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Abstract. We provide a direct proof that a finite graded lattice with a maximal
chain of left modular elements is supersolvable. This result was established via a
detour through EL-labellings in [MT] by combining results of McNamara [Mc] and
Liu [Li]. As part of our proof, we show that the maximum graded quotient of the
free product of a chain and a single-element lattice is finite and distributive.

Supersolvability for lattices was introduced by Stanley [St]. A finite lattice is
supersolvable iff it has a maximal chain (called theM -chain) such that the sublattice
generated by the M -chain and any other chain is distributive.

An element x of a lattice is left modular if it satisfies:

(y ∨ x) ∧ z = y ∨ (x ∧ z)

for all y ≤ z. We say that a lattice is left modular if it has a maximal chain of
left modular elements. Stanley [St] showed that the elements of the M -chain of a
supersolvable lattice are left modular, and thus that supersolvable lattices are left
modular.

We say that a lattice is graded if, whenever x < y and there is a finite maximal
chain between x and y, all the maximal chains between x and y have the same
length. It is easy to see that supersolvable lattices are graded.

The main result of our paper is the converse of these two results:

Theorem 1. If L is a finite, graded, left modular lattice, then L is supersolvable.

This result was first proved in [MT], as an immediate consequence of results of
Liu and McNamara. Liu [Li] showed that if a finite lattice is graded of rank n and
left modular, then it has an EL-labelling of the edges of its Hasse diagram, such
that the labels which appear on any maximal chain are the numbers 1 through n in
some order. McNamara [Mc] showed that for graded lattices of rank n, having such
a labelling is equivalent to being supersolvable. These two results together immedi-
ately yield that finite graded left modular lattices are supersolvable. However, since
this proof involves considerations which seem to be extraneous to the character of
the result, it seemed worth giving a more direct and purely lattice-theoretic proof.

On the way to our main result, we introduce the notion of the maximum graded
quotient of a lattice. The maximum graded quotient of a lattice is a graded quotient
through which any quotient to a graded lattice factors. The maximum graded
quotient need not exist, but if it exists, it is unique. We calculate explicitly the
maximum graded quotient of the free product of the k + 1-element chain Ck with
the single element lattice S and show that it is finite and distributive.
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The Maximum Graded Quotient of a Lattice

The maximum graded quotient of a lattice L is, by definition, a quotient φ : L→
H such that H is graded and for any quotient ψ : L → K, where K is graded, ψ
factors through φ.

Note that a lattice may have no maximum graded quotient. The lattice shown
in Figure 1, for instance, has no maximum graded quotient.

Figure 1

For L a lattice, we can define an equivalence relation ∼ on L where x ∼ y iff
θ(x) = θ(y) for all θ quotient maps from L to a graded lattice. It is straightforward
to check that this is a lattice congruence. We then define g(L) = L/∼. For the
lattice in Figure 1, g(L) = L.

The following lemma is immediate.

Lemma 1. If g(L) is graded, then it is the unique maximum graded quotient of L.
If g(L) is not graded, then L has no maximum graded quotient.

For x ∈ L, we will write [x] for the class of x in g(L). We write a ≤· b to indicate
that either a ⋖ b or a = b.

Lemma 2. If [x] ≤· [y] ≤· [z] (for instance, if x ⋖ y ⋖ z in L), and [x] ≤ [u] ≤
[v] ≤ [z], such that [u] ∨ [y] = [z] and [v] ∧ [y] = [x], then [u] = [v].

Proof. We consider separately graded quotients of g(L) where [y] is identified with
[x], where [y] is identified with [z], where [y] is not identified with either [x] or [z],
and where [x], [y], and [z] are all identified. We see that in all these cases, [u] and
[v] must be identified in the quotient. Since every graded quotient of L factors
through g(L), this implies that u and v are identified in any graded quotient of L,
and therefore [u] = [v].

Maximum graded quotient of Ck ∗ S

Let Ck denote the lattice of length k, with elements x0 ⋖ · · · ⋖ xk. Let S denote
the one element lattice, with a single element y.

Lemma 3. Ck ∗S is a disjoint union of elements lying above x0 and elements lying
below y.

Proof. This is an immediate application of the Splitting Theorem [Gr, Theorem
VI.1.11], which says that the free product of two lattices A and B is the disjoint
union of the dual ideal generated by A and the ideal generated by B.

We shall now proceed to consider these two subsets of Ck ∗ S in more detail.
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Lemma 4. The elements of Ck ∗ S lying below y are exactly y and y ∧ xi for
0 ≤ i ≤ k.

Proof. For f ∈ Ck ∗S, write f (x) for the smallest element of the Ck which lies above
f . If there is no such element, set f (x) = 1̂.

Lemma 5. For f ∈ Ck ∗ S, f ∧ y = f (x) ∧ y.

Proof. By definition, f (x) ≥ f , so f (x) ∧ y ≥ f ∧ x. We prove the other inequality
by induction on the rank of a polynomial expression for f . The statement is clearly
true for rank 1 polynomials. Suppose that f = g ∧ h. Then f (x) = g(x) ∧ h(x) [Gr,
Theorem VI.1.10].

f (x) ∧ y = g(x) ∧ h(x) ∧ y ≤ g ∧ h ∧ y = f ∧ x.

Suppose that f = g ∨ h. Then f (x) = g(x) ∨ h(x) [Gr, Theorem VI.1.10]. Since

Cx ∪ {1̂} forms a chain, we may assume without loss of generality that f (x) = g(x).
Thus,

f (x) ∧ y = g(x) ∧ y ≤ g ∧ y ≤ (g ∨ h) ∧ y = f ∧ y.

This completes the proof of the lemma.

Thus, if z 6≤ x0, then z ≤ y, and z = z ∧ y = z(x) ∧ y, and we have written z in
the form described in the statement of Lemma 4.

Lemma 6. The elements of g(Ck ∗ S) which lie strictly above x0 are generated by
x1, . . . , xn, y ∨ x0.

Proof. We begin by showing that the elements of Ck ∗ S lying strictly above x0

are generated by x1, . . . , xn, y ∨ x0, (y ∧ x1) ∨ x0, . . . , (y ∧ xn) ∨ x0. Let T0 denote
{x0, . . . , xn, y}. Define Ti inductively as those elements of Ck ∗ S which can be
formed as either a meet or a join of a pair of elements in Ti−1. Clearly, the union of
the Ti is Ck ∗S. We wish to show by induction on i that any element of the Ti lying
strictly above x0 can be written as a polynomial in x1, . . . , xn, y ∨ x0, (y ∧ x1) ∨
x0, . . . , (y ∧ xn) ∨ x0. The statement is certainly true for i = 0. Suppose it is true
for i− 1. The statement is also true for an element of Ti formed by a meet, since
if the meet lies strictly above x0, so did both the elements of Ti−1. Now consider
the case of the join of two elements, a and b, from Ti−1. If both a and b lie strictly
above x0, the statement is true for a∨ b by induction. If neither a nor b lies strictly
above x0, then (by Lemma 4) one of a or b must equal x0, and a ∨ b is one of the
generators which we are allowing. Now suppose that a lies strictly above x0 and b
does not. If b = x0, then a ∨ b = a, and we are done. Otherwise, by Lemma 4, b
equals either y or y ∧xi. In either case, a∨ b = a∨ (b∨x0), and b∨x0 is one of the
allowed generators, so we are done. We have shown that every element of Ti lying
above x0 can be written in the desired form, and hence by induction that the same
is true of any element of Ck ∗ S lying above x0.

It follows from Lemma 4 that y ∧ xn ⋖ y. Dually, y ⋖ y ∨ x0. Observe that
y ∧ xn < (y ∧ xn) ∨ x0 < (y ∨ x0) ∧ xn < y ∨ x0 in Ck ∗ S. Thus, by Lemma 2,
[(y ∧ xn) ∨ x0] = [(y ∨ x0) ∧ xn].

We now proceed to show that

[(y ∧ xi) ∨ x0] = [(y ∨ x0) ∧ xi]
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for all 1 ≤ i ≤ n. The proof is by downward induction; we have already finished
the base case, when i = n. So suppose the result holds for i+ 1. In L,

y ∧ xi ⋖ y ∧ xi+1 ⋖ (y ∧ xi+1) ∨ x0 < (y ∨ x0) ∧ xi+1,

but when we pass to g(L) the final inequality becomes an equality by the induction
hypothesis. Since in L we also have that

y ∧ xi < (y ∧ xi) ∨ x0 < (y ∨ x0) ∧ xi < (y ∨ x0) ∧ xi+1,

we can apply Lemma 2 to conclude that [(y ∧ xi) ∨ x0] = [(y ∨ x0) ∧ xi] as desired.

We have already shown that the elements of L lying above x0 are generated by
the xi, y ∨ x0, and the (y ∧ xi) ∨ x0, for i ≥ 1. It follows that the elements of
g(L) above [x0] are generated by the [xi], [y ∨ x0], and the [(y ∧ xi) ∨ x0]. But
[(y ∧ xi) ∨ x0] = [(y ∨ x0) ∧ xi] = [y ∨ x0] ∧ [xi], and so the [(y ∧ xi) ∨ x0] are
redundant, proving the lemma.

Proposition 1. The lattice g(Ck ∗ S) is as shown in Figure 2.

x

x

x

x

0

1

n−1

n

y

Figure 2

Proof. Observe that by Lemma 6, the elements of g(Ck ∗ S) lying strictly over x0

are isomorphic to a quotient of g(Ck−1 ∗ S). Now applying Lemma 4 inductively,
we see that every element of g(Ck ∗ S) can be written as (y ∨ xi) ∧ xj for j ≥ i.
It follows that g(Ck ∗ S) is a quotient of the lattice from Figure 2, but since the
lattice from Figure 2 is graded, it must coincide with g(L).

Left Modular Lattices

In this section, we recall a few results about left modular elements and left
modular lattices from [Li] and [MT].
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Lemma 7 [Li]. Suppose u ⋖ v are left modular in L. Let z ∈ L. Then:
(i) u ∨ z ≤· v ∨ z.
(ii) u ∧ z ≤· v ∧ z.

Proof. We prove (i). Suppose otherwise, so that there is some element y such that
u ∨ z < y < v ∨ z. Now observe that ((u ∨ z) ∨ v) ∧ y = y. However, v ∧ y = u. So
(u ∨ z) ∨ (v ∧ u) = u ∨ z, contradicting the left modularity of u. This proves (i).
Now (ii) follows by duality.

Lemma 8 [MT]. Let x be left modular, and y < z. Then y ∨ x∧ z is left modular
in [y, z].

Proof. Let s < t in [y, z].

(s∨ (y∨x∧ z))∧ t = (s∨x∧ z)∧ t = s∨x∧ t = s∨ (y∨x∧ t) = s∨ ((y∨x∧ z)∧ t).

Lemma 9 [MT]. If L is a finite lattice with a maximal left modular chain 0̂ =

x0 ⋖ x1 ⋖ · · · ⋖ xr = 1̂, and y ≤ z, then the set of all {y∨xi ∧ z} forms a maximal
left modular chain in [y, z].

Proof. The fact that the {y ∨ xi ∧ z} form a maximal chain in [y, z] follows from
Lemma 7; the fact that they are left modular, from Lemma 8.

Modularity

For y ≤ z, let us write M(x, y, z) for the statement:

M(x, y, z) : (y ∨ x) ∧ z = y ∨ (x ∧ z).

(Equivalently, for y ≤ z, M(x, y, z) asserts that the sublattice generated by x, y,
and z is modular.)

Standard notation is to write xMz for the statement that M(x, y, z) holds for
all y ≤ z. In this case (x, z) is called a modular pair. An element x is said to be
modular if for any z both xMz and zMx are modular pairs. As we have already
seen, an element x is left modular if it satisfies half the condition of being modular,
namely that xMz for all z.

Let L be a finite graded left modular lattice, with maximal left modular chain
0̂ = x0 ⋖ x1 ⋖ · · · ⋖ xr = 1̂. By definition, for any y ≤ z, we have M(xi, y, z). We
also have the following lemma:

Lemma 10. In a finite graded left modular lattice L, with maximal chain {xi}, for
any w ∈ L and i < j, we have M(w, xi, xj).

Proof. Consider the sublattice K of L generated by the xi and w. First, we show
that K is graded. Let y < z ∈ K. By Lemma 9, we know that the y ∨ xi ∧ z
form a maximal chain in L. These are all elements of K, so there is a maximal
chain between y and z having the same length as in L. It follows that the covering
relations in K are a subset of the covering relations in L, and hence that K is
graded (with the same rank function as L).

Since K is generated by the xi and w, K is a quotient of Cr ∗S. Further, since K
is graded, it is a quotient of g(Cr ∗ S). Since g(Cr ∗ S) is distributive, the modular
equality is always satisfied in it, and therefore also in K. So M(w, xi, xj) holds in
K, and therefore in L.
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Graded Left Modular Lattices are Supersolvable

In this section, we prove Theorem 1, that finite graded left modular lattices are
supersolvable. To do this, we have to show that the sublattice generated by the left
modular chain and another chain is distributive.

The proof mimics the proof of Proposition 2.1 of [St], which shows that if L is
a finite lattice with a maximal chain of modular elements, then this chain is an
M -chain, and hence L is supersolvable. The proof from [St] is based on Birkhoff’s
proof in [Bi] that a modular lattice generated by two chains is distributive.

We recall briefly the way Birkhoff’s proof works. Let L be a finite modular
lattice, and let 0̂ = x0 < · · · < xr = 1̂ and 0̂ = y0 < · · · < ys = 1̂ be two chains
both of which include 0̂ and 1̂. Let M denote the set of meets of {xi ∨ yj}. We
observe that any element of M can be written as

t
∨

i=1

ai ∧ bi

where the ai form a decreasing sequence of elements from the xi, and the bi form
an increasing sequence of elements from the yi. Let J denote the set of joins of
{xi ∧ yj}. It is clear that J is closed under joins and M is closed under meets. The
following two identities are established for all ai an decreasing sequence of xi and
bi an increasing sequence of yi, and all t:

Pt : (b1 ∨ a1) ∧ (b2 ∨ a2) ∧ · · · ∧ (bt ∨ at) = b1 ∨ (a1 ∧ b2) ∨ · · · ∨ (at−1 ∧ bt) ∨ at

Qt : (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ · · · ∨ (at ∧ bt) = a1 ∧ (b1 ∨ a2) ∧ · · · ∧ (bt−1 ∨ at) ∧ bt

Now consider the set of all lattice paths from (r, 0) to (0, s) which move up and
to the left. We order lattice paths by inclusion on the region below and to the left
of them. Associate to a path the join of all xi ∧ yj with (i, j) on or below the path.
We can see from P and Q that this is a lattice quotient. Thus, L is a quotient of
a distributive lattice, and hence distributive.

The point at which modularity is used in Birkhoff’s proof is in establishing Pt

and Qt. Stanley noticed that it was sufficient to assume only that the xi were
modular. In fact, still less is sufficient.

Lemma 11. Pt and Qt hold in any graded lattice such that the xi form a maximal
chain of left modular elements.

Proof. We prove Pt and Qt by simultaneous induction on t. P1 and Q1 are tau-
tologous. Assume that Pt−1 and Qt−1 hold. We now prove Qt. Recall that the ai

are a decreasing sequence from the xi, and the bi an increasing sequence from the
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yi.

(a1 ∧ b1) ∨ · · · ∨ (at−1 ∧ bt−1) ∨ (at ∧ bt)

=
(

(a1 ∧ b1) ∨ · · · ∨ (at−1 ∧ bt−1) ∨ at

)

∧ bt
)

by M(at, (a1 ∧ b1) ∨ · · · ∨ (at−1 ∧ bt−1), bt)

=
[(

a1 ∧ (b1 ∨ a2) ∧ · · · ∧ (bt−2 ∨ at−1) ∧ bt−1

)

∨ at

]

∧ bt

by Qt−1

= a1 ∧
[(

(b1 ∨ a2) ∧ · · · ∧ (bt−2 ∨ at−1) ∧ bt−1

)

∨ at

]

∧ bt

by M((b1 ∨ a2) ∧ · · · ∧ (bt−2 ∨ at−1) ∧ bt−1, at, a1) (Lemma 10)

= a1 ∧
[(

(b1 ∨ a2) ∧ · · · ∧ (bt−2 ∨ at−1) ∧ (bt−1 ∨ 0̂)
)

∨ at

]

∧ bt

= a1 ∧
[(

b1 ∨ (a2 ∧ b2) · · · ∨ (at−1 ∧ bt−1)
)

∨ at

]

∧ bt

by Pt−1

= a1 ∧ [(b1 ∨ a2) ∧ · · · ∧ (bt−1 ∨ at)] ∧ bt

by Pt−1.

This proves Qt. The dual argument holds for Pt, which completes the induction
step, and the proof of the lemma

This shows that Birkhoff’s proof can be adapted to our situation, proving The-
orem 1.
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