high percentage (for example Al, Cr, Fe, Mg and S). In this case the pH is 

able to protonate and deprotonate not only the functional groups of the membrane but 

also the molecules present in the solution (Teixeira et al., 2005). Consequently this will 

change the membrane charge, membrane pore size and consequently membrane 

performance (Teixeira et al., 2005). Additionally, this behavior can be attributed ta 

different mechanisms: (1) electrostatic repulsion between ions and the membrane surface 

charge; (2) changes in the solution viscosity (this solution presented high concentration 

of NaCl used during the soil washing); or (3) the diffusion coefficients (Childress and 

Elimelech, 2000). 

FinaIly, no negative retention value for H was observed. It was probably due ta 

the metal salt concentration that influenced the acid permeation. In addition, as this 

solution contained a large amount of S ions, which probably affected the filtration of Cu, 

K and Na ions through the membrane (Dorman exclusion phenomenon). 

AIso, NH4 presented a negative retention (-9.2 %). The retention of ammonium 

salts in NF depends on the size of the complex (Marttinen et al., 2002). 

5.8.2.3 Membrane integrity 

The integrity of the membrane was investigated by measuring pure water 

permeability before and after filtration of the two leachates. Table 5.3 presents the data 

obtained during the experiment. It was observed that the feed concentration of the twa 

leachates influenced the membrane permeability. In this case, a decrease in final water 

permeability of about 16.1 % was observed. This decreased could be due to the osmotic 

pressure build-up created by the retained salts, the accumulation of molecules and 

suspended macromolecules on the membrane surface, or the shielding of the membrane 

charge by the high ionic strength. Another factor that could influence the osmotic 

pressure build-up was the operating pressure. In this case, the applied operating 

pressure was 1.72 x 106 Pa (it was kept constant), which was not high enough ta 

avercome the osmotic pressure of the concentrated leachate. 
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During the run of H2S04-NaClleachate, a reduction in membrane permeability 

of 61.3% was observed. This behavior can be explained by the soluble inorganic 

compounds which become supersaturated and then precipitated, and which finally 

produced a membrane surface blockage. Principally NaCI influenced this phenomenon, 

because the concenh'ation of the salt (6.5 kg) added was higher of its solubility degree. 

The decline of the flux due to inorganic scaling could be dependent on the membrane 

properties, the module geometry, the feed characteristics, the type of solute and the 

operating conditions and the salts present in the solution (Shaalan, 2002). It is difficult to 

know what kind of salts provoked the salt precipitation for this leachate, but the most 

common salts found in inorganic scaling are calcium sulfate (CaS04), calcium carbonate 

(CaC03) and silica (Si02) (Lee and Lueptow, 2003). 
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Table 5.3 Values of permeability (Aipw) and dynamic permeability (Airi) of Desal 5 
membrane 

Parameters Values (x 10-14) 

Initial water permeability (A,pw) 1.55 

HCI leachate (Ad) 1.22 

Water permeability (Apw) 1.43 

0.95 

Water permeability (Alpw) 1.30 

5.8.3 Electrochemical treatment of the NF concentrate 

In arder ta maximize the removal of metal ions from the NF concenh'ate, the 

solutions were treated by electrochemical treatrnent using insoluble electrodes (titanium 

coated with platinum used as the anode and stainless steel used as the cathode). The 

chosen metals were Cu, Mn, Ni, Pb, and Zn, because they are compounds frequently 

found at many hazardous waste sites. 

Table 5.4 presents the experimental procedure applied during the assays, and 

Table 5.5 compares the initial and residual metal concentrations in H2S04-NaCI and HCI 

leachates. For example lead (537 mg/l) and zinc (195 mg/l) had the highest initial 

concentration in the H2S04-NaCI leachate. By comparison, 28 mg/lof Pb and 97 mg/lof 

Zn, were iTÙtially recorded in the HCI leachate. In both leachates, nickel had the lowest 

initial metal concentration. At the end of the treatrnent, more than 97% of Pb, Mn and Cu 

were reduced in H2S04-NaCI leachate, compared to 88% of Pb, 64% of Cu and 93% of 

Mn removed from HCI leachate. The yield of Zn removal from the two leachates was 

quite similar. In general, the electrochemical treatrnent was more effective in removing 

metals (Pb, Cu, Mn, and Ni) from the H2S04-NaCI leachate than from the HCI leachate. 

In fact, the best percentages of metal removal using the H2S04-NaCI leachate resulted 

from metal deposition on cathode electrodes (equation 5.1) and from the capacity of the 
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electrolytic cell to produce enough hydroxides ions (equation 5.2) to compensa te the 

acid-buffer and make the H2S04-NaCl leachate more alkaline compared to the HCI 

leachate. This is the reason why the pH increased from 2.74 to 7.24 in the H2S04-NaCI 

leachate and from 3.42 to 4.98 in the HClleachate. When the H2S04-NaClleachate was 

brought to pH=7.24, an amount of 5.70 kg/m3 of metallic sludge was produced in the 

electrolytic cell, compared to 0.93 kgf m produced while the HClleachate was brought to 

pH=4.98. 

Equation 5.1 MeZ+ + ze- ~ Me(s) 

Equation 5.2 2H20(l) +2e-~ H 2(g) +20H­

Where Me represents the metal (Pb, Cu, Mn, Ni or Zn) and z is the valence of the 

metal. When metals were formed and deposited on cathodes electrodes (cathodic 

deposition); a thin layer of metals was visually seen on the surface of cathode electrodes. 

When the pH gradually increased, metals were also removed by precipitation and co­

precipitation (equation 5.3): 

EquationS.3 MeZ+ + zOH - ~ Me(OH)Z(S) 

The high metallic sludge produced in the H2S04-NaCl leachate, was probably 

due to the high amount of NaCl (6.5 kg) added to produce this leachate. A high amount 

of mineraI salt in an effluent often induces a large quantity of solid generated during a 

physical-chemical treatment. It is worth noting that during elecb'olysis, sorne metallic 

complexes such as Mn02 and Pb02 could be formed in solution and precipitated out 

with sludge. Such compound formation resulted from Mn2+ and Pb2+ ions oxidation in 

solution by means of hypochlorous acid (HCIO) generated during electrolysis (equations 

5.4 and 5.5). 



128 

Equation 5.4 Mn 2++ HCIO + H+ --+ Mn 4++ CI- + H 
2 
0 

Equation 5.5 Pb 2++ HelO + H+ --+ Pb4+ + cr + H20 

Once oxidized, manganese and lead react with hydroxide ions in solution forming Mn02 

and Pb02, respectively (equations 5.6 and 5.7). 

Equation 5.6 Mn4++ 2H20 --+ Mn02 + 4H+ 

Equation 5.7 Pb4+ + 2H20 --+ Pb02 + 4H+ 

In fact, HClO formation resulted from chIoride ions oxidation at the anode 

(Ti/Pt). It is well-known that, hypochIorous acid production takes place on anode 

electrodes when the elecrrolyte solution contains chIoride ions. This HClO formation, at 

the end of the electrolysis, could explain the relatively high oxidoreduction potential 

(ORP) values presented during HCl (1020 mV) and H2S04-NaCl (873 mV) leachate 

treatment. Before treatment, 332 mV and 346 mV values were respectively measured 

(Table 5.4). 

Fig. 5.2 shows the change in pH during the treatment of the H2S04-NaCl and the 

HClleachates, and Figs 5.3 and 5.4 compare the C/Co ratio against time (Co and C are 

respectively the initial and residual metal concentration in the leachates). It took 60 min 

for the H2S04-NaClleachate to reach a pH around 7.0, whereas 90 min was required to 

slightly increase the pH to 4.0 in the HClleachate. The HClleachate was less sensitive to 

pH variation than the H2S04-NaCl leachate. Thus, during the first 60 min of the 

treatment, the decrease in the C/Co ratio in the HClleachate was mainly attributed ta 

cathodic reduction (Fig. 5.3), the pH was stable during this period. However, aver 60 

min of treatment, the pH slightly increased and a small fraction of metal precipitated as 

metallic sludge. Fig. 5.3 also shows that Pb and Mn were the easiest metals to remove 

from the HCl Ieachate, followed by Cu, while Ni and Zn were the most difficult metals 

to remove from the solution. According to the Electrochemical Motive Force (EMF) 
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series, the arder of metals deposition should be as follows: Cu > Pb > Ni > Zn > Mn 

(Bard et al., 1985; Vanysek, 2006). However, this order of metal deposition can be 

influenced by many parameters, such as the poIlutant concentration, the redox potential 

of the poIlu tant, competitive cathode reactions and the affinity existing between the 

poIlu tant and cathode electrodes, etc. In addition during an electrochemical treatment, as 

the concentration of poIlu tant increases in the solution, the depurative efficiency 

increases (Persin et Rumeau, 1989; Meunier et al., 2004). By comparison, for the H2S04­

NaCl leachate (Fig. 5.4), Ni and Zn remained the most difficult metals to remove from 

the solution, while Pb, Cu, and Mn were easily reduced. The CICo ratio decreased faster 

than in the HCl leachate treatment. The maximum decrease of CICo was obtained 

between 30 ta 60 min, followed by a steady state or a slight decrease. However, when the 

pH increased from 2.7 to 4.9 after 30 min of treatment, the residual metals started 

precipitating out. With a 60 min of treatment period was reached the optimum metal 

removal, the energy consumption should be reduced by stopping the treatment at this 

time while treating H2S04-NaClleachate. 

Table 5.5 presents the yields of metal precipitation, the yields of deposited-metal 

and the yields of remained-metal in solution. The amount of metal retained on the 

cathode electrodes, was calculated by a mass balance between the initial and the final 

state: 

Equation 5.8 Mini =Mdep + Mres + j\;j pre 

Where, Mint (mg) is the amount of initial metal in solution (before treatrnent), 

Mres (mg) is the amount of residual metal in solution (after treatment), Mpre (mg) is the 

amount of metal in sludge residues, and Mdep (mg) is the amount of metal deposited on 

the cathode electrodes. The best performance of metals reduced on the cathode 

electrodes were recorded during the HClleachate treatrnent, more than 50% of Mn and 

Pb was formed and deposited on the cathode electrodes, followed by 35% of Zn and Cu, 
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and 25% of Ni. By comparison, using H2S04-NaClleachate, metals were mainly removed 

by electrochemical precipitation; more than 80% of Pb, Cu and Mn were precipitated as 

sludge, follow by 69% of Ni and 6.3% of Zn. Less than 30% of metals (Pb, Cu, Mn, Ni and 

Zn) were deposited on cathode electrodes while treating H2S04-NaClleachate. 

AIso, it was compared the cost of electrochemical h-eatment while treating 

H2S04-NaClleachate versus the HClleachate. The treahnent of the H2S04-NaClleachate 

involved a total cost of 2.48 USD per cubic meter of treated leachate, compared to 1.05 

USD m-3 recorded during the treahnent of the HCl leachate. These costs included only, 

energy consumption and metallic sludge disposaI. The energy consumed was estimated 

at a cost of 0.06 USD kW h-l , and the disposaI cost for the metal1ic sludge including 

transportation and charges for hazardous waste disposaI, was evaluated at 300 USD rI. 
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Table 5.4 Metal recovery from NF concentrates using electrochemical treatment 

Parameters 

Volume treated (1)
 

Current intensity (A)
 
Treatrnent time (min)
 

Initial pH
 
Final pH
 
Conductivity (mS/cm)
 

Initial ORP (mV)
 

Final ORP (mV)
 

Energy consumption (kWh m-3)
 

Metallic sludge (kg/m3)
 

Energy cost (USD m-3)
 

Sludge disposaI cost (USD m-3)
 

Energy and disposaI cost (USD m-3)
 

Removal yields eyo)
 
Pb 

Cu 

Mn 

Ni 

Zn 
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99
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Table 5.5 Distribution of the metals after electrochemical treatment 

Parameters HCl-Ieachate H2S04-NaClleachate 
Pb Cu Mn Ni Zn Pb Cu Mn Ni Zn 

Solution 

Initial metal cane. (mg/l) 27.7 59.3 69.1 1.90 96.6 537 22.7 124 3.20 195 

Residual metal cane. (mg/l) 3.32 21.3 4.90 1.31 60.3 7.28 0.50 1.38 0.51 136 

Initial metal (mg) (Mint) 41.6 89.0 104 2.80 145 698 29.5 161 4.20 254 

Residual metal (mg) (Mres) 4.81 30.7 7.11 1.90 87.4 9.09 0.61 1.73 0.64 170 

Metal fraction (%) 11.6 31.6 6.90 67.7 60.3 1.30 2.10 1.10 15.3 67.1 

Metallic sludge residues 

-
Metal cane. (mg/g) 11.4 20.3 24.9 0.16 5.59 87.8 3.39 19.3 0.41 2.29 

Metal precipitated (mg) (Mpre) 15.4 27.3 33.3 0.20 7.50 616 23.9 136 2.90 16.1 

Metal fraction (%) 37.0 30.7 32.4 7.50 5.20 88.3 80.9 84.2 68.5 6.30 

Elech·ode surface (cathode) 

Metal deposited (mg) (Mdep) 21.4 30.9 63.0 0.7 49.9 72.5 5.00 23.7 0.60 67.4 

Metal fraction (%) 51.4 34.7 60.8 24.8 34.5 10.4 17.1 14.7 12.2 26.6 
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Figure 5.3 Metal removal from HClleachate using electrochemical treatment 
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5.9 Conclusions 

The laboratory experiments presented herein have demonstrated that soil 

waslùng, nanofiltration membranes and elecb'ochemical recovery are promising 

methods for the remediation of soils contaminated with metal ions. Soil-washing results 

demonstrated the effectiveness of the waslùng agents (HCI and H2S04-NaCI) on the 

removal of pollutants from contaminated sail. For both leachates it was observed similar 

chemical compositions. The NF treabnent presented good ion separation for both 

leachates and also negative retention of sorne ions due to the Donnan effect, wlùch 

affected the retention of monovalent ions. However higher ion retentions rates were 

observed using the HClleachate. 

Finally, the electrochemical deposition demonstrated the feasibility of treating 

the NF treabnent concentrate. This process showed a good reduction of Pb, Mn and Cu, 

approximately 97%, in the H2S04-NaClleachate, compared to a reduction of 88% of Pb, 

64% of Cu and 93% of Mn removed from the HClleacha te. 

The next step of tlùs work should be the study of the treatment of both leachates 

(HCI leachate and H2S04-NaCl leachate) using electrocoagulation process. Then, an 

economical study should be carried out to critically demonstrate the economical 

advantage of electroreduction application (induding cost energy, metallic residues 

disposaI cost and the cost required to built the electrochemical reactor) compared to 

elecb·ocoagulation. 
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Abbreviations and Symbols 

A Amperes 

A'PlV Pure water permeability of membrane (m) 

A'd Dynamic solution permeability of membrane (m) 

TOC Total organic carbon (mg 02/1) 

j,!, Overall and intrinsic separation factor (dimensionless) 

J p Solution permeate flux (mis) 

M Molar concentration (mol/l) 

ORP Oxydoreduction potential (mV) 

P Pressure (Pa) 

Q, Feed flow ra te (m31s) 

Qp Permeate flow rate (m3/s) 

rpm Rotations per minute 

Sm Membrane area (m2) 

T Temperature (oC) 

USD United States Dollars 

X Molar fraction 
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Greek letters 

~ Gradient 

Ji Fluid viscosity (Pa.s) 

TI Osmotic pressure (Pa) 

L, Number of ions per molecule of solute 
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CHAPTER VI 

GENERAL DISCUSSION 

Research conducted in the past few years has demonstrated that the combination 

of soil washing and membrane filtration, such as NF membranes, can be advantageous 

thanks to the possibility of accelerating the extraction of pollutants from the soil, 

reducing the amount of liquid wastes produced du ring soil washing and recuperating 

reagents (ex. the inorganic acids) used to extract metals from soil. However, to reach this 

point, it is necessary to apply effective washing agents that produce satisfactory results 

in the extraction of metals from the soil as weil as a good membrane filtration that will 

be able to decontaminate the leachate without decreasing its flux. With this in mind, this 

investigation explored different topics, such as effectiveness of the washing solutions, 

effect of the solution pH on the membrane, membrane performance and it is introduced 

a new technology: electrochemical treatment in order to treat the concentra te coming 

from the nanofiltration treatment. Hence, the discussion from this research is 

summarized below. 

6.1 Soil washing 

A variety of remediation methods have been employed for soil dean-up with 

toxie metals. Among a11 of them, soil washing is particularly effective in removing metals 

from soils (Mulligan et al., 2001). 

Our experimental results demonstrated that soil washing using inorganic agents 

(at low pH) can facilitate the metal extraction, because sorne metals can precipitate at a 

high pH. This removal can be dependent on many factors, such as target pollutants, soil, 

concentration and type of acid used. This extraction is controlled by the dissolution of 

the metal-mineraI bond, followed by the dispersion of the poilu tant metal in the washing 
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liquid. However, the application of strong acids does not show their extraction capacity. 

Sorne acids tend to attract metal ions better than others. For that reason, it was observed 

that sorne metals were better extracted under the influence of HCl, H2S04 or the 

combination of H2S04-NaCl. Generally, H2S04 presented a better extraction capacity, 

compared with HCl. Many studies had used HCl at different concentrations to exh'act 

metals contained in soil, and showed excellent performance especially in the case of Pb 

and Zn (Davis and Singh, 1995; Nael et al., 1997; Reed et al., 1996; Tokunaga and 

Toshikatsu, 2002; Van Benschoten et al., 1997). On the other hand, for H2S04, few studies 

have been conducted regarding the application of soil washing (Moutsatsou et al., 2006; 

Tokunaga and Toshikatsu, 2002). For the application of the combined H2S04-NaCl as a 

washing agent, the results demonstrated a slight improvement in the removal efficiency 

of sorne ions, such as Pb, Fe, K and Mn, compared to the HCl leachate. Removing Pb 

from soils was particularly important because it is a contaminant well-known to bind 

sh'ongly to soil surfaces and inner-layer surfaces complexed with mineral-surface oxides 

(VanBenschoten et al., 1997). ln our investigation, a higher Pb concentration was 

observed using H2S04-NaCl. This behaviour was probably due to the presence of the 

NaCl salt that is a good solubiIization agent, due to its capacity to form chloride ions 

with different metals and to form soluble salt complexes particularly with Pb (Djedidi et 

al., 2005; Nedwed and Clifford, 2000). 

6.2 Membrane filtration 

During this investigation, it was observed a reduction of the volume of 

contaminated water and low concentration of toxic metals in the permeate, which 

contribute to be a cost-effective and competitive technology. Conversely, it was observed 

membrane fouling that helped to decrease the membrane performance and probably for 

future membrane use to increase membrane operation cost. It is important to note that 

few studies have been made in order to investigate soil washing in conjunction with 

membrane process. 
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Due to the solution pH, it was observed that the membranes became positively­

charged in acidic conditions, thus attracting anions and rejecting cations. For that reason, 

as the membrane was highly-affected by the solution, the charge formation on the 

membrane surface became relevant in determining rejection properties. Several studies 

have demonstrated that in binary and multicomponent systems, the membrane's 

performance is influenced not only by the concentration of ions, but also by the acidic 

characteristics existing in the feed solutions (Childress and Elimelech, 1996; Hagmeyer 

and Gimbel, 1998; Lipp et al., 1994; Nystr6m et al., 1995). In the case of H+ ion, a negative 

rejection for the two leachates was observed, while metal salts were retained in order to 

obtain electroneutrality. This behaviour suggested the higher mobility of H+, compared 

to other cations in solution, and also suggest the possibility to recuperate the acid in NF 

h-eatment. 

Finally when the H2S04-NaCl solution was filtered, a salt precipitation (scale 

formation or crystallization fouling) was observed in the filtration system. This 

behaviour was due to the amount of salt added to the solution (6.5 Kg). The scales 

precipitated from the feed stream onto the membrane surface. As the feed solution was 

ten times more concentrated, this precipitation was likely due to sorne sparingly soluble 

salts that became supersaturated during the NF process, causing a scale precipitation 

problem. This precipitation provoked a decrease in the membrane permeability, 

membrane rejection and possibly membrane lifespan. Sorne experimentaI studies have 

demonstrated that the major components of scaling are calcium carbonate, calcium 

sulfate, silica, calcium phosphate and barium sulphate in addition to ferric and 

aluminum hydroxides (Bremere et al., 1999; Dydo et al., 2004; Van de Lisdonk et al., 2000). 

As in this case, the presence of these multivalent ions probably blocked the membrane's 

pores. Another factor that could have affected the scale formation was the operating 

conditions. However, scarce information was found regarding how the effect of the 

operating conditions in membrane scale formation plays an important role in membrane 

performance. 
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6.3 Electrolytic treatment 

This process effectively removed metals from the waste solution and reduced the 

amount of metallic sludge produced by generating compact and less voluminous sludge, 

resulting in a cost saving. The best percentages of metal removal using the H2S04-NaCl 

leachate resulted from metal deposition on cathode electrodes and from the capacity of 

the electrolytic cell to produce enough hydroxides ions to compensate the acid-buffer 

and make the H2S04-NaClleachate more alkaline compared to the HClleachate. 

In addition, it was interesting to see that electrochemical treatment is an 

economically competitive alternative. The treatment cost of the two leachates was 

compared in terms of energy consumption and metallic sludge disposaI. The treatment 

cost of the H2S04-NaCl leachate was $2.48 USD per cubic meter of treated leachate, 

compared with $1.05 USD m-3 for the HClleachate. 
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6.4 Contributions to the knowledge 

The next contributions fulfill in part the main objective of this research that was 

the application of a membrane process for the removal of metal ions resulting from an 

acidic leachate produced during soil decontamination. 

Based on the results from different experiments, this research work offers the following 

contributions: 

•	 This project is one of the very first applications of a combined treatment such 

as soil washing, nanofiltration membrane and electrochemical treatment in 

order to treat a metal-contaminated soil. Also the innovative application of 

the electrochemical treatment was used to prevent secondary contamination 

resulting from the NF concentrate; 

•	 This experiment offers the possibility to establish most favorable conditions 

for membrane operations in order to treat charged effluents. 
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6.5 Recommendation for future works 

Based on the experience of this research, the following recommendations can be 

made for future studies: 

•	 Determination parameters of soil washing such as effective physical sizing 

for the removal of pollutants, as weil as types and concentration of washing 

agents in order to compare the efficiency of washing agents and at different 

concentra tions; 

•	 Recuperation and recycling of the acid applied to extract the ions using 

membrane filtration; 

•	 Investigation of the membrane surface charge as a function of pH in order ta 

understand membrane charge (Zeta potential studies); 

•	 Morphology studies of the soil in order to investigate the presence of 

different metal complexes; 

•	 Although this investigation has been conducted on a laboratory scale, pilot 

studies are needed to quantify the overall treatment cost associated with the 

proposed trea tments. 
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CHAPTER VII 

CONCLUSIONS 

The removals of metals ion from a contaminated soil induced by different 

teclmologies were investigated. The experimental results demonstrated that the 

teclmologies used d uring this investigation were simple methods and effective in the 

minimization and recuperation of toxic metals. Consequently, these teclmologies are 

example of sustainable environmentally friendly teclmologies, because metals were 

recovered safely without environmental contamination. 

Firstly, during the soil washing treatrnent, it was observed that H2S04 presented 

a better extraction capacity, compared with Hel. On the other hand the combined 

H2S04-NaCl as a washing agent, the results showed a slight increase in the removal 

efficiency of sorne ions. 

Secondly, the membrane filtration showed a reduction of the volume of 

contaminated water and low concentration of toxic metals in the permeate, which 

contribute to be competitive and a cost-effective technology. ln contrast, it was observed 

an irreversible permeability, which helped to decrease the membrane performance and 

membrane life. 

Finally, the electrochemical deposition demonstrated the feasibiIity of treating 

the NF concentrate. This process showed a good reduction of Pb, Mn and Cu, 

approximately 97%, in the H2S04-NaCl leachate, compared to the Hel leachate. This 

teclmology presented low cost. 
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The processes presented in this investigation can be applied not only ta 

decontaminate leachates produced by soil-washing techniques, but also ta 

decontaminate wastewaters having similar and more complex mixtures of poIIutants, 

resulting from waste from industrial, municipal, or groundwater origins. 


