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Abstract

For many complex disorders, genetically relevant disease definition is still unclear. For this
reason, researchers tend to collect large numbers of items related directly or indirectly to the disease
diagnostic. Since the measured traits may not be all influenced by genetic factors, researchers
are faced with the problem of choosing which traits or combinations of traits to consider in
linkage analysis. To combine items, one can subject the data to a principal component analysis.
However, when family date are collected, principal component analysis does not take family
structure into account. In order to deal with these issues, Ott & Rabinowitz (1999) introduced
the principal components of heritability (PCH), which capture the familial information across
traits by calculating linear combinations of traits that maximize heritability. The calculation of the
PCHs is based on the estimation of the genetic and the environmental components of variance.
In the genetic context, the standard estimators of the variance components are Lange's maximum
likelihood estimators, which require complex numerical calculations. The objectives of this paper
are the following: i) to review some standard strategies available in the literature to estimate
variance components for unbalanced data in mixed models; ii) to propose an ANOVA method
for a genetic random effect model to estimate the variance components, which can be applied to
general pedigrees and high dimensional family data within the PCH framework; iii) to elucidate the
connection between PCH analysis and Linear Discriminant Analysis. We use computer simulations
to show that the proposed method has similar asymptotic properties as Lange's method when the
number of traits is small, and we study the efficiency of our method when the number of traits is
large. A data analysis involving schizophrenia and bipolar quantitative traits is finally presented to
illustrate the PCH methodology.

KEYWORDS: complex trait, heritability, linear discriminant analysis, principal component
analysis, quantitative trait loci, variance components
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1 Introduction

There is strong evidence that genetic mechanisms account for a large part of the eti-
ology of many complex disorders, such as cardiovascular diseases, cancers, schizophre-
nia, autism and many others. Although genome scans have identified a number of
candidate regions of interest for several complex diseases, replication of the re-
sults is often questionable. Foremost among the possible explanations for this is
phenotype definition, a necessary prerequisite for establishing reliable genotype-
phenotype relationships (Calum and Ramachandran, 2011). Since genetically rel-
evant disease definition is still unclear for many complex disorders (Funalot et al.,
2004), researchers tend to collect more and more items related directly or indirectly
to the disease diagnosis. The number of items can range from a handful to a couple
thousand, as in expression quantitative trait loci (eQTL) studies where gene ex-
pression measured on thousands of genes are used as quantitative traits in linkage
analysis.

Multivariate variance-components linkage analysis using several correlated
traits provides greater statistical power than single trait analysis to detect suscep-
tibility genes in loci, as shown in Amos et al. (2001) and Almasy et al. (1998).
However, since not all measured traits are necessarily influenced by genetic factors,
researchers are faced with the problem of choosing which traits or combinations
of traits to consider in linkage analysis. Typically, principal-component analysis
(PCA) is used to combine traits into principal components and linkage analysis is
based only on the first few of these. For example, Arya et al. (2003) used PCA
to identify loci influencing the factors of insulin resistance syndrome (IRS)-related
phenotypes using eight IRS-related phenotypes. When family data are collected,
it is relevant to give larger weights to traits that have a larger degree of familial
heritability in the combined traits, since they are more likely to be linked to ge-
netic factors. Nevertheless, the data reduction achieved by principal-components
analysis does not take into account family structure and heritability of traits.

In order to deal with the issues mentioned above, Ott & Rabinowitz (1999)
introduced a new form of data reduction approach, which aims to capture the famil-
ial information carried by traits. They sought to calculate at a linear combination of
traits that maximizes heritability, defined as the ratio of the family-specific (genetic)
variation and the subject-specific (environmental) variation. Assuming that a trait is
influenced by genetic factors, the idea is to give more weight to a trait showing sim-
ilar values for subjects within the same family (smaller subject-specific variation).
This linear combination was termed Principal Component of Heritability (PCH).
Ott & Rabinowitz showed that using the first PCH as a quantitative trait in linkage
analysis provided a substantial gain in power as compared to the use of first princi-
pal component from a standard PCA. However, when the number of traits is large,
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the PCH approach is not directly applicable and the components are unidentifiable
and unstable. Wang et al. (2007a) proposed a penalized principal-components ap-
proach based on heritability (PCH, ) that can be applied to high dimensional family
data. By simulation studies, Wang et al. (2007a) showed that the traits combined
by the PCH, approach have significant power gain in linkage analysis compared to
the usual PCA and PCH.

To calculate the PCH and PCH, components, one needs to estimate the vari-
ance covariance matrices of the quantitative trait model, which can be decomposed
as the subject-specific component of variance X, and the family-specific compo-
nent of variance X,. Ott & Rabinowitz proposed the usual sample within-family
variance-covariance matrix as estimate of X, and a new estimate for X,. Wang et
al. (2007a) used the same estimate of ¥, and the sample between-family variance-
covariance matrix to estimate X,. When dealing with family-members of the same
type (e.g.: all the family members are siblings of each other), both approaches give
efficient estimates of the variance components, and they validly take into account
the family structure. However, this is not the case when more complex families are
sampled in the study, since the correlation between two individuals is assumed to
be the same for each pair in the family.

Wang et al. (2007a) stated without giving details that it is possible to extend
the PCH approach to general pedigrees with more complex structures (see Figure 1
for an example of more complex structure). However, the estimation of the variance
components in the general case (pedigrees of unequal sizes and describing complex
family relationships) is by no means an easy task. While in the case considered by
Ott & Rabinowitz, the data was balanced, making the estimation of variance com-
ponents relatively straightforward, in the general case we deal with multivariate un-
balanced data (unequal subclass numbers). The estimation of variance components
from multivariate unbalanced data has received little attention in the literature. The
ANOVA, the maximum likelihood (ML) and the Restricted Maximum Likelihood
(REML, Calvin, 1993) estimators of variance components are three standard ap-
proaches for the estimation of the components X, and X,. The maximum likelihood
approach in standard linear mixed models is discussed by Searle et al. (1992) and
McCulloch & Searle (2002). The ML and REML estimators can be negative with
positive probability in the unbalanced case. Similarly, the ANOVA estimators in
the unbalanced case are limited since they can also lead to negative values and lose
some of their properties, as illustrated in McCulloch & Searle (2002).

In multivariate genetic linkage analysis, the state-of-the art estimators of
variance components are Lange’s ML estimators implemented in Mendel software
(Lange et al., 2001; 2006). These estimators are computed in most of the widely
used computer programs performing quantitative trait genetic analyses based on
variance components (eg: Solar (Almasy & Blangero, 1998)). In animal genetic
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studies, the REML estimators of the variance components for multivariate unbal-
anced genetic mixed linear models are usually computed using the specialized AS-
REML software (Gilmour et al., 1999); this approach can easily be adapted to the
estimation of human genetic models as well. The desirable features of Lange’s ML
and ASREML’s estimators are their excellent theoretical properties with respect to
bias and mean squared error, provided that multivariate normality can be assumed.
However, the equations defining these estimators do not have in general a closed
form solution, but have to be solved by heavy numerical computations. Further-
more, both methods have problems dealing with a large number of traits.

The objectives of this paper are the following: i) to review some standard
strategies available in the literature to estimate variance components for unbalanced
data in mixed models; ii) to propose an efficient ANOVA method for a genetic ran-
dom effect model to estimate the variance components, which can be applied to
general pedigrees and high dimensional family data within the PCH framework; iii)
to elucidate the connection between PCH analysis and Linear Discriminant Analy-
sis.

The paper is organized as follows: Section 2 reviews the genetic variance
components model. Section 3 presents the principal component of heritability and
studies the relationship between the linear discriminant analysis and the PCH ap-
proach. Section 4 proposes some ANOVA estimators of the variance components
accounting for the family correlation structure and also reviews current maximum
likelihood estimation strategies. In Section 5, we perform a simulation study to
compare the properties of the estimators discussed here and to assess their perfor-
mance in linkage analysis. Finally, our proposed method will be applied to a dataset
on schizophrenia and bipolar disorder.

2 Variance component model

The variance component model for genetic quantitative traits aims to partition the
phenotype variation into components attributable to shared genes and shared envi-
ronment. As in Ott & Rabinowitz, these effects can be viewed as a family-specific
component G and a subject-specific component E respectively. Let Y;; be the vector
of r traits for an individual j (j =1,...,n;) of family i (i = 1,...,m). We represent
the model as

Yij = u+Gij+Eij, ey

where U is a vector of dimension r representing the overall mean of all traits, with
the random effects G and E assumed to be mutually independent and normally
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Figure 1: Example of a graphical representation of a general pedigree. Squares
represent males, circles represent females.

distributed. We write this as follows:
Gij~N(0,,%,), Eij~A(0,X.),

where 0, represents a vector of zeros of dimension r, X, is an r X r nonnegative
definite matrix and X, is an r X r positive definite matrix. Thus, the variance of V;;
is given by

Var(Y;j) = Lg+ 2.

The contribution of the alleles shared identical by descent (IBD) in the covariance
between individuals of the same family can be written as

COV(Yij7Yik) = COV(Gij; Gik) = 2<b§22g7 Jak =1,... 3Ny J 7é k7
where @) is the n; x n; matrix of kinship coefficients of family i (see Lange, 2002,
Chap 5). The coefficient of kinship between two individuals j and k, ®j, is the
probability that two alleles sampled at random from each individual are identical

by descent. For instance, ®;; = 1/2 for all subjects j, P ik =1 /4 if j and k are
siblings or if one of them is a parent of the other, ®;; = 1/8 if one of them is a
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grand-parent of the other and @, = 1/16 if j and k are cousins. Thus, the further
apart individuals are in the family, the smaller the contribution of their alleles IBD
in the covariance matrix. Note that the matrix @) is known if the pedigree structure
is known and can be directly computed using existing R libraries.

Assuming that families are independently sampled, the model (1) can be
rewritten as

Y, ~ //A/V(11,,,.®u,2<b(")®2g+lni®ze>,
Y ~ AN (M, @p, 2% R, +1,0%,), )

where

Yi= ], x0T, Y=(Y],.. YD, ¥=diag{®?,i=1,...m}, n=Yn, (3)

1
Y, is the vector of the n;r measures for the individuals of family i and Y is the
vector of the nr measures for all the individuals. The notations 11,,, I,;, and ® refer
to the vector of 1’s of dimension n;, the n; X n; identity matrix and the Kronecker
product respectively. Note that the model of equation (1) is a general version of
the Quantitative Trait Locus (QTL) model. To detect linkage between QTLs and
markers of the human genome, equation (1) can be specified so as to decompose
the genetic effect G into an effect of a major locus or several loci, an effect of a
residual polygenic, and possibly additional terms specifying interactions between
genetic and environmental effects, see Almasy & Blangero (1998).

3 Principal components of heritability

3.1 General approach

Let Q be a r x r matrix and f(Q,.) defined by

fQ.B)=B"QB, BeR, |Bll=1

The range of the function f(Q,.), is the segment [a,b] € R, where a and b are the
smallest and largest eigenvalue of €2, respectively. In what follows, we will discuss
a number of data reduction approaches that are particular cases of the optimization
problem of the function f(€,.) for various choices of Q.

Suppose now we want to reduce the number of traits r. If we were not
interested in the within-family correlations, we could apply Principal Component
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Analysis (PCA) to the data matrix Y. We recall that the first Principal Compo-
nent (PC) is the linear combination of traits that maximizes the total variation, it is
therefore the solution of a classic optimization problem:

PCA = argmaxf(Q,B), Q=X;+ZX,
B

where 3 represents the weights associated to the r traits. Similarly, one would ex-
tract the second PC by repeating the maximization on the orthogonal complement
of the first PC, and so on, until one obtains an orthogonal basis in R”. Principal
Components were used in the literature to build composite phenotypes for linkage
analysis, in spite of the fact that their definition ignores an essential aspect of ge-
netic data: the within family correlation structure. In an attempt to correct this
problem, Ott & Rabinowitz introduced the notion of Principal Component of Heri-
tability (PCH). Instead of looking at the linear combination of traits with maximum
variance, the authors suggested to look for the linear combination of traits which
maximizes its heritability, a quantity which explicitly accounts for intra family cor-
relations. The heritability of a linear combination of traits is defined as

BTE,p
"B) = BT rB

One can verify that the maximization of () is equivalent to the maximization of
f£(Q,.), with Q = X%, hence we can write

“4)

PCH = arg maxf(Z, 'Z, B). (5)
B

Thus, the B which maximizes equation (4) is the first eigenvector of the matrix
Zglzg (Mardia et al, 1979). As in PCA, one can extract from € a sequence of
mutually orthogonal linear combinations, and retain only those corresponding to
non-negligible eigenvalues.

For high dimensional data, PCH analysis encounters the so-called small
sample size problem. This problem arises, in familial data, whenever the num-
ber of families is smaller than the number of traits. For instance, in the microarray
gene expression phenotypes used in genome-wide linkage analysis in Morley et
al. (2004) to find evidence of linkage to specific chromosomal regions, there were
r = 3554 phenotypes (traits) measured on only 14 families. Under these circum-
stances, many eigenvalues of X, may be estimated erroneously as zero. Indeed,
(X, 1%, B) is maximal for any 8 satisfying £, = 0,, and so the maximum is not
identifiable unless BTX,B is also maximized. Due to this difficulty, Wang et al.
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(2007a) proposed a ridge regularization of the PCH approach and defined the PCH
as

PCH; = arg maxf (Q;,B), Q= (Z.+A4l)"'Z,,
B

where A is the regularization parameter. Note that when A is equal to zero, one has
PCH, =PCH, and when A tends to infinity, the PCH, approaches the linear combi-
nation that maximizes the between-family variation. The regularization parameter
can be determined by the data through cross-validation (Wang et al., 2007a).

3.2 Linear discriminant analysis (LDA) and relationship with
the PCH analysis

In this section we will show that in the special case of siblings data, PCH analysis is
equivalent to performing Fisher’s Linear Discriminant Analysis (LDA). Discrimi-
nant analysis is used when subjects with multivariate measurements are partitioned
into known classes and it is believed that the distribution of the multivariate mea-
surements depends on class memberships. LDA was introduced by Fisher (1936)
as an exploratory technique. The objective of LDA is to identify directions in vari-
able space that best separate classes. In our context, variables are traits and classes
are families. Specifically, LDA seeks a projection 3 that maximizes the ratio of
between-class scatter S, against within-class scatter S,, (Fisher’s criterion):

B'S,B
arg max , 6)
iBli=1 B"SwB
where the r x r matrices S, and §j, are defined as
i _ _ m _ o _
Sw=Y ¥ (Y =T)(¥y =)', =Y m(Fi-V)(Ti-7)", (7)

i=1j

1 i=1

with ¥; = ¥;Y;;/ni, Y =Y, ;Yij/n, and n = ¥;n;. As is well known, LDA also
reduces to a generalized eigenvalue-eigenvector problem, and it produces eigenvec-
tors known as Canonical Discriminant Components (CANDISC) or discriminant
axes. It is not difficult to see that in the genetic context one can explain LDA as fol-
lows: assume we consider traits that are influenced by familial (e.g. genetic) factors,
then a trait which varies little within the same family (trait with small within-class
scatter) should receive greater weight in a CANDISC than a trait with large within
family scatter. Note that one can easily verify that the maximization in (6) is equiv-
alent to maximizing f(S;,'S},.). Moreover, if we let ¥ and £, be the population
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between and within variance-covariance matrices of the data’ population respec-
tively, then one can write

CANDISC = arg maxf(Z,,'%;, B). (8)
B

Therefore, the principal components of heritability are exactly the CANDISC when
we assume that X, = X and X, = X,.

When working with multiple siblings data, the correlation between any two
siblings of the same family is the same. In this case, the variance-covariance matrix
of Y given in (3) can be written as

Var(Y) = 1,1I'® % +1,® (X + %).
Thus, the model given in (1) can be reduced to a standard one way random effect
ANOVA model with £, = £,/2 and £,, = £, + £, /2. And so, one can easily ver-
ify that maximizing h(B) given in (4) is equivalent to maximizing f(£,'%;, B).
To see how the PCHs can be used to discriminate families, one can notice that by
maximizing heritability, the PCH framework also gives larger weights to heritable
traits. Such traits are expected to be similar within families and therefore should
have small within-class scatter. Thus, unless the total scatter matrix (sum of within-
and between-class scatter) is negligible, the between-class scatter is large for these
traits. Therefore, the PCH can be implicitly viewed as a search algorithm for pro-
jections discriminating classes (families).

4 Estimation of the variance components

When the data come from families with more complex structures than multiple
siblings (as it is the case in most human genetic studies), the estimation of the
variance components under a multivariate traits model is not an easy task. In this
section, we see how ANOVA estimators can be obtained, by looking at the genetic
model (1) as a multivariate unbalanced one way random effect model. Maximum
likelihood methods are also reviewed.

4.1 ANOVA estimators of V.C. accounting for familial depen-
dence

The ANOVA estimators of the VC under an unbalanced one way random effect
ANOVA model are given in Searle (1971), Swallow & Monahan (1984) and Searle
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(1992). However, these estimators do not take into account the familial structure
in the data. When quantitative traits data are collected from general pedigrees, the
expectations of the statistics S, and S,, given in (7) are summarized in Proposition
1, which is proved in the Appendix.

Proposition 1 Under the model (1), if we let S, and S,, be defined as in (7) then

one has
E(S0)=(n-mEet (- 0T E(S)=(m= DIt (%~ )%, 9)
where
Tg = ify), Tp = ifb(i), Te = i%fb(i), Téi) = 2Trace {CID(i)] , ‘clgi) =2 ikicbyk)
i= i= i=1 1 j=lk=

with ®0) being the kinship matrix of the i th family.

Equating the two statistics S, and S, to their expectations given in Proposition 1
gives the following ANOVA estimates:
$A _ Sp/(m—1)=S8,/(n—m) $A _ 1 S _(Tu
(=) m=1) = (=) /(n=m)" T (n—m)""
where 7,, 7;, and 7. are given in Proposition 1. Note that for the unbalanced one-
way random effect ANOVA model the total variance’s decomposition is orthogonal,
(i.e. S; = Sp+Sy), where S; is the total scatter Sum of Squares matrix. This leads to
independent sums of squares and competent and unique ANOVA estimators (see for
instance Swallow & Monahan, 1984, for more details). Note also that the ANOVA
estimators we obtained from Proposition 1 are linear combination of S, and S,,.
Similarly, in the case of siblings data, Ott & Rabinowiz (1999) proposed to use:

)

-7
(n—m)

¥, (10)

£ =8, /(= 1) =8,/ (n—m), £ =8,/ (n—m). (an

In fact, the next proposition shows that the principal components of heritability
obtained from the ANOVA estimators and Ott’s estimators are identical; moreover,
they coincide with the LDA discriminant axes.

Proposition 2 Let the principal components of heritability be defined by (5). If the

estimators of X, and X, are linear combinations of Sy, and S,, then the corresponding
PCH are exactly the discriminant axes.
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Proof: To prove Proposition 2, let 2&, and 3, be defined as
Yo = Sy + 85,8, Lo = ASp+ 8eS,y.

Let B be a discriminant axis obtained from (6) and let 1 be the eigenvalue
of S5, associated to B, i.e. S;,'S;,8 = nB. It follows that:

$18.B = (0eSp+8:5,) " (0 Sy + 8, Sw) B
= (S, Sy 4 8e1,) 1SS, (0, S, 1Sy + 8, 1) B

= (ot +8;) (S, 'Sy +8.1,) " B
on + 0,

a1 + 6,

Hence ﬁ;lig has B as an eigenvector. Note that the PCH are obtained as the eigen-
vectors of ZglEg, and so, the PCH obtained from their estimators of Proposition 2
are exactly the discriminant axes.

As we mentioned, both our ANOVA estimators and Ott’s estimators are
linear combinations of S, and S,,. In view of Proposition 2, this implies that their
associated PCH are equal to the discriminant axes. However, the order of these
PCH is not necessarily the same since their associated eigenvalues are not equal to
those associated with the discriminant axes. Note that the order of the PCH’s leads
to important consequences when using only the first ones in linkage analysis.

4.2 ML and REML estimators of V.C. under the quantitative
genetic model

Consider now the multivariate variance component genetic model given by Lange
(2002, Chap 8). If Y is defined as in (3) and it = 11,, ® i, then the ML and REML
estimates of u, X, and X, can be obtained using the scoring algorithms, which
are implemented in the Mendel and ASREML software respectively, (Lange et al.,
2001; 2006, Gilmour et al., 1999). As for the ANOVA method, the REML algo-
rithm searches for translation invariant maximum likelihood VC estimators (i.e. es-
timators which don’t involve (). By default, ASREML estimators are calculated for
unbalanced animal genetic mixed linear models. However, we could adapt this ap-
proach to human genetic models as well. Although REML estimators are arguably
preferable on a theoretical basis to ML estimators, the Lange’s ML estimators are
still considered state-of-the art in multivariate human linkage analysis . Both ML
and REML estimators share two highly desirable asymptotic properties : under the
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assumption of multivariate normality, they are consistent and asymptotically effi-
cient. However, they have the disadvantage of requiring heavy computer resources.
For example, when r is large (r > 30), Mendel software runs into severe memory
problems and fails to complete the calculations of the ML estimators. Similarly
ASREML has a limitation of r < 20.

5 Simulations

In this section we describe and report the results of some simulation studies we
have carried out with the aim to evaluate and compare several estimators of the
variance components. In practice, ANOVA’s, MLE, REML’s and Ott’s estimators
may be negative with non-zero probability. In view of this, we have adopted the
procedure used by Amemiya (1985) to make these estimators nonnegative definite
(n.n.d). This is achieved by replacing in the corresponding spectral decomposition
any negative eigenvalue by zero. This approach was also used by Mathew et al.
(1994) and Srivastava & Kubokawa (1999) to make their V.C. estimators n.n.d.
Furthermore, to compute the PCH)_, the regularization parameter A was chosen by
the cross-validation optimal criterion given in Wang et al. (2007a).

In all simulations, the basic genetic model has a single disease susceptibility
locus with two alleles denoted by d and D with frequencies p and g respectively (d
is the susceptible allele). The following model, which is used to generate traits
for general pedigrees, was also used by Ott & Rabinowitz (1999) and Wang et al.
(2007a) to simulate quantitative traits data under a PCH framework. It is given by

Yii =X;ju+E;j, (12)

where X;; is the number of the disease susceptible alleles carried by the j—th subject
in the i—th family, u € R" is the effect of the susceptible allele and E;; represents the
environmental component which is normal with mean zero and variance-covariance
Y. Thus, the effect of allele d on the traits is assumed to be additive (i.e. carrying
one copy of d adds u to the mean of the traits). The effect u is the same for each
family, but is different across traits.

5.1 Efficiency of the proposed ANOVA estimator for variance
components

We relied on the simulation setting used by Ott & Rabinowitz (1999) and Wang et
al. (2007a) with r = 5 traits. This setting assumes that the genetic effect on the first
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two traits is smaller than the last three, but the subject-specific (i.e. non genetic)
effect on the first two traits is larger. Specifically, this leads to:

1 30 05 0 O O
{ 1 \l ( 05 30 0 0 O \l
=4 2 4, 2=, 0 0 1 05 05 ,.

2 0 0 05 1 05

\ 2 / \ 0O 0 0505 1
To simulate data with an increasing number of traits (r = 10, 15,50, 100),
we increased the size of the variance-covariance matrix X, and the genetic ef-
fect u. The expanded effect vector of the genetic effect for r traits (r > 5) is
u=(1,1,2,2,2,0,...,0)F, which implies that the first five traits are influenced
by a single genetic locus and the other components are random noise with no ge-

netic effect. Similarly, the expanded variance-covariance matrix of the multivariate
gaussian random vector is

Ye O 0
ox o0 |
0 0 I(rfIO)

where X, is a 5 X 5 matrix with 1 in diagonal and 0.1 out of diagonal. Thus, it
means that the first five non-genetic traits are correlated and the remaining (r — 10)
non-genetic traits are independent. We generated 100 families: 55 families with
two parents and one child, 35 families with two parents and two children and 10
families with two generations (8 subjects per family). The number of replications
for the simulation was B = 200.

In order to evaluate the efficiency of our proposed ANOVA estimator, we
used risks and squared bias as evaluation criteria. Following Sun et al. (2003), the
risk and the squared bias of an estimator £ are defined respectively as

RED) =tr{E[E-2?]},  sbEX)= tr{ [E(S) —2]2}. (13)

The true values of the VC component can be computed under the model (12) (see
supplementary material, web appendix A): the family-specific component X, and
the subject-specific component X, are given by

T, =2pguu’, E.=X. (14)

Furthermore, in order to compute the risk and bias of the PCH using the different
VC estimators, one needs to know the true value of the PCH. In fact, assuming a
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frequency of the susceptible allele p = 0.5 and using the true values of the vari-
ance components given in (14), one can calculate the first true PCH (PCH1) and its
associated heritability (4;). These are given, respectively, by

PCH, = (0.161,0.161,0.562,0.562,0.562,0,...,0)L,  hy = 0.380.

ro

The risk and the squared bias of each VC and PCH are calculated from (13). The
bias and the mean square error of heritability for the first PCH were respectively:

B B
Bias(h Z hy—hy), and MSE(h Z hy, —hy)?,
where £ is the true heritability and hy, was the estimate of kg in the b th replication.

Table 1: Rows 1-4 represent the squared bias (sb) of the estimators of X,, X, PCH1, and
all PCH, (mean squared bias of each PCHs) respectively. Row 5 represents the bias of the
heritability of the first PCH. Rows 6-9 represent the risk (R) of the estimators of X,, X,
PCH1,, and all PCH; (mean risk of each PCHs) respectively. Row 10 represents the mean
squared error of the heritability of the first PCH.

5 traits 10 traits 15 traits
MLE Anov REML Ot MLE Anov REML Ott MLE Anov REML Ott

sh(£,) 076 011 007 221 045 08 031 1493 095 056 036 226
sb(£.) 067 002 001 213 067 005 005 218 113 009 003 220
sb(PCHI) 002 002 002 002 006 006 008 006 095 035 019 096
shyy(PCH) 132 199 218 196 164 187 154 190 215 193 189 195
Bias(h)  -008 -0.00 002 -050 -006 001 004 -050 -0.04 001 008 -0.50

R(Ee) 269 443 196 226 575 703 490 158 868 7.67 446 234
R(E,) 196 345 151 222 291 560 299 231 570 810 494 242
R(PCHI) 003 004 003 004 030 034 040 036 195 196 185 196
Ru(PCH) 317 351 357 36 274 294 253 294 290 278 287 3.5
MSE(h) 001 002 001 026 001 002 001 025 001 001 001 025

We compared our estimating approach (noted Anov in this section) with the
MLE and REML estimators as well as with the variance components proposed in
the original PCH paper from Ott & Rabinowitz (1999) (noted Ott in this section).
The squared bias and the empirical mean of the risk of flg, 3, are presented in Table
1 for r = 5,10, 15 traits. This table also presents the risk and squared bias of the
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matrix that has all PCH as columns as well as of the first PCH and its associated
heritability. We can see that our proposed estimators and the REML estimators pro-
vide substantial reduction in squared bias over the MLE VC estimators (rows 1-4).
When comparing the risks (rows 6-9), we see that ANOVA’s, MLE and REML’s
methods are similar in terms of the efficiency except for the risk of X, and X,. This
is consistent with the Monte Carlo simulation study conducted by Swallow and
Monahan (1984). The significance of the difference between ANOVA’s and MLE’s
risks decreases when the number of traits, r, increases, while REML’s risks main-
tain good performance even as r increases. Furthermore, as proven in Proposition
2, Table 5.1 shows that the estimation method of Ott gives the same PCH as the
ANOVA method. However, as one can see, Ott’s estimators do not lead to good
estimators of variance components and heritability.

Table 2: Empirical mean and mean-squared-error of the first ten components of
PCH1, calculated from the ANOVA method for 50 and 100 traits respectively:

PCHI1 PCHI1 (50 traits) PCHI1,, (100 traits)
ANOVA MLE ANOVA MLE

mean MSE mean MSE mean MSE mean MSE
0.161 0.230 0.015 _ — 0.231 0.012 _ —
0.161 0.208 0.012 _ — 0.221 0.011 _ —
0.562 0.507 0.008 _ — 0.524 0.006 _ —
0.562 0.489 0.010 _ — 0.512 0.008 _ —
0.562 0.541 0.003 _ — 0.470 0.011 _ —
0 0.001 0.003 —_ — 0.003  0.002 _ —
0 0.001 0.004 _ — 0.0004 0.002 _ —
0 0.001 0.003 _ — 0.004 0.002 _ —
0 0.001 0.004 _ — 0.003  0.002 _ —
0 0.001 0.004 _ — 0.0003 0.002 _ —

Table 2 summarizes the performance of the ANOVA estimator for r = 50
and 100 traits while keeping the same simulation design as in Table 5.1. Note
that Mendel and ASREML Softwares could not provide estimates for such a high
number of traits. Using Mendel, the extreme demands on working memory led to a
crash in the machine system; also, ASREML gives automatically an error message
mentioning its incapability to deal with more than 20 traits. Table 2 provides the
weights of the first PCH for the first 10 traits (5 genetic trait components and 5
non-genetic trait components). The other weights are not shown here. For r = 50,
the minimal value of these weights was 0.0001 and the maximal was 0.001. For
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the augmented case r = 100 traits, PCH; has a similar behavior compared to the
case r = 50. Note that the minimal value of the last 90 weights was 0.0001 and the
maximal was 0.005. A summary of the above analyses is presented in Table 3.

Table 3: Conclusion of the ANOVA’s, MLE and REML’s method comparison. + de-
notes significant difference, ++ denotes higher significant difference and O denotes
no evidence for difference:

Method R(Xy) R(PCHI1,;) square MSE(h) Bias(h) risk of high CPU

bias all PCH dimension time
MLE + 0 0 0 0
ANOVA 0 ++ 0 0 0 ++ ++
REML ++ 0 ++ 0 0 0 +

5.2 Comparing the use of PCH versus PCA in linkage analysis

The previous set of simulation compared the efficiency of our proposed VC estima-
tors with respect to the MLE and REML estimators. We also conducted two other
sets of simulations to investigate linkage analysis using the first PCA (PCA1) and
first PCH (PCH1) as phenotypes. This was done by performing a univariate mul-
tipoint variance-component linkage analysis and test for linkage using the Mendel
software (Lange et al., 1976, 1983, 2001, 2006 and Bauman et al., 2005). The
two settings we used for linkage analysis were identical to Wang et al. (2007a).
Specifically, parameters for the simulation were:

1.5, diag(o’zssx]) 05,5 05,40
u= 05 ;o Xe= 05><5 diag<2'55><l)+0'55><5 05><40 (15)

040 040x5 040><5 diag(0'540x1)
1 diag(2'95xl) +0.1,; 0.1, 05,40
u= 25 , Le= 0.15X5 diag(o.95x1) —|—0.15X5 05X40 (16)
40 0405 040><5 diag(240x1 )

We generated the same 100 families scenario as before. For each subject,
five markers were simulated 20cM appart from each other, with two alleles each
using the SIMULATE program (Terwilliger & Ott, 1993). Except marker 2, which
had allele frequencies of 0.8 and 0.2, all markers had equal allele frequencies of
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0.5. We used the model given in (12) to generate traits for general pedigrees where
X represents the number of minor allele at marker 2. So, marker 2 is the QTL in
this case.

Results from the set of linkage analysis are summarized in Figure 2. Us-
ing the variance-component model, we can test the null hypothesis that the additive
genetic variance due to the QTL equals zero (no linkage) by comparing the like-
lihood of this restricted model with that of a model in which the variance due to
the QTL is estimated. The difference between the two logq likelihoods produces
a LOD score. A LOD score above 2.0 is suggestive and above 3.0 shows evidence
in favor of a QTL near the given map position. LOD scores were computed us-
ing both the ANOVA PCH1, and PCAI1 as phenotypes. As we can see, using the
PCH as a phenotype leads to much higher LOD scores than using the first regular
principal component. In fact, such results are not surprising because classical PCA
ignores the correlations between family members. Since the variance for the non-
genetic traits were larger than the variance for the genetic traits, classical PCA did
not capture most of the genetic variability and gave more weights to the non-genetic
traits. Note that the higher values of PCH1’s LOD score for the first setting is due to
the fact that the genetic traits were not influenced by non genetic factors (i.e. they
are traits with small environmental variations). Also, in the second setting, PCA1
captures relatively large signal since traits 1-5 are genetic traits and had large total
variation.

Univariate linkage analysis, 50 traits, first setting Univariate linkage analysis, 50 traits, second setting

marker 2

—— PCH1,
- == first PCA

—— PCH1,
marker 2 = = first PCA

Lod score
Lod score

Figure 2: Univariate multipoint variance-component linkage analysis using both the
ANOVA PCH1, and PCAL traits as phenotypes, A, pim = 60.
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In both settings we assumed no correlation between the last (r — 10) non-
genetic traits. In microarray data, most gene-expression levels are highly correlated
with each other; this is due on the one hand to underlying environmental factors,
and on the other to some common genetic regulation. To reflect real situations,
we added to both settings above a few scenarios corresponding to varying environ-
mental correlations between the last r — 10 traits (p = 0.2,0.5,0.7) for any pair of
traits. Figure 3 shows results for LOD scores computed using the ANOVA PCH1,
as phenotype. One can notice that the performance of the ANOVA PCHI1 estimators
remained good as the correlation increased. Note that the same analysis using the
first ANOVA PCAL is not reported here as it did not detect linkage in any of the
settings (LOD scores equal to zero).

First PCH in linkage analysis, 50 traits, first setting First PCH in linkage analysis, 50 traits, second setting

marker 2

marker 2 —_—

Lod score
Lod score

Figure 3: Univariate multipoint variance-component linkage analysis using the
ANOVA PCH1, trait as phenotype, Aoprim = 60.

6 Data analysis

We applied the PCH framework using our proposed ANOVA estimators to a unique
schizophrenia (SZ) and bipolar disorder (BP) sample from the Eastern Quebec pop-
ulation. This sample of 48 multigenerational families comprises a total of 1,278
individuals, 365 of whom are affected by SZ or BP spectrum disorder. The life-
time presence of symptoms of psychosis, manic and depressive symptoms in a total
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of 439 subjects were evaluated on a six-point rating scale on each of the 82 items
of the Comprehensive Assessment of Symptoms and History (CASH) instrument
(Andreasen et al., 1992). These 439 subjects contained the 365 subjects affected
by SZ or BP spectrum disorder plus another set of 74 subjects unaffected by these
disorders but showing the presence of some of these symptoms. The procedure
of assessment is described in detail in Maziade et al. (1995). The 82 items cov-
ered the following 11 dimensions: Delusion (15 items), Hallucination (6 items),
Bizarre behavior (5 items), Catatonia (6 items), Thought disorder (7 items), Alo-
gia (4 items), Anhedonia (5 items), Apathy (4 items), Affective blunting (8 items),
Mania (8 items) and Depression (14 items). In the current paper, these 11 -acute
episode- dimensions scores, computed as the average of their items, were used for
subsequent analyses.

Table 4: Estimates of PCH 1, and associated heritability using the ANOVA (A) and
MLE methods respectively (first two columns). The remaining columns represent

the estimates of the next three PCHs and their corresponding heritability using the
ANOVA method

pcu1) pca1™®  pcH2 pcH3\)  pcHAY

delusion 0.160  0.093 0215 0288  -0.072
hallucination ~ 0.276 0200 0421 0292  0.522
bizarre behavior  0.209 0.178 0345  -0.146  -0.462
anhedonia 0.531 0.615  -0228  -0.525  0.042
apathy 0.419 0459  -0020 -0317  -0.106
catatonia 0.077 0.065 0123 -0.013  -0.100
affective blunting ~ 0.388 0.374  -0.045 0190  -0.004
thought disorder ~ 0.141 0.124 0410  -0.09% 0313
alogia 0.221 0.258 0203 0063  0.079
mania 0348 -0288 0608 0426  -0.186
depression -0.223 -0.148 -0.090 -0.450 0.589
heritability 0.925 0.781 0454 0411 029

First, we estimated the variance components of the genetic model (1) us-
ing both ANOVA and maximum likelihood methods. Using these estimates, we
computed the corresponding principal components of heritability. The estimates of
PCH 1), from these two methods and their associate heritabilities are given in Table
4. As we can see in this Table (first two columns), the estimates of the first PCH
using the ANOVA and MLE methods are relatively similar. This is also true for
the remaining PCHs (results not shown). However, we can see that the ANOVA’s
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estimate produces a larger heritability, and therefore can be more informative for
a future genetic linkage analysis. The principal components of heritability can be
interpreted by looking at the weights for each trait component. Traits with large
weights (in absolute value) tend to have larger genetic effects. As we can see in
Table 4 (first column), the first principal component of heritability discriminates
subjects with mania and depression symptoms from other subjects. This is inter-
esting, as mania and depression symptoms characterize bipolar disorder. In other
words, the first PCH discriminates BP subjects from other subjects. This was some-
how expected, as it is known that the disease diagnostic is a heritable trait. However,
using several PCHs may enable us to refine the diagnostic criterion. For example,
by looking at the largest weights, the second PCH can be seen as a contrast between
subjects showing an agitated and disorganized psychotic state (mania, hallucination,
thought disorder, bizarre behavior) and other subjects.

Table 5: Latent class analysis using the first four PCH’s of the 439 non-missing data
subjects. Four classes:

Diagnosis Class1 Class2 Class3 Class4 Total

SZ 13 103 0 11 127
BP 105 19 26 49 199
other 3 8 20 45 74

SZ affective 15 21 0 3 39

In order to evaluate the concordance between the PCHs and the diagnoses,
we applied a latent class model for pedigree data developed by Labbe et al. (2009)
based on the first four PCHs. The probability of class membership returned by
the model allowed us to classify subjects in their most probable class (or cluster)
according to their PCH patterns. In order to compare the classification obtained
from the PCHs with the four diagnoses categories (SZ, BP, SZ affective and other),
we specified a model with 4 classes (or clusters). Table 5 shows how the four PCH
clusters intersect with these four diagnostic categories. As we can see, cluster 1
contains a majority of SZ subjects and cluster 2 contains a majority of BP subjects.
However, the PCHs seem to capture the genetic heterogeneity of these two diseases,
as BP subjects tend to be splitted mainly into 2 clusters. Interestingly, subjects with
other diagnoses seem to be assigned in a cluster with BP and SZ subjects. The fact
that we didn’t obtain a complete concordance with the four diagnostic categories
(SZ, BP, SZ affective and other) indicates that PCHs may represent new phenotype
definitions.
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7 Discussion

We proposed some modified ANOVA estimators of the variance components of a
one way multivariate genetic random effect ANOVA model for general pedigrees
and applied them to the PCH context. The main contribution of our work is that
these ANOVA estimators allow to estimate PCH in families of any structure (and
not only siblings) as well as in situations where the number of traits is large. In
human studies, family data are typically collected over at least two generations.
Furthermore, in fields such as mental health where phenotype definition is a chal-
lenge, researchers collect more and more traits in order to better characterize the
phenotype-genotype relationships. An extreme case of large number of phenotypes
is also illustrated in eQTL (expression-QTL) studies where thousands of gene ex-
pressions are used as phenotypes to better characterize the genetic contribution to
the variation of gene expressions.

As illustrated in our simulation study, our proposed ANOVA VC estimators
significantly reduce the bias over the corresponding maximum likelihood estima-
tors, at the price of a slight increase in risk. Since it is beneficial to have estimators
close to the true value (small bias) with modest risk than the opposite, we would
recommend in practice the use of ANOVA’s estimators if the risk is not a serious
concern. Otherwise, we recommend the REML estimators when applicable (i.e.
small number of traits). Furthermore, these estimators are extremely fast to com-
pute and are based on explicit formulas. They can also handle a large number of
traits, which is not the case for the maximum likelihood estimator. In fact, what
could be seen first as an outdated approach is actually a fast and powerful way
to estimate variance components. As shown in Swallow & Monahan (1984), the
ANOVA VC estimators we propose are unique and efficient, as it is the case with
one-way random effect models. Note that one can also include covariates in the
model. In this case, a mixed-effects regression model could be used to estimate
the regression coefficients and the variance components simultaneously (see for ex-
ample Baltagi & Chang, 1994, for a discussion of the ANOVA estimates in such a
model).

Principal component of heritability is a great tool that allows the selection of
the most heritable linear combination of phenotypes, measured in families. In this
paper, we established a link between PCHs and discriminant axes from a traditional
linear discriminant analysis. In particular, we showed that the PCHs computed
using the variance components of Ott & Rabinowitz and Wang et al. (2007a) for
simple pedigrees are exactly equal to the discriminant axes. As in standard principal
component analysis, selection of the PCH is an issue. In PCA, PCs are chosen
according to the percentage of the variance explained. In a similar spirit, one may
choose the PCHs that have a higher heritability than each of the traits separately.
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Note that in order to obtain a better interpretation of the PCHs, it would also be
possible to apply a rotation R to the matrix A of genetic correlations between the
traits and the PCHs, as well as to the matrix of PCHs. The rotation would be chosen
such that the genetic correlations obtained in the matrix AR are either close to O or
1.

Using the first PCH as a quantitative phenotype, or several PCH’s as multi-
variate quantitative phenotypes in linkage analysis provides greater power to detect
disease susceptibility genes. Our simulations show that using PCH1, as a pheno-
type in linkage analysis leads to higher LOD score, while using the standard PCA
results in lower of LOD scores. This is coherent with the simulation studies con-
ducted by Ott & Rabinowitz and Wang et al. (2007a). Wang et al. (2009) also
compared PCA and Factor Analysis (FA) to uncover genetic factors that contribute
to complex disease phenotypes. They found that FA generally produced factors
that had stronger correlations with the genetic traits. Faced with high dimensional
traits as in Morley et al. (2004), where 3,354 gene expression traits were measured,
one could construct clusters that combine similar traits among family members and
then used the ML estimates of the PCH to combine the phenotypes in each cluster.
However, the trait clusters can still be relatively large as it is the case with microar-
ray gene expression data. Wang et al. (2007b) proposed a clustering approach that
takes into account the family structure information. They applied this approach
to the gene expression data used in Morley et al. (2004) and then used the PCH
approach to combine the phenotypes in each cluster. Nevertheless, they used the
sample between-family sum-of-squares to estimate ¥,, and used the sample within-
family sum-of-squares to estimate ¥, for the 14 large families used in this data.
Using the proposed ANOVA estimates of VC could greatly improve the estimation
of the PCHs for these data.

Finally, we point out some limitations of the ANOVA approach: first, the
risk of the VC estimators deteriorates when one deals with extremely large pedi-
grees (results not shown). In practice, this is not of great importance since the size
of a pedigree rarely exceeds 30 subjects. Second,we focused on simple variance-
covariance structure of the genetic model. With a more general variance structure,
the model will be more complex. For instance, one can assume that the phenotype
is influenced by / loci. However, if we are focusing on the analysis of one locus
specifically, we can absorb the effects of all the remaining QTLs in a residual ge-
netic component and the variance-covariance between relatives will be decomposed
into three components: the major locus component (specific QTL), the polygenic
component (residual genetic) and the environmental component. Thus, a system
of three equations, rather than the two independent equations in (9), can solve this
estimation problem. It would be then interesting to compute the heritability based
on the major locus. This is the object of a future work. Finally, an R package

Published by De Gruyter, 2012 21



Satistical Applicationsin Genetics and Molecular Biology, Vol. 11 [2012], Iss. 2, Art. 4

computing the estimators of Xo, X, and PCH) is available from the authors upon
request.

Supplementary Materials

Web Appendix A, referenced in Section 5.1, is available under the Paper Informa-
tion link at the Berkeley electronic press website

A Appendix

A.1 A.l. Proof of Proposition 1

The expectations of Proposition 1 come from the decomposition of §,, and S; as
follows:

ZZ VoY nffl . Sy=Y wkF —afPT. (17)
i=1j= i=1 i=1

Note that the mean of Y;; given in (12) is 2p, however, to facilitate the calculations,
we assume here that it is centered. Thus, to prove Proposition 1, one needs to
evaluate the expectations E(Y;;Y;}), E (YY), E(YYT). Following the model (1)
one can write:

E(Yy}) = 20\)z, 1. (18)

E(YyT) = iz[i E(Y;,Y}) +ZE ]

j=1 J#k
U S° Do) P
- Z[ch T+ 5]+ ) 20T,
i =1 J#k
(0
1 T,
= SRt (19)
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(i)

where 7, is defined in Proposition 1. The expectation of YYT can be written as

__ 1 _Jm
EYY") = SE(Y nh:) ny'
n i=1 =1
1] 2 75T 1V
= 3 Y miEXY)+ ) ninEYY)
Li=1 i#l
e (1. %,
= — n; | —X.+
n2 _z—Zl ! (l’li ¢ ni2
1 Tp
= ~Lo+ 3%, (20)

where 7, is defined in Proposition 1. Using (17), (18) and (19), one has

m. . m 1 T(i)
Fs = $ 5 onen) fa e tn),
= (n—m)Ze+ (74— 7c)Le.

The expectation of S}, is deduced in a similar way.
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