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FOREWORD

This thesis is a transverse integration of cognitive sciences in search of artificial
intelligence. We will talk about intelligence, thinking, mind, cognition as a
concept representing simultaneously the common core of all these concepts in
their respective domain, but also the specificities of each of these concepts, even if
not obvious, outside their respective domain, underlining that they are all

physically instantiated by a neuron network called the brain.

The transverse approach allows an intuitive progression jumping from one domain
to another to verify the coherence of proposed hypotheses or to sidestep obstacles
which cannot be addressed in a given domain. On the other hand, this intuitive
progression is not really explanatory because it is too tortuous and often leads to
dead ends. The explanation cannot follow multiple directions simultaneously. It
then becomes necessary to reframe the explanation in more classical silos where
the assertions, sometimes radical at first glance, can only be justified after

establishing basic knowledge in other domains.

This thesis is part of a doctoral program in cognitive informatics in the informatics
department. As such, it should be considered as an informatics project where
philosophical, psychological or neurological contributions are attempts to analyze
the system under consideration which happens to be the intelligence or, more

concretely, the brain.

If, being computer specialists, some parts seem too philosophical, remember that,

when working on the functional analysis of intelligence, the papers written by



psychologists and philosophers are probably the best “use-cases” available and

they should be read as such.

If, some philosophers discover philosophically interesting sections, I will be
flattered, but, let’s be realistic, do not forget that our analysis must lead not only to
an understanding of intelligence as an abstract concept, but to the realization of a
non-biological model capable of emulating intelligent functionality in a concrete

environment.

The functional analysis would of course be incomplete without a comparative
study of the implementation materials; on the one hand the brain, a biological
material described by neuroscientists and biologists, and on the other hand the
computer, a programmable material able to simulate many very complex physical

systems.

This transverse analysis will find its meaning only through an entanglement of
links revealed by the functional analysis of an existing system and its known
physical support, the brain, in order to reproduce it on a computer... like any good

computerization project; no more, no less.

I would like to thank Professor Pierre Poirier, department of philosophy, UQAM,
and Professor Mounir Boukadoum, department of informatics, UQAM, for their
involvement as thesis director and co-director. Professor Poirier was especially
patient, open and generously available in taking an engineer to the required level
of understanding in cognitive sciences. I would also like to acknowledge the
supporting contribution of the faculty members, and my fellow students,
throughout this very enriching adventure in the Ph.D. program of Cognitive
Informatics. The Institut des Sciences Cognitives de 1’'UQAM was also, by its

diversity, a very stimulating forum and a precious source of discoveries.

ix




ABSTRACT

SYNTHETIC NEURO-COGNITION:
AUTOPOIETIC SEMIOTIC NEURON NETWORKS

This thesis was, from the beginning, guided by the interrogation: “Is strong
Artificial Intelligence still possible?” We first identified what seem to be the
biggest roadblocks in cognitive science, namely: the Symbol Grounding Problem
and the Zero Semantic Commitment Condition. Then, we defined the problem
through a functional analysis at the system level which took us from cognition to
cognitive systems, from intelligence (or mind) to brains. The problem could then
be transformed into a typical informatics project where a desired functional
specification existing in a given (in this case biological) environment must be
reproduced in a digital computer system. We reviewed the most probable required
biological mechanisms (spiking neurons, synaptic plasticity, spike-timing
dependent plasticity, Bienenstock-Cooper-Munro model, metaplasticity) and
integrated them into well-encapsulated algorithms to produce a basic set of
cognitive functionality. The resulting autopoietic semiotic network of artificial
dynamic analog neurons can be developed into a representational structure
following basic propositional logic and offers a framework to investigate Synthetic
Neuro-Cognition, a bottom-up approach to empirically study the development of
such representational structures and, perhaps, elaborate algorithms to automate it.

KEYWORDS : Artificial Intelligence, cognition, semiotics, autopoiesis, spiking
neurons, doubleLIF, synaptic plasticity, metaplasticity, synthetic neuro-cognition.




RESUME

NEURO-COGNITION SYNTHETIQUE :
LES RESEAUX DE NEURONES SEMIOTIQUES AUTOPOIETIQUES

Cette thése fut, dés le début, guidée par la question : « L’Intelligence Artificielle
forte est-elle encore possible? » Nous avons d’abord identifi€ ce qui nous semblait
étre les principaux obstacles en science cognitive, soit le probléme d’ancrage des
symboles la contrainte d’absence de sémantique préalable. Nous avons, ensuite,
défini le probléme au niveau du systéme, ce qui nous a forcés a penser systémes
cognitifs plutdt que cognition, cerveaux plutdt qu’intelligence (ou esprit). Le
probléme s’est donc transformé en projet d’informatique typique ot une
fonctionnalité désirée, déja instanciée dans un environnement donné (ici
biologique), doit étre reproduite dans un systéme d’ordinateurs numériques. Nous
avons identifié les mécanismes biologiques ayant le plus de chance de répondre
aux attentes (neurones impulsionnels, plasticité synaptique, plasticité déterminée
par le temps d'occurrence des impulsions, modele de Bienenstock-Cooper-Munro,
métaplasticité) nous les avons intégrés dans des algorithmes adéquatement
encapsulés pour reproduire un ensemble de fonctions cognitives de base. Le réseau
sémiotique autopoiétique de neurones analogues dynamiques artificiels qui en
résulte peut étre édifié en structure représentationnelle en suivant une logique
propositionnelle de base et, ainsi, offrir un encadrement pour 1’investigation d’une
Neuro-Cognition Synthétique, une approche ascendante pour 1’étude empirique du
développement de telles structures représentationnelles et, peut-étre, 1’élaboration
d’algorithmes pour automatiser ce développement.

MOTS-CLES : Intelligence artificielle, cognition, sémiotique, autopoiése,
neurones impulsionnels, doubleLIF, plasticité synaptique, métaplasticité, neuro-
cognition synthétique.



EPISTEMIC PRELUDE

Box 1 | The role of theory in science

Can theory be useful in neuroscience? We know that theory is very useful in the
physical sciences and no one doubts the value of hypothesis-driven experiments in
the biological sciences. It is when the connection between hypothesis and
conclusion requires many steps that mathematical theories show their value. The
biological sciences, we are sometimes told, are data-driven and too complex to
allow for the effective use of mathematical theories. However, consider pre-
Copernican astronomy. Ptolemaic astronomers introduced a variety of devices
(including equants, deferents and, most famously, circles moving on circles called
epicycles) to account for the positions of the planets against the fixed stars. By the
time of Copernicus, astronomers were using up to 80 epicycles to fit vast
quantities of data gathered over thousands of years of observation. Could the
mediaeval astronomer have foreseen that the complexities of the planetary
motions would all follow as a consequence of two postulates, namely Newton’s
second law of motion and Newton’s law of gravitation? Of course success in the
physical sciences is no guarantee that theory can succeed in neuroscience.
However, it does suggest that large amounts of data do not preclude the
possibility or usefulness of theory. Rather, we might say that such quantities of
data make theory necessary if we are ever to order and understand them.
Experiment winnows the possible hypotheses and theory narrows and focuses the
experimental alternatives.

What is a good theory? The usefulness of a theory lies in its concreteness and in
the precision with which questions can be formulated. A successful approach is to
find the minimum number of assumptions that imply as logical consequences the
qualitative features of the system that we are trying to describe. As Einstein is
reputed to have said: « Make things as simple as possible, but no simpler. » Of
course there are risks in this approach. We may simplify too much or in the wrong
way so that we leave out something essential or we may choose to ignore some
facets of the data that distinguished scientists have spent their lifetimes
elucidating. Nonetheless, the theoretician must first limit the domain of the
investigation: that is, introduce a set of assumptions specific enough to give
consequences that can be compared with observation. We must be able to see our
way from assumptions to conclusions. The next step is experimental: to assess the
validity of the underlying assumptions if possible and to test predicted
consequences.
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A ‘correct’ theory is not necessarily a good theory. For example, in analysing a
system as complicated as a neuron, we must not try to include everything too
soon. Theories involving vast numbers of neurons or large numbers of parameters
can lead to systems of equations that defy analysis. Their fault is not that what
they contain is incorrect, but that they contain too much.

A theory is not a legal document and, in spite of occasional suggestions to the
contrary, no scientist is in communication with the Almighty. Theoretical analysis
is an ongoing attempt to create a structure — changing it when necessary — that
finally arrives at consequences consistent with our experience. Indeed, one
characteristic of a good theory is that one can modify the structure and know what
the consequences will be. From the point of view of an experimentalist, a good
theory provides a structure in to which seemingly incongruous data can be
incorporated and that suggests new experiments to assess the validity of this
structure. A good theory helps the experimentalist to decide which questions are
the most important.

Cooper, L.N. and Bear, M.F. (2012)



INTRODUCTION

Since electronic was invented in mid XX century, computers’ performance
incessantly improved in the execution of tasks which, until then, were only accessible
to human intelligence. In accounting, engineering, astrophysics, medicine or many
other domains, every day new computer applications seem to challenge human
supremacy in the solution of more and more complex problems. Thanks to their speed
and precision, these machines often exceed human capacities and could pretend to

superior intelligence.

Yet, every day also, these “brilliant” machines demonstrate their ineptitude and their
clumsiness when times come to face changes, sometimes minimal, in their

environment. Why such a paradox?

After careful consideration, it looks like these major computer realisations lie in the
extension of human intelligence without proper genesis (i.e. the solution method is
generated by humans and its application, as complex as it can be, is left to the
machine). Programming allows transposing some human knowledge (declarative
knowledge) into the machine which can then use them with speed, perseverance and
precision to ever more complex problems. The computer is unquestionably the
generalization expert of known solutions to similar problems whatever their number
or complexity, but it fails miserably when the problem is new; it is not capable of

invention.

To elucidate this paradox, we could attempt to narrow the definition of intelligence
from the suggestions of experts in the field, but, cognitive science being highly
multidisciplinary, even the use of the word intelligence may seem tendentious. The

philosophers prefer to speak of mind to study cognition. The word intelligence is



accepted by psychologists in the study of behavior, but generally refers to different
degrees of human intelligence. Even though Descartes’ mind-body duality has fewer
and fewer supporters, few are willing to identify brain with intelligence or mind,
especially as physiological studies of neurons are far from filling the now famous

Leibnitzian gap.

Moreover, it must be confessed that perception and that which depends
upon it are inexplicable on mechanical grounds, that is to say, by means
of figures and motions. And supposing there were a machine, so
constructed as to think, feel, and have perception, it might be conceived
as increased in size, while keeping the same proportions, so that one
might go into it as into a mill. That being so, we should, on examining its
interior, find only parts which work one upon another, and never anything
by which to explain a perception. Thus it is in a simple substance, and not
in a compound or in a machine, that perception must be sought for.
Further, nothing but this (namely, perceptions and their changes) can be
found in a simple substance. It is also in this alone that all the internal

activities of simple substances can consist.
—Gottfried Leibniz, The Monadology (1698)

Is it no wonder that, nowadays, IT experts (still) hope to replicate in "machines" the
mental abilities of the human mind? In fact, everything (re)started when, in 1950,
Alan Turing asked the question: « Can machines think? (Turing 1950).

The first chapter of this thesis, paraphrasing Turing, will discuss the possibility of
(strong) artificial intelligence by studying the various hypotheses inspired by, or
implied in, his computability thesis (also known as the Church-Turing thesis). Having
defined the conditions necessary to generate this strong artificial intelligence, the
second chapter will analyze the functionality of biological neurons to identify the
mechanisms needed to support natural intelligence and will propose a model of
artificial neurons including equivalent mechanisms. A third chapter will present a
series of simulations based on this model of artificial neurons to observe its behavior

in an (relatively friendly) environment offering various stimuli. Finally, the fourth




chapter will analyze the relevance and validity of the many assumptions used to

justify the model.

It is important to note, before we start, that even if we are talking about (strong)'
artificial intelligence and Turing, we are not seeking in any way to pass the Turing
test, which requires a fully developed intelligence capable of verbal communication
at an advanced formal level. Rather we are at a preverbal and preconscious level
corresponding to what Piaget identified as the sensorimotor stage (Piaget 1936). We
believe that this step is as important for the understanding of artificial intelligence and
its development as it is, according to Piaget, to understand the ontogenetic

development of human intelligence.

The research project focuses on two complementary theories. The first, under the
cognitive sciences, inspired by Newell and Simon states that: only autopoietic
semiotic systems have the necessary and sufficient means for general intelligent
action. The second, neurocomputational, offers a concrete realization of the first
using a model of dynamic, analog and asynchronous neurons, which associated in
networks are sufficient to simulate an autopoietic semiotic system. As we can only
verify the intelligence by observing behaviors, we will build an experiment around
the psychological corollary resulting from these two theses and stating that such

“autonomous networks are capable of seemingly intentional and decisional behaviors.

! Strong Al is an expression from Searle (1980) who, by his experience of the Chinese room (more

on this later), says, imagining himself in the role of the machine, that a machine capable of reading
questions in Chinese and responding in Chinese (an intelligent human’s behavior) does not yet
understand anything about the conversation. Searle assumes that it is possible to write a "recipe", an
algorithm, to read and speak Chinese without understanding Chinese (reading and speaking without
understanding, not write the "recipe" without understanding). In other words, a machine is able to
reproduce, and even learn, any behavior (even human behaviors) observable, analyzable and
algorithmizable (even discover new evidence of complex mathematical theorems). Strong Al should
not only be able to learn, but also to understand. Utopia for many, yet it remains an option for the true
materialists among us.




CHAPTER 1

Is (strong) artificial intelligence possible?

1.1 - Recent history

Recent history of computing took off in the early twentieth century with the
convergence of mathematical works such as the theses of Church (1932, 1936a,
1936b), Turing (1936, 1947, 1950) and Post (1936, 1943), the proofs of Gddel (1931)
and Kleene (1952) and the algorithms of Markov (1960).

1.1.1 - The Turing Machine

This convergence was initiated by David Hilbert’s (1900) program of formalization
of mathematics which led to Gédel’s incompleteness theorems (1931). First Church
(1936ab) attacked the Entscheidungsproblem (the problem of undecidability) using
the lambda-calculus based on recursion and confirmed Gddel's theorem whereby, in a
symbolic logic system, it is impossible to find an effective method for determining
whether a proposition P is verifiable in this system. Meanwhile, Turing (1936)
reached the same conclusion using a mechanical conception of computability now
known as the Turing Machine. There are several variations of the definition of a
Turing machine (TM) and the original (Turing 1936) is neither the easiest nor the
most obvious. Wikipedia® provides us with a clear and precise definition of this

machine:

2 http://en.wikipedia.org/wiki/Turing machine




More precisely, a Turing machine consists of:

1. A tape divided into cells, one next to the other. Each cell contains a
symbol from some finite alphabet. The alphabet contains a special
blank symbol [...] and one or more other symbols. The tape is
assumed to be arbitrarily extendable to the left and to the right, i.e.,
the Turing machine is always supplied with as much tape as it needs
for its computation. Cells that have not been written before are
assumed to be filled with the blank symbol. In some models the tape
has a left end marked with a special symbol; the tape extends or is
indefinitely extensible to the right.

2. A head that can read and write symbols on the tape and move the tape
left and right one (and only one) cell at a time. In some models the
head moves and the tape is stationary.

3. A state register that stores the state of the Turing machine, one of
finitely many. Among these is the special start state with which the
state register is initialized. These states, writes Turing, replace the
"state of mind" a person performing computations would ordinarily be
in,

4. A finite table [...] of instructions [...], given the state[...] the machine
is currently in and the symbol[...] it is reading on the tape (symbol
currently under the head), tells the machine to do the following in
sequence [...]: Either erase or write a symbol [...], and then Move the
head ([...]'L' for one step left or 'R’ for one step right or 'N' for staying
in the same place), and then Assume the same or a new state as
prescribed [...].

Note that every part of the machine (i.e. its state, symbol-collections, and
used tape at any given time) and its actions (such as printing, erasing and
tape motion) is finite, discrete and distinguishable; it is the unlimited
amount of tape and runtime that gives it an unbounded amount of storage
space.

Though still abstract with its infinite tape, the Turing machine is clearly a concrete
approach to computability based on mechanisms (like any machine by definition).
These physical mechanisms relate to causality rather than to implication as would any
formal logical approach like Church's thesis based on recursion. Using mechanisms
suggests that the change of state and the writing of symbols are caused by the reading

of a symbol in a given state. This set of mechanical rules forms an algorithm.




Considering the equivalence of the two theories, nowadays, we usually refer to the
Church-Turing thesis, but, here, as we will focus on specific aspects of Turing's

approach, we present the computational hypothesis in terms of a Turing machine:

H1 - Computational Hypothesis (or computational axiom)

Any algorithm may be performed by a Universal Turing Machine®.

With the development of the transistor in the 1940s and the rapid development of
computers thereafter, there can be no doubt anymore, the Turing machine is real®, this
is no longer a hypothesis. Computer science is based on this axiom and produces
daily increasingly powerful algorithms. Markov (1960) has, in a way, generalized
Turing's approach in vectorizing its symbols and atomic states. The markovian state
is always finite, but it is multivariate allowing a combinatorial explosion of

representations driven by equally multivariate inputs.

1.1.2 - The Turing test

The Turing machine, although very abstract, is not a pure invention of the mind. To
develop it, Turing was inspired by a "computor" in the most human sense of the
word, that is to say, a person who "computed" with the help of a pencil and a sheet of
paper. Therefore we find in the machine very concrete and physical elements such as
paper, reading and writing, symbols, etc. His objective was to mechanize the work of

the mind of such a "computor".

3 Any set of TM’s can be simulated by a single more complex TM. We call Universal TM the TM

able to simulate the set of all TM’s and therefore any simpler TM. A Universal TM is not necessary for
any algorithm taken individually, but it is sufficient for the most complex of them, since it is sufficient
for the set of all (ignoring the material and temporal constraints).

* "Real" obviously implies that its instantiation in a computer makes the TM prone to hardware
constraints (memory) and time constraints (speed of execution).



Being a good mathematician, Turing (1950) did not hesitate to generalize the

experience: if the machine can "compute" like a human, it can think like a human.
This was enough to awaken old dreams of artificial intelligence, but the algorithm of
intelligence had yet to be defined.

Adept at Extreme Programming (Beck 2000) long avant la lettre, Turing proposed a
functionality test, or more precisely, an acceptance test to determine if the goal had
been reached. Drawing on a popular game of his times, the imitation game, Turing
(1950, §1.) wrote:

[The imitation game] is played with three people, a man (A), a woman
(B), and an interrogator (C) who may be of either sex. The interrogator
stays in a room apart from the other two. The object of the game for the
interrogator is to determine which of the other two is the man and which
is the woman. He knows them by labels X and Y, and at the end of the
game he says either "X is Aand Yis B"or"XisBand Yis A."[...] It is
A's object in the game to try and cause C to make the wrong
identification.

In order that tones of voice may not help the interrogator the answers
should be written, or better still, typewritten. The ideal arrangement is to
have a teleprinter communicating between the two rooms. Alternatively
the question and answers can be repeated by an intermediary. The object
of the game for the third player (B) is to help the interrogator. The best
strategy for her is probably to give truthful answers. She can add such
things as "I am the woman, don't listen to him!" to her answers, but it will
avail nothing as the man can make similar remarks.

We now ask the question, "What will happen when a machine takes the
part of A in this game?" Will the interrogator decide wrongly as often
when the game is played like this as he does when the game is played
between a man and a woman?

Very powerful acceptance test, as Harnad (1992) points out; the Turing test is
however of no use when it comes to determine progress in instantiating the functional
features because the specificity of the test, which, paradoxically, is its generality, is
implicit in the behavior of the interrogator and can only be explicited by fully solving

the original problem. In the good old imitation game, the three participants are human



and the three roles are interchangeable. So, any machine capable of passing the

Turing test would naturally be able to hold any of these three roles.

Turing’s experience, first mathematical, has allowed the elaboration of a machine
capable of computation like humans. His computational thesis argued that the

machine was able to run any algorithm devised by humans since it was able to

perform all computable functions. This was the basis of computing.

His test was going much further; it asserted that the set of all computable functions |
was sufficient to simulate thought. Were we to give the machine all known human
algorithms, it could think like a human. The approach was consistent with the method

used by Turing to demonstrate the computability of n although it would have been

necessary to show that the set of all computable functions could be regarded as a
convergent series. This was the origin of research in artificial intelligence (AI) and
the hatching of cognitive science (SC). Both schools were born a few months apart.
The pioneers of Al mat Dartmouth College in 1956 at the invitation of McCarthy al.
(1955) « to proceed on the basis of the conjecture that every aspect of learning or any
other feature of intelligence can in principle be so precisely described that a machine

can be made to simulate it. »

" The hypothesis was clear: « Intelligence can be simulated by a machine ». Behind
this hypothesis from the fathers of Al, there was identification, conscious or not, of
the ontology of intelligence with that of computing machines. In other words,
intelligence « processes data » following « defined rules » in order to g« results ».

This was the basis of computationalism.

The description of the « rules » for the processing of « data » by intelligence was not
nearly as simple as the 1955 invitation implied. For over a century, psychologists

have tried to define a scientific approach to the operation of intelligence. From
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Wundt’s experimental psychology to John B. Watson’s (1913) behaviorism through
Freud’s psychoanalysis and Pavlov's classical conditioning, the functionality of the
intelligence was still far from the precise description required to allow computer
simulation (« ... every aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made to simulate it »). And
yet, behaviorism, which prevailed as the dominant theory in psychology at time of the
meeting in Dartmouth, would be challenged by Noam Chomsky (1959) in his review
of B.F. Skinner's book « Verbal Behavior ».

Especially that some participants, and even the organizers, came to the conference
with a very different approach to simulating the operation of intelligence. As stated in
the invitation (McCarthy al., 1955)

M. L. Minsky, Harvard Junior Fellow in Mathematics and Neurology, ...
has built a machine for simulating leaming by nerve nets and has written
a Princeton PhD thesis in mathematics entitled, "Neural Nets and the
Brain Model Problem' which includes results in learning theory and the
theory of random neural nets.

The door was already open to a connectionist approach based on neurology and

biology with reference to the work of Donald O. Hebb (Hebbian learning).

Both schools have, since that time, cooperated to achieve converging objectives.
Proponents of AI used mathematical sciences and rising computer sciences to
produce an artificial intelligence, while experts in Cognitive Sciences tried to apply
the emerging paradigm of mechanical information processing to unify the
philosophical and psychological knowledge. However, it is not these differences in
objectives or origins that lead to the greatest conflicts, but rather the two basic
assumptions mentioned above regarding: 1) the simulation of the mind and 2) the

simulation of the brain.
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1.1.3 - Computationalism

By computationalism we mean Putnam’s functionalism (1965) and Fodor’s
representationalism (1975). In cognitive science, functionalism is the general
ontological thesis that mental states are functional states. Although it is not included
in the functionalist theory, it is generally understood that it is functional states of the
brain’. When we want to explain this assumption, we say that functionalism was
added a token psychoneural identity thesis (Bickle 1998), that is to say that each
occurrence of a mental state is a state of the brain. Putnam’s functionalism is said
"machine functionalism" or "Turing machine functionalism" since, according to him,
the functional states that are mental states are computational states described as those
of a Turing machine, that is to say with reference to the symbolic inputs and outputs,
and to other computational states that a mental state is bound to by the instructions in
the instruction table (i.e. the program) in the Turing machine. Since the symbols in a
Turing machine are representations when the instructions are interpreted as
computations, Putnam’s functionalism is already representational. Fodor (1975) takes
up and strongly defends this representationalist functionalism® and adds the thesis
that each representation has roughly the syntactic form of a sentence of a natural

language, particularly the predicative form (subject- predicate) of such sentences.

So defined, computationalism includes much of cognitivism. In Putnam’s and
Fodor’s times, cognitivism excluded neuroscience, and it was believed that it was
sufficient to understand the program (the instruction table in the Turing machine)

since we knew that if there was one physical implementation of the Turing machine

3 It is relevant today to clarify this addition, because various philosophers defend functionalism, but

reject the thesis of token psychoneural identity to replace it by a thesis of token psychophysical
identity: each brain state is a physical state, but not necessarily a physical state of the brain (could
include physical states of the body or of the environment (Clark, 2008).

8 There are forms of non-representationalist functionalism; see Armstrong 1968.




11

with this program, there were infinitely many and they did not all have to be brains.
So, the basic idea was reversed; rather than having the machine thinking like humans,
it would be the humans who would think like machines: the theory of information
processing based on inputs, outputs and manipulation of symbols. This reversibility
was explicitly stated by Newell and Simon (1976) in their physical symbol systems
hypothesis: « A physical symbol system has the necessary and sufficient means for

general intelligent action. »

We can therefore summarize the computationalist approach by a psychological

hypothesis:

H2a - Psychological hypothesis (which we will not accept)
Intelligence is directly algorithmizable.

Searle (1980) harshly attacked computationalism and symbolic systems with a
thought experiment, now famous under the name of "Chinese Room", where he
shows that the manipulation of symbols does not imply any understanding of the

symbols and even less of the handling itself .

Harmnad (1990) redefined the impasse as the symbol grounding problem. In a
symbolic system, all symbols can only be defined from other symbols and no symbol

is, for the system, grounded in the real-world experience.

It is therefore not surprising that the computationalists (including Fodor, Chomsky,
Pinker) have often been innatist or nativist; otherwise, where could the symbols... or

grammar come from?

1.1.4 - Connectionism

In parallel, another approach was growing based on a biological hypothesis:
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H2b - Biological Hypothesis
The brain is algorithmizable.

Connectionism opted to algorithmize the brain, trying to model the neural
mechanisms. Several generations of models have followed since McCulloch and
Pitts’s binary neurons (1943), to the recent sp.iking neurons including the rate
neurons. It is important to note Rosenblatt’s perceptron (1957) which has had some
success until Minsky and Pappert (1969) demonstrated the limits of its linearity. The
ensuing ardor-cooling greatly favored the psychological hypothesis relatively to the
biological hypothesis. Rumelhart, McClelland and the PDP Research Group (1980)
revived interest with a research program using multi-layer perceptrons with a learning
rule based on error back-propagation. The computational difficulties of perceptrons
did not facilitate the acceptance of connectionism, but the reluctance of many mainly
resided, and still reside, in the reduction of thought, intelligence, mind, cognition into

simple cellular mechanisms.

Connectionism still keeps its neuro-biological inspiration in spite of its mathematical
appearance. Maass (1997) speaks of a second and a third generation of models that
attempt to capture more accurately the behavior of biological neurons. The inspiration
for the second generation goes back to the first steps of neuronal responses to
electrical stimulation represented by frequency to current curves (see Error!
Reference source not found.’) showing the spiking frequency (in Hz) of pulses
(action potentials) as a function of injected electric current (in mA). This approach

helps to understand the neural signal as a continuous analog signal.

7 Figure L1 taken from Eliasmith and Anderson (2003 p34), presents three typical response curves

published by McCormick al. (1985) representing the relationship between the frequency of action
potentials and the intensity of the current injected into a dendrite.
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Figure 1.1 - Rate neurons’ frequency-current curves (see footnote 7)

On the other hand, as Maass points out, some (Perrett, Rolls, and Caan, 1982 and
Thorpe and Imbert, 1989) have demonstrated that the computation time of pulse rates
was not compatible with the ultra-fast response (20-30 msec) of some complicated
cortical networks (ten synaptic connections chain) including neurons at relatively low
frequencies (<100 Hz). Maass provides also a long list of experimental evidence
indicating that the timing of each pulse taken individually may be important in the
encoding of information. The third generation models, called spiking neurons,
include these biological considerations by using space-time differential equations in
modeling the dendritic integration. These differential equations necessarily introduce
the dynamic aspect essential to cognition according to van Gelder (1996). We will
return to these issues in the second chapter where we will talk about modeling the

brain.
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We will keep in mind that connectionism is fundamentally computational in the sense
of the Church/Turing thesis although it is radically opposed to the abstract
computationalism of the functionalists and representationalists of putnamian and
fodorian influence. We will also remember that the continuous and analog appearance
of second generation models may provide some answers to the question of symbol
grounding and that it is important not to sacrifice this advantage to take into account
the individual dynamics effect of each pulse in our third generation models. We will
try to justify the merits of these allegations in the second chapter where we will
explain more precisely the mathematics and semiotic aspects of biological and

artificial neurons.

Connectionism, situated embodiment and biologically plausible dynamics are based
on a strongly constructivist conception of brain development and therefore, for their
proponents, of thought, intelligence, mind, cognition. Elman al. (1996) redefined

nativism according to this conception and state (p361):

[...] representational constraints (the strongest form of nativism) are
certainly plausible on theoretical grounds, but the last two decades of
research on vertebrate brain development force us to conclude that innate
specification of synaptic connectivity at the cortical level is highly
unlikely.

When Elman al. (1996) talk about architectural nativism, they refer to the constraints
that heredity imposes directly on brain organization. We would go further and say
that these genetic constraints are imposed indirectly on brain development by the

body architecture, which itself is defined by genes.

Long before them, Piaget (1936) also observed and analyzed the development of pre-
verbal intelligence by focusing on the importance of what is acquired in relation to

the innate. Yet it must be admitted, with Elman al., that, if the representations are
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(most likely) not innate, the constraints controlling the development of the brain are
fully defined® by genetic inheritance (by the set of sensors and actuators® at its
disposal including their initial settings) and by the biological rules of operation,

learning and development.

However, the embodied and situated connectionism is not sufficient to completely
solve the symbol grounding problem. Floridi (2011b section 6.2) introduces a Zero

semantic commitment requirement, or Z condition, stating that:

The challenge posed by the SGP [symbol grounding problem] is that

a. No form of innatism is allowed; no semantic resources (some virtus
semantica) should be magically presupposed as already preinstalled
in the AA [artificial agent]; and

b. No form of externalism is allowed either; no semantic resources
should be uploaded from the ‘outside’ by some deus ex machina
already semantically proficient. [...]

c. The AA may have its own capacities and resources (e.g.
computational, syntactical, procedural, perceptual, etc., exploited
through algorithms, sensors, actuators, etc.) to be able to ground its
symbols. (Floridi 2011b p137)

Floridi’s entire chapter 6 demonstrates that the proposed solutions to the symbol
grounding problem, whether representationalist as in Harnad (1990), Mayo (2003),
Sun (2000), semi- representationalist as in Davidson (1993), Vogt (2002a, 2002b),
Rosenstein and Cohen (1998), or non-representationalist as in Brooks (1990), Billard
and Dautenhahn (1999), Varshavskaya (2002), do not pass the test of the Z condition.

®  Waddington (1956) would have said “channeled”.

?  Although it is not quite right, the terms “actuators” and “effectors” are often used interchangeably.
Effectors affect the environment (e.g. an arm) while actuators are the elements (e.g. muscle, motors)
enabling the effector to execute the action. Effectors may have multiple degrees of freedom while
actuators generally refer to a single degree of freedom. We will use actuators, in parallel with sensors,
because we are interested in decomposing action, and perception, to the cellular level.
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1.1.5 - The computationalism - connectionism cleavage

In summary, we have attempted to show that connectionism, as well as
computationalism, draws its source from the axiom of computationality, thus from
the Church-Turing thesis. We consider that connectionism does not reject
functionalism, nor representationalism, nor symbolism, nor cognitivism, but it differs
mainly from computationalism by the object of its modeling which is at the physical
level, the concrete and mechanical level, of the brain, rather than at the level of the
mind, the thought, the intelligence, the cognition, which is much more abstract and
phenomenological. This computationalism-connectionism cleavage, which is the
contemporary version of the Leibnitzian gap, is at the heart of the difficulties in
unifying the cognitive sciences and must be bridged to enable them to achieve their

ultimate goal and produce artificial intelligence.

1.1.6 - Argument summary

Table I.1 - Is (strong) artificial intelligence possible?

P1'°. All computable functions can be executed by a Turing machine (TM)
(Turing’s thesis)

P2. Mental functions are computable functions (computationnalism)

Cl. Hence, mental functions can be executed by a Turing machine

(Turing’s test, Putnam’s functionalism, Fodor’s representationalism)

1% Pn=Propositionn. Cn = Conclusion n. On = Objection n
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ey g

Physical symbol systems have the necessary and sufficient means for
general intelligent action (Newell and Simon’s Physical Symbol
Systems hypothesis)

Ol.

The physical symbols manipulated by the system are not understood by
the system (Searle’s Chinese room argument [CRA])

O1 rephrased. The physical symbols manipulated by the system are not

grounded in reality (Harnad’s symbol grounding problem [SGP])

P3.

Hybrid systems can use embodied connectionist sub-systems situated in
a given reality to ground symbols in that reality (Harnad’s solution to
SGP)

P3 is explicitly or implicitly supported by numerous connectionist
approaches such as  Brooks’, Pfeiffer’s, Steels’, etc..
P3 is compatible with Smolensky’s thesis; cognitive systems must be

explained at a sub-conceptual level by sub-symbolic systems.

02.

Situated embodied connectionist sub-systems cannot develop their own
semantic without external contributors such as innateness or
programming (Floridi’s Z condition - « zero semantic commitment

condition ») (P3 is necessary but not sufficient)

e

Hence, to have general intelligence, a system must :
1. use physical symbols grounded in reality and

2. have no external semantic contribution, neither innate, nor

programmed.
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1.2 - Fundamental hypotheses

We cannot talk seriously about cognition and knowledge, computing and information
processing, without having an idea of what information is. But where does
information come from? We believe that there are some basic assumptions implicitly

hidden behind the computational axiom.

1.2.1 - Physicalism

If we reject out of hand the Cartesian substance dualism, we can, actually we must,

posit a highly materialistic ontological assumption.

H3 - Ontological hypothesis
Everything is matter/energy.

To include energy and wave phenomena, we prefer to speak of physicalism rather
than materialism; a physicalism that focuses on the physical properties and conceives

objects as instantiations of a set of physical properties.

Each element of matter/energy (each atom) has its own properties. There are intensive
properties, as the type of atom and the energy levels, and extensive properties which
depend on the number of bonded atoms and on the intensive properties of each of
these atoms. Modern quantum physics deals with particles that make up the atoms
and their specific properties, but to talk about cognition, the molecular level is well
below the levels commonly used and appears to us as being sufficient, but also

necessary, to understand the concepts of object, signal and information.
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1.2.2 - Information

Without matter/energy, there is nothing, no space, no time, nothing. But as soon
as there is matter/energy, information appears. Space-time comes from a
differentiation between elements of matter/energy and any difference is a piece of
information. This is what Floridi, in his Semantic Conceptions of Information (Floridi
2011a), refers to as the « diaphoric'' definition of data ». According to Floridi (2011b
p85-86),

the diaphoric definition of data can be applied at three levels:

1 Data as diaphora de re, that is, as lack of uniformity in the real world
put there. [...] They are pure data or proto-epistemic data, that is, data
before they are epistemically interpreted [...].

2 Data as diaphora de signo, that is lack of uniformity between (the
perception of) at least two signals such as [...] a variable electrical
signal in a telephone conversation, or the dot and the line in the Morse
alphabet. :

3 Data as diaphora de dicto, that is lack of uniformity between two
symbols for example the letters A and B in the Latin alphabet.

Any difference in any of a thing’s (res) physical properties is a de re (about this
thing) data. N(;te that by thing we rhean any object, from the simplest atom to the
universe in all its complexity, and this object is physical if it has physical properties.
A de signo (about the signal) data is a difference in the signal’s (signum) physical
properties, thus a de re data about this thing called the signal, and finally a de dicto
(about the word) data is a difference in the word’s (dictum) physical properties, thus a
de re data about this thing called the word. So, why three categories? What is so

special about signals and words?

' From diaphora (Stapope in greek) meaning difference.
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Usually, we are not interested in the de signo data of signals because they carry more
data, de re data, about other things. To take Floridi’s example, « the variable
electrical signal ina telephone conversation » is not interesting as a variable electrical
signal, but because it hides at another level (because it contains or bears) a
conversation. And this conversation is not interesting for the de dicto data of the
words that make it up, but for the de re data of the things that those words represent.
The word is out, "represent"”; de signo and de dicto data are representations of other
de re data about other things whether or not directly visible in the immediate
spatiotemporal reality. In fact, the spoken or written word is a sound or visual
reification of mental object representations; this mental object reified thereby
becoming a noticeable physical signal by others. In this thesis, we will only
accidentally mention de dicto data (words), since we are interested in the preverbal
sensorimotor intelligence. We will focus mainly on signals and on the two levels of
de signo data (the properties of the signal) and de re data (the meaning of the sign
carried by this signal).

Floridi (2011a) considers that « Data [...] can have a semantics independently of
any informee. » It is not intended to define where this meaning comes from, only that

it exists independently of the informee. To support this assertion, he recalls that:

[blefore the discovery of the Rosetta Stone, Egyptian hieroglyphics were
already regarded as information, even if their semantics was beyond the
comprehension of any interpreter. The discovery of an interface between
Greek and Egyptian did not affect the semantics of the hieroglyphics but
only its accessibility.

However, he is reluctant to support, « the stronger, realist thesis, supported for
example by Dretske [1981], according to which data could also have their own
semantics independently of an intelligent producer/informer. » Inspired by Barwise

and Seligman (1997) and Dretske (1981) he defines environmental information in
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relation to an observer, as follows: « Two systems a and b are coupled in such a way
that a’s being (of type, or in state) F is correlated to b being (of type, or in state) G,
thus carrying for the information agent [(the observer)] that b is G. »

Therefore, he concedes no semantics, especially no semantic processing
(interpretation), to environmental information making it a non-semantic semiotic
system based strictly on de signo data. This environmental information is a potential
information as it becomes meaningful only for the observer able to interpret it.
However, because it does not suffer any interpretation, this potential information is de

facto essentially true.

Plants (e.g., a sunflower), animals (e.g., an amoeba) and mechanisms
(e.g., a photocell) are certainly capable of making practical use of
environmental information even in the absence of any (semantic
processing of) meaningful data.

The light, generated by the sun, affects the plants and photocells by environmental
coupling. This coupling is not merely correlative but essentially causal. An observer
may confuse the two, but physically only the causal coupling exists, whilst the

correlation is pure semantics.

Isn’t this causality sufficient to make sense of the received (or perceived)
information? The practical side of the resulting usage is certainly a viewer’s
interpretation, but it is not without giving some meaning to the entire causal chain
leading from the data transmitted to some useful action. We will talk about this

utilitarian semantic when we will discuss H8 and H9 towards the end of this chapter.

Leaving the observer out of the equation (who needs a homunculus?), it is possible to

reformulate the definition of environmental information in terms of causality: fwo
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systems a and b are causally linked if, first, they are of compatible types and second,

that a is (in the state) F as a physical reaction to b being (in the state) G.

This causal and utilitarian semantics of potential information is the basis of our

second fundamental assumption:

H4 - Semiotic hypothesis

As soon as there is matter/energy, there is potential information, therefore signs.

This hypothesis does not, in anyway, contradict the previous one (H3) as it makes
information a property, in fact all the properties, of matter/energy. One could speak of
supervenience of information on matter/energy. So, this is not substance dualism;
there is only one substance which we call matter/energy. This is not property dualism,

but rather communication of properties by semiotic transmission.

So, there are two distinct parts to information: the causal part, or de signo
information, at the signal level and the semantic part, or meaning, of the sign carried
by this signal. The first is physically transmitted from one system a to a second
system b as explained by Dretske, while the second depends on interpretation
requiring a move to a higher level of abstraction. We will use some basic notions of
C.S. Peirce’s semiotics to mark the difference, but, for now, we are concerned by the
causal level of de signo information and, as mentioned above, we will return later on

semantics.

Peirce's theory of signs (1897, 1903), spoke of icons, indices and symbols. We will
use the same words to explain the difference we introduced between causality and
semantics. Without rejecting, without even questioning, the definition given by Peirce

to the terms ‘icon’ (« firstness »), ‘index’ (« secondness ») and ‘symbol’ (« thirdness
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»), we will change the order to put emphasis on a perspective of spatiotemporal

proximity in the reference to reality.

We will place the index first because it comes from an immediate physical reality.
Take, for example, the smell of the cheetah that repels the gazelle. The smell, present
in the immediate spatiotemporal reality, causally triggers the action without reference
to the well-hidden cheetah in the tall grass. The de signo data (the smell) acts directly.
Piaget (1936) used the example of floorboards creaky as the mother approached the
cradle to take the child and feed him. The link is still causal but indirect; this is
obviously not the creaky floorboards that nourishes the child, but the mother is
causing both effects sufficiently correlated to seem causally related... especially for a
baby. The index is predictive rather than representative; the smell triggers the flight
because every time the smell was perceived, the herd fled. The creaking announces
feeding because the latter is almost always preceded by a creaking. The smell and the
creaking are indices inasmuch as they are fully present in the immediate reality. In the
same vein, one could speak of Pavlov's dog salivating at the sound of the bell or
Bickerton’s (1990) vervet monkeys which respond differently to three specific sounds
produced by conspecifics when seeing an eagle, a snake or a leopard. The vision of a
given predator creates a specific flight movement; it is this movement that modulates
breathing in an equally specific sound and hearing the sound triggers a similar flight
movement; the flight movement is not connected to the predator, but only the sound;
the latter is connected to the predator, but only causally, without representation of the

predator in the listener’s mind.

The icon is second. It usually connects two physical objects by their resemblance. By
resemblance we mean the common subset (intersection) of both sets of properties
specific to each of the two objects. The icon acts as an index relative to its referent; a
physical object in the immediate reality recalls a second similar object which appears

in a shared mental reality (imaginary); this is the beginning of representation. These
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relationships must be understood in the context of neural networks. Similar properties
activate the same sensors. Each object has a set of properties which stimulate a set of
sensors which, in turn, activate a more complex neuron network. If two objects have
common subsets of properties, there will be activation of a common sub-network of
sensors and neurons integrating, in the immediate mental reality, the two similar
objects. The icon, present in the immediate physical reality, activates its own specific
neural network including the common subset which, in turn, excites the rest of the
network specific to an object which, though absent from the immediate physical

reality, takes place in the mental reality.

The symbol, which comes third, inherits from both the index and the icon. In itself,
the symbol is a physical object like the object it represents. However, these two
objects refer to mental realities which have nothing in common, no resemblance,
except that, in physical reality, they are frequently associated like the name of an
object and that object. The presence of one or the other in the immediate reality
causes the appearance of the other in mental reality as in the icon case. The
relationship may also be strictly mental if, for example, an icon recalls the face of a
person, like in cartoons, then the name of the person may also appeaf in the mental

reality and may, in turn, trigger other mental objects associated with that name.

From this we can conclude that:
1. the meaning of the sign is inseparable from the signal, but becomes
significant only via the semantic interpretation of a conscious agent, and
2. the signal is sufficient for the propagation of a neuronal causal chain; its

interpretation, its meaning, is not necessary for sensorimotor behaviors.

Finally, this conception of information is closer to de Saussure’s (1913) than to
Peirce’s. The signal (the sign carrier) is the signifier while the meaning of the sign is

the signified although signifier and signified have an intentional character involving a
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conscious generator which we do not deem essential for potential information. It
might also be worth noting that this dual aspect of information also corresponds to the
fundamental principle on which Chalmers (1995) based his theory of
consciousness... but our research is limited to the preverbal and preconscious

sensorimotor brain.

1.2.3 - Modeling and simulation

The link that we have established in the previous subsection between information and
causality brings us back to Turing who was certainly part of the mathematician elite
of the first half of the twentieth century, but if we recognize his genius, is it not
mainly for establishing a similar link between mathematical functions and physical
causality (mechanics)? In purely mathematical terms, his machine was equivalent to
Church’s recursion, but the Turing machine was definitely causal whereas the
Church’s recursion was purely abstract. So, behind Turing’s computational axiom,
there must be an essentially physicalist hypothesis in the most causal sense of the

term.

Figure 1.2 shows that an algorithm according Turing establishes, by its action table,
the causal links (mechanisms) between the outputs and the inputs. It is the input
symbol (the signal) and not its meaning, which causes the internal change of state, but
also, in a way, the change of state of the environment through the written symbol and

the displacement of the tape to the right or left.

By reducing causality to its simplest form (any new state s*, any written symbol and
any resulting action are function of, and only of, the current state and the input
symbol), the Turing machine promotes the atomization of causality into its simplest
elements (mechanisms). The new state becomes the current state the next symbol to

be read depends on the action taken (move to the right or to the left).
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Any causal simulation of a physical phenomenon carries its load of potential

information.

By physical phenomenon, we mean the observable behavior of a physical system. A
physical system is a closed set of physical properties subject to disturbances by the
environment and capable of disturbing the environment. To be observable, the system
properties must be measurable by an observer. The observer is outside the system and

can interact with (disturb) the system.

To simulate a phenomenon, the observer must be in the presence of two systems: one
system (A), observed, and a second system (B), manipulated. The observer
manipulates (disturbs) system B to reproduce the phenomena observed in system A.

Both systems can be identical, in which case we will call them replicas of each other.

Input symbol
, X
Current state New state
S st = f(s,x)
A »
Output symbol
and action ‘
E y = f(s,x)

Figure 1.2 - Physicalist perspective of the Turing machine
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When replicas are placed in the same environment to eliminate (or at least minimize)
the unintended disturbances, it is sufficient to identify the independent (or
manipulated) variables to verify that a change in an independent variable in B causes,
for all measured variables in this system, changes identical to the changes observed
for the same variables in A for a similar change of the equivalent manipulated
variables. In short, for two identical systems (replicas), identical changes of incoming
signals result in identical state changes and identical changes of output signals since,

the systems being identical, the causal relationships are identical.

Simulations and models usually reproduce only a subset of the original system’s
properties. For example, statues reproduce the shape of the original respecting its
proportions with a scaling factor. Some scale models, like children's toys for
example, simply reproduce the properties of shape and color, while others are used to
study the relationship between certain physical properties of the environment and the
shape of the object such as the effect of the air speed on a miniature airfoil in a wind
tunnel. The model’s physical system remains the same as the studied physical system
except for scaling factors, but some interesting properties (lift and drag) cannot be
observed with the naked eye; so, analog translations (transductions) are required for
measurements. Stretching or compressing springs can be used to measure lift and
drag. The results of these measurements are necessarily of numerical order: stretching
or compression of the order of a few millimeters. This brings us back to the Dretske’s
principle we previously translated in causal terms: lift (or drag) and the air speed are
causally coupled since any change of speed will cause a proportional change in
stretching or compression of the springs which are indicators of the lift (or drag).
These indicators, in centimeters, are numerical, like any measure, and this takes us
from the physical world to the mathematical world where the Church-Turing thesis
can simulate the relationship between physical properties using computable functions

relating numerical measurements of these physical properties.



28

A measure is a dretskeian transduction (projection) of a physical world into an

informational mathematical world.

HS5 - Strong informational hypothesis

Any physical phenomenon can be simulated at the information level.

If two different physical systems have, for some properties, the same mathematical
(informational) representation, they are, one for the other, an analog simulation. The
Turing machine (nowadays we can say the computer) becomes, in a sense, the

physical medium of numerical (digital) simulation.

1.2.4 - Argument summary

Table 1.2 - But where does information come from?

P4. Everything is matter/energy (Our physicalist ontological hypothesis)

P5. Physicalism = the existence of material objects/properties (3x, 3y), of

states for these objects/properties (3s) and of causal relationships (3,

3g).

C4. These objects/properties and relationships form the potential
information which can be actualized by whatever is capable to perceive

it.

C5. As soon as there is matter/energy, there is potential information (PT)

P6. Potential information is transferred from one physical system to another

physical system by causal coupling (inspired by Dretske)
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P7. A causal coupling = that a change of state in a physical system
produces (or results from) emission (or absorption) of matter/energy
producing (or resulting from) a proportional change of state in another

physical system (first law of thermodynamics)

P8. A mechanism =g a causal coupling between two physical systems.

P9. A semiotic system =g a system capable of sending and receiving

potential information.

P10. This information transfer is, by definition, grounded in physical reality
and independent of any semantic interpretation (escapes objections O1
and O2)

C6. Semiotic systems are sets of mechanisms grounded in physical reality

and independent of any semantic interpretation. (from P7, P8 and P9)

P11. Any computable function can be represented by an algorithm of the
form y=f(s,x) and s = g(s,x) (Turing’s thesis)

P12. Any causal coupling (thus any mechanism) may be represented by an

algorithm of the form
As=s" -s=x-y which can be approximated by
y=1(s,x) and "= g(s,x) (from P7 and P8)

C7. All and only, mechanisms are algorithmizable (from P11 and P12)

P13. Any physical phenomenon can be decomposed into mechanisms.

C8. Any physical phenomenon is algorithmizable.
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1.3 - Complementary hypotheses

However, a simulation is not a physical reproduction. If a simulation of a waterfall
does not wet anybody, why would anyone think that a simulation of the brain would
think?

1.3.1 - Emulation

It is obvious that a flight simulator will not move the plane, nor its content, nor its
pilot to a remote destination. But in its most refined versions of virtual reality where
the pilot sits in a full replica of a specific cockpit, he (the pilot) perceives and feels all
reactions of the apparatus as if he was really in a plane. It is clear that much of the

information processing required to guide the aircraft is in the brain of the pilot.

Consider now a similar experience where a drone flying over Afghanistan is
controlled from a bunker somewhere in Colorado, USA. We are not talking
simulation anymore; the drone is a real airplane actually flying above Afghanistan,
potentially attacked by surface-to-air missiles and able to drop bombs on very real
target. The pilot, seated in his bunker, immune to all danger, receives all kinds of
information about the state of the drone, but does not physically feel anymore the
drone’s reactions. This is made possible due to Shannon’s mathematical theory of
communication (1948). So, the pilot, in Colorado, can remotely control the drone, in
Kabul, because it receives and transmits information to the drone regardless of the

means used for telecommunication.

As Shannon has shown, such telecommunications is subject to very specific time
constraints. Let’s go now to Houston, USA, where the Mars Rover engineers would

love to, like the pilot in Colorado, remotely control their robot in its exploration of



the Red Planet. But communication is not possible because a radio signal takes from

3 to 21 minutes to travel the distance between Earth and Mars depending on their
relative positions, not to mention the interference of the sun when it is in between.
For these engineers, there is no escape, cognitive functions (at least some of them)
must be implemented in the robot; no human brain can be close enough to remotely
control the robot. Obviously, they will use all available digital and analogue
simulations to study how a human would guide such a robot, analyzing the reactions
of humans to different information provided by the simulated robot. These functional
relationships between the information received by the human and the action taken can
simulate human cognition at an informational level. As rough as this simulation can
be, it allows us to extrapolate Shannon's theory on the transport of information
(communication) to the level of information transformation (information processing

or cognition), and to posit the following hypothesis:

Hé - Informational hypothesis of cognition
Cognitive phenomena can be emulated because they are strictly

informational.

By emulated, we understand that the human intervention between the information
received and the action taken can be replaced by its simulation (as rough as it might
seem), provided that some causal chain at the signal level can translate the received
information consistently into a message decodable by the robot’s effectors while
respecting the system’s dynamics, or if you prefer the time constraints mentioned

above.

1.3.2 - Granularity

However, do not be mistaken, the causal chains do not exist at the phenomena or

behavior level. At best, one could find mere correlations. To refine the simulation, it
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is necessary to detail the description of the human perceptions and actions, but those
cannot be described beyond the language concepts associated with the categories of
identifiable objects while perception and information differentiation begin at a
significantly subconceptual and subobjectal'? level as Smolensky said (1987) in his
hypothesis 8:

The subsymbolic hypothesis: The intuitive processor is a subconceptual
connectionist dynamical system that does not admit a precise formal
conceptual-level description.

In fact, any information used by engineers to control Mars Rover, like any
information transmitted by the drone’s remote pilot is already semantically
interpreted. Take, for example, three simple instructions to the drone pilot: speed,
altitude and orientation of the aircraft. These properties are measured, respectively,
by a Pitot tube, a barometer and a compass. Each measure, each indication is

transmitted to the driver with a label; so, clearly pre-interpreted.

On the other hand, the drone may also be provided with a camera. In this case, it is
quite different for the interpretation of the captured images. In agreement with the
Shannon’s theory, the drone can telecommunicate all collected information to the
pilot with sufficient precision for him to interpret the content of the image and fly
visually by identifying significant objects in the landscape. It must be understood that
the image, transmitted after digitization of punctual signals, can be approximately
(but accurately) reconstructed on a receiving screen which, in turn, emits physical

(light) signals capable of causally interacting with the pilot’s brain in the same

12 Objectal = related to the object. In French, objectal is a neologism introduced by Lacan because
objective had taken a different meaning. With the prefix sub-, we use it to refer to properties of an
object which, although inexistent independently of the object, can be perceived before or without
perception of the object itself.
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manner that the signals picked up by the camera would have interacted with his brain
had the pilot been on board the drone. As the signal carrier has been translated several
times between the emitting objects'® in Afghanistan and the pilot’s eyes in Colorado,
one can conclude that most of the essential information was saved at the punctual

level in each pixel point by reproducing the intensity and geometric structure.

In fact, dretskeian physical transduction always occurs at the punctual physical level,
at the pixel level for visual signals, which we could generalize as the level of
"sensels" for any sensitive element, taking sensitive as active for the receiver capable
of sensation and perception and passive (or perceptible) for the signal emitted or
modified by an emitter or reflector. These sensels are, somehow, the atoms of

information and it is from these sensels that must be built all semantics.

Going back to Houston, we understand that the Mars Rover engineers can (and they "
do it very well indeed!) establish between semantically interpreted signals, such as
speed, direction and power, equally preconceived links bringing back to mind
Braitenberg’s vehicles (1984), Brooks’ subsumption architecture (1986) and Brooks’
(1989) and Arkin’s (1998) behavioral robotics. They can even program some shape
and color recognition software to interpret the pixels transmitted by high definition
cameras, but not without instilling in the robot a minimum of preconceived
semantics. They certainly produce subsymbolic systems which might approach
symbol grounding, but which certainly do not meet Floridi’s Z condition. Although
the signals are natural and real, the links between these signals are still artificial,
externally designed and programmed. The algorithms are implemented by an external
observer capable of semantic interpretation. To achieve the Z condition, it is not

sufficient to automate the robot’s response, it is necessary to automate the external

13 Technically we should say reflectors since it is by selectively reflecting sunlight that different
objects differently affect the camera sensors.
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observer’s work, his algorithm generation. We must therefore automate automation,
algorithmize algorithmization; do what von Foerster (1974) called cybernetics of

cybernetics or second-order cybernetics

In the Smolensky’s context, one must understand that the subsymbolic systems are
from a subconceptual level, but not yat the neuronal level; that is to say not yat the
brain’s strictly physically causal level, and therefore not totally free of semantic
interpretation. Harnad (1992) pinpoints essentially the same thing by distinguishing
between the Turing Test (TT or T2), the Total Turing Test (TTT or T3) and the Total
Total Turing Test (TTTT or T4) which could be identified with Smolensky’s
conceptual, subconceptual and neural levels. Symbolic systems, working at the
conceptual level, can pass the T2 if and only if they are supported by sub- symbolic
systems working at the subconceptual level and able to ground symbols in a physical
reality. For Harnad, robotics is a necessary complement to symbolic systems for
TOTAL performance evaluation... and symbol grounding is no more than an
appreciable « bonus ». This overall performance criterion (intellectual performance
plus sensorimotor performance) is not part of Turing’s performance criterion; it was
added by Hamnad to account for all human capacities not limited to pen pals’
activities. Yet, he notes further that « [It] may be that even successful TT capacity

has to draw upon robotic capacity. »

Admitting that some sensorimotor elements are necessary for symbols grounding
does not imply that all the sensorimotor capabilities must be indistinguishable. A
severely physically handicapped human could well aspire to full pen pal recognition
without any doubt about his intellectual capacity; think Stephen Hawking. On the
other hand, these sensorimotor elements are not sufficient to explain how relations
develop between well-grounded symbols. Without claiming indistinguishability, we
believe that some elements of T4 are essential for T2. No robot can aspire to the title

of pen pal if its symbols and the relations between these symbols have not been
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established and grounded in reality by the autonomous development of a
sensorimotor brain. For an independent grounding of any preconceived semantics, we
must emulate the brain at the neuronal level. This artificial brain is not a neuro-
molecular reproduction, but a computational emulation of a biological brain and a
rough approximation of the latter from a sensorimotor perspective (T3) while being
indistinguishable from a symbolic point of view (T2). This leads us to the following
hypothesis:

H?7 - Epistemic hypothesis
Phenomena emerge from underlying mechanisms which must be
explainable by other underlying mechanisms as long as such mechanisms

have a significant effect on the phenomena to be explained.

(Only mechanisms can be algorithmized; phenomena emerge from

underlying mechanisms.)

In other words, intelligence (thought, mind) is not a mechanism nor a machine (set of
mechanisms) in itself, but a property of a complex system, the brain. The concepts are
possible only by composition.of a multitude of sensels of different types and intensity
because information is only available in this form. Recall Floridi’s (2011a section
1.3) diaphoric definition of data as discussed on page 19. The perception of the object
necessarily goes through the capture of its properties in a punctual space-time. The
composition of these sensels in representations and concepts is the first step of
cognition and corresponds to an organism’s sensorimotor development. Note that
these concepts do not wear labels, no symbolic referents, and can therefore only be
activated by the presence of the object in the immediate sensory environment.

Symbolic referents will emerge with the advent of language.
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The epistemic assumption thus favors the biological hypothesis based on neural
mechanisms rather than the psychological hypothesis based on conceptual
phenomena. However, this biological option is not without constraints as we will see

in the next section.

1.3.3 - Argument summary

Table I.3 - Is emulation possible?

P14. A simulation =4 a composition of algorithms representing a physical

phenomenon at the informational level.

P15. An information system =4.r a semiotic system where the physical carrier

is of secondary importance in relation to the information provided.

P16. An emulation =4¢ra simulation of an information system

P17. Cognitive systems =g4¢r informational systems

C9. The brain is a cognitive system, thus informational.

C10. Cognitive systems can be emulated, i.e. replaced by equivalent
information systems instantiated by different physical carriers. (multiple

realizations)

1.4 - Biological constraints

It is hardly surprising that we have to consider the biological constraints since all

known cognitive systems are biological systems. While these constraints seriously



37

complicate simulation and emulation efforts, they provide an opportunity to meet the
requirement of Floridi’s Z condition since they involve autonomous (without external

control) and evolutionary (random and selective) development.

1.4.1 - Autopoiesis

Maturana and Varela (1980) introduced the concept of autopoiesis according to
which, in biology, the product of the process is the process itself. Their original

definition (Maturana and Varela, 1980 pp 78-79) is as follows:

An autopoietic machine is a machine organized (defined as a unity) as a
network of processes of production (transformation and destruction) of
components that produces the components which:

(i) through their interactions and transformations continuously
regenerate and realize the network of processes (relations) that
produced them; and

(i1) constitute it (the machine) as a concrete unity in the space in which
they (the components) exist by specifying the topological domain of
its realization as a network.

Thompson (2007 pl00) paraphrases this definition at the cellular level in the

following terms:

[...] a molecular autopoietic system is one in which chemical reactions
produce molecules that (i) both participate in and catalyze those reactions
and (ii) spatially individuate the system by producing a membrane that
houses those reactions.

Figure 1.3, slightly modified from Thompson, indicates that a cell delimited by a
membrane (bounded system) generates a network of metabolic reactions which,
through DNA, RNAs and proteins, produce the components' determining the
molecular membrane and the cell contents. The membrane is necessarily semi-

permeable to let the required elements enter and the unnecessary waste leaves the
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Figure 1.3 - Cellular autopoiesis
(adapted from Thompson 2007 Figure 5.1 page 102)

cell. Its primary role is to "selfishly" keep intermediary products useful for its
maintenance. The Figure 1.3 presents a "modern" cell with a complex network of
reactions requiring sophisticated elements such as DNA, RNAs and proteins, but one
must understand that this metabolism began with the production of semi-permeable
membranes closing on themselves and promoting reactions involved in the
production of elements of semi-permeable membranes. This was only the beginning
of a long history of Darwinian evolution, hence of natural selection, even before the

appearance of genes, but clearly generated by chance and utility.

Autopoiesis sheds some light on the circular causality proposed in the thesis project a
few years ago and described by paraphrasing Descartes: "I eat, therefore I live,

therefore I eat, therefore..." Indeed, the semi-permeable membrane lets in some
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elements (eating) which favor certain metabolic reactions (living) which transform
these elements and reduce their concentration, causing the membrane to let in more of

these elements (eat).

For Maturana and Varela, autopoiesis is necessary and sufficient to define any
biological (living) <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>