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FOREWORD 

This thesis is a transverse integration of cognitive sciences in search of artificial 

intelligence. We will talk about intelligence, thinking, mind, cognition as a 

concept representing simultaneously the comrnon core of ali these concepts in 

their respective domain, but also the specificities of each of these concepts, even if 

not obvious, outside their respective domain, underlining that they are all 

physically instantiated by a neuron network called the brain. 

The transverse approach allows an intuitive progression jumping from one domain 

to another to verify the coherence of proposed hypotheses or to sidestep obstacles 

which cannat be addressed in a given domain. On the other hand, this intuitive 

progression is not really explanatory because it is too tortuous and often leads to 

dead ends. The explanation cannat follow multiple directions simultaneously. It 

then becomes necessary to reframe the explanation in more classical silos where 

the assertions, sometimes radical at first glanee, can only be justified after 

establishing basic knowledge in other domains. 

This thesis is part of a doctoral pro gram in cognitive informatics in the informatics 

department. As such, it should be considered as an informatics project where 

philosophical, psychological or neurological contributions are attempts to analyze 

the system under consideration which happens to be the intelligence or, more 

concretely, the brain. 

If, being computer specialists, sorne parts seem too philosophical, remember that, 

when working on the functional analysis of intelligence, the papers written by 

·-----·-------------------------------------------------------
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psychologists and philosophers are probably the best "use-cases" available and 

they should be read as such. 

If, sorne philosophers discover philosophically interesting sections, I will be 

flattered, but, let's be realistic, do not forget that our analysis must lead not only to 

an understanding of intelligence as an abstract concept, but to the realization of a 

non-biological model capable of emulating intelligent functionality in a concrete 

environment. 

The functional analysis would of course be incomplete without a comparative 

study of the implementation materials; on the one band the brain, a biological 

material described by neuroscientists and biologists, and on the other band the 

computer, a programmable material able to simulate many very complex physical 

systems. 

This transverse analysis will find its meaning only through an entanglement of 

links revealed by the functional analysis of an existing system and its known 

physical support, the brain, in order to reproduce it on a computer. .. like any good 

computerization project; no more, no Jess. 

I would like to thank Professer Pierre Poirier, department of philosophy, UQÀM, 

and Professer Mounir Boukadoum, department of informatics, UQÀM, for their 

involvement as thesis director and co-director. Professer Poirier was especially 

patient, open and generously available in taking an engineer to the required level 

of understanding in cognitive sciences. I would also like to acknowledge the 

supporting contribution of the faculty members, and my fellow students, 

throughout this very enriching adventure in the Ph.D. program of Cognitive 

Informatics. The Institut des Sciences Cognitives de l 'UQÀM was also, by its 

diversity, a very stimulating forum and a precious source of discoveries. 

lX 



ABSTRACT 

SYNTHETIC NEURO-COGNITION: 
AUTOPOIETIC SEMIOTIC NEURON NETWORKS 

This thesis was, from the beginning, guided by the interrogation: "Is strong 
Artificial Intelligence still possible?" We first identified what seem to be the 
biggest roadblocks in cognitive science, namely: the Symbol Grounding Problem 
and the Zero Semantic Commitment Condition. Then, we defined the problem 
through a functional analysis at the system level which took us from cognition to 
cognitive systems, from intelligence (or mind) to brains. The problem could th en 
be transformed into a typical informatics project where a desired functional 
specification existing in a given (in this case biological) environment must be 
reproduced in a digital computer system. We reviewed the most probable required 
biological mechanisms (spiking neurons, synaptic plasticity, spike-timing 
dependent plasticity, Bienenstock-Cooper-Munro madel, metaplasticity) and 
integrated them into well-encapsulated algorithms to produce a basic set of 
cognitive functionality. The resulting autopoietic semiotic network of artificial 
dynamic analog neurons can be developed into a representational structure 
following basic propositionallogic and offers a framework to investigate Synthetic 
Neuro-Cognition, a bottom-up approach to empirically study the development of 
such representational structures and, perhaps, elaborate algorithms to automate it. 

KEYWORDS : Artificial Intelligence,. cognition, semiotics, autopoiesis, spiking 
neurons, doubleLIF, synaptic plasticity, metaplasticity, synthetic neuro-cognition. 
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RÉSUMÉ 

NEURO-COGNITION SYNTHÉTIQUE : 
LES RÉSEAUX DE NEURONES SÉMIOTIQUES AUTOPOÏÉTIQUES 

Cette thèse fut, dès le début, guidée par la question : « L'Intelligence Artificielle 
forte est-elle encore possible? » Nous avons d' abord identifié ce qui nous semblait 
être les principaux obstacles en science cognitive, soit le problème d' ancrage des 
symboles la contrainte d'absence de sémantique préalable. Nous avons, ensuite, 
défini le problème au niveau du système, ce qui nous a forcés à penser systèmes 
cognitifs plutôt que cognition, cerveaux plutôt qu'intelligence (ou esprit). Le 
problème s'est donc transformé en projet d ' informatique typique où une 
fonctionnalité désirée, déjà instanciée dans un environnement donné (ici 
biologique), doit être reproduite dans un système d'ordinateurs numériques. Nous 
avons identifié les mécanismes biologiques ayant le plus de chance de répondre 
aux attentes (neurones impulsionnels, plasticité synaptique, plasticité déterminée 
par le temps d'occurrence des impulsions, modèle de Bienenstock-Cooper-Munro, 
métaplasticité) nous les avons intégrés dans des algorithmes adéquatement 
encapsulés pour reproduire un ensemble de fonctions cognitives de base. Le réseau 
sémiotique autopoïétique de neurones analogues dynamiques artificiels qui en 
résulte peut être édifié en structure représentationnelle en suivant une logique 
propositionnelle de base et, ainsi , offrir un encadrement pour 1 'investigation d'une 
Neuro-Cognüion Synthétique, une approche ascendante pour 1 'étude empirique du 
développement de telles structures représentationnelles et, peut-être, l'élaboration 
d'algorithmes pour automatiser ce développement. 

MOTS-CLÉS : Intelligence artificielle, cognition, sémiotique, autopoïèse, 
neurones impulsionnels, doubleLIF, plasticité synaptique, métaplasticité, neuro­
cognition synthétique. 



EPISTEMIC PRELUDE 

Box 1 1 The role of theory in science 
Can theory be useful in neuroscience? We know that theory is very useful in the 
physical sciences and no one doubts the value of hypothesis-driven experiments in 
the biological sciences. It is when the connection between hypothesis and 
conclusion requires many steps that mathematical theories show their value. The 
biological sciences, we are sometimes told, are data-driven and too complex to 
allow for the effective use of mathematical theories. However, consider pre­
Copemican astronomy. Ptolemaic astronomers introduced a variety of deviees 
(including equants, deferents and, most famously, circles moving on circles called 
epicycles) to account for the positions of the planets against the fixed stars. By the 
time of Copemicus, astronomers were using up to 80 epicycles to fit vast 
quantities of data gathered over thousands of years of observation. Could the 
mediaeval astronomer have foreseen that the complexities of the planetary 
motions would ail follow as a consequence of two postulates, namely Newton 's 
second law of motion and Newton ' s law of gravitation? Of course success in the 
physical sciences is no guarantee that theory can succeed in neuroscience. 
However, it does suggest that large amounts of data do not preclude the 
possibility or usefulness of theory. Rather, we might say that such quantities of 
data make theory necessary if we are ever to order and understand them. 
Experiment winnows the possible hypotheses and theory narrows and focuses the 
experimental alternatives. 

What is a good theory? The usefulness of a theory lies in its concreteness and in 
the precision with which questions can be formulated. A successful approach is to 
find the minimum number of assumptions that imply as logical consequences the 
qualitative features of the system that we are trying to describe. As Einstein is 
reputed to have said: « Make things as simple as possible, but no simpler. » Of 
course there are risks in this approach. We may simplify too much or in the wrong 
way so that we leave out something essential or we may choose to ignore sorne 
facets of the data that distinguished scientists have spent their lifetimes 
elucidating. Nonetheless, the theoretician must first limit the domain of the 
investigation: that is, introduce a set of assumptions specifie enough to give 
consequences that can be compared with observation. We must be able to see our 
way from assumptions to conclusions. The next step is experimental: to assess the 
validity of the underlying assumptions if possible and to test predicted 
consequences. 



X Ill 

A 'correct' theory is not necessarily a good theory. For example, in analysing a 
system as complicated as a neuron, we must not try to include everything too 
soon. Theories involving vast numbers of neurons or large numbers of parameters 
can lead to systems of equations that defy analysis . Their fault is not that what 
they contain is incorrect, but that they contain too much. 

A theory is not a legal document and, in spite of occasional suggestions to the 
contrary, no scientist is in communication with the Almighty. Theoretical analysis 
is an ongoing attempt to create a structure - changing it when necessary - that 
finally arrives at consequences consistent with our experience. Indeed, one 
characteristic of a good theory is that one can modify the structure and know what 
the consequences will be. From the point of view of an experimentalist, a good 
theory provides a structure in to which seemingly incongruous data can be 
incorporated and that suggests new experiments to assess the validity of this 
structure. A good theory helps the experimentalist to decide which questions are 
the most important. 

Cooper, L.N. and Bear, M.F. (20 12) 



INTRODUCTION 

Sin ce electronic was invented in mid XX111 century, computers ' performance 

incessantly improved in the execution oftasks which, until then, were only accessible 

to human intelligence. In accounting, engineering, astrophysics, medicine or many 

other domains, every day new computer applications seem to challenge human 

supremacy in the solution of more and more complex problems. Thanks to their speed 

and precision, these machines often exceed human capacities and could pretend to 

superior intelligence. 

Y et, every day also, these "brilliant" machines demonstrate their ineptitude and their 

clumsiness when times come to face changes, sometimes minimal, in their 

environrnent. Why such a paradox? 

After careful consideration, it looks like these major computer realisations lie in the 

extension of human intelligence without proper genesis (i.e. the solution method is 

generated by humans and its application, as complex as it can be, is left to the 

machine) . Programming allows transposing sorne human knowledge (declarative 

knowledge) into the machine which can then use them with speed, perseverance and 

precision to ever more complex problems. The computer is unquestionably the 

generalization expert of known solutions to similar problems whatever their nurnber 

or complexity, but it fails miserably when the problern is new; it is not capable of 

invention. 

To elucidate this paradox, we could attempt to narrow the definition of intelligence 

from the suggestions of experts in the field, but, cognitive science being highly 

rnultidisciplinary, even the use of the word intelligence may seem tendentious. The 

philosophers prefer to speak of mind to study cognition. The word intelligence is 
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accepted by psychologists in the study of behavior, but generally refers to different 

degrees of human intelligence. Even tbough Descartes' mind-body duality bas fewer 

and fewer supporters, few are willing to identify brain with intelligence or mind, 

especially as physiological studies of neurons are far from filling the now famous 

Leibnitzian gap. 

Moreover, it must be confessed that perception and that which depends 
upon it are inexplicable on mechanical grounds, that is to say, by means 
of figures and motions. And supposing there were a machine, so 
constructed as to think, feel, and have perception, it might be conceived 
as increased in size, while keeping the same proportions, so that one 
might go into it as into a mill. That being so, we should, on examining its 
interior, find only parts which work one upon another, and never anything 
by wbich to explain a perception. Thus it is in a simple substance, and not 
in a compound or in a machine, that perception must be sougbt for. 
Further, nothing but this (namely, perceptions and their changes) can be 
found in a simple substance. It is also in this alone that all the internai 
activities of simple substances can consist. 

-Gottfried Leibniz, The Monadology (1698) 

Is it no wonder that, nowadays, IT experts (still) hope to replicate in "machines" the 

mental abilities of the human mind? In fa ct, everything (re )started wh en, in 1950, 

Alan Turing asked the question: « Can machines think? (Turing 1950). 

The first chapter of this thesis, paraphrasing Turing, will discuss the possibility of 

(strong) artificial intelligence by studying the various bypotheses inspired by, or 

implied in, his computability thesis (also known as the Church-Turing thesis). Having 

defined the conditions necessary to generate this strong artificial intelligence, the 

second chapter will analyze the functionality of biological neurons to identify the 

mechanisms needed to support natural intelligence and will propose a model of 

artificial neurons including equivalent mechanisms. A third chapter will present a 

series of simulations based on this model of artificial neurons to observe its bebavior 

in an (relatively friendly) environment offering various stimuli. Finally, the fourth 
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chapter will analyze the relevance and validity of the many assumptions used to 

justify the model. 

It is important to note, before we start, that even if we are talking about (strong)1 

artificial intelligence and Turing, we are not seeking in any way to pass the Turing 

test, which requires a fully developed intelligence capable of verbal communication 

at an advanced formal level. Rather we are at a preverbal and preconscious level 

corresponding to what Piaget identified as the sensorimotor stage (Piaget 1936). We 

believe that this step is as important for the understanding of artificial intelligence and 

its development as it is, according to Piaget, to understand the ontogenetic 

development of hu man intelligence. 

The research project focuses on two complementary theories . The first, under the 

cognitive sciences, inspired by Newell and Simon states that: only autopoietic 

semiotic systems have the necessary and sufficient means fo r general intelligent 

action. The second, neurocomputational, offers a concrete realization of the first 

using a madel of dynantic, analog and asynchronous neurons, which associated in 

networks are suffic ient to simulate an autopoietic semiotic system. As we can only 

verify the intelligence by observing behaviors, we will build an experiment around 

the psychological corollary resulting from these two theses and stating that such 

· autonomous networks are capable of seemingly intentional and decisional behaviors. 

Strong AI is an expression fro m Searle (1980) who, by his experience of the Chinese room (more 
on this later), sa ys, imagining himself in the role of the machine, that a machine capable of reading 
questions in Chine se and responding in Chinese (an intelligent hu man 's behavior) do es not yet 
understand anything about the conversation . Searle assumes that it is possible to write a "recipe", an 
algorithm, to read and speak Chinese without understanding Chinese (reading and speaking without 
understanding, not wri te the "recipe" without understand ing). In other words, a machine is able to 
reproduce, and even leam, any behavior (even human behaviors) observable, analyzable and 
algorithmizable (even di scover new evidence of complex mathematical the01·ems). Strong AI should 
not only be able to learn, but also to understand. Utopia for many, yet it remains an option for the true 
materiali sts among us. 



CHAPTERI 

Is (strong) artificial intelligence possible? 

1.1 - Recent history 

Recent history of computing took off in the early twentieth century with the 

convergence of mathematical works such as the theses of Church (1932, 1936a, 

1936b), Turing (1936, 1947, 1950) and Post (1936, 1943), the proofs ofGodel (1931) 

and Kleene (1952) and the algorithms of Markov (1960). 

1.1.1 - The Turing Machine 

This convergence was initiated by David Hilbert's (1900) pro gram of formalization 

ofmathematics which led to Godel's incompleteness theorems (1931). First Church 

(1936ab) attacked the Entscheidungsproblem (the problem ofundecidability) using 

the lambda-calcu1us based on recursion and confirmed Godel's theorem whereby, in a 

symbolic logic system, it is impossible to find an effective method for determining 

whether a proposition Pis verifiable in this system. Meanwhile, Turing (1936) 

reached the same conclusion using a mechanical conception of computability now 

known as the Turing Machine. There are several variations of the definition of a 

Turing machine (TM) and the original (Turing 1936) is neither the easiest nor the 

most obvious. Wikipedia2 pro vides us with a clear and precise definition of this 

machine: 

2 http: //en.wikipedia.org/wikif fw·ing machine 



More precisely, a Turing machine consists of: 

1. A tape divided into cells, one next to the other. Each cell contains a 
symbol from sorne finite alphabet. The alphabet contains a special 
blank symbol [ . . . ] and one or more other symbols. The tape is 
assumed to be arbitrarily extendable to the left and to the right, i.e. , 
the Turing machine is always supplied with as much tape as it needs 
for its computation. Cells that have not been written before are 
assumed to be filled with the blank symbol. In sorne models the tape 
has a left end marked with a special symbol; the tape extends or is 
indefinitely extensible to the right. 

2. A head that can read and write symbols on the tape and move the tape 
left and right one (and only one) cell at a time. In sorne models the 
head moves and the tape is stationary. 

3. A state regis ter th at stores the state of the Turing machine, one of 
finitely many. Among these is the special start state with which the 
state register is initialized. These states, writes Turing, replace the 
"state of mind" a person performing computations would ordinarily be 
m. 

4. A finite table[ . .. ] of instructions[ ... ], given the state[ .. . ] the machine 
is currently in and the symbol[ ... ] it is reading on the tape (symbol 
currently under the head), tells the machine to do the following in 
sequence [ .. . ]: Either erase or write a symbol [ ... ], and th en Move the 
head ([ . .. ]'L' for one step left or 'R' for one step right or 'N' for staying 
in the same place), and then Assume the same or a new state as 
prescribed [ . .. ]. 

Note that every part of the machine (i .e. its state, symbol-collections, and 
used tape at any given time) and its actions (such as printing, erasing and 
tape motion) is finite, discrete and distinguishable; it is the unlimited 
amount of tape and runtime that gives it an unbounded amount of storage 
space. 
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Though still abstract with its infinite tape, the Turing machine is clearly a concrete 

approach to computability based on mechanisms (like any machine by definition). 

These physical mechanisms relate to causality rather than to implication as would any 

formai logical approach like Church's thesis based on recursion. Using mechanisms 

suggests that the change of state and the writing of symbols are caused by the reading 

of a symbol in a given state. This set of mechanical ru les forms an algorithm. 
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Considering the equivalence of the two theories, nowadays, we usually refer to the 

Church-Turing thesis, but, here, as we will focus on specifie aspects of Turing's 

approach, we present the computational hypothesis in terms of a Turing machine: 

Hl- Computational Hypothesis (or computational axiom) 

Any algorithm may be performed by a Universal Turing Machine3
. 

With the development of the transistor in the 1940s and the rapid development of 

computers thereafter, there can be no doubt anymore, the Turing machine is real4
, this 

is no longer a hypothesis. Computer science is based on this axiom and produces 

daily increasingly powerful algorithms. Markov (1960) has, in a way, generalized 

Turing's approach in vectorizing its symbols and atomic states. The markovian state 

is always finite, but it is multivariate allowing a combinatorial explosion of 

representations driven by equally multivariate inputs . 

1.1.2 - The Turing test 

The Turing machine, although very abstract, is not a pure invention of the mind. To 

develop it, Turing was inspired by a "computor" in the most human sense of the 

word, that is to say, a person who "computed" with the h~lp of a pencil and a sheet of 

paper. Therefore we frnd in the machine very concrete and physical elements such as 

paper, reading and writing, symbols, etc. His objective was to mechanize the work of 

the mind ofsuch a "computor". 

3 Any set ofTM's can be simulated by a single more complex TM. We cali Universal TM the TM 
able to simulate the set of ali TM's and therefore any simpler TM. A Universal TM is not necessary for 
any algorithm ta ken individually, but it is sufficient for the most complex of them, sin ce it is sufficient 
for the set of ali (ignoring the material and temporal constraints). 
4 "Real" obviously implies that its instantiation in a computer makes the TM prone to hardware 
constraints (memory) and time constraints (speed of execution). 
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Being a good mathematician, Turing (1950) did not hesitate to generalize the 

experience: if the machine can "compute" like a human, it can think like a human. 

This was enough to awaken old dreams of artificial intelligence, but the algorithm of 

intelligence had yet to be defined. 

Adept at Extreme Programming (Beek 2000) long avant la lettre, Turing proposed a 

functionality test, or more precisely, an acceptance test to detennine if the goal bad 

been reached. Drawing on a popular game of his times, the imitation game, Turing 

(1950, § 1.) wrote: 

[The imitation game] is played with three people, a man (A), a woman 
(B), and an interrogator (C) who may be of either sex. The interrogator 
stays in a room apart from the other two. The object of the game for the 
interrogator is to determine which of the other two is the man and which 
is the woman. He knows them by labels X and Y, and at the end of the 
game he says either "X is A and Y is B" or "X is Band Y is A."[ .. . ) It is 
A's object in the game to try and cause C to make the wrong 
identification. 
In order that tones of voice may not help the interrogator the answers 
should be written, or better still, typewritten. The ideal arrangement is to 
have a teleprinter commwücating between the two rooms. Altematively 
the question and answers can be repeated by an intermediary. The object 
of the game for the third player (B) is to help the interrogator. The best 
strategy for ber is probably to give truthful answers. She can add such 
things as "I am the woman, don't listen to him!" to ber answers, but it will 
avail nothing as the man can make similar remarks. 
We now ask the question, "What will happen when a machine takes the 
part of A in this game?" Will the interrogator decide wrongly as often 
when the game is played like this as he does when the game is played 
between a man and a woman? 

Very powerful acceptance test, as Hamad (1992) points out; the Turing test is 

however of no use wh en it cornes to determine progress in instantiating the functional 

features because the specificity of the test, which, paradoxically, is its generality, is 

implicit in the behavior of the interrogator and can only be explicited by full y solving 

the original problem. In the good old imitation game, the three participants are human 
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and the three roles are interchangeable. So, any machine capable of passing the 

Turing test would naturally be able to hold any of these three roles. 

Turing's expenence, first mathematical, bas allowed the elaboration of a machine 

capable of computation like humans. His computational thesis argued that the 

machine was able to run any algorithm devised by humans since it was able to 

perform all computable functions. This was the basis of computing. 

His test was going much further; it asserted that the set of all computable functions 

was sufficient to simulate thought. Were we to give the machine all known human 

algorithms, it could think like a human. The approach was consistent with the method 

used by Turing to demonstrate the computability of n although it would have been 

necessary to show that the set of all computable functions could be regarded as a 

convergent series. This was the origin of research in artificial intelligence (AI) and 

the hatching of cognitive science (SC). Both schools were born a few months apart. 

The pioneers of AI mat Dartmouth College in 1956 at the invitation of McCarthy al. 

(1955) « to proceed on the basis ofthe conjecture that every aspect ofleaming or any 

other feature of intelligence can in princip le be so precisely described that a machine 

can be made to simulate it. » 

The hypothesis was clear: « Intelligence can be simulated by a machine ». Behind 

this hypothesis from the fathers of AI, there was identification, conscious or not, of 

the ontology of intelligence with that of computing machines. In other words, 

intelligence « processes data » following « defined rules » in order to g« results ». 

This was the basis of computationalism. 

The description of the « ru les » for the processing of « data » by intelligence was not 

nearly as simple as the 1955 invitation implied. For over a century, psychologists 

have tried to define a scientific approach to the operation of intelligence. From 
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Wundt's experimental psychology to John B. Watson's (1913) behaviorism through 

Freud's psychoanalysis and Pavlov's classical conditioning, the functionality of the 

intelligence was still far from the precise description required to allow computer 

simulation ( « ... every aspect of leaming or any other fe a ture of intelligence can in 

principle be so precisely described that a machine can be made to simulate it »). And 

yet, behaviorism, which prevailed as the dominant theory in psychology at ti me of the 

meeting in Dartmouth, would be challenged by Noam Chomsky (1959) in his review 

ofB.F. Skinner's book« Verbal Behavior ». 

Especially that sorne participants, and even the organizers, came to the conference 

with a very different approach to simulating the operation of intelligence. As stated in 

the invitation (McCarthy al. , 1955) 

M. L. Minsky, Harvard Junior Fellow in Mathematics and Neurology, ... 
has built a machine for simulating leaming by nerve nets and bas written 
a Princeton PhD thesis in mathematics entitled, 'Neural Nets and the 
Brain Model Problem' which includes results in leaming theory and the 
theory of random neural nets. 

The door was already open to a connectionist approach based on neurology and 

biology with reference to the work of Donald O. Hebb (Hebbian learning). 

Both schools have, since that time, cooperated to achieve converging objectives. 

Proponents of AI used mathematical sciences and rising computer sciences to 

produce an artificial intelligence, white experts in Cognitive Sciences tried to apply 

the emerging paradigm of mechanical information processing to unify the 

philosophical and psychological knowledge. However, it is not these differences in 

objectives or origins that lead to the greatest conflicts, but rather the two basic 

assumptions mentioned above re garding: 1) the simulation of the mind and 2) the 

simulation of the brain. 
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1.1.3 - Computationalism 

By computationalism we mean Putnam's functionalism (1965) and Fodor's 

representationalism (1975). In cognitive science, functionalism is the general 

ontological thesis that mental states are functional states. Although it is not ipcluded 

in the functionalist theory, it is generally understood that it is functional states of the 

brain5
. When we want to exp lain this assumption, we say that functionalism was 

added a token psychoneural identity thesis (Bick1e 1998), that is to say that each 

occurrence of a mental state is a state of the brain. Putnam's functionalism is said 

"machine functionalism" or "Turing machine functionalism" since, according to him, 

the functional states that are mental states are computational states described as those 

of a Turing machine, that is to say with reference to the symbolic inputs and outputs, 

and to other computational states that a mental state is bound to by the instructions in 

the instruction table (i.e. the program) in the Turing machine. Since the symbols in a 

Turing machine are representations when the instructions are interpreted as 

computations, Putnam's functionalism is already representational. Fodor (1975) takes 

up and strongly defends this representationalist functionalism6 and adds the thesis 

that each representation has roughly the syntactic form of a sentence of a natural 

language, particularly the predicative form (subject- predicate) of su ch sentences. 

So defmed, computationalism includes much of cognitivism. In Putnam's and 

Fodor' s times, cognitivism excluded neuroscience, and it was believed that it was 

sufficient to understand the program (the instruction table in the Turing machine) 

since we knew that if there was one physical implementation of the Turing machine 

5 It is relevant today to clarify this addition, because various philosophers defend functionalism, but 
reject the thesis oftoken psychoneural identi ty to replace it by a thesis oftoken psychophysical 
identity: each brain state is a physical state, but not necessarily a physical state of the brain (could 
include physical states of the body or of the environment (Clark, 2008). 
6 There are fonns of non-representationalist functionalism; see Armstrong 1968. 
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with this program, there were infinitely many and they did not all have to be brains. 

So, the basic idea was reversed; rather than having the machine thinking like humans, 

it would be the humans who would think like machines: the theory of information 

processing based on inputs, outputs and manipulation of syrnbols. This reversibility 

was explicitly stated by Newell and Simon (1976) in their physical symbol systems 

hypothesis: « A physical symbol system has the necessary and sufficient means for 

general intelligent action. » 

We can therefore summanze the computationalist approach by a psychological 

hypothesis: 

H2a - Psychological hypothesis (which we will not accept) 

Intelligence is directly algorithmizable. 

Searle (1980) harshly attacked computationalism and syrnbolic systems with a 

thought experiment, now famous under the name of "Chinese Room", where he 

shows that the manipulation of syrnbols does not imply any understanding of the 

syrnbols and even less of the handling itself. 

Harnad (1990) redefined the impasse as the syrnbol grounding problem. In a 

syrnbolic system, ail syrnbols can only be defined from other symbols and no syrnbol 

is, for the system, grounded in the real-world experience. 

It is therefore not surprising that the computationalists (including Fodor, Chomsky, 

Pink er) have often been innatist or nativist; otherwise, where could the symbols ... or 

grammar come from? 

1.1.4 - Connectionism 

In parallel, another approach was growing based on a biological hypothesis: 



H2b - Biological Hypothesis 

The brain is algorithmizable. 

12 

Connectionism opted to algorithmize the brain, trying to madel the neural 

mechanisms. Several generations of models have followed since McCulloch and 

Pitts's binary neurons (1943), to the recent spiking neurons including the rate 

neurons. It is important to note Rosenblatt's perceptron (1957) which has had sorne 

success until Minsky and Pappert (1969) demonstrated the limits of its linearity. The 

ensuing ardor-cooling greatly favored the psychological hypothesis relatively to the 

biological hypothesis. Rumelhart, McClelland and the PDP Research Group (1980) 

revived interest with a research program using multi-layer perceptrons with a leaming 

rule based on error back-propagation. The computational difficulties of perceptrons 

did not facilitate the acceptance of connectionism, but the reluctance of many mainly 

resided, and still reside, in the reduction of thought, intelligence, mind, cognition into 

simple cellular mechanisms. 

Connectionism still keeps its neuro-biological inspiration in spite of its mathematical 

appearance. Maass (1997) speaks of a second and a third generation of models that 

attempt to capture more accurately the behavior of biological neurons. The inspiration 

for the second generation goes back to the first steps of neuronal responses to 

electrical stimulation represented by frequency to current curves (see Error! 

Reference source not found. 7) showing the spiking frequency (in Hz) of pulses 

(action potentials) as a function of injected electric current (in mA). This approach 

helps to understand the neural signal as a continuous analog signal. 

7 Figme I.l taken from Eliasmith and Anderson (2003 p34), presents three typical response curves 
published by McCormick al. (1985) representing the relationship between the frequency of action 
potentials and the intensity of the current injected into a dendrite. 



------------------------------- -------

13 

300 

-N 
r 200 ->-
0 
c 
Q) 
::J 
C' 100 Q) .... 

u.. 

0 .5 1.0 1.5 2.0 
lnjected Current (nA) 

Figure I.1 -Rate neurons ' frequency-current curves (see footnote 7) 

On the other band, as Maass points out, sorne (Perrett, Rolls, and Caan, 1982 and 

Thorpe and Imbert, 1989) have demonstrated that the computation time of pulse rates 

was not compatible with the ultra-fast response (20-30 msec) of sorne complicated 

cortical networks (ten synaptic connections chain) including neurons at relatively low 

frequencies (<100 Hz). Maass provides also a long list of experimental evidence 

indicating that the timing of each pulse taken individually may be important in the 

encoding of information. The third generation models, called spiking neurons, 

include these biological considerations by using space-time differentiai equations in 

modeling the dendritic integration. These differentiai equations necessarily introduce 

the dynamic aspect essential to cognition according to van Gelder (1996). We will 

return to these issues in the second chapter where we will talk about modeling the 

brain . 



14 

We will keep in mind that connectionism is fundamentally computational in the sense 

of the Church/Turing thesis although it is radically opposed to the abstract 

computationalism of the functionalists and representationalists of putnamian and 

fodorian influence. We will also remember that the continuous and analog appearance 

of second generation models may provide some answers to the question of symbol 

grounding and that it is important not to sacrifice this advantage to take into account 

the individual dynamics effect of each pulse in our third generation models. We will 

try to justify the merits of these allegations in the second chapter where we will 

explain more precisely the mathematics and semiotic aspects of biological and 

artificial neurons . 

Connectionism, situated embodiment and biologically plausible dynamics are based 

on a strongly constructivist conception of brain development and therefore, for their 

proponents, of thought, intelligence, mind, cognition. Elman al. (1996) redefined 

nativism according to this conception and state (p361): 

[ .. . ] representational constraints (the strongest form of nativism) are 
certainly plausible on theoretical grounds, but the last two decades of 
research on vertebrate brain development force us to conclude that innate 
specification of synaptic connectivity at the cortical level is highly 
unlikely. 

When Elman al. (1996) talk about architectural nativism, they refer to the constraints 

that heredity imposes directly on brain organization. We would go further and say 

that these genetic constraints are imposed indirectly on brain development by the 

body architecture, which itself is defined by genes. 

Long before them, Piaget (1936) also observed and analyzed the development of pre­

verbal intelligence by focusing on the importance of what is acquired in relation to 

the innate. Y et it must be admitted, with Elman al. , that, if the representations are 
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(most likely) not innate, the constraints controlling the development of the brain are 

full y defined 8 by genetic inheritance (by the set of sensors and actuators 9 at its 

dispos al including the ir initial settings) and by the biological ru les of operation, 

leaming and development. 

However, the embodied and situated connectionism is not sufficient to completely 

solve the symbol grounding problem. Floridi (2011 b section 6.2) introduces a Zero 

semantic commitrnent requirement, or Z condition, stating that: 

The challenge posed by the SGP [symbol grounding problem] is that 
a. No form of innatism is allowed; no semantic resources (some virtus 

semantica) should be magically presupposed as already preinstalled 
in the AA [artificial agent] ; and 

b. No form of extemalism is allowed either; no semantic resources 
should be uploaded from the ' outside' by sorne deus ex machina 
already semantically proficient. [ ... ] 

c. The AA may have its own capacities and resources ( e.g. 
computational, syntactical, procedural, perceptual, etc., exploited 
through algorithms, sensors, actuators, etc.) to be able to ground its 
symbols. (Floridi 2011 b p 13 7) 

Floridi ' s entire chapter 6 demonstrates that the proposed solutions to the symbol 

grounding problem, whether representationalist as in Hamad (1990), Mayo (2003), 

Sun (2000), semi- representationalist as in Davidson (1993), Vogt (2002a, 2002b), 

Rosenstein and Cohen (1998), or non-representationalist as in Brooks (1990), Billard 

and Dautenhahn (1999), Varshavskaya (2002), do not pass the test of the Z condition. 

8 Waddington (1956) would have said "channeled". 
9 AJthough it is not quite right, the terms "actuators" and "effectors" are often used interchangeably. 
Effectors affect the environrnent ( e.g. an arm) while actuators are the elements ( e.g. muscle, mo tors) 
enabling the effector to execute the action. Effectors may have multiple degrees offreedom while 
actuators generally refer to a single degree offreedom. We will use actuators, in parallel with sensors, 
because we are interested in decomposing action, and perception, to the cellular leve!. 
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1.1.5 - The computationalism- connectionism cleavage 

In summary, we have attempted to show that connectionism, as well as 

computationalism, draws its source from the axiom of computationality, thus from 

the Church-Turing thesis. We consider that connectionism does not reject 

functionalism, nor representationalism, nor symbolism, nor cognitivism, but it differs 

main! y from computationalism by the abject of its modeling which is at the physical 

level, the concrete and mechanical leve!, of the brain, rather than at the level of the 

mind, the thought, the intelligence, the cognition, which is much more abstract and 

phenomenological. This computationalism-connectionism cleavage, which is the 

conteri:lporary version of the Leibnitzian gap, is at the heart of the difficulties in 

unifying the cognitive sciences and must be bridged to enable them to achieve their 

ultimate goal and produce artificial intelligence. 

1.1.6 - Argument summary 

Table 1.1 - Is (strong) artificial intelligence possible? 

P1 10
. All computable functions can be executed by a Turing machine (TM) 

(Turing's thesis) 

P2. Mental functions are computable functions (computationnalism) 

C 1. Hence, mental functions can be executed by a Turing machine 

(Turing's test, Putnam's functionalism, Fodor's representationalism) 

10 Pn =Proposition n. Cn =Conclusion n. On= Objection n 



C2. Pbysical symbol systems have the necessary and sufficient means for 

general intelligent action (Newell and Simon' s Physical Symbol 

Systems hypothesis) 

01 . The physical symbols manipulated by the system are not understood by 

the system (Searle's Chinese room argument [CRA]) 

01 rephrased . The physical symbols manipulated by the system are not 

grounded in reality (Hamad 's symbol grounding problem [SGP]) 

P3. Hybrid systems canuse embodied connectionist sub-systems situated in 

a given reality to ground symbols in that reality (Hamad's solution to 

SGP) 

P3 is explicitly or implicitly supported by numerous connectionist 

approaches such as Brooks' , Pfeiffer's, Steels ', etc .. 

P3 is compatible with Smolensky's thesis; cognitive systems must be 

explained at a sub-conceptuallevel by sub-symbolic systems. 

02. Situated embodied connectionist sub-systems cannot develop their own 

semantic without externat contributors such as innateness or 

programming (Floridi's Z condition - « zero semantic commitment 

condition ») (P3 is necessary but not sufficient) 

C3 . Renee, to have general intelligence, a system must: 

1. use physical symbols grounded in reality and 

2. have no externat semantic contribution, neither innate, nor 

programmed. 

17 
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1.2 - Fundamental hypotheses 

We cannot talle seriously about cognition and knowledge, computing and information 

processing, without having an idea of what information is. But where does 

information come from? We believe that there are sorne basic assumptions implicitly 

hidden behind the computational axiom. 

1.2.1 - Physicalism 

If we reject out of band the Cartesian substance dualism, we can, actually we must, 

posit a highly materialistic ontological assumption. 

H3 - Ontological hypothesis 

Everything is matter/energy. 

To include energy and wave phenomena, we prefer to speak of physicalism rather 

than materialism; a physicalism that focuses on the physical properties and conceives 

objects as instantiations of a set of physical properties. 

Each element of matter/energy ( each atom) bas its own properties. There are intensive 

properties, as the type of atom and the energy levels, and extensive properties which 

depend on the number of bonded atoms and on the intensive properties of each of 

these atoms. Modem quantum physics deals with particles that make up the atoms 

and their specifie properties, but to talle about cognition, the molecular leve! is weil 

below the levels commonly used and appears to us as being sufficient, but also 

necessary, to understand the concepts of object, signal and information. 
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1.2.2 - Infonnation 

Without matter/energy, there is nothing, no space, no time, nothing. But as soon 

as there is matter/energy, information appears. Space-time cornes from a 

differentiation between elements of matter/energy and any difference is a piece of 

information. This is what Floridi, in his Semantic Conceptions of Information (Floridi 

2011a), refers to as the« diaphoric 11 definition of data». According to Floridi (2011b 

p85-86), 

the diaphoric definition of data can be applied at three levels: 
1 Data as diaphora de re, that is, as lack of uniformity in the real world 

put there. [ . .. ] They are pure data or proto-epistemic data, th at is, data 
before they are epistemically interpreted [ ... ]. 

2 Data as diaphora de signa, that is lack of uniformity between (the 
perception of) at least two signais such as [ . .. ] a variable electrical 
signal in a telephone conversation, or the dot and the line in the Morse 
alphabet. 

3 Data as diaphora de dicta , that is lack of uniformity between two 
symbols for example the letters A and B in the Latin alphabet. 

Any difference in any of a thing's (res) physical properties is a de re (about this 

thing) data. Note that by thing we mean any abject, from the simplest atom to the 

universe in all its complexity, and this abject is physical if it has physical properties. 

A de signa (about the signal) data is a difference in the signal's (signum) physical 

properties, thus a de re data about this thing called the signal, and finally a de dicta 

(about the word) datais a difference in the word's (dictum) physical properties, thus a 

de re data about this thing called the word. So, why three categories? What is so 

special about signais and words? 

11 From diaphora ( o1arpopa in greek) meaning difference. 
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Usually, we are not interested in the de signo data of signais because they carry more 

data, de re data, about other things. To take Floridi's example, « the variable 

electrical signal in a telephone conversation » is not interesting as a variable electrical 

signal, but because it bides at another level (because it contains or bears) a 

conversation. And this conversation is not interesting for the de dicto data of the 

words that make it up, but for the de re data of the things that those words represent. 

The ward is out, "represent"; de signo and de dicto data are representations of other 

de re data about other things whether or not directly visible in the immediate 

spatiotemporal reality. In fact, the spoken or written ward is a sound or visual 

reification of mental abject representations; this mental abject reified thereby 

becoming a noticeable physical signal by others. In this thesis, we will only 

accidentally mention de dicto data (words), since we are interested in the preverbal 

sensorimotor intelligence. We will focus mainly on signais and on the two levels of 

de signo data (the properties of the signal) and de re data (the meaning of the sign 

carried by this signal). 

Floridi (2011a) considers that « Data [ . .. ] can have a semantics independently of 

any informee. » It is not intended to define where this meaning cornes from, only that 

it exists independently of the informee. To support this assertion, he recalls that: 

[b]efore the discovery ofthe Rosetta Stone, Egyptian hieroglyphics were 
already regarded as information, even if their semantics was beyond the 
comprehension of any interpreter. The discovery of an interface between 
Greek and Egyptian did not affect the semantics of the hieroglyphics but 
only its accessibility. 

However, he is reluctant to support, « the stronger, realist thesis, supported for 

example by Dretske [1981}, according to which data could also have their own 

semantics independently of an intelligent producer/informer. » Inspired by Barwise 

and Seligman ( 1997) and Dretske (1981) he de fines environmental information in 
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relation to an observer, as fo llows: « Two systems a and b are coupled in such a way 

th at a' s being (of type, or in state) F is correlated to b being (of type, or in state) G, 

thus carrying for the information agent [(the observer)] that bis G. » 

Therefore, he concedes no semantics, especially no semantic processmg 

(interpretation), to enviromnental information making it a non-semantic semiotic 

system based strictly on de signa data. This enviromnental information is a potential 

information as it becomes meaningful only for the observer able to interpret it. 

However, because it does not suffer any interpretation, this potential information is de 

facto essentially true. 

Plants (e.g. , a sunflower), animais (e.g. , an amoeba) and mechanisms 
( e.g., a photocell) are certainly capable of making practical use of 
enviromnental information even in the absence of any (semantic 
processing of) meaningful data. 

The light, generated by the sun, affects the plants and photocells by environmental 

coupling. This coupling is not merely correlative but essentially causal. An observer 

may confuse the two, but physically only the causal coupling exists, whilst the 

correlation is pure semantics. 

Isn 't this causality sufficient to make sense of the received (or perceived) 

information? The practical side of the resulting usage is certainly a viewer's 

interpretation, but it is not without giving sorne meaning to the entire causal chain 

leading from the data transmitted to sorne useful action. We will talk about this 

utilitarian semantic when we will discuss H8 and H9 towards the end of this chapter. 

Leaving the observer out of the equation (who needs a homunculus?), it is possible to 

reformulate the definition of environmental information in terms of causality: two 
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systems a and b are causally linked if, first, they are of compatible types and second, 

that a is (in the state) Fas a physical reaction to b being (in the state) G. 

This causal and utilitarian semantics of potential information 1s the basis of our 

second fundamental assumption: 

H4 - Semiotic hypothesis 

As soon as there is matter/energy, there is potential information, therefore signs. 

This hypothesis does not, in anyway, contradict the previous one (H3) as it makes 

information a property, in fact all the properties, ofmatter/energy. One could speak of 

supervenience of information on matter/energy. So, this is not substance dualism; 

there is only one substance which we cali matter/energy. This is not property dualism, 

but rather communication of properties by semiotic transmission. 

So, there are two distinct parts to information: the causal part, or de signa 

information, at the signal level and the semantic part, or meaning, of the sign carried 

by this signal. The first is physically transmitted from one system a to a second 

system b as explained by Dretske, while the second depends on interpretation 

requiring a move to a higher level of abstraction. We will use sorne basic notions of 

C.S. Peirce ' s semiotics to mark the difference, but, for now, we are concemed by the 

causal level of de signa information and, as mentioned above, we will retum later on 

semantics. 

Peirce's theory of signs (1897, 1903), spoke of icons, indices and symbols. We will 

use the same words to explain the difference we introduced between causality and 

semantics. Without rejecting, without even questioning, the definition given by Peirce 

to the terms ' icon' (« firstness »),'index'(« secondness »)and 'symbol ' (« thirdness 
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» ), we will change the order to put emphasis on a perspective of spatiotemporal 

proximity in the reference to reality. 

We will place the index first because it cornes from an immediate physical reality. 

Take, for example, the smell of the cheetah that repels the gazelle. The smell, present 

in the immediate spatiotemporal reality, causally triggers the action without reference 

to the well-hidden cheetah in the tall grass. The de signa data (the smell) acts directly. 

Piaget (1936) used the example of floorboards creaky as the mother approached the 

cradle to take the child and feed him. The link is still causal but indirect; this is 

obviously not the creaky floorboards that nourishes the child, but the mother is 

causing bath effects sufficiently correlated to seem caus ally related ... especially for a 

baby. The index is predictive rather than representative; the smell triggers the flight 

because every time the smell was perceived, the berd fled. The creaking announces 

feeding because the latter is almost always preceded by a creaking. The smell and the 

creaking are indices inasmuch as they are full y present in the immediate reality. In the 

same vein, one could speak of Pavlov's dog salivating at the sound of the bell or 

Bickerton's (1990) vervet monkeys which respond differently to three specifie sounds 

produced by conspecifics when seeing an eagle, a snake or a leopard. The vision of a 

given predator creates a specifie flight movement; it is this movement that modulates 

breathing in an equally specifie sound and hearing the sound triggers a similar flight 

movement; the flight movement is not connected to the predator, but only the sound; 

the latter is connected to the predator, but only causally, without representation of the 

predator in the listener's mind. 

The icon is second. It usually connects two physical abjects by their resemblance. By 

resemblance we mean the comrnon subset (intersection) of bath sets of properties 

specifie to each of the two abjects. The icon acts as an index relative to its referent; a 

physical abject in the immediate reality recalls a second similar abject which appears 

in a shared mental reality (imaginary); this is the beginning of representation. These 
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relationships must be understood in the context of neural networks. Similar properties 

activate the same sensors. Each object has a set of properties which stimulate a set of 

sensors which, in turn, activate a more complex neuron network. If two objects have 

common subsets of properties, there will be activation of a common sub-network of 

sensors and neurons integrating, in the immediate mental reality, the two similar 

objects. The icon, present in the immediate physical reality, activates its own specifie 

neural network including the common subset which, in tum, excites the rest of the 

network specifie to an object which, though absent from the immediate physical 

reality, takes place in the mental reality. 

The symbol, which cornes third, inherits from both the index and the icon. In itself, 

the symbol is a physical object like the object it represents. However, these two 

objects refer to mental realities which have nothing in common, no resemblance, 

except that, in physical reality, they are frequently associated like the name of an 

object and that object. The presence of one or the other in the immediate reality 

causes the appearance of the other in mental reality as in the icon case. The 

relationship may also be strictly mental if, for example, an icon recalls the face of a 

person, like in cartoons, then the name of the person may also appear in the mental 

reality and may, in turn, trigger other mental objects associated with that name. 

From this we can conclude that: 

1. the meaning of the s1gn IS inseparable from the signal, but becomes 

significant only via the semantic interpretation of a conscious agent, and 

2. the signal is sufficient for the propagation of a neuronal causal chain; its 

interpretation, its meaning, is not necessary for sensorimotor behaviors. 

Finally, this conception of information is closer to de Saussure ' s (1913) than to 

Peirce' s. The signal (the sign carrier) is the signifier while the meaning of the sign is 

the signified although signifier and signified have an intentional character involving a 
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conscwus generator which we do not deem essential for potential information. It 

might also be worth no ting that this dual aspect of information also corresponds to the 

fundamental principle on which Chalmers (1995) based his theory of 

consciousness . . . but our research is limited to the preverbal and preconscious 

sensorimotor brain. 

1.2.3 - Modeling and simulation 

The link that we have established in the previous subsection between information and 

causality brings us back to Turing who was certain) y pmi of the mathematician elite 

of the first half of the twentieth century, but if we recognize his genius, is it not 

mainly for establishing a similar link between mathematical functions and physical 

causality (mechanics)? In purely mathematical terms, his machine was equivalent to 

Church's recursion, but the Turing machine was definitely causal whereas the 

Church ' s recursion was purely abstract. So, behind Turing' s computational axiom, 

there must be an essentially physicalist hypotbesis in the most causal sense of the 

term. 

Figure 1.2 shows that an algorithm according Turing establishes, by its action table, 

the causal links (mechanisms) between the outputs and the inputs. It is the input 

symbol (the signal) and not its meaning, which causes the internai change of state, but 

also, in a way, the change of state of the environment through the written symbol and 

the displacement of the tape to the right or le ft. 

By reducing causality to its simplest fom1 (any new state s +, any written symbol and 

any resulting action are function of, and only of, the current state and the input 

symbol), the Turing machine promotes the atomization of causality into its simplest 

elements (mechanisms). The new state becomes the current state the next symbol to 

be read depends on the action taken (move to the right orto the left). 



~-----------------

26 

Any causal simulation of a physical phenomenon carnes its load of potential 

information. 

By physical phenomenon, we mean the observable behavior of a physical system. A 

physical system is a closed set of physical properties subject to disturbances by the 

environment and capable of disturbing the environment. To be observable, the system 

properties must be measurable by an observer. The observer is outside the system and 

can interact with (disturb) the system. 

To simulate a phenomenon, the observer must be in the presence of two systems: one 

system (A), observed, and a second system (B), manipulated. The observer 

manipulates (disturbs) system B to reproduce the phenomena observed in system A. 

Both systems can be identical, in which case we will call them repli cas of each other. 

Current state 
s 

Input symbol 
x 

and action 
y = f(s,x) 

New state 
s+ = f(s,x) 

. . . . 
• . 

. . . 
• . 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 

Figure 1.2 - Physicalist perspective of the Turing machine 
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When replicas are placed in the same environment to eliminate (or at least minimize) 

the unintended disturbances, it is sufficient to identify the independent (or 

manipulated) variables to verify that a change in an independent variable in B causes, 

for all measured variables in this system, changes identical to the changes observed 

for the same variables in A for a similar change of the equivalent manipulated 

variables. In short, for two identical systems (replicas), identical changes of incoming 

signais result in identical state changes and identical changes of output signais since, 

the systems being identical, the causal relationships are identical. 

Simulations and models usually reproduce only a subset of the original system's 

properties. For example, statues reproduce the shape of the original respecting its 

proportions with a scaling factor. Sorne scale models, like children's toys for 

example, simply reproduce the properties of shape and color, while others are used to 

study the relationship between certain physical properties of the environment and the 

shape of the object su ch as the effect of the air speed on a miniature airfoil in a wind 

tunnel. The model's physical system remains the same as the studied physical system 

except for scaling factors , but sorne interesting properties (lift and drag) cannot be 

observed with the naked eye; so, analog translations (transductions) are required for 

measurements. Stretching or compressing springs can be used to measure lift and 

drag. The results of these measurements are necessarily of numerical order: stretching 

or compression of the order of a few millimeters. This brings us back to the Dretske 's 

principle we previously translated in causal terms: lift (or drag) and the air speed are 

causal/y coupled since any change of speed will cause a proportional change in 

stretching or compression of the springs which are indicators of the lift (or drag) . 

These indicators, in centimeters, are nurnerical, like any measure, and this takes us 

from the physical world to the mathematical world where the Church-Turing thesis 

can simulate the relationship between physical properties using computable functions 

relating numerical measurements of these physical properties. 
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A measure is a dretskeian transduction (projection) of a physical world into an 

informational mathematical world. 

HS - Strong informational hypothesis 

Any physical phenomenon can be simulated at the information level. 

If two different physical systems have, for sorne properties, the same mathematical 

(informational) representation, they are, one for the other, an analog simulation. The 

Turing machine (nowadays we can say the computer) becomes, in a sense, the 

physical medium of numerical (digital) simulation. 

1.2.4 - Argument summary 

Table I.2 - But where does information come from? 

P4. Everything is matter/energy (Our physicalist ontological hypothesis) 

P5. Physicalism ~ the existence of material objects/properties (3x, 3y), of 

states for tbese objects/properties (3s) and of causal relationsbips (3f, 

3g). 

C4. Tbese objects/properties and relationships fonn the potential 

information which can be actualized by whatever is capable to perceive 

it. 

C5 . As soon as tbere is matter/energy, there is potential information (PI) 

P6. Potential infonnation is transferred from one pbysical system to another 

physical system by causal coupling (inspired by Dretske) 



P7. A causal coupling ==> th at a change of state in a physical system 

produces (or results from) emission (or absorption) of matter/energy 

producing (or resulting from) a proportional change of state in another 

physical system (first law oftherrnodynamics) 

P8. A mechanism =def a causal coup ling between two physical systems. 

P9. A semiotic system =der a system capable of sending and rece1vmg 

potential information. 

P 1 O. This information transfer is, by definition, grounded in physical reality 

and independent of any semantic interpretation (escapes objections 01 

and 02) 

C6. Semiotic systems are sets of mechanisms grounded in physical reality 

and independent of any semantic interpretation. (from P7, P8 and P9) 

P 11 . Any computable function can be represented by an algorithm of the 

form y = f(s ,x) and s+ = g(s,x) (Turing's thesis) 

P12. Any causal coupling (thus any mechanism) may be represented by an 

a1gorithm of the form 
A + . 

L..I.S = S - S = X - y which can be approximated by 

y= f(s,x) and s + = g(s,x) (from P7 and P8) 

C7. All, and only, mechanisms are algorithmizable (from P11 and Pl2) 

P13. Any physical phenomenon can be decomposed into mechanisms. 

C8. Any physical phenomenon is algorithmizable. 

29 
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1.3 - Complementary hypotheses 

However, a simulation is not a physical reproduction. If a simulation of a waterfall 

does not wet anybody, why would anyone think that a simulation of the brain would 

think? 

1.3 .1 - Emulation 

It is obvious that a fligbt simulator will not move the plane, nor its content, nor its 

pilot to a remote destination. But in its most refined versions of virtual reality where 

the pilot sits in a full repli ca of a specifie cockpit, he (the pilot) perceives and feels all 

reactions of the apparatus as if he was really in a plane. It is clear that much of the 

information processing required to guide the aircraft is in the brain of the pilot. 

Consider now a similar expenence where a drone flying over Afghanistan is 

controlled from a bunker somewhere in Colorado, USA. We are not talking 

simulation anymore; the drone is a real airplane actually flying above Afghanistan, 

potentially attacked by surface-to-air missiles and able to drop bombs on very real 

target. The pilot, seated in bis bunker, immune to all danger, receives all kinds of 

information about the state of the drone, but does not physically feel anymore the 

drone's reactions. This is made possible due to Shannon' s mathematical theory of 

communication (1948). So, the pilot, in Colorado, can remotely control the drone, in 

Kabul, because it receives and transmits information to the drone regardless of the 

means used for telecommunication. 

As Shannon bas shown, sucb telecommunications is subject to very specifie time 

constraints. Let's go now to Houston, USA, wbere the Mars Rover engineers would 

love to, like the pilot in Colorado, remotely control their robot in its exploration of 
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the Red Planet. But communication is not possible because a radio signal takes from 

3 to 21 minutes to travet the distance between Earth and Mars depending on their 

relative positions, not to mention the interference of the sun when it is in between. 

For these engineers, there is no escape, cognitive functions (at least sorne of them) 

must be implemented in the robot; no human brain can be close enough to remotely 

control the robot. Obviously, they will use all available digital and analogue 

simulations to study how a human would guide such a robot, analyzing the reactions 

of humans to different information provided by the simulated robot. These functional 

relationships between the information received by the human and the action taken can 

simulate human cognition at an infonnational level. As rough as this simulation can 

be, it allows us to extrapolate Shannon's theory on the transport of information 

(communication) to the level of information transformation (information processing 

or cognition), and to posit the following hypothesis: 

H6 - Informational hypothesis of cognition 

Cognitive phenomena can be emulated because they are strictly 

informational. 

By emulated, we understand that the human intervention between the information 

received and the action taken can be replaced by its simulation (as rough as it might 

seem), provided that sorne causal chain at the signal level can translate the received 

information consistently into a message decodable by the robot's effectors while 

respecting the system's dynamics, or if you prefer the time constraints mentioned 

above. 

1.3 .2 - Granularity 

However, do not be mistaken, the causal chains do not exist at the phenomena or 

behavior level. At best, one could find mere correlations. To refine the simulation, it 
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is necessary to detail the description of the human perceptions and actions, but those 

cannot be described beyond the language concepts associated with the categories of 

identifiable objects while perception and information differentiation begin at a 

significantly subconceptual and subobjectal 12 level as Smolensky said (1987) in his 

hypothesis 8: 

The subsymbolic hypothesis: The intuitive processor is a subconceptual 
connectionist dynamical system that does not admit a precise formal 
conceptual-level description. 

In fact, any information used by engmeers to control Mars Rover, like any 

information transmitted by the drone's remote pilot is already semantically 

interpreted. Take, for example, three simple instructions to the drone pilot: speed, 

altitude and orientation of the aircraft. These properties are measured, respectively, 

by a Pitot tube, a barometer and a compass. Each measure, each indication is 

transmitted to the driver with a label; so, clearly pre-interpreted. 

On the other band, the drone may also be provided with a camera. In this case, it is 

quite different for the interpretation of the captured images. In agreement with the 

Shannon's theory, the drone can telecommunicate all collected information to the 

pilot with sufficient precision for him to interpret the content of the image and fly 

visually by identifying significant objects in the landscape. It must be understood that 

the image, transmitted after digitization of punctual signais, can be approximately 

(but accurately) reconstructed on a receiving screen whicb, in tum, emits physical 

(light) signais capable of causally interacting with the pilot's brain in the same 

12 Objectal= related to the object. In French, objectal is a neologism introduced by Lacan because 
objective had taken a different meaning. With the prefix sub-, we use it to refer to properties of an 
object which, although inexistent independently of the object, can be perceived before or without 
perception of the object itself. 
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manner that the signais picked up by the camera would have interacted with his brain 

bad the pilot been on board the drone. As the signal carrier bas been translated several 

times between the emitting objects 13 in Afghanistan and the pilot's eyes in Colorado, 

one can conclude that most of the essential information was saved at the punctual 

level in each pixel point by reproducing the intensity and geometrie structure. 

In fact, dretskeian physical transduction always occurs at the punctual physical level, 

at the pixel level for visual signais, which we could generalize as the level of 

"sensels" for any sensitive element, taking sensitive as active for the receiver capable 

of sensation and perception and passive (or perceptible) for the signal emitted or 

modified by an emitter or reflector. These sensels are, somehow, the atoms of 

information and it is from these sensels that must be built all semantics. 

Going back to Houston, we understand th at the Mars Rover engineers can (and they · 

do it very well indeed!) establish between semantically interpreted signais, such as 

speed, direction and power, equally preconceived links bringing back to mind 

Braitenberg's vehicles (1984), Brooks' subsumption architecture (1986) and Brooks' 

(1989) and Arkin 's (1998) behavioral robotics. They can even pro gram sorne shape 

and color recognition software to interpret the pixels transmitted by high definition 

cameras, but not without instilling in the robot a minimum of preconceived 

semantics. They certainly produce subsymbolic systems which might approach 

symbol grounding, but which certainly do not meet Floridi ' s Z condition. Although 

the signais are natural and real, the links between these signais are still artificial, 

extemally designed and programmed. The algorithms are implemented by an extemal 

observer capable of semantic interpretation. To achieve the Z condition, it is not 

sufficient to automate the robot' s response, it is necessary to automate the extemal 

13 Technically we should say reflectors since it is by selective! y reflecting sunlight that different 
objects different! y affect the camera sensors. 
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observer's work, his algorithm generation. We must therefore automate automation, 

algorithmize algorithmization; do what von Foerster (1974) called cybemetics of 

cybemetics or second-arder cybemetics 

In the Smolensky's context, one must understand that the subsymbolic systems are 

from a subconceptual level, but not yat the neuronal level; that is to say not yat the 

brain ' s strictly physically causal level, and therefore not totally free of semantic 

interpretation. Hamad (1992) pinpoints essentially the same thing by distinguishing 

between the Turing Test (TT or T2), the Total Turing Test (TTT or T3) and the Total 

Total Turing Test (TTTT or T4) which could be identified with Smolensky's 

conceptual, subconceptual and neural levels. Symbolic systems, working at the 

conceptuallevel, can pass the T2 if and only if they are supported by sub- symbolic 

systems working at the subconceptual level and able to ground symbols in a physical 

reality. For Hamad, robotics is a necessary complement to symbolic systems for 

TOTAL performance evaluation. .. and symbol grounding is no more th an an 

appreciable « bonus. ». This overall performance cri teri on (intellectual performance 

plus sensorimotor performance) is not part of Turing's performance criterion; it was 

added by Ham ad to account for all hum an capacities not limited to pen pals ' 

activities. Y et, he notes further that « [It] may be that even successful TT capacity 

has to draw upon robotic capacity. » 

Admitting that sorne sensorimotor elements are necessary for symbols grounding 

does not imply that all the sensorimotor capabilities must be indistinguishable. A 

severely physically handicapped human could well aspire to full pen pal recognition 

without any doubt about his intellectual capacity; think Stephen Hawking. On the 

other hand, these sensorimotor elements are not sufficient to explain how relations 

develop between well-grounded symbols. Without claiming indistinguishability, we 

believe that sorne elements of T4 are essential for T2. No robot can aspire to the title 

of pen pal if its symbols and the relations between these symbols have not been 
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established and grounded in reality by the autonomous development of a 

sensorimotor brain. For an independent grounding of any preconceived semantics, we 

must emulate the brain at the neuronal level. This artificial brain is not a neuro­

molecular reproduction, but a computational emulation of a biological brain and a 

rough approximation of the latter from a sensorimotor perspective (T3) while being 

indistinguishable from a symbolic point of view (T2). This leads us to the following 

hypothesis: 

H7 - Epistemic hypothesis 

Phenomena emerge from underlying mechanisms which must be 

explainable by other underlying mechanisms as long as such mechanisms 

have a significant effect on the phenomena to be explained. 

(Only mechanisms can be algorithmized; phenomena emerge from 

underlying mechanisms.) 

In other words, intelligence (thought, mind) is not a mechanism nor a machine (set of 

mechanisms) in itself, but a property of a complex system, the brain. The concepts are 

possible only by composition of a multitude of sensels of different types and intensity 

because information is only available in this form. Recall Floridi's (2011a section 

1.3) diaphoric definition of data as discussed on page 19. The perception ofthe abject 

necessarily goes through the capture of its properties in a punctual space-time. The 

composition of these sensels in representations and concepts is the first step of 

cognition and corresponds to an organism's sensorimotor development. Note that 

these concepts do not wear labels, no symbolic referents, and can therefore only be 

activated by the presence of the abject in the immediate sensory environment. 

Symbolic referents will emerge with the advent of language. 
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The epistemic assumption thus favars the biological hypothesis based on neural 

mechanisms rather than the psychological hypothesis based on conceptual 

phenomena. However, this biological option is not without constraints as we will see 

in the next section. 

1.3.3- Argument summary 

Table 1.3 - Is emulation possible? 

P14. A simulation =ctef a composition of algorithms representing a physical 

phenomenon at the informationallevel. 

P15. An information system = ctef a semiotic system where the physical carrier 

is of secondary importance in relation to the information provided. 

P 16. An emulation =ctef a simulation of an information system 

P17. Cognitive systems =ctef informational systems 

C9. The brain is a cognitive system, thus informational. 

Clü. Cognitive systems can be emulated, i.e. replaced by equivalent 

information systems instantiated by different physical carriers. (multiple 

realizations) 

1.4 - Biological constraints 

It is bardly surprising tbat we have to consider the biological constraints since all 

known cognitive systems are biological systems. While these constraints seriously 
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complicate simulation and emulation efforts, they provide an opportunity to meet the 

requirement of Floridi ' s Z condition sin ce they involve autonomous (without externat 

control) and evolutionary (random and selective) development. 

1.4.1 - Autopoiesis 

Maturana and Varela (1980) introduced the concept of autopoiesis according to 

which, in biology, the product of the process is the process itself. Their original 

defmition (Maturana and Varela, 1980 pp 78-79) is as follows: 

An autopoietic machine is a machine organized (defined as a unity) as a 
network of processes of production (transformation and destruction) of 
components that produces the components which: 

(i) through their interactions and transformations continuously 
regenerate and realize the network of processes (relations) that 
producedthem;and 

(ii) constitute it (the machine) as a concrete unity in the space in which 
they (the components) exist by specifying the topological domain of 
its realization as a network. 

Thompson (2007 p 1 00) paraphrases this definition at the cellular lev el rn the 

following terms: 

[ ... ] a molecular autopoietic system is one in which chemical reactions 
produce molecules that (i) both participate in and catalyze those reactions 
and (ii) spatially individuate the system by producing a membrane that 
bouses those reactions . 

Figure 1.3 , slightly modified from Thompson, indic"ates that a cell delimited by a 

membrane (bounded system) generates a network of metabolic reactions which, 

tbrough DNA, RNAs and proteins, produce the components determining the 

molecular membrane and the cell contents. The membrane is necessarily semi­

permeable to let the required elements enter and the unnecessary waste leaves the 
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cell. Its primary role is to "selfishly" keep intermediary products useful for its 

maintenance. The Figure I.3 presents a "modem" cell with a complex network of 

reactions requiring sophisticated elements such as DNA, RNAs and proteins, but one 

must understand that this metabolism began with the production of semi-permeable 

membranes closing on themselves and promoting reactions involved in the 

production of elements of semi-permeable membranes. This was only the beginning 

of a long history of Darwinian evolution, hence of natural selection, even before the 

appearance of genes, but clearly generated by chance and utility. 

Autopoiesis sheds sorne light on the circular causality proposed in the thesis project a 

few years ago and described by paraphrasing Descartes: "1 eat, therefore 1 live, 

therefore 1 eat, therefore ... " Indeed, the semi-permeable membrane lets in sorne 
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elements ( eating) which fa v or certain metabolic reactions (living) which transform 

these elements and reduce their concentration, causing the membrane to let in more of 

these elements ( eat). 

For Maturana and Varela, autopoiesis 1s necessary and sufficient to define any 

biological (living) system as indicated by the following quetes: « the notion of 

autopoiesis is Necessary and Sufficient to Characterize the organization of living 

systems » (Maturana Varela 1980 p82) and « Autopoiesis in the physical space is 

necessary and sufficient to characterize a system as a living system » (Maturana and 

Varela, 1980 p112). Thompson (2007 pl24) would probably have preferred to stick 

to this position, but he still accepted arguments from Bitbol and Luisi (2005) and 

Bourgine and Stewart (2004) saying that « allliving systems are both autopoietic and 

cognitive systems, but an autopoietic system is not necessarily a cognitive system ». 

Thompson had no objection to accept as non-living, because non-cognitive, cases 

where « the system autocatalytically produces its own boundary but does not actively 

relate to its environment » (Thompson, 2007 pl25) as long as it preserved the 

identification of biological systems to cognitive systems made by Maturana in his 

first article on autopoiesis: « Living systems are cognitive systems, and living as a 

process is a process of cognition. This statement is valid for all organisms, with and 

without a nervous system. » (Maturana, 1970 pl3). 

This identification of the cognitive with the living presupposes extended definition of 

cognition including not only animais' sensorimotor activities, but also 

microorganisms ' taxes and plants' tropisms. While accepting that the taxes and 

tropisms could be signs of cognition, we can still be reluctant to recognize them as 

signs of intelligence. Like the first autopoietic systems were not quite biological, we 

could say that the first biological systems, although cognitive, were not quite 

intelligent. We can distinguish three levels of cognitive systems: the strictly causal 
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cognitive systems (SCCS), the sensorimotor cognitive systems (SMCS) and the 

verboconceptual cognitive systems (VCCS). 

The SCCS include microorganisms ' taxes and plants' tropisms. We say they are 

strictly causal because they are nothing more than a causal coupling à la Dretske or a 

de re information exchange (which we previously called "potential information" and 

which is not considered as real information by Floridi but simply as data or 

differences). These are simple unidirectional causal chains without inhibitory 

interactions ( e.g. bacteria, sunflowers, thermostats). There is no abstraction; this is 

pure and simple causality (abstraction level 0). 

The SMCS correspond to animais ' movements. The information is de signa. 

Indexical links are created by composing information. While SCCS have exclusively 

local sensors (taste, touch), the SMCS have remote sensors (hearing, smell and 

vision) . In a way, we can speak of smell as remote tasting and of vision as remote 

touching (although vision adds color to the shape and does not include thermal 

components). This multiplication of modes and the creation of intermodal links 

produce unidirectional, but interconnected and possibly inhibitory, causal chains·. 

Rats can smell the cheese and taste the cheese; the smell of cheese becomes a hint (an 

index) of an interesting meal. The same rats can smell the cat and, if the smell has 

previously been associated to an unfortunate encounter with a cat or simply with a 

frantic flight with its conspecifics in similar circumstances, they will certainly inhibit 

any curiosity and take action to escape. There is a first degree of abstraction (level of 

abstraction 1) where simple, but multiple, causal chains interact for stimulation or 

inhibition. This level of abstraction is similar to the hidden layer of a multilayer 

perceptron. 

Finally, the VCCS correspond to human consc1ous movements usmg de dicta 

information. Links are created between words and sensory perceptions or motor 



41 

actions forming a parallel plane of interactions between increasingly complex causal 

chains. This is the second level of abstraction (level of abstraction 2) which we will 

not discuss in this thesis as we have already mentioned a few times, but which allows 

us to better understand the SMCS's upper limit. The word levet allows an imaginary 

reproduction of a situation (independent of the immediate spatiotemporal reality) for 

the approximate evaluation of possible outcomes and the adjustment (including 

inhibition) of sorne less beneficiai causal chains. The signais from the remote sensors 

are not only composed, but they are interpreted to activate a causal semantic level, a 

level allowing the creation and validation of hypotheses. 

AI generally argues that intelligent systems are not necessarily biological and, more 

specifically, the artificial neural networks suggest that an (intelligent) nervous system 

is not necessarily biological. This thesis focuses on the question: «ls it possible to 

develop a non-biological, but still autopoietic, nervous system? » 

So, if we focus on autopoiesis, it is not so much at the biologicallevel, although it is, 

in nature, essential to any other level, but rather because it allows the conception of 

another level for the autonomous development of the brain. Figure 1.4 shows a 

superposition of two autopoietic loops. At the bottom, we see the biological loop 

producing and maintaining cells, the neurons, which become the cellular components 

of a neural network fed by information which stimulates reaction networks in severa! 

neurons in arder to produce neurotransmitters, ion channels and pumps, which 

modify these neurons and consequently the network ' s response to future stimulations. 

In the lower loop, the food, in the form of matter/energy, is directly involved in the 

physical structure of cells, while in the upper loop, information, a different form of 

matter/energy, activates the cells ' metabolism only to change the organization of the· 

neural network. One must see the brain, or more precisely the (single) central and 

peripheral nervous system, as a bounded system with an interface (not really a 
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membrane) consisting of frontier cells reacting to externat physical objects/properties 

(matter/energy) and transform information into neurological signais 

(neurotransmitters) and v1ce versa; therefore, this neural network bas its own 

semipermeable barrier, more specifically semipermeable to information. To be more 

precise, perhaps we should say transfer (translate, "transduce") information on 

neurological signais. 

Clearly the adaptation of each neuron depends on its genetic content, but the network 

develops (evolves) on random stimulations (received infonnation) according to the 

utility of the behavioral reactions. 

H8 - Autopoietic hypothesis 

Biological mechanisms develop autonomously in an evolutionary mmmer. 

In this double autopoiesis, information is to cognition what food is to digestion and 

what oxygen is to breathing. To better understand the relationship between 

information, food and matter/energy, let's take the example of sharks which, 

according to experts, are able to detect blood even in concentrations smaller than one 

part per million. When a shark detects a drop of blood, it is far from a meal, but if it 

uses the information appropriately (if you allow this anthropomorphism), it will be 

guided by the concentration gradient, or countercurrent, to enough food to satisfy its 

appetite. This example also helps us understand the difference between a physical 

system and an information system. When the shark smells the blood drop, it receives 

very little material content, but enough information to find the blood source. When it 

eats this source, it gets a lot of material content and very little additional information. 

The first (top loop) is a cognitive information system while the second (bottom loop) 

is a digestive physical system (hardware). The former can be emulated while the 

latter can, at best, only be simulated. 
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1.4.2 - Evolution and development 

Like DNA did not appear as soon as the first vesicle was formed, neurons are the 

result of a long evolution by natural selection. Unicellular organisms, such as 

bacteria, obviously do not have neural network since everything is within a single 

cell. Yet, food (matter/energy) entering the cell carry its own information. This 

information affects sorne reactions of the metabolic network and, thereby, participates 

in the management of the organism's behavior. This behavior can be vital or fatal for 

the organism and at the same time for reaction types . Only useful reactions will 

"survive" and will become part of the DNA. 

H9 - Evolutionary hypothesis 

Only the mechanisms, which are nondetrimental to survival, survive (Darwin). 

We are interested in the survival mechanism, not the individual's survival or the 

species ' survival, although the three are strongly intertwined. Indeed, like the 

reproduction of the individual favars the survival of the species, the reproduction of 

the mechanism promo tes the survival of the individual and the survival of the species 

favars the survival and the reproduction of the mechanism. 

As organisms become more complex and multicellular, cells specialize and organize 

themselves (to be taken as much in the sense of organization as in the sense of 

agglomeration into organs). In this evolution, neurons specialize in information 

processing and generate neurotransmitters and ion channels sensitive to 

neurotransmitters. As these components facilitate behaviors which are particularly 

useful for survival, they proliferate rapidly. Obviously, when we talk about utility, we 

are talking about nutility taking into account ali the negative and positive effects. 

Neurons are energy intensive cells; the brain uses about 25% of the total energy of the 

body. To compensate for this exorbitant cost, neurons must produce more than 
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equivalent beneficiai results. It is not as individual elements that they can produce 

such results; it is not even as an independent organ (the brain or neural network) that 

they can justify this energy consumption. The usefulness of neurons can only be 

assessed at the level of the whole organism; it is the effect of the neural network on 

the organism's behavior that will be subject to the evaluation of natural selection. As 

shawn in Figure I.3 , cellular autopoiesis is based on the reproduction of a DNA coded 

reaction network. Any new cell is similar to the neighboring cells because it contains 

a complete copy of the "recipe". As we have already mentioned, this "recipe" is the 

result of a long evolution; this is genetic inheritance. 

On the other band, Figure 1.4 shows that the neural network in the top loop is only 

indirectly affected by DNA. When stimulated by incoming information, the upper 

loop uses the reaction network in the lower loop to produce neurotransmitters or ion 

channels and pumps to modify and adjust the neural network. DNA specifies how to 

make these chemical components, but contains no information about the structure of 

the neural network. This structure is the result of the ontogenetic development of the 

brain and not its phylogenetic evolution. This is the cultural and epigenetic 

inheritance. 

Referring to Maturana and Varela' s original definition, one could say that the brain 

IS: 

An autopoietic machine is a machine organized ( defined as a unity) as a network of 

(interconnected neurons) processes of production (transformation and destruction) 

of components (connections) tbat produces the components (connections) wbich: 

(i) througb their interactions and transformations continuously regenerate and 

realize the network of processes (interconnected neurons) that produced 

them; [ . .. ] and 
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(ii) constitute it (the machine) as a concrete unity in the space in which they (the 

connections) exist by specifying the topological domain of its realization as a 

network. 

Having defined a "membrane" (interface) semi-permeable to information and a self­

adaptation process, we use this type of autopoiesis to define an organized level of 

cognition which we call intelligent systems (including SMCS and VCCS). 

For Bourgine and Stewart, like for Bitbol and Luisi, minimal autopoiesis cannat be 

described as living (biological) because it is not cognitive, because it is not actively 

involved in its interaction with the environment. The stone heated by the sun 

passively receives its energy. The vesicular membrane, which automatically mends 

itself in presence of the necessary reagents, is passively reacting to sorne homeostatic 

equilibrium that ensures constant supply of these reagents; it will never move to find 

these rea gents if the · immediate environment is impoverished. The bacterium, 

activating its flagellum when the internai glucose concentration decreases, no longer 

passively suffers environmental changes, but actively responds. The causal coupling 

is just as determined as for the stone heated by the sun, but the reaction causes an 

environmental change leading to an adjustment of the homeostatic equilibrium in 

play. The homeostatic mechanism has not changed, but the behavior modified the 

interacting forces. In this simple case, the environment ebange is caused by 

movement, but it is also possible to change the environrnent in many ways when the 

means of action (actuators) and the assessment of conditions (sensors) are multiplied 

and become more complex. 
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1.4.3 - Argument summary 

Table 1.4 - So, (Strong) artificial intelligence is possible, but how is it built? 

P18. All known cognitive systems (including the brain) are biological 

systems 

P19. Biological systems are autopoietic systems capable of autonomous and 

evolutionary development (Maturana and Varela) 

Cll. All known cognitive systems (including the brain) are autopoietic 

systems capable of autonomous and evolutionary development (meeting 

Florida' s Z condition) 

P20. The cell is the elementary component ofbiological systems 

C12. The cell (the neuron) is the elementary component (the mechanism) of 

any (known) cognitive systems 

P21. Biological systems evolve with natural selection 

C13. Only the mechanisms, which are nondetrimental to survival, survive 

(Darwin) 

P22. The advanced cognitive systems are capable of practical (sensorimotor) 

intelligence and even of general intelligence 

QED. Autopoietic semiotic systems are capable of practical (sensorimotor) 

preverbal and preconscious intelligence (from P9, P15 , P17, C9 and 

P22) 
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1.5 - Conclusions 

1.5 .1 - Identified hypotheses 

In this chapter, we identified nine hypotheses that we will use as postulates for the 

development of our model. We rejected the psychological hypothesis (H2a) and have 

preferred the biological hypothesis (H2b ). 

Hl- Computational Hypothesis (or computational axiom) 

Any algorithm may be performed by a Universal Turing Machine. 

H2a - Psychological hypothesis (which we will not accept) 

Intelligence is directly algorithmizable. 

H2b- Biological Hypothesis 

The brain is algorithmizable. 

H3 -·Ontological hypothesis 

Everything is matter/energy. 

H4 - Semiotic hypothesis 

As soon as there is matter/energy, there is potential information, therefore signs. 

H5 - Strong informational hypothesis 

All physical systems can be simulated at the information level. 

H6 - Informational hypothesis of cognition 

Cognitive phenomena can be emulated because they are strictly 

inforrnational. 



H7 - Epistemic hypothesis 

Phenomena emerge from underlying mechanisms which must be 

explainable by other underlying mechanisms as long as sucb mechanisms 

have a significant effect on the phenomena to be explained. 

(Only mechanisms can be algorithmized; phenomena emerge from 

underlying mechanisms.) 

H8 - Autopoietic hypothesis 

Biological mechanisms develop autonomously in an evolutionary manner. 

(Maturana Varela). 

H9- Evolutionary hypothesis 
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Only the mechanisms, which are nondetrimental to survival, survive (Darwin). 

The analysis of these hypotheses allowed us to emphasize the two main objections 

seemingly blocking all attempts in the development of Artificial Intelligence. The 

first, described by Searle (1980) in the Chinese room thought experiment, was 

identified by Hamad (1990) as the syrnbol grounding problem. The second, more 

recently identified by Floridi (2011) as the Zero semantic commitment condition tells 

us that the symbol grounding cannot be solved extemally neither by inneism nor by 

programming, and must result from evolution and/or autonomous development. 

1.5.2 - Cognitive thesis 

We present a cognitive thesis: « only autopoietic semiotic systems have the necessary 

and sufficient means for general intelligent action » which is a precision of Newell 

and Simon 's tbesis replacing physical symbols systems by autopoietic semiotic 
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systems. The evolution of semiotic systems eliminates the symbol grounding 

problem 14 . The autopoiesis involves self-generation of algorithms (bootstrapping) 

suggesting algorithmization of algorithmization 15 
• Sorne would rather call it 

automation of automation, cybemetics of cybemetics, or second-arder cybemetics 

(von Foerster 1979). There might be other ways to realize symbol grounding and zero 

semantic commitment, but until they are discovered, we must consider semiotics and 

autopoiesis necessary to produce cognitive systems. 

1.5.3 - Neuro-computational thesis 

Our neuro- computational theory, to be described in the next chapter, claims that it is 

possible to produce such autopoietic semiotic systems if the neurons are dynamic (to 

perceive temporal changes of information), analog (to proportionally represent the 

basic signal) and asynchronous (to allow digital communication of the state without 

extemal intervention). 

14 According to Searle and Harnad, no symbol grounding implies no cognition. The contrapositive of 
this proposition tells us that cogni tion implies symbol grounding. If we add to this that symbol 
grounding implies causal coup ling which requires causali ty leve! semiotics, we can conclude that 
cognition implies semiotics which is therefore necessary for cognition. 
15 Floridi 's Zero Semantic Conunitment condition tells us that cognition implies no innateness and no 
progranuning which implies some form of autogeneration which we interpret as autopoiesis bringing 
us to conclude that cognition implies autopoiesis which is therefore necessary for cognition. 



CHAPTERII 

Modelling the brain 

In the preceding chapter, our hypotheses led us to the conclusion that only autopoietic 

semiotic systems have the necessary and sufficient means for practical (sensorimotor, 

preverbal and preconscious) intelligence which is a necessary developmental step 

(Piaget 1936) towards general intelligent action. We will now review the evolution of 

neuron models to identify which mechanisms, if any, make the brain semiotic and 

autopoietic. 

2.1 - The neuron doctrine 

The scientific study of the brain started in the late 1700 when Luigi Galvani (1791) 

discovered that muscles and nerve cells produced electricity. In the late 1800, 

Camillo Golgi developed a method of staining neurons with silver salts that revealed 

their entire structure under the microscope which was used by Santiago Ramon y 

Cajal to elaborate his neuron doctrine. Bullock al. (2005) wrote: 

[ .. . ] it was Cajal who envisioned the neuron as an individual functional 
unit, polarized such that signais are received through its rootlike dendrites 
and transmitted through its long axonal process [(generally referred to as 
dynamic polarization)]. He posited that although an axon terminates 
adjacent to a dendrite of the next neuron [ ... ], the cleft between them 
would act as a synaptic switch regulating infom1ation flow through neural 
circuits. The synaptic cleft went unseen until a half-century later, when in 
1954 the electron microscope provided convincing evidence that 
essentially refuted the earlier "reticular" view of a nerve fiber web. 

· 1 
1 
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Sherrington (1906) was also an ardent champion of cellular connectionism. 

With the advent of electron microscopy in the 1950s, Palade and Palay (1954), Palay 

and Palade (1955) and De Robertis and Bennett (1955) demonstrated the existence of 

synapses specialized in the chemical and electrical signaling between neurons. 
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Figure II.1 - Nerve cells (neurons) and main components (from 
https ://science. ed ucation.n ih. go v /suppl ements/nih2/ addiction/ guide/! esson2-l .htm) 

Kandel al. (5th ed. 2013 ch. 2) supports Ramon y Cajal ' s neuronal doctrine specifying 

th at « nerves cells [ neurons] are the signaling units of the nervous system » leaving a 

support role to glial cells. They also add tbat « signaling is organized in the same way 

in all nerve cells » (ibid. p29) which generate « four different signais in sequence, 

each at different sites within the cell: an input signal, a trigger signal, a conducting 

signal and an output signal » (ibid. p29). This organization holds for all types of 

neurons including unipolar, bi polar or multipolar cells (classification already 
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recognized by Ramon y Cajal) . It also holds independently of the role of the neuron: 

sensory neuron, motor neuron or intemeuron (ibid. p30, figure 2-9, reproduced below 

as Figure II.2). This does not deny the recent developments in « single-channel 

recording, live cell imaging, and molecular biology » reported by Bullock al. (2005), 

but it clearly differentiates the signaling role of the neurons from the biological 

support role of the glial cells; a differentiation we already alluded to wh en discussing 

double autopoiesis in section 1.4.1 . 
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The presence of a (potentially information carrying) signal is sufficient to declare the 

neuron semiotic. The "meaning" is not yet obvious, but we will come back to 

semantics later on. 
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2.2 - The spiking neuron 

Lapicque (1907) 16
, inspired by Nemst (1899) and Nemst and Barratt (1904), was the 

first to use an equivalent electrical circuit to analyze the threshold behavior of semi­

permeable membranes like organic tissues. This equivalent circuit is the first element 

of a model of a biological neuron. It is not a graphical representation of the form of a 

neuron like those produced by Ramon y Cajal using Golgi 's staining technique. 

Forms and co lors are not part of this representation like we have been accustomed to 

by arts such as sculpture, painting and photography. However, the dynamics of the 

threshold behavior is fully represented like the dynamics of movements can be 

represented in animated movies and, to some extent, in music. When we talk about 

modelling neurons and, later on, the brain, we are referring to this kind of 

representation of dynamics which implies solution (computation) of differentia! 

equations or numerical approximation (also computation) thereof. 

Hodgkin and Huxley (1952) provided « a quantitative description of membrane 

current and its application to conduction and excitation in nerves » focusing on « the 

flow of electric current through the surface membrane of a giant nerve fibre ». By « 

giant nerve fibre », we should understand the giant axon of the squid which do es not 

include the entire neuron. Hodgkin and Huxley, like Lapique, were interested in 

modelling the dynamic behavior of the neuron, more specifically the action potential 

running down the axon. They were, in fact, modelling a mechanism which will be 

later identified as voltage-gated ion channels. Lapique had shown that the membrane 

became permeable when the voltage exceeded a given threshold; a first hint at the 

triggering portion of Kandel's canonical model. Hodgkin and Huxley extended the 

observation to sodium, potassium and chloride ions showing that the conductance of 

16 For an english version see Brunei and van Rossum (2007). 
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sodium and potassium were functions of time and membrane potential. Their model 

could simulate the triggering of an action potential and its propagation along the axon 

up to the terminal. 

Meanwhile, McCulloch and Pitts (1943), interested by the computational possibilities 

of the neurons, bad introduced a rudimentary model neglecting the dynamic behavior, 

but combining a linear weighted summation model of the dendritic tree with a 

thresho1d triggering of the action potential. Although they were addressing most of 

the behavior of the neuron ( dendritic summation, threshold triggering, weighted 

communication), their interest for binary logic (a mental function) brought them to 

oversimplify sorne known properties (dynamics) of the neuron. The boundary 

between computationalism and connectionism was already blurred: the model was 

clearly neurally inspired, while the objective was mentally directed. 

McCulloch and Pitts' simplification was not limited to neglecting the transient 

dynamics of action potentials to carry the signal along the axon (which is probably 

acceptable in most cases except for very long nerves where there is a significant delay 

between the triggering of the action potential and the emission of neurotransmitters at 

the axon terminal), but also neglected the phenomenon originally reported by Adrian 

(1926ab) and Adrian and Zottennan (1926ab) about rate (or frequency) coding stating 

that the rate (or frequency) of action potentials increases wh en the intensity of the 

stimulus increases (as shown on Figure L 1 page 13). 

Stein (1965) proposed an algorithm describing the operation of a leaky-integrate-and­

fire neuron (LIF) with linear accumulation of input impulses until a threshold is 

reached which triggers firing and resets accumulation (or depolarization) to zero, 

while for subthreshold levels the accumulation decays exponentially between 

impulses. Clearly in this case the intent is to represent the entire neuron from the 

dendritic summation to the emission of action potentials (AP). Like McCulloch and 
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Pitts, Stein reduces Hodgkin and Huxley's detailed calculations of membrane currents 

to a simple impulse to represent APs; we have already accepted this simplification. 

On the other hand, the reduction of the dendritic tree to a single point where pulsed 

( current) inputs are linearly summed up un til the threshold is reached, at which 

moment the accumulation vanishes to restart from zero, is probably an 

oversimplification. An oversimplification because 1) the en tire dendritic tree cmmot 

be instantly repolarized nor 2) can the opening of a sodium chatmel have the same 

effect when the neuron is highly depolarized as when it is fully polarized. 

Biological neurons are essentially dynamic. At the same time, they must also 

implement sorne kind of logic. Compromising one characteristic to accommodate the 

other leads to incompleteness. The dynamics have to encompass the entire dendritic 

tree with all its synapses as well as the axon with its communication power. Clearly, 

the logic transforming synaptic inputs into axonal action potentials is not classical, 

not binary; values have to be continuous, analog, graded and the logic becomes fuzzy 

with decisions which are neither conjunctions nor disjunctions, where no input can be 

sufficient nor necessary, except in very specifie cases ( e.g. for sensors, a specifie 

input is both sufficient and necessary). 

2.2.1 - Synaptic plasticity 

Hebb (1949) introduced the hypothesis that would define neural networks and explain 

the adaptation of neurons in the brain during the learning process. 

When an axon of cell A is near enough to excite a cell B and repeatedly 
or persistently takes part in firing it, sorne growth process or metabolic 
change takes place in one or both cells such that A's efficiency, as one of 
the cells firing B, is increased. 
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The mathematical formulation ofHebb's rule took many forms and the most popular 

and successful was proposed by Rosenblatt (1957, 1962). Applying Hebb's rule to 

McCulloch and Pitts neurons, he developed the perceptron, a linear classifier, which 

seemed promising until Minsky and Pappert (1969) showed that it was impossible for 

these networks to learn an XOR function. 

Rumelhart, McClelland and the PDP 17 Research Group (1986) brought the perceptron 

back to life by adding hidden "units" between the input "units" and the output 

"units" . 'fhis multilayer perceptron, as they called it, could handle the XOR function 

and other non-linear functions thanks to the additional degrees of freedom in the 

hidden layers. A elever mathematical procedure, called back-propagation (Rumelhart, 

Hinton and Williams 1986), made it possible to adapt supervised learning (Hebb's 

rule) to the multilayer network. Like McCulloch and Pitts and Rosenblatt before 

them, the PDP group put the emphasis on the function and neglected the biological 

dynamics of the neurons . According to our computationalist/connectionist cleavage, 

their methodology was decidedly connectionist, but their objective was clearly 

computationalist; even the vocabulary shifted from "neurons" to "units" to avoid 

having to justify any biological plausibility. 

The discovery of long-term potentiation (LTP) by Bliss and L0mo (1973) provided 

the first experimental evidence for synaptic plasticity. High-frequency tetanie 

stimulation, driving postsynaptic neurons to fire, leads to LTP, an increase in the 

synaptic response to single stimulus. Subsequently Hebb ' s postulate was extended to 

encompass long-term depression (LTD) as a necessary converse ofLTP (Stent, 1973; 

Sejnowski, 1977). Low-frequency stimulation, not driving postsynaptic neurons to . 

fire, leads to LTD, a decrease in the synaptic response to single stimulus. LTP and 

17 Parallel Distributed Processing 
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LTD of inhibitory synapses (referred to as LTPi and LTDi) have also been observed 

as reported in Maffei (20 11). 

With new technologies and new procedures (such as dual whole-cell voltage 

recordings), it became possible to perform new experimental studies on the precise 

(sub millisecond) relative timing of spikes emitted on both sides of a monosynaptic 

connection between two paired neurons (Markram al. , 1997ab). According to 

Sjostrom and Gerstner (2010), 

Spike Timing Dependent Plasticity (STDP) is a temporally asymmetric 
form of Hebbian leaming induced by tight temporal correlations between 
the spikes of pre- and postsynaptic neurons. As with other forms of 
synaptic plasticity, it is widely believed that it underlies leaming and 
information storage in the brain, as well as the development and 
refinement of neuronal circuits during brain development (e.g. Bi and 
Poo, 2001; Sjostrom al. , 2008). 

This procedure is difficult to generalize to multiple pre- and postsynaptic spikes as 

indicated by the multiple attempts including: Kempter al. (1999), Song al. (2000), 

Izhikevich and Desai (2003), Abbott and Nelson (2000) and Wittenberg and Wang 

(2006). Clopath (20 1 0) proposes an interesting solution based on virtual traces of the 

cellular potential at the synapse which are sui table for a phenomenological model, but 

do not provide any explanation or understanding of the underlying causes. We will 

come back with more details on this subject when time cornes to define how our 

model deals with synaptic plasticity. 

STDP emphasizes the importance of the temporal correlation, temporal coïncidence, 

of pre- and postsynaptic activity for leaming to take place. It is like something 

happens (locally) at the synapse while the channels are opened and that something 

depends on the global state of the postsynaptic neuron. 
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2.2.2 - Metaplasticity 

However, it is weil known that repeated hebbian (associative) strengthening results in 

runaway synapses (Trappenberg, 2002, section 4.4; O'Reilly and Munakata, 2000, 

Ch. 4). Oja (1982) proposed to normalize the strength of synapses on a given neuron 

such that their sum remained constant. This approach eliminates the possibility that 

all synapses saturate at a prescribed maximum, but tends to isolate the most active 

synapse in a kind of principal component or eigen-value analysis. Bienenstock, 

Cooper and Munro (1982), hereafter referred to as BCM, introduced yet another 

approach where the threshold (BM) between LTD and LTP (antihebbian and hebbian 

learning) evolves with the recent activity of the postsynaptic neuron. The BCM 

method ensures the relative selectivity of each synapse while avoiding saturation of 

any of them except for the very unlikely case of a continuously activated synapse in a 

continuously spiking neuron. These methods (Oja's and BCM's) having been 

designed from the observer's point of view are not easily encapsulated in self­

contained neuron mode!. Encapsulation is an essential property for biological 

plausibility, especially when looking for autopoiesis which depends on the existence 

of a well-defined boundary (membrane) determining operational closure. 

Abraham and Bear (1996), Abraham (2008) and Abraham and Philpot (2009) have 

sho~n that biological metaplasticity is a reality in the brain even if the underlying 

mechanisms have yet to be clarified. 

2.2.3 - Summary 

From the preceding brief review of ( computational) neuroscience, we can draw three 

princip les which are necessary conditions for the proper functioning of the brain. 
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Principle 1. The neuron doctrine - « each neuron is a discrete cell [ .. . ] and 

[ ... ] neurons are the signaling units ofthe nervous system» (Kandel al., 2013, 

p23). 

Principle 2. Dynamic polarization - « electrical signais within a nerve cell 

flow only in one direction: from the receiving sites of the neuron, usually the 

dendrites and cell body, to the trigger region of the axon. From there the 

action potential is propagated along the entire length of the axon to its 

terminais. In most neurons studied to date electrical signais in fact travel in 

one direction. » (Ibid.). 

Principle 3. Connectional specificity - « nerve cells do not connect randomly 

with one another in the formation of networks. » (Ibid.). · 

We can also derive three postulates identifying neuronal behaviors generally accepted 

as the basis for neural network development. 

Postulate 1. Spiking neurons are « substantially more realistic » (Maass 1997 

p 1661) th an previous models (McCulloch and Pitts neurons or rate neurons) 

even though they are still « simplified models that focus on just a few aspects 

ofbiological neurons » (Ibid. p1661). 

Postula te 2. Spike-Timing-Dependent Plasticity (STDP) - The bidirectional 

change in synaptic efficacy (strengthening LTP or weakening LTD) is 

conditional on the activity of the specifie synapse (i.e. local channels are open 

because the presynaptic neuron bas fired) and proportional to the global 

activity of the postsynaptic neuron. 
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Postulate 3. Metaplasticity- The crossover from LTD to LTP as a function of 

postsynaptic activity varies according to the (recent) history of this 

postsynaptic activity (BCM 1982). Other changes in the properties of the 

neuron ( e.g. "size") can affect its "leaming" behavior. 

Our objective will be to integrate these principles and postulates in a coherent model 

reproducing the semiotic and autopoietic behavior of a cognitive (intelligent) system. 

We are looking only for the emergence of sorne kind of sensorimotor intelligence 

which could be a stepping stone toward higher levels such as the concrete operational 

stage and, ultimately, the formai operational stage (Piaget). 

2.3 - LIF (Leaky-Integrate and Fire neuron) 

Having accepted the spi king neuron as the « most realistic » model (postulate 1) do es 

not mean that we consider it to be complete. In fact, it is mainly a good representation 

of the trigger zone. The propagation of the AP from there to the axon's terminais is 

trivially perfect and instantaneous, but we already deemed this simplification to be 

acceptable. On the other band, the representation of the dendritic tree is minimalist. It 

includes sorne consideration of the temporal integration of the input current to the 

capacitance, but the summation of spatially parallel stimulations (multiple synapses 

simultaneously excited) is strictly linear. The E/IPSPs 18 (e.g. Maass 1997) or the 

E/IPSCs 19 (e.g. Gerstner and Kistler 2002, Eliasmith and Anderson 2003 , Izhikevich 

2003) are summed linearly without explaining how they are produced. In other 

words, the model of the synapses is not well defined. Furthermore, the instantaneous 

res et of the en tire dendritic tree to resting potential is also difficult to exp lain. 

18 E/IPSPs = Excitatory or Inhibitory PostSynaptic Potentials 
19 EIIPSPs = Excitatory or Inhibitory PostSynaptic Currents 
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This second problem (reset of the dendritic summation to zero) is still fairly common 

for all kinds of spiking neuron networks (e.g. Izhikevich 2003, 2004) especially that 

the consequences are very limited when the network is connected randomly. Precisely 

the kind of network that Markram attacked so vehemently in his letter (Adee 2009) 

against IBM's cl ai ms on DARP A's SyNAPSE project « These are point neurons 

(missing 99.999% of the brain; ... » Of course, Markram is a purist and, from an 

information processing perspective, the LIF model is doing better than 0.001% even 

if it is representing only the axon and even if it does it with « no detailed ion 

channels. » Still, he has a point: LIF-type models fall short of a complete neuron 

simulation. 

Gerstner and Kistler (2002), in their figure 4.1 , show the model (neuron) in two parts: 

a spiking LIF (soma) and an integrating low-pass filter (synapse). This approach 

addresses both the spatial and temporal integration of incoming current pulses into a 

postsynaptic current which decays with time according to the time constant of the 

low-pass filter. However, it does not solve the second problem (linear integration) 

since each incoming pulse produces an equal amount of postsynaptic current. Rospars 

and Lansky (1993), following Kohn (1989), proposed a stochastic model of a two­

compartrnent neuron to eliminate the total reset of the dendritic tree. 

Stein (1965) talks about« unit depolarization » summed up linearly to the threshold 

( « 4. If the depolarization reaches a threshold of r units, the neuron fires . » p.175). 

Eliasmith and Anderson (2003 p84) represented the LIF as shown in Figure II.3 . The 

input J(t) is a current (even though it is sometimes referred to as a voltage/potential). 

This begs the question: where does this current come from? It makes sense in the 

context of physiology experiments where the AP is triggered by injection of a 

(steady) current via an intracellular electrode, but does it hold when the neuron is 

stimulated through a synapse by a presynaptic AP? Clearly, the modeling of the 
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c 

synapses 1s not compatible w1th the model ot the tngger zone. ln the caption of that 

figure, Eliasmith and Anderson describe « [t]he active, super-threshold behavior » of 

the LIF as: 

[ w ]hen the membrane potential is equal to the voltage threshold, V111 , at a 
time t,,, the short-circuit switch is closed, resulting in a 'spike ', 6(t11). The 
switch remains closed, resetting the circuit and holding V=O, until it is 
opened after the refractory period, { ef_ 

This is the short version; somewhat like describing Dretske's proverbial doorbell as: 

when the door button is pushed, the bell goes "ding dong". For the doorbell, a more 



64 

precise explanation would say: when the button is pushed, an electrical current flows 

through the copper wire inducing, via the solenoid, a magnetic field capable of 

projecting the hammer against a metallic plate that goes "ding"; when the solenoid is 

deenergized, the hammer falls back on another metallic plate with a "dong". 

Similarly, for the LIF, one could say: when the membrane potential reaches the 

voltage threshold, Na channels open letting in floods of positive ions until the 

· threshold of K channels is reached opening neighboring channels and flushing out K+ 

ions while Na channels further down the axon are already opening since their 

threshold bas been reached, and propagating a causal chain which, by succession of 

Na channels and K channels, reaches the axon terminal where Ca2+ channels finally 

trigger the ejection of a quantum of neurotransmitters in the synaptic gap. It is this 

final ejection of neurotransmitters that is represented by the impulse in the inner 

block of Eliasmith and Anderson 's diagram. It is also this impulse, or, as we have just 

explained, the quantum of neurotransmitters, that is responsible for the current J(t) 

potentially triggering the postsynaptic neuron. 

So, the explanation of the impulse being caused by the triggering current is a short 

version, but it is an acceptable simplification as we have agreed to above. However, 

at the time, we mentioned that the linear summation of impulses to generate the 

triggering current in the postsynaptic neuron was an oversimplification. Maybe that 

part of the model was inherited from Stein's depolarization units, perhaps inspired by 

McCulloch and Pitts ' s summation and/or by Adrian ' s electrical experiments, but 

somehow it does not fit the expected role of neurotransmitters. 

When the neurotransmitters cross the synaptic gap, they can act on chemically-gated 

channels causing a rush of ions in or out the nerve cell (Na+ in for excitatory 

presynaptic neurons, K+ out or cr in for inhibitory presynaptic neurons. Technically 

it cou id be a mixture or hybrids of tho se, but we are interested only in the net effect.) 

Clearly the current is dependent on the potential difference between the two sides of 



65 

the membrane and the conductivity of this membrane. Each chemically-gated channel 

activated by a neurotransmitter increases the conductivity. 

If there were voltage-gated Na channels in the neighborhood, they would quickly be 

triggered open by the rising membrane voltage, quickly followed by any K cham1els 

and the ensuing AP. However, this is generally not the case. We will come back to 

specifie special cases later, but, for now, we will posit the simplifying hypotheses that 

there are no (or very few) voltage-gated channels in the dendritic tree like there are no 

(or very few) chemically-gated cham1els in the axon. 

Simplifying hypothesis 1 (SHl): 

There are no voltage-gated cham1els in the dendritic tree. 

Simplifying hypothesis 2 (SH2): 

There are no chemically-gated channels in the axon. 

As a corollary to these SHs we could say that currents flow passively in the dendritic 

tree and actively in the axon. To be more exact, it also flows passively in the 

myelinated axons in between Ranvier nodes. 

Whether we are talking ligand-gated channels in the dendritic tree or voltage-gated 

cham1els in the axon, the conductance-based mode! is « the simplest possible 

biophysical representation of an excitable cell, such as a neuron, in which its protein 

molecule ion channels are represented by conductances and its lipid bilayer by a 

capacitor » (Skinner 2006). We can see the similarities between this conductance­

based mode! and the representation of the LIF (Figure 11.3) by Eliasmith and 

Anderson (2003). 

The same conductance-based model is also the basic module for compartrnental 

neuronal modeling developed by Wilfrid Rail (1957, 1959, 1960, 2009) as the 
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neuroscientific application of the cable theorl0 originally developed by Lord Kelvin, 

in the 1850s, to model the signal decay in submarine telegraphie cables. 

According to our SHs, in the dendritic tree we are mainly interested by chemically­

.gated channels as shawn in Figure II.4. The opening of one channel under the 

influence of neurotransmitters affects directly and signjficantly the voltage in that 

compartrnent which goes back to equilibrium partially due to a smallleak through the 

membrane, but mainly by electronic diffusion to neighboring compartrnents and so on 

through the entire tree. Detailed simulations based on the differentiai equations from 

the cable theory is possible with public domain software packages like GENESIS 

(GEneral NEuron Simulation System) developed at Caltech (see http://www.genesis­

sim.org visited 2014.02.19) and NEURON developed at Duke and Yale Universities 

(see http: //www.nemon.duke.edu visited 2014.02.19). 

This compartrnentalist approach is based on the assumption that the spatial 

distribution of synapses in the dendritic tree affects the impact of the in co ming spikes 

Extra cellular si de 

E,; = ·75mV Ec; = -69mV 

Cytoplasmic side 

Figure II.4 - Conductance-based model 

20 Summarized in Niebur (2008). 
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on the voltage at the APs ' triggering point giving the dendrites a computing ability, a 

power of decision on triggering or not an AP. Most other approaches neglect this 

spatial influence and consider that the temporal aspect supersedes any morphologie 

interactions such that the whole tree can be reduced to a single isoelectric 

compartrnent identified with the triggering point. We will look at a combined 

approach featuring a single compartment separated from the triggering point by sorne 

resistive connection. While rejecting the compartmentalists' hypothesis that the 

morphology has a significant impact on the fully developed neurons, we will 

postulate2 1 that, being highly involved in the leaming process, any morphology would 

find its way to a common equilibrium behavior for a set of given inputs. 

Simplifying hypothesis 3 (SH3) : 

Dendritic morphology is trumped by temporal correlations in defining the 

impact of synaptic inputs on triggering of APs. 

2.4 - DoubleLIF 

2.4.1- The mode! 

We are therefore proposing a neuron model based on a LIF (representing the axon) 

connected to a single compartment (representing the dendritic tree) via a single 

longitudinal resistance (as per SH3). Figure 1!.5 shows a complete artificial neuron 

with a surrounding line (Vref = 0 mv) representing the extemal side of the cell. On the 

left (A), we see a series of interconnections representing one or more synapses 

between m. presynaptic neurons and the depicted neuron k each including a series of 

Nm chemically-gated excitatory ionie (Na+) channels activated by impulse trains b+ ijk 

(i = 1, N and j = 1, rn) . Similarly, on the right (B), we see a series of interconnections 

21 This hypothesis, by itself, could be the subject of an interesting research project in computational 
neuroscience. 
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Figure II.5 - DoubleLIF model 
Electric diagram of the DoubleLIF mode!. Section A represents the excitatory portion of the dendritic 
tree where incoming Na+ ions tend to depolarize the cell . Section B represents the inhibitory portion of 
the tree where K+ ions flowing out (or cr ions flowing in) work against depolarization. Section C 
represents the soma and axon p01iions including the ionie pumps continuously repolarizing the cell by 
rebuilding concentration gradients for ail ions between the inside and the outside, as weil as an action 
potential triggering mechanism. 

between n presynaptic neurons and the depicted neuron k each including a series of 

N11 chemically-gated inhibitory ionie (K+ or Cr) channels activated by impulse trains 

6-iJk (i = 1, N and j = 1, n). Of course, the segregation by type and the array-like 

arrangement are strictly for clarity purposes and the organization of real synapses is 

not that simple. To avoid excessive complexity, we will assume that ionie equilibrium 

at the "Y" intersection ( connection of the A, B and C sections) is reached in the sub­

millisecond time frame. 
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To begin with, we will look only at the dendritic tree, assuming that R2 is infinite. In 

the most quiet state of the dendritic tree, all the switches (o+l-iJk) are open (i .e. the 

ionie channels are closed) and the cellular potential (Vc) rests at Erest (-69 rn V). When 

excitatory inputs start activa ting channels on the left si de of our dendritic tree, Vc rises 

slowly propo1iionally to the number of channels activated and the frequency of their 

activation. Vc rises because C1 accumulates charges while R 1 leaks the ex cess outside 

ofthe cell. 

From an ionie perspective, this "R1 leak" should bring the concentrations inside the 

neurons to equilibrate with the concentrations in the surrounding solution and all the 

Eion would, according to Nernst law, become 0 rn V thereby eliminating any potential 

reaction by the neuron. However, the ionie pumps restore the relative internai 

concentration of the different ions against the gradient imposed by the constant 

external concentrations. In other words, they keep the batteries (Eian) fully charged at 

all times. So, the resting potential ( -69 rn V) is a homeostatic equilibrium resulting 

from the action of the ionie pumps and being disturbed by the opening ·of ionie 

channels activated by neurotransmitters. 

Similarly, when inhibitory inputs start activating channels on the right side of the 

tree, Vc slowly decreases proportionally to the number of channels activated and the 

frequency of their activation. However, the ions in play are not the same that caused 

the rise of Vc on the left side and, although they work in conjunction with the ionie 

pumps to polarize the membrane, they also increase the workload of these ionie 

pumps for different types of ions. 

The result of all this gating and pumping is that Vc can assume any value between -69 

mV and +30 mY (and even exceed these values during temporary transient 

excursions) depending on the net instantaneous relative permeability of the overall 

tree including the effect of the ionie pumps. 
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Until now, assuming that R2 was infinite, we have neglected a significant part of 

section C; the neuron is not firing. However, if we redu ce R2 such that a small current 

can trickle through it, C2 will accumulate charges and Va will rise (as long as Vc is 

larger th an Va) un til a threshold ( - -40 rn V), dictated by the voltage-regulated ionie 

channel (represented by switch bk), is reached draining C2 and resetting Va to Erest (-69 

rn V). It should be noted that this reset bas only a marginal effect on Vc since R2 is 

much larger than R 1 and only C2 is short-circuited. It is, however, sufficient to trigger 

a self-propagating action potential along the axon as demonstrated by Hodgkin and 

Huxley (1952). 

By comparison, a standard LIF neuron (see Figure II.6) has only one accumulator 

(Co) coup led with one resistor (Ra) which define the current (J) required to bring the 

membrane potential (V,11) to the threshold and trigger an AP. In this case, V,11 goes to 

Erest ( -69 rn V) and recharging Co starts from scratch with no memory of previous 

activation. In sorne applications, the current (J) is limited to the number of incoming 

impulses from that time to the next reset. At best ( e.g. Gerstner and Kistler 2002, 

Eliasmith and Anderson 2003), the remaining effect of previous impulses, dampened 

through first-order filters , is added to new incoming impulses similarly dampened. 

D 

Erest=-60mV 
2.4.2 - Biological plauFi~~e II.6 ·_ LIF ~odel 

In the previous section, we have described the neuron as an electric circuit with sorne 

hints to the actual neurobiological equivalent. It should be clear that the electric 
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circuit is just a madel (an approximate representation) of the ionie currents actually 

taking place in a real cell. Most importantly, the relative concentrations of the 

different ions are not explicit in the madel and, as previously noted, the essential 

action of ionie pumps is not explicitly represented, but somehow implicit in the 

permanently charged batteries in the different branches of the circuit. Still, we 

consider that this DoubleLIF madel includes the main features of a complete spiking 

neuron: 

1. a denclritic tree, 

2. excitatory and inhibitory synapses, 

3. spatiotemporal integration (accumulation) ofincoming signais, 

4. very short term memory (milliseconds) of the resulting state (Vc), 

5. translation of the state into an action potential through Va, and 

6. excitation or inhibition of other neurons as a result of these action potentials. 

Before tackling the differentiai equations of Figure ILS, we will complete the 

neurological description of the process represented by the dia gram. 

The representation of the dendritic tree is evident from the diagram and we have 

multiplied the representations of ionie channels to carry the net impression of the 

volumetrie and numeric importance of dendrites relative to the soma and the axon. As 

mentioned previously, we have segregated the excitatory and inhibitory synapses 

mainly because the ionie currents are different through the different cham1els 

involved. This means that from an electrical perspective the results are similar 

(although reversed), but the concentrations of different ions are affected. All the ionie 

channels in the dendritic tree are chemically-gated chatmels (SH3) and will therefore 

open only when activated by a neurotransmitter forced through the synaptic gap by an 

action potential ·on the axon of the presynaptic neuron. The switches (c:5+ iJk) on the left 

have been associated to chatmels which are excitatory with an influx of Na+ tending 
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to depolarize the dendritic tree (+55 mV). Similarly we have associated the switches 

(o iJk) on the right to inhibitory channels with an influx of cr or an outflux of K+ 

tending to polarize the tree (respectively -69 and -75 mV). As we don't have 

sufficient information to differentiate between Cr and K+ channels, we will have to 

settle for a single type of inhibitory channels for which we will use K+ properties. 

The dynamic integration of these ionie fluxes results in a cellular potential (Vc) 

somewhere between these two attractors created by concentration gradients 

maintained by the continuous action of ionie pumps ( certainly sodium-potassium 

pumps and probably chloride pumps). This cellular potential (Vc) represents the 

neuron's (very) short term memory which is then translated in the soma for 

transmission via the axon. The electronic diffusion resulting from the ionie fluxes 

reaches the first voltage-gated ionie channels in the axonic hillock triggering the 

propagation of an action potential along the axon as described by Hodgkin and 

Huxley (1952). 

2.4.3 - Dynamics 

The dynamics of the DoubleLIF include a mixture of current square pulses (inputs), 

continuous current leaks and discharge impulses. Essentially, we have a capacitance 

(C1) accumulating positive (IEPsP) and negative (JIPSP) charges, continuously leaking 

to ground (Iteak) and charging the oscillator' s capacitance (C2) with a continuous 

current (Jfire) until instantaneous discharge to ground when C/ s potential (Va) reaches 

the threshold (Bs). 

When a switch (o+ iJk) closes in .the upper left quadrant (A) of fig. 1, the current 

through the resistance R+ is 

i EPSP (t) = ; + (E EPSP - Vc (t )) (1) 



and similarly the current in the upper right quadrant (B) is 

i !PSP (t) = R
1
_ (E IPSP - vc(t)) (2) 
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where EIPSP = E K (assuming we neglect the cr branch). Note that iJPSP is always 

negative, while iEPsP is always positive, since E1PSP < Vc < E EPSP· 

These currents are not continuous; they last only for a short period of time (Te) 

resulting in a square pulse equivalent to an impulse of charge q = iEIIPSP x Te. These 

impulses are quanta of charges transmitted to the postsynaptic neuron each time an 

action potential is triggered in a presynaptic neuron; more specifically, each time a 

neurotransmitter opens an ionie channel in the dendritic tree of a post synaptic 

neuron. 

On the other band, the lasses through R1 are continuous and equal to 

1 
J/eak(t) = -(~ (t )- Erest) 

Rl 
(3) 

and the firing current through R2, also continuous, is 

(4) 

The Max function is used since, as shawn by the diode in section C of Figure II.5 , the 

ions cannat flow back assuming they were involved in an irreversible synthesis of 

neuropeptides22
. Va(t) is temporarily frozen until Vc(t), which can decrease as low as 

Erest, co mes back to exceed V0 (t) . 

22 The effect of the diode is negligible. Va is frozen at a given value when Vc becomes smaller and stays 
there unti l Vc becomes Jarger than Va agai n. Without the diode, Va would follow Vc down to 0 and back 
up afterwards (albeit with a smalllag). 
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Whenever Va reaches Bs, C2 is momentarily short-circuited to ground and 

instantaneously drained of all charges accumulated until then via Ifire· The resulting 

impulse is denoted as bk(f(t)) wheref(t) = Min(O, Va(t) - Bs) which is 0 whenever Va (t) 

> Bs. 

Applying Kirchhoffs law, we obtain the accumulation in C1 

+ ttb'ijk (Mi~O, (~j (t) -Bs ))kPsAt )~ 
j = l i=l 

and in c2 

It should be noted that, in the last term of equation 5 and in equation 6, the impulse 

refers to the axonic potential ( Va ) in the neuron k represented by the equations, while, 

in the first two terms of equation 5, impulses refer to the axonic potential ( Va ) in 

presynaptic neurons j. 

Since there is only one impulse per presynaptic neuron, it must be assume that all Ni 

channels between two synaptically connected neurons can be lumped together for 

calculation purposes and II6Jk (f(t)) can be replaced by f(NFS
1
; (J(t))) where 

j= J i = J j = l 

~ is the total number of ionie channels forming each of m excitatory synaptic 

connections between neurons j and k. The same applies for the n inhibitory 

connections between neurons j and k. 
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On one band, DoubleLIF is clearly a spiking neuron where each input spike is treated 

individually producing a non-linear effect on the cellular potential (Vc). On the other 

band, DoubleLIF is also a rate neuron since this cellular potential (Vc) determines the 

frequency of the output spikes. A constant Vc produces a constant output firing rate, 

but Vc is rarely constant and continuously changes with time due to multiple inputs 

coming in at different frequencies. Vc is therefore a direct representation of an 

instantaneous output frequency which, in other models, can only be approximated by 

sorne running average over a time window with sorne inherent time delay. 

2.4.4 - Plasticity 

The model described in the previous section assumes that information is passed from 

a presynaptic neuron to a postsynaptic neuron through synapses made of multiple 

channels totaling ~ units23 of connection. In other words, the strength (or intensity) 

of the connection is proportional to ~- The information transferred is the state of the 

presynaptic neuron represented by the cellular potential (Vc) resulting from a spatio­

temporal integration (running average equivalent) of all the signais connected to its 

own dendritic tree via similar synapses. The spiking frequency of this presynaptic 

neuron is directly proportional to its Vc which is the driving force for the axonic 

oscillating accumulator (see appendix A). 

However, Hebb's « firing together, wiring together » tells us that the connections ' 

strength is not constant, but changes with time. In other words, the equations should 

re fer to ~(t). As we have seen in section 2.2.1, the changes in connection strength 

(d~(t)/dt) can be positive (long term potentiation - LTP) or negative (long term 

23 A unit of connection is one ionie channel with a conductivity of l /R0. Channels are added one at a 
time, but their efficiency matures with ti me. Therefore ~ does not have to be an integer and can take 
real values. 
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depression - LTD) and the neuron, fully encapsulated by cellular definition, bas very 

limited information to make the difference. 

In its simplest expressiOn, the LTP/LTD paradigm can be sumrnarized as: high 

frequency stimulation (HFS) produces LTP and low frequency stimulation (LFS) 

produces LTD. In the DoubleLIF madel, this translates to: HFS produces high Vc 

which favars LTP and LFS produces low Vc which favars LTD. 

2.4.4.1 - DoubleLIF and BCM theory 

The Bienenstock-Cooper-Munro (BCM) theory (1982), developed for rate neurons, 

states that the strength of the synapse is increased (L TP) wh en the postsynaptic 

activity is high and decreased (LTD) when the postsynaptic activity is low. This 

promotes selectivity by favoring cooperating connections which are in phase with the 

postsynaptic neuron and hindering connections which are out of phase. Frequency­

based rules are well-suited for rate neurons. To separate between high and low 

postsynaptic activity or frequency, BCM includes a threshold frequency ((JM) which is 

not fixed but depends on the history of postsynaptic activity. In other words, BCM 

slowly adjusts the threshold frequency to match the mean firing rate of the 

postsynaptic neuron thereby balancing the effects of LTD and LTP. DoubleLIF 's 

inheritance from rate neurons makes it particularly well suited for the implementation 

ofBCM theory in spiking neurons. 

In its original form (Bienenstock, Cooper and Munro 1982), BCM is given as: 

c = 0m1d1 

dm1 /dt = q;(c)dy - cm1 

where q;(c) < 0 for c < (JM and q;(c) > 0 for c > (JM 

(7) 

(8) 

(9) 

with a note stating that « [t]he term, -cm1, produces a uniform decay of all junctions 

[which] , in most cases, does not affect the behavior of the system if c is small 

enough.» 
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It should be noted that BCM explicitly states (Eq. 7) a direct correlation between 

output frequency (c) and input frequency (d) hinting at a natural causal relationship 

between the two variables. According to Blais and Cooper (2008 - with symbols 

adapted for equations 7-9 here above): 

The BCM theory of synaptic plasticity ... is based on ... three postulates. 
1. The change in synaptic weights [dm/ dt] is proportional to presynaptic 

activity ([di ]). 
2. The change in synaptic weights is proportional to a non-monotonie 

function (denoted by rp) of the postsynaptic activity ([c]): 
1. for low [c], the synaptic weight decreases ([dm/ dt < 0]) 
2. for larger [c], it increases ([dm/ dt > 0]) 

The cross over point between [dm/ dt < 0] and [dm/dt > 0] is called the 
modification threshold, and is denoted by f}M· 

3. The modification threshold (BM) is itself a super-linear function of the 
his tory of postsynaptic activity [ c]. 

While BCM correlates directly the output frequency (c) to the input frequencies (d1) 

by the strength of the synapse (m1), DoubleLIF uses the state variable Vc provided by 

the added accumulator as an intennediate step between input and output activities. 

Equation (5) shows that Vc results from the integration over time of h PsP, hPsP, I leak, 

and Ifire· We will assume that there is no inhibitory stimulation and neglect hPsP for 

the purpose of this discussion. Combining ( 4) and (6) and holding Vc constant, it can 

be shawn (see appendix A) that the spiking frequency is directly proportional to Vc. 

On the other hand, combining (1) and (5), it can also be shawn that Vc is directly 

proportional to the temporal integration of the IEPsP term which represents the spatial 

integration (1.1) of the strength (m1) of the input impulses at each moment of time (i .e. 

no running average). 

To translate (8) from the rate neuron formalism of BCM to the spiking neuron 

formalism ofDoubleLIF, we propose to replace it by 

dJS(t)/spike = 0 for Vc :S Bs (10) 



= ~(Vc(t) - Bs)(Vc(t) - Bv)JS(t) 

where Bv is the potential equivalent of eM and 

for Vc >es 

es is the spiking threshold of the neuron in the rate neuron paradigm. 
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(11) 

This means that, for Vc :S es (i.e. when the postsynaptic neuron is not spiking), there is 

no potentiation nor depression of the synapse for any spiking frequency of the 

presynaptic neuron, which is an expected behavior in the rate neuron paradigm where 

potentiation and depression are dependent on postsynaptic activity. However, in a 

true spiking neuron paradigm, es should be replaced by 0 (resting potential) since it 

has been demonstrated experimentally that depression can be induced at subthreshold 

lev el of stimulation ( e.g. LTD protocol in Enard al. 2009). 

In fact, the BCM madel (see Equation 7) does not consider any subthreshold level of 

excitation; even the smallest input activity will generate an output frequency. In the 

absence of any other stimulation, VLFS (Very Low Frequency Stimulation) will 

always induce LTD. The decay term (-em1) in the plasticity equation helps, among 

other things, to compensate for this deficiency. As discussed later, we will neglect 

this decay term for DoubleLIF. 
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Multiplying d"Hj(t)/spike by buk(t) (incoming impulses) in the temporal integration is 

equivalent to d"Hj(t)/dt based on average frequency. 
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2.4.4.2 - DoubleLIF and STDP 

However, nowadays in the spiking neuron paradigm, the prevalent plasticity theory is 

Spike-Timing-Dependent Plasticity (STDP) which tells us that, in controlled pairing 

experiments, the important variable in the determination of iJ~(t) is the time 

difference between the input spike and the output spike. In its basic form, STDP is a 

satisfactory model for specifie testing protocols involving a pair of pre- and 

postsynaptic spikes at fairly low frequency (<5 Hz) as depicted in Figure II.9 

(Sjostrom and Gerstner 2010). 

With the symbols in the figure, the data points can be correlated using the following 

equations: 

ilw/wu = A+exp(-il tlr) for il t > 0 and 

ilw/ wu = -A_exp(-il tk) for il t < O. 

where f1t = tf -tf 
J L 

tf being the firing time of the presynaptic neuron and 

t{ the firing ti me of the postsynaptic neuron 

Parameters can be estimated for the curves shown in Figure II.9: A+= 0.82, r + = 19 

ms, A_= 0.28, r_ = 27 ms (as shown by the dotted lines superimposed over the original 

curves). However, these parameters apply strictly to data generated according to the 

protocol followed by Bi and Poo in their experiments; any departure from their 

protocol is likely to produce (slightly) different parameters. Izhikevich and Desai 

(2003), using data from Froemke and Dan (2002), arrived at A+= 1.03, r + = 14 ms, A_ 

= 0.51 , r_ = 34 ms. 
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Spike-Timing Dependent Plasticity (schematic): The STDP function shows the change 
of synaptic connections as a function of the relative timing of pre- and postsynaptic 
spikes after 60 spike pairings. Schematically redrawn after Bi and Poo (1998) 
(Copied with legend from Sjostrom and Gerstner 2010) 

So, when Sjostrom and Gerstner (2010) sums up these synaptic changes linearly, it is 

valid only for multiple repetitions ( e.g. 60) of the same protocol at low frequency ( <5 

Hz) such that the pre- and postsynaptic neurons have time to return to steady-state 

equilibrium in between repetitions . 

Above that frequency, unwanted spikes start to appear in the window of interest (+/-

100 ms) around the pre- (or post-) synaptic spike and a strategy bas to be established 

to deal with all the spikes in that window. A typical problematic example is a 

protocol involving a presynaptic spike followed by a postsynaptic spike 10 ms later 

and repeated at 50 Hz (every 20 ms). There are 10 pairs of spikes in any 200 ms 

window and it is impossible to differentiate between pre-post and post-pre pairing 
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smce all postsynaptic spikes are equidistant from the preceding and following 

presynaptic spikes and vice-versa. In vivo, neurons are stimulated by tens (maybe 

even hundreds) of presynaptic neurons firing at frequencies of up to hundreds of Hz 

(this means inputs at 30 kHz for 100 presynaptic neurons at an average 300 Hz 

frequency or as muchas 500kHz for 1000 neurons at a 500Hz maximum frequency) ; 

a situation which cannot (yet) be duplicated in a Petri dish for controlled observation. 

When it cornes to online implementation of STDP, moving from Petri dish simulation 

to in vivo simulation, at !east two additional variables must be taken into 

consideration: first, the postsynaptic voltage at the time of the spike and, second, the 

spiking frequency (Sjôstrôm al. , 2001; Izhikevitch and Desai, 2003; Lisman and 

Spruston, 2005 ; Clopath al. , 2009; Clopath and Gerstner, 2010; Lisman and Spruston 

201 0; Shouval al. 201 0). 

It is important to note that, in the STDP protocol, the delay rule supersedes any causal 

relationship between the pre- and the postsynaptic spikes and forces the two neurons 

to spike at the same frequency. This frequency is somehow embedded in the 

parameter set resulting from a given experiment such that any naturally produced 

(homosynaptic or heterosynaptic) postsynaptic spike cornes in at the wrong frequency 

(for the parameter set) and corrections must be added to the mode!. The triplet 

strate gy (Clopath al. , 2009; Sjôstrôm and Gerstner, 201 0) indirectly brings in 

information about the postsynaptic neuron 's spiking frequency via the interspike 

interval of the two postsynaptic spikes taken into consideration. The voltage-based 

skeleton of the mode! used to generate postsynaptic spikes from presynaptic 

stimulations provides all required information about postsynaptic cellular potential to 

adjust for a specifie STDP protocol. Since, in such protocols, the spiking frequency of 

the presynaptic neuron, and consequent! y that of the postsynaptic one, are fixed, and, 

due to the regularity of the repetitions, the cellular potential of the postsynaptic 

neuron is approximately the same each time a backpropagating AP is triggered, a set 
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of constant parameters can be successfully generated to simulate the specifie 

experiment. However, these parameters are not valid when input frequency is 

significantly increased like for in vivo modeling. 

As shown on Figure II.7, for DoubleLIF, the synaptic change per presynaptic spike 

(dN/spike) is linearly proportional (slope to be determined) to the postsynaptic 

cellular potential (Vc) which is equivalent to assuming that the probability of a 

postsynaptic spike is distributed evenly over the window of interest and, over time, 

yields an average contribution which can be integrated with the voltage effect. This is 

consistent with Sjostrom and Gerstner' s (20 1 0) paragraph on Voltage dependence: 

[ ... ] the voltage of the postsynaptic neuron just bef ore generation of 
action potentials influences the direction of change of the synapse, even if 
the spike timing is held fixed (Sjostrom al. , 2001), suggesting that 
postsynaptic voltage is more fundamental than spike timing. Indeed, a 
mode! of synaptic plasticity that postulates pairing between presynaptic 

· spike arrivai and postsynaptic voltage contains STDP models as a special 
case (Brader al. , 2007, Clopath al. , 2008). 

If the input spikes were perfectly synchronized with output spikes (same frequency as 

in STDP protocols), the synaptic change per unit time (dN/dt) would become 

quadratic (see Figure II.8) since the output frequency (qJ in spikes/second) is 

proportional to Vc and dN/dt = qJ * dN/spike. However, in vivo, all inputs are not 

synchronized with the output and we will see later how the covariance of their 

frequencies affects the selectivity of the connections. 

Figure II.8 shows a point (BM) on the horizontal axis (Vc) where the synaptic change 

(dN/dt) goes from negative to positive or, in other words, where the plasticity goes 

from LTD to L TP as in the BCM mode! and as in special cases of STDP according to 

Izhikevitch and Desai (2003) and Clopath and Gerstner (2010). 
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In summary, while STDP is a more precise model of the laboratory experiments 

where pairs of spikes are observed at low frequency, DoubleLIF provides a better 

averaging when input frequencies are very high and the postsynaptic spikes are not 

artificially induced on specifie time delays but result precisely from these input 

frequencies and connections' strength. We should not lose sight of our objective: we 

are interested in biological plausibility, but only inasmuch as it is necessary for 

cognition. 

2.4.5 - Metaplasticity 

As mentioned earlier (section 2.2.2), it is well known that repeated hebbian 

(associative) strengthening results in runaway synapses and constraints must be added 

to models to ensure stability. 

2.4.5.1 - Constraints 

In DoubleLIF, Vc is naturally bounded by the potential reversai ofNa+ (ENa= 55 mv) 

and of K+ (EK = -75 mv). When all gated channels are closed, it finds equilibrium at 

E rest = -69 mv. Vc would never exceed 55 mv even if the voltage-gated Na channels 

got stuck open. The same applies for -75 mv in the case ofK channels. Since Lapique 

(1907), it is known that a minimum depolarization (Vc = -40 mv) is required to 

trigger a spike. So, the output frequency, directly related to Vc (see appendix A), is 

also bounded at 0 Hz for 85 (-40 mv) and sorne maximum frequency for 55 mv 

depending on the time constant (r2 = R2C2) . 

On the other band, Vc depends on input frequency, the strength of the connections, the 

capacitance ( C1) of the dendritic tree (in otber words, its volume) and the size of the 

leak due to the conductance (11R 1) of the membrane at rest. In fact, Vc never reaches 

55 mv because the leak through R 1 must equilibrate with the incoming current 

through ligand-gated channels and this current would be zero for Na+ ions at 55 mv. 
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We will assume that Vc never exceeds 30 mv which, rounding Erest to -70 mv, gives 

us a span of 100 mv for the analog signal and could as weil be interpreted as 100% of 

span. This allows us to realize that the important feature of the neuron is the 

homeostatic force field created by the controllable (gated) selective ionie channels. 

This force field bas a different equilibrium than those generated by the two forces 

taken separately: ionie concentrations and potentials would normally equalize on both 

sides of the membrane. Thanks to the action of ionie pumps, they settle at a point 

which allows reaction to changes in the environment. 

Cooper al. (1979) introduced the notion of a « modification threshold » as a constant 

marking the transition from LTD to LTP, but the system was not robust and all inputs 

could disappear if the output frequency feil below the selected constant BM. The BCM 

model (Bienenstock al. 1982) replaced the constant by BM(t) , a function of time, 

implying that plasticity evolves with time, which can be referred to as 

« Metaplasticity: the plasticity of synaptic plasticity » (Abraham and Bear, 1996; see 

also Abraham and Philpot 2009, and Abraham 2008 for a comprehensive review). 

Until BCM, the only parameters changing with time in neuron models was the 

connection weights; with BCM, BM also becomes activity dependent and changes 

with time. 

2.4.5.2 - Stability 

While, in BCM, BM(t) is a global property of the postsynaptic neuron representing the 

rwming average of the output frequency, in DoubleLIF, BM(t) becomes a local 

property of each synapse representing the running average of the postsynaptic 

neuron's cellular potential Vc (bence indirectly the output frequency) when the 

presynaptic neuron is firing. This can be interpreted as an approximation of the 

covariance of the pre- and postsynaptic neurons' potentials and indirectly of their 

instantaneous frequency. 
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Applying a HFS to a presynaptic neuron already capable, on its own, of eliciting a 

spike in the postsynaptic neuron can produce LTP of the interconnecting synapse. As 

the synapse strengthens, the postsynaptic potential keeps rising and ()M follows such 

that the probability of LTP and the LJN diminish up to the point of vanishing wh en the 

potential reaches V max- The same applies to LTD when the presynaptic neuron is 

subjected to LFS and ()M tends toward zero. So, this variable ()M ensures that the 

weights do not grow or diminish forever without having to san arbitrary constraint on 

their value. The implicit assumption is that, in nature, all stimulations have a finite 

maximum intensity which will correspond to a fmite maximum connection strength. 

2.4.5 .3 - Selectivity 

The previous description applies to homosynaptic stimulation. Generally, there are 

many synapses competing to connect to one postsynaptic neuron. If a group of 

neurons jointly produce the equivalent of HFS, they will cooperate in maintaining Vc 

above ()M and this heterosynaptic stimulation will favor strengthening of all their 

synapses albeit at different rates depending on their relative frequencies. If sorne 

presynaptic neurons spike at a relatively low frequency, they will benefit only 

marginally of the strengthening boast and, if they happen to spike at higher 

frequencies when the group is quiet, they will auto destroy their own connection. So, 

one or a group of neurons take control of a common postsynaptic neuron and favor 

the connection of associated (with highly correlated instantaneous frequencies) 

neurons while they let non-correlated ones slowly eliminate their connection. For 

each synapse, ()M finds an equilibrium where the running weighted sums of LTP and 

L TD cancel one another. 

2.4.5.4- Neuronal development and bootstrapping 

Metaplasticity is not limited to BCM's changing ()M as can be seen in Abraham's 

review (2008). In DoubleLIF, we could consider having other parameters changing 

with time including R 1, C1, R2 and C2 . For now, there are clear advantages at keeping 
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R2 and C2 constant. That gives us a standard neuron with a given frequency to voltage 

response. W e are not suggesting th at all the neurons of a hu man brain have su ch a 

standard response, but rather that the diversity found in a human brain is (maybe) not 

absolutely required for a simpler cognitive system. On the other hand, we think that 

the adaptation of R1 and C1 is useful, maybe even essential, to understand the 

development and bootstrapping of neurons. 

To implement these cellular modifications, we propose two differentiai equations: 

dC/spike = kc C1(t) for Vc > Vmax (12) 
= 0 for Vc :S Vmax (13) 

dR / spike = -kR RJ(t) for Vc > Vmax (14) 
=0 for Vc :S Vmax (15) 

where kc and kR are positive gains for the increase of C1 and the decrease of R1 

respecti v el y. 

Figure II.1 0 shows the development of a nascent sensor stimulated by a constant 

stimulus. The top portion displays Vc and Va during the first 50 ms of the first 8 

seconds of stimulation. It can be seen that, at the beginning, Vc exhibits a bang-bang 

behavior as the very small capacitance (1 pF) fills instantaneously under stimulation 

to empty immediately into the second capacitance in the following millisecond. After 

sorne 5 seconds, the first capacitance has grown sufficiently to exceed the loading 

rate of the second capacitance even though the leaking current has increased as the 

conductivity of the membrane has increased due to the reduction of its resistance 

from an initial 3 Mn to slightly more than 2 Mn. These changes can be seen in the 

very first seconds of the bottom portion. The middle portion shows the firing rate of 

the neuron starting at 125Hz for 5 seconds and climbing to a steady state equilibrium 

of 215 Hz. The oscillator's parameters, R2 and C2 have been set to limit the rate to 

250 Hz when Vc reaches maximum depolarization (30 rn V or 100 rn V ab ove res ting 

potential) which is equivalent to setting a 4 ms refractory period. The bottom portion 
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Figure II.10- Neuronal (meta)plasticity 

shows that the connection strength (N;) continues to grow asymptotically even after 

the 8 seconds required to stabilize R1 and C1. The evolution over nearly 2 hours can 

be seen in two-minute snapsbots after 15, 60 and 105 minutes . 

2.4.6 - Special cases 

Considering the great diversity of neurons in human brains, it is very easy to find 

exceptions which could not be directly modeled by DoubleLIF as presented until 

now. 



,----------------------
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2.4.6.1 - Purkinje cells 

Purkinje cells are a very peculiar type of neurons which react more like a network of 

neurons than a single one. Although it is not our intention to madel specifie types of 

neurons individually, if we had to, it would be necessary to make an exception to the 

basic "one cell, one neuron" rule and to simulate a Purkinje cell using as many 

DoubleLIF neurons as required to represent the internai stimulation paths. 

2.4.6.2 - Axo-axonic synapses 

Sorne other neurons present direct connections of their axon to the axon of another 

neuron. This implies the presence of ligands-gated channels on the second axon 

which is in contradiction with our second simplifying hypothesis (SH2). We assume 

that the addition of an extra DoubleLIF neuron could produce equivalent results. 

2.4.6.3 - Inhibitory neurons 

Since our main objective 1s not to simulate specifie neurons, the workarounds 

presented in the previous two cases are perfectly acceptable. We have mentioned 

inhibitory neurons before and indicated that they were essential to the operation of the 

brain. DoubleLIF includes the simulation of such inhibitory neurons, but we have not 

discussed their plasticity rules. Sorne articles (Hass al. 2006; Lamsa al. 2010) show 

that their synaptic plasticity is very similar to that of excitatory neurons. Maffei 

(20 11) pro vides a few leads on the synaptic plasticity and metaplasticity of inhibitory 

neurons, but remains inconclusive on the exact phenomena. We will have to explore 

these possibi1ities in the numerical implementation of the madel. 

2.5- Conclusion 

In this section, we have shown that the DoubleLIF model is a complete representation 

of the neuron from the synapses in the dendritic tree to the axonic terminal. Each 

neuron can have excitatory and inhibitory stimulations, but produces only one or the 

------------ - ------------------------
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other. Its response is proportional to the intensity of the stimulation with non-linearity 

depending on the existing lev el of polarization. 

We have suggested a plausible neurobiological explanation (at the cellular level, not 

the molecular level) clearly indicating where the electrical model combines ionie 

cuuents of Na+, K+ and cr in a single net cuuent biding the important role of the 

ionie pumps in maintaining a homeostatic equilibrium responsible for the neuronal 

activity. 

We have also shown that the newly-added accumulator brings into play a new state 

variable, the cellular potential, which is well-suited to develop a translation of the 

Bienenstock-Cooper-Munro (BCM) theory from rate neurons to spiking neurons on 

the basis of a voltage-dependent synaptic plasticity (without any need for extemally 

computed average firing rates). The metaplasticity introduced by BCM can also be 

extended to the adaptation of other parameters of the same accumulator and 

interpreted in terms of cellular development. 

As shown in Table II.l , the main innovation of DoubleLIF is its ability to in elude 

metaplasticity in a fully encapsulated biologically plausible state of the art spiking 

neuron. The concept of metaplasticity is not new since it was already an integral part 

of the BCM model (1982) and an extemal add-on of multiple models since Oja 

(1979). The BCM model was decidedly a rate neuron model thereby lacking proper 

individual treatment of input spikes in the dendritic tree. Third generation spiking 

models, like the LIF and other point neurons, were not encapsulating the dendritic 

tree although sorne (Gerstner and _Kistler 2002, Eliasmith and Anderson 2003) were 

properly processing the inputs as square cuuent pulses into a charging capacitance 

(but without relating this capacitance to any biological equivalent). So, the real 

question is not: "How much better than the LIF is DoubleLIF reproducing Hebbian 

leaming, or even LTP/LTD leaming or STDP leaming?", but rather: "How are 
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Table II.l - Summary table - State of the art 
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Threshold ../ ../ ../ ../ ../ ../ ../ ../ ../ ../ ../ ../ 

Action potential ../ ../ ../ ../ ../ ../ ../ ../ ../ ../ ../ 

Spiking ../ ../ ../? ../ ../ ../ ../ ../ 
dynamics 

Detailed spiking ../ ../ ../ ../ )( 
dynamics 

Networking ../ ../ ../ ../ ../ ../? ../ ../ ../ ../ ../ 

Leaming (Hebb) ../ ../ ../ ../ ../ ../ ../ ../ 

Backpropagation ../ )(? 

LTP/LTD ../ ../ ../ ../ ../ ../ ../ 

STDP ../ ../? ../ ../ ? ../ 

Encapsulation )( )( )( )( ../? )( )( ../ ../ 

Metaplasticity )( )( ../ )( )( )( )( ../ ../ ../ 

DoubleLIF leaming capacities (including bootstrapping) developing under 

continuous stimulation (something that cannot even be tested with the LIF and other 

point neurons)?" If point neurons are too simple, we could consider 
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multicompartment models if they provided sorne insight into their development 

instead of overparameterizing a static view of their current structure. Izhikevich 's 

model (2003), like multicompartments, are very good at mimicking numerous types 

of spiking patterns, but there is no discussion of the impact of these patterns on the 

neurons' cognitive abilities. Clopath's model (2009), fundamentally voltage-based 

like DoubleLIF, uses STDP learning · based on results from experimental protocols 

with frequency-dependent parameters not related to any biological component. 

Stretching our imagination, we rnight see sorne connection between MLP's error 

backpropagation and the biological process triggered by backpropagating action 

potentials, but it rernains difficult to grant biological plausibility to the rnathematical 

formulation of the backpropagation algorithm. 

The table is filled with our best understanding of the different neurons' properties, but 

it clearly implies judgement calls biased by our specifie research objectives and based 

on Ockham ' s razor and Einstein' s caveat. At sorne point, one bas to de fine in the 

details what is necessary and what is sufficient: point neurons ( e.g. LIF) are too 

simple, rnulticomponent neurons are too cornplex, could two-point neurons 

(DoubleLIF) do the job? 

We contend that the level of activity-driven rnetaplasticity implemented in 

DoubleLIF is necessary and sufficient to support our hypothesis of inforrnation-fed 

second level of autopoiesis for the developrnent of neuron networks. We are probably 

still guilty of sorne gross oversimplification, but we hopefully have added sorne 

refinernent in the conception, if not the explanation, of the complex dynarnics of 

neuronal communication and its self-organization. So defined, DoubleLIF bas the 

properties, semiosis and autopoiesis, identified in the previous chapter as essential to 

the emulation of cognitive systems. Sorne might say that, along the way, we have lost 

sorne credibility about biological plausibility considering the lack of supporting 

evidence for the dynamics of neuronal growth, but, although extremely young, a 
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field, called « dynamic morphometrics » (Chen and Haas 2011), is being developed 

with the help of emerging technologies (e.g. single-cell electroporation, two-photon 

microscopy). The field is based on the synaptothrophic hypothesis elaborated by 

Vaughn (1989) and stating that: 

[ .. . ] the formation of synaptic junctions may take place as an ordered 
progression of epigenetically modulated events wherein each leve! of 
cellular affinity becomes subordinate to the one that follows. The ultimate 
determination of whether a synapse is maintained, modified or dissolved 
would be made by the changing molecular fabric of its junctional 
membranes. . .. Key elements of this hypothesis are 1) epigenetic factors 
that facilitate generally appropriate interactions between neurites ; 2) 
independent expression of surface specializations that contain sufficient 
infonnation for establishing threshold recognition between interacting 
neurites; 3) exchange of molecular information that biases the course of 
subsequent junctional differentiation and ultimately results in 4) the 
stabilization of synaptic junctions into functional connectivity patterns. 

In this definition, Vaughn does not explicitly mention autopoiesis, but this epigenetic 

activity-driven self-organization is functionally very close to what we are trying to 

achieve, at the most simplistic level, with activity-driven development of 

DoubleLIF ' s parameters (C1 and RI). 

The next step of the research project will investigate the behavior of DoubleLIF 

neurons in pre-wired networks to verify if they could autonomously develop strictly 

on the basis of externat stimulation. Ultimately, we expect to show that "free-wiring" 

networks of DoubleLIF neurons can develop and organize themselves when 

externally stimulated. 



CHAPTER III 

Numerical simulation and experimentation 

In the previous section, we have described the differentiai equations representing the 

dynamics goveming the operation and the development of neurons. These equations 

cannot be solved analytically, but we can provide a numerical approximation. 

Considering that neurons typically fire at frequencies in the order of hundreds of 

Hertz, we will select one millisecond (1 ms) as the integration time step which will 

allow us to process spiking rates as high as 500 Hz without losing any infonnation. 

This frequency is an acceptable compromise allowing a strict adherence to the 

spiking paradigm's digital aspects (the 6+/- impulses and the transformation of dX!dt 

into Llx/spike) while full y representing the continuous behavior of the electrical 

analog model components. 

We will now describe the prototype developed to instantiate the DoubleLIF model. 

This prototype is only a proof of concept since the environment and the body are 

included in the simulation and thereby at the same information level as the brain 

which is meant to be an emulation precisely because it exists only at that information 

level. If we could have a physical version of this simple body in a similar physical 

environment, we should be able to use exactly the same informational model of the 

brain. However, physical bodies and environment are usually much more complex 

than what we could simulate here and the simplistic nature of that simulation is 

decidedly an advantage when it cornes to explain the most basic principles. True 

robotics is left for future developments . 
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3.1 - The numerical simulation 

The simulation (written in Java) is composed of two threads. A main thread handling 

the simulation of the brain, the body and the environment and starting a second thread 

for the graphical user interface (GUI). 

3.1.1- The GUI 

In the graphical user interface (GUI) of Figure liLl, we can see: 

1. A schematic top-view of a simple environment (top left rectangle) including, 

in this case, an agent (quasi-triangular shape) and two stimulation sources (A 

and B). 

2. A schematic of the agent's simplistic brain, in this case three neurons (top 

right rectangle). 

3. A set of buttons to control the simulation (top center). 

4. A graph of a selected · neuron's cellular and axonic potentials (Vc and Va) 

showing 1000 milliseconds of history continuously rewritten from the left 

(second row). 

5. A graph of the same selected neuron's spiking rate showing 900 seconds of 

history also continuously rewritten from the left (third row); followed on the 

right by the average spiking rate during the last second. 

6. A graph of the same selected neuron ' s main characteristic variable parameters 

R 1, C1, and strength of all connected synapses (fourth row) followed on the 

right by a menu of different scenarios. 

3 .1 .1.1 - The environment win dow 

The environment window provides an overview of the agent's behavior and means to 

activate/deactivate stimulation sources. These sources can be seen as emitting a 

stimulant (light, odor, etc.) and affect specifie sensors. Sensors react to one and only 

one type of stimulant, but can be affected by multiple sources simultaneously. The 
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Figure ill.l -The graphical user interface (GUI) 

reaction intensity depends on the source intensity, the sensor's position relative to 

sources and the sensor's development. Sources can be switched on/off by clicking on 

them. 

3 .1.1.2 - The brain scan win dow 

The brain scan window provides an Image of the agent's body with a gross 

approximation of the location of sensors and actuators, and a schematic of the 

interneurons and their interconnections from sensors to actuators (the neuron 

networks). It allows to select one neuron (and one synapse) for observation, i.e. the 
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state and parameters of this neuron (and synapse, if one selected) will be shawn in the 

other windows. 

3 .1.1.3 - The control buttons 

There are 5 control buttons: 

1. The GO burton starts the simulation in real-time. 

2. The FF burton accelerates the simulation to maximum speed and displays 

the speed factor when accelerated. 

3. The STEP burton runs for 1 second and stops 50 ms after the beginning of 

the following second. 

4. The PAUSE burton stops the simulation allowing for analysis or changes. 

5. The db burton is not relevant for demonstrations; it controls debugging 

messages during software development. 

3.1.1.4 - The millisecond window 

The millisecond window shows the state (Vc and Va) for the selected neuron and the 

modification threshold (BM) for the selected synapse. The window uses 1000 pixels to 

display a full second on a millisecond resolution. The vertical scale, in mV, goes 

from Erest ( -70 m V) to a maximum of +60 rn V for a full range of 130 rn V. 

3 .1.1.5 - The spiking rate window 

The next window displays the trend of the observed neuron ' s one-second spiking rate 

(i .e. the number of output spikes in the preceding second in spikes/second or Hz). The 

last value is digitally displayed on the right of the window. The window is updated 

every second and contains 900 seconds or 15 minutes. It is continuously refreshed 

from the left. The vertical scale goes from 0 to 300Hz. 

This window also shows the selected synapse ' s modification threshold (BM) averaged 

over 1 second and translated in frequency terms. 
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3.1.1.6 -The dynamic parameters window 

The last window displays, in synchrony with the rate window, the trends of the 

observed neuron ' s development parameters: 

• C1 starts at 1 pF in the lower left comer of the window and can only go up 

as the capacitance (the volume) of the selected neuron increases. The 

vertical scale is logarithmic, ranging from 1 pF (10-12 F) to 1 F. 

• R 1 starts at 3 MQ in the upper left camer of the window and can only go 

down as the leak through the membrane increases with the surface 

increase. For this variable, the scale is linear, ranging from 0 to 3 MQ. 

• N ;, the strengths of aU synapses connected to the observed neuron (if one 

of these is the selected synapse, it is shown in black), start at 1, one third 

up the scale on the left si de of the win dow, and move up or down 

depending on the relative stimulation of the pre- and postsynaptic neurons. 

This variable has no units and the scale is logarithmic ranging from 1 o-' to 

102
. 

The scales are provided for analysis purposes; they are not shawn on the GUI since, 

during simulations, we are much more interested by the trends than by absolute 

values. 

3.1.1.7 - The scenario menu 

On the right of the dynamic parameters window, there is a list of scenarios which set 

the environment, the agent and the agent ' s brain for different experiments. We will 

discuss these experiments in detail after a closer look at the simulator. 

3.1.2- The simulator 

Having started a second thread for the graphical user interface (GUI), the main thread 

defines the environment, the body, and the brain, and execute a "forever" loop 

providing a numerical approximation of the differentiai equations describing the 
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dynamic model of the neurons combined into the brain, embedded into the body 

( embodied), and situated in the environment. 

Start thread for GUI 

Initialize agent's body 

Initialize environment 

Set position and status of stimulation sources 

Set body's position 

Initialize brain according to selected scenario 

Adjust stimulation sources' and body's position and status according 

to selected scenario 

Start forever loop 

If not running wait for GUI input 

While waiting, check for changes 

If new scenario, reinitialize simulation 

If switch(es) flipped, update environment 

If neuron (and/or synapse) selection changed, 

update brain scan 

If no GO, keep waiting 

On GO from GUI 

Move sources and agent in environment 

If body has moved, update sensor's world position 

Compute effect .of sources on sensors according to new 

relative positions 

Stimulate sensors 

Update neurons 

Every 25 ms (40 images / second) , update GUI 

If not fastforward, wait to complete reporting period (25 ms) 

Otherwise display speed factor 

If stepping, snot running 50 ms after full second 

Repeat forever loop 
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3.1.2.1- The environment 

The environment is a two-dimensional space, providing world reference coordinates, 

where agents can be stimulated by sources of different types. The effect of a source 

on an agent depends on the source 's type, its intensity and the distance between the 

agent and the source. If the agent does not have sensors for that source type, the 

source is not affecting the agent in any way. If the source is of low intensity or very 

far from the agent, the effect might be below the agent's reaction threshold. Because 

the effect is inversely proportional to the distance, it is necessary to use a third quasi­

dimension to avoid dividing by zero when the agent is located right above or under 

the source. 

3.1.2.2- The body 

The agent's body is positioned in the environment relative to world coordinates. The 

agent's sensors are located on the body allowing calculation of the sensors' world 

coordinates when the body moves around and then calculation of sources to sensors 

distances when agent and/or sources move around in the environment. The agent also 

has actuators which, when activated, affects the agent's body's world position. 

3.1.2.3- The brain 

The brain is (literally) a neuron network connected to sensors (physical properties 

transducers) as input layer and to actuators (neuronal to action transducers) as output 

layer, with, in between, a handful of intemeurons (very far from the 100 billion in a 

human brain such that we might have a chance ofunderstanding what is going on). 

As previously mentioned in subsection 2.4.5.4 (Neuronal development and 

bootstrapping), all neurons, including sensors and actuators, will have the same 

values for R2 and C2 such that their spiking frequencies will range between 0 and 250 

Hz. While this fixes the frequency to cellular voltage response, it does not fix the 

frequency to current response which depends mainly on the leaky resistance (R1) or 
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the inverse of membrane 's conductivity. So, our neurons can still assume any 

possible curves on Figure I.l (page 13). According to APPENDIX A, DoubleLIF, the 

oscillator's time constant (r=R2C2) should be 0.0112 to spike at 250 Hz when the 

cellular potential is 125 mV. If we sC2 at 1.0 pF, that yields 11.2 Gn for R2 

(11 ,214,693 ,008 n to be precise). 

We will also assume that each unit of input (each ion channel) has a conductivity of 

10-6 S; in other words, the resistance to incoming currents is 1 Mn when the channel 

is open (relative to infinite when it is close). We should remember that adding 

resistors in parallel reduces the overall resistance and, as mentioned previously, units 

do not get full capacity from the beginning such that the number ofunits (Ni) can take 

any positive real value. 

3.2 - The experimentation 

In this section, we will describe a few experimental scenarios designed to understand 

the basic principles of the madel. Since the dynamics are of the essence m 

w1derstanding the observations, these scenarios are available on the web at 

www.DoubleLIF.uqam.ca24
. 

3.2.1 - Scenario # 1: Causality 

As shawn on Figure III.2, the first scenariO presents an extremely simple brain 

composed of a single straight chain of three neurons: one sensor, one intemeuron and 

one actuator. The scenario is called "Causality" to emphasize the causal effect 

24 At the time of publication (end 201 4), it is possible to run the simulation from an internet browser 
at high leve! of security by ad ding the site (http: //www.DoubleLIF.ugam.ca) to the trusted site list in 
the JAVA control panel. (For procedural information, see https://www. java.com/en/download/ 
exception sitelist. jsp). Considering the limited distribution, the application uses a self-signed 
certificate which might not be tolerated by the next release of JAVA. 
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Figure III.2 - Simple neuronal chain 

relationship in ali neuronal chains. Having established this fact in the simplest 

possible neuronal arrangement, it should be understood that it applies to all neuronal 

arrangements however complex they might get. 

Each of them have specifie properties and we will discuss them starting with the 

sens or. 

3.2.1.1- The sensor (Neuron 0) 

Sensors, like any other neuron, start as highly sensitive cells (the tiniest stimulation 

generates a full , albeit weak, response) and develop under environmental stimulation 
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· into mature neurons responding only to very specifie stimuli with self-adapted scaling 

for analog transduction. For example, if a light sensor is located at a distance d from a 

light source A, the sensor receives a stimulus equal to the intensity of A divided by 

the square of the distance d2
, but, if the sensor bas never received such a strong signal 

ever before, the stimulus is reduced to the maximum previously sensed (0 at the very 

begüming) plus a development factor (let's say 0.001). The sensor responds at its 

maximum frequency (in our case: 250Hz) as long as the received stimulus is equal to 

or larger than any previously experienced stimulus. If the intensity of the source 

diminishes, or the distance between the source and the sensor increases, the sensor's 

response becomes proportional to the ratio of sensed stimulus to maximum 

previously experienced stimulus; it is therefore automatically limited by the physical 

constraint on the intensity of such signais in the environrnent. 

3.2.1.2- The intemeuron (Neuron 1) 

Intemeurons react essentially the same way, except that their input, commg 

necessarily from another neuron, sensor or intemeuron, is pulsed and cannot build up 

enough potential in C1, in a single pulse, to energize the oscillator. When the 

presynaptic neuron is spiking at 250 Hz, as it takes 4 spikes to trigger a postsynaptic 

spike, the intemeuron starts spiking at 62.5 Hz 25 and it takes that much longer to 

reach internai equilibrium and build connection strength. 

3 .2.1.3 - The actuator (N euron 2) 

Actuators develop exactly like intemeurons. Their reaching full frequency should not 

mean that they reach the full strength of a mature muscle. The biological 

development of muscles is n0t part of neuron development, but it greatly affects brain 

25 W ithout the diode between C1 and Cb there would be no sp ike at ail until the internai equilibrium 
is reached to generate such a spike, but the overall behavior of the neuron would not be significantly 
different. 
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development since the dynamics of the response is directly involved. In control 

systems in general, and in robots in particular, actuators have a given strength, like 

sensors have a given sensibility, and the interrelation is provided taking these fixed 

values into account. In a developing brain, it is important to realize that the 

development of the relationship follows the development ofboth physical interfaces. 

3 .2.1.4 - The (causal) sensorimotor chain 

With a straight, and short, chain like this one, it is easy to see the causal effect 

relationships. The physical signal in the environment affects the sensor which reacts 

and produces neurotransmitters causing cbannels in the dendritic tree of an 

intemeuron to open !etting in electrically charged ions which change the cellular 

potential of the intemeuron triggering a spike along its axon to eject more 

neurotransmitters towards the actuator which, in turn, reacts and produces an effect in 

the environment. This is possible only when the agent bas the specifie type of sensor 

required to react to that specifie signal from the environment. The response is only 

possible according to the degrees of freedom of the actuator; for this scenario, the 

agent can only move forward in one direction. 

The scenario was organized such that the agent moves towards the light source (A), 

but that should not be interpreted as intentionality, there is nothing more than pure 

causality. The reaction is similar to that of a bacterium activating its cilium when 

sensing low food content in its environment. As a result of this activation, it finds 

· itself in a different environment which might, or might not, be ri cher in nutrients. The 

move was not triggered by a probability of getting more food, but simply by the fact 

that there wasn 't any food around. This is not different from the action of a 

thermostat; a bimetallic thermostat on a shelf will click on and off with changes in the 

ambient temperature even if it does not, in any way, affect the temperature. All 

sensorimotor activities, however complex, must be explained by such causal chains at 

the physicallevel. 
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However, ifwe use a different source (e.g. B), we see (Figure III.2 in the environment 

window) that the agent is moving exactly the same way as before not reorienting 

itself towards the new source (it does not have enough degrees of freedom to follow 

the path marked with a red X) and continues its way beyond the source to stop, as 

previously, against the wall. 

In the dynamic parameters window, we can see that the parameters are developing 

continuously. They clearly tend asymptotically towards a stable equilibrium and they 

preserve their values when the stimulation is stopped. As shown in the extended 

window at the bottom, the time axis has been divided in 17 sections where the 

selected neuron (0, 1 or 2) alternate under different stimulating conditions (A , B, or 

A+B). The first three periods show the rapid early growth of the three neurons in 

sequence with dela ys and lags in stimulation down the chain. Then, longer periods let 

see the continuous development of the parameters under sustained stimulation. 

Periods 5 and 6, 11 and 12, and 17 show the development of the sensor (neuron 0). In 

5, the sensor, stimulated by A only, is at maximum intensity. Adding source B, in 6, 

increases the intensity to a new maximum, but not the response frequency which is 

already maxed out. However, having switched B back off, we see, in 11, that the 

response to A only is now less than it was in 5. Switching B on and A off, the 

response to B only is yet somewhat lower since B is further away (see 12). Finally, 

when A and B are both back on, the response goes back to maximum frequency close 

to 250Hz as shown by the spiking rate indicator at 247. 

The interneuron (neuron 1) and the actuator (neuron 2) undergo similar development, 

but they haven 't reached full maturity in the fifteen minutes covered by the display. 

After a while, they will also show definite differences in their responses to only A, 

only B, and both A and B being on. The spiking frequency becomes an analog 

representation of an external physical property. We are not using "representation" 
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lightly; the neuronal state is causally coupled to the extemal property. It is a better 

"representation" than a picture ofthe source since it follows dynamically any, and all, 

changes of the property at the sensing point. This "representation" is transmitted 

down the causal chain producing what Peirce called a semiosis, a chain of signs. 

However, a dimensionless (punctual) "representation" (previously referred to as 

sensel) is very limited if not associated with (many) more sensels. 

3.2.2- Scenario #2: Bilaterality 

Clearly, a single sense! and a single degree of freedom are not sufficient to talk about 

cognition. As shown on Figure III.3 , in this second scenario, we double the simple 

causal chain of the previous scenario and we introduce the concept ofbilaterality. 

3 .2.2.1 - The sensors and intemeurons 

In a bi lateral arrangement, the relative physical positions of sensors become of 

paramount importance. Adding a second sensor (of the same type) immediately 

provides a different perspective on the environrnent. The two sensors cannot be 

exactly at the same position in space and they will generally be excited differently by 

a single source anywhere in the environ ment ( except in the bisecting plane between 

the two sensors). The fact that the two sensors are rigidly (or semi-rigidly) 

intercOJmected necessarily introduces sorne correlation between their respective 

outputs. 

Physical reality also constrains the sensitivity angle of all sensors. In scenario 1, the 

sensor was not constrained and could be stimulated by any source located anywhere 

360° around it. With two sensors, one on each side of the body, it is normal to 

consider that the sources will be effective only when the body is not between the 

source and the sensor. Considering the quasi-triangular shape of the body, this imply 
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Figure III.3 - Bilaterality 

a sensitivity angle of 180° with a small overlap in front where sources simultaneously 

affect both sensors and a blind spot in the back where neither sensor is affected. 

All this means differences; Floridi would say "information" . The source is emitting 

de re information and the sensors are affected by causal coupling as discussed in 

scenario 1. The information is not yet interpreted, but it could be processed. For now, 

we will not do any processing and the signals will simply be fed, unmodified, to 

actuators via dedicated intemeurons. However, the opportunity exists to extract this 

potential information by proper interconnection of intemeurons and it is precise! y the 

rules of interconnections that we are looking for. 
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3.2.2.2- The actuators 

Adding a second actuator to our agent provides a second degree of freedom as long as 

the two actuators are stimulated differently by any common source in the 

environment. It means that the agent is not limited to moving forward on a straight 

line, it can cover the entire 2D environment assuming that when an actuator is more 

excited than the other, th at si de of the body will advanced fas ter (one could say: the 

wheel on that side will tum faster) . Of course, the positioning of the actuators is as 

cri ti cal as the positioning of the sensors . This is where genetïcs pla ys an essen ti al role 

in cognition. If you do not have light sensors, you cam10t see. If you do not have legs 

or wheels or whatever mechanisms, you cannot move. Ifyou cannot store energy, you 

cannot generate actions . Genetics sets the landscape (Waddington 1956) and 

cognition is "canalized'' by the available set of sensors and actuators. On that basis, 

we try to identify how the interconnections between sensors and actuators could, 

solely on stimulation (and constraints) from the body and the environment, develop a 

network identifiable as a cognitive architecture. 

Since we need a starting point for our observations, we selected to cross the median 

plane when connecting the output of the intemeurons to the actuators. We could have 

chosen a different starting point, but our objective is to verify that the simple 

observable sensorimotor behaviors resulting from a given neuronal connection are 

predictable according to the model. In this scenario, we can predict that: 

1. under constant stimulation, the com1ections will strengthen, 

2. the agent will be attracted by the source, arid 

3. whenever all sources are in the agent's blind spots, the agent will be 

(fatally) immobilized. 

Experimenting with various starting positions and orientations, we observed that the 

agent effectively tumed towards the source at first. If the agent was positioned facing 

the source such that both sensors were stimulated, it would then move forward slowly 
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curving until, passing under the source, this one ends up in the blind spot. Of course, 

whenever the agent was positioned such that the source was already in its blind spot 

(e.g. facing in the opposite direction), it would not move at all. When the source was 

in the sensitive angle of one sensor but not of the other, the agent would tum pass the 

direction of the source until this one ends up in the blind spot of the first exposed 

sensor, to catch up the strengthening of the second chain until the actuators receive 

approximately equal stimulations when both sensors are affected by the source 

moving th en the agent forward curving (and wobbling) un til, passing un der the 

source, this one ends up in the blind spot. 

If two sources are used instead of one, the agent continues to move from one source 

to the other according to the relative attraction (intensity/distance) of the sources until 

both sources are simultaneously in the blind spot. Multiplying the number of sources, 

it is possible to keep the agent going forever. 

After sorne time with a giVen configuration of sources, the agent will repeatedly 

follow a pattern around the scene. Turning sources on and off will modify the pattern; 

the agent (re )learning a new pattern after each modification. Figure ill.3 shows the 

path followed by an agent stimulated only by the leftmost source (A) until it reached 

that source and stops in its blind spot after close to 3 minutes. In Figure III.4, we see 

that it starts again a minute or so later when the second source (B) is tumed on. The 

agent tums then towards source B and, subject to the competing attractions of both 

sources, describes a series of elliptical convolutions until it settles in a circular pattern 

in between the sources, close to B. We can see that the interneuron ' s dynamic 

parameters ( continuously observed from beginning to end) keep changing throughout 

this experiment. 
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Figure III.4- Two sources (attractors) 

3.2.3 - Scenario #3: Random walk 

In the two previous scenarios, we have seen that any sensor stimulated by an 

appropriate source will necessarily respond proportionally to the intensity of the 

stimulus. Similarly, any interneuron and any actuator will necessarily respond 

proportionally to the combined intensity and frequency of all stimuli from 

interneurons or sensors synaptically connected to their dendritic tree. On the other 

band, this implies that whenever the causal coupling between the source and the 

sensor is broken, the activation of the sensor disappears as well as any synaptically 
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transmitted causal stimulation. No stimulation without response; no response without 

stimulation. 

In our previous examples, the agent often suffered fatal lack of stimulation due to the 

extremely limited number of sensors and the fixed configuration of sources. In the 

real world, stimulations continuously appear and disappear from the agent's 

immediate environment. Furthermore, the agent is also equipped with a multitude of 

internai sensors and actuators continuously activated by its own metabolism. 

In the present scenano, we can see that, if a source is randomly moving in the 

environment, the agent will keep following it around. There might be periods of ti me 

where the source will be stuck in the agent's blind spot, but it will eventually move in 

such a way that the stimulation will resume. If we multiply such sources, the agent 

becomes incessantly stimulated. If the movement of the sources is not totally random, 

there might be sorne patterns for the agent to learn. 

The essentially dynamic aspects of this scenario cannat be presented in a snapshot of 

the GUI; it can only be full y appreciated in a real (or accelerated) time display of the 

behavior. However, Figure III.5 shows a few neuronal spiking patterns which are 

typical of such lively stimulations when the agent, stimulated by two sources, follows 

a randomly moving source while the other source remained at its starting position. 

The agent's path, in black, allows us to imagine the random walk of one source 

(starting where source A normally stood in previous scenarios) moving up, left and 

diagonally down close to the second source (in position B in previous scenarios) at 

the time of the screenshot. Clearly, this experiment could go on forever with its dull 

moments when the two sources are in the agent's blind spot, but always revived when 

the moving source randomly gets out ofthat blind spot. 
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All this is reminiscent of Braitenberg's Vehicles (1984) except that electrical wires 

have been replaced by chains of artificial neurons. 

3.2.4 - Scenario #4: Inhibition 

Thus far, we have dealt only with excitatory neurons. We will now introduce 

inhibitory neurons which send different neurotransmitters through the synaptic gap 

thereby activating K+ or Cr channels instead of Na+ channels in the postsynaptic 

neurons. The opening of these channels produces IPSC's instead of EPSC's 

(Inhibitory instead of Excitatory PostSynaptic Currents) driving the postsynaptic 
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potential down instead of up. At first glanee, the effect seems simple enough: an 

inhibitory signal can neutralize the effect of an equivalent excitatory signal after 

proper weighing of both signais by their relative synaptic strength. But how do they 

connect together? 

As a postsynaptic neuron, an inhibitory neuron develops exactly the same way as an 

excitatory neuron; its dendritic tree is not different and reacts identically to 

stimulations. As a presynaptic neuron, things are different: it sends a negative 

message. While homosynaptic stimulation from an excitatory neuron provides 

positive feedback (i.e. stimulation raises postsynaptic voltage which fa vors L TP 

which increases stimulation which again favors LTP and so on), homosynaptic 

stimulation from an inhibitory neuron produces negative feedback (i.e. stimulation 

reduces postsynaptic voltage which favors LTD which decreases stimulation and 

therefore dampens the response instead of amplifying it. On the other band, inhibitory 

connections thrive from competition with heterosynaptic excitatory connections. The 

excitatory connections raise the postsynaptic voltage which favors L TP for ali 

connections, inhibitory as well as excitatory, which increases stimulation with 

mitigated results considering the canceling competitive effects. So, inhibitory 

connections can only strengthen when they fire into an already positively stimulated 

postsynaptic neuron. They follow Hebb's law in that they wire with other neurons 

firing at unison, but not to activate them further, rather to stop them from firing. 

However, experimenting with this assumption, we found out that: 

1. the inhibitory connections can never fully catch up with competing excitatory 

connections because these excitatory connections strengthen as a result of their 

own action whether the inhibitory connections are interfering or not while, on 

the other hand, the inhibitory connections cannot strengthen themselves in the 

absence of excitatory stimulations, 
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2. on the contrary, iterative homosynaptic or "cooperative" inhibitory 

stimulations, without any excitatory counterpart, can only drop the 

postsynaptic potential and weaken any active incoming signal, 

3. by repeatedly stimulating an already polarized postsynaptic neuron, inhibitory 

connections tend to eliminate themselves, and 

4. although it was possible to get the desired behavior by tweaking the externat 

stimuli, the equilibrium was unstable and, under specifie changes in the 

stimulation, the neuron would suddenly favor the rapid strengthening of the 

excitatory synapse rendering the inhibitory one totally ineffective. 

Having exhausted ail imaginable alternatives with the original set of equations (not to 

mention the time allowed for the project), it became necessary to look at any other 

mechanism potentially offering a stable solution to the inhibition problem. Our 

observations of the mode! led us to believe that the inhibitory stimulation bad to act 

directly on the excitatory synapses converging on the same postsynaptic neuron and 

not only on the cellular potential. However, such an action would bave been a 

violation of our encapsulation principle. The inhibitory synapses do not know, when 

activated, if there are excita tory synapses connected to that same postsynaptic neuron, 

even less wbich synapses tbese could be. We therefore postulated the existence of an 

unknown mechanism involving the presence, in the postsynaptic neuron, of a 

messenger (inhibitor) generated by, and proportional to, any inhibitory stimulation 

and neutralizing proportionally any future excitatory stimulation before exponentially 

decaying out of the system. It was also assumed that the neutralized excitatory 

stimulation could not parti ci pate in any form of synaptic potentiation or depression. 

dM;11h(t)lspike = - k;nh * IJPsP for inhibitory spikes and 

= - k decay * M;nh(t) for excitatory spikes. 

and IEPsP in equation 1 is reduced by an amount equal to the residual M;11 11 before 

affecting the synaptic strength. The numerical approximation method used to process 
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synaptic plasticity on a per spike basis might be, at least partly, responsible for the 

problem, but detailed investigation of this method is not feasible at this stage in the 

project considering time and complexity. 

Figure III.6 shows an agent with two sensors of different types responding to two 

sources (A and B) of corresponding types. The sensor on the right side of the body 

(neuron 0) is stimulated by source A, but not by source B, whi le the sensor on the left 

si de of the body (neuron 1) is stimulated by source B, but not by source A. The signal 

from the left sensor is sent to an inhibitory intemeuron (neuron 2) which produces an 

inhibitory signal whenever the left sensor is active which means whenever source B is 

on. If we send this inhibitory signal to another intemeuron (neuron 3) jointly with the 

excitatory signal from the right sensor, we could expect sorne kind of competition 

between the two signals. When source A is on and source B is off, neuron 3 receives 

an excitatory signal from neuron 0 and develop normally as we have seen in previous 

scenarios since there would not be any (inhibitory) signal coming from neuron 2. 

When source A is off and source B is on, neuron 3 receives an inhibitory signal from 

neuron 2 and nothing happens since neuron 3 is already fully depolarized and the 

inhibitory signal can only try to depolarize it further. When both sources A and B are 

on, neuron 3 receives both an excitatory signal from neuron 0 and an inhibitory signal 

from neuron 2. With the inhibitory messenger, the inhibitory signal always wins and 

neuron 3 is inactivated or at least below spiking threshold. 

Table III.l summarizes the resulting responses. As shown, the response of neuron 3 

corresponds to an A-not-B gate (A 1\ .....,B). 

Figure III.6, also shows how this response develops over tirrie under externat 

stimulation by flipping sources A and B on and off in pseudo-random sequences. 

With time, it becomes as necessary that B be off for neuron 3 to be on as it is 

necessary that A be on. In other words, the absence of B is significant for our agent. 
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Table III.1 - Neuronal A-not-B gate 

Source A ON OFF ON OFF 

Source B OFF ON ON OFF 

Neuron 0 1 0 1 0 A 

Neuron 1 0 1 1 0 B 

Neuron 2 0 -1 -1 0 -B 

Neuron 3 1 0 0 0 A 1\ _,B 

The bottom portion of Figure III.6 is composed of four spiking trains showing how 

each neuron (0, 1, 2 and 3) res ponds to different combinations of sources' activation. 

1 Neurone 1 J".. 

fAU$[ 

Figure III.6 - Inhibition 
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To complete the network, we needed an actuator (not identified, but the only neuron 

in the output layer, i.e. without an output synaptic link). In order to avoid the 

additional complexity of having to follow a moving agent while flipping switches, we 

fed strictly inhibitory signais to this actuator such that it was never excited. The other 

unidentified neuron, on the right of neuron 3, is an inhibitory neuron transforming the 

excitatory signal from neuron 0 into an inhibitory signal before sending it to the 

actuator. 

At time of submitting this PhD dissertation, this inhibition mechanism seems to be 

the best solution to our stability problem with the A-not-B gate. However, sorne 

doubt persists that it might well be an indirect fix to a quirk in our numerical 

integration method where we process stimulation and synaptic plasticity on a per 

spike basis within integration periods. 

3.2.5- Scenario #5: Neuronallogic 

Having established a stable mechanism for the combination of inhibitory and 

excitatory signais, we can now entertain more complex networks. 

Figure III.7 shows a network of 12 neurons, sorne excitatory, sorne inhibitory, which 

performs the basics of neuronallogic. 

As shown m Table III.2, we expect each neuron to perform a specifie logical 

operation. 

Neuron 0 is a sensor responding to source A. Whenever neuron 0 is physically linked 

to source A, it produces a signal representing, in the network, the presence (the 

existence) of A in the environment. As long as A bas not been activated in the 

environment, neuron 0 remains dormant in the network. When A is tumed on for the 

first time, neuron 0 is excited and begins to develop. Any repetition of A 's activation, 
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will strengthen neuron 0 and improve its capacity to represent different levels of 

intensity of stimulation from source A. This part of the logic is clearly inductive since 

the representation of A is based solely on the repetitive stimulations by A . That 

representation of A is the ontological establishment of A in the representational 

structure. Before the first stimulation, there is no A in the structure; with repetitions, 

the existence of A becomes more and more ascertained and the neuron becomes more 

and more dedicated to representing A. The same applies to intemeurons and actuators 

in their representation resulting from composition of representations fed to them. 

Neuron 1 is a sensor responding to source B. Everything we said about neuron 0, with 

respect to source A, applies to neuron 1, with respect to source B. 

Neuron 2 is an inhibitory neuron transforming an excitatory signal from neuron 0 into 

an inhibitory signal. In itself, -A is not different from A from a representational point 

of view, but, when combined with other signais, the effect is equivalent to -.A, the 

complement of A, as we have seen in scenario 4. 

Neuron 3 is to neuron 1 what neuron 2 is to neuron O. 

Neuron 4 and neuron 6 replicate scenario 4 respectively producing (B A -.A) and (A A 

-.B). 

Neuron 5 combines excitatory signals from neuron 0 and neuron 1. The development 

of this neuron is also based on induction and its output signal becomes proportion al to 

the ex po sure of neuron 0 to source A relative to the exposure of neuron 1 to source B . 

Neuron 7, combining the results of neurons 4 and 6, produces an exclusive-or-gate 

behavior resulting from ((A A -.B) V (B A -.A)). 
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Table III.2 - Neuronallogic 

Source A ON OFF ON OFF 

Source B OFF ON ON OFF 

Neuron 0 1 0 1 0 A 

Neuron 1 0 1 1 0 B 

Neuron 2 -1 0 -1 0 -A 

Neuron 3 0 -1 -1 0 -B 

Neuron 4 0 1 0 0 B 1\ _,A 

Neuron 5 1 1 1 0 AVB 

Neuron 6 1 0 0 0 A 1\ _,B 

Neuron 7 1 1 0 0 A~B 

Neuron 8 -1 -1 0 0 -(A~ B) 

Neuron 9 0 0 1 0 AI\B 

Neuron 8 is an inhibitory neuron producing the complement ofneuron 7. 

Neuron 9, combining the results of neurons 5 and 8, produces an and-gate behavior 

resulting from ((A V B) 1\ _,(A ~ B)). 

Figure III.7 shows the responses of the 10 neurons to the different combinations of 

sources' activation. Like in scenario 4, an actuator and two inhibitory neurons (all 

three unidentified) were added to the network to keep the agent immobile. 
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STEP 

Neurone 3 
fYIUSE 

Neurone 6 

Neurone 7 

Neurone 8 

Neurone 9 

Figure III.7- Neuronallogic 

This agent, with its 12-neuron brain, bas a complete intemal representation of all the 

potential states of its admittedly over simplistic environment. The state of the world26 

cannat change without the agent's neuronal state changing and the agent's neuronal 

26 We should remember that we are referring to an oversimplified "world". In a more complex setup, 
an agent's brain receives as mu ch stimulations from its own body th an from the rest of the world . So, 
in this sentence, the state of the world includes the state of the agent ' s body and , ultimately, the state of 
the agent's brain. 
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state does not change if the state of the world bas not. In other words, the agent bas its 

own representation_al system, its own cognitive system. This system is not symbolic. 

We caU the sources A and B, but the agent does not use, nor need, any labels; it 

simply reacts to their stimulation. The system is semiotic since a signal is transmitted 

(causally) from the source to, and through, the network. 

As mentioned briefly when inhibition was introduced in scenario 4, once the sources 

have been detected by the agent, their absence becomes as significant as their 

presence. This phenomenon of stimulation in absentia bas been studied at length by 

Deacon in Jncomplete Nature (20 12). 

3.2.6 - Future scenarios 

Having established that: 

1. neuronal cbains can transport signais as effectively as Braitenberg's copper 

wires (1984), and 

2. neurons can compose signais according to a well-defined logic in the same 

way that logic gates process information in von Neumann machines, 

it is now possible to design networks to improve the agent's behavior by multiplying 

the number of sensors, the number and complexity of actuators, and the number and 

intricacies of intemeurons. 

A matrix of sensors, like the retina, provides redundancy and distribution of 

information. Each sensor provides unique, but correlated, information such that 

spatial differentiation of sucb information is in itself information. For example, speed 

and acceleration are frrst and second differentiations of position. What information 

can we generate by differentiating acceleration? What kind of network do we need to 

detect abjects from sense! information? 
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More complex actuators tequire more sophisticated logic. One can easily imagine a 

quad-input two-wheeler where the wheels could turn forward or backward. It would 

be interesting to evaluate a network where the forward and backward signais would 

be interlocked somewhat like antagonist muscles, flexors and extensors, in the body. 

It is expected tbat designing different kinds of such modules would allow the 

investigation of potential rules in the development of networks. 

3.3 -Discussion 

These results must be analyzed and understood in the transdisciplinary context of the 

research. The main question guiding the project bas always been: "Is strong AI still 

possible?" Witb all that bas been written about computers, cognition and neurology, 

is it still realistic to think that a non-biological machine could, one day, pretend to be 

a true cognitive system, an understanding machine? 

3.3 .1 - Emulation vs simulation 

The scenarios described in the preceding pages of this chapter depict the results of a 

computer simulation based on a simplified physical environment wbere a simplistic 

agent reacts to environmental stimulations tbrough simulated pbysical 

interconnections between its sensors and its actuators . We fully concede that the 

environment simulation is oversimplified and extremely limited, but this migbt be an 

advantage wben the time cornes to interpret what is going on. Thanks to the limited 

number of stimulation sources, we need only an equally limited number of sensors. 

These sensors are also a simulation of physical sensors translating a physical property 

(ligbt, sound, odor, taste, etc.) into a neuronal signal. These neuronal signals are 

processed ( composed) to produce a physical action from the translation, by actuators, 

of resulting neuronal signais. At this level, we are talking about a computer 
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simulation of a behavioral phenomenon where a physical stimulation S calls for a 

physical response R. 

However, if we examine these simulations more closely, they are not identical in 

nature. The physical environment can never be replaced by its simulation. The same 

applies to the sensors and to the relationships between the environment and the 

sensors. Dirto for actuators which are, so to speak, inverted sensors. When we look at 

intemeurons, the story is different; how the signais generated by the sensors reach the 

actuators is totally irrelevant, as long as, for the same combination of stimulations, 

the same actions are produced. Something like replacing Dretske's doorbell by a 

modem electronic version; no more wires between the burton and the bell, a radio 

wave carries the signal. Somebody pushes the burton and the bell still goes "ding 

dong". Same stimulation, same action; even though the pbysical carrier is completely 

different. In the case of the doorbell, we could call it a physical emulation. If you 

have more than one door, bence more than one burton (sensor), sorne coding is 

required to distinguish sensors and produce appropriately different actions ("ding", 

"dong", "ding dong" or even the Westminster chimes ... ) and this becomes a 

numerical emulation. Note that many years ago, typewriters were using strictly 

mechanical keyboards ; then came IBM Selectrics: an electric reproduction 

(emulation) of those mechanical keyboards; and nowadays, you probably have a 

totally numerical (not to -say virtual) emulator on your tablet. 

Requirement 1 -For strong AI to be possible, the brain, a physical causal system, 

must be emulated. 

The emulation of a causal system can only be done at the level of its simplest 

component. In the case of the brain, a biological system, this means the cellular level, 

the neurons. The objective of "artificial" intelligence is to replace this biological 

component by a non-biological one without losing its cognitive function tbat is any of 
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the properties essential to cognitive processes. The main difficulty becomes to define 

which properties are essentially cognitive and which ones are strictly biological. How 

can we preserve the former while discarding (replacing) the latter? This is where we 

introduced the concept of equilibrium between cognitive necessity and biological 

plausibility. 

3.3 .2- Cognitive necessity 

Eiiasmith (20 13 p20) points out: « [There] is [ something] identified nearly 

universally as a hallmark of cognitive systems: the ability to manipulate structured 

representations. » All cognitive functions require the existence of a representational 

structure; you may call it conceptual structure, semantic structure, informational 

system, symbolic system, or, as we did in this document, semiotic system. A mirror, 

for exampie, is a simple physicai representationai system (not the same as a mental 

representation structure, but we will try to get there). A mirror could be emulated 

(replaced) by a camera and a video screen (with sorne processing to flip the image 

horizontally) . This provides sorne additionai insights on what we mean by emulation 

of a physical system at the information level. The image provided by a closed-ioop 

video circuit is as good (provides the same information) as a mirror; granuiarity 

might not be perfect, but an AI system as close to sorne cognitive system as an HD 

TV is to a mirror, would be a major achievement. Not that an HD TV is comparable 

to any kind of cognitive systems. For one, cognitive systems are muitimodal; we 

would have to add at least sound, but the main difference is not there. Cognitive 

systems do not strictly reproduce the inputs in kind, assuming that HD TV can 

reproduce visual and auditory signais in kind (i.e. the signais produced by the TV are 

similar to the signais captured by the camera), but process the input signais and 

transform them in an action which is as much a representation of these inputs than the 

image in the mirror is a representation of the object in front of it. 
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Requirement 2 - For a cognitive system, the emulation is not a simple one-to-one 

reproduction of each input into an output, but a rather complex composition of many 

inputs into each single output. The dynamic sum of these outputs produces a 

behavior. 

In scenarios 1 and 2, we can see the basic elements of such emulations. The simple 3-

neuron chains act like wires with transducers at both ends, in a causally behavioral 

fashion. In Braitenberg's vehicles, such connections from input to output are indeed 

hard-wired with fixed transducing factors at both ends such that the output is 

proportional to the input. This arrangement is equivalent to the closed-loop video 

circuit; it guarantees analog dynamic representation of the input signais at the output 

and partly meets requirement 1. However, the brain is not that rigid; on the contrary it 

is known to be highly flexible, highly plastic. In other words, the hard-wired fixed­

coefficient transducers are not biologically plausible. 

3 .3.3 - Biological plausibility 

Scenarios 1 and 2 also show that, the 3-neuron chains are not as rigidly wired as the 

Braitenberg ' s vehicles. First of all, the sensors have self-tuning transducing factors. 

The fixed span (0 to 250 Hz) of the sensors output is slowly brought to represent the 

maximum intensity ever sensed. At the beginning, even an infinitesimal stimulation 

produces a full output (250 Hz). This full output correspond to a highly depolarized 

cell (-30 mv) which is assumed to trigger sorne metabolic reactions modifying the 

cell's parameters (capacitance and conductivity) until , after a while, the ionie leak is 

in equilibrium with the input spikes. We are not looking for the specifie (biological) 

reactions since, anyway, they will be replaced by an equivalent algorithm, but we try 

to identify metabolic processes which are not blatantly biologically impossible. In 

this case, a specifie state of the cell is associated with a specifie change in the cell's 

characteristics. Encapsulation is certainly a strong constraint on biological 
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plausibility; cells do not know anything about what is happening in other cells, they 

barely react to disturbances imposed on them by their immediate environrnent. 

Requirement 3 - Encapsulation is a necessary condition for biological plausibility. 

A similar bootstrapping process applies for intemeurons and actuators. In a robotic 

implementation, the physical transducers necessarily have a fixed span which must be 

corrected to emulate the bootstrapping of biological neural cells. For sensors, the 

fixed span is first applied to sorne analog to numerical transducer and the numerical 

signal is then used as the value of the externat stimulation to bootstrap an intemal 

transduction factor. The process is somewhat reversed for actuators such that only a 

fraction of the output signal is sent out, delaying the usage of full strength for a fairly 

long period of time. These artificial filters can only be defined empirically depending 

of the actuators involved and the type of behaviors being emulated. This is an attempt 

to compensate for muscle development, but it does not help with the additional 

problem of growing bones. Body development is not a cognition problem, but it is 

clearly a significant variable in cognition development. 

This bootstrapping plasticity is not usually included in neuronal leaming processes 

because it is very difficult to observe in vitro as well as in vivo. Most experiments 

involve neurons at a given stage of their development with relatively constant 

characteristics. STDP experiments, for example, observe marginal development of 

synapses assuming th at other parts of the neurons do not change ( ceteris pari bus), but 

is that really the case? 

The study of synaptic plasticity displaces the focus from one neuron to the interface 

between two (pre- and postsynaptic) neurons. Encapsulation has to be redefined. At 

the cellular lev el, it is easy to refer to the cell 's membrane as the encapsulation 

boundary. At the synaptic level, we fmd ourselves at the interface between two 
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boundaries. Encapsulation becomes the operational closure of the synapse. To 

produce the appropriate effect on the postsynaptic neuron and on its self­

strengthening, all the synapse needs to know is: 1) is there a pulse in the presynaptic 

axon? and 2) what is the cellular potential of the postsynaptic neuron? From a 

· biological point of view, the mechanisms are mu ch more complex th an that including 

multiple reactions to produce neurotransmitters, to opens ligand-gated channels, to 

produce additional channels for LTP (or somehow eliminate channels for L TD), to 

enhance (or curtail) neurotransmitter production processes to main tain equilibrium in 

the future. From a cognition point of view, it is sufficient to know the effect of a 

pulse on the state of the postsynaptic neuron and on the strength of the synapse itself; 

we can assume that, when functioning properly, the biological reactions will reach 

expected homeostatic equilibria. Still, encapsulation, even redefined in this way, puts 

strict constraints on what can (plausibly) be achieved by neurons and parts thereof. 

It should be noted that synaptic plasticity (strengthening of the connections) can push 

the cellular potential beyond its prescribed limit and trigger the bootstrapping process 

modifying the cell's properties thereby affecting future expression of synaptic 

plasticity. This effect ofplasticity on plasticity is referred to as metaplasticity. 

As we have seen until now, there is no decision to make, not even the possibility to 

make decisions, about what a sensor is a representation of. A sensor responds to a 

given type of stimulation and represents this stimulation as sensed at a specifie point 

in space-time. One cannot decide what a point on a mirror (or a pixel on a TV screen) 

will reflect, one can only put different objects in front of the mirror and the structure 

of the representation is determined by the structure of the object. In a similar way, the 

output of an intemeuron is the sum of the representations of its inputs. These 

representations are built by associations of repetitive stimulations. The 

representational structure develops from the regularities in the stimulations. At that 
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leve!, we are not talking about symbols yet, barely about s1gns combining into 

concepts, without labels to assign to these concepts. 

Requirement 4 - The representational structure develops autopoietically from 

repetitive stimulations and associations of repetitive stimulations. 

We consider this development autopoietic because there is no way to force a sensor to 

react differently to a stimulation than its natural way of reacting. And a group of 

sensors, as a group, will always have correlated responses to stimulations and these 

correlations will necessarily bring associations of signais into neurons which could be 

identified as representations (or even concepts) of the object responsible for the 

repetitive comrnon stimulation. 

3.3.4 - Neuronallogic 

Scenario 1 tries to illustrate the causality between the response and the stimulation, 

but also the causality behind the development of individual neurons. 

Scenario 2 introduces, with bilaterality, a new type of physical categorization. In 

scenario 1, physical signais were segregated by the type of sensors only. In 2, the 

bodily arrangement of sensors creates new ways of making differences, of 

discovering information. The sources are sensed differently by the two sensors on 

both si des of the body. If a source is in front of the agent, both sensors are stimulated. 

At sorne point, when the source moves far enough to one si de of the body, only one 

of the two sensors is stimulated. There is a region where none of the sensors are 

stimulated: the blind spot. The information is divided in 4 categories: left, right, in 

front and behind which could also be labelled "A", "B", "A and B", and "Nothing". 

Excitatory neurons can easily mark the difference between "A" and "B" since 

different neuronal signais are active in these cases. "A" and "B" can be associated to 
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represent "A and B", but the resulting signal is in fact a representation of "A or B" 

with differences in intensity when only "A" or "B" are present. There is no way to 

isolate the cases where the source is affecting both sensors simultaneously. Scenario 3 

shows that it is possible to generate somewhat realistic behaviors using this 

incomplete logic and maybe even create the illusion that the agent is intentionally 

following a randomly moving source or deciding to go to the closest source when 

more than one is available. 

There is still one tool which we have not used and which is well recognized by 

neurologists: the excitatory neuron. However, its application is not straightforward; it 

certainly does not give "A and B" directly. At best, it gives us a different version of 

"A" and "B"; a negative version which could be called "A-" and "B-" since, when 

connected with an excitatory signal to a common postsynaptic neuron, the signais 

compete instead of being additive such that "A" and "B-" tend to annihilate each 

other. The result is that an "A and B-" combination will produce a signal when "B" is 

not there and no signal when "B" is there; in other words a typical "A and notB" 

combination as demonstrated in scenario 4. Although "B-" is far from being 

equivalent to "notB", "A and B-" is equivalent to "A and notB". 

Requirement 5 - Excitatory neurons are not sufficient to take full advantage of the 

available information. Inhibitory neurons are required to complete the isolation of 

overlapping categories. 

Scenario 5 shows that, with "A", "B", "A-" and "B-", it is possible to generate 

neuronal combinations including "A and notB", "B and notA", "A orB", "A and B", 

and "A xor B". These are sufficient to develop propositional logic. The presence of 

"A" and "B" signais is in itself an existential quantifier. 
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3.3.5- Informational autopoiesis 

The original intent was to empirically investigate the composition of excitatory and 

inhibitory signais to evaluate selectivity rules (like BCM) and, maybe, discover new 

rules to sustain infotmational autopoiesis . The difficulties of implementing stable 

inhibition made us realize that composition rules, at that level, were required to 

empirically build the networks we intended to observe. 

Requirement 6 - A basic set of rules is required to understand the generation of a 

semiotic system before we can investigate its autopoietic behavior. 

Having added equations to the inhibition part of the model, we now have a 

framework where it is possible to construct networks on the basis of logical gates and 

investigate how this construction process could be algorithmized. 



CHAPTERIV 

Synthetic neuro-cognition 

At the beginning of this project, embarking on a quest for Artificial Intelligence, we 

voluntarily limited the scope to preverbal preconscious intelligence, hoping to avoid 

the hardest problems of cognition. A preliminary review, unavoidably too restricted, 

of sorne cognitive science main streams led us to conclude that intelligent, or should 

we say cognitive, systems bad to be semiotic and autopoietic: two necessary and 

jointly sufficient conditions to avoid the well-known problems of symbol grounding 

and zero semantic commitment. Strongly biased by a physicalist (read this as an 

extrapolation of engineering) background, we favored a connectionist postulate ("The 

brain can be algorithmized'') over a computationalist ( cognitivist, representation­

nalist) .hypothesis ("The mind can be algorithmized''). This postulate tacitly implied 

the development of artificial neural networks which, we thought, had to be as close as 

possible to biological neurons in order to have a chance to meet the autopoietic 

condition. 

We then retraced the history of neuron models development and highlighted, again, 

two different approaches. The first, probably influenced by computationalists 

(functionalists), was primarily interested in reproducing the logical functions of the 

mind with oversimplified neuron models. The second, constrained by biological 

plausibility, focused on the dynamic aspects of spiking neurons. Again, conscious of 

the biological aspects of autopoiesis, we felt obligated to join the latter. 
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This led us to the development of an autopoietic semiotic artificial neuron capable of 

classical binary logic and expandable to fuzzy (analog) logic. Considering the 

similarities between our agent's behaviors and Braitenberg's vehicles' (1984), we 

found appropriate to refer to this framework as synthetic neure-cognition referring to 

Braitenberg's book subtitle: « Experiments in Synthetic Psychology ». Having 

elected to stay at the subconscious leve!, we could hardly talk of psychology, which 

covers more than intelligence which, in turn, already implies advanced cognition. 

Talking of neure-cognition stresses the importance of neurons for the bottom-up 

development of intelligence. Like Braitenberg, we want to emphasize that cognition, 

bence intelligence and psychology, develops synthetically by composition of atomic 

elements (in our case: neurons), hinting by the way that synthesis can well be 

artificially reproduced. Briefly, we propose synthetic neure-cognition as the 

emergence of artificial intelligence. 

4.1 - Achievements 

What Braitenberg (1984) could do with electrical wires, we can now do with neuronal 

chains. What von Neumann could do with logic gates, we can now do with neuronal 

assemblies . Wh ile electrical wires and transistors (bence logic ga tes) have static 

response curves, DoubleLIF neurons adapt to, and are modified by, the processed 

information. While the neurons are artificial, the network can self-organize 

autopoietically. Our objective has not changed, we do not intend to duplicate von 

Neumann's machines with neuronal logic gates; we are still interested in finding out 

how such gates can self-organize under extemal stimulation. 

4.1.1 - The simulation 

We have a framework allowing us to try different neuronal configurations and 

investigate how they could self-develop under the influence of extemal information. 
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Manipulating these neuronal configurations, it is possible to generate different 

representational structures and ultimately extract the rules guiding the development of 

cognitive architectures. 

The prototype was developed to demonstrate the validity of the mathematical model. 

Sets of differentiai equations carmot be analytically solved and can only be evaluated 

through numerical approximation. Although it might be only an approximation of the 

biological elements of cognition, the implemented model could well be a very 

satisfactory emulation of the basic cognitive functionality. 

As developed, the simulation includes more than a model of the brain. The body 

(sensors and actuators) and the environment (stimulating sources) must also be 

handled via sorne physical engine which often ends up being more complex and 

resources demanding than the brain itself. In reality, including in robotics, the effects 

of the environment on sensors do not require any calculation, they simply happen. 

The same can be said about the effect of actuators on the environment. So, the 

complexity of body and environment is not a significant consideration in our case. It 

has been kept to a minimum, to the point of being over simplistic, in order to make 

programming and result analysis easier, not to say simply feasible . The complexity of 

the brain itself is in fact linear with the total number of synapses with a time 

constraint due to the integration step of the numerical approximation. This is not 

trivial since, for a human brain, we would be talking about lü 14 synapses per 

millisecond or maybe even 10 121 synapses per millisecond (lü 11 neurons connected to 

lü 11 neurons) if ways ofpruning non-existing connections cannot be established. But, 

for now, we still have a lot to leam with mu ch less neurons and connections and the 

prototype can run at twenty-something times real-time execution even with the 

(admittedly over simplistic) physical body and environment simulation. 

l 
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4.1 .2 - The neuronal madel 

The DoubleLIF neuron madel is an extension of the popular "leaky integrate-and­

frre" madel with a second accumulator to generate non-linear postsynaptic currents 

(PSCs) from successive spikes taking into account the effect of previous impulses on 

the postsynaptic cellular potential. DoubleLIF is combining two separate 

implementations of the conductance-based madel connected by a resistance. The first 

one, identical to the LIF, simulates the en tire axon as a single voltage-gated spike 

producer. The second, reacting to presynaptic spikes, simulates each synapse in the 

dendritic tree as an individualligand-gated ionie channel producing a PSC. 

The additional accumulator transforms the cellular potential into a true state variable 

driving the spiking frequency and provides new parameters which develop with time 

under extemal stimulation. This metaplasticity allows the simulation of neuron 

bootstrapping and continuous adaptation in evolving environments. 

4.1.3 -The representational system 

This neuron is the elementary component of what can become a representational 

system. 

4.1.3 .1 - Composability or compositionality 

Sensors produce neuronal signa1s which are analog representations (sensels) of some 

physical property at some point in the immediate spatiotemporal environment. These 

sensels (sensory elements) can be composed in more complex representations 

(percels) by association if they usually exist simultaneously in a common perception 

field . These percels (perception elements) can also be composed in even more 

complex representations which we can identify as concepts, assuming that concepts 

are representations to which we can associate a name, a label, a symbol. Symbolic 

representation is the lowest level of consciously aware representation, but nonetheless 
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the result of an already very complex composition process at the subconscious and 

subconceptual level. The composition of representations is resulting from the 

physical combination (interconnection) of neurons ("components") into networks. In 

the preverbal preconscious sensorimotor cognition, representations never reach the 

symbolic level; the concept might be present, but it is not yet associated with another 

concept symbolically referring to the same abject. 

The concept of A-not-Bis the neuronal state resulting from a specifie set of sensels. It 

can be used to react to the stimulating sources without having to decode that it means 

A-not-B. The final response, sent to the actuators, is a global composition of all the 

available sensels resulting from the immediate spatiotemporal environment. There is 

no decoding required in the preverbal (subsymbolic) preconscious (subconscious) 

sensorimotor cognition. Action is encoding all the way; the actuators' response is the 

final representation of the incoming signais. 

4.1.3 .2 - Distributed representation 

Composability implies the conjunction of multiple signais, but nowhere is the 

information randomly distributed over a population of neurons. If a light source is 

perceived by a sensor in the retina, it is also perceived by many other sensors in the 

retina, but not identically. The signais emitted by the sensors are correlated by their 

relative position in the retina. Each sensor provides unique information, but this 

information must be reconcilable with information provided by the other sensors. 

Between sources and sensors, physical laws apply. At the other end, each fiber in a 

skeletal muscle, for example, is excited by a unique axon; for efficient cooperation of 

the fibers , all signais must be perfectly correlated even though they are all different. 
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4.2 - Regrets 

The discovery of the special needs of inhibition came much too late in the project. A 

lot of time was spent on validating the excitatory behavior of the neuron madel, 

demonstrating that it responded as predicted by our neuroscience postulates ( often 

questioning these postulates), and justifying the role of these postulates in cognition. 

Inhibition was carried along as a negative stimulation, knowing that its leaming and 

metaplasticity rules bad not been fully defined, but expecting they would be 

variations on the ones being implemented for excitatory stimulation. Unfortunately, at 

sorne point, we had to accept that the existing set of equations was not sufficient to 

generate stable inhibitory connections. We propose an ad hoc solution to the problem, 

but not without raising related questions. 

4.2.1 - The numerical method 

The proposed solution raised, among ethers, questions about the numerical method. 

With respect to the algebraic summation of EPSCs and IPSCs, the arder of the spikes 

within an integration step (1 millisecond) is irrelevant. As long as the stimulation is 

excitatory, the effect of the spike on synaptic plasticity is also independent of the 

arder of EPS Cs; the total change results from the number of spikes. However, when 

we introduce inhibition, the arder of EPS Cs and IPSCs becomes significant since any 

PSC following an EPSC will likely be reinforced while any PSC following an IPSC 

will be weakened. Now, in our numerical approximation, the neurons are processed 

seri ally, rather than in parallel, within an integration step and the arder of processing 

is dictated by the arder of neuron instantiation during brain definition, not the actual 

arder of firing within the millisecond step. It is not clear that the problem can be full y 

addressed at the numerical method level because it might still exist beyond the 

integration step. Handling spikes as impulses in one integration step makes the signal 

somewhat noisier, but does not significantly affect the summation process. When it 
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cornes to evaluate the synaptic plasticity changes, the combined effect of multiple 

spikes might be significantly different from the instantaneous effects of a single 

spike. The proposed solution spreads the effect of inhibition over multiple integration 

steps. 

4.2.2 -Inhibition 

At first glanee from a neuroscience perspective, the introduction of inhibition seemed 

to be relatively simple: inhibitory connections polarize the postsynaptic neurons 

instead of depolarizing them. The inhibitory "messenger" imagined in the solution 

last longer and amplifies the inhibition by multiplying the neutralizing factor and by 

saving the excess power beyond one integration step albeit with a short term decay. 

Secondary messengers do exist in biological neurons (Kandel al. , 2013, ch. 11), but 

we do not bave evidence that they are required for inhibition. A more specifically 

targeted review of literature would be required to justify such a secondary reaction for 

inhibition and this might prove difficult since there are much less studies focusing on 

synaptic plasticity or metaplasticity of inhibitory neurons as illustrated in Maffei 

(2011). Notwithstanding these considerations, we might have to accept a derogation 

from our biological plausibility principleto implement an essential functionality. 

4.2.3 - The autopoietic network 

The proposed solution was tested only in, and consequently only tuned for, a binary 

representation of a very limited binary environment. This was not sufficient to fully 

validate the autopoietic capacity of the resulting network. Additional testing and 

tuning involving multiple sources of different types varying in intensity would be 

required to full y understand and demonstrate the full range of fuzzy logic for A-not-B 

gates as A and B vary from 0 to 1. The network's autopoiesis depends on the 

continuous ( analog) property of neuronal representations. 
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4.3 - Potential developments 

First, we have to reconcile the abovementioned shortcomings and confirm that 

inhibition- based neuronal logic is a fundamental functional requirement of cognition 

compatible with our postulates: biological plausibility, semiotics and autopoiesis. 

Then, different avenues will open up to apply and expand the synthetic neuro­

cognition framework. 

4.3 .1 - The simulation 

The simulation is a prototype developed to visualize the results generated by the set 

of differentiai equations and present different scenarios to evaluate the behavior of an 

agent responding to extemal stimulations. 

The simulator could be adapted to simulate in vitro experiments including STDP 

protocols and possibly, longer term, investigate dynamic morphometrics. 

It could also be extended to allow interactive definition of neural networks (agents ' 

brains) and environments for synthetic neuro-cognition experimentations without 

programming. Statistical tools could be added to evaluate, for example, the 

covariance of a neuron and all its presynaptic neurons. 

Finally, it would be interesting to isolate the brain, embed it in a robot by interfacing 

all sensors and actuators, and finding ways of developing an architecture strictly by 

extemal stimulation. The approach could be modular, since such brains would be 

clonable ~d composable at the module leve! without enforcement of modular 

encapsulation. Meaning that two modules developed separately could be cloned and 

merged _in a single brain and trained again without any constraint on potential 

intermodular connections. 
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4.3 .2 - The neuronal model 

The possibility of developing experimental protocols for in vitro observation of 

biological neuronal logic A-not-B gates could be investigated in collaboration with 

electro-neurophysiologists. 

4.4 - Conclusion 

The heart of the project was the development of a new neuron model, DoubleLIF, 

including a conductance-based model of ligand-gated stimulation in the dendritic tree 

as well as voltage-based generation of spikes (ejection of quanta of neurotransmitters) 

in the axon. This model provides voltage-based synaptic plasticity whicli is not 

incompatible with STDP (and easier to apply for online high frequencies) and which 

is equivalent, for spiking neurons, to the BCM model developed for rate neurons . The 

parameters of the new accumulator (representing the dendritic tree) can also evolve 

dynamically and provide an additionallevel of plasticity (metaplasticity) affecting the 

basic synaptic plasticity and supporting bootstrapping and continuous selective 

development as more presynaptic neurons attempt to connect to the dendritic tree. 

All these features, which have sorne biological justification, allow us to claim that the 

system can be representational and autopoietic. It is representational at a very low 

level, a semiotic level way below the symbolic level. The combination of neurons 

entails the composition of representations. The only thing we can consciously 

experience and describe is the composition of concepts, but this composition is only 

possible thanks to the causal coupling of physical signals which we cannot 

consciously experience nor describe. The system is also autopoietic in that the 

connections between the neurons can develop autonomously under the effect of 

informa ti on. 
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The intent was to build different networks and observe the constraints and the rules 

that guided our selection to arrive at a desired functionality. In others words, we 

wanted to instantiate sorne algorithrns via neuron networks and see if there were rules 

in the algorithm we were following in our implementation of algorithms: 

algorithmizing the algorithmization. Unfortunately, we discovered that the rules we 

bad to build networks with inhibitory neurons were not stable enough to guarantee 

the desired functionality. So, it became a prerequisite to define a logic for spiking 

neurons. 

We expected, maybe hoped, that the algebraic summation of signais would be 

sufficient to generate stable networks and it was until we started testing the 

metaplasticity of mixed excitatory and inhibitory neurons . The proposed solution 

might be more significant than anything we could have done with the original 

approach. It supports the underlying assumptions that 1) each axon in the brain 

carries a unique piece of information, 2) this information is the composition of all the 

pieces of information contributing to its justification including the potential 

contradictions, 3) the difference between two pieces of information is in itself a new 

piece of information, and 4) a concept is a set of pieces of information which can be 

divided in subsets representing more general concepts common to all elements of a 

given class. 

Synthetic neuro-cognition 1s different from more common cognitive architecture 

approaches (e.g. Eliasmith 2013) which start from the architecturallevel and justify, 

top-down, that the architecture bas the properties required for representational 

structures: systematicity, compositionality, productivity without specifying how far 

down these properties should apply. For example, Eliasmith proposes convolution­

based compositionality at the neuron population level, but does not attribute any 

meaning (representational capacity) to the individual neurons in these populations. 

Even to represent a scalar, a population of neurons, generally randomly associated, is 
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required. Synthetic neuro-cognition, on the contrary, starts at the bottom of the 

representational structure (sensels) and defines (discovers) rules that apply all the way 

up to autopoietically generate a cognitive architecture. The spiking neuron logic is the 

result of such a discovery. 

4.5 - Epilogue 

We would like to bring to your attention a poster (see Appendix xxx) presented at 

sumrner schools27 in 2010 and 2012 on the evolution of human cognitive systems 

towards language and consciousness. Because it focuses on the evolution of the 

representational structure, it is tightly tied to the understanding of synthetic neuro­

cognition, but also pro vides a more global picture of its potential. 

27 Institut des Sciences Cognitive, Université du Québec à Montréal (ISC - UQÀM) 



W e know from ( 4) and ( 6) that 

C2dValdt = (Vc(t) - Va(t))IR2 

APPENDIXA 

DoubleLIF 

which, for a constant Vc(t), bas for solution: 

V a (t) = Vc (1- e-t / R 2C 2 ). 

(Al) 

(A2) 

Knowing that Va(t) is oscillating between 0 and B, we can calculate the time required 

to reach () simply by replacing Va(t) by ()in (A2). Rearranging, we fmd 

t = -R2C2 ln(l - ()IVe) 

and consequently since the frequency f= 1/t, we obtain: 

j =-li (R2C2 ln(l- ()IVe)) 
0 

for Vc > B 
for Vc ~ () 

(A3) 

(A4) 
(AS) 

Equation (A4) confirms that the spiking frequency is directlyl8 proportional to Vc and 

that the rate neuron is a particular case of DoubleLIF. In a similar way, it could be 

shawn that the rate neuron is a particular case of classical LIF with constant current 

input. 

28 Or, if you prefer, inversely proportional to the inverse of Vc. 
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APPENDIXB 

Cellular Mechanisms behind STDP 

Spike-Timing-Dependent Plasticity (STDP) is a phenomenological mo del based on 

an experimental protocol where the strengthening (LTP- Long Term Potentiation) or 

the weakening (LTD- Long Term Depression) of a synaptic connection is predicted 

from the tightly controlled time difference between a pair of presynaptic and 

postsynaptic spikes. 

As defined in Sjôstrôm and Gerstner (20 1 0), the experiment requires two neurons (i, 

j) with a synaptic connection (of strength wu) where an actio~ potential (AP) in j 

induces an excitatory postsynaptic potential (EPSP) in i. Both neurons (i, j) are under 

dual whole-cell voltage recordings (Vci> Vc1) and possibility to generate precisely 

timed (sub millisecond) current pulses in one neuron or the other. 

The presynaptic spike 

Wh en properly sized, a current pulse in the presynaptic neuron j generates an AP in 

its axon which induces an EPSP in the postsynaptic neuron i . Nonnally, a single 

EPSP will not induce an AP in the postsynaptic neuron, unless its cellular potential is 

artificially maintained very close to the spiking threshold. 
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The postsynaptic spike 

Similarly, a properly sized current pulse in the postsynaptic neuron i generates an AP 

in its axon. Clearly, this postsynaptic spike is not, in any way, causally related to the 

presynaptic spike any more than the pre was causally related to the post. If a 

correlation can be established between the controlled time delay (tpre-tpas1) and the 

changes in synaptic connection strength (Llwu), which causal mechanisms could be 

involved? 

Action potentials (AP) 

As Hodgkins and Huxley (1952) discovered, APs are produced in, and propagated 

along, the axons when voltage-gated Na+ channels are opened because the cellular 

potential (Vc) has exceeded the threshold (- -40 mv) letting sodium ions rush in 

depolarizing even more the area until voltage-gated K+ channels open when Vc 

reaches their tbreshold (- 0 mv) letting potassium ions rush out repolarizing the cell 

and momentarily closing Na+ channels . Vc goes then back to its resting value (- -69 

mv) after a significant and slowly receding hyperpolarization. 

Dendritic action potentials ( dAP) 

EPSPs are not very different from APs except that they are produced at synaptic 

connections when neurotransmitters are projected across the synaptic gap by the 

arrivai of an AP at the axon terminal of the presynaptic neuron and ligand-gated Na+ 

channels open in the synaptic spine of the postsynaptic neuron. The number of 

ligand-gated Na+ channels activated at a synaptic spine by an axon terminal being 

much less than the number of voltage-gated Na+ channels in the trigger zone at the 

axon initial segment, the resulting Na+ current (EPSC), bence the resulting EPSP, is 

rarely sufficient to induce, by itself, an AP especially when the synapse is far from 

the axonal cone. Only in very special cases, portions of the dendritic tree have a 

sufficiently high density of voltage-gated channels to produce true active APs. This is · 

generally not the case in, and certainly not a requirement for, STDP experiments. 
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Backpropagating action potentials (bAP) 

Whenever an EPSP, strong enough to trigger the openmg of voltage-gated Na+ 

charu1els, reaches the axon cone, a full-fledge AP (total depolarization to -+30 mv 

followed by hyperpolarization) is produced and actively travels down the axon. At the 

same time, the AP propagates back into the dendrites, albeit with reducing intensity 

due to the scarcity (or absence) of voltage-gated channels. The strong (relative to 

EPS Cs) depolarizing current travels further back in all dendritic branches th an any 

in co ming EPSP. It should be noted th at, although the wave is created by incoming 

Na+ ions, these ions do not have to migrate, only electrons are pulled from all 

branches of the dendritic tree; only the electrons are redistributed in an attempt to re­

equilibrate the cellular potential. A new electronic wave refluxes in the opposite 

direction as soon as the K+ ions rush in to complete the AP. 

Artificial EPSPs 

The artificial current pulse generates an artificial EPSP which transforms into a bAP 

if strong enough to induce an AP when it reaches the axonic hillock. The resulting 

bAP produces an influx and a reflux of electrons throughout the dendritic tree 

including over the synapse activated by the neurotransmitters emitted by the 

presynaptic AP. 

The STDP protocol 

In an STDP experiment, there are two causal events, the presynaptic and the 

postsynaptic pulses, separated by a predetennined delay. The objective of the 

presynaptic pulse is to indu ce an AP in the axon of the presynaptic neuron to activate 

the synapse. It is the activation of that synapse (i.e. the opening of ligand-gated ionie 

channels via the emission of neurotransmitters) that is the real object under study 

during the experiment: bow big an EPSP will this opening produce and how would 

this EPSP be affected by a postsynaptic pulse? So, an AP in the presynaptic neuron 

sends neurotransmitters across the synaptic gap and these neurotransmitters unlock 
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specifie ionie charu1els creating an EPSC if the channels are Na+ channels29
. The 

intensity of the EPSC is proportional to the number of open channels and their 

efficiency. The rise of the EPSP coïncide with the duration of the EPSC and 

consequently with the opening of the ligand-gated channels. Then those channels 

close and the potential goes back to its resting value as K+ ions leak out and cr ions 

leak in through permanent! y open chatmels. Because the number of permanently open 

channels is small relative to gated channels, the EPSP slowly decays to resting value 

without any overshoot. On induction of an artificial current pulse, the cellular 

potential starts climbing until it triggers a true AP at the axonal cone. Then, the 

cellular potential shoots up until the K+ voltage-gated channels open depolarizing the 

cell beyond its resting potential. At that point, ali gated channels are closed and the 

leak slowly brings the potential to its resting equilibriurn through the few 

perrnanently open channels. 

The coïncidence 

The STDP protocol is designed to study the relative coïncidence of these two events: 

the opening of ligand-gated Na+ channels and the propagation of a backpropagating 

action potential over these charu1els. The experiments allow the measurement of the 

effect of this coincidence on the changes in synaptic strength (EPSP intensity). In 

other words, the STDP curves of change vs pre-post delay are the result of a cross­

correlation of the number of open channels, N(t) , and the backpropagating potential at 

the synapse, bAP(t) . This can be interpreted as the effect of high concentration of 

positive ions on the reaction rate of protein-building organic anions. Depolarization 

favars the metabolism (or at least activation) of whichever components facilitate the 

inward flow ofNa+. 

29 For the purpose of thi s addendum, we will consider only excitatory neurons. Inhibitory neurons (K+ 
or cr channels) will be addressed separately. 
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In summary, it is the average voltage around the channels while (and shortly after) 

they are open that is defining the potentiation/depression of the synaptic connection. 

The STDP protocol ensures that a given voltage will be present for a controlled 

opening of the channels. The opening can be controlled by selecting a delay on a 

monotonically closing population of channels. The important factor is the voltage 

level while the channels are open; whether the effect is homosynaptic or 

heterosynaptic is totally irrelevant. 

The model 

Error! Reference source not found. shows, in the main section, four curves with a 

shape very similar to the curves typically fitted from data resulting from STDP 

experiments (Sjostrom 2011). In this case, the curves are not based on experimental 

data, but they are built from the cross-correlation of N(t) and dAP(t) . 

where: 

L1Wij l oo 
WiJO = y(o) = - oo N(t- o) * (bAP(t) + (Vhold- Ve)) dt 

wü is the strength of the synapse; 

wijo, the strength at the beginning of the ex periment; 

L1wij, the change in strength after a series of pulses; 

L1wülwij0, the change relative to the initial strength (>0 ---+ LTP; <Ü ---+ 

LTD); 

o is the tirne delay between the presynaptic (tpre) and the postsynaptic 

(tposJ pulses. 

N(t) = 0 fort :S 0 

A e-tlr fort > O. 



dAP (t) = 0 for t :S 0 

B fort = 1 

0 fort = 2 

-B*(l-(t-3)/(50-3)) fort> 2. 
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V1w1d is the resting potential and Ve is the voltage threshold between LTD and LTP as 

defined by the BCM model (same as BM). If Vhold is lower than Ve, LTD can happen 

without postsynaptic spikes since the conditions are met whenever the channels open. 

The same should be true of LTP, but the probability of having V11old > Ve without 

exceeding the spiking threshold of the postsynaptic neuron seems to be much sm aller. 

N(t) (dashed line) represents the number of channels opened by the induced 

presynaptic action potential. bAP(t) (full line) represents the backpropagating action 

potential resulting from the artificial current pulse with a ·sharp positive pulse lasting 

2 ms followed by a negative overshoot linearly recessing over 48 ms. 

The five smaller drawings, at the top, alphabetically numbered from A to E, illustrate 

how each point on a curve (in this case, the third curve from the bottom which starts 

at Llwyl wuo = 0) is calculated. 

A- The presynaptic AP happens 50 ms before the postsynaptic AP and all the 

channels are closed by then. 

B- The presynaptic AP happens 20 ms before the postsynaptic AP. There is 

still a small fraction of the channels open at the ti me of the postAP su ch that 

its positive impulse bas sorne LTP effect followed by smaller LTD impact 

of the hyperpolarization integrated over the remaining open charmels. 

C- The presynaptic AP happens just before the postsynaptic AP and all the 

channels are open for a maximum LTP impact of the full impulse of the 

postAP somewhat reduced by the integration of the entire 

hyperpolarization. If the presynaptic AP happens 2 ms later, the 
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postsynaptic AP and all the channels are open for a maximum the full L TP 

impact of the postAP impulse is missed and the synapse sees only the LTD 

effect of the en tire hyperpolarization. 
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D- The presynaptic AP happens just before the postsynaptic AP and all the 

channels are open for a maximum L TP impact of the full impulse of the 

postAP somewhat reduced by the integration of the entire 

hyperpolarization. If the presynaptic AP happens 2 ms later, the 

postsynaptic AP and all the chatmels are open for a maximum the full L TP 

impact of the postAP impulse is missed and the synapse sees only the LTD 

effect of the en tire hyperpolarization. 

E- The presynaptic AP happens 20 ms after the postsynaptic AP. The LTP 

potential of the postAP impulse bas been missed and the synapse sees a 

lesser L TD effect via the integration of the remaining portion of the 

hyperpolarization. 

The presynaptic AP happens 50 ms after the postsynaptic AP and the synapse is 

unaffected sin ce all traces of the postAP have disappeared by that time. 



APPENDIXC 

Dirac delta function 

For a brief introduction to Dirac delta functions, the reader is referred to Chatfield 

(1975, Appendix II, pp238-9 30
). As he says (p238), « It is important to realize that 

o(t) is not a function. Rather it is a generalized function, or distribution, which maps a 

function into a realline. » (original emphasis) 

Having defined a set s of t; 

s = { t > 0 such that F(t) = 0 } 

we can define 

J
+oo 

f(t) = _
00 

g(t) I s o(t- ti) dt 

and assuming that Sis fini te with N elements, we can say 

f
+oo 

= L g(t)o(t- ti) dt 
i=l,N - oo 

which also applies to smaller time intervals (Chatfield (1975, p239, statement of 

exercise 1) 

f 
t+Llt 

= L g(t)o(t- tï) dt 
i=l,n t 

30 A vailable at 
https: / /books.google.ca/books?id=u 1 D5Bw A AQBAJ&pg=P A23 8&1 pg=P A23 8&dg=dirac+del ta+funct 
ion+time+series+analysis&source=bl&ots=LyXtki2 01 &sig=02PRwaro3x3XxVDDQ YpFppngb8& 
hl=en&sa=X&ved=OCDOQ6AEwB2oVChMikOmP34i.ly0fVypoeCh llDgMX#v=onepage&g=dirac% 
20delta%20function%20time%20series%20analysis&f-=false 
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where i=l,n represents the elements of sin this smaller interval]t, t+!Jt} and is equal 

to: 

= I gCca 
i=l,n 

If the maximum frequency of ti is carefully selected to ensure that the smallest 

interval between two ti always exceeds !J t (e.g. frequency of ti < 1kH for !Jt = 1 ms), 

there is never more than 1 element in a !J t interval and we obtain: 

Unfortunately, the set s of ti cannot be defined beforehand because it depends on the 

very function that we are trying to solve Va(t), since impulses are produced whenever 

Va(t) reaches fJs (in other words, F(t) = Va(t) - fJs). However, our set of differentiai 

equations being non-homogenous and non-linear, we already knew that we would 

have to resort to numerical approximation to find a solution. 

In numerical approximation, variables are evaluated at short ti me intervals (!1 t) su ch 

that, in the case of our equation 6, we obtain: 

Va((k+J)!Jt) = Va (k!Jt) + ljire(k!Jt)*!J t 

If Va((k+ l)!J t) is larger than fJs, it means that, at sorne _point 111 the interval 

]!Jt,(k+ l)!J t] , Va(t) reached fJs and an impulse should have been generated bringing 

Va(t) back to O. So, the value of Va((k+ l)!Jt) is corrected by subtracting fJs. Of course 

the correction is not exact, but well within the precision of numerical approximation 

methods. 

In fact, our set s of ti is not projecting directly on t , but rather on a bigger setS of tk 

S = { t = k!1 t for k = 0, oo } 

To make sure that F(t) is equal to 0 when evaluated at l kLJ 1, we have to define: 

F(t) = min(O, Va(t) - fls) 
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such that F(t) is equal to 0 when evaluated at the first k!Jt following the moment 

where Va(t) reached es in real time. In our real time equations 5 and 6, the min 

function is not required since Va(t) never exceeds es in real time, but we leave it in the 

equation to indicate how it should be done in the numerical approximation. 

Figure C.l shows the evaluation of Va(t) over a few time intervals including one with 

an impulse generation. 
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APPENDIXD 

Two legs, two hands and the loss of smell 

An essay on the origin oflanguage and ... the emergence of consciousness 



7 wo fe.JJ, lwo hanriJ ani the foJJ of Jmeff 
An essay on the origin of language and ... the emergence of consciousness 

8 Having evolved in the jungle, leaping from tree to tree, walking 
on or suspending from branches, Homo's ancestors were as 

0 lt is generally we il accepted that Homo walked away from his primate cousins on his hind legs. 
Was this fa ct sufficient to trigger ali aspects of the ensuing evolution of hominids, more 
specifically the emergence of language and consciousness? 

UQAM 
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Montréal , du 21 au 30 juin 2010 

Pierre Va dnais 
Doctorat en 1 nformatique Cognitive 
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vadnais.pier e@:coL rrier qam ~a 514-717-4417 

mu ch quadrumanous as they were quadrupedal. Moving to the 
savannah, pushed away by overcrowded trees or attracted by 
new opportunities or otherwise constrained, Homo had to stand 
on its hi nd legs in arder to see be yo nd the ta ll grass. This new 
posture freed the front limbs for other tasks and favored 
(forced) further development of its stereoscopie vision ( depth 

----· Homo also inherited from its simian ancestors a 
stereoscopie vision and the resulting atrophy of the 
olfactory bulbs. By perfecting the former, to ad apt to 
its new environment (the savannah), it further reduced 
its sense of smell. 

offield). ~----
f) A collateral advantage of this standing 

posture was the drastic modification 
of the respiratory system which, 
together with laryngeal descent, 
allowed the evolution of fine 
elocution, which, in turn, drave the 
evolution of appropriate auditory --
abilities. - .::-...:-;..------

~-------- -

f) .:rhe fi c.s~ âY_rl].b_o~i: 
communication 
could have been 
made of sketchy 
icons of objects 
supplemented by 
gestures and/or 
sounds to indicate 
interactions. 
The main syntactical 
categories (nouns versus 
predicates) were probably 
already defined since it is much 
easier to iconize abjects than 
actions or interrelations. From 
visual and gestural icons to 
auditory symbols, simple 
association was sufficient to 
bridge the gap and symbolic 
language could evolve . With 
time, external icons and gestures 
became redundant and ~: _____ --- --
superfluous. \Ji~.( 

• Peirce, C.S. ( 1897, 1903) Logic as semiotics: The theory of signs. 
ln J. Bu chier, ed. , The Phi/osophical Writings of Peirce ( 1955). 
New York: Dover Books, 98·119. 

•• Deacon, T.W. ( 1997) The Symbofic Species . 
New York 1 London : W.W. Norton and Company. 

e This loss of smel l overturned the 
relative importance of the different 
inputs and representation became 
predominant! y visual. 

0 This representational shift enabled Homo to use the 
finer motor abilities of its hands (deve loping in parai lei) 
to physically reprod uce external analogues (icons) of 
its now mainl y visu al mental representations. 
Mammals cannot reproduce their representations 
because these are predominant/y olfactive and odars 
cannat easily be reproduced . ---..... 

eonfC/0/UJJ~ff if 

fn(JJ(I;y &f,Pt!rc~tJon if a 
rtJbn.fJ.ftJJJu"1tlon ~~~jt.--- --

Ref ers t o non-immediate reality 
linked physically 

Cog n it ive Phy logeny !---------------

Refers t o dist ant (non-)realit y 
linked by resemblance 

---- --- -- <m 
-0 The coexistence of a real abject and its manually 

reproduced icon with a mentally identifiab le 
resemblance constitutes the first prototype of 
Peirce's* semiotic triad. These icons allow Homo to 
refer to spatially or temporally distant real or non­
real abjects. The physicalli nk required by indexical 
reference can be replaced by a mental link. 

Ref ers to distant (non-)reality 
linked mentally 
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2012 addendum 

F.mc"Jcnce of consciousncss 
Preverbal ment allandscape 
A long long ti me ago, wh en words 
did not yet exist, animais' mental 
representations of the world were 
limited to the spatiotemporal im­
mediate reality accessib le through 
the ir sensors. Of course this 
restricted reality included proprio­
ception and interoception accessible to each individual, 
but not others, which we could cali a self. Stimuli from this 
immediate real ity, including the self, could also bring back 
sorne associated memories. 

lconization (reification of mental representat ion) 
Wh en Homo reached the point of predominant visual 
representation and finer ma nuai motor sl<ills, it was able to 
pro duce concrete external analogues (physical icons) 
w hich, by virtue of physical resemblance, activated sorne 
of the sa me neural regions and pathways as the mental 
representation of another physical object in memory. The 
permanence of manually produced physical icons gave 
time to Homo to associate gestura l and acoustic symbols 
(gestures and words) to the shared mental 
representation . With time, and repetition, these gestures 
and words became associated with the icon and, by proxy, 
w ith the distant ob je ct referred to by the icon through 
resemblance. This re ification of representations through 
production of icons, followed by association of symbols, 
opened a mental portal providing access to a spatio­
temporally distant (i.e. currently absent) reality and 
thereby favored the emergence of consciousness. 

lmasinary 

Temporal mentallandscape 

Consdous 

~nconscious 
Spatial mentallandscape 

Memory be came the "known", a set of grounded symbols 
available to bring back, at will, existing me mories. A 
complementary set of ungrounded symbols formed the 
"unknown" and sorne concepts created mentally by 
mixing of known concepts but not groundable in reality 
formed the "imaginary". The mentallandscape, and t he 
physical world, were and will never be, the same because, 
from then on, words became real physical objects . 
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