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RÉSUM É 

Le système nerveux est un composant fo nd amenta l chez les vertébrés qui implique un 
réseau compl exe de gènes régul ateurs (GRN). Sa mi se en pl ace commence avec 
l' inducti on du neuroectoderme par l' acti v ité des s ignaux Wnt, FGF et BM P le long de 
l' axe antéro-postéri eur nouve ll ement fo rmé. Plusieurs signaux transcripti onne ls et 
morphogén iques coopèrent pour indu ire l' in vagi nati on du neuroectoderme 
ventra lement afin de fo rmer le tube neural et la crête neura le qui donneront na issance, 
respecti veme nt, a u système nerveux central et a u système nerveux périphérique . Le 
neuroectoderme postérieur possède son unique lot de molécules de signa li sati on et 
toute perturbati on dans les évènements précoce de son déve loppement entra îne un 
groupe de maladi es et ma lfo rmations congénita les di st inct. L ' utilisation de modè les 
transgéniques murins est une faço n idéa le de comprendre les acti v ités 
transcriptionnell es et morphogéniques dans cette région. No us proposons deux 
modèles basés sur les facteurs de transcription de la fa mill e Cdx- essenti e ls pour le 
développement postéri eur de 1 ' embryo n, et des acteurs majeurs dans le 
développement de la crête neura le (Sanchez-Ferras et a l. , 2014; Sanchez-Ferras et a l. , 
201 2). Le premier sera it un modè le pour l' anoma li e qui pourra it être entra înée par la 
surexpress ion condi tionne lle du gène Cdxl et nous permettra it a ins i de mi eux 
comprendre le rô le de ce gène dans les cancers déri vés des cellules de la crête 
neurale. A ce j our, un criblage par PCR nous a permi s d ' identifie r des ce llul es 
souches po si ti v es pour 1' in tégration d ' une cassette Cdx 1 ma is une confi rmat ion par 
southern blot es t nécessa ire. Concernant la deuxième souri s transgénique, e lle 
représente un modèle unique pour étudi er les évènements précoces dans le 
neuroectoderme postér ieur. En effet, e lle est basée sur 1' uti 1 isatio n de 1 ' enhancer 
(NSE) de Cdx2 qui permet de générer une li gnée transgénique avec une inducti on 
spécifique au tube neura l via la technique Cre-LoxP. Cependant, Cdx2N SE s ' es t 
révélée n' être que partie ll ement acti ve dans le mésoderme. Cette acti v ité 
mésoderm ale étant mineure, il sera it poss ibl e de reti re r les é léments non-neuraux de 
NSE afin d ' obtenir une acti v ité enti èrement neurale. Pour déterminer la nature de 
l' acti v ité des di fférents é léments deNSE, des essa is luc ifé rase ont été effectués par 
co-transfecti on du facteur pro-neura l Sox2 et d ' une proté ine de fusion Lefl -~caténine 

agissant comme effecteur de la vo ie Wnt, ces deux derniers étant importants pour le 
mainti en de l' identité neuroectoderm ale postéri eure. Les résul tats ont montré que 
NSE est régul é par Wnt et Sox2 de manière sy nerg istique, ma is les é léments non­
neuraux reste nt à identifie r. 

Mots-clés: GRN, neuroectoderme, postér ieur, déve loppement, Cdx, régul ati on, outil s 

----- --------
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AB STRACT 

The nervo us system is a fundamental feature of vertebrates whose fo rmation invo lves 
a compl ex gene regulato ry netwo rk (GRN). The process can be sa id to comm ence 
w ith the inducti on of the neuroectoderm by Wnt, FGF and BMP activ ity a long the 
newly fo rmed anterior-poster ior ax is. Severa! transcriptiona l and morphogeni e s igna is 
in concerted action interna lize the neuroectoderm ventra lly where it beco mes the 
neura l tube and neural crest, the precursors of the central and peripheral nervo us 
system, respecti ve ly. The posterio r end of the neuroectoderm has its own unique set 
of s igna lling mo lecules and di sruptions in the ea rly events in thi s region engend er a 
di stinct set of congenita l di seases and ma lfo rmations. One way to und erstand the 
transcriptional and morphogenie acti vity in thi s poste rior reg ion is through the use of 
mo use mode ! s. Described are two proposed mo use systems based on the genes of the 
Cdx fa mil y of transcription factors- important fo r posteri or embryonic deve lopment, 
and key players in neura l c rest deve lopment (Sanchez-Ferras et a l. , 2014 ; Sanchez­
Ferras et a l. , 2012). The first would serve as a mode! for the potenti al pathogenes is 
brought on by Cdxl conditi ona l overexpress ion, in particul ar its potenti al ro le in the 
oncogenes is of neural crest ce l! de ri ved cancers. So fa r, pos iti ve embryoni c stem ce l! 
c lones w ith the Cdx l overexpress ion cassette have been identifi ed v ia a preliminary 
PCR screen but require confirmation by southern blot. T he second mouse mode! 
would take advantage of a modifi ed neural spec ifie enhancer of Cdx2 to generate a 
t ruly neural spec ifi e Cre driver line fo r the posteri or ne uroectoderm, a unique and 
useful mode ! for study ing the ea rly events in the posteri or neuroectoderm. Tniti a lly 
considered as entirely neura l spec ifi e (Wang and Shashikant, 2007), a Cre mouse line 
dri ven by the Cdx2NSE later revea led parti a l activ ity in the mesoderm as we il 
(Coutaud and Pilon, 201 3). S ince gene express ion was minor in the mesoderm, it 
seems conce ivable that the mesoderm express ion can be removed, resulting in true 
neura l spec ifie express ion. To do thi s the non-neura l specifi e e lements in Cdx2N SE 
sequence have to be ide ntifi ed and e ither removed or made non-functi ona l. To thi s 
end, lucife rase assays were carried out via co-transfecting ne ura l Sox2 and Wnt 
effectors Lefl-~catenin . Both are important for mainta ining posteri or neuroectoderm 
identity. Results show the N SE is regul ated by the synergy of Wnt acti v ity and Sox2 . 
However, the non-neura l e lements have yet to be identified. 

Keywords: GRN, neuroectoderm , posterior, deve lopment, Cdx, regul ation, too ls 





INTRODUCTION 

A hallmark of verte brate embryogenesis is the development of the nervo us system. 

T he process begins with the induction of the neuroectoderm across the midline. T he 

new structure is not only physica lly and behav ioura lly unique from the surrounding 

epidenna l ectoderm but has itse lf two di st inct doma ins: the neural plate bo rder 

(NPB), and the neura l plate (NP). T he NPBs, located on the latera l edges of the 

neuroectoderm , conta in the precursors of the neura l crest ce ll s (NCC). T he neura l 

pl ate, located between the N PBs, encompasses a relative ly large piece of 

neuroepithelium that becomes the nascent central nervous system via the fo rm ation of 

the neura l tube (NT) . T he neuroectoderm eventua lly invaginates ventra lly to fo rm the 

NT and NCC populati on. T he NCCs are a multipotent mi gratory group of ce ll s that 

can become peripheral neurons, g li a, pigment ce ll s, cartil age ce ll s and others (Garnett 

et a l., 20 12; Perri s, 1997; Stuh 1 mi lier and Garc ia-Castro, 20 12) . 

T he transit ion from ectoderm to neura l plate to multipotent ne ural crest ce lls requires 

a fin e ly tuned neura l crest-gene regul ato ry network (NC-G RN) whose interactions are 

constantly be ing updated, as they are made known (Amore et a l. , 2003; Hinman et a l. , 

2003; Olive ri et a l. , 2003; Van Otterl oo et a l. , 20 13). Work in rev is ing and updating 

th is regul atory gene netwo rk is va luable not just to improve our understanding of 

neurogenes is in genera l but how changes to this netwo rk can affect deve lopment. One 

way to shed sorne light on thi s gene network is through transgenic mouse mode ls. 

Mouse systems can prov id e in vivo ev idence on NC-GRN processes both spatia lly 

and temporally. Two proposed mouse models to be descr ibed in th is memo ire have 

the ir ori g in s in the cauda l end of deve lopment, as they are based on the genes 

encoding the caudally-restri cted Cdx family of transcriptio n fac tors. Cdx transcription 
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fac tors are known fo r the ir impo1tance in poste rior embryonic deve lopment, but have 

just recentl y been implicated in the initi a l steps of the caudal NC-GRN , acting as 

medi ators, inducers and co-operators of known players of the NC regulatory c ircuit 

(Sanchez-Ferras et a l. , 201 4; Sanchez-Ferras et a l. , 201 2) . 

The first mo use mode! wou ld e lucidate the effects of conditionally overexpress ing 

Cdxl . Overexpress ion targetin g NCC deve lopment is be li eved to result in the 

pathogenes is of NCC deri ved cancers, such as neuroblastoma. So far, potentia lly 

pos iti ve embryonic stem ce ll c lones possess ing the tra nsge ne construct have been 

identifi ed via a pre liminary PCR screen but verification by so uthern blot has of yet 

been inconclusive. Once veriti ed, mi cro injecti on and rea ring of transgeni c mice 

capable of inducible Cdx l overexpress ion co uld proceed . T he second mode! is 

env isioned to serve as a Cre dri ver line fo r Cre-LoxP sys tems a iming to study the 

early events of the posteri or neuroectoderm . Deve loped in the lab by Co utaud and 

Pilon (201 3), Cdx2N SE-Cre was des igned to prov ide Cre express ion so le ly in the 

posteri or neuroectoderm . Initia lly characterized as a neural specifie enhancer (NSE) 

by Wang and Shashikant (2007) it was later revealed to be parti a ll y active in non­

neura l mesoderma l ti ssue (Coutaud and Pilon, 20 13). To address this problem, it was 

imperative that the non-neura l cha racteri stics of the enhancer be identiti ed and 

removed or made non-functionai thereby preserving a true NSE capabie of be ing 

empl oyed as a Cre dri ver line for true neural spec ifi e induction in Cre-Lox P system s. 

To tes t the absence or presence of a neura l identity, luc ife rase assays were carried o ut 

on a Cdx2NSE-L uc reporte r, co-transfecting neura l Sox2 and Wnt sig na lling effecto rs 

Lefl-~catenin . Wnt is important fo r dete rmining posterior structures and regulating 

Cdx genes (Pi lo n et a l. , 2006; Prinos et a l. , 2001 ), and Sox2 is a neura l marker of the 

neuroectoderm (G raham et a l. , 2003; Uchikawa et a l. , 20 Il ). So fa r, results show the 

NSE is regul ated in synergy by combined W nt act ivity and Sox2 . However, we have 

not been able to identify the spec ifie areas of the NSE architecture responsibl e fo r the 

non-neural activity . 



CH APTER 1 

BAC KG ROUND 

1. 1 Vertebrate embryogenes is 

Fo llowing fe tt ilizat ion and c leavage, the third and fo urth major events in vertebrate 

development are gastrul ati on and neurul ation. Prior to gastrul ati on, the deve lo ping 

embryo is co mposed of a spheri cal layer of ce ll s. Gastrulat ion tra nsforms the s ing le 

layer into three di stinct germ layers. K nown as the ectoderm, mesoderrn , and 

endoderm , each of the three germ layers esta bi ishes the framewo rk of ali future · 

ti ssues . Moreover, gastrul ati on beg in s to shape the ante ri or-poste rio r (AP) axis and 

dorsa l midline (Tam and Behringer, 1997). T hese axes are defin ed by the fo rmati on 

of the mesoderm a l der ived notocho rd (Purves and Wi Il iams, 200 1 ). 

Neurulation (F igure l.l a) begins w ith the induct ion of the neural plate a lo ng the A P 

axis, fo llowed by spec ifica ti on of the neural pl ate borders (NPB). Housed in the N PB 

are the precursors of the neural crest ce ll s (NCC) . T he NP B separates the non-neural 

ectoderm (NNE) from the neuroectoderm . Next, the neuroectoderm beg ins to bend 

inward creating neura l fo lds at the lateral edges. Bending co ntinues inward as the 

neura l folds e levate; such is the degree of the bending that the resulting U-shape is 

ca ll ed the ne ura l groove. As the g roove lowers the neura l fo lds ri se, meet, fuse and 

c lose the loop. T he c losed loop, nowa cy linder of neuroepithe lia l ce ll s known as the 

neura l tube (NT) , is freed from the overly ing ectode rm . T he NT is co mpleted first in 

the middle of the AP axis, next extending crania ll y and cauda ll y; in bi rds and 
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mamma ls the NT fo nns first in crani a l then trunca l leve ls (F igure 1.1 b) (Co las and 

Schoenwo lf, 2001 ; Duband, 201 0) . 

A t the same time the NT fonns , NCCs are freed from what used to be the N PB and 

they begin to mi grate. NCCs exhibit an epithe lia l to mesenchyma l trans iti on (EMT) 

a ll owing them to de laminate fro m the neuroep ithe lium, and migrate on pathways that 

w ill spec ify their lineage. De laminati on and migrat ion occurs in a rostra l to cauda l 

wave, coinciding w ith NT formation , w ith the wave of migration ultimate ly fi !ling up 

four levels : crania l, cardi ac/vagal, truncal and sacra l (F igure 1.2) (Huang and Sa int­

Jeannet, 2004; Mason , 2007). In the trunk, NCCs mi grate a round the NT and through, 

and sometimes between, somites * and in the head through rhombomeres'i" (Ghysen, 

2003; Go mez et a l. , 2008; Guthrie and Lum sden, 199 1 ). Ventral regions are filled -up 

first before more dorsa l regions (Weston and Butler, 1966) and depending o n w here 

they end up, NCCs ca n g ive ri se- to a diverse set of de ri vatives of mesenchyma l, 

neurona l, secretory or p igmented identity (Table 1.1 ) (S imoes-Costa and Bronner, 

20 15; Smith and Schoenwo lf, 1997). 

There is sti Il some controversy as to w hether NCCs are fate -restricted prior to 

mi grat ion, during migrat ion or if they ma inta in multipotency (Jessen and Mirsky, 

2005; Kr isp in et a l. , 20 10; Mayor and Theveneau, 2013 ; McKinney et a l. , 20 13). In 

vitro experiments have demo nstrated the multipotent capac ity of NCCs to become 

multipl e derivatives such as neurons, osteoblasts and me lanocytes (Dupin et a l. , 20 1 0; 

Dupin and Sommer, 20 12) . Moreover, recent advances in in vivo cell-label ing and 

time-lapse imaging show that pre-migratory NCCs from any location a long the dorsa l 

• Segments of paraxial mesoderm th at wi ll form the skeleta l musc les, vertebraes and ribs 

t Neuromere segments that become the future hindbrai n 
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NT may contribute to multiple NC targets, and that microenvironment eues along the 

migration pathway may be responsible for specifying NCC fate (McKinney et al., 

2013). There is also recent evidence suggesting that most migratory NCCs are 

multipotent and only a few in the population are fate-restricted (Baggiolini et al., 

2015). 
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Figure 1.1 Steps of neurulation. 
(A) Dorsal and transverse view of human neurulation. Neurulation entails at !east 3 
spatially and temporally distinct stages: (1) formation and shaping of the neural plate 
(NP); (2) bending of the NP into the neural groove; (3) closure of the neural groove 
into the neural tube (NT) and subsequent neural crest cell migration. Image retrieved 
from Marieb and Hoehn (2007). 
(B) Chick cranial and truncal temporal differences in NT closure. Birds and mammals 
exhibit NT closure temporal differences depending on the region along the midline. 
Yellow: presumptive NCCs; Green: delaminating NCCs; Blue: migrating NCCs. 
Image retrieved from Du band (20 1 0) 

CRANIAL 
,-:;:::r-~---~==~cranlofaclal cartilage and bona 

connective tissue 

cranial ganglia 

r--~~-lpigment cells 

enterlc ganglla 

smooth muscle 

TRUNK pigment cells 

dorsal root ganglia 

sympathetic ganglla 

adrenal medula 

Figure 1.2 NCC migration throughout four different levels. 
Migration is the first step in NCCs adopting different lineages. In a process known as 
epithelial to mesenchymal transition (EMT), presumptive NCCs exit the 
neuroepithelium and take on different migration pathways each one leading to a 
change in gene expression and thereby a change in cell type (McKinney et al., 2013). 
Grey: NNE non-neural ectoderm; Yellow: NC neural crest; Blue: NP neural plate. 
Image retrieved from Huang and Saint-Jeannet (2004) 
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T bi 11 D' 't fN a e . 1vers1ry o eu ra IC tCIId. f res e enva 1ves . 
Neural crest cell derivatives 

Mesenchymal Neuronal Cells Secretory Cells Pigmented Cells 
ce Us 

Chondroblasts Sensory neurons Chromaffin cells Melanocytes 

Osteoblasts Cholinergie Calcitonin-
neurons producing cells 

Fibroblasts Adrenergic Parafollicular cells 
neurons 

Odontoblasts Satellite cells 

Cardiac Schwann cells 
mesenchyme 
Myoblasts Glial cells 

Adipocytes 

Adapted from Simoes-Costa and Bronner (20 15). 

1.2 Molecular mechanisms 

From the transformation of ectoderm to neuroectodenn , to the changing expression 

profiles of migrating NCCs, there are a multitude of morphogenie signais, eues and 

gradients, both spatial and temporal that are responsible for these very physical and 

behavioural changes. This complex network is built on effective communication from 

one cell to another, relaying severa) specifying signais at once. This complex network 

is known as the neural crest gene regulatory network (NC-GRN) (Meulemans and 

Bronner-Fraser, 2002; Oliveri et al., 2003). Neurulation and NCC 

migration/specification rely on the NC-GRN (Figure 1.3). The process begins with 

the induction of the neural plate via the Wnt, FGF and BMP signal ling pathways 

(Huang and Saint-Jeannet, 2004). It is the combination ofthese three signais and their 

antagonists that create the gradients responsible for cell specification and 

morphogenesis (Niehrs, 2004). The specifies as to how these three signalling 

pathways work together in a concerted manner to induce the NPB is not fully 

understood and is active! y being researched (Garnett et al., 20 12; Monsoro-Burq et 

aL, 2005). 
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,, 
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and glia 

• .. 
Snai1/2 Twist Sox5 

Sox9 Ets1 Mye 

Id Sox10 Myb 

1 

EMT 
t. 

Sox5 FoxD3 Ebf1 

Tfap2 RxrG 

Id Snai1/2 

Chondroblasts 
and osteoblasts 

Mye 

Myb 

Melanocytes 

Figure 1.3 Neural crest gene regulatory network. 
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-

-

Through different molecular signais, both temporal and spatial dependent, the NC­
GRN is responsible for the process ofNC development, from the induction of the NP 
to the diversification ofNC targets. Image retrieved from Simoes-Costa and Branner 
(2015). 
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1.2.1 Signais of the posterior neuroectoderm 

The posterior neuroectoderm receives a different concentration, combination and 

timing of signais than the anterior level. The outcome is a later onset of the NT and 

NCCs in the posterior region as weil as different NCC lineages. In summary, anterior 

structures are patterned first wh ile posterior on es occur later (Durs ton, 20 15). 

The patterning of the anterior-posterior (AP) axis is regulated in part by Wnt and 

FGF, as weil as Nodal and Retinoic acid morphogens and their antagonists (McGrew 

et al., 1997). Higher Wnt and FGF concentrations specify posterior fates, and their 

antagonism anterior fates (Figure 1.4) (Kiecker and Niehrs, 2001; Kudoh et al., 

2002). Meanwhile, BMP and its antagonists· pattern the dorsal-ventral (DY) axis 

(Marchant et al., 1998; Patten and Placzek, 2002; Smith and Harland, 1992). Higher 

BMP concentrations specify ventral fates and lower levels dorsal fates (Endo et al., 

2002; Little and Mullins, 2006). Again, ali three - Wnt, FGF and BMP­

morphogens are needed to induce the formation of the NPB (home of the future 

NCCs) but Wnt and FGF signais are mostlyt posteriorizing; BMP mostlyt 

ventralizing (Hendrickx et al., 2009; Tuazon and Mullins, 2015). 

• such as Noggin (Nog), Fo llistatin (Flst), and Chordin (Chd) 

t Wnt and FGF s ignaling are crucial fo r AP patteming but they can be in vo lved in DY patterning as 
they can affect regulation of BMP act ivity 

~ BMP is crucial for DY patterning but isoform BMP4 has posterioriz ing effects. ln ail , there is a trend 
where Wnt and FGF : posteriorizing and BMP : ventralizing, but overl ap may occur 



Ante ri or 

head 

trunk 

ta il 
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1 Wnt 

Nodal< FGF 
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Figure 1.4 AP axis patterning. 
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Higher concentrations of Wnt FGF Nodal and RA activity specify posterior fates; 
antagonists to these posteriorizing signais specify anterior fates. Image retrieved from 
Tuazon and Mullins (20 15) 

A OFF B ON 

LRP516 • Frizzled 

~tenltl) 
TrCP, 

p-catenin ) 

Figure 1.5 The canonical Wnt signalling pathway. 

( lkatemn ) 

( P..catenln ) 
( ~-catenin ) 

Wnt raspanslve-

(A) With no Wnt ligand present, the ~-catenin destmction complex is active and thus 
no ~-catenin is freely available to mediate Wnt responsive gene transcription. (B) 
Upon introduction of a Wnt ligand to the Frizzled receptor, the Dishevelled proteins 
are activated and impede the destruction of ~-catenin. This causes cytoplasmic levels 
of ~-catenin to rise to where they are then able to enter the nucleus and associate with 
Lefl /Tcf family of DNA-binding proteins and activate target gene transcription. 
Image retrieved from MacDonald et al. (2009) 
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1.2.1.1 Wnt and FGF signalling 

The canonicat Wnt signalling pathway begins with the binding of Wnt ligands to 

Frizzled receptors, which in turn stops the ~-catenin destruction complex. An 

increasing concentration of ~-catenin in the cytoplasm favours its translocation into 

the nucleus where it can then associate with transcription factors of the Lefl /Tcf 

family and activate target gene expression (Figure 1.5) (Angers and Moon, 2009; 

MacDonald et al., 2009; Petersen and Reddien, 2009). This modulation of gene 

expression by the Wnt pathway is implicated in most stages of embryogenesis 

throughout various phyla including deuterostomes, protostomes, and pre-bilaterians 

(Petersen and Red dien, 2009; Stuhlmiller and Garcia-Castro, 20 12). In vertebrates, 

the Wnt pathway is responsible for cell proliferation, cell fate, and body AP axis 

patterning (Hi kas a and Sokol, 20 13). Particular to AP neural patterning is how W nt 

specifies caudal CNS cell fa tes (Tuazon and Mullins, 20 15). lnversely, anterior levels 

require antagonists of Wnt activity (Houart et al., 2002). For the most part, posterior 

markers are tied to an increase in Wnt activity whereas a decrease in Wnt activity 

increases an teri or markers (Kudoh et al., 2002; McGrew et al., 1997; Petersen and 

Reddien, 2009). 

Like the Wnt pathway, the FGF pathway is important in establishing the vertebrate 

AP axis and specifying posterior cell fates (Figure 1.4; 1.6) (Tuazon and Mullins, 

20 15). Suppressing FGF blacks posterior tissue development; overexpressing FGF 

blacks anterior tissue development (Draper et al. , 2003; Isaacs et al., 1994; 

Stuhlmiller and Garcia-Castro, 2012). As such, bath Wnt and FGF signais inhibit 

anterior gene expression (Kudoh et al. , 2002). Concerning their origin, Wnt signais 

come from the non-neural ectoderm and the paraxial mesoderm; FGF only cames 

from the paraxial mesoderm (Huang and Saint-Jeannet, 2004) . NPB induction may 

require bath Wnt and FGF signais, but it is still unclear ifFGF acts directly to induce 
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Extracellular 

Plasma membrane 

~ 
! Cytoplum 

PIP42' PIP3 IP3 • DAG 
/ ! l f 1;) ----~~ PD 

~ cal· K 

! \ 
Cytoskeleton Targ ts 

Figure 1.6 The FGF signalling pathway. 
FGF binding to FGF receptors leads to the recruitment of Grb2 and Ras among other 
effectors to activate the Erkl/MAP kinase pathway which in turn phosphorylates a 
diverse set of transcription factors initia ting their regulatory activity implicated in ce li 
growth, migration, and morphogenesis. In AP patterning, antagonists of the FGF 
pathway, such as Sprouty, work to inhibit posteriorizing fates , thus prompting 
anterior ones. Image retrieved from Mason (2007). 
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the NPB or indirect) y by activating the Wnt pathway (Garnett et al., 20 12). Severa) 

studies by Hong et al. (2008) have suggested that Wnt originating from the paraxial 

mesoderm is activated by FGF, indicating that FGF activates mesodermal Wnt which 

in turn helps induce NCC formation. 

Together, through overlap, direct or indirect methods, Wnt, FGF and BMP signalling 

induce the NC precursors at the NPB. The first phase involves Wnt and FGF to 

activate the expression of border specifiers su ch as Msxl 12 Pax3/7 and Zic. The 

second phase involves Wnt, BMP as weil as BMP-antagonizing Notch signalling to 

further specify the NCC, by stimulating the expression of Snai/2, FoxD3, and 

Sox9/10 (NC-GRN Figure 1.3) (Huang and Saint-Jeannet, 2004; Tuazon and Mullins, 

20 15). 

1.2.1.2 Sox2 

Important for the development of the neural primordia as well are the Sox-B l 

transcription factors: Sox 1, Sox2 and Sox3 (Uchikawa et al., 2011 ). Sox2 expression 

in particular is the most extensive, with full expression across the neural primordia 

(Okuda et al., 2010). In fact, Sox2 is the most definitive marker of the early neural 

plate (Papanayotou et al., 2008; Pevny and Ni colis, 201 0; Rex et al., 1997). From 

embryo to adult, Sox2 plays a ro!e in 1naintaining neural progenitor populations 

(Brazel et al., 2005; Ellis et al., 2004). Constitutively ex pressing Sox2 suppresses 

neuronal differentiation; inhibiting Sox2 results in early neuronal differentiation 

(Graham et al., 2003). Suppressing neuronal differentiation in the early 

neuroectoderm is essential for maintaining the neural plate identity (Kishi et al., 

2000). In the posterior levels, during neural plate development, Wnt and FGF signais 

work together to activate Sox2 expression (Takemoto et al., 2006). 
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1.2 .1.3 Cd'C genes 

Cauda l Cdx genes are a lso impli cated in the development of the posterior NP and in 

AP patterning (Marom et a l. , 1997), as we il as mediating the c losure of the NT 

(Sava ry et a l. , 20 Il a) and players of the trun ca l NC-GRN (Sanchez-Ferras et al. , 

20 14; Sanchez-Ferras et a l. , 20 12). In addition, they play a significant role in gut 

development (Beek and Stringer, 20 1 0 ; Si lberg et a l. , 2000). 

Cdx genes a re related to the caudal Drosophila gene (cad) (Barad et a l. , 1988; 

Mlodzik et al. , 1985). T here are three Cdx genes : Cdxl , Cdx2, and Cdx4. Du ring 

embryogenesis, the three are expressed in the ca udal regions , occupy ing a li tissues 

surrounding the primitive streak (Hou le et a l. , 2003a). T heir timing and location 

a round this area varies; the Cdxl expression domain has the most rostra l reach, 

fo ll owed by Cdx2 (F ig ure 1.7). Cdx2 is the earli est expressed, E3.5 at the 

trophoectoderm. Cdx2-null mice die at this stage because they fa il to implant 

(Strumpf et a l. , 2005). In embryon ic tissues , Cdxl /4 are expressed around E7.5 before 

Cdx2 (E8.5). Expression of a li three attenuates as ti me goes on and recedes caudally 

until Cdx4 ex pression is go ne at E10.5 and Cdxl /2 express ion rema in loca lized in the 

gut where they continue throughout !ife (Lohnes, 2003; S ilberg et a l. , 2000). In AP 

patterning, Cdx l /2 are functionally similar despite seq uence variabi lity (Savary et a l. , 

2009b; van den Akker et al. , 2002) . Knockout studies show that Cdxl is important for 

AP patte rning (S ubramani an et a l. , 1995); Cdx2 is important for AP patterning and 

gut development (Beek and Stringer, 20 1 0; Chawengsaksophak et a l. , 2004) and 

Cdx4 has subtle importance in AP patterning (van Nes et al. , 2006). 

T he three Cdx prote ins regulate Hox gene express ion, both directly (Beek et al. , 1995 ; 

Marom et al. , 1997; Subramani an et a l. , 1995) and indirectly (Savary et a l. , 2009a) . 

Tn vertebrates, Hox genes control ax ia l regionalization, as we il as the subdi vision of 

the nascent vertebrae (Iimura et a l. , 2009). Stud ies suggest that Cd'C genes regulate 

Hox genes by conveying the posteriorizing Wnt, FGF, and RA signais (Be l-Vialar et 
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al. , 2002; Hou le et a l. , 2003 b; Keenan et a l. , 2006; Lohnes, 2003 ; Pilon et a l. , 2006; 

Pilon et al. , 2007; Shimizu et a l. , 2005). Wnt in particul ar seems to be important in 

the process, w ith combin at ions of Wnt and FGF (Kee nan et a l. , 2006) and Wnt and 

RA (P ilon et a l. , 2007) demonstrating the signiti cant contribution of Wnt signa is in 

induc ing Cdx expression. Moreover, Cdx genes have been fo und to mediate Wnt 

signa l ling in spec ify ing posterior morphogenesis in vertebrates (Sanchez-Ferras et a l. , 

20 12; Shimizu et a l. , 2005 ; Zhao et a l. , 20 14) . Cdx l can regulate its own promoter, 

and signifi cantly more so with Lefl (a Wnt effector), suggesting the existence of 

Wnt-Cdx joint regulatory complex (Beland et a l. , 2004). Cdx4 can also be regul ated 

by Wnt s igna l ling (P il on et a l. , 2006) as we il as by Cdx2 (Savory et a l. , 20 Il b). 
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Cdxl 

A 

c --
E7.5 8.5 

Figure 1.7 The spatial and temporal differences of rn urine Cdx gene expression. 
(A) Cclxi expression begins at E7.5 at the ectoderm and mesoderm of the primiti ve 
streak. At E8.5, express ion extends to the neural plate, parax ial mesoderm, hindgut 
and ta ilbud; At E9.5, express ion regresses cauda lly, and lingers in somites and 
presumptive dermamyotome; at E l2.5 , express ion is limited to the gut where it 
persists (Houle et al. , 2003a; Meyer and Gruss, 1993 ; S ilberg et al. , 2000) . (B) Cdx2 
embryoni c express ion begins at E8.5 in the neural plate, ne ura l tube, part of the 
notochord, the hindgut and a li ti ssues of the ta ilbud; at E9.5 , express ion regresses 
caudally in the NT, NP and notochord , hindgut and a li ti ssues of the tailbud more 
toward the tait bud; express ion is limited to the gut at E l2.5 where it pers ists (Beek et 
a l. , 1995; Silberg et al. , 2000). (C) Cdx4 express ion begins at E7.5 near the posterior 
end of the primitive streak; at E8.5-9.5, expression regresses caudally in the 
mesoderm a nd hindgut endoderm ; at E 1 0.5, express ion ends (Gamer and Wright, 
1993 ; Lohnes, 2003). Image retrieved from Houle et a l. (2003a) 
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1.3 Gene regulati on and NC deve lopment 

NC deve lopment re li es on a feed-forward system of regulatory eve nts known as the 

gene regu latory netwo rk (F igure 1.3) (Me ulemans and Bronner-Fraser, 2004). Vital to 

any GRN is proper gene regulation by c is-regul atory reg io ns. T hese regions are so 

important that it has been suggested that mutations in pre-vertebrate c is-regulatory 

regions were criti ca l for NC evo luti on, and by extens ion the evo luti on of the NC­

GRN (Jandzik et al. , 20 15; Van Otterloo et al. , 20 13). 

1.3. 1 Enhancers 

En hancers are sma ll cis-regulatory e lements of a ro und 200-500bp that can be up to 

1.5 Mb downstream, upstream or even intronic of their target gene; (F igure 1.8) 

(Epste in , 2009; Rada-Iglesias et a l. , 20 1 3). T he ir function is to enhance target gene 

expression by activating the promoter of the target gene (Pennacchi o et al., 20 13). 

T ranscription factors bind to specifi e regulatory motifs on the enhancer and mediate 

activation of the target promoter. In nature, an ac ti vated enhancer e 1 icits a 

co nformat ion of the chromat in structure so that the en hancer ca n loop near the target 

promo te r and mediate its act ivation (Kranz et al. , 20 Il ). 

During development enhancers play a role in ce llul ar g rowth, differentiation and 

mi grat ion by re iay ing the activator s ig nai s from growth facto rs and transcriptio n 

factors (Howard and Davidson , 2004; Kranz et a l. , 20 1 1 ). In the context of the NC­

GRN , for exampl e, enhancers of NPB specifï ers, such as Msx, Pax3/7, Z ic 1, Dlx3 /5 

wou ld be at the receiving end of effectors of Wnt, FGF, BMP and otch signa lling. 

T hen, these NPB spec ifier transcription factors , a long w ith other s igna is, wou ld be at 

the delivery end of the enhancers of NC spec ifiers, such as Z ic3 , Sox9, Foxd3 , 

Sox 10, Snai2, and Twist, and so on until completion ofNCC differenti ation. 
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TSS 

B R pp lE 

Figure 1.8 Types of cis-regulatory elements. 
From left to right, BE: boundary element; E: enhancer; R: repressor (the counterpart 
of the enhancer-instead of promoting the activation of a target promoter they 
suppress activation) PP: proximal promoter; CP: core promoter; TSS: transcription 
start site; JE: intronic enhancer. E1/2 represent exons. Image retrieved from Epstein 
(2009) 

Also of note regarding the current NC-GRN, as it relates to enhancer activity, is the 

absence of known overlying epigenetic regulation needed for enhancer activity to 

occur in the first place. In fact, several epigenetic modifiers regulating NC 

development have been identified, and constitute a fairly recent area of active 

research (Hu et al., 20 14; Liu and Xiao, 2011 ). 

1.3 .1.1 Approaches for identifying and tes ting enhancers 

According to Simoes-Costa and Branner (2013), there are three main methods used in 

identifying enhancers (Figure 1.9). Ail three require: the construction of the putative 

enhancer sequence with a minimal promoter to drive the expression of a reporter, and 

the tes ting of the putative enhancer via activation through ce li transfections, or in vivo 

stable or transient inducible animal models . 
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The first method requires inserting severa! non-coding sequences, one by one, into a 

reporter construct in the hopes of identifying an enhancer. This method has the 

potential advantage that random screening might find activity the other more focused 

methods do not detect. However this method is out-dated, costly, more uncertain, and 

laborious. 

The second method screens only non-coding sequences with high vertebrate 

homology. White homology does not necessarily equate to an enhancer, it is an 

important indicator as highly conserved regions have been found to be enhancer 

enriched (Bejerano et al. , 2004; Pennacchio et al. , 2006). Therefore, this method has a 

significantly better chance of identifying an enhancer than the previous method. In 

addition, a lot of sequencing data from numerous vertebrate species is freely and 

readily available. 

Lastly, the third method screens areas where ChiP-seq has identified areas of histone 

modification and therefore possible sites with enhancer activity (Rada-Iglesias et al., 

20 12). This method relies on the temporal qualities of histone modification in a 

specifie cell type, and can therefore target a specifie moment and axial leve! in 

potential enhancer activity. If the Chip-seq datais not currently available, this would 

add additional time and cost if it needs to be obtained. 
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Figure 1.9 Techniques for identifying and testing enhancers. 
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First step: build a putative enhancer reporter construct, with the enhancer obtained 
from (A) Using a blind screen of non-coding areas; (B) Using a genome browser to 
identify conserved regions; (C) Using Chip-seq data to uncover areas of histone 
modification Second step: testing the enhancer by cel! transfections, transient and/or 
stable transgenic models. Image retrieved from Simoes-Costa and Branner (2013), 
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1 .3 .1.2 Characterization of binding motifs 

While the previous methods can identify the existence of an enhancer, the location of 

activity, and even test severa! potential TF activators, the characterization of binding 

motifs requires different steps. Bioinformatic tools can be used to identify potential 

binding motifs but characterization is not addressed until the binding of transcription 

factor to DNA is demonstrated. Electrophoretic mobility shift assays (EMSA) are 

often used in promoter/enhancer studies to reveal the binding of transcription factors 

(Pares-Matos, 2013). A DNA pull-down assay followed by Mass-Spectrometry can 

also be used to identify DNA-binding TFs (Drewett et al., 2001; Hubner et al., 2015) . 

1.3.2 Cdx2NSE 

The enhancer identification method, using evolutionary conserved regions, described 

above and in Figure 1.9b, was used in the discovery of a neural specifie enhancer 

(NSE) of Cdx2. Stable transgenesis showed reporter (LacZ) activity in the neural tube 

(Figure 1.1 0) (Wang and Shashikant, 2007). 

1.3 .2 .1 Cre-LoxP application of Cdx2NSE 

As weil as providing evidence of regu latory interactions, enhancers can be used in a 

variety of appiications, inciuàing fate mapping, time-iapse imaging and targei.ed ioss 

of- and gain-of-function assays (S imoes-Costa and Bronner, 2013). One use of the 

Cdx2NSE is to exploit its neural specifie activity and caudal localization in the 

developing vertebrate. Cre-LoxP mouse systems in particular, are a great tool and 

way of exp loi ting the temporal and spatial qualities of an enhancer. In this system, the 

enhancer drives expression of Cre-recombinase in a transgenic line of mice. This 

enzyme can recognize and excise DNA flanked by loxP sites. Conditional knockouts 

are generated from the successful cross of a tissue specifie Cre-expressing line and a 

line carrying a floxed (loxP-flanked) gene of interest (Lodish et al. , 2000) . 
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Cdx2 

Figure 1.10 Identification and testing the Cdx2 neural specifie enhancer (NSE). 
Cdx2NSE was identified by its high vertebrate homology, and tested by a transgenic 
line canying the presumptive enhancer driving the activation of a LacZ reporter. 
Expression seems confined to the neural tube. Images retrieved from Wang and 
Shashikant (2007) 
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Figure 1.11 The enhancer is not entirely neural specifie. 
An e8.5 embryo obtained from a cross between Cdx2NSE-Cre driver line and R26R­
YFP had Cre and therefore YFP expressed mostly in the neuroectoderm with sorne 
present in mesodermal cells. Compare YFP to neural marker Sox2. Image retrieved 
from Coutaud and Pilon (2013) 
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Here, the gene of interest is removed in specifie Cre expressing tissues. Another use 

of the system is to have loxP sites impeding the expression of a gene of interest. In 

this example, the successful recombination leads to the tissue-specifie expression of 

the target gene. 

Seeing as how no such Cre-driver line targeting the posterior neuroectoderm existed, 

Coutaud and Pilon (2013) decided to generate such a line using the Cdx2NSE. 

However, once the Cre-driver line was created and tested it was revealed that the 

enhancer had minor activity in the mesoderm as weil and was therefore not entirely 

neural specifie (Figure 1.11). 

1.4 Diseases ofNCC origin and neural tube defects 

A better understanding of the NC-GRN and associated epigenetic mechanisms is 

important because disruptions in these processes are believed to be the source of 

severa! human congenital birth defects and cancers. Relatedly, mechanisms affecting 

proper neurulation can lead to severa( neural tube defects (NTDs ). The result of these 

regulatory disturbances vary, but may drive changes affecting cell-fate/programming 

decisions, differentiation timing and/or migration patterns. 

1.4.1 Neurocristopathies 

Neurocristopathies are NC-derived developmental anomalies comprising over 700* 

known syndromes and defects (Trainor, 201 0). Sorne of the best-known birth defects 

due to NC malformation result in craniofacial defects, heart defects and agang1ionosis 

of the colon. Many of these defects affect severa( known NC-GRN factors , such as 

SoxlO, Pax3, Snail2 in Hirschsprung's disease and Waardenburg syndrome (Kim et 

' For craniofacial defects a lone 
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al., 20 Il ; Para tore et al. , 2002), or Sox9 and Twist in CHARGE syndrome (Hu et a l. , 

20 14). 

1.4. 1.1 Neura l crest cell-derived cancers 

NCCs possess many of the same attr ibutes as metastatic ce ll s, such as migration and 

invasion. T he assumption then is that ce ll s of NC origi n restatt many of the same 

regulatory mechani sms needed for embryoni c development (S imoes-Costa and 

Bronner, 20 13). Two of the most we ll-known cancers of NC lineage are 

neurob lastoma and me lanoma. 

Neuroblastoma arises from ce l! types of the sym patico-adrena l NCC lineage an d is 

the most com mon so l id childhood tumour accounting for 7-l 0% of paediatric cases 

(Brodeur, 2003; Jiang et a l. , 20 11 ; Schu lte et al. , 2013). The change from NCC to 

mature sympathet ic gang li a, invo lves an epigenet ic switch needed to s il ence two 

genes that promote cel! cycle progress ion and ce l! death avers ion- respect ive ly, 

Mycn and Arid3b- the same switch left on is believed to lead to the oncogenes is of 

neurob lastoma (Kobayas hi et a l. , 20 13). Mycn in particular has been shown to be 

expressed in ear ly NCC during ventra l mig ration and in NCC undergo ing neuro nal 

differentiation (Wakamatsu et a l. , 1997). 

Studies have pointed o ut that the progress ion of metastat ic melanoma may invo lve 

severa! genes of the NC spec ifi cat ion modul e (of the NC-GRN) such as Twist, SoxJO, 

Slug and FoxD3 (Shakhova et a l. , 20 12; Shirley et a l. , 20 12) . S lug is needed by NCC 

for EMT (Pe in ado et a l. , 2004), and Sox 10 for earl y me lanob last formation and 

postnata l ma intenance (Harris et a l. , 2013 ; Potte rf et al. , 200 1 ). Twist 1 promotes 

invas ion of melanoma cells by mediat ing the regulation of a matri x metalloproteinase 

(MMP), an enzyme needed to breakdown the extracellular matrix (Weiss et al. , 

20 12). Twist in particular is overexpressed in many so l id tu mours ofNCC ori g in , not 

just melanoma, but also g lioma and neuroblastoma, highlighting its imp01tance in the 

metastatic process (Yang et a l. , 2004). 
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1.4.2 Neura l tube defects 

Neura l tube defects a re congenita l deformi t ies brought about by an inadequate c losure 

of the neura l tube. Prevalence of NTDs is f rom 0.75 to 1.1 2 per thousand, depend ing 

on ethni e ori g in (Feuchtbaum et a l. , 1999). NTDs are compl ex in that a diet ri ch in 

fo li e ac id may we il be an impotiant fac tor in prevention, as public health data seems 

to indicate (Cze ize l et a l. , 20 1 1; Erickson, 2002; Pitkin, 2007). Interest ing ly, there is 

a lso ev idence indicating that the NCC may a lso be protected by fo late 

suppl ementat ion, suggesti ng the neuroepi the lium may be sens iti ve to fo late-re lated 

pathways (A nto ny and Hansen, 2000; Li et a l. , 20 Il ). Other poss ible NTD ri sk 

factors may inc lude environm enta l exposure to teratogenic agents such as heavy 

metals, organic so lvents and agric ul tura l chemi ca ls (Seve r, 1995). Depending o n 

where the anoma ly occurs the resul t is usua lly ::,pina bifida or anencepha ly, a lthoug h 

there are severa! others. Improper c losure near the ca uda l neuro pore leads to spina 

b{fida and anencepha ly in the rostra l neuropore . T he degree of affli ction vari es, as 

does neuro logica l dysfunction. In spina bifida cogni tion, behav ior, ve rtebra l co lumn 

and organ systems can be affected depending on severi ty (F letcher and Brei, 201 0). 

Anencepha ly is usually more severe, because the neura l fo lds of the bra in rema in 

open (Co pp and Greene, 20 13) leav ing a large port ion of the bra in undeve loped. 

Surviva l rate is very low, i.e. 40% afte r 24 hours (Ba ird and Sadov ni ck, 1984). Proper 

c losure of the c rania l and spinal neural tube depends a lot on the bending of the 

neuroepi the lium at median (MHP) and dorsa l-late ra l hinge po ints (DLHPs). MHP 

and DLHPs are both features of c rania l and intermediate sp inal neurul ati on. However, 

MH P is a fea ture of upper spinal neurulat ion and DLHP of the lower spi ne (Copp et 

a l. , 2003; Yamaguchi and Miura, 201 3; Ybot-Go nzalez et a l. , 2007). BMP antagoni st 

Noggin is needed fo r crani a l as we il as lower and in te rmediate spinal DLHPs 

(Stottmann et a l. , 2006). Co nverse ly , the upper spine MHP re lies on inhibi tion of 

Noggin by Sonic-hedgehog, hence hi gher BMP leve ls (Ybot-Gonzalez et a l. , 2002; 

Ybot-Gonza lez et a l. , 2007). 
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1.4.3 Too ls for studyi ng neurocristopathies and NTDs 

Many of the molecular mechanisms so far described have been c larifi ed through the 

use of mutant mo use models (Britsch et a l. , 2001; Dixon et a l. , 2006; Shakhova et a l. , 

20 12; Southard-Sm ith et a l. , 1 998; Weiss et a l. , 1997). Dom (Dom ina nt megacolon) 

mice are mutant (chromosome 15) mode ls for Hirschsprung' s disease that arose 

spo ntaneous ly, i.e. were not purposefully engineered, and they were in strumental in 

demonstrating the importance of Sox 1 0 for development of the peripheral/enteric 

nervous system (Puliti et a l. , 1995 ; Southard-Smith et a l. , 1998). Splotch mice a lso 

arose spontaneo us ly (Russe l, 194 7), with a mutation in chromosome 1 (Epstein et a l. , 

199 la) and are often used as mode ls for NTDs (Moase and Trasler, 1992) . In 

homozygous mice, the mutation is embryonic lethal by E14 (Li et a l. , 1999), 

exhi biting NT and heart defects (Auerbach, 1954; Conway et a l. , 1997). T he 

heterozygous Splotch line carries one nul! Pax3 a lle le, and is v iable havi ng minor 

pigmentation abnormalities. ln the early 90 ' s when the Pax3 deletion was found to be 

the cause of the mutation, it quickly indicated the importance of Pax3 for norma l 

neural development (Epste in et a l. , 199 1 b; Gould ing et a l. , 1993). 

Co nditi onal knockouts (KO) have also been used, many exploiting the NC-specific 

Wntl-Cre transgenic line (Danie lian et al. , 1998) . Wnt1 is active in the embryonic NT 

and migrating NCC, and is important for the formation of the midbrain- hindbrain 

boundary (Eche lard et a l. , 1994; Lewis et a l. , 20 13). Us ing this NCINT spec ifie Cre­

driver line, Dudas et a l. (2004) knocked-out a BMP receptor (A ik2) w hi ch then 

produced crani ofacia l defects including cleft palate and mandible malformation and 

suggested the importance of A lk2 in regulating the fo rmat ion of specifie crania l 

features . Akiyama et a l. (2004) employed it to generate conditiona l Sox9 KO embryos 

to examine cardiac NCC and the essential role of Sox9 in heart EMT. Degenhardt et 

a l. (201 0) used it to rescue !ost Pax3 expression spec ifically in the NC, and 

demonstrated the redundancy of Pax3 " neural crest enhancers" . Other Cre-dri ver 
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1 ines used include Nestin-Cre fo r the neuroectoderm (Dubo is et al. , 2006; Tronche et 

a l. , 1999) and Pax3pro-Cre fo r the dorsa l N T and NC (Li et a l. , 2000). 

O verexpress ion knock-in mutants are a lso instrum enta l mode ls fo r di sease . Gene 

amplification in particular is known to be the di rect cause of many known human 

di seases and ca ncers (Santarius et a l. , 201 0; Shastry , 1995). For exampl e, the c lass ic 

ma instay mouse model for neuroblastoma is the T H-MYCN , where in Mycn 

express ion is dri ven by the T H rat tyros ine hydroxy lase promoter (We iss et a l. , 1997). 

As prev ious ly di scussed, Mycn is norma lly expressed in mi grating NCC switching to 

neurona l lineage (Wakamatsu et a l. , 1997). At the tim e, MYCN was kn own to be a 

proto-oncogene of hum an neurobl astoma but had not yet been tes ted in an animal 

mode l. We iss et a l. ( 1997) prov ided direct in vivo ev idence that Mycn amplification 

can contribute to the oncogenesis of neuroblastoma. T he TH-MYCN transgene is 

integrated in chromosome 18 in a di sta l region, and the effect it has in di sturbing thi s 

region is unknown. Due to thi s uncerta inty , A lthoff et a l. (2 0 15) created anoth er 

Mycn-dri ven neuroblastoma mouse mode l targe ting the ROSA26 locus (chromosome 

6) . Thi s locus has the advantage that it is ubiquitously expressed, di srupti ons in the 

locus have no phys ical effect in mi ce, and can be ta rgeted w ith high effi c iency 

(Sori ano, 1999; Zambrowicz et a l. , 1997). As of 2010, the re were a lready over 130 

knock-in iines targeting the ROSA26 locus (Caso ia, 20 i 0) . 

Ali these mutant models have the ir own limitations, and adva ntages, and yet they 

share the fact that the di srupti ons they crea te he lp fue l our understanding of the 

mo lecul a r mechani sms in vo lved in the deve lopment ofNC and NT anoma lies. 



CH APTER TI 

HYPOTHESES AN D OBJECTIV ES 

2. 1 Hypotheses 

Conditi ona l overexpress ion of Cdxl plays an oncogeni c ro le in the deve lopment of 

neura l crest ce ll deri ved cancers in envisioned mo use mode l. 

T he intronic neural spec ifi e enhancer (NSE) of Cdx2 co ntains identifiable non-neura l­

spec ifie act ivato r binding sites . 

2 .2 Objecti ves 

Genera te a mo use mode! carry ing the Cre-inducible Cdx 1 overex press ion trans gene. 

T he steps requi red to genera te the mode!: Construct ion of the targeting vector, 

transfecti on of the vector in to ES ce ll s, select ion of the co loni es, verifica tion of 

pos iti ve c lones, microinj ecti on and rearing. 

ln vestigate regul ation of Cdx2NSE, and identify act ivato r-binding s ites w ith non­

neura l spec ifie characteri stics . Test ing th e regul ati on would g ive us a bette r 

understanding as to how the NSE architecture co uld be modified to drive truly neura l 

spec ifi e express ion in a new Cre-dri ver line. Luc ife rase assays us ing neural Sox2 

co uld identi fy w hich areas are potentia lly neural spec ifi e. 





CHAPTER Ill 

MATERJALS AND METHODS 

3. 1 Construction of pROSA26-Cdx 1, ES targeting and verificati on 

3. 1. 1 Vector construction 

To make the pROSA26-Cdx 1 targeting vector, a PGKneoPA-Flag-Cdx 1-IRES­

EGFP-BGH cassette was in serted into the PacT and Ascl s ites of the pROSA26-PA 

targeting vector (Srini vas et al. , 2001). pROSA26-PA was a g ift from Frank 

Costantini (Addgene plasmid # 2 L271) . lt is a vector used to target the ubiquitous 

ROSA26 loc us, and contains the 3 ' and 5 ' ROSA26 arm s necessary for homologous 

recombination (see Figure 4.2) as we il as a diphtheria toxin gene (PGK-DTA) for 

negative selection in ES ce ll s. The final construct was digestion and sequencing 

verified. ln total, the final construct contains a loxP-flanked PGKneoPA cassette 

capable of kanamycin resistance expression in E.coli and eukaryot ic promoter PGK 

for expression of neomycin resistance in the mammalian ES ce ll s. Next the N­

terminal FLAG-tag is upstream of a full Cdxl ORF (807-bp) as previously described 

(Be land et a l. , 2004), followed by an IRES-EGFP reporter seq uence. 

3. 1.2 Target ing ES ce ll s 

RI ES cells were cultured on mouse embryo fibroblast (MEF) feeder cells that were 

mitotically inactivated by 1 Oflg/ml mitomyc in C treatment. The cul turing of the ES 

ce ll s on MEF feeder ce ll s was done on ge lat in-coated plates to improve conditions. 

Also, the ES medium was supplemented with leukemia inhibitory factor (LIF) to 

reduce possible differentiation of ES ce lls. The pROSA26-Cdx 1 vector was 
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linearized by Sacll and ( 12.5 ~t g DNA) electroporated (250Y, 500 ~F, in a 4mm 

cuvette) into the R 1 E S ce ll s. Se lection of stable integrants was done w ith 200~g/ml 

0418 for one week. Genomic DNA was extracted and iso lated . Screening of 

successful homologo us recombinatio n was carri ed out first by PCR us ing an extern a l 

forward ROSA26 primer and an interna i reverse primer to create a 1.1 kb fragment 

(Table 3.1 ). Three c lones were identifi ed. Co nfirmat ion by So uth ern blot, albe it 

inconc lu sive, was fo llowed soon after. 

Table 3.1 Primers for PCR screen. 
PRIM ERN AM E 1 LEN GT H 1 SEQ UENCE 

ROSA26TA RG-F1 1 23 I AAGAAGAGGCTGTGCTTTGGGGC 
ROSA26TARG-RJ 1 20 JAGGGCGGCTTGGTGCGTTTG 

3.1.3 So uthern Blotting 

Around 20 ~g of genom ic DNA was di gested w ith EcoRI and Kpnl and separated o n 

a 0.8% agarose ge l. T he ge l was then depurinated, denatured and neutra lized . 

Afterward s, the DNA was transferred over night onto a Hybond membrane 

(A mersham) via a s implifi ed downwa rd capill a ry system, i.e. w itho ut added transfer 

buffe r. 

Once transferred, the membrane was rinsed with 2x SSC, dri ed, UV cross-iinked and 

pre-hybridized . The pre-hybridizati on buffe r so luti on co nta ined salmo n sperm 

ssDNA to block non-spec ifi e sites. After pre-hybridiza ti on, the membrane was 

hybridized w ith probe ss DNA. 

Two DNA probes were prepared to target the 5 ' o r 3 ' ROSA26 ends (Figure 4.2), at 

25ng in 45 ~1 of TE buffe r. T he probes were [a.-32P] dCTP-labe ll ed using the 

Rediprim e Il labe lling kit (Amersham) , and purifi ed by sepharose co lumns. The fin al 

pro be concentrati on was approximate ly around 2.8ng/mL of hybridization buffer, as 

per manufacturer' s in structi ons. Hybridiza tio n occurred over ni ght at 65°C. T he 
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membrane was la ter washed at least 2 times (2x SSC + 0. 1% SD S) before plac ing in 

an exposure cassette fo r l-7 days . 

3.2 Testing the neura l specifie regul ati on of Cdx2NSE 

3.2 .1 Pl asmids 

T he full Cdx2N SEforwa rd-LUC and Cdx2NSEreverse-LUC reporter constructs were 

created in our lab (Co utaud , 20 13) and were readily ava il able . T hey conta in an 852-

bp Cdx2NSE sequence upstream of an Hsp68 minima l promoter in a luciferase gene 

exp ress ion vector. Four Cdx2NSEreverse fragments were created by PCR w ith the 

f01·ward primers conta ining a Hindlii s ite and reverse primers conta ining a Kpnl e ut 

s ites (Table 3.3). PCR products were amplifi ed w ith Taq po lymerase (Feldan) and 

c loned into a pG EMT-easy vector (Promega) and verifi ed by sequencing. The Hindlll 

and Kpnl restri cti on s ites were then used to c lone into an Hsp68-LUC repo rter vector. 

T he res ulting fo ur fragment NSE reporter constructs can be seen in Figure 5.4, and 

include the N SE sequences conta ining putati ve Lef1 /Tcf sites : 4-3-2-1 (676-bp); 3-2-

1 (607-bp); 2-1 (43 7-bp); and 5 (1 93 -bp). T he construct w ith LEF/TCF s ite « 1 » 

(2 19-bp) was made by d igesting Cdx2NSEreverse-LUC w ith BamHT to remove a 

666bp fragment containing potenti a l Lefl /Tcf binding sites 5-4-3 -2. PGL3-0T served 

as pos iti ve contro l in transfecti ons; it conta ins 3 copies of w ildtype Tcf-4 binding 

sites and was a g ift from Bert Yogelstein (Addgene pl asmid # 16558) (Shih et a l. , 

2000) . Negati ve contro l was an empty vector conta ining just the promoter and 

luciferase gene. Serving as the acti vators for the transfecti ons were Sox2, and Lefl­

~catenin . 

3.2.2 Luc iferase assay conditions 

P 19 cells were cultured at 37°C (5% C0 2) in a -MEM supplemented w ith 7 .5% heat­

inacti vated bov ine ca lf serum and 2.5% heat-inacti vated fe ta l bov ine serum (Wi sent) . 

Approximate ly 2 hours prior to transfection, the P1 9 ce ll s were pl ated in 24 we il 

pl ates with a ce li density of 3x 104 ce ll s/we ll and incubated at 37°C (5% C0 2) . 
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Co-transfection was carried out to test the effect of Sox2 and Lefl-~caten in 

(indi vidua ll y and together) on the full Cdx2NSE forwa rd and reverse reporter 

sequences. Cdx2NSEforward-Luc and Cdx2NSEreverse-Luc reporter DNA was 

mai nta ined at 1 Oûng/we ll , as was the negative and positive contro l DNA. On the 

other hand , Sox2 and Lefl-~catenin act ivator DNA ranged from Ong, 25ng, SOng or 

1 Oûng/well . The total amou nt of DNA per weil was kept at 300ng. Tf needed, an 

empty IRES-GFP express ion vector was used to compl ete this amount. GeneJu ice 

was the transfection reagent (Novagen) and the ratio of reagent to DNA was 3~tl to 

1 ~Lg DNA, as recommended, i.e . each weil had 0.9~tl of transfection reagent and 

300ng of total DNA. This set of transfections was performed at !east three times in 

triplicate. 

Assay conditions were similar for the tests w ith the truncated Cdx2NSEreverse DNA 

reporter seq uences. 1-!owever, thi s set underwent two key d ifferences in conditi ons: 

the ce ll density used and activator DNA concentrat ion. Ce ll density was kept at 

1.5x 104 ce lls/we ll and act iva tor DNA (Sox2 and/or Lefl- ~catenin) was kept at Ong or 

1 Oûng/we ll. T hi s set oftransfect ions was performed at !east six times in triplicate. 

A li transfections were incubated in the a -MEM FBS+CBS media for about 48 hours 

at 37°C before performing post-transfection tests and analyses. After 48 hours, 

transfection effic iency was visua lly assessed by m1 croscopy, 1.e. identi fy ing GFP 

expressiOn. Next, tran sfection analys is (ge ne express ion) was quantified by 

lumino metry. The steps fo r this included: med ia removal , rinsing we ll s w ith 

phosphate buffered saline 1 X, and lysing the cell s. In a tube, 20~tl of the ce li lysate 

was added to 1 00~1 of luc iferase assay buffer. Then , 50~1 of luc iferin was delivered 

before placing tubes in the luminometer, 

Luciferase activity was expressed as fo ld activat ion relative to the appropriate 

reporter vector a tone. Each independent experiment was carried out in triplicate, at 

!east three times . 
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3.2.3 Luciferase assay test and stat istica l ana lys is 

A Il the results of the luc iferase assays are expressed as means+S.D. , and the 

differences in luciferase activity are expressed as fo ld activat ion. The differences in 

fo ld activat ion were examined by student's t-test for two-group comparisons. One­

way ANOVA was performed to identify differences in multiple group comparisons 

Graphs and a li statistica l ana lyses were done using GraphPad Prism version 6 

software, and p-va lue ranges, wordi ng and aster isk representation follow the 

Graph Pad stat ist ics gu ide (Tab le 3 .2). 

T bi 3 2 P "d a e -va ue gUI e 
P VALUE DESCRIPTION REPRESENTATION 

< 0.0001 Extremely significant **** 
0.0001 to 0.001 Extreme ly significant *** 
0.001 to 0.01 Very signifi cant ** 
0.0 l to 0.05 Sign ifi cant * 
> 0.05 Not s ignificant NS 
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T bi 3 3 or a e . 1gos to construct Cl 2NSE {. X l f reverse stranc ragments. 
PRIMER LENGTH SEQUENCE (5 ' to 3') 
NAME 
Cdx2NSE- 31 AAGCTTACAGAATGCTGGCCAGGAACTGTTC 
antisense 
4-3-2-1 
LEFl!TCF-F 
Cdx2NSE- 35 AAGCTTTAGTGCTCAGTGCCTAGTTGAACAAC 
an ti sense CAG 
3-2-1 
LEFI/TCF-F 
Cdx2NSE- 29 AAGCTTGGGAACACAGTCGCAAACAATGC 
antisense 
2-1 
LEF I/TCF-F 
Cdx2NSE- 30 GGTACCGTGCTCTAAGAGCAGCATCCGTTC 
antisense-R 
Cdx2NSE- 35 AAGCTTCTATCCTGACCAAGTGACCTGTGATC 
an ti sense ATT 
5 
LEF I/TCF-F 
Cdx2NSE- 26 GGTACCGAACAGTTCCTGGCCAGCAT 
antisense-R 



CHAPTER IV 

TOWA RD THE GENERATION OF MlCE CARRY1NG T HE CRE-1N DUCIBLE 
CDXJTRANSGENE 

4.1 Introduction 

Disrupti ons in NCC deve lopment can cause severa! neurocristopathies and cancers, 

inc luding crani ofac ia l defects, heart defects, co lon agang li onos is, neuroblastoma, and 

me lanoma among others (Ha ll , 1999; T ra inor, 201 3). The aim of this proj ect was to 

generate a knock-in mouse capab le of conditional Cdxl overexpress ion. Cons ider:ing 

the key ro le Cdx prote ins pl ay in N C deve lopment, cond itional overexpress ion of this 

key N C-GRN player co uld engender the pathogenes is of a NC deri ved cancer. NCC 

deri ved tumours, such as melanoma and neuroblastoma, exhibit overexpress ion of 

genes needed fo r NC development, in part icul ar those affecting EMT and mi gration 

(Trainor, 2013) . It is the hope that thi s tool w ill he lp identi fy prev ious ly unknown 

regul atory components linking the contributi ons of Cdx neural functions to 

mali gnancy. 

4.2 Results 

4.2.1 Constructi on of the targeting vector 

T he ROSA26 target ing vector was chosen to knock-in the transgene into the mouse 

genome in the ROSA26 locus (mouse chromosome 6) (Sori ano, 1999; Srinivas et al. , 

200 1 ). Targeting th is locus en sures the transgene wi ll be stab ly integrated in one 

place and will be ubiquitous ly expressed by an endogenous ROSA26 promoter. In 

addition, di sruptions to the locus do not affect mouse viability or ce l! phenotype. 
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With this in mi nd, we used a vector containing the bicistronic FLAGCdx l -IRES-GFP 

cassette th at had previously been c loned into a B igT vector. In this vector, a tloxed­

PGK-neo-tpA cassette functions as a stop cassette for downstream FLAGCdx 1 -IRES­

GFP. The fragment containing loxP-PGK-neo-tpA-I oxP-FLAGCdx 1-IRES-GFP-bpA 

was then cloned into the PacT and Ascl restriction sites of pROSA26PA vector 

(F igure 4.1) (Sr ini vas et al. , 200 1 ). The final 15-kb construct was digestion and 

sequence ver ified. Once confirmed, 12.5 flg of Sacii- Iinearized targeting construct 

DNA was e lectroporated into RI ES ce lls. 

4.2.2 Target ing the ROSA26 locus 

After electroporat ion, the ce ll s were expanded 1n medium contai ning the select io n 

agent G418 fo r a week. Genom ic DNA from 96 co loni es res istant to G4 18 was 

extracted and ana lyzed by PCR (F igure 4.3) and Southern blot (not shown). Figure 

4.2 demonstrates the entire targeting process. The targeting vector pROSA26-Cdx 1 

linearized and transfected targets the mouse ES ce ll ROSA26 locus usi ng the ROSA26 

5' and 3' tlanking arms. Successful recombination was screened by F I and RI PCR 

primers; three successful events were detected out of 96 colonies (Figure 4 .3). The 

next step was to use Southern blot to further ve ri fy successful transgene targeting. 

Here the genomic DNA of the 3 PCR-verified clones was digested by EcoRI and 

Kpni , and the use of the 5' and 3 ' probes would detect a 4-kb an 8.8-kb fragment 

w here the targeting event was successful , and in 11-kb fragment in the w i Id-type. 

Fo ur success ive Southern blots were carri ed out yet failed to even detect the contro l 

(WT). 



IRES-EGFP 

EcoRV 

PGKp-Neo pA 
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Figure 4.1 Sacll lioearization of pROSA26-Cdxl 
Linearization of the pROSA26-Cdxl targeting vector by Sacll 
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Eco RI Kpnl 

Targeting 
construct 

3'ROSA26 sequence 

loxP loxP 

WT 
EcoRI x Xba l x Kpr1 l 
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Il K 
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-4 Kb ------1 8.8 Kb ~ !. 

Figure 4.2 Depiction of gene targeting at the ROSA26 locus. 
At the top is the linearized targeting construct pROSA26-Cdx 1. In the middle is the 
wild-type ROSA26 locus, with exons 1, 2 and 3. At the bottom is the targeted knock­
in allele containing a floxed-PGK-neo-tpA cassette which functions as a stop cassette, 
interrupting the expression of a bicistronic cassette containing FLAG-tagged Cdxl 
and IRES-eGFP. PCR screening of successful knock-ins by the externat FI and 
internai R 1 prim ers give a 1.1-kb product. Southern blot screening uses externat 
ROSA 5' and 3 ' probes. ES cell genomic DNA digestion by EcoRI and Kpni permits 
the 5' probe to bi nd to a 4-kb fragment and the 3' to an 8.8-kb fragment where th 
targeting event is successfu l; in the WT allele the 2 probes would bind to an 11-kb 
fragment. 

~-------------------------------------------------------------------------------------· -
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Figure 4.3 PCR screen of targeted ES clones. 
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* 

* 

* 

PCR scree n of 96 clone DNA samples yie lded 3 correct ly targeted events (marked 
w ith an asterisk). 





CHAPTER V 

TESTJNG THE NEURAL SPEC LFIC REGULATION OF CDX2NSE 

5.1 Introd uct ion 

As previous ly discussed , Cdx genes integrate several of the posteriorizing signa is 

important for development including Wnt, FGF, and RA s ignais (Be l-Via lar et a l. , 

2002; Houle et a l. , 2003b; Keenan et a l. , 2006; Lohnes, 2003 ; Pilon et a l. , 2006; Pilon 

et al. , 2007; Shimizu et al. , 2005). Canonicat Wnt signa lling in particular is important 

for inducing Pax3 expression in the posterior NPB, and with Cdx proteins as 

intermed iar ies (Sanchez-Ferras et a l. , 20 14; Sanchez-Ferras et a l. , 20 12) . For this 

reason, as weil as evidence demonstrated by others (P il on et al. , 2006; Shi miz u et a l. , 

2005; Zhao et a l. , 20 14), Cdx genes can be said to be prime targets of Wnt s igna l ling. 

ln this project, the nuc lear effectors of the canonicat Wnt pathway, Lefl-~catenin , 

were used in the transfections aiming to si mulate the pathway and activate the neural 

specifie enhancer (NSE) of Cdx2. Since the goal is to identify and distinguish the 

s ites respons ive to neura l specifie activat ion (and in its absence the potentially non­

neural ones), it was necessary to add Sox2-a neural spec ifi e transcription factor and 

earl y marker of the neural plate (Papanayotou et a l. , 2008 ; Pevny and Nicoli s, 20 l 0; 

Rex et a l. , 1997). 
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5.2 Results 

5.2.1 Potential binding act ivators 

Matlnspector is an online software used to predict the potential transcription facto r 

binding s ite (TFBS) locat ion on a query DNA sequence, that is, a promoter or 

enh ancer. The potential TFBSs detected when submitting the 852-bp NSE seq uence 

to the genomati x servers was impress ive, at 256, w ith matrix s imil arity set to the 

optimized >0.75 ; g reater than 0.80 is c lass ifï ed as a "good" match. Mindful of the 

impor1ance of Wnt s ignalling, potenti al TFBSs of the nuclear effectors Lefl/Tcf we re 

searched. T here were 6 potential s ites (F igure 5. 1 a, b). One s ite overlapped with 

another and was therefore co unted as one, and wi Il hereafter be referred to as one; it 

was a lso the on ly potential TFBS for Lefl /Tcf effectors found in the fo rward NSE 

strand . Matrix simil ar ity ranged from 0.84-0.96, the hi ghest similarity scores came 

from the reverse NSE strand. 

Sox2 TFBS were fo und only as part of a composed binding s ite, wh ich includes Oct4, 

Nanog, TcD (Tcf7 ll ) and Sa ll4b (F igure 5. 1 a,c), and class ifïed as STEM by the 

software. There were on ly two of these composed binding s ites, and matrix simil arity 

was marg ina l! y below the eut-off range for "good" ma tri x simil arity of >0.80. T hese 

s ites were located on the reverse strand exc lusive ly. 
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2 

(A) Forward and reverse strand locations of potential TFBS for (B) the canonicat Wnt 
pathway effectors of the Lefl /Tcf family (five total Binding-Sites, BS; shown in dark 
green), and (C) the combined binding sites of Oct4, Sox2, Nanog, Tcf3 (Tcf7Il) and 
Sall4b in pluripotent cells (two total STEM sites; shown in light green). The third 
STEM site seen in schematic A is an Oct3 and not a Sox2 binding site, and is thus 
excluded. BS6 is also excluded because it overlaps with BSS. Instead, for practicality, 
BSS combines both. Core sequences are the four most conserved consecutive 
nucleotides. Higher consensus index values indicate greater conservation. Images 
retrieved from Matlnspector. 
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5.2.2 NSE and potential TFBS sequence homology 

The next step in analyzing the potential TFBSs is observing how they match up with 

vertebrate conserved regions. A conserved TFBS may indicate evolutionary selection 

and therefore a good candidate for further testing. The online University of California 

Santa Cruz (UCSC) Genome Browser allows us to visually discern how conserved 

the domains are. In Figure 5.2a, we can see the entire enhancer, in the forward 

direction, and how sorne potential binding sites are more conserved than others. The 

phyloP scores of 60 vertebrates, which include 40 placenta! mammals, determine 

basewise conservation. The higher the positive score is, the greater the conservation. 

Negative scores indicate faster evolution (Rhead et al., 2010). The range for the entire 

enhancer was from -5.114 to 4.8243. 

Figure 5.2b, is an expanded view of the binding sites found in Figure 5.2a. Potential 

Lefl /Tcf binding-site-1 (BS 1) has the !east sequence homology, with a mean phyloP 

score of -0.381687. BS2 has the highest conserved sequence, with a mean phyloP 

score of 3.65525. Both conserved "STEM" binding sites are also highly conserved. 

See Appendix Table A.1 for phyloP scores of each potential TFBS sequence as weil 

as of their highest conserved core sequence. 
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Figure 5.2 Vertebrate homology ofthe neural specifie enhancer. 
Outlined in black are the potential TFBS for the Lefl /Tcf family of effectors 
(Binding-Sites 1-5), and in red, the composed binding sites for Sox2 and other 
pluripotent/stem cel! markers (STEM l/2). Panel B is an expanded view of Panel A. 
The basewise conservation of 60 vertebrates is plotted as positive ( conserved) or 
negative (acceleration) phyloP scores. Out of the 60 vertebrates, 40 are placenta! 
mammals and, of these, 8 are rodents, pika and rabbit. For clarity, 13 of the 60 
vertebrates are represented in the sequence alignment. Taken from the UCSC genome 
browser. 
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5.2.3 Directional preference and synergy 

Luciferase assays were carried out to test the potential activators Sox2 and Lefl­

~catenin on the full Cdx2NSE forward and reverse reporter sequences. Transfections 

were carried out on P 19 ce lis, which are pluripotent embryonic carcinoma that have 

the ability to differentiate into muscle and neuron cell-types (McBumey, 1993) Lefl­

~catenin are the nuclear effectors of posteriorizing Wnt signalling, and Sox2 is a 

neural specifie transcription factor. The potential activators were either transfected 

alone, or co-transfected together in doses that ranged from 0-100ng DNA each with 

1 OOng of the Cdx2NSE luciferase reporter in either reverse or forward NSE strand. 

The reverse strand displayed significant (2.2 times the sum of each) synergistic 

activation with both Lefl-~catenin and Sox2. Also, the reverse strand experienced 

very significant activation (p = 0.006) compared to the forward strand in co­

transfection (Figure 5.3). This finding was surprising considering how enhancers do 

not genera Il y display directional preference (Pennacchio et al., 20 13). lnterestingly, 

ail potential TFBS except BS5 are 1ocated on the reverse strand. This test a1so 

determined the dose (lOOng) needed for the disp1ayed synergy. 
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Figure 5.3 Cdx2NSE synergy and directional preference. 
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Luciferase assay tested the enhancer in the forward and reversed direction. Co­
transfections utilized Lefl -~catenin to simulate the effectors of posteriorizing Wnt, 
and/or neural specifie Sox2. Doses ranged from 0-1 Oüng of activa tor DNA with 
1 Oüng of Cdx2NSE. The reverse strand displayed significant synergy with both Lefl­
pcatenin and Sox2 (**) indicates p = 0.006 (t-te t). Lucifeïase activity füï each 
condition was calculated as fo ld activation compared to the reporter vector alone. The 
results are represented as the average + standard deviation of triplicate samples from 
three experiments. 
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5.2.4 Testing the reverse NSE 

Since the reverse NSE was identified as the preferred direction for Lefl-~catenin and 

Sox2 activation, it merited additional transcriptional activation analysis . Fragmenting 

the reverse NSE in smaller units permits us to test a narrower group of binding 

demains. The reverse NSE was fragmented five times containing potential Lefl /Tcf 

binding sites: (BS4,3,2,1), (BS4,3,2,1), (BS3,2,1), (BS2, 1), (BSl), and (BS5). The 

location of the STEM (Sox2) composed binding sites was incidental, that is 

fragmenting was focused on the potential binding sites for Lefl /Tcf. Removing BS5 

in particular was important considering the binding motif is located on the forward 

NSE strand. Surprisingly, compared to the full reverse NSE strand, the strand missing 

BS5 had on average 0.7x the activation of the full sequence (Figure 5.4). Y et BS5 by 

itself did not display any activation. There was a Iso a significant discrepancy between 

the activation seen here for the full reverse NSE strand and what was seen previously 

(Figure 5.3); possible reasons for this will be discussed in the following chapter. 

Lefl-~catenin and Sox2 synergy was only apparent in the full reverse strand. 

In summary, none of the fragments recapitulated the neural specifie activation or 

synergy found in the full reverse strand as hoped. Thus it remains unknown which 

areas of the NSE architecture are clearly sensitive to neural specifie activation and 

which areas are not. In addition, it is unclear if the STEM (Sox2, Oct4, Nanog, Tcf3/ 

Tcf7Il and Sall4b) binding sites con tri bute to the evidenced activation. What is 

known is that compared to the full forward NSE, the full reverse NSE is significantly 

activated by the combined action of Sox2 and Wnt pathway effectors Lefl-~catenin. 
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Figure 5.4 Fragmentation results of Cdx-2NSEreverse. 
Dose was lOOng of activator DNA and lOOng of Cdx2NSEreverse fragments. Lefl­
~catenin and Sox2 together robustly activated the promoter, of the complete enhancer 
NSE reporter followed by the second most complete enhancer (BS4,3,2, 1). In ail 
there was a trend present, where the bigger the enhancer the bigger the activation. An 
asterisk (**)denotes a very significant p :S 0.005; and (*) a significant p :S 0.05. The 
Blue asterisk (*) marks the presence of the composed STEM binding site that 
includes Sox2. 



CHAPTER VI 

Dl SCUSSlON 

6. 1 ln pursui t of a condi t iona l Cdxl overexpress ion mouse mode l 

Homo logous recombinati on has long been used to in sert exogenous DNA co nstructs 

into a specifi e genomi c locus in mi ce (Capecchi , 2005; Misra and Duncan, 2002). 

T he ROSA26 locus in parti cul ar has been establi shed as the preferred genomi c locus 

for gene targeting (Caso la, 201 0; Nyabi et a l. , 2009), because transgene integrati on is 

stable, and express ion leve ls are constant and ubiquitous, not to mention that 

di sturbing the locus produces no phenotype (Soriano, 1999; Zambrowicz et a l. , 

1997). New targeting strateg ies have emerged that successfully target the ROSA26 

locus in mice. T hese inc lude z inc finger nuc leases (ZFNs), transcription activator-like 

effector nucleases (TALEN s), and clustered regularly interspaced shot1 pa lindromic 

repeats CRJSP R/Cas RNA-guided nuc leases (Cas9/gRNA) (Hermann et a l. , 20 12; 

Hsu et a l. , 2014; Kasparek et a l. , 20 14 ; Meyer et a l. , 2010; Sato et a l. , 2015). These 

nuc lease based technologies are capable of c leav ing genomi c DNA at spec ifi e sites, 

causing doubl e-strand ed breaks to improve homologo us recombinati on as we il as 

insertion of exogenous constructs medi ated by DNA repa ir. They are timesav ing and 

cast-effi c ient methods that have as high as 4 .5% (ZFN s), 8.8% (TALENs), and 35% 

(Cas9/gRNA) recombination efti c iency in gene targeting of the mouse ROSA26 locus 

(Fujii et a l. , 201 3; Kaspa rek et a l. , 20 14; Meyer et a l. , 2010). However, there is still 

some uncet1ainty regarding poss ible off-target DNA cleavages caused by these new 

nuc lease-based strateg ies, as we il as th e cytotox ic ity that could be brought about by 

the doubl e-stranded breaks . Targeting based on TAL EN s in parti cular seem most 
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promis ing, w ith K asparek et a l. (20 14) reporting no off-targe t acti vity found in the ir 

approach. Neverthe less, concerns rema in s ince off-target DNA c leavages can still be 

induced by these methods, resulting in unknown mutations that a re di ffi cult to detect 

(Kong et a l. , 20 14; Koo et a l. , 20 15; Owens et a l. , 20 13). ln the end, the traditi onal 

homologo us recombinati on strategy a imed at ta rgeting the ROSA26 locus is st ill the 

esta bi ished so luti on, and our preferred cho ice, s in ce it does not induce off-target 

mutati ons. 

We ta rgeted the mouse ROSA26 loc us w ith a vecto r co nta ining a fl oxed-PGK-neo­

tpA stop cassette upstream of FLAG-Cdxl and IRES-eGFP. After transfecti on and 

G418 se lecti on, se lected co lo ni es were screened fo r the knock-in a ll e le. Out of 96 

c lones screened, 3 (3 .1 %) were PC R-pos itive fo r integration of the knock-in constru ct 

corresponding to the F 1-RI primer screen parameters. Southern blot was 

inconclusive, w ith none of the contro ls working, indicating that technica l iss ues most 

li ke ly pl ayed a ro le. lt wo uld be very interesting to find out how often PCR-pos iti ve 

ROSA26 loc us targeted c lones are a lso So uthern blot-pos iti ve. Soriano (1999) 

reported that 8 o ut of 8 (1 00%) were. Of note, o ur 1.1-kb PCR screen method was 

nearly identi cal in locati on as described by ( 1.2-kb) So ri ano ( 1999) . Despite the 

more-than 103 ROSA26 locus knoc k-ins described to date (Caso la, 201 0), thi s 

in furmali un i now li kely seen as tri ial and no longer divul ged. Moreover, if any 

verifi ca tion deta il s are g iven they usua ll y extend to Southern blot confirmat io n. 

So uthern blot not only va lidates 5 ' and 3' transgene in sertion but a lso di stingui shes 

the w ild-type from the ta rgeted a lle le. T he advantage of PCR is that it a llows us to 

examine a large number of c lones in a high-thro ughput manner, sifting and 

identify ing a sma ll e r number of poss ibly pos itive c lones. In the end, even if our three 

c lones were validated by southern blot, that is just 3 .1 % of a li c lones, whi ch is be low 

the reported average ta rgeting effic iency for the ROSA26 1ocus, a round 25% for G4 1 8 

se lected c lones (Hohenste in et a l. , 2008) . T he lower number of pos iti ve c lones co uld 

be to due to transfecti on optimization issues. 
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In thi s proj ect, 96 d rug-se lected clones from a 96-we ll feeder plate were part 

transferred onto four 24-we ll ti ssue culture plates, and the c lones remaining in the 96-

well plate were then stored at -80°C. Cell s in the 24-we ll pl ates were a ll owed to 

expand until confl uent. T he advantage of transferring 96 drug-se lected c lones onto 

four 24-well pl ates versus another 96-we ll plate is that the ce l! lysate from a 24-we ll 

plate permits fo r severa! Southern blots whereas a 96-we ll plate would onl y produce 

enough DNA for one Southern blot (Limaye et a l. , 2009). In our case, there was 

enough DNA fo r two southern blots targeting the 5 ' and 3 ' ROSA26 knock-in locus. 

However, since there was a need fo r more DNA, the entire 96-we ll plate used fo r 

storing the clones at -80°C was defro sted and the three PCR-pos iti ve clones and one 

WT clone was passaged fo r subsequent storing and DNA harvesting. Once aga in, the 

harvested DNA was exha usted in two more Southern blots that fa iled to target the 5' 

and 3 ' knock-in locus, and WT ROSA26 locus. For futu re work thi s suggests that it 

may be best to start back from the targeting vector, instead of defrosting and 

passaging more c lones. For one, passaging ES ce ll s more and more increases the 

potential for differentiation. Two, storing the ES c lones- now c ryogeni cally frozen in 

liquid nitrogen- for long peri ods of time dimini shes the ir capacity to be successfull y 

micro injected. And three, literature indicates that targeting the ROSA26 locus is 

highly effi cient. Thi s means that improvements in transfecti on conditions could like ly 

y ield more pos iti ve clones, closer to the reported 25% average (Hohenste in et a l. , 

2008) . In additi on, no contro l probes were tested. lt may be worth whil e to target the 

GFP sequence, for example . 

If homologo us recombinati on and integration of our Cdxl transgene were confirmed, 

we wo uld be we il on our way to generate a knock-in mouse capable of conditiona l 

Cdxl overexpress ion. Knowing that Cdx prote ins pl ay a s ignifi cant ro le in the initia l 

steps of NC deve lopment and that overexpress ion of genes needed fo r NC 

development is manifested in NC deri ved tumours (Trainor, 20 13), we had 

hypothes ized that a mouse line overexpress ing Cdxl would gene rate NCC deri ved 
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tu mours su ch as neuroblastoma. Without the mou se 1 ine, we a re sti Il le ft w ith thi s 

question. M oreover, still to be discovered are the regul atory mechani sms implicating 

the neura l fun cti ons of Cd x 1 prote ins to the supposed N C-deri ved mal ignancy. Of 

note, this mo use li ne capable of conditi ona l Cdx.l overexpress ion wo uld be the first to 

demonstrate such a link, w ith overexpress ion particul arl y a imed at neura l crest 

deve lopment. There ex ists one reported transgenic Cdx l overexpress ion mouse mode! 

w hose express ion is not induc ible in spec ifi e ti ssues/context and is under the co ntro l 

of a Cclxi promoter instead of the stable and ubiquito us express ion confe rred by the 

ROSA26 promoter; overexpress ion in thi s case had homeotic and axia l patterning 

defects (Gaun t et a l. , 2008) . 

6.2 lnsig hts into Cdx2NSE neura l regul ati on and potenti a l applica ti on 

Cdxl genes a re just one of three Cdx genes that have been mainta ined by vertebrates 

for over hundreds of millions of years, name ly Cdxl /2/l in mamma ls, birds, 

amphibians and certain fi sh (Faas and lsaacs, 2009; Marletaz et a l. , 201 5; Mulley and 

Holland, 201 0). Cdx prote in s share some spatial overl ap as we il as core pathways, 

particula rly those necessa ry for AP vertebra l patterning (Beek and Stringer, 201 0). 

T here is a lso ev idence ind icating that Cdx prote ins medi ate Pax3 express ion- Pax] 

be ing a key transcripti on fac tor in the NC-GRN (Sanchez-Ferras et al. , 20 14; 

Sanchez-Ferras et a l. , 20 12) . See Appendi x B fo r our study on Pax3 regulatio n by 

Cdx2 prote in s. Prior to the emergence of the NC-G RN , pre-vertebrate chordates 

like ly o nly had one Cdx gene, as is the case for the cephalochordate amphioxus 

(A mphiCdx gene) (Broo ke et a l. , 1 998). Cd x l/2/4 prote in s may share si mi lar targets, 

and some redundancy may be an evo luti onary safeguard advantage, but Marletaz et 

a l. (20 15) argues th at wh ile corroboration and overl ap ex ist between Cd x pro te ins, 

' O rtho logous gene nomenc lature may d iffe r between spec ies 
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the ir indi v idual functi ona l roles are li ke ly di stinct. T his may indi cate that prio r to the 

emergence of Cdx 1/2/4, the so le Cdx gene precursor underwent ge ne dupli cati on and 

sequentia l modifi cations that lead to th ree neo-funct ionalized Cdx prote in-coding 

genes. lt is no secret that sequentia l geneti c modifi cations guide the evo lut ion of 

novel features (H olland et a l. , 1994; Penni si, 2008). However, w hether the c riti ca l 

dri v ing fo rce underly ing ve rtebrate evo lution was due to prote in neo-functi ona li zati on 

or changes in c is-regulatory sequences is sti Il contested (Carro ll , 2008 ; Lev i ne, 20 l 0 ; 

Lynch and Wagner, 2008) . Concerning the evo lution of vetiebrates and the NC-G RN , 

both Van Otterl oo et a l. (20 13) and Jandz ik et a l. (20 15) make the case that mutations 

in pre-vertebrate c is-regulatory reg io ns were c ri tica l fo r NC evo lu tion. Van Otter loo 

et a l. (2 01 3) go so fa r as to suggest that there is litt le ev idence supporting the c la im 

that prote in neo-fun ctiona lizati on gui ded the evo lu tion of the NC-G RN. T hi s line of 

thin king is the most accepted by evo lutionary deve lopmenta l bi o log ists (I-loekstra and 

Coyne, 2007; Wray , 2007) . Pati of the reasoning is that many prote in-coding genes 

have highly conserved functi ons among diffe rent species (such as non-vertebrate Cdx 

gene homologs AmphiCdx and cad) but vari ati ons in express ion leve ls abound 

(Wittkopp and Ka lay, 20 12). W hether the dri v ing fo rce fo r NC-GRN evo lu t ion was 

due to prote in-codi ng or c is-regul atory changes, both evo luti onary novelt ies have 

ul t imate ly contributed to its deve lopment. 

ln the case of Cdx2NSE, the enha ncer is undoubtedl y a vertebrate-exc lus ive feature, 

invo lv ing a c is-regulato ry sequence that enhances the express ion of a vertebrate " neo­

functi onalized" prote in. C learly it is di ffic ult to di scern , w ithout go ing back in time, 

which nove l feature was more cruc ia l fo r vertebra te deve lo pment, the (NSE) 

enhancer for Cdx2 o r Cdx2 itse lf. Of course th e main contenti on is not w hether o ne 

feature came first or not, but whi ch nove lty was c ri tica l fo r vertebrate evo luti on (and 

poss ibl y fo r evo lution of Cdx neural fun cti ons) . If we fo llow conventio n, most 

evo lutionary bio log ists would probabl y agree that divergences in the NSE sequence 

are more like ly to guide important phenotypic changes. However, the ro le and impact 
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of the NSE is not yet known. A vertebrate homo logy comparison of Cdx2NSE carried 

out by Wang and Shashikant (2007) indicated a 65-98% NSE sequence simil ar ity 

between mouse and Xenopus , chi ck, oposs um , dog, rat and human. There was no 

homology w ith zebrafish and fugu, which is not surpri s ing g iven the fact that teleost 

fish, like zebrafish and fugu, do not have Cdx2 genes, but instead have two cop ies of 

Cdxl and a s ing le Cdx4 gene (M ull ey et al. , 2006). 8oth Cdx2 and its own NSE seem 

to be highl y conserved together, w hi ch indi cates a se lect ive pressure to ma intain both 

features. 

Whil e our take 1n the study ing the enhance r does not come from an evo luti onary 

sta ndpo int but a pract ica l one, it is worth noting that enhancers as a who le are often 

hi ghly conserved, yet subtl e var iat io ns a re li kely between spec ies and thus we ca nnat 

rely on homo logy a lone when ana lyzi ng putative TFBSs. Our own homology 

com parison of the 852-bp NSE, described by Wang and Shashikant (2007), with 100-

vertebrate spec ies from the UCSC Genome browser a lso va lidated the hi g h 

conservation of the NSE. However, there was di vergence in seq uence conservat io n 

for putative Lefl /Tcf bindings s ites found by computationa l ana lys is, with onl y 

putative s ites BS2, BS3 , and BS5 appear ing to have co nservation w ithin the 100-

vertebrates. A more se lective search, inc luding just mouse, human, rhesus and 

e lephant does ïeveal conseïvation of putative BS4 but not BS l , which is the nwst 

divergent of a li five potential Lefl /Tcf binding s ites. Luc ife rase assay tests ofBS l by 

itse lf, w ith cano ni ca l Wnt pathway effectors Lefl -~catenin revealed no act ivation , 

even wh en co-transfected with Sox2. Granted, the synergy of both Lefl - ~caten in and 

Sox2 was only evident in the full Cdx2NSEreverse- luc reporter, thus no rea l 

infe rences can be made on indi vidua l or groups of potential binding sites. What can 

be said is that a trend is present between the enhancer fragments (F igure 5.4), where 

the larger the fragment the greater the activat ion. A lso, it is unc lear if the two hi ghly 

conserved potentia l STEM (Sox2) binding sites contributed to any act ivation. 
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T he activ ity of Cdx2NSE is not entire ly located in the neu ra l spec ifie regions of the 

developing posterior neuroectoderm and NT, but also slig htly in posterior 

mesodermal tissue (Coutaud and Pilon, 2013). The goa l here was to test the NSE for 

neural specifie activity, and identify the regions most receptive to neural spec ifi e 

activation so that a truly neural spec ifie enhancer co uld be constructed and used for 

the generati o n of a Cre mouse line driven by the new enhancer. T hi s new modified 

enhancer would hopefully be both neura l spec ifie and innocuous in vivo. Even if 

lucife rase assays had identified a promtsmg NSE, its true utili ty would not be 

apparent until tested in the transgenic mouse line. T hi s risk may be worth taking 

considering how such a tool , a imed at posterior neural development, does not yet 

exist. 

Si nce no one ptece of the NSE architecture stood out more in neural spec ifie 

activation, it remains to be identified. If, for example, one small segment had been 

ab le to nearly recapitulate the neural specifi e activation of the full seq uence, then by 

exclusion the mi ss ing segments could be categorized as non-neura l spec ifie. While 

stilljust a c lue this could indi cate that the smaller segment stro ngly sens iti ve to neura l 

spec ifie activat ion could be used in regenerat ing a truly CcL"~:2NSE Cre mouse line. 

Unable to distinguish these s ites through act ivatio n by Sox2 and Lefl -Pcatenin, there 

are two suggestions for future research. One is to repeat, and two is to test NSE 

activation by other activator proteins needed for posterior neurogenesis. 

Admitted ly, concerning the discrepancy between the act ivation displayed by the full 

Cd.x2NSEreverse in tests from Figure 5.4 and 5.3 , it wou ld have been better to 

maintain the same cel! density as before, for co ntinuity , and reproducibility. As 

mentioned in materia ls and methods, the first tests demonstrated in F igure 5.3 used 

3x 104 ce ll s/we ll , and I.Sx 104 ce ll s/we ll in the second tests shown in Figure 5.4. 

Somewhere a long the way 3x 104 ce ll s/well mistakenly became 3x 104 cell s/mL and 

thus 1.5x l04 ce ll s/well (i.e. SOO~d/we ll). Still , 3x l04 cells/m L falls somewhat c lose to 
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the recommended (Novagen) dens ity range of 4-8x l 04 ce li s/mL for ad herent cells­

rang ing from three-quarters to about one-third the amount. Even if not the 

recommended amount, one (n= J) 6xl04 ce lls/mL was compared to one (n= l ) 3x l04 

cells/mL, us ing the same transfection materi a ls and conditions (done on the sam e 

day). The results did not suggest more cells were respons ibl e for the discrepancy, in 

fact sli ghtly more activation was observed in the test w ith less cell density. T hi s could 

suggest the inconsistency is due in large part to Jower qua lity of transfectio n 

material s, as the substantia l time lapse from the first test and the second test meant 

the orig in al mate rials had been exhausted and new ones were made. The comparison 

be ing an n=l is of course not s ignifi cant and a rework is still warranted, yet it is c lea r 

that materials and conditions need to be as similar as possible, and the best strategy is 

to test consecutively in as short a peri od of ti me w ith enough of the same reso urces 

for the whole duration. Desp ite the overs ight, conditions were kept the same for the 

second part of the tests, and so a li things being equa l, inferences can st ill be made, 

though aga in st i Il warrants retesting. 

Testing the NSE with other poss ible key activators, and their combinations, could 

a lso help ident ify regions more sens itive to ne ura l specifie activat ion. Matlnspector 

ana lysis identifi ed four Ets motifs invo lved in FGF signalling (Appendi x C) . T he 

nïüst conseïved of the fou ï motifs weïe the two most-inneï ones. Like wi th the 

putative Lefl /Tcf motifs invo lved in Wnt signa lling, the Ets motifs were mostly 

detected on the reverse NSE strand (3 out of 4). It could be the case that act ivat ion by 

both Wnt and FGF pathways is synergistic. 

Cdx2 has also bee n shown to regulate its own expression, through response elements, 

sensitive to Cdx2 activation, located proximal to the promoter (X u et al. , 1999). 

However, Matinspector did not identify any motifs for Cdx2 (o r Cdxl/4). 

Wh ile the Sox-B l transcription family of transcription factors Soxl, Sox2 and Sox3 

share 80% sequence s imil arity and are functionally redundant (Zhang, 2014), Sox2 
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rema ins the most defini te pan-neural spec ifi e marker of the earl y neural plate (Okuda 

et al. , 201 0). ln addition, Sox2 pla ys a role in maintaining neural progenitor 

populations throughout early development and beyond (Elli s et a l. , 2004). Sox2 along 

w ith Oct4 and Nanog play a role in maintaining cell pluripotency as weil as 

specify ing lineages. Sox2 maintains neuroectodermal identity while Na nog and Oct4 

direct the differentiation of the mesoendoderm (Lo h and Lim, 20 11 ; Thomson et al. , 

20 Il ; Zhang, 20 14). Sox2, Nanog and Oct4 are a li part of the two putative composed 

STEM binding sites fo und on the reve rse Cdx2NSE strand. lt co uld be possible that 

these sites are equa ll y responsible for the neural specifie and mesoderm activity of the 

enhancer observed by Coutaud and Pilon (20 13). If true, separat ing two fate -guiding 

traits from one shared binding s ite is likely to be unmanageab le. 

Enhancers are robust and complex regulatory features. Unlike mutations in protein­

coding sequences, changes to enhancers are not as deleterious, nor like ly to be more 

pleiotropic (Wittkopp and Kalay, 2012). Yet, their contr ibution to evo lution is 

believed to be major. Attemptin g to uncover and refashion the complexity and 

robustness acquired through hundreds of milli ons of years of evo lution is a 

formidab le task. The identification of neural specifie regions rests to be discovered , 

and the hope is that, despite the c hallenges, retesting and adding the action of FGF 

signa lling will help uncover these regions. 





APPENDJ X A 

E VOLUTlONARY CONSERVATION OF CDX2NSE POTENTI AL TFBS 

Table A.l Potential TFBS phyloP plot scores. 
Core sequences are the most conserved four consecuti ve nucleotides. Pos it ive scores 
ind icate conservation, whereas negati ve scores predict acce lerati on. Data retri eved 
from the UCSC aenome browse r o · 

Query Sequence Bases Mi nim um Maximum Mean 
Standard 
Deviat io n 

Cdx2NSE 842 -5 .114 4.8243 1.02275 1.71358 

BS l 17 -1.70244 0 .439701 -0.381687 0 .608727 
BSl CORE 4 -0.433024 0 .122346 -0.195008 0.282368 

STE Ml 19 0.122346 4.16861 1.90538 1.31179 

STEM l CORE 4 0.836394 2.42317 1.82813 0 .690139 

BS2 17 1.94713 4.80332 3.65525 0.9985 

BS2 CORE 4 3.29589 4.80332 3.83143 0.71368 

BS3 16 -0.414598 3.91757 1.20367 1.17115 

BS3 CORE 4 -0.112354 1.90261 0.970687 0 .852398 

BS4 17 -2 .12732 2.3056 0.261006 1.03406 

BS4 CO RE 4 -0.515346 0.0891417 -0.112354 0.284958 
·-

BS5 21 -0.716843 3.01083 1.49482 1.09648 

BS5 COR El 4 1.39887 3.01083 2.40635 0.698003 

BS5 CORE2 4 1.29812 3.01083 1.85223 0.791155 

STEM2 19 -0.213102 3.11158 1.66399 0.976333 

STE M2 CO RE 4 0.995874 3.11158 1.70111 0.95578 





APPENDIX B 

REGULATION OF PAX3 NCE3 BY CDX2 PROTEINS 

The paired box transcription facto r Pax3 is an important regul ator of the NC-GRN 

circuit, involved in the spec ifi cat ion of the neura l crest. T here are three neura l crest 

e lement (NCE) enhancers for Pax3 : NCEI , NCE2 and NCE3. Recent enh ancer 

studi es have demonstrated that Wnt-mediated signalling activates NCE2 through 

intermed iary Cdx proteins, and that Z ic2 transcription factors a lso regulate NCE2 

(Sanchez-Ferras et a l. , 20 14; Sanchez-Ferras et a l. , 20 12). NCEl/2 were the first 

neural crest enhancers to be described , and as most enhancers go, they are highly 

conserved; they are also similar in function (L i et a l. , 1999; Mi lewski et a l. , 2004; 

Pruitt et al. , 2004). The third enhancer known in the lab, as NCE3 , was discovered by 

Degenhardt et a l. (20 1 0) and is an introni c enhancer w ith seem ingly redundant 

functions to NCE 1/2. T herefore, the hypothesis is that Cdx proteins regul ate the 

NCE3 of Pax3 just as other en hancers of Pax3. Presented here are the luciferase tests 

ana lyz ing the effect of Cdx2 as an act ivator on NCE3 forward and reverse sequences 

that we inserted into a lucife rase expression vector with an 800-bp Pax3 promoter. 

There seems to be dose-dependent act ivation of the Pax3 promoter by Cdx2 proteins 

with maxim um activat ion achieved at Cdx2 dose 25 ng (F igure A. l). 
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CDX2NSE AND FGF SIGNALLING 
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Figure C.2 Placement of putative Ets motifs and homology. 
Ets motifs involve FGF signalling. GGAA characterize the core sequences of most 
Ets motifs, which makes their importance more problematic to address. At the top are 
the results of Matlnspector; there are four putative Ets motifs, with high matrix 
similarity particularly for the three reverse NSE stands. At the bottom are the results 
of 100-vertebrate homology comparison (UCSC genome browser) with respect to 
putative binding sites . A-C are the putative Ets motifs, in red are the putative motifs 
for the STEM binding sites, and light black the putative Lefl/Tcf binding sites. Ets 
sites BIC are the most conserved. 
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