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RÉSUMÉ 

Il est question dans le présent document de certaines familles d 'objets mathématiques dont la cardinalité 

se dénombre par la célèbre suite des nombres de Catalan . Nous nous concentrons sur certaines propriétés 

du trei llis de Tamari. Nous considérons aussi les relations entre ces objets et les fonctions de station

nement. Afin d'étendre ces constructions à d 'autres contextes, nous introduisons la notion de « tube de 

graphe >> . Pour les graphes de chemins, ceci retrouve la config uration de Catalan. Par cette analogie, 

nous pouvons généraliser à d'autres familles de graphes tels que les graphes complets, cycliques, etc. 

Mots-clés: Nombre de Catalan, objets de Catalan, treil lies de Tamari, polynôme de zeta, fo nctions de 

stationnement, tube de graphe. 





ABSTRACT 

In the present document we investi gate families of mathematical objects counted by the fa mous sequence 
of Catalan numbers. We are interested in properties of sorne structures on uch families known as the 
Tamari lattices. We consider relations between those objects and parking functions. To extend such 
constructions to other contexts, we introduce the notion of "graph tubing". For pa th graphs, thi recovers 
the Catalan setup . Using this analogy, we can generalize the theory to other nice families of graphs such 
as complete graphs, cycle graphs, etc. 

Keywords: Catalan numbers, Catalan objects, Tamar lattice, zeta polynomials, parking functions, graph 

tubing. 
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INTRODUCTION 

Catalan numbers have always been cons idered as an important integer sequence in combinatorics with 

severa! characterization, and there are severa! interesting families of mathematical objects counted by 

these numbers, which are named Catalan objects. On the other hand, Dov Tamari in [15, 1962] in

troduced a lattice structure on the fami ly of well-formed parentheses whose number of elements is the 

Catalan number. There are sorne interesting results on the Tamari lattice such as Chapoton 's formula to 

count the number of intervals in this lattice. Furthermore, there are other combin atorial notions such as 

Parking functions, whose connections to Catalan objects are interesting. Any time a new farnily emerges 

whose elements are enumerated by the Catalan numbers, we are motivated to find the associated Tamari 

order on i ts po set. 

In [5, 2005] M. Carr and S. Devadoss introduced the notion of "graph tubing" in which, specially for 

path graphs, the number of maximal tubings is the Catalan number. Hence maximal tubings of a path 

graph is y et another class of Catalan objects. In [Il , 2012] M. Roneo described a partial order on the set 

of tubings of a simple graph, which generalized the Tamari order on the set of tubings of path graphs. 

During the same year, S. Forcey in [8] generalized the Tamari order, and the weak order on permutations, 

to maximal tubing of a graph. 

In the presen t work, our goal is to relate parking functions to maximal tubings of path graphs as a recent 

Catalan object. This opens the possibility of considering parking functions for maximal tubings of other 

"nice" families of graphs, such as complete graphs, cycle graphs, etc. 

The first chapter of this monograph recalls sorne basic combinatorial notion namely: posets, intervals 

in posets, lattices, the zeta polynomial , Catalan numbers, and the symrnetric group §n · In the second 

chapter, we introduce sorne of the Catalan objects such as Dyck paths, Dyck words, binary trees, and 

complete binary trees . Although there are direct individual proof that the cardinali ty of Dyck paths, 

binary trees or other Catalan families are indeed given by Catalan numbers, we wi ll rather prove this fo r 

just one case (Dyck paths), and then show that there are bijections linking other families to this specifie 

one. In Chapter 3, we translate the Tarnari lattice structure to the context of the considered families, and 

interpret the order direct! y in the relevant context. In Chapter 4, the properties of parking functions are 

discussed, and we consider how parking functions may be defined direct! y in each context. Also we ex

tend the enumeration of parking fun etions using zeta polynomials. We start Chapter 5 with the definition 

of tubing and its properties, and also we recall how to count the number of maxi mal tubings for sorne 
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special families of graphs, such as path graphs, complete graphs, and cycle graphs. We describe the 

Tamari order defined by Forcey, and continue with the spirit of parki ng functions in terms of maximal 

tubings of pa th graphs. 



CHAPTERI 

SOME BACKGROUND IN COMBINATORICS 

In this chapter we introduce sorne combinatorial terminology such as graphs, posets, intervals in posets, 

lattices, zeta polynomials, Catalan numbers, and symmetric groups §n which will be used later . 

1.1 Graphs 

A (simple) graph is a pair of sets, denoted G = (V , E), where V is a fini te set and E is a subset of ( ~), 

which stands for the set of pairs of elements in V. The set V is called the set of vertices (or nades), and 

E is called the set of edges of G. The edge e = { u , v} ç:: ( ~) is also denoted by e = uv, and then u is 

said to be adjacent to v, and u is said to be incident to e. If the edges of Gare directed, then the graph is 

called an oriented graph, and the edges are called arcs. For example, Figure 1.1 represents a graph with 

set of vertices V = { v1, Vz, v3 , V4 , Vs } and set of edges E = { v1 vz , vzv3, V3V4 , V4 vs , v1 Vs, vzvs }. 

Vs 

Figure 1.1 : A graph . 

What happens in the structure of a graph' is satisfying the fo llowing fu nction: 

§ v x Graphs(V] --+ Graphs(V] 

17, G H 17 . G := (V, 17 • E) 
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such that: 

• §v := {a- 1 0': V -+ V}. (see Section 1.4) 

• Graphs(V] := { (V, E ) 1 E Ç (~)} . 

• O'·E:= {{O'(u), O' (v)} l {u,v} E E}. 

Then two graphs G1 and G2 are isomorphic if and only if there exists a function 0' in § v such that 

O'.G1 = G2, denoted G1 "' G2. This is an equivalence relation. Hence a graph type (shape) is an 

equ ivalence clas for thi i omorphism relation 

(G] E Graphs (V] /~ · 

We will informally refer to an equivalence class (G] as an unlabeled graph. lndeed, it is customary to 

draw unl abeled graphs with undistinguishable vertices (s imple dots). 

A subgraph of G, i a graph whose vertices are a subset of the vertex set of G, and whose edges are a 

subset of the edge set of G. A subgraph, G 1 of G, is induced, if for any pair of vertices u and v of G 1 , 

uv is an edge of G 1 if and only if uv is an edge of G. For example, Figure 1.2 shows a subgraph, and 

induced subgraph on the red vertices of a given graph. 

(a) Subgraph (in red) . (b) !nduced subgraph (in red) . 

Figure 1.2: Illustration of a subgraph (left) and an induced ubgraph (ri ght) of a graph . 

A graph is connected, if there is a path between each pair of the vertices. Otherwise, the graph is dis

connected and its la.rgest connected subgraphs are cal led connected components of graph. For example, 

Figure 1.3 shows a graph with three connected components. 

ln the fo llowing we mostly consider sorne special fa.m ilies of graphs, such as : 

• Pa th graphs: a graph with vertex set V = { v1 , ... , vn} such that the set of edges is 

{{v; ,vi+d I l :Si:::; n - 1}. 
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~4. 
Figure 1.3: A graph with three connected components. 

• Complete graphs: a graph with ail possible edges. 

• Cycle graphs: a path graph with extra edge { v1 vn } between the first and last vertices . 

1.2 Posets 

Let us now recall sorne background from the theory of posets, which pla ys an important role in enumer

ative combinatorics. An excellent reference for general theory of posets is [12, Chapter 3]. A partially 

ordered set P, or poset for short, is a set P together with a binary relation ":j", sati sfying the fo llowing 

relations: 

• For ail x E P , x :::5 x . (reflexiv ity) 

• If x :::5 y , and y :::5 x, then x = y. (antisymrnetry) 

• If x :::5 y, and y :::5 z, then x :::5 z . (transitivity) 

Two elements x, y E Pare comparable if x :::5 y or y :::5 x, otherwise x and y are incomparable. An 

element x of a poset is called maximal if for ail element y E P, x 1:. y, and x is minimal if fo r ail 

element y E P , y 1:. x. If maximal and mjnimal elements are unique in the poset, are called respectively 

maximum and minimum, denoted Î , Ô. A chai11 in a poset is a subset C Ç P such that any two elements 

in C are comparable, and it is called mu/ti-chain if it has repeated elements. A chain with n elements is 

a chain of length n- 1. Let x and y be two distinct elements of a poset P. We say that y covers x or x is 

covered by y, denoted x-<· y , if x-< y (i.e. , x :::5 y and xi= y) and no element z satisfies x-< z -<y. A 

fini te poset is determined by a Hasse diagram; this is the oriented graph whose vertices are the elements 

of the poset, and whose arcs correspond to the covering relations such that, if x -<· y then y is drawn 

above x. So the Hasse diagram is directed in the plane from bottom to top. 

For example, Figure 1.4 is the Hasse diagram of the poset of subsets of {1 , 2, 3} . The order relation in 

this poset is set inclusion: x :::5 y if x Ç y.The minimum element is { }, and the max imum element is 

{1 , 2, 3}. For instance, { } :::5 {3} :::5 {2 , 3} is a chain with three elements uch that {2, 3} covers {3} 

but itdoes notcover { }. 



6 

{1 , 2, 3} 

{1 , 2} {2, 3} 

{1} {3} 

{} 

Figure 1.4: The po et of subsets of {1 , 2, 3} under inclusion. 

For a parti all y ordered set (P, ~), let x , y E P with x ~ y. The set [x , y] = { z E Pl x ~ z ~ y} is 

cal led an interval of P . The cardinality of [x, y] is the number of mul ti-chains between x and y with 

th.ree elements. For example, in the poset Figure 1.4, [ { } , {2, 3}] = { { }, {2} , {3} , {2, 3}} i an intervaJ 

with four elements. Hence we have four fo llowing mul ti-chains between {}and {2, 3}: 

{} ~ {} ~ {2, 3} 

{ } ~ {3} ~ {2, 3} 

{ } ~ {2} ~ {2, 3} 

{} ~ {2, 3} ~ {2, 3} . 

In the section 1.1, we introduced path, complete, and cycle graphs as a special fam ilie of graphs, there-

fore it w·oüld b interesting to consider them as a poset and study the nümber of mülti- chains with thrc;e 

elements between minimum and maximum elements of the poset. 

Vt I Vt 

Vt - 1 Vt- l~Vt-2 
1 \ 

1 
1 

1 • 
~ f 

~ 1 
\ 1 
\ 1 

\ 1 

VI V1~V2 

G" 
va 

G Gl va 

Figure 1.5: A path, complete, and cycle graphs in terrns of poset. 
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Figure 1.5 illustrates a path graph G, a complete graph G', and cycle graph G" as a poset with t + 1 

elements on vertex set { v0, v1 , . . . , Vt } where v0 = Ô is the minimum element, and Vt = Î is the maximum 

element. The cardinality of [Ô, Î] in every mentioned poset is: 

I[Ô, Î ]cl = t + 1. 

[Ô, Î ]c• = { vo, v1, v2 , ... , Vt- 1, vt} I[Ô, Î]c• 1 = t + 1. 

[Ô, Î]c"= {vo,v1,v2,···,Vt-2,vt-1,vt}; I[Ô, Î]c"l=t+ l. 

There are t+ 1 multi-chains with three elements in each poset G, G', and G": 

VQ ~ Vt-1 ~ Vt 

Vo ~ Vt ~ Vt 
Similarly, for other vertices of G and G' we have: 

I[Ô,vt-l ]c l = I[Ô,Vt-1]c•l = t . 

I[Ô , Vt- 2]cl = I[Ô, Vt-2]c• 1 = t - 1. 

I[Ô ,v1Jcl = I[Ô,v1Jc•l = 2. 

I[Ô,vo]cl = I[Ô,vo]c•l = 1. 

Hence the number of intervals in the posets G and G' is 

~k = (t + 1) (t + 2) 
L.J 2 . 
k=1 

To find the number of intervals in poset G", it suffices to consider poset G" as a join of two left and 

right path posets such that the left one has tt vertices, and the right one has t,. vertices (except v0 and 

Vt). Then count the number of intervals fo r each path poset such as what we did for poset G. Hence the 

number of in tervals in poset G" is 

t , +1 t ,.+1 

(t + 1) + 2: k + 2: k + 1. 
k=2 k=2 

1.2.1 Zeta polynomials 

One of the subjects that has useful results on posets is the zeta polynomi al. First we defi ne sorne related 

constants. For a poset (P, ~), suppose x, y E P, then let 'D f> (x , y ) be the set of sequences called (weak) 
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chain defined as follows: 

V f,(x , y ) := {(xo, .. . ,Xn) 1 x= Xo -< X1 -< ... -< Xn = y} . 

and let C?(x, y) be the set of sequences called multi-chains defi ned as follows: 

Cf,(x , y) := {(xo , ... , xn) 1 x= xo ~ x1 ~ ... ~ Xn = y}. 

The zera polynomial, Zp (n) , for a poset P with minimal and maximal e lements Ô,Î respectively, is 

defined as fo llows: 

Zp (n ) := IC'J,(Ô, Î )l . 

As a polynomial in n, we have (see [12]): 

Zp (n) = L (~) IV~(Ô , Î )l . 
k~O 

(1 .2. 1) 

For example, for the poset P in Figure 1.6 with minimum element a and maximum element e, the zeta 

polynomial is: 

Zp(n) = ~ (n3 + 6n2
- n ). 

One gets the following binomial coefficient expansion: 

This is so since: 

Zp (n) = (7) l{(a,e)}l 

+ G) l{(a, b,e), (a , c,e), (a , d,e)} l 

+ (~) l{(a, b,c,e)}l. 

c 

b 

e = î 

a = Ô 

Figure 1.6: Poset P . 

d 

As a result, we have Zp(2) = 5, oit means that the multi-chains with three elements count the elements 

of pose t P , and Zp(3) = 13 which means that the multi-chains with four elements count the intervals of 
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the poset. 

We can a Iso calculate the zeta polynomial fo r posets of a pa th graph , a complete graph, and a cycle graph 

of Figure 1.5 with n + 1 vertices: 

Za(n) = n + (t- 1) (~) + (t - 2) ! G) + (t- 3) '(:) + .. · 

This is so since: 

Za(n) = (7) l{(vo,vt)}l 

+ G) l{(vo,vl ,vt), (vo,v2 ,Vt) , ... , (vo,Vt-l ,vt)}l 

+ G) l{(vo,vl,v2,vt) , (vo ,vl ,v3,vt), ... , (vo,vl ,Vt-l>Vt) 

(vo , V2, V3 , Vt), (vo , V2 , V4 , Vt) , · ., (vo , V2, Vt-1 , Vt) 

(vo , Vt-2, Vt-1, Vt )} l 

+ ". 
TheZa' (n) is the same as the Za(n). For calculate Za" (n), G" as a jo in of two paths that the left one 

contains t1 vertices, and the right path contains tr vertices (except v0 and v1 ), we have the fo llowing 

polynomial: 

z a,(n) = n+(t-1) (~) + ( (tt-1 )! (~) +(tt-2)! ( :) + · · · ) + ( (t,.-1)! (~) +(tr- 2)! ( : ) + · · · ) 

1.2.2 Lattices 

An important class of posets is known as lanices. To introduce lanices, first recall sorne definitions. Let 

(P , j) be a partially ordered set. An upper bound of x, y E P is an element z E P satisfying x j z and 

y j z . A !east upper bound of x and y is an upper bound z such that every upper bound z' of x and y 

satisfi es z j z'. A !east upper bound of x and y is unique if it exists, and is called their join , denoted 

x V y. Similarly, a lower bound of x, y E P is an element z E P satisfying z j x and z j y. A greatest 

lower bound of x and y is a lower bound z such that every lower bound z' of x and y satisfies z' j z. A 

greatest lower bound of x and y is unique if it exists, and is called their meet , denoted x 1\ y. 

A lattice is a po et fo r which every pai r of elements has a join and meet. A Jattice as an algebraic 

stmcture in terms of the operations v and /\ , satisfi es the following axioms: 

• Commutative law: x V y =y V x, x 1\ y = y 1\ x . 

• Associative law: x V (y V z) =(x v y) V z, x 1\ (y 1\ z) =(x 1\ y) 1\ z . 

• Absorption law: x 1\ (x V y) =x= x V (x 1\ y ). 
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• Idempotent law: x V x = x 1\ x =x . 

• x 1\ y = x <=} :r; v y =y <=} x ::S y. 

For example, the poset in Figure 1.4 is a lattice that {1} V {3} = {1 , 3} , and {1} 1\ {3} = {} . 

1.3 Catalan numbers 

As illustrated by a famous exercise in Stanley 's book [13], one of the best known integer sequences in 

combinatorics is the sequence of Catalan numbers. Catala11 11umbers are defined by 

C(n) = _1 (2n). 
n+ 1 n 

(1.3. 1) 

In 1838, Belgian mathematician Eugëne Charles Catalan was the first to obtain what is now a standard 

formula for Catalan numbers. Small values of C(n) are: 

1, 1, 2, 5, 14, 42, 132, 429, 1430 , ... 

The Catalan numbers satisfy the fo llowing recuiTence relation for n > 0 where C(O) = 1, 

n 

C(n + 1) = L C(k)C(n- k ). (1.3.2) 
k=O 

As is frequently useful in combinatorics, we can try to calculate or geta form ula for C(n) by using a 

generating function. This means that for a power series B(x) defined by 

B(x) := L C(n)xn , 
n 

in term of the generating function, we have 

B(x ) = 1 + x B(x) 2
, 

which is simply a translation of the recursive defin ition of Catalan number (for more details see [3]). 

We will have many families of objects (grouped by "size"), such that the number of those objects in size 

n is equal to C(n). For thi s reason, we will say that such objects are "Catalan objects". This will be the 

subj ect of the next chapter. 

1.4 Symmetric group §n 

The symmetric group Sn is the group of bijections of [n] = {1, ... , n} to itself. The cardinali ty of this set 

is equal to n!. A notation for the permutation that sends i --+ li is 
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A k-cyc/e permutation (or a cycle of length k) is a permutation that sends l; to li+1 for 1 ::::; i ::::; k - 1 

and lk to 11, denoted 

The same cycle can be written in severa! ways, by cyclically permuting the l1 . For example, it a Iso can 

be written as: 

Two cycles (h l2 .. . lk) and ( l~ l~ ... l~,) are disjoint , when the sets {l 1 , .. . , lk} and {l 1 , ... , l~ , } are 

disjoint. Every permutation Œ E §n is expressible as a product of disjoint cycles unique! y, which is called 

the cycle decomposition of CT. For example, Œ = 25431 in § 5 has a cycle decomposition (2 5 1)(3 4). 

Let U~=l n; = {1, 2, .. . , n} be a partition of {1 , 2, ... , n} into k disjoint subsets. Th en the corresponding 

Young subgroup of §n, is the subgroup 

where §n, = {CT E §n : Œ(j) = j for ali j fJ. n;}, that consists of ln;l! of sucho-. This means that CT 

permutes the elements of n;, and fixes the elements in the complement {1 , 2, ... , n } \n; . 

Fora permutation Œ in §n, an inversion setofŒ, denoted Inv(Œ), is thesetof pairs (i,j) with i < j and 

l; > l1. For example, Inv(Œ = 312) = { (1, 2), (1, 3)}, because 11 = 3 > l2 = 1 and h = 3 > l3 = 2. 

The weak arder on the symmetric group is a partial order such that for Œ, 8 E §n, CT ::S 8 whenever 

lnv(Œ) Ç Inv(8). Thi s poset is a lattice with identity permutation, 123 ... n as the minimum element, and 

the permutation formed by reversing the identity, n n- 1...321 as the maximum element. The covering 

relation CT -<· 8 occurs when 8 is obtained from CT by transpo ing a pair of consecutive values of Œ; a pair 

(Œ;, Œj) such that i < j and Œj = Œ; + 1. For example, Figure 1.7 illustrates the weak order on § 3 . 

321 

312 231 

213 132 

123 

Figure 1.7: Weak order on § 3 . 





CHAPTERII 

SOME CATALAN OBJECTS 

Stanley (see [13]) has compiled a list of more than 207 combinatori al a bjects that are counted by the 

Catalan numbers. Much of our story concem generalisations of the Catalan numbers and families of 

mathematical abjects counted by these, which we call, Catalan objects . In this chapter we consider five 

famil ies of Catalan a bjects: binary trees, complete binary trees, Dyck paths, Dyck words, and bounded 

increasing sequences. We count the number of Dyck paths to see it is equal to the Catalan numbers, and 

show that the other Catalan abjects bijective! y have the same cardinality. 

2.1 Binary trees 

Recall that a tree is an undirected, acyclic, connected graph. This means that any two nades are connected 

by exactly one simple path. A bùzary tree is an arrangement of nades and edges with root node on the 

top, and by descending, every node is connected to at most two node , which are sa id to be its right and 

left children. The root node separates the binary tree into two right and left subtrees . Let us denote by 

Bn the set of ali binary trees with n nodes. The number of nodes of a binary tree i cal led the size of the 

tree. The cardinali ty of Bn is equal to C(n). For example, Figure 2. 1 shows the set of binary trees with 

three nodes . 

Figure 2 .1 : The set B 3 , of binary trees with 3 nades. 
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2.2 Complete binary trees 

A complete binary tree is a binary tree for which every node has either none or two children. Let us 

denote by Cn the set of ali complete binary trees with 2n+ 1 nodes (or n interna! nodes). The number of 

interna! nodes of a complete binary tree is ca lied the .s ize of the tree. The cardinali ty of Cn is the same as 

the cardinality of Bn, thus they are in bijection. By adding new nodes to a binary tree so that each node 

is either a leaf (which has no child.ren) or is an interna! node (which has exact! y two children), we can 

transform a binary tree into a complete binary tree. For example, Figure 2.2 shows the set of complete 

binary trees with seven nodes. 

{ .(. · .. <·, ··>.' r/ ·-. .:· ·-. .:· ·-. 

... <:> ... .. .... .. ,·/» } .. . .. 

Figure 2.2: The set Ca, of complete binary trees with 7 nodes. 

2.3 Dyck paths 

One of the other Catalan objects that we are interested in is the fami ly of Dyck paths. A Dyck pa th of 

size n is a path in the n x n square consisting of only south and east steps of length one thal the path 

doesn't pass above the line y = -x+ n in the grid . It start at (0, n) and end s at (n, 0) . A walk of length 

n along a Dyck path consists of 2n steps, with n in the south direction and n in the east direction . By 

neces iL y Lhe firsL slep mu L be a ouù1 Lep and the iast one should be an east tep. Let u denote by Dn 

the set of all Dyck paths of length n. For example, Figure 2.3 shows the set of Dyck paths of size three. 

Figure 2.3: The set Da, of Dyck paths of s ize 3. 

A consecutive sequence of r south steps is called a vertical run of length r . One single south step is a 

vertical run of length one, and the absence of south steps is a vertical run of length zero. 
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For a Dyck path a E Dn, -y( a) = a1az ... an is called the composition of a if the i-th vertical run of a 

has length a; (for 1 ~ i ::::; n) , and 2::~1 a; = n . Clearly -y(a) is a composition of n. For example, 

Figure 2.4 illustrates a Dyck path in D 3 with composition 21. 

' ' 

' ' ' 

Figure 2.4: A Dyck path with compos ition 21 . 

2.3. 1 Count the number of Dyck paths 

A random path in a square n x n , is a path with 2n steps (n south steps and n east steps, each of length 

one) that start at (0 , n) and ends at (n , 0). Hence the total number of random paths with 2n steps is 

A Dyck path is the special case of a random path which stays on or below the li ne y = - x + n . We will 

count the number of random paths that begin at (0, n) and go above the line y = -x+ n at sorne point 

or totally (we cali them, non-Dyck paths). Finally, by subtracting the number of non-Dyck paths fro m 

(
2
: ), we reach the number of Dyck path . The non-Dyck paths hit the tine y = -x+ (n + 1) at sorne 

point. If we take the firs t point where the path hits the li ne y = -x+ (n + 1), and refl ect the rest of the 

path through that line, the refl ected part ends at (n + 1, 1) on the tine y= -x+ (n + 2). 

' ' ' ' 

' 

' 

' ' 

' ' 

' ' ' 

' ' 

' ' 
' ' 

' 

',',',, t. y= -x+ (n + 2) 

~ ', 

Figure 2.5: Non-Dyck path (in red), and its reflected part (in black) . 
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For examp le, Figure 2.5 illustrates a non-Dyck path that hi ts the line y = -x+ 5 at (3, 2), and shows its 

refl ected path from this point with bl ack. 

Furthermore, any random path starting at (0, n) and ending at (n + 1, 1), after 2n steps must cross the 

line y = -x+ (n + 1) at sorne point, and by refl ecting back up the bl ack part, we reach the non-Dyck 

path . Th is bijection helps u to count the number of non-Dyck paths. In the second random path (which 

ends up at (n + 1, 1)), we need to take (n- 1) south teps and (n + 1) east steps out of 2n, hence there 

are (n2
.:\) of this type of paths. In conclusion we can cou nt the number of Dyck paths as: 

# Dyckpaths = C:)-(n2~ 1) 

(2n)! (2n) ! 
n ! n ! - (n- 1) ' (n + 1) ' 

(2n) ! ( 1 1 ) 
= (n- 1)! n ! :;:;: - n + 1 

(2n) ! ( 1 ) 
= (n- 1)! n ! n(n + 1) 

= _1_ (2n) ! = Cn 
n+ 1 n! n! 

2.4 Dyck words 

We can denote a Dyck path by a word w 1 ... w2n which con tain n copies of the letter S and contain n 

copies of the letter E, known as a Dyck word of length n . The letters S denotes the south steps (0 , 1) 

and letters E denotes the east steps (1, 0) . C learly, this gives a bij ection between Dyck paths and the 

mentioned words. For instance, the Dyck words correspond to Dyck paths of Figure 2.3 are respective! y: 

{SESESE , SSEE S E , SSESEE , SESSEE, SSSEE}. 

If a Dyck word is broken in to two parts , the fi r t part ha at !east as many S's a E 's; this is equivalent 

to the condi tion "the path never passes above the line y = -x+ n" in Dyck paths. 

Note that it is also common to show Dyck word by encod ing them with 1 fo r south steps and 0 fo r east 

steps. For a given word w = w1 ... w2n, if we denote the nu mber of occunences of the letter S by lwls 
(resp. lw le for letter E), then as a direct defi ni tion, we can see that a word w is a Dyck word if and only 

if 

l. w; E {S, E}, 

3. lwls = lwle-
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2.5 Bijection between complete binary trees and Dyck paths 

The set of Dyck paths of length n and the set of complete binary trees with n internai nodes have the 

sarne cardinality, C(n) = -
1
- (2n), so there is a bijection between these two Catalan abjects. In order 

n+ 1 n 

to explain this bijection, we need the definition of a post-order. For a given complete binary tree, there 

are many ways for traversing its nodes, one of which is the post-orcier. The post-order starts traversing 

from the left most leaf, and the root node is visited after visiting the left and right subtrees. For example, 

the post-order traversa! for the complete binary tree of Figure 2.6 is "e, f , g , d, h, c, b, i , a". 

,-ro 
'-'-' 

' 
~: 

Figure 2.6: The post-order of this tree is e, j , g , d, h, c, b, i, a. 

Since each child in a complete binary tree is hanging on an edge, so the post-order on nodes induce a 

post-order on those edges. 

Now we introduce thae bijection f : Cn -+ Dn. For a given complete binary tree with n internai nodes, 

there are n edges going to the left and n edges going to the right. Now by using the post-order traversa! 

on edges we can associate to a complete binary tree with n internai nodes the word that con tains a letter 

S for the edges that are going to the left and a letter E for the edges that are going to the right. The 

resulting word is a Dyck word . 

. -
-- S ----- S -~---- · ~·-- S ·-- E. E. S- E --

Figure 2.7: Transforming the complete binary tree to Dyck path . 
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We can ob tain a Dyck pa th by translating S'sand E's respectively into ou th and ea t steps. For example, 

Figure 2.7 shows the Dyck path of length four thal is obta ined from the complete binary tree with fo ur 

internai nodes (we have shown its post-order traversai in Figure 2.6). Our inverse bijection f - 1 : Dn ~ 

Cn, is recursive! y constructed with two cases as fo llows . Consider two Dyck paths of Figure 2.8 : 

SSEESSEE SSESSEEE 

Figure 2.8: Dyck path which meets the di agonal (left one), 

and does not meet the diagonal (right one). 

The first Dyck pa th can be broken into two sm aller Dyck paths, S SEEISSEE, at the point that the pa th 

meets the di agonal y = -x+ 4 (except the points ( 4, 0) and (0, 4)). However, for the second Dyck pa th, 

there is no such a breaking poin t. 

Case 1. T he given Dyck path meets the diagona l y = -x+ nat po int except (n, 0) and (0, n) . So 

the Dyck path breaks in to two smaller Dyck paths on the meeting poi nt. In each smaller Dyck palh by 

translating the S 's and E's to left and right edges, we obta in the complete binary tree that correspond 

to then1. Now· in arder to püt them togeû~er, we attach the root of the first tree to the left most leaf of 

the second tree. If there is more than one break point, the algorithm continues recur ive! y. For example, 

Figure 2.9 mentions that we can break SESE into two Dyck path such as SEISE. So by putting the 

rootofthe tree f - 1(SE) on the left leafof the tree f - 1 (SE), weget the tree f - 1 (SESE). 

root~ A A ·· S ······················· E · ---+ 
.. ',' ······················· E · 

Figure 2.9 : Transforming the Dyck path SESE to a complete binary tree. 
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Case 2. The given Dyck path does not meet the diagonal y = -x+ n except at the points (n , 0) and 

(0 , n )). Since the first step in the Dyck path is always a south step and the last one is an east step, its 

corresponding Dyck word is SM E where the middle part M is a smaller Dyck path. Now the algorithm 

i : construct the complete binary. tree for the middle word M, then attach it to the right edge of the tree 

f - 1 (SE), a it is shown in Figure 2. 10. 

M 

Figure 2. 10: General form of transforrning Dyck pa th S M E to a complete binary tree. 

ote that constructi ng the tree f- 1 (M ) might involve applying the algorithm of case 1 (if M = DIO) or 

again by applying the algorithm of case 2 (if M =SM' E). For example, the Dyck path SSESESEE 

does not cross the diagonal , so first we make the tree for M = SESESE and then add it to the right 

edge of the tree f - 1 (ES). Here building the tree for M is by applying the algorithm of case 1 (M = 

SE ISEISE). The result is shown in Figure 2.1 1. 

Figure 2. 11 : Transforming the Dyck path SSESESEE to a complete binary tree. 

2.6 Bounded increasing sequences 

We say th at ,8 = (b1 , .. . , bn ) is a bounded increasing sequence if b; :::; bj and b; :::; ifor ali 1 :::; i, j :::; n . 

They may be used to bijectively encode Dyck paths. This means that the set of Dyck paths of size n 

are in bijection with the set of mentioned sequence (b1 :::; b2 :::; ... :::; bn)· For a given sequence, let r; 
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be the number of times that i occurs in the sequence. Then we associate the fo llowing Dyck path to the 

sequence: 
Tt T2 Tn 

~~ ~ 
S ... S E S ... S E .. . S .. . S E. 

Here, S denotes a south step (0, 1), andE denotes an east step (1, 0). For example, as Figure 2. 12 shows, 

the weakly increasing sequence 1 :::; 1 :::; 1 :::; 3 COITe ponds to the Dyck path SSSEESEE: 

i = 1 r1 = 3 

i= 2 r 2 = 0 
r1=3 1'3=1 ,...--.._, ~ 
SSSEE s EE 

i=3 r 3 = 1 

i=4 r 4 = 0 

Figure 2.12: Sequence (1, 1, 1, 3) -t Dyck path SSSEESEE. 

Our inverse bijection, is constructed as fo llows. For a given Dyck path, the length of i-th vertical run 

is the number of occurrences of i in the corresponding bounded increasing sequence. For example, for 

the Dyck path of Figure 2. 13, eh)= 2,eh) = o,e(ra) = 1,e(r4 ) = 1. This means that in the 

bounded increasing sequence 1 occurs two times, 2 does not occur, 3 occurs once, and 4 occurs once so 

corresponding sequence is 1134. 

lenght of r 1 = 2 

lenght of r 2 = 0 

lenght of r3 = 1 

lenght of r4 = 1 

r1=2 1·3=l r4=l 
~~~ 

( 1, 1 ' 3 ' 4 ) 

Figure2.13: Dyckpath SSEESESE -t sequence(1 , 1,3,4) . 

Let us denote by Bn the set of su ch sequences, which is en umerated by tbe Catalan numbers. For instance 

in the following we show some bounded increasing seq uences of length 1, 2, 3 and 4 that encode Dyck 

paths of the same length. 



B1 = { (1)} L 

B2 = {(1 , 1) , (1, 2)} : L .~ 
83.= {(1 , 1, 1), (1, 1, 2) , (1, 1, 3) , (1, 2, 2) , (1, 2, 3)} 

B4 = { (1 , 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3) , (1, 1, 1, 4) , (1, 1, 2, 2) , (1, 1, 2, 3), (1, 1, 2, 4) , 

(1 , 1,3,3), (1 , 1, 3, 4),(1, 2,2, 2) ,(1, 2, 2, 3) , (1, 2, 2, 4) , (1, 2,3,3) , (1,2 , 3, 4)} 
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There are more than 200 other such bijections between the farnilies of mathematical objects counted by 

Catalan numbers. Later in Chapter 5, we will see that the set of "maximal tubings of path graphs" is in 

bijection with the set of complete binary trees . 





CHAPTERIII 

TAMARI POSET ON CATALAN OBJECTS 

In thi s chapter we introduce the notion of Tamari lattice, and two of its realizations. First as a poset on 

complete binary a·ees, and then on Dyck path . Fur thermore, we explicitly describe the covering re lation 

for the famil ies of Catalan abj ects previously considered in Chapter 2. We also count the number of 

intervals of Tamari posets, by using the zeta polynomial to count the number of chains in the Tamari 

po set. 

3. 1 Tamari po set 

One of the in teresting lattices in combinatorics is the Tarnari lattice, in troduced by Dov Tamari. Tamari in 

his thesis [14, 1951], considered the set of well-formed parentheses strings of teng th 2n with n open, and 

n closed parentheses such that each opening parenthesis has a uniquely associated closing parenthesis 

at its right. For instance, the possible well-formed parentheses strings of length 6 with those condition 

are()()() , (())() , ()(()) , (()()) , ((())). Later in [15, 1962], he part ially ordered this set with the covering 

relation ( )()--+ (() ), in the right-to-left d irection. This poset with the described re lation is a lattice that 

is know as the Tamari lattice, denoted T,... The property that makes the Tamari lattice one of the most 

controversial issues of combinatorics is its cardinality that is given by the n -th Catalan number: 

Number of e lements of T,.. = -
1
- (

2
n ) . 

n+ 1 n 

The e lattices possess realizations as special polytopes ' , called "associahedra", which appeared in Stash

eff's thesis in 1961. Thus the 1-skeleton 2 of the n -dimensional "associahedron" corresponds to the 

Hasse diagram of T,.. (see [10] fo r more details). For example, Figure 3. 1 indicates the Tamari lattice 73 

which has five e lements. 

1 A polytope is a geometrie object with fl at sides th at exists in any number of di mensions. 

2 1-ske/eton of a polytope is the set of vertices and edges of that polytope. 
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( ( ( ) ) ) 

(( )( )) 

( )(( )) 

(( ))() 

( )()() 

Figure 3. 1: The Tamari lattice Tg . 

There are many reali zation s of the Tamari lattice a a partial order on "Catalan objects". In thi chapter, 

we will study the covering relations in posets of complete binary trees, Dyck paths, and Dyck words. It 

is c lear that, by the bijection between complete binary tJ·ees and Dyck paths, the Tamari lattice of one 

can be obtained from the other. 

The first result about the intervals of the Tamari lattice (i .e. pairs [P , Q] such thaL P ~ Q for P, Q E T,..) 

was from Chapoton in [6]. He proved that intervals in the Tamari lattice are enumerating by the following 

formu la: 

2 (4n + 1) Number of Intervals of T,.. = ( ) , 
nn+1 n - 1 

(3. l.l) 

which gives the fo llowing sequence: 

1, 3, 13, 68, 399 , 2530 , ... (see htlps:!/oeis.org A000260) 

For example, for the Ta mari poset Ts in Figure 3.2, the number near each vertex is the number of intervals 

with th at vertex the top of the interval. Renee the total number of intervals in Ts is 1 + 2 + 3 + 5 + 2 = 13 

that satisfies equation (3. 1.1) for n = 3. 

[A, A] 

[A,B],[B ,B] 

[A, CJ , [B, CJ, [C, CJ 

[A, D], [D , D] 

[A, E], [B , E], [C, E], [D, E], [E , E ] 

@ c 

Figure 3.2: The enumeration of intervals in Tamari lattice Ts . 

D(j) 
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Also, we can calcula te the zeta polynomial by equation (1.2.1 ) for Tamari po sets. For instance we have 

Zr,(n) = 1. 

Zr,(n) = 1 +n. 

Zr, ( n) = n + 3 (~) + (~). 
Zr, (n) = n + 12 G) + 29(~) + 26(~) + 11(~) + 2(~) . 

Table 3. 1 illustrates sorne values of the zeta polynomial fo r Tamari posets, denoted Z.r; (k) . The second 

column of the table i the Catalan sequence which counts the number of multi-chains from Ô to Î of 

length two in each Tamari poset. The third column of table is the sequence 3. 1.1 that counts the number 

of intervals of each Tamari . 

I':Z 1 2 3 4 5 

1 1 1 1 1 1 

2 1 2 3 4 5 

3 1 5 13 26 45 

4 1 14 68 218 556 

Table 3. 1: Sorne values of the zeta polynomials for the Tamari posets 7i , 72 , 73 , and T4 . 

3.2 Ta mari po set on binary trees 

The Tamari order on the poset of binary trees is rotation operation. As it is shown in Figure 3.3, if a 

complete binary tree T is composed of a root "• ", and a left subtree "• ", then the right rotation of t on 

"• " means replacing (A• B)•C by A• (B• C) in T (note that A, Bor C might be empty). Hence, this is 

associativi ty. 

~c 
A B B c 

Figure 3.3: Right-rotation. 
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Consider two complete binary trees tt and t 2 of the same size. We say that t 2 covers t 1 in the Tamari 

lattice if and only if t 2 can be obtained by a seq uence of right rotation from t 1 . Figure 3.4 shows this 

notion. 

~~ ~\" x :c : ~ y 
tl 

~--' : t 2 
fA": 'JE-: ~ 

rË4' (Cl 
~· 

l__, L_l ~--' 

Figure 3.4: Notion of t1 ~ t2 . 

The set of complete binary trees of size n with the Tamari order is in fact a lattice. For example, Figure 

3.5 shows the Tamari lattice for n = 3 and n = 4. 

~ ... ·~ 
.. .. ·? · .. -- ...... · · ··' ..-~ 
1 ... ·... .... · ...... ·· .. 

···~ \ '\'·~ 
..- .... ·... A .... ~ ... 

.... ~ ....... b ? ·. / ... ···.• .. ... 

, .. <f ... 
"... . ~ . 

" .. ·. 

Figure 3.5 : The Tamari lattice of complete binary trees 

for n = 3 (left) and n = 4 (right). 

...-<>·· .. •.·· ' ··~ 



-------------------- ---------
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Sine complete binary trees correspond bijectively to binary trees, we clearly have an equ ivalent descrip

tion of Tamari lattice in terrns of the la ter. Th us we get the representations in Figure 3.6. 

Figure 3.6: The Tamari lattice of binary trees 

for n = 3 (left) and n = 4 (right). 

3.3 Tamari poset on Dyck paths 

Con si der two Dyck paths d1 and d2 of the same size. We say that d2 co vers d 1 if and only if there ex ists 

in d1 an east step a, and a south step b fo llowing a, such that d2 is obtained from d1 by swapping a and 

F , where F is the shortest factor of d1 that begins with band is a Dyck path . Figure 3.7 shows this notion. 

Figure 3.7: Notion of d1 ~ d2 . 

The set of Dyck paths of size n with the Tamari order is in fac t a lattice. For example, Figure 3.8 
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represents the Tamari lattice fo r n = 3 and n = 4. 

Figure 3.8: The Tamari lattice of Dyck paths 

for n = 3 (left) and n = 4 (right) . 

3.4 Ta mari poset on Dyck words 

Consider two Dyck words w1 and w2 of the same length. We say that w2 covers w 1 if and on ly if there 

ex ists in w1 a letter S following E , uch that w2 is obtained by changing the place of E and F , where 

F is the shortest tactor of w1 that begi.n s with S, and is a Dyck word. For example the two Dyck words 

w1 = SSSEESSEESEE and w2 = SSSESSEEESEE, which correspond to the Dyck paths of 

Figure 3.5, illustrates the notion of w1 ~ w2 : 

SSSEE §.§!}3 SEE ~ SSSE §.§!}3 ESEE. 
F F 

The set of Dyck words of size n with the Tamari order is in fact a lattice. 
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Clearly, one can transfer the poset structure fro m that on Dyck paths to any o ther Catalan family using 

an explicit bij ection . Hence, for Dn as a set of Dyck paths and Cn as a set of other Catalan a bjects, one 

sets 

B(a ) :S B({J) if and only if a :S fJ 

for a , fJ E Dn , and B : Dn --* Cn a bijection. 

However, a direct description of the arder on Cn is often preferred . 

For example, let T be a triangulation of a polygon (which is counted by Catalan numbers) such as Figure 

3.9. Within T , the diagonal t is the di agonal of sorne quadrilateral. Then there is a new triangul ation 

T' which is obtained by repl acing the di agonal t with the other di agonal of tb at quadri lateral. Thi s local 

move is called an edge flip , and we say that T' is obtained fro m T by flipping the diagonal t. 

edge flip 

-+ 

Figure 3.9: Two triangulations T and T' are being related by an edge flip . 

This case is interesting since it plays a crucial role in the origin of the notion of "cluster algebras"(see 

[16] for more details). 

Then the question emerges that, 

ls there sorne systematic way to think about "flips" in the Tamari poset of Catalan a bjects? 

In Chapter 5, we are going to introduce what is the Tamari arder for the notion of "tubing" , as a main 

goal of the current study. 





CHAPTER IV 

PARKING FUNCTIONS ON CATALAN OBJECTS 

In th is chapter we introduce the notion of parking functions, and sorne of their properties. Here our 

interest is in associating parking fu nctions to Catalan objects. Hence we can identify a parking function 

wi th a labeled Dyck path, Dyck word, and complete binary tree. The bijection between parking functions 

and labeled Dyck paths lead to the creation of labeled intervals in the Tamari lattice of Dyck paths. On 

the other hand, we try to enumerate parking functions with zeta polynomi al. 

4.1 Parking functions 

The notion of "parking function" was introduced by Konheim and Weiss. In [9], they proved that the 

number of parking functions of length n is 

La ter, other combinatorialists gave sorne methods of counting the number of parking functions of length 

n, or introduced bij ections relating parking functions to other combin atorial structures. The parking 

problem was described in [2] as the fo ll owing story: 

"Imagine a one-way street with n parking spots and a cli ff at its end . We' ll give the fi rst parking spot 

number 1, the next one number 2, etc .. . , and the las t one number n . At fi rst ali of them are free and 

there aren cars on the street, and they would allli ke to park. Every car has a parking preference, and we 

record the preferences in a sequence, fo r example, if n = 3, the sequence (2, 1, 1) mean th at the first car 

would li ke to park at spot number 2, the second car prefers parking spot number 1, and the last car would 

also like to park at number 1. The street is narrow, so there is no way to back up. Now each three car 

in the street start to park on its preferred parking spot; if it is free, it parks there, and if not, it can goes 

to the firs t available spot. We cali a sequence a parking function (of length n) if ali cars fi nd a parking 

spot at the end and none fall off the cliff" . For example, the sequence (2, 1, 1) is a parking function (of 



32 

length 3), while the sequence (1, 3, 3) is not, because car number 1 parks at spot number 1 as he prefers, 

car number 2 parks at spot number 3 and finally when car number 3 arrives to spot number 3 which is 

his preference, he finds it full and fa lls. In the other form of writing we say that 211 is a parking function 

(of length 3), while 133 is not. So a parki11g fimCiion is a sequence ( a 1 , a 2 , ... , an) of positive integers 

whose non-decreasing reanangement (b1 , b2, ... , bn) satisfies bi ::;; i . 

Another interesting characterization of parking functions is the following: 

A parking function of length n is a function f : {1 , 2, ... , n} -+ {1, 2, ... , n} such th at 

l{x : f (x)::=;i}l2: i for1 ::=; i ::=; n. 

We think of the elements x in the domain off as cars that wish to park, and the number f( x) represents 

the spot where car x prefers to park. For example, Figure 4.1 illustrates that 211 is a parking function: 

211 is a parking function 

~ since: 
/(1) = 2 

/(2) = 1 w l{x f( x ) ::=:; 1} 1 = 2 ~ 1 

l 1 l{x f (x) ::=:; 2} 1 = 3 ~ 2 
/ (3) = 1 w: 

•- l{x f (x) ::=:; 3} 1 = 3 ~ 3 

2 :1 

Figure 4.1: 211 is a parking function of length 3 . 

As the same story, function f is a parking function if and only if all n cars are able to park. This notation 

of parking functions of length n is more useful in d1e next section, when we considera set of cars prefer 

spot i to park a elements of i -th vertical run of the Dyck paths of size n in connection of parking 

functions and Dyck paths. 

We denote by Pn the set of ali parking functions of length n . For example the number of parking 

functions of length 3 is (3 + 1)3- 1 = 16 such as the fo llowing: 

(1, 1, 1) 

(1, 1, 2) (1 , 2, 1) (2 , 1, 1) 

(1 , 1, 3) (1 , 3, 1) (3, 1, 1) 

(1, 2, 2) (2, 1, 2) (2, 2, 1) 

(1 , 2, 3) (1 , 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1) 

This suggests to us that every permutation of the en tries of a parking function i also a parking fun ction, 
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meaning that for a symmetric group §n of degree n we have the fo llowing action on the set of parking 

functions of length n 

( 4. 1.1) 

where 1r = (a1, a2 , ... , an) is an element of P n, and O" E § n . On the other hand, each orbit of this action 

contains exactly one bounded increasing sequence (see Section 2.6 fo r definition). Hence we identify 

each orbit by its associated bounded increasing sequence fJ, denoted Pf3 , such that 

For exarnple, for parking functions of length 3 we have: 

P (l , l ,l ) = {(1, 1, 1)} 

P (l ,1,2J = {(1, 1, 2), (1, 2, 1), (2, 1, 1)} 

P (l , l ,3) = {(1, 1, 3) , (1, 3, 1), (3, 1, 1)} 

? (1 ,2,2) = {(1, 2, 2), (2, 1, 2) , (2 , 2, 1)} 

? (1,2,3) = {(1, 2, 3) , (1, 3, 2) , (2, 1, 3), (2 , 3, 1) , (3, 1, 2) , (3 , 2, 1)} 

For fJ of length n, the number of elements that each Pf3 con tains is 

where stabf3 := {O" E §n 1 O". (J = fJ } , and as in (4 .1.1), for a bounded increasing sequence fJ = 

(bl , ···,bn) we have O". (J, = (ba(l )•··· ,ba(n)) · For any fJ = (1, 1, .. . , 1, 2, 2, ... , 2, ... , k , k , .. . , k) that 
~~ '-v-' 

n. 1 n2 n k 

con tains n 1 copies of element 1, n 2 copies of element 2, ... , and nk copies of element k , the stabilizer of 

fJ is isomorphic to the Young subgroup of §n, therefore Jstabf3 l = n1 !n2 !. .. nk !. Then we have 

For exarnple, for fJ = ( 1, 1 , 2 ): 
~~ 

n 1 n 2 
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IPf3 1 = _ · =3 . 

2!1 ! 

We are going to make the action of the symmetric group on the set of parking fu nctions more expli cit in 

the next sections. 
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4.1.1 Count the number of parking function s 

Remember a one-way street with n parking spots in the story of parking functions, add an additional 

parking spot labeled n + 1, and allow the spot n + 1 as a prefetTed spot. ow consider these spots on 

a circular street. Start with a sequence ( a 1 , . .. , an) with the property th at 1 :::; ai :::; n + 1, giving a 

preference fo r n drivers out of (n + 1)n ones. In a new scenario si nce the street is circular, each car will 

be able to park and one spot remains empty. It is clear th at the empty spot is the spot labeled n + 1 if and 

only if the preference sequence is a parking function length n . Further, it is clear that if in the sequence 

(a1, ... ,an), spot k is empty then in the equence (a1 + i , ... , an+ i) , spot k + i (mod n + 1) is empty. 

Hence, the set of sequences {(al, ... , an) , (al+ 1, ... , an+ 1), ... , (al+ n, .. . , an + n)} con ta ins precisely 

one parking function for which the spot n + 1 is empty. Since the number of preference sequences is 

(n + 1)n, the number of parking functions is 

(n + 1)n = (n + 1)n 
n+ 1 

4.2 Parking functions on Dyck paths 

To associa te a parking function with a Dyck pa th of size n, we first label the south steps with {1 , 2, ... , n} 

such that each vertical run is labeled in a decrea ing way (so there is no condition on the labels of single 

steps). We cali these, !abe led Dyck paths. ow we can recover the parking function f by setting f (x) = i 

if and only if label x occurs in i -th vertical run. Figure 4.2 is the general form of a labeled Dyck path of 

s ize n , and how function f i defined on labels. 

2 n 

Figure 4.2: Defi ne function f on the set of labels. 
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For example, for the Dyck path of Figure 4.3 , there are exactly three labeled Dyck paths, so we have 

three parking functions associated with this Dyck path . 

3 

2 

1 2 3 

3 

1 

2 

1 2 3 

2 

1 

1 2 3 

/(3) = 1 

/(2) = 1 

/(1) = 2 

/ (3) = 1 

/ (1) = 1 

/ (2) = 2 

/ (2) = 1 

/(1) = 1 

!(3) = 2 

---+ 

---+ 

· 211 is a parking function . 

121 is a parking function. 

112 is a parking function. 

Figure 4.3: Parking functions over one Dyck path of size 3 . 

Furthermore, we can identify a parking fun ction f with a labeled Dyck path. For a given parking func

tion, let Vi = {x : f (x ) = i} be the set of cars preferring spot i . Consider an n by n lattice square and 

start from top row to put the elements of V1 in decreas ing order in the first column of the lanice square, 

one per row. Similarly, put the elements of V2 in the second column, and continue un til Vn . Final ly draw 

the vertical steps left of labels, and add the necessary horizontal steps to get a latti ce path from (0 , n) to 

(n , 0) . The resulting labeled lanice path is a labeled Dyck path if and only if f is a parking function. 

On the other band, we want to count the number of labeled Dyck paths di rectly, and show that the cardi

nality of this set is equal to (n + 1) (n-1) . 

For a Dyck patb a E Dn, the number of such labelings is (7~) ) ' where 1(a) is the compos ition of a. 

For example, for the Dyck pa th of Figure 4.3 , as we observed, there are exact! y (2~1 ) = 3 su ch labelings . 
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As Garsia and Haiman di scussed implicitly in symmetric functions, and Armstrong, Loehr and Warring

ton retell in [1], the number of Dyck paths with ri vertical runs of length i is equal to 

where we defin e r 0 so that L::o r ; = n + 1, more specificall y, r 0 = n + 1 - €(/(a)) . For example 

when n = 3, there are three Dyck paths with specification (r1 = 1, r 2 = 1, r 3 = 0), so r 0 = 2, as shown 

in Figure 4.4. 

~--- ~--- ~---
Figure 4.4: Enumeration of Dyck paths with (r1 = 1, r2 = 1, r3 = 0) . 

Hence the number of labeled Dyck paths of size n or in other words the number of parking fu nctions 

over Dyck paths of size n is equal to 

For example there are 16 parking functions over Dyck paths of D 3 : 

-y(<>)=lll -y (<>)=21 -y(<>) = 3 

1 ( 4 \ ( 3 \ . 1 ( 4 \ ( 3 \ . 1 ( 4 \ (3\ 
4 1, 3, 0, 0) \1 , 1, 1) -t- 4 \ 2, 1, 1, 0) \ 2, 1) -t- 4 \ 3, 0, 0, 1) \ 3) 

= 1 x 6 + 3 x 3 + 1 x 1 = 16, 

which is the same as the number of parking function of length three: (n + 1)n- 1 = (3 + 1)3- 1 = 16. 

4.2.1 Labeled intervals 

Let T,_ be the Tamari lattice of Dyck paths of size n. In Chapter 3 we in troduced the number of intervals 

of the Tamari lanice. Now we are going to study the number of labeled intervals of the Tamari lattice. 

From Section 4 .2 we know that the number of labeled Dyck paths is (n + 1)n-l . The symmetric group 

§n acts on labeled Dyck path by permuting labels, and then reordering them in such a way that labels are 
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decreasing along the vertical runs . For example, Figure 4.5 illustrates how cr = 3214 as a permutation in 

§ 4 acts on d E D 4 : 

4 

2 

3 

1 

4 

2 

1 

3 
reordering labels 

----t 

4 

2 

Figure 4.5: How cr permutes the labels of a labeled Dyck path of D 4 . 

3 

1 

Note that in this example, labels are not changed after permutation and reordering. Suppo e that cr E 

§ n has a cycle decomposition cr = cr1cr2 ... crk , which is the product of k disjoint cycles of length 

À 1 , À 2 , . .. , Àk respective! y. The number of labeled Dyck paths wh ose labels are stable by cr is 

(n + 1)k-1 

For example, consider the Tamari lattice of D 3 witb ali 16 possi ble labeled Dyck paths. For cr = 132 = 

(1) (32), there are four labeled Dyck paths that have stable labels under cr , which are shawn in Figure 

4.6 . The formula gives the same result by pu tting k = 2 because cr decomposes into two disjoint cycles . 

Figure 4.6: Stabl e labeled Dyck paths of D3 by cr. 

For two Dyck paths d, d' E Dn, An interval [d , d'] of Tn is called labeled interval if the upper path d' is 

labeled Dyck path. The number of labeled Tamari intervals whose labels are stable by cr is 

(n + 1)k-2 TI (~i) {J;' 

i;:: l 

if cr has (3; cycles of length i for i 2: 1 and k cycles in total. 

For example, in the Tamari lattice of D 3 , for cr = 132 = (1)(32) that bas one cycle of length one, and 
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one cycle of length two, the formul a gives 12 labeled intervals. On the otber hand, as we menti oned in 

Figure 4.6, there are four labeled Dyck paths that are stable under a = 132, and in the Tarnari poset of 

D3 the number of intervals when each of these four paths is the top point of the interval, are 5, 2, 3, and 

2 respectively. Therefore, we have 5 + 2 + 3 + 2 = 12 labeled intervals stable by a. 

In particular, when a is the identity permutation, then a= (1)(2) .. (n ), the product of n disjoint cycles 

of length one, hence total number of labeled in tervals is 

In this case, a keeps the order of labels of labeled Dyck paths, therefore in the labeled interval [d , d'], ali 

the possible labeled form for d' is counted ( ee [4] for more information ). 

For example, for the Tamari latt ice of Dyck paths size three, the number of la be led in tervals is 32. Beside 

the mentioned formula, there is an interesting explanation for that. Figure 4 .7 , illustrates a Tamari poset 

73 of Dyck paths ofsize three, that in part (a) the number near each vertex is the number of possible label 

ed Dyck paths fo r that element, and in part (b) the number near each vertex is the number of intervals 

when that element is the top (see Figure 3.2, Chapter 3). Finally in part (c) , the number near each vertex 

is the number of labeled intervals (stable by identity permutation) when that element is the top. 

1 30 3 :l 

6 

(a) Enumerarion of labeled Dyck path in 73 . (b) Enumeration of in tervals in 73 . 

5 x 1 

3x30 2x3 
2 x 3 

1 x 6 

(c) Enumeration of labeled interval in 73 . 

Figure 4.7 
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4.3 Parking functions on Dyck words 

To associate a parking function with a Dyck word of size n , we put labels {1 , 2, .. . , n} on the letters S, 

so that each consecutive sequence of letters S have labels in decreas ing order. For example, consider 

the Dyck word SSESEE, which corresponds to the Dyck path of Figure 4. 1. There are exactly three 

labelings for th i Dyck word which satisfy the above condition: 

3 2 1 3 1 2 2 1 3 
SSESEE SSESEE SSESEE 

For each such labeling, we can obtain a parking function f by setting f( x) = i if and only if label x 

occurs in i -th consecutive sequence of letters S such as the following: 

~ E ~ E ... ~ E-
/ (Iabei )=1 / (Iabels)=2 f (labels)=n 

For example, the parking functions over the Dyck word SSESEE are: 

r) ~ I 3 2 1 
SSESEE -7 /(2) = 1 

/(1) = 2 

-+ 211 is a parki ng function. 

r)~ I 3 1 2 
SSESEE -7 /(1) = 1 

/(2) = 2 

-+ 121 is a parking function. 

r) ~ I 2 1 3 
SSESEE -7 ] (1) = 1 

!(3) = 2 

-+ 112 is a parking function. 

Further, for a given parking func tion, let V; = {x : f( x) = i} be the set of cars preferring spot i. 

We start with V1 and rewrite its elements in decreasing order and correspond a letter S to each of them, 

then immediately put a letter E to finish our fi rst sequence of letters S. We continue until Vn. and the 

resulting sequence of letters S and E is a labeled Dyck word . 
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4.4 Parking fonctions on complete binary trees 

To associate a parking function with a complete binary tree with n internai nodes, we use po t-order 

traversai to put labels {1 , 2, ... , n} on edges. According to the definiti on of post-order, we start traversing 

the tree from the fi rst most left edge and for a consecutive sequence of left edges in traverse, their labels 

should be in decreasing way. The single left edges are free in labeling. For example, Figure 4.8, shows 

three different labelings of the complete binary tree which is equal to the Dyck pa th of Figure 4.3. 

:--> 1 ' 
' 

2 ' ' .• 
:--> 2 ' 

' 
1 ' ' .• 

~--~ --
1 _::- .• 

' ' ' ' • •• • •• • •• 
3 > 2 3 > 1 2 > 1 

Figure 4.8: Parking functions over a complete binar)' tree of C3 . 

If, as before, we associate the letter S to the edges that goes to the left, and the letter E to the edges 

going to the right, then for each labeling of the complete binary tree we get a parking function f by 

setting f (x) = i if and only if label x occurs in i -th seq uence of left edges in the post-order traversai 

such as the following: 

!L;3 !L;3 E ... ~ E. 
f (labels)= l f (1 abels) = 2 / (labels)=n 

Thi means that the value off is identical for the elements of each equence, and from the fi rst equence 

of left edges to the second sequence by passing just one right edge, the value off augments just one 

uni t while by passing i right edges, augments i units. For example, Figure 4.9, illustrates the par·king 

functions on the complete binary trees that we have labeled in Figure 4.8. 

:--~ --2 ,~ .• 
' ' • •• 

f (3) = 1 

f (2) = 1 

f (1) = 2 

--+ 211 is a par·king function. 



:--"0. ', 17 .. 
' ' ' ' •• • 

/(3) = 1 

/(1) = 1 

/ (2) = 2 

/ (2) = 1 

/(1) = 1 

/(3) = 2 

--+ 121 is a parking function. 

--+ 112 i a parking function. 

Figure 4.9: Parking function over one complete binary tree of size 3 . 
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However, for a given parking fu nction, obtaining the labeled complete binary tree directly is difficult but 

bijections of Chapter 2 can help us. For example, one can first obtain a related Dyck word then translate 

that into a complete binary tree. 

4.5 Zeta polynomial for parking functions enumeration 

According to Section 4.2, we can associate parking functions with the element of the Tamari poset of 

Dyck paths (it cornes from Section 2.6, we associated bounded increasing sequences with Dyck paths). 

Hence we can study how the zeta polynomial can enumerate the mentioned parking functions. 

For a Tarnari po et P-::, of Dyck pa th of size n, we defi ne C = (fh ,(32, .. . , f3k), a sequence of length k 

ofbounded increasing sequences /3; = (a1,a2, ... ,an) , such that Ô= !31 ~ !32 ~ ... ~ f3k. Let Pp, be 

the set of parking function associated to {3; . The same as counting the multi-chai ns in zeta polynomials 

(see equation (1.2.1 )), here we cou nt the pairs (C , 1r) in Yn(k ) defined as fo llows: 

We can see that Yn(k) is a polynomial in k, ince for each C = ({31 ,{32 , . .. ,f3k) there ex ists a sequence 

V = ({31, {32, ... , /3i) length j - 1 su ch th at Ô = /31 -< /32 -< ... -< /3i = f3 , hence 

k (k -1) n! 
= 2: j- 1 2: lstabpl . 

J=1 v 
(4.5.1) 
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For example, Figure 4.10 illustrates the Tamari poset 73 with the associated bounded increasing se

quences. From definition of Yn(k) for k = 1, 2 and k = 3 we have: 

Y3(1) = {((.BI ),321), ((.8I) , 312) , ((.BI), 231), ((.BI), 213), ((.BI), 132), ((.BI), 123)} = 6 = 3!. 

Y3(2) = {((,BI,.8I),321 ), ((,BI ,.8I) , 312) , ((,BI ,.BI), 231), ((,BI ,.BI), 213) , ((,BI,,BI), 132) , ((,BI,.BI) , 123) , 

((.BI,.82), 211), ((.BI,.B2), 121), ((.BI,.82), 112), 

((.BI' .83)' 311), ( (.81. .83)' 131)' ((.BI' .83)' 113) , 

((.BI,.84), 221), ((.81..84), 212), ((.BI,.B4), 122) , 

((.BI,.B5), 111)} = 16 = (3 + 1)<3-I}. 

Y3(3) = {((.BI • .BI . .BI), 321) , ((.BI ,.B1,.81) , 312), ((.BI ,.BI,.BI) , 231) , ((.BI,.BI ,.BI), 213) , ((,81 ,.8I,.BI) , 132), 

((,8I,,8I ,,8I ), 123), 

((.BI ,.BI,.B2), 211), ((,81,,81,,82) , 121), ((,81 ,,81,,82), 112) , 

((.BI' .82' .82)' 211)' ((.BI ' .82' .82)' 121) ' ((.BI ' .82' .82) ' 11 2) ' 

((,BI, .BI, ,83), 311), ((,81, .BI, ,83), 131) , ( (,81, .BI, ,83), 113) , 

((.BI' .83' .83)' 311) ' ((.BI ' .83' .83), 131) ' ((.BI ' .83' .83), 113) , 

((,Bl ,,BI ,.B4), 221), ((.BI,.BI,.84), 212), ((.BI ,.BI,.B4), 122), 

((,81.,84,,84), 221), ((,81,,84,,84), 212) , ((,81,,84,,84), 122), 

((,BI, .BI , ,85), 111), 

( (,8 1' .85' .85)' 111)' 

((.BI ,.B2,.B3), 311), ((,81,,82,.83) , 131), ((,81,,82,.83), 113), 

( (.81' .82' .85)' 111)' 

((.BI' .83, .85), 111)' 

((.BI ,.B4,.85) , 111)} = 32 = 24 (4+ 1)<4-2} 

.Bs = 111 

.82 = 112 

.81 = 123 

Figure 4.10: The Tamari poset 73 with the associated 

bounded increasing sequences. 
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Similarly, by the equation (4.5 .1), we have: 

Y3(k = 1) = (~:::: ~ ) (#PP=PJ = 11 ii u = 6 

Y3(k = 2) = G::::D (# PP=Pt ) + ( ;:::: ~) (# PP=/12 + # PP=/13 + # PP=/1., + # PP=Po) 

= 1! ii 1! + ( 2~ ~! + 2~ ~ ! + 1 ~~ ! + ~) = 16 

Y3(k = 3) = (Î :::: ~) ( # PP=Pt) + (; :::: ~) ( # PP=/12 + # PP=/13 + # P/1=11• + # PP=/15 ) + (~ :::: ~ ) ( # PP=/13 

+ # PP=Po + # PP=Ps + # PP=Po ) 

= 1! ii 1! + 2 ( 2 ~ ~! + 2 (~, + 1(~, + ~) + ( 2 ( ~ , + ~ + ~ + ~) = 32 

So the fo llowing results are valid for the zeta polynomial Yn(k): 

• For k = 1, we have Yn(1) = n !, which is the number of elements of the set Pp,, where /31 =Ô. 

• For k = 2, we have Yn(2) = (n + 1)(n- 1l , which is the number of parking functions of length n, 

associated to the elements of Tn . 

• For k = 3, we have Yn (3) = 2n(n + 1 )n-2 , which is the number of labeled intervals of Tn_ . 





CHAPTER V 

COMBINATORICS OF TUBINGS 

In this chapter, we exploit the noti on of "tubing" to extend Catalan combinatorics to sorne classes of 

simple graphs, showing first that path graphs give back the usual Catalan combinatorics. We consider, 

two other families of graphs: complete graphs, and cycle graphs. Among the notions that we can thus 

extend to these two classes of graphs are included the notions of parking functions and Tamari order. 

After introducing the notion of tubing, we exp lain how the Catalan "structure" corresponds to "maximal 

tubing". The conclusion of our story leads to a new notion of parking functions on graphs. 

5 .1 Tubings of graphs 

Inforrnal ly, a tubing of a graph G is a collection of subsets of the vertices of G that are called tubes. More 

precise! y, as defi ned in [5], a tube is any nonempty subset of the vertices of G whose induced graph is a 

connected subgraph of G. Two tubes u and v may "interact" as fo llows: 

l. When we have u 1 c u 2 (with strict inclusion), we say that u 1 is nested in u 2. 

2. When we have u 1 n u2 # 0 and u 1 ct u2 and u2 ct U1> we say that u and v intersect . 

3. When we have u 1 n u 2 = 0 and u1 U u2 is a tube in G , we say that u and v are adjacent. 

Tubes are said to be compatible if they do not in tersect, and are not adj acent. When G is connected, 

a tubing U of G is a set of tubes for which every pair of tubes are compatible. A k-tubing is a tubing 

with k tubes. For S c V(G) , we define the induced tube of S, denoted Uls, to be the tube of U that 

contains S . The outermost node of a tube of U is the node that is included in no other smaller tubes of U. 

For example, Figure 5.1 illustrates valid tubings, and 5.2 illustrates invalid tubings of sorne connected 

graphs. In the first graph of Figure 5.1, the red node is the outerrnost node of the red tube. 
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Figure 5.1: Val id tubings of sorne connected graphs. 

GE3 
Figure 5.2: Inval id tubings of sorne connected graphs. 

When G has severa! connected components G 1 , . .. , Gk. tubings of G need to satisfy an addi tional con

dition. Denoting by u ; the set of vertices of G;, then any tubing of G can not contain ali of the tubes 

u;, 1 ::; i::; k. We will see that, if G has n vertices, then a tubing of G can contain at most n- 1 tubes. 

For example, Figure 5.3 illustrates val id tubings, and 5.4 illustrates inval id tubings of sorne graphs with 

severa! connected components. 

-B 88 

Figure 5.3: Val id tubings of so rne graphs with 

severa! connected components. 

GG 8888 

Figure 5.4: Inval id tub ings of sorne graphs with 

severa! connected components. 

For a graph G, the set of tubings of G, which is denoted by Tub(G) , is partia lly ordered by the relation 

U -< U' if U' is obta ined from U by adding tube . For example, Figure 5.5 shows the poset Tub(G) 

for a path graph with three nades. [5, Lemma 2.3.] proves that the geometrie realization of the poset 

(1\1b (G) , -< ) is a (n - 1)-dimen ional polytope whose vertices are indexed by (n- 1)-tubings, and 

edges by (n- 2)-tubings of G. 
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Figure 5.5: Poser of tubings of a path graph with 3 nodes. 

Maximal tubing 

For a graph G with n vertices, we denote by Mc the set of maximal tubings of G. As shown in [7], 

maximal tubings in Thb(G) are precisely those that contain n - 1 tubes. Thus, n- 1 vertices of G 

are contained in tubes except one vertex that we cali untubed . For examp le, the top row of Figure 5.5 

corresponds to the set of maximal tubings of a 3-vertex path graph which has five elements. Here is sorne 

observations about a max imal tubing U E Mc. 

• There is a unique untubed vertex, denoted r. 

• Ali other vertices belong to sorne tubes. 

For path graphs there are special further properties: 

• The vertex r naturally separates the set of other vertices of the path graph into two porti ons. We 

defi ne L and R respectively to be the set of vertices on the left and right of r. 

• No tube con tains both x E Land y E R (if there exists such tube, it should contain r, and thi s i a 

contradiction) . 

• By the defin ition of induced tube, Ul L (res p. UIR) is a tube (if not, U is not max imal). 

The cardin ali ty of the set of maximal tubings of n-vertices path graphs is equal to C( n) = -
1
- (2n). n + 1 n 

Hence, there is a bijection between maximal tubings of a path graph and Catalan objects. As we will see 

in the next section, this bijection is very natural. 
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5.2 Path graphs give Catalan objects 

Path graphs are in tere ting fo r us because of the cardinality of their maxi mal tubings . The max imal 

tubings of a n-path graph is another Catalan object. As befo re, we study the Tamari order and parking 

functions in terms of them. This will prepare the ground for our generali zation of the notion of parking 

function s to graphs. 

5.2.1 Bijection between maximal tubings of path graph and binary trees 

We already know about various fa rnilies of Catalan objects (see Chapter 2), and how the e are bijectively 

related to one another. Here we relate maximal tubings to one of these families: binary trees. Our 

bijection f : M c ---+ En, is recursively constructed as fo llows. 

For a given maximal tubing U of the n -path graph, its untubed vertex r, is going to become the root of 

the associated binary tree. As explained before, UIL and UIR are both tubes . Then, f (U) is a binary tree 

with root r , and left (resp. right) branch f(U IL) (resp. f(U IR)). Figure 5.6, illustrate the function f in 

general. 

L 
r 

.. ' ' ... 

R 
J 

---+ 

r 

,--- ---0--- -- --. 
<_J(U IL) ) :.._,J(U in) '} 

.. ___ ... 

Figure 5.6: Representation offunction f. 

We repeat th is proce for the left (resp. right) sub-path graph inside UIL (resp. UIR), whose tubes are 

those of U containing only vertices in L (resp. R), except L (resp. R) itself, un til reaching the smallest 

tube which con tain just one node of the path graph. For example, as ociating a maximal tubing of the 

6-palh graph to a binary tree ofsize six, is illustrated in Figure 5.7. 

r 
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r 

r 

È)': 
r 

, - , 
' .. 

·----

r 

r 

Vs 

Vs 

Figure 5.7: Transforming a maximal tubing of a path graph to the corresponding binary tree. 

To describe the inverse offunction f , we denote by r the root of a given binary tree with n nodes. This is 

going to become the untubed vertex of the associated n-path graph. Denote by Tl L the left subtree (resp. 

by Tl R the right subtree). Hence, / - 1 (T IL) is L, which is the set of vertices of the pa th graph in the left 

side of vertex r (resp. f - 1(TIR) is R). We denote by UIL the induced tube that contains vertices of L 

(resp. UIR contains vertices of R), and repeat this process for the left (resp. right) subtree unti l reaching 

the vertices of the tree without any chi ldren. For example, Figure 5.8 illustrates associating a binary tree 

with six nodes to a maximal tubing of 6-path graph. 

' ' ' ' ' 

Ut 

r 

r 

' .. ___ .. 
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r 

r 

Figure 5.8: Transforming a binary tree to the correspond ing maximal tubing of a path graph. 

5.2.2 Tamari order on maximal tubings of path graphs 

Let G be a path graph with n vertices labeled {1 , ... ,n} so thar {i,i + 1} is an edge. As defined in 

[8], for two (n- 1)-tubings U1 , U2 of (Thb(G) , -<), we say that U2 caver U1 if they have ali the same 

tubes except fo r one differing pair such thar the label of outermo t vertex on that pair, is greater for U2 . 

To compare U1 and U2 we can also write dawn the sets of verrices in each tube, and then the di:ffering 

pair would appear in these sets. For example, Figure 5.9 illustrates a covering relation between two 

maximal tubings of the path graph with four vertices labeled 1, 2, 3, and 4 respectively. The di:ffering 

pair is specified in red. The label of the outermost node in U1 is 2 and in U2 is 4 so U1 -< U2. 

u1 ~ ~ 
{3} {3} 

{2,3} < {3,4} 
{2,3,4} {2,3, 4} 

Figure 5.9: otion of U1 -< U2. 
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The set of maximal tubi ngs of G with the mentioned Tamari arder, is in facl a lattice [7, 8]. For example, 

Figure 5.10 represents the Tamari lattice of maximal tubings of G with n = 3 and n = 4 vertices. By 

removing the differing tubes between the pairs (U1, U2) such that U1 -<· U2, we have (n - 2)-tubings 

thar correspond to the edges of the Hasse diagram of the Tamari lattice. 

Figure 5.10: The Tamari lattice that results from max imal 

tubings on the path graph for n=3 (left) and n=4 (right). 

In another sim pl er view, the Tamari arder on the set of maximal tubings of a path graph wi th n vertices, 

is given by pushing the tubes by rightward applications of the associative law (xy)z = x(yz) . Hence let 

ul and u2 be two tubings of a path graph then, u2 covers ub if u2 is obtained fro m ul by pushing the 

tubes in arder from smallest, left to the right, so thar the compatibility condition is preserved. ote that 

because of keeping the compatibil ity on tubes of a tubing, maybe we have to change the size of the tubes 

(i.e. the number of vertices thar the tube con tains) during the pushing. For example, in Figure 5.11 the 

red small tube during the pushing left to right, has to be bigger to keep the compatibility. 

Figure 5.11 : Pushing the tubes in a rder from smallest one, right to left. 
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5.2.3 Parking functions on maximal tubings of path graphs 

As mentioned in Chapter 4, one of our interests is the notion of parking fun ctions on Catalan abjects, so 

here we want to study parking functions on the set of maximal tubings of a path graph with n vertices. To 

associate a parking function to a (n - 1)-tubing of the n-path graph, we first need to defi ne compatible 

labeling. 

For a maximal tubing of a n-path graph, vertices labeled {1, ... , n} so th at { i , i + 1} is an edge, a 

compatible !abe ling is defined as fo llows. We put labels {1, 2, ... , n } on the vertices, starting from the 

first vertex, and moving along the path un til the n- th vertex. The positions of tubes (for puttting the 

red labels) are important because, each ti me that we enter a tube, the label mu t decrease. For example, 

Figure 5.1 2 illustrates a co mpatible label ing of a maximal tubing of a 5-path graph. 

Figure 5.12: A compatible labeling for a path graph with five vertices . 

Proposition. There is a bij ection between the compatible Jabeling of max imal tubings of a n-path graph 

and parking functions. 

Proof. For each compatible labeling of a path garph, we can get parking function f by setting f( x) = 

i + 1 if and only if label x occurs after i -times ex iting from the left previous tubes. For example, for 

the maximal tubing of Figure 5.13 (which is bijectively equal to the binary tree of Figure 4.8) there 

are exactly three compatible labeling, so we have three parking functions associated with thi s max imal 

tubing of 3-path graph . 

/ (3) = 1 

f (2) = 1 

f (l ) = 2 

211 is a parking function. 
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!(3) = 1 

~ 0e !(1) = 1 121 is a parking function. 

f(2) = 2 

f(2) = 1 

~ 0e f(1) = 1 112 is a parking function. 

!(3) = 2 

Figure 5.13: Parking functions on the maximal tubing of a 3-path graph. 

Furthermore, for a given parking function, obtaining the labeled maximal tubing ofpath graph is possible 

by using introduced bijection in Chapter 2 and 5.2.1. 

5.3 Maximal tubings of other special families of graphs 

In this section we want to study the set of maximal tubings for other families of graphs and count the 

number of such maximal tubings for each of the farnilies. Also we want to find a covering relation 

between the elements of Mc for each of the fami lies to help us study about the ir lattice (see [8] for more 

details, and figures in dimension four) . 

5.3.1 Complete graphs 

Let G be the complete graph with n vertices. Each maximal tubing of G can be seen as a sequential nest

ing of al! n vertices . Hence the set Nic con tains n! tubes. Therefore, there is a bijection between maximal 

tubing of a complete graph with n vertices labeled {1 , 2, ... , n}, and permutations of {1 , 2, ... , n}. A 

permutation Œ corresponds to a maximal tubing that the tubes are 

respectively from the smallest, and {Œ-1 (n)} is not in a tube. Furthermore, a maximal tubing of G 

gives a permutation of §n where the vertices are inputs for the permutation and the output is the relative 

tube size. Hence, weak order on permutations and Tarnari order of Section 5.2.2 can be generalized 

to maximal tubings of the complete graph with vertices labeled by {1, 2, .. . , n}. For example, Figure 
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5. 14 shows a covering relation between two maximal tubings of the complete graph with three vertices 

labeled with 1, 2, 3, and their correspondi ng permutations. 

2&3 ~ 24 0" = 132 e = 2 3 1 

{1} < {3} 

{1 , 3} {1 , 3} 

Figure 5.14: A covering relation in the weak order on permutations. 

The Hasse diagram of the lattice that results from tubings of a complete graph with n vertices is combi

natorially equivalent to the 1-skeleton of the "permutahedron" , as explained in [8]. For example, Figure 

5.15 shows the lattice thar results fro m maximal tubings on the complete graph with 3 vertices. 

5.3.2 

Figure 5.15 : The lattice thar results from maximal tubings 

on the complete graph with 3 vertices. 

Discrete graphs 

Let G be the discrete graph on n nodes labeled {1 , ... , n} so thar (i + 1)-th node is placed after i-th one. 

each maximal tubing of G according to the definition of rubing of a graph with everal connected corn-
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ponents is choosing n - 1 out of n possible nod es . Hence the set M c has n elements. The same covering 

relation as what we defined in Section 5.2.2, or pushing the tubes right to left that preserve compatibility, 

gives tbe lattice on maximal tubings ofn-disjoint nades . For example, Figure 5. 16 illustrates the lattice 

that results from maximal tubings of three disjoint nades. 

· 00 

0 · o(/ 
00 · 1 2 3 

Figure 5.16: The lattice that results from maximal tubings 

on the three disjoint nades. 

In [7], the Hasse diagram of tbe lattice that results from maximal tubings of the n - disjoint nades, is 

recovering the 1-skeleton of the "simplex" with dimension n - 1. 

5.3.3 Cycle graphs 

As discussed in [7], there are ( 2~~11 ) ) maximal tubings for a cycle graph with n vertices. Sorne of t)1e 

maximal tubings of a cycle graph are seen as a sequential ne ting of ali vertices, and the rest of them are 

other compatible cases . The same covering relation as what we defined in Section 5.2.2, gives the lattice 

on maximal tubings of the cycle graph with n vertices. This lattice is combinatorially equivalent to the 

1-skeleton of the "cyclohedron" (see [8]) . For example, Figure 5.15 similarly, is a lattice that results fro m 

the cycle graph wi th 3 vertices . 

5.3.4 Star graphs 

There are I:~=O ~ : maximal tubings for a star graph Sn (a tree wi th one internai node and n leaves). 

One of the maximal tubings of a star graph is tubing ali the leaves by the sm ali est size of tubes, and in the 

others, the bigger size of tubes con tain both the internai node and n - 1 leaves, in ali compatible cases. 

The same covering relation as what we defined ln Section 5.2.2, gives the lattice on maximal tubings of 

the star graph Sn so that (n - 1) vertices as leaves labeled by {1 , ... , (n - 1)} respectively, and internai 
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vertex labeled by n . This lanice is combinatori ally equ ivalent to the 1-skeleton of the "stellohedron" 

(see [8]) . For example, Figure 5.1 7 shows the lattice that resul ts from maximal tubings on the star graph 

S2. 

3 

1\ 
1 2 

Figure 5.17: The lanice that results from maximal tubings 

on the star graph S2 . 

5.4 Toward a new generalization of parking functions to graphs 

A compatible labeling for a maximal tubing of other special families of graphs is as fo llows. We are 

forced to label the vertices, starting with the untubed vertex, and fo llowing the tubes from the biggest to 

the smallest. Each ti me that we enter a tube, the label must decrease. For example, Figure 5.1 8 illustrates 

a compatible labeling of a maximal tubing of a cycle graph with three vertices. 

<(& < 
3~1 

Figure 5. 18: A compatible labeling for a cycle graph with three vertices. 

The special case of compatible labeling in Secti on 5.2.3, yield us to a parking functions on max imal 

tubings of path graphs, and our aim is doning the same fo r other fam ilies of graphs. 



CONCLUSION 

We have seen that the notion of tubing allows for the generali zation of Catalan structures, Tamari posets, 

and parking functions to other c lasses of graphs, with path graphs corresponding to the class ical setup. 

In the process of doing so, we have observed that: 

• Parking functions fo r complete graphs are easy to enumerate, since each maximal tubing of a 

comple te graph is a sequenti al nesting o f a l! vertice , therefore for each max imal tubing of G, 

there is just one compatible labeling. The total number of these labelings is n!. For example, 

Figure 5.19 illustrates six compatible labelings on max imal tubings of the complete graph with 

three verti ces. 

Figure 5.19: Compatible labelings on max imal tubings of 

the complete graph with three verti ces . 

• For cycle graphs, and star graphs, we fo llow the same compatible labeling such as complete graphs. 

The difference is that, for some of the maximal tubings of these graphs there is more than one su ch 

labe ling . For a graph G with n vertices, Table 5. 1 fo r cycle graphs, and Table 5 .2 for star graphs, 

represent wh at we bave guessed fo r sm ali values of n. 

To ex tend some of the topics di scussed in thi s work to maximal tubings of other "nice" families of 

graphs, some questi ons to consider are: 

1. Find a fo rmula for the number of maximal tubings fo r other "nice" families of graphs. 

2. Fi nd the structure of the poset of maximal tubings fo r other "nice" families of graphs, and an 

expli cit description of the re levant poset. 
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3. Find the number of compatible labelings of max imal tubings for other "nice" farnilies of 

graphs. 

4. Calcu late the zeta polynomial for the poset of maximal tubings of these other families . 

~ # Mc # labelings of Mc 

3 6 6 

4 20 24 

5 70 120 

(2(n-1 )) 
n-1 ? 

Table 5.1: Sorne values of max imal tubings and compatible labelings 

of maximal tubings for cycle graphs. 

1~ #Mc # labelings of Mc 

2 5 6 

3 16 24 

4 65 120 

I;n n. 
k=O ki ? 

Table 5.2: Sorne values of maximal tubings and compatible labelings 

of maximal tubings fo r star graphs. 

Lots of other questions could also be considered, taking into account the extensive work of 

• M. CatT and S. Devadoss in [5, 2005], and Devadoss continued in [7, 2007]. 

• M. Roneo [Il , 2012]. 

• S. Forcey in [8, 2012]. 
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