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Abstract—This work considers the problem of user associa-
tion to small-cell base stations (SBSs) in a heterogeneous and
small-cell network (HetSNet). Two optimization problems are
investigated, which are maximizing the set of associated users
to the SBSs (the unweighted problem) and maximizing the set
of weighted associated users to the SBSs (the weighted prob-
lem), under signal-to-interference-plus-noise ratio constraints.
Both problems are formulated as linear integer programs. The
weighted problem is known to be NP-hard and, in this paper, the
unweighted problem is proved to be NP-hard as well. Therefore,
this paper develops two heuristic polynomial-time algorithms
to solve both problems. The computational complexity of the
proposed algorithms is evaluated and is shown to be far more
efficient than the complexity of the optimal brute-force (BF)
algorithm. Moreover, the paper benchmarks the performance of
the proposed algorithms against the BF algorithm, the branch-
and-bound CPLEX-based algorithm and state-of-the-art algo-
rithms, through numerical simulations. The results demonstrate
the close-to-optimal performance of the proposed algorithms.
They also show that the weighted problem can be solved to
provide solutions that are fair between users or to balance the
load among SBSs.

Index Terms—User-BS association, HetSNets, Heuristic algo-
rithm, Brute-force, Branch-and-bound, NP-hard, Fairness.

I. INTRODUCTION

A. Motivation and Research questions

In the last decade, mobile cellular networks have become
popular among data users, which has led to a demand for
increased capacity. In addition, cellular networks are becoming
the main provider of voice and data services with high mobility
even though the wireless local area networks (WLANs) can
provide higher and less expensive data rates with relatively re-
stricted mobility [1]. In order for cellular networks to be com-
petitive with WLANs, resources must be adequately allocated
to provide higher performance and better satisfy the users. To
this end, small-cell base stations (SBSs) are introduced to form
heterogeneous and small-cell network (HetSNet) [2]. SBSs can
provide increase in capacity at low capital expenditure [2].
They have low-power and small-range, and are characterized
by their unplanned and plug-and-play features [2], [3]. Despite
the gains, the dense deployment of SBSs raises many chal-
lenges in HetSNets as the number of SBSs in such networks
can exceed the number of users [4]. Such densely deployment
of SBSs has made the user-BS association a key challenge.
Furthermore, HetSNets are interference-limited and hence the

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

co-channel interference among SBSs and between SBSs and
macro-cell BSs (MBSs) is a critical issue, which needs to
be better managed. It is clear that the user-BS association
directly affects the interference. However, the basic user-BS
association, which pairs the users to the SBSs that has the
strongest signal has a low overall throughput because of a
poor management of the interference [5]. In this paper, we
are interested in finding a user-BS association that increases
the number of associated users in one time-slot, such that the
signal-to-interference-plus-noise ratio (SINR) of the associated
users is guaranteed.

B. Related works

Related work can be broadly divided into two groups.
Works on distributed or centralized solutions of the user-BS
association problem in HetSNets [6–16] and works on the
link activation problem [?], [17], [18]. The link activation
problem can be formulated as: given a set of wireless links
and their corresponding weights, how to maximize the size of
the weighted set of activated links in one time-slot such that
the per-link SINR constraint is satisfied [17].

On the one hand, in [6], the authors study the resource
allocation in HetSNets as a joint optimization problem of chan-
nel allocation, user-BS association, beam-forming and power
control. It is solved using an iterative heuristic algorithm based
on convex approximations. The work shows that the relaxation
of the combinatorial problem to a continuous one is optimal.
However, the proof lacks of generality as it depends on the
problem formulation. Moreover, the proposed algorithm has
high complexity. In [7], the joint power allocation and user-
BS association is modeled as a combinatorial optimization
problem and solved optimally based on Bender’s decompo-
sition. Heuristic algorithms are also proposed. However, both
proposed optimal method and heuristic algorithm have high
complexity. The work in [8] studies the user-BS association
problem for fairness and load balancing (see [14–16] for more
papers on fairness and load balancing). It solves the user-
BS association problem by relaxation and rounding techniques
which remove the combinatorial nature of the problem. Ref-
erence [9] solves the user-BS association problem based on a
pricing scheme. The authors propose a dual coordinate descent
method to solve the problem. They extend the problem to the
multiple-input-multiple-output case and optimize the beam-
forming variables. The optimization model is very similar to
the one in [8]. The main difference with our work is that there
are SINR constraints. In [8], [9], multiple users have to be
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associated with one BS and all BSs have to be associated in the
end of the association scheme which makes the optimization
problem simpler. In [10] the joint problem of power control
and user-BS association is studied and modeled as a max-
min fairness problem. First, the authors study the problem of
maximizing the minimum SINR subject to power constraints
and the association between the users and the SBSs. Second,
they consider the additional constraints of one-to-one matching
and of a minimum SINR guarantee. The first problem is
shown to be NP-hard and the authors propose a two-stage
fixed-point algorithm to solve it. The one-to-one matching
problem is shown to be polynomial-time solvable and the
authors propose an auction-based algorithm to solve it. In the
one-to-one matching problem, the critical assumption made is
that the number of users is equal to the number of SBSs and
all of them have to be associated (there is no maximization
of the number of users) and therefore the authors reduce the
problem to an assignment problem. (We discuss the main
differences of the user-BS association problem considered in
this work and the classical one-tone matching problem in
Section IV.) Other interesting works are [11], [12], and [13]
where the user-BS association problem is solved jointly either
with interference coordination or resource allocation or power
control, respectively.

On the other hand, the seminal work of Goussevskaia
et al. [17] shows that the link activation problem, one-slot
scheduling, is NP-hard. Note that there is some similarity
between [17] and our work. In fact, our problem is somehow
equivalent to the one-slot scheduling where the links are not
established yet and they have no weights. Anyhow, in [17],
the NP-hardness of the unweighted one-slot scheduling is not
investigated. Moreover, it is important to note that the NP-
hardness of the weighted problem does not imply the NP-
hardness of the unweighted one [19]. In [?], [18], approxima-
tion algorithms and game theoretic distributed solutions are
provided in order to solve the joint problem of unweighted
one-slot scheduling and power allocation under geometric
SINR constraints.

To the best of our knowledge, there is no NP-hardness
studies of the user-BS association problem in the case of fixed
transmit power where the objective is to maximize the set
of associated users subject to the SINR constraints. Previous
work have focused on simplified assumptions using relaxation
techniques which remove the combinatorial nature of the user-
BS association problem. Also, the interference constraints are
often greatly simplified using graph-based models instead of
SINR constraints. Moreover, they do not study the fairness
and/or load balancing of the user-BS association problem
which is an important aspect in wireless communications.
Consequently, in this paper, we study the user-BS association
problem under SINR constraints in HetSNets and we prove
that it is an NP-hard problem and we also study the fairness
and load balancing. The system performance metrics are
throughput and fairness/load balancing. Throughput is defined
as the number of users that are successfully associated to the
SBSs and fairness is measured by the number of times a user
is associated to the SBSs.

C. Contributions

This paper investigates two problems of unweighted and
weighted user-BS association in an open access HetSNet. We
define the unweighted (resp. the weighted) problem as follows:
given a set of small-cell users (SUs) and a macro-cell user
(MU), a set of SBSs, one MBS, a QoS lower bound and
channel gains between every pair of user-BS (resp. a weight
for every SU or SBS), the question is to find a set of one-to-
one association between the SUs and the SBSs with maximum
cardinality (resp. with maximum weighted cardinality) such
that the SINR of the SUs and of the MU are greater than the
QoS lower bound.

The main contributions of this paper are as follow:
1) We prove that the unweighted user-BS association prob-

lem is NP-hard.
2) We develop efficient heuristic algorithms to solve both

unweighted and weighted user-BS association problems.
3) We compare the developed algorithms against the brute-

force (BF) optimal algorithm, the branch-and-bound
(B&B) CPLEX-based algorithm, a standard user-BS
association algorithm called max-SINR [5], [9] and a
benchmark algorithm recently proposed in [10].

4) We evaluate the time complexity of the proposed al-
gorithms and the complexity of the BF algorithm. The
complexity of the proposed algorithms is shown to be
polynomial in time.

D. Organization

The rest of the paper is organized as follows. Section II
discusses the system model. The problem is formulated in
Section III. Section IV provides the proof of the NP-hardness
of the unweighted user-BS association problem. Next, Sec-
tion V presents the BF and the B&B CPLEX-based optimal
solutions. Section VI presents heuristic algorithms for the user-
BS association for both unweighted and weighted problems,
and analyzes the complexity of the algorithms. Section VII
provides simulation results to compare the algorithms and
Section VIII concludes the paper.

II. SYSTEM MODEL

This paper considers the down-link transmission where all
BSs transmit over a common frequency band, i.e., frequency
reuse one is assumed. The network comprises a MBS, a macro-
cell user (MU), several SBSs, and several small-cell users
(SUs). We denote by K def

D f1; � � � ; Kg the set of SUs and
by N def

D f1; � � � ; N g the set of SBSs. For brevity, a SU and
a SBS are denoted by k and n, respectively. The MBS and
the MU are denoted by the index 0. The MBS is located in
the center of the cell which is modeled as a circle of radius
R. SBSs, MU, and SUs are randomly located in this cell
following independent two dimensional uniform distributions.
An example of the system model is given in Fig. 1.

The wireless channel model includes path loss and Rayleigh
fading. The channel between k and n is represented by
g0
kn

def
D hkn

p
.d0=dkn/˛ , where ˛ is the path loss coefficient,

dkn is the distance between k and n, d0 is a reference distance
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Fig. 1. System Model

at which the reference path loss is calculated (the reader
can find more details in [20]), and hkn is the small-scale
fading modeled as a zero-mean, complex Gaussian random
variable with unit variance. Throughout the rest of the paper,
we denote the channel gain by gkn

def
D jg0

kn
j2. In this paper,

each transceiver is equipped with a single antenna and one SU
can be associated with one and only one SBS.

For the mathematical formulation of the user-BS association
problem, the binary variable xkn is defined as follows, for all
k 2 K and for all n 2 N :

xkn
def
D

(
1 if k is associated to n
0 otherwise.

The association vector x, which represents
the user-BS association solution, is defined as
x def
D
�
x11; : : : ; x1N � � � xK1; : : : ; xKN

�T
2 f0; 1gK�N . Note that

one SU can be associated with at most one SBS and one SBS
can be associated with at most one SU and hence we have
the following one-to-one association constraint on the vector
x:
P
k2K xkn 6 1 and

P
n2N xkn 6 1. This one-to-one

assumption is reasonable since we assume that transmissions
between SBSs and SUs occur during single time-slot, over
a common frequency and with single-input-single-output
(SISO) network. This paper considers that when a SU is
associated to a SBS in a given time-slot, it means that the
SBS transmits to this SU in this time-slot. In this context,
transmission and association can be used interchangeably.

If an SBS is able to transmit to more than one SU in the
same time slot (for example, multi-antenna SBS), the proposed
algorithms can be adapted by treating the SBS as multiple ones
having the same channel characteristics.

The transmit power is normalized by the receiver noise
power and the reference distance d0. The SBSs transmit at
constant SNR of  . Although this assumption is a simplifi-

cation to render the analysis tractable, it has been shown that
constant transmit power method is useful in practice [21]. The
MBS transmits to its MU at constant SNR of 0. Then, the
received SINR at k from n can be written as follows:

SINRkn .x/
def
D

gknxkn

1C 0gk0 C
X
k02K0

X
n02N 0

gkn0xk0n0
; (1)

where K0 D K n fkg and N 0 D N n fng.
The SINR at the MU is given by:

SINR0 .x/
def
D

0g00

1C
X
k2K

X
n2N

g0nxkn
: (2)

In the above formulation of SINR in (1) and (2), the
interference comes from all associated SBSs. This is indicated,
in the denominator of equations (1) and (2), by the summation
over the channel gains gkn multiplied by the decision variables
xkn. Therefore, the interference occurs only when xkn D 1.

The minimum required SINR threshold at any SU and
at the MU are denoted by ˇ and ˇ0, respectively. A user-
BS association is feasible if and only if it meets the SINR
threshold of the associated SUs and of the MU and if it
satisfies the one-to-one association.

III. PROBLEM FORMULATION

A. Unweighted User-BS Association

This section formulates the unweighted user-BS association
problem (the unweighted problem). The objective is to maxi-
mize the total number of associated SUs in the network subject
to the constraints of the received SINR thresholds of the SUs
and of the MU.

The problem can be formulated as follows:

maximize
x

X
k2K

X
n2N

xkn (3a)

subject to
X
k2K

xkn 6 1; 8 n 2 N ; (3b)X
n2N

xkn 6 1; 8 k 2 K; (3c)

SINRkn .x/ > ˇxkn; 8 k 2 K; 8 n 2 N ; (3d)
SINR0 .x/ > ˇ0; (3e)
xkn 2 f0; 1g ; 8 k 2 K; 8 n 2 N : (3f)

Constraint (3b) ensures that a SBS associates to one SU
whereas constraint (3c) ensures that a SU is associated with
one SBS. Constraint (3d) guarantees that a SU associated with
a SBS must have an SINR above the threshold ˇ. To ensure the
SINR threshold ˇ0 of the MU, constraint (3e) is introduced.
Finally, constraint (3f) ensures that the association variable
xkn is Boolean.

Problem (3) can be written in matrix notation. Note that
constraint (3d) is nonlinear due to the ˇxkn term on the
right-hand side and the xk0n0 in the denominator of the left-
hand side. The xkn term dictates that the SINR threshold ˇ
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is met only if k is associated to n. If it is not associated
(i.e., xkn D 0), then the SINR threshold drops to zero
and the constraint is satisfied with equality. Using the bigM
technique [22], constraint (3d) can be rewritten as below:

gknxkn CM .1 � xkn/

1C 0gk0 C
X
k02K0

X
n02N 0

gkn0xk0n0
> ˇ; (4)

where M is a sufficiently large number so that when xkn D 0,
constraint (3d) is not violated and on the other hand if xkn D
1, the term M .1 � xkn/ is zero and therefore has no effect.
This technique is well known in linear programming. It adds
“artificial” variables to the original problem in order to find a
feasible solution [22].

The value of M must satisfy the following for all k 2 K
and for all n 2 N :

M > ˇ C ˇ0gk0 C
X
k02K0

X
n02N 0

ˇgkn0xk0n0 : (5)

Note that M depends on k, n, and x. Without loss of
generality, we take the highest value of M denoted by M �:

M �
def
D max

k;n;x

 
ˇ C ˇ0gk0 C

X
k02K0

X
n02N 0

ˇgkn0xk0n0

!
; (6)

Hence, there exists k� 2 K and there exists n� 2 N such
that equation (6) is satisfied. Then,

M �
def
D ˇ C ˇ0gk�0 C .K � 1/ ˇ

X
n02N�

gk�n0 ; (7)

where N � D N n fn�g.
Using the previous value of M � and rearranging the terms,

equation (4) is equivalent to:

�
gkn �M

�
�
xknCM

� > ˇC0gk0ˇC
X
k02K0

X
n02N 0

ˇgkn0xk0n0

,

M � � gkn

M � � ˇ � ˇ0gk0
xkn C

X
k02K0

X
n02N 0

ˇgkn0

M � � ˇ � ˇ0gk0
xk0n0

6 1:

(8)

Also, constraint (3e) can be rewritten as follows:

0g00X
k2K

X
n2N

g0nxkn C 1
> ˇ0,

X
k2K

X
n2N

g0nˇ0

0g00 � ˇ0
xkn 6 1:

(9)

With the above modifications, the unweighted user-BS as-
sociation problem can be rewritten, in matrix form as follows:

maximize
x

1Tx (10a)

subject to Ax 6 1; (10b)
x 2 f0; 1gq : (10c)

where 1 is the unitary vector of size 1�q and A 2 Rp�q is the
matrix of sizes p D KCN CK �N C 1 and q D K �N . The
matrix A is defined by A D

�
aij
�

where aij can be calculated
from (3b), (3c), (8), and (9).

B. Weighted User-BS Association

This section introduces the more general problem of
weighted user-BS association (the weighted problem) where
each k or n in the network is prioritized by a weight. The
problem is to maximize the number of weighted associated
SUs subject to the constraints of the received SINR thresholds
of the users. The weights can add a degree of fairness to the
users or balance the traffic load between the SBSs.

The problem can be formulated by defining a weight vector
w which will be explained mathematically in the sequel. Thus,
the weighted user-BS association problem is given below:

maximize
x

wTx (11a)

subject to Ax 6 1; (11b)
x 2 f0; 1gq : (11c)

Problem (11) is NP-hard [17]. The objective function
in (11a) is a linear combination of an association vector x
and a weight vector w. When the vector w is set to one, the
objective function in (3a) is obtained and hence the unweighted
problem is given as in (10).

Weights Design: The weights can be designed based on fair
rate or fair time allocation [23]. Since the problem involves
user-BS association, we choose the fair time allocation. First,
this paper considers the fairness between SUs and second, the
weights are designed to provide fairness between SBSs. The
fair time allocation between SBSs is also an important aspect
and can be seen as a load balancing algorithm.

Every k (resp. n) is associated with a weight wk.t/ (resp.
wn.t/) at time-slot t which is, by definition, the reciprocal of
number of times k (resp. n) is associated during the previous
period of T time-slots, where T is called the window size.
Without loss of generality, we assume that the instant time
t is at least T , i.e., t > T . In other words, the weights are
initialized for t 6 T . To ensure fairness between the SUs, the
weights are calculated for every user based on the number of
associations that occurred during the last T time-slots and are
given as follow for all k 2 K:

wk.t/
def
D

1

1C
X
n2N

tX
�Dt�TC1

xkn.�/

; (12)

where xkn.�/ D 1, if k is associated to n at time � and
xkn.�/ D 0 otherwise. For simplification, we omit the variable
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(t ) from the weights when there is no possible confusion. The
vector w denotes the weights vector and is given by
w D

�
w1; : : : ; w1„ ƒ‚ …
N elements

� � �wK ; : : : ; wK„ ƒ‚ …
N elements

�T. Similar procedure is

followed in order to calculate the weights to ensure fairness
between the SBSs at time t . Hence, for all n 2 N :

wn.t/
def
D

1

1C
X
k2K

tX
�Dt�TC1

xkn.�/

; (13)

and the corresponding weights vector w is given by w D�
w1; : : : ; wN„ ƒ‚ …

user 1

� � �w1; : : : ; wN„ ƒ‚ …
user K

�T.

IV. NP-HARDNESS

This section proves the NP-hardness of the unweighted
user-BS association problem (10) by reducing a known NP-
complete problem to problem (10) in polynomial time. In this
paper, the MAX ONES problem [24] is reduced to problem
(10). The NP-hardness proof is divided into two parts. First,
Lemma 1 proves the NP-hardness of a sub-problem of MAX
ONES called 0-VALID MAX ONES using a reduction from
the well known NP-complete problem SET COVER. Second,
Theorem 1 reduces 0-VALID MAX ONES to problem (10).

Please note that the NP-hardness of the weighted user-BS
association does not imply the NP-hardness of the unweighted
user-BS association [19]. For instance, the weighted 0-1
knapsack problem is NP-hard whereas the unweighted case
is polynomial time solvable. Also, the weighted sum of com-
pletion times on single machine with preemptive scheduling
is NP-hard whereas the unweighted case is polynomial-time
solvable [25]. Moreover, the structure of the matrix A cannot
make the unweighted problem (10) easy to solve because A
is a real-valued matrix and is not likely to be uni-modular.

The NP-hardness of the user-BS association problem comes
from two main facts: (i) the objective function which tries to
pack as much SUs as possible in the solution, i.e., maximize
the number of associated SUs and (ii) the SINR constraints
which creates conflicts as the SUs are associated. To clarify
the ambiguity that may occur between the user-BS association
problem and the one-to-one matching problem (which is an
easy one), we briefly discuss the main differences.

The one-to-one matching problem includes the maximum
matching in bipartite graph, the assignment problem and the
stable marriage problem. In the maximum matching problem
for example, there are no conflicts between the selected edges
that do not share a common vertex while every SU-BS pair
associated creates conflicts to the whole network. Further, the
maximum matching problem was proven to be NP-hard when
there are a certain pair of edges that cannot exist simultane-
ously in a feasible solution [26]. Note also that, some variants
of the assignment problem and the stable marriage problem,
roughly when the assignment includes coupled constraints as
in the SINR constraints, are shown to be NP-hard [27], [28].

In what follow, the symbols
V

(or ^),
W

(or _), and
: denote the logical operators: disjunction, conjunction, and

negation, respectively. The notation P1 / P2 denotes that
problem P1 is reducible in polynomial time to problem P2.

Definition 1 (A binary constraint [24]):
A binary constraint is a function f W f0; 1gk ! f0; 1g for
some k 2 N. We say that a binary constraint f is satisfied by
an input s 2 f0; 1gk if f .s/ D 1.

Definition 2 (A 0-valid binary constraint [24]):
A binary constraint f is 0-valid if s D 0 and f .s/ D 1.

Definition 3 (0-VALID MAX ONES problem [24]):
INSTANCE: A 0-valid binary constraint f .x1; � � � ; xn/ of n
Boolean variables x1; x2; : : : ; xn.
OBJECTIVE: Decide if there are assignments to x1; x2; : : : ; xn
that satisfy f .�/ and find the one which has the most number
of true variables, that to say max

˚P
i xi

	
.

Definition 4 (SET COVER problem, NP-complete [29]):
INSTANCE: A set of m elements called the universe. A finite
family J of finite sets Sj where J D ffSj g 8 j g, and a
positive integer k.
OBJECTIVE: Decide if there is a subfamily fThg � J that
contains e 6 k sets such that

S
h Th D U .

Without loss of generality, an instance of 0-VALID MAX
ONES problem is given by:

�
_i2S1:xi

�„ ƒ‚ …
clause 1

^
�
_i2S2:xi

�„ ƒ‚ …
clause 2

^ � � � ^ _i2SL:xi„ ƒ‚ …
clause L

D

^
l2L

_
i2Sl

:xi ;

(14)

where Sl for all l 2 L, is a subset of f1; 2; : : : ; ng. Equation
(14) is the conjunction of disjunctions of L clauses on the
negated variables :x1; � � � ;:xjSl j.

Lemma 1 The 0-VALID MAX ONES problem is NP-hard.

Proof: See Appendix A.

Theorem 1 The unweighted user-BS association problem (10)
is NP-hard.

Proof: See Appendix B.
The proof of Theorem 1 is useful in wireless networks

where the user-BS association problem (10) is often encoun-
tered. Unfortunately, due to Theorem 1, solving this problem
optimally requires a BF method and needs vast computational
capabilities unless P D NP. The motivation behind the proof
of Theorem 1 is to find good algorithms that are less complex
and perform close to the optimal solution.

The next two sections present the optimal solution along
with the proposed algorithms for the weighted and unweighted
user-BS association problems.

V. OPTIMAL SOLUTIONS

This section derives the optimal solutions for problems
(10) and (11). The optimal solution can be calculated by
two approaches, namely, the BF algorithm and the B&B
CPLEX-based algorithm. The BF algorithm is based on the
enumeration of all possible associations and picking the one
with the best value. On the other hand, the B&B CPLEX-based
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algorithm reduces the search space, and hence the complexity,
compared to the BF algorithm using the branching and the
bounding approaches. These techniques are used as a reference
for comparison against proposed algorithms.

In what follows, the complexity of the BF algorithm is
derived for the unweighted user-BS association problem (de-
noted UBF) and for the weighted user-BS association problem
(denoted WBF).

A. Unweighted User-BS Association

The basic steps of the UBF algorithm are the generation of
all possible associations which are given by the enumeration
of all combinations given by C.K;N /:

C.K;N / D

X.1/X
nD1

nŠ

 
X.1/

n

! 
X.2/

n

!
; (15)

where
�
�

�

�
denotes the binomial coefficient and X.1/

def
D

min .K;N / and X.2/
def
D max .K;N /.

Without loss of generality, let N < K, then:

C.K;N / 6
NX
nD1

NŠ

 
K

N

! 
N

N

!
: (16)

From [30], an upper bound of the binomial coefficient is

given by
�n
k

�k
6

 
n

k

!
6
nk

kŠ
: Therefore:

C.K;N / 6

(
K �NK if N > K ;

N �KN if N < K :

The complexity of the UBF algorithm is denoted by UBF-C.
Besides the enumeration of all possible combinations, the UBF
algorithm runs through all the constraints, which is a matrix
multiplication and has a complexity of O

�
p � q

�
, equivalently

O
�
K2 �N 2

�
. Therefore, UOPT-C 2 O

�
K2 �N 2 �C.K;N /

�
2 X1

where X1 is given by:

X1
def
D

8̂<̂
:

O
�
K3 �NKC2

�
if N > K ;

O
�
N 3 �KNC2

�
if N < K ;

O
�
N 5 �NŠ

�
if N D K :

(17)

B. Weighted User-BS Association

The WBF algorithm follows mainly the same principle as
of the UBF algorithm with a slight difference. After the gener-
ation of all combinations, each step calculates the weights (for
a fixed t ) for those combinations that satisfy the constraints
and picks the one with the maximum value. The constraints
verification requires O

�
p � q

�
, equivalently O

�
K2 � N 2

�
and

the calculation of the weights of those solutions requires
O
�
q
�
, equivalently O

�
K � N

�
, which gives a complexity of

O
�
K3 �N 3

�
. Therefore, the complexity of the WBF algorithm,

denoted by WBF-C, is WBF-C 2 O
�
K3 �N 3 � C.K;N /

�
2 X2

where X2 is given by:

X2
def
D

8̂<̂
:

O
�
K4 �NKC3

�
if N > K ;

O
�
N 4 �KNC3

�
if N < K ;

O
�
N 7 �NŠ

�
if N D K :

(18)

C. Branch-and-Bound CPLEX-based Solution

The B&B method is a well known method to solve discrete
and combinatorial optimization problems [22]. It enumerates
all possible solutions in a rooted tree. Then, it explores the
branches of the rooted tree and estimates upper and lower
bounds on the optimal solution.

In this paper, the B&B algorithm with the CPLEX
solver [31], denoted by B&B CPLEX-based algorithm, is used
to calculate the optimal solutions of problems (10) and (11).

In what follows, we examine the time complexity of
the B&B CPLEX-based algorithm. This algorithm uses the
branch-and-cut (B&C) method to solve the linear integer
program [31]. More specifically, B&C calls the B&B and the
cutting planes methods to solve the problem. Note that, at
each step, the algorithm relaxes the linear integer problem
to a continuous linear problem. In this relaxation step, the
simplex algorithm is used to solve the relaxed problem. Any
other linear programming-based algorithm can be used instead
of the simplex algorithm.

As for the worst case complexity, the simplex algorithm
has an exponential-time complexity [22]. Further, the B&B
and the cutting planes methods used in the algorithm, have to
visit all the nodes of the binary search tree which makes the
complexity exponential. As for the best case, the algorithm
needs to solve the linear programming relaxation only once,
i.e., it finds the binary variables by the simplex algorithm.
Hence, the best case time complexity depends on the best case
time complexity of the simplex algorithm. Since the simplex
algorithm has polynomial-time complexity on average [22],
then the best case time complexity of the B&B CPLEX-based
algorithm is upper bounded by a polynomial.

To summarize, the complexity of the B&B CPLEX-based
algorithm is:
� exponential in the worst case; and
� polynomial in the average and best cases.
In practice, the B&B CPLEX-based algorithm works well

as experiments show [31]. To have an idea about the difference
between the running time of the BF algorithm and the B&B
CPLEX-based algorithm, let us see an illustrative example.
If the input is fixed to K D 10, N D 6 and the matrix A
is a priori known then, based on a computer characterized by
“Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz 3.40 GHz”, the
running time for the BF algorithm is approximately equals to
4 seconds whereas it is approximately equals to 0:1 seconds
for the B&B CPLEX-based algorithm.

VI. HEURISTIC SOLUTIONS

This section describes the proposed algorithms to solve both
problems (10) and (11), which consist of simple but efficient
greedy algorithms.
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We define G D Œgkn� for all k 2 K[f0g and for all n 2 N[
f0g to represents the matrix of channel gains. In the pseudo-
codes of the algorithms, we use the following notation x; y  
z; t to assign z to x and t to y.

A. Unweighted Maximum Relative Channel Gain (UMRCG)

The proposed algorithm to solve the unweighted prob-
lem (10) is denoted by UMRCG and is given in Algorithm 1.
It solves the unweighted user-BS association problem heuris-
tically based on a greedy method.

Algorithm 1: UMRCG
Input: Network parameters: G, K, N ,  , ˇ, 0, ˇ0
Output: A near optimal solution: a

1 Create the matrix U according to (19)
2 a;p Œ � ; 0

3 while p < K �N do
4 k; n max.U/aŒn� ksinr; sinr0  

SINR.a/bool false
5 for j D 1 to length.sinr/ do
6 if sinrŒj � > ˇ and sinr0 > ˇ0 then
7 bool true

8 else
9 aŒn�;bool Œ �; falsebreak

10 if bool is true then
11 eliminate.k; n/

12 p pC 1

13 return a

First, in line 1, it creates a matrix U D Œukn� for all k and
n as follows:

ukn D
gknX

k0¤k

gk0n
: (19)

Note that this matrix plays a key role in the proposed algo-
rithm. In fact, ukn represents the receivable signal power of
k divided by the sum of receivable signal powers of other
k0 ¤ k. Hence, ukn can be seen as the inverse of the price of
associating k to n.

After the creation of the matrix U, Algorithm 1, in line 2,
initializes the association vector a to the empty vector and the
counter p to zero. The association vector defines the choice
of each n 2 N , i.e., aŒn� D k means that k is associated
to n. Next, line 3 traverses the whole matrix U inside the
while loop. At every iteration in this loop, Algorithm 1, in
line 4 finds, using the function min.�/, the indexes k and n
of the largest element of U. Then, the algorithm associates
k to n. According to the association vector a created so
far, the algorithm calculates the SINRs, using the function
SINR.�/, of the SUs and of the MU. For every calculated
SINR, the algorithm tests whether it is greater or equal than
the thresholds ˇ and ˇ0 as given in lines 5 and 6. If the
association vector does not violate any SINR constraint so
far, a Boolean variable bool is assigned a true value. If not,

k is dissociated from n, bool is set to false and the loop
is broken. In line 10, if bool is true, which means that
the newly association aŒn� D k is valid for all associated
pairs SU-SBS, then the corresponding k and n cannot be
used for any further association in the subsequent iterations.
Therefore, the function eliminate.�; �/, in line 11, sets the row
k and the column n of U to a very large number to prevent
choosing them in next iterations. Note that this guarantees
that constraints (3b) and (3c) are not violated. In line 12, the
counter p is updated and the while loop continues. Finally,
when all the elements of the matrix U are evaluated, the
algorithm halts and returns a sub-optimal user-BS association
vector a.

The UMRCG algorithm runs in polynomial time. The
creation of the matrix U requires O

�
K � N

�
if we store the

sum sn D
PK
kD1 gkn in a list of N elements and we calculate

ukn as ukn D
gkn

sn�gkn
for all k and n. The while loop

requires O
�
K � N

�
in the worst case. The function min.�/

requires O
�
K � N

�
. The SINR function needs to calculate

the SINR of every associated pairs SU-SBS and of the pair
MU-MBS which requires O

�
K � N

�
by the same technique

used to create the matrix U. Line 5 through line 9 require
O
�
N
�

in the worst case. At the end, the function eliminate.�; �/
goes through the row k and the column n which requires
O
�
K C N

�
. Finally the overall complexity of the UMRCG

algorithm, denoted by UMRCG-C, is given in the worst case
by O

�
K �N C 2 �K2 �N 2 CK2 �N C 2 �K �N 2

�
; which can

be simplified to:

UMRCG-C 2 O
�
K2 �N 2

�
: (20)

B. Weighted Maximum Relative Channel Gain (WMRCG)

The proposed algorithm to solve the weighted problem is
denoted by WMRCG. It is divided into two steps. The first
step, in line 1, is the calculation of the weights according
to (12) or (13) during the window T . The second step, from
line 2 to line 20, the algorithm WMRCG solves the weighted
user-BS association problem using a procedure similar to the
one described in the UMRCG algorithm. The main differences
between the UMRCG algorithm and the WMRCG algorithm
are the criterion in line 3 and the update of the weights in
lines 19 and 20. In line 3, the algorithm WMRCG creates the
matrix W D Œwkn� of SU-SBS pairs for all k and n as follows:

wkn D
wkjngknX
k0¤k

gk0n
; (21)

where wkjn is wk or wn, depending on whether to balance
the load among the SBSs or to be fair between the SUs as
discussed previously.

Likewise, the WMRCG algorithm runs in polynomial time
for a fixed period t . On the one hand, the first step of
calculating the weights needs to go through the association
vector during the window of T time-slots and calculates how
many times k (resp. n) has been associated according to (12)
(resp. (13)). This requires O

�
K � N � T

�
. On the other hand,

similarly to the previous analysis of the UMRCG algorithm,
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Algorithm 2: WMRCG
Input: Network parameters: T , G, K, N ,  , ˇ, 0, ˇ0
Output: A near optimal solution a

1 Calculate the weights in a period of size T
2 for t > T do
3 Create the matrix W according to (21)
4 a;p Œ � ; 0

5 while p < K �N do
6 k; n max.W/
7 aŒn� k

8 sinr; sinr0  SINR.a/
9 bool false

10 for j D 1 to length.sinr/ do
11 if sinrŒj � > ˇ and sinr0 > ˇ0 then
12 bool true

13 else
14 aŒn�;bool Œ �, false
15 break

16 if bool is true then
17 eliminate.k; n/

18 p pC 1

19 Move the window T

20 Update the weights according to (12) or (13)

21 return a

the complexity of the second step of the WMRCG requires
O
�
K2 � N 2

�
. Finally, the overall complexity of the WMRCG

algorithm, denoted by WMRCG-C, is given by:

WMRCG-C 2 O
�
N �K � T CK2 �N 2

�
: (22)

The complexity of the different algorithms is summarized
in Table I.

Algorithm Complexity, K < N Example
UBF O

�
K3 �NKC2

�
4 � 1018

WBF O
�
K4 �NKC3

�
8 � 1020

UMRCG O
�
N 2 �K2

�
4 � 104

WMACG O
�
N �K � T CK2 �N 2

�
24 � 104

TABLE I
COMPLEXITY OF THE ALGORITHMS

We see that UMRCG and WMRCG have very low complex-
ity compared to the UBF and WBF. In fact the complexity
of both algorithms is quadratic in either K or N . Notice
that UMRCG and WMRCG have almost the same order of
complexity unless T is of the same order as K2 and N 2. As an
illustrative example, we set K D 10, N D 20, and T D 1000
in the third column of table I. We see the huge difference in
the computational complexity between 4 � 1018 of the UBF
algorithm and 4 � 104 of the UMRCG algorithm. These results
demonstrate the advantage of using heuristic algorithms and
show how the proposed algorithms are computationally simple.

Since both the weighted and unweighted problems are NP-
hard, there are no polynomial time algorithms that solve them

optimally unless P D NP. Therefore, our proposed algorithms
can be used and implemented to solve such problems in real
scenarios. Note, however, that the proposed algorithms do not
approximate the optimal solution theoretically, i.e., we cannot
argue that, for any instance of size ` of both problems, the
ratio between the solutions of the proposed algorithms and
the optimal algorithm is at least �.`/ < 1. A rigorous analysis
of the performance ratio of the greedy algorithms against the
optimal would be an extensive work that cannot be integrated
with this work. In fact, one has to study the hardness of
approximation of the user-BS association problem first in order
to guarantee the existence of an approximation algorithm.
In [32], the authors proved that it is NP-hard to approximate
the one-slot scheduling problem under the abstract SINR
constraints (which is very similar to the unweighted user-
BS association problem) to within n1�� , for any � > 0.
Therefore, the user-BS association problem is apparently hard
to approximate. Such contribution is left for future work.

VII. SIMULATION RESULTS

In this section, the performance of the proposed algorithms
is demonstrated by simulations. It is assumed that the path
loss coefficient is ˛ D 4 which is a typical value in cellular
networks [20], and the radius of the circle where the SBSs
are located is R D 20 m [3]. Unless otherwise specified, the
transmit SNR of the MBS and of the SBSs are set to 0 D 40
dB and  D 20 dB, respectively. The SINR thresholds used
for the MU and for the SUs are given respectively by ˇ0 D 0
dB and ˇ D 1 dB, and the number of SUs is K D 10. The
WMRCG is executed with a window of size T D 50. The
B&B CPLEX-based algorithm is implemented using the OPTI
Toolbox [33] under MATLAB using the IBM ILOG CPLEX
solver [31].
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Fig. 2. Performance of unweighted optimal solutions.

Fig. 2 compares UBF algorithm and B&B CPLEX-based
algorithm for the unweighted problem (denoted UB&B). We
see that UBF slightly outperforms UB&B especially when N
is high. When N D 6, UBF solution is :009% far away from
UB&B one. However, this small difference is generally due to
the floating points representation errors of B&B CPLEX-based
algorithm. Fig. 2 along with the complexity analysis in Table I
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illustrate that UB&B algorithm allows us to obtain tight-to-
optimal performance with relatively low computational com-
plexity. This motivates us to use B&B CPLEX-based algorithm
in our next simulations.

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of SBSs (N)

A
v
g
. 
n
u
m

b
er

 o
f 

as
so

ci
at

ed
 S

U
s

UB&B

UMRCG

Reference [10]

max−SINR

15.8 16 16.2

3.9

4

4.1

4.2

Fig. 3. Performance of UB&B and UMRCG with comparison to max-SINR
and reference [10] for the unweighted user-BS association problem.

Fig. 3 shows the average number of associated SUs for
the unweighted user-BS association problem (10). It compares
UB&B, UMRCG, a benchmark algorithm denoted by max-
SINR and a recently proposed algorithm [10]. (The algorithm
in [10] is adapted to our situation.) In the max-SINR algo-
rithm, each SU is associated to the strongest SBS signal it
receives whereas in the criterion used in [10] each SU is
associated to an SBS according to the sum of the received
interference. This criterion works well for [10] since all the
SBSs are associated in the end and therefore the sum of
the received interference is perfectly estimated. We see that
UMRCG algorithm has very close performance to the optimal
solution. E.g., UMRCG solution is :958% far away from
UB&B solution when N D 16. Furthermore, the proposed
UMRCG algorithm outperforms max-SINR algorithm since
the latter does not provide a good interference management
among the BSs. Moreover, our proposed algorithm beats the
algorithm in [10] since in our proposed algorithm, some of
the SBSs may not be associated and therefore the amount of
interference is overestimated. Note that, the performance of
proposed algorithms depend on the number of SUs K and
SBSs N (as shown in Fig. 3), on the transmit SNR and on
the SINR thresholds. Next, we demonstrate the effect of the
transmit powers and the thresholds on the performance of the
proposed solutions.

Fig. 4 plots the average number of associated SUs versus
the transmit SNR  of the SBSs. When  grows, the SINR
received at the SUs grows and more SUs are expected to be
associated which is illustrated in the first part of the x-axis in
Fig. 4 when the curves increase. When  continues to grow,
the interference at the MU grows too and becomes harmful.
Hence, the MU is not satisfied and the average number of SUs
must decrease to respect the MU’s QoS. This is illustrated
in the second part of the x-axis in Fig. 4 when the curves
dip. Notice that for high  , if 0 increases, then the average
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Fig. 4. Performance of UB&B and UMRCG versus the transmit SNR of the
SBSs  . N D 10.

number of associated SUs increases. E.g., we observe that
when  D 40 dB, the average number of associated SUs
increases from :6 to approximately 5 as 0 increases from 10

dB to 40 dB. On the other hand, for smaller  , if 0 increases,
then less SUs are associated. Therefore, for a given value
of the transmit SNR of the MBS, 0, there is an optimum
value of the transmit SNR of the SBSs,  , to be used in
order to maximize the number of associated SUs. Finally,
we can see that the proposed algorithm UMRCG still gives
close-to-optimal performance for different values of transmit
SNR. Fig. 4 shows the worst case ratio between the UMRCG
solution and the UB&B one is at most 5%.
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Fig. 5 depicts the effect of SINR thresholds of SUs and
of the MU. The average number of associated SUs decreases
when the thresholds increase. When ˇ0 gets smaller, the QoS
of the MU is satisfied more often and hence more SUs get
associated. Furthermore, when ˇ0 becomes higher, the number
of associated SUs decreases dramatically regardless of the
value of ˇ. It is also important to notice that the ratio between
UB&B solution and UMRCG solution varies slightly as a
function of ˇ0 and ˇ. This ratio is still small though, which
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illustrates the accuracy of the proposed heuristic solution.
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Fig. 6. Performance of WB&B and WMRCG for the weighted user-BS
association.

Fig. 6 considers the proposed WMRCG solution and B&B
CPLEX-based solution for the weighted user-BS association
problem (11), denoted WB&B. It can be seen that WMRCG
algorithm provides slightly higher number of associated SUs
than WB&B algorithm since the latter does not maximize the
number of associated SUs but it maximizes a weighted sum of
associated SUs as can be seen by the objective function given
in (11a). Comparing Fig. 3 and Fig. 6, it can be seen that the
weighted solution has less performance than the unweighted
one in terms of average number of associated SUs. This
performance loss is compensated by gains in fairness as shown
in the next simulations.
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To measure the fairness, the location of SBSs is assumed
fixed whereas the SUs are located randomly with uniform
distribution in the network. The fairness measure used in the
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Fig. 8. Performance of the algorithms in terms of load balancing of SBSs.
N D 6.

simulations is the well-known Jain’s index [34].
Fig. 7 demonstrates the fairness of the proposed algorithms

along with the optimal ones. The weights are obtained by
equation (12). We observe that WB&B gives the highest
fairness index. Also, WMRCG gives a high fairness index.
On the other hand, UMRCG and UB&B produce the worst
results of fairness index as expected. We also see that when
the number of SUs increases, the network starts to densify,
and the fairness of all algorithms suffer.

Fig. 8 shows the fairness between SBSs of the proposed
algorithms. As discussed is Section III, the fairness between
the SBSs is considered as a load balancing between the cells.
The weights are obtained by equation (13). It is clear that as
long as the number of SUs in the network is large, the load
among different SBSs is balanced since more opportunities
are given to each SBS to be associated. Further, WB&B and
WMRCG still give the best results in terms of fairness between
SBSs compared to UB&B and UMRCG.

VIII. CONCLUSION

This paper studies the problem of user-BS association in
a HetSNet of co-channel densely deployed BSs. The user-BS
association problem is modeled as a linear integer program.
The objective is to maximize the number of associated SUs
subject to QoS constrains defined by SINR. This paper proves
that the unweighted user-BS association problem is NP-hard.
Then, two heuristic algorithms are proposed, namely the
UMRCG algorithm and the WMRCG algorithm. Next the
complexity of the proposed algorithms are derived and shown
to be polynomial in time. The performance of the proposed
algorithms are compared against the optimal exponential-time
BF and B&B CPLEX-based algorithms. Moreover the perfor-
mance is also compared against the max-SINR algorithm [5],
[9] and a recently proposed algorithm in [10]. The proposed
algorithms outperforms all previously proposed algorithms and
is close to the optimal solution as demonstrated by simulations.
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The future extensions of this research will propose algo-
rithms for joint power control and user-BS association and
study the effect of statistical knowledge of channel informa-
tion on the performance of these algorithms. Also, we will
study the hardness of approximating the user-BS association
problem and develop approximation algorithms with provable
guarantees. Furthermore, fully distributed algorithms will be
developed to solve the user-BS association problem using
game theory and machine learning.
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APPENDIX A
PROOF OF LEMMA 1

Proof: We prove that SET COVER / 0-VALID MAX
ONES. Let Isc and I0v be two respective instances of SET
COVER problem and the 0-VALID MAX ONES problem
which are given by: Isc D

�
U ; ffSj g 8 j g; k

�
; and I0v D

.f .x1; � � � ; xn//.
From the instance Isc , we construct the instance I0v

as follow. From each subset Sj of J , the matrix M D�
mxy

�
x2f1;:::;Xg;y2f1;:::;Y g

, where X D jJ j and Y D

max
nS

j Sj

o
is constructed as follows:

mxy
def
D

(
y if y 2 Sx ;
0 otherwise.

(23)

Based on the steps given by Algorithm 3 and using the matrix
defined by equation (23), the instance I0v is easily obtained.

Algorithm 3: SET COVER TO 0-VALID MAX ONES

Input: An instance of SET COVER
�
U ;J D fSj g; k

�
.

Output: An instance of 0-VALID MAX ONES.
1 Construct the matrix M according to (23)
2 for j D 1 to Y do
3 Cj D 1

4 for i D 1 to X do
5 if mij ¤ 0 then
6 Cj D Cj _ : xi

7 f .x1; � � � ; xX / D C1 ^ C2 ^ : : : ^ CY
8 return f .x1; � � � ; xX /.

Finally, if 0-VALID MAX ONES is solved with the instance
I0v then the optimal solution x D .x1; � � � ; xn/ contains the
least possible number of zeros. Let I be the set of zeros in the
solution x. Thus, the solution of the SET COVER problem cor-
responds to the subfamily of sets I D ffSpg; 8p 2 I g. Hence,
SET COVER problem is solved with the minimum number of
subsets. The reduction from SET COVER to 0-VALID MAX
ONES is polynomial time as shown in Algorithm 3. Therefore,
SET COVER / 0-VALID MAX ONES which proves Lemma 1.

APPENDIX B
PROOF OF THEOREM 1

Proof: We show that 0-VALID MAX ONES / problem
(10). Let I1 D .K;N;A/ be an instance of problem (10) where
K is the number of SUs, N is the number of SBSs, A is the
matrix defined in problem (10). Let I2 D .f .x1; � � � ; xn// be
an instance of the 0-VALID MAX ONES problem.

An instance of problem (10) can be constructed by con-
verting the set of Boolean clauses of the binary constraint
f .�/ to a system of linear inequalities. Therefore, f .�/ is true
, Ax 6 1. Hence, the problem of maximizing the number of
associated SUs while the SINR requirements are met (i.e.,
Ax 6 1) is equivalent to the problem of maximizing the
number of true literals while the Boolean formula is true (i.e.,
f .�/ is true).

In order to get the instance I1 from the instance I2, the
following transformation is applied. First, let Sl D fi l1; : : : ; i lkg
be a subset of f1; : : : ; ng for some l 2 L and some k 2
f1; 2; : : : ; ng. Then, for each clause l of f .�/, i.e.,

W
i2Sl : xi ,

the following system of linear inequalities is given:

 gi l� i l�
<

0BB@ kX
pD1
p¤�

 gi l� i lp
C 1

1CCAˇ; 8 � 2 f1; : : : ; kg:
Second, this system of linear inequalities is easily solved in
polynomial time to get the corresponding gij since it has more
many variables than equations. Let A and B be the sets of
solutions of the gij . Then, the remainder values of gij will
be set to 0, i.e., gij D 0; 8 i 62 A;8 j 62 B. Using this
transformation, we can get the matrix A, K, and N where
K D N D Y (Y represents the number of clauses in the
instance I2, i.e., Y D jLj). Therefore an instance of problem
(10) is obtained. Finally, if problem (10) is solved using I1
and let the solution vector be x, then if xij D 1, i D j and
the corresponding Boolean variable is set to 1. Hence, in the
instance I2, we have xi D xj D 1 and xi 0 D 0; 8 i 0 ¤ i; j .
Therefore, 0-VALID MAX ONES is solved. At last, we can
verify easily in polynomial time that the constraints evaluate
true is equivalent to the Boolean formula evaluates true.
Therefore, problem (10) is solved if and only if 0-VALID MAX
ONES is solved.

To conclude, 0-VALID MAX ONES / problem (10) and
therefore the unweighted user-BS association problem is NP-
hard. This proves Theorem 1.
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the Diplôme d’études Approfondies degree in digital
communication systems and the Ph.D. degree in
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