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Abstract

Background: Over time, adaptive Gaussian Hermite quadrature (QUAD) has become the preferred method for estimating
generalized linear mixed models with binary outcomes. However, penalized quasi-likelihood (PQL) is still used frequently. In
this work, we systematically evaluated whether matching results from PQL and QUAD indicate less bias in estimated
regression coefficients and variance parameters via simulation.

Methods: We performed a simulation study in which we varied the size of the data set, probability of the outcome, variance
of the random effect, number of clusters and number of subjects per cluster, etc. We estimated bias in the regression
coefficients, odds ratios and variance parameters as estimated via PQL and QUAD. We ascertained if similarity of estimated
regression coefficients, odds ratios and variance parameters predicted less bias.

Results: Overall, we found that the absolute percent bias of the odds ratio estimated via PQL or QUAD increased as the PQL-
and QUAD-estimated odds ratios became more discrepant, though results varied markedly depending on the characteristics
of the dataset

Conclusions: Given how markedly results varied depending on data set characteristics, specifying a rule above which
indicated biased results proved impossible. This work suggests that comparing results from generalized linear mixed
models estimated via PQL and QUAD is a worthwhile exercise for regression coefficients and variance components obtained
via QUAD, in situations where PQL is known to give reasonable results.
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Introduction

Increasingly, data are collected in which the standard assump-

tion of independence between observations is not met. This could

include data that consist of multiple observations on a subject over

time or subjects who are clustered in some way (e.g. classes within

schools, or households within neighbourhoods). As computational

power has grown, analytic methods have been extended to handle

increasingly complex data structures.

If the association between observations on the same cluster/

subject is not accounted for in the analytic strategy, inference

associated with the estimated parameters may not be correct [1].

When the outcome is binary, one of the main analytic approaches

in this context are generalized linear mixed models (GLMMs) [2].

GLMMs extend the linear mixed model to deal with outcomes

with non-normal distributions. In particular, GLMMs can handle

binary outcomes. In GLMMs, subject-specific random effects,

usually normally-distributed, are incorporated in the model. In this

way, the second order structure or correlation between subjects in

the same cluster can be described and accounted for. When the

outcome is binary, in GLMMs the regression coefficient is

estimated conditional on the random effect [2], and as such, has

a subject-specific interpretation [3,4].

To estimate the parameters in the GLMM, maximizing the

exact likelihood involves an intractable integration. Several

approaches have been proposed to get around this. A commonly

used method is penalized quasi-likelihood (PQL), proposed by

Breslow and Clayton [5]. In this implementation, a Laplace

approximation is used, resulting in an approximated likelihood

function with Normal distribution [5]. One advantage of PQL is

that it can accommodate complex correlation structures. Howev-

er, estimates can be badly biased especially with few subjects per

cluster, low event rates, or high inter-cluster variability, because

the method uses an approximation to the likelihood [6–8].

The main competitor to PQL is numerical integration via

adaptive Gaussian Hermite quadrature (QUAD) [9,10]. While

QUAD is not computationally efficient for multidimensional

random effects (e.g. time series), it can perform adequately with

few random effects [1]. While quadrature provides accurate
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Table 1. Parameters used for data generation.

Variable Values taken on

Total number of subjects Small (150), Medium (450), Large (1500)

Number of clusters (number of subjects per cluster) 6 (25), 15 (10), 30 (5), 75 (2)

6 (75), 45 (10), 75 (6), 225 (2)

6 (250), 75 (20), 150 (10), 300 (5), 750 (2)

b1 ln(1), ln(1.5), ln(2)

Standard deviation of the random effect (su) 0, 0.5, 1, 2, 4

Proportion of subjects with the outcome 0.05, 0.2, 0.5

doi:10.1371/journal.pone.0084601.t001

Table 2. Median (Interquartile range (IQR)) absolute percent biasa and mean squared error (MSE) for the regression coefficient as
estimated via QUAD or PQL, overall and by data generation parameters.

Data QUAD PQL

Generation Parameter Value Nb Absolute percent bias b1 MSE for b1 Absolute percent bias b1 MSE for b1

Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Overall – 424 0.32 (0.19, 0.54) 0.10 (0.04, 0.28) 0.30 (0.18, 0.49) 0.08 (0.04, 0.20)

b1 Ln(1) 142 0.20 (0.12, 0.32) 0.09 (0.04, 0.26) 0.18 (0.10, 0.28) 0.07 (0.03, 0.18)

Ln(1.5) 141 0.52 (0.32, 0.80) 0.11 (0.04, 0.29) 0.47 (0.32, 0.70) 0.07 (0.03, 0.20)

Ln(2) 141 0.31 (0.19, 0.47) 0.10 (0.04, 0.30) 0.31 (0.20, 0.45) 0.09 (0.04, 0.22)

s2
u 0 78 0.21 (0.13, 0.34) 0.04 (0.02, 0.11) 0.20 (0.13, 0.33) 0.04 (0.02, 0.11)

1 117 0.26 (0.18, 0.47) 0.07 (0.02, 0.21) 0.24 (0.16, 0.44) 0.06 (0.02, 0.19)

4 117 0.32 (0.20, 0.54) 0.1 0(0.04, 0.32) 0.31 (0.20, 0.47) 0.08 (0.05, 0.22)

16 112 0.45 (0.28, 0.76) 0.22 (0.07, 1.42) 0.40 (0.24, 0.57) 0.12 (0.06, 0.28)

p 0.05 112 0.56 (0.32, 0.86) 0.34 (0.1, 30.44) 0.48 (0.30, 0.70) 0.23 (0.08, 0.53)

0.2 156 0.28 (0.17, 0.45) 0.07 (0.03, 0.21) 0.27 (0.16, 0.41) 0.06 (0.02, 0.18)

0.5 156 0.23 (0.15, 0.38) 0.05 (0.02, 0.14) 0.23 (0.14, 0.36) 0.05 (0.02, 0.12)

Total n 150 130 0.59 (0.41, 0.87) 0.34 (0.19, 17.2) 0.52 (0.35, 0.70) 0.22 (0.16, 0.52)

450 130 0.33 (0.21, 0.49) 0.10 (0.06, 0.25) 0.31 (0.20, 0.44) 0.07 (0.05, 0.20)

1500 164 0.18 (0.12, 0.26) 0.03 (0.02, 0.06) 0.19 (0.11, 0.27) 0.02 (0.02, 0.06)

Total n 150 (6) 32 0.59 (0.38, 0.87) 0.38 (0.19, 26.96) 0.55 (0.37, 0.77) 0.29 (0.19, 0.55)

(n cluster) 150 (15) 33 0.57 (0.39, 0.80) 0.30 (0.18, 13.6) 0.52 (0.36, 0.66) 0.24 (0.18, 0.53)

150 (30) 32 0.54 (0.41, 0.76) 0.32 (0.19, 10.61) 0.49 (0.34, 0.68) 0.19 (0.16, 0.42)

150 (75) 33 0.64 (0.43, 0.96) 0.42 (0.21, 70.82) 0.55 (0.35, 0.70) 0.18 (0.14, 0.52)

450 (6) 31 0.32 (0.21, 0.49) 0.09 (0.05, 1.52) 0.32 (0.20, 0.44) 0.07 (0.05, 0.25)

450 (45) 33 0.33 (0.21, 0.46) 0.10 (0.06, 0.23) 0.30 (0.19, 0.44) 0.08 (0.05, 0.21)

450 (75) 33 0.32 (0.23, 0.49) 0.09 (0.06, 0.24) 0.30 (0.19, 0.43) 0.07 (0.05, 0.19)

450 (225) 33 0.34 (0.24, 0.57) 0.12 (0.07, 0.22) 0.32 (0.18, 0.47) 0.06 (0.05, 0.19)

1500 (6) 33 0.18 (0.12, 0.26) 0.03 (0.02, 0.08) 0.18 (0.12, 0.24) 0.03 (0.02, 0.07)

1500 (75) 33 0.18 (0.11, 0.24) 0.03 (0.02, 0.06) 0.17 (0.11, 0.23) 0.02 (0.02, 0.06)

1500 (150) 33 0.18 (0.12, 0.25) 0.02 (0.02, 0.06) 0.16 (0.11, 0.23) 0.02 (0.02, 0.05)

1500 (300) 33 0.17 (0.12, 0.26) 0.03 (0.02, 0.06) 0.20 (0.10, 0.29) 0.02 (0.02, 0.06)

1500 (750) 32 0.18 (0.13, 0.26) 0.03 (0.02, 0.06) 0.20 (0.11, 0.34) 0.03 (0.02, 0.06)

a: First median absolute percent bias of b1 was calculated for each simulation scenario, then summarized across scenarios.
b: This is the number of simulation scenarios used to calculate the information.
doi:10.1371/journal.pone.0084601.t002
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estimates for regression coefficients under a variety of conditions,

convergence of QUAD is often a problem, particularly when

variance parameters are close to zero or cluster sizes are small

[11,12].

Despite many studies investigating the statistical properties of

parameter estimates from generalized linear mixed models

(GLMMs), it still remains somewhat unclear under what

conditions good properties can be expected from either of these

methods. In particular, when the number of clusters is small and

the number of subjects per cluster is small, neither PQL nor

QUAD are guaranteed to give good results for regression

coefficients [13]. Similarly, estimated variance components are

often biased with both approaches (e.g. [11]).

If matching results from GLMMs estimated via PQL and

QUAD indicated relatively unbiased regression coefficients or

variance parameters, this could be an easy ‘‘diagnostic’’ to

perform. Both estimation methods are available in SAS and R.

In this work, we investigate systematically whether matching

regression coefficients, odds ratios or variance components from

PQL and QUAD suggest minimal bias in those same parameters.

Moreover, we attempt to develop useable guidelines based on

comparing the results from PQL and QUAD. For example, should

the comparison be between estimated regression coefficients,

estimated variance components or both? Moreover, how close is

close enough?

Materials and Methods

Statistical simulation was used to assess whether matching

results from PQL and QUAD indicate less bias.

Data generation
Our data generation algorithm was developed to generate

clustered data. We imagined working in the clustered data context

(e.g. children grouped in classes, or people clustered in neighbour-

Table 3. Median (Interquartile range) absolute percent biasa and mean squared error s2
u as estimated via QUAD or PQL, overall

and by data generation parameters.

Data QUAD PQL

Generation Parameter Value Nb Absolute percent MSE for s2
u Absolute percent bias s2

u MSE for s2
u

bias s2
u Median (IQR) Median (IQR) Median (IQR)

Median (IQR)

Overall – 424 0.29 (0.16, 0.50) 1.80 (0.18, 30.41) 0.48 (0.30, 0.65) 2.80 (0.15, 65.29)

b1 Ln(1) 142 0.30 (0.17, 0.50) 1.89 (0.18, 37.96) 0.48 (0.30, 0.66) 2.90 (0.15, 67.99)

Ln(1.5) 141 0.28 (0.16, 0.50) 1.86 (0.16, 38.03) 0.48 (0.29, 0.64) 2.80 (0.14, 64.56)

Ln(2) 141 0.29 (0.15, 0.49) 1.57 (0.19, 25.39) 0.48 (0.30, 0.64) 2.73 (0.14, 67.02)

s2
u 0 78 0.08 (0.03, 0.15) 0.01 (0.00, 0.04) 0.00 (0.00, 0.01) 0.01 (0.00, 0.02)

1 117 0.43 (0.26, 0.53) 0.40 (0.15, 0.74) 0.43 (0.33, 0.59) 0.37 (0.15, 0.47)

4 117 0.37 (0.20, 0.49) 6.09 (1.54, 13.34) 0.52 (0.42, 0.61) 5.87 (3.63, 8.38)

16 112 0.32 (0.20, 0.56) 243.09 (35.03, 4,426.32) 0.71 (0.56, 0.80) 126.92 (87.12, 163.73)

p 0.05 112 0.56 (0.36, 0.65) 21.86 (1.57, 476.20) 0.62 (0.54, 0.75) 6.63 (0.70, 129.64)

0.2 156 0.24 (0.15, 0.44) 0.74 (0.07, 14.71) 0.45 (0.12, 0.60) 1.10 (0.07, 42.36)

0.5 156 0.20 (0.12, 0.40) 0.57 (0.05, 9.49) 0.41 (0.10, 0.56) 0.85 (0.05, 33.40)

Total n 150 130 0.47 (0.36, 0.60) 9.39 (0.63, 2,427.47) 0.54 (0.38, 0.71) 3.45 (0.32, 67.02)

450 130 0.28 (0.21, 0.48) 1.90 (0.21, 24.77) 0.48 (0.31, 0.64) 2.80 (0.15, 63.76)

1500 164 0.17 (0.13, 0.30) 0.57 (0.05, 8.18) 0.45 (0.22, 0.61) 1.74 (0.09, 67.05)

Total n 150 (6) 32 0.53 (0.49, 0.66) 20.66 (0.66, 235.13) 0.51 (0.44, 0.59) 7.32 (0.68, 37.59)

(n cluster) 150 (15) 33 0.44 (0.38, 0.54) 9.93 (0.51, 1,863.04) 0.44 (0.34, 0.61) 3.00 (0.32, 77.25)

150 (30) 32 0.40 (0.32, 0.51) 5.86 (0.57, 221.70) 0.49 (0.37, 0.68) 3.73 (0.24, 62.24)

150 (75) 33 0.52 (0.39, 0.63) 11.96 (1.26, 9,290.97) 0.73 (0.57, 0.87) 8.54 (0.40, 193.92)

450 (6) 31 0.50 (0.43, 0.58) 7.35 (0.38, 222.81) 0.45 (0.39, 0.52) 5.62 (0.42, 11.29)

450 (45) 33 0.25 (0.21, 0.36) 2.20 (0.14, 32.09) 0.39 (0.27, 0.56) 2.05 (0.11, 80.68)

450 (75) 33 0.23 (0.20, 0.29) 1.46 (0.14, 23.10) 0.43 (0.30, 0.66) 3.09 (0.13, 111.26)

450 (225) 33 0.29 (0.21, 0.51) 1.91 (0.34, 21.04) 0.71 (0.59, 0.87) 8.51 (0.39, 193.48)

1500 (6) 33 0.48 (0.41, 0.53) 6.82 (0.32, 191.89) 0.43 (0.40, 0.47) 6.65 (0.42, 67.05)

1500 (75) 33 0.16 (0.15, 0.22) 0.75 (0.05, 12.88) 0.26 (0.17, 0.47) 1.11 (0.05, 55.51)

1500 (150) 33 0.14 (0.12, 0.22) 0.51 (0.04, 7.83) 0.33 (0.22, 0.57) 1.74 (0.06, 85.49)

1500 (300) 33 0.15 (0.11, 0.20) 0.40 (0.05, 6.51) 0.47 (0.33, 0.70) 3.62 (0.13, 126.00)

1500 (750) 32 0.16 (0.14, 0.25) 0.57 (0.09, 7.67) 0.72 (0.60, 0.87) 8.25 (0.38, 193.62)

a: Median absolute percent bias of s2
u was calculated for each simulation scenario, then summarized across scenarios.

b: This is the number of simulation scenarios used to calculate the information.
doi:10.1371/journal.pone.0084601.t003
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hoods), rather than longitudinal, repeated measures type data We

generated an outcome (Yij) and a predictor (Xij). Here, i denotes

the cluster, and j denotes the subject within the cluster. Thus Yij is

the outcome observed for subject j from cluster i. The

dichotomous independent variable, Xij, was generated from a

Bernoulli distribution with probability = 0.5. To generate the

corresponding dichotomous outcome variable Yij, first the

probability of the outcome was generated from the following

logistic regression model:

logit(p)~b0zb1Xzui; ð1Þ

where ui was a random effect generated from a normal distribution

with mean = 0 and variance =s2
u. By including ui in the data

generation step, correlation between observations in the same

cluster is induced. Then the dichotomous Yij variable was

generated from a Bernouilli distribution with the probability of

the outcome provided by the logistic regression (equation 1). The

number of clusters, number of subjects per cluster, b1, variance of

the random effect, and proportion of subjects with the outcome

were all varied, with levels described in Table 1. For each distinct

combination (n = 424) of parameters (‘‘simulation scenarios’’), 250

data sets were generated, which gave us adequately precise results,

while allowing us to investigate a wide range of simulation

scenarios.

Data analysis
Two GLMMs (random effects logistic regression models) were

fit to the data, including the exposure as an independent variable,

and allowing the intercept to vary across the clusters. The model

parameters were estimated using penalized quasi-likelihood (PQL)

and adaptive Gaussian Hermite quadrature (QUAD). Both models

were fit using the GLIMMIX procedure in SAS version 9.2.

Measures of performance
We collected information on bias and variability of the

estimated regression coefficient for X (b̂b1), and odds ratio (exp(b̂b1)),

)), as well as the estimated variance of the random intercepts (ŝs2
m),

as estimated via PQL or QUAD.

We quantified the proximity of the PQL and QUAD results as

the absolute percent difference between the estimated odds ratios,

Figure 1. Boxplot depicting the slopes from separate simple linear regressions for the effect of the absolute percent difference in
ORPQL and ORQUAD absolute value ORPQL{ORQUAD

� ��
ORPQLzORQUAD

� �� �
on the absolute percent bias in ORQUAD or ORPQL,

respectively, overall and by data generation parameters. Median (interquartile range) of the estimated slope is the center of the box,
box edges are the 25th and 75th percentile respectively, ends of the dashed lines are the 10th and 90th percentile, respectively.
doi:10.1371/journal.pone.0084601.g001
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according to the following formula:

absolute value
exp(b̂b1PQL

){exp(b̂b1QUAD
)

exp(b̂b1PQL
)zexp(b̂b1QUAD

)

0
@

1
A; ð1Þ

where b̂b1PQL
and b̂b1QUAD

were the regression coefficients as

estimated via PQL or QUAD, respectively.

The estimated variance components were compared according

to the following formula:

absolute value
ŝs2

PQL{ŝs2
QUAD

ŝs2
PQLzŝs2

QUAD

 !
, ð2Þ

where ŝs2
PQL and ŝs2

QUAD were the variance of the random effects

as estimated by PQL or QUAD, respectively.

We also quantified how close results were to the truth, via the

following formulae:

absolute percent bias of ORPQL~

absolute value
exp(b̂b1PQL

){exp(b1)

exp(b1)

0
@

1
A;

ð3Þ

absolute percent bias of ORQUAD~

absolute value
exp(b̂b1QUAD

){exp(b1)

exp(b1)

0
@

1
A;

ð4Þ

absolute percent bias of ŝs2
PQL~

absolute value
ŝs2

PQL{s2

s2

 !
;

ð5Þ

Figure 2. Barplot depicting the proportion of scenarios in which the effect of the absolute percent difference in ORPQL and ORQUAD

absolute value ORPQL{ORQUAD

� ��
ORPQLzORQUAD

� �� �
was a statistically significant predictor of the absolute percent bias in ORQUAD

or ORPQL, respectively from separate simple linear regressions, overall and by data generation parameters.
doi:10.1371/journal.pone.0084601.g002
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absolute percent bias of ŝs2
QUAD~

absolute value
ŝs2

QUAD{s2

s2

 !
;

ð6Þ

defined as above. When s2 or b1 was zero we divided by 1 in

formulae 5 and 6.

Data analysis of simulation results
We removed observations where PQL or QUAD did not

converge. Model convergence was defined as a model that

produced estimates for relevant parameters and did not return a

warning. We estimated convergence for each estimation procedure

as the number of simulation repetitions that did converge divided

by the total attempted (n = 250).

We estimated the median absolute percent bias of the regression

coefficients and random intercept variances as estimated via PQL

or QUAD for each simulation scenario.

We fit linear regressions, with absolute percent bias of the

estimated odds ratios and absolute percent bias of the variance

component (e.g. formulae 3–6) as the outcome and measures of

how close PQL and QUAD results were (e.g. formulas 1–2) as the

predictors, overall and separately for each combination of data

generation parameters (i.e. in 424 distinct data generation

scenarios). We report the median estimated slope and interquartile

range of the slope, the proportion of scenarios in which the

predictor was statistically significant and the median R2 and

interquartile range of the R2 for the models overall (i.e. across all

424 scenarios investigated), as well as by data generation

parameters.

Finally, we used mixed quantile regression [14] with absolute

percent bias of the estimated odds ratios and variance components

(e.g. formulae 3–6) as the outcome and measures of how close

PQL and QUAD results were (e.g. formulae 1 and 2) as the

predictor of primary interest, and data generation parameters as

covariates in the model (i.e. proportion with the outcome, data set

size, data set composition, b1, su
2.) Data set composition

categorized data sets as having few large clusters (when the

number of clusters was 6), many small clusters (when cluster size

was 2), or moderate (all other possibilities). All covariates were

entered as dummy variables in the model. Intercepts and the

coefficient for similarity of PQL and QUAD results were allowed

to vary across simulation scenario.

All data generation and analyses were carried out using SAS/

STAT version 9.2 [15], with the exception of the linear mixed

quantile regression which was performed in R version 2.14.2 [16].

Figure 3. Boxplot depicting the R2 from separate simple linear regressions for the effect of the absolute percent difference in ORPQL

and ORQUAD absolute value ORPQL{ORQUAD

� ��
ORPQLzORQUAD

� �� �
on the absolute percent bias in ORQUAD or ORPQL, respectively,

overall and by data generation parameters. Median (interquartile range) of the R2 is the center of the box, box edges are the 25th and 75th

percentile respectively, ends of the dashed lines are the 10th and 90th percentile, respectively.
doi:10.1371/journal.pone.0084601.g003
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Results

Tables 2 and 3 present the median and interquartile range of

the absolute percent bias and mean squared error (MSE) of the

regression coefficient and variance of the random intercept,

respectively, as estimated via QUAD and PQL. Overall, median

bias in the PQL or QUAD-estimated regression coefficient was

around 30% and increased as the variance of the random effect

increased, the proportion with the outcome decreased, the number

of observations in the dataset decreased. (See Table 2.)

On the other hand, the estimated variance of the random

intercept was more biased when estimated via PQL than via

QUAD (median absolute percent bias was 29% for QUAD vs.

48% for PQL). For both estimation methods, bias increased as the

proportion with the outcome decreased and the size of the dataset

decreased. For QUAD, bias decreased as the number of clusters

increased, while for PQL the opposite was observed. (See Table 3.)

Nonconvergence occurred more often with QUAD than PQL

(mean proportion across all simulation scenarios was 8.8 vs. 2.3),

and was especially problematic when the proportion of subjects

with the outcome was 5% (mean proportion of nonconvergence

was 32% for QUAD, but just 8.2 percent for PQL, data not

shown). When QUAD did not converge, but PQL did converge,

median bias was higher for the PQL-estimated regression

coefficient (median = 0.53 with IQR = 0.33–0.88) and variance

of the random effect (median = 0.72, IQR: 0.51–0.87) for the

estimated. (See Table S1.)

Figures 1–3 present the results from separate simple linear

regressions to model the effect of the absolute percent difference in

ORPQL and ORQUAD (equation 1) on the absolute percent bias in

ORQUAD (equation 4), and the absolute percent bias in ORPQL

(equation 3), respectively, overall and by data generation

parameters.

The estimated slope was generally positive when absolute

percent bias in ORQUAD was the outcome (See Figure 1). The

median slope overall was 8.8, suggesting that for a one percent

increase in difference between ORQUAD and ORPQL, the absolute

percent bias in ORQUAD increased by 8.8. However, the

interquartile range was quite wide. For example, the interquartile

range of slopes was 7 to 33, 4 to 24 and 2 to 20 for small, medium

and large datasets respectively. The estimated slope was never

statistically significantly negative. The estimated slope for the effect

of absolute percent difference in ORPQL and ORQUAD on the

absolute percent bias in ORPQL was statistically significantly

negative for 14% (i.e. 60 out of 424) of the data scenarios

investigated. The slope was more likely to be negative as the

magnitude of b1 increased, the proportion of subjects with the

outcome increased, the size of the data set increased, if there were

few observations per cluster, or the intercluster variability was

high. (Data not shown).

Overall, in most simulation scenarios the absolute percent

difference in ORPQL and ORQUAD was a statistically significant

predictor of the absolute percent bias in ORPQL or ORQUAD,

respectively, though more often when absolute percent bias in

ORQUAD was used as the outcome. (See Figure 2.) The proportion

of scenarios in which the absolute percent difference in ORPQL

and ORQUAD was a statistically significant predictor decreased as

the true regression coefficient increased; and increased as the

intercluster variance increased. This proportion decreased as the

total number of subjects increased (See Figure 2). The smallest

proportion statistically significant were seen when datasets

comprised 1500 observations in 6 clusters.

Table 4. Results from a linear mixed quantile regression model with absolute percent bias in the odds ratio estimated via PQL or
QUAD as the dependent variable and absolute percent difference in the odds ratios as estimated via PQL and QUAD as the
independent variable, adjusted for data set characteristics (b1, s2

u, proportion with the outcome (p), total number of observations
in the data set and data set composition).

Data QUAD PQL

Generation Parameter Value Slope (95% CI) Vara Slope (95% CI) Vara

Absolute percent difference in ORQUAD and ORPQL – 6.50 (4.58, 8.43) 8.17 1.17 (0.79, 1.56) 1.28

b1 Log(1) Ref Ref

Log(1.5) 20.01 (20.08, 0.06) 0.01 (20.02, 0.04)

Log(2) 20.01 (20.10, 0.08) 0.00 (20.05, 0.04)

s2
u 0 Ref Ref

1 20.04 (20.12, 0.04) 0.00 (20.04, 0.05)

4 20.11 (20.20, 20.02) 0.00 (20.03, 0.04)

16 20.11 (20.20, 20.02) 0.02 (20.01, 0.06)

p 0.05 Ref Ref

0.2 20.05 (20.12, 0.02) 20.17 (20.22, 20.11)

0.5 20.12 (20.20, 20.04) 20.20 (20.27, 20.14)

Total n 150 Ref Ref

450 0.00 (20.07, 0.06) 20.14 (20.20, 20.09)

1500 20.01 (20.08, 0.07) 20.25 (20.32, 20.17)

Dataset composition Many large cluster Ref Ref

Many small clusters 0.10 (0.09, 0.10) 20.02 (20.13, 0.09)

Moderate 0.29 (0.11, 0.46) 20.06 (20.10, 20.03)

a: This is the variance of the random slope.
doi:10.1371/journal.pone.0084601.t004

Comparing PQL and Numerical Integration

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e84601



A similar pattern of results was seen for the median R2 of the

linear regressions (See Figure 3), with results ranging from 0.08 to

0.45, and 0.03 to 0.31 for ORQUAD and ORPQL, respectively. The

worst results were seen when s2
u = 0, while the best results were

seen when b1 = 0.

We used a linear mixed quantile regression model was used to

model the association between absolute percent difference in

ORPQL and ORQUAD on the absolute percent bias in ORPQL or

ORQUAD. We found that overall median absolute percent bias in

ORQUAD increased by 6.5% (95% CI: 4.6–8.4) for each 1%

difference in the absolute percent difference in ORPQL and

ORQUAD, after adjusting for data set characteristics. However, this

slope was quite variable – the variance of the random effect was

8.2. The association was less strong when absolute percent bias in

ORPQL was used as the outcome: median bias in ORPQL increased

by 1.2% (95% CI: 0.8–1.6) for each 1% difference in the absolute

percent difference in ORPQL and ORQUAD, after adjusting for

data set characteristics. This slope was less variable – the variance

of the random effect was 1.3. See Table 4.

In addition to looking at bias in the odds ratios estimate via

PQL and QUAD, we also considered using the regression

coefficient. However, results were in general, poorer with smaller

slopes, lower R2 and smaller proportion statistically significant.

(Data not shown.)

When absolute percent difference in s2
uPQL and s2

uQUAD was

used as the predictor for the absolute percent bias of s2
uQUAD and

s2
uPQL, respectively, the estimated slope varied quite widely,

especially when absolute percent bias in s2
uPQL was used as the

outcome. (See Figure 4.)

The proportion of scenarios in which this was statistically

significant was high (e.g. 85% and 91%, respectively). (See

Figure 5.) The median proportion of variance explained by the

predictor was 13% and 52%, respectively. (See Figure 6). Indeed,

it seemed to be a much stronger predictor for PQL than for

QUAD. was the outcome – in that case, the median slope was

negative.

The slope was negative in 18% and 75% percent of simulation

scenarios for QUAD and PQL, respectively. For PQL, negative

slopes were more likely to occur when the variance of the random

effect was bigger and when there were fewer subjects per cluster.

(Data not shown.)

We used a linear mixed quantile regression model was used to

model the association between absolute percent difference in

s2
uPQL and s2

uQUAD on the absolute percent bias in s2
uPQL or

s2
uQUAD. The association was not statistically significant for

s2
uQUAD. The association was small and quite variable for

s2
uPQL, after adjusting for data set characteristics. See Table 5.

Figure 4. Boxplot depicting the slopes from separate simple linear regressions for the effect of the absolute percent difference in
sPQL and sQUAD on the absolute percent bias in sQUAD or sPQL, respectively, overall and by data generation parameters. Median
(interquartile range) of the estimated slope is the center of the box, box edges are the 25th and 75th percentile respectively, ends of the dashed lines
are the 10th and 90th percentile, respectively.
doi:10.1371/journal.pone.0084601.g004
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The absolute difference in s2
uPQL and s2

uQUAD was not a very

good predictor for the absolute percent bias in ORQUAD or

ORPQL – fewer models were statistically significant (e.g. 29%

overall for QUAD and 16% overall for PQL), R2 was low, and the

estimated slope was close to 0. (Data not shown.)

The absolute percent difference in ORPQL and ORQUAD was

not a good predictor of the absolute bias of s2
uPQL or s2

uQUAD. It

was often statistically significant (e.g. 66% and 83% overall for

QUAD and PQL, respectively), though R2 was usually less than

0.3. In fact, the median slope across all scenarios was negative for

PQL. (Data not shown.)

Discussion

Over time, adaptive Gaussian Hermite quadrature has become

the gold standard for fitting generalized linear mixed models with

binary outcomes. However, given the greater flexibility in terms of

modelling correlation structures available with penalized quasi-

likelihood, and better convergence due to simpler estimation, PQL

is still used frequently. Moreover, in some scenarios, neither

approach uniformly gives good results. In this work, we

systematically evaluated whether matching results from PQL

and QUAD indicate less bias in estimated regression coefficients

and variance parameters.

Overall, we found that the absolute percent bias of the odds

ratio estimated via PQL or QUAD increased as the PQL- and

QUAD-estimated odds ratios became more discrepant. While the

estimated slope for the association between the absolute percent

difference in the PQL- and QUAD-estimated odds ratios and the

absolute percent bias of the odds ratio estimated via PQL or

QUAD varied markedly depending on the characteristics of the

dataset, the association for QUAD was almost always positive. In

contrast, when using the absolute bias of the OR estimated via

PQL as the outcome, the slope was often negative. In fact, it was

negative in scenarios that are known to produce biased results for

PQL – namely few subjects per cluster and high intercluster

variability [5,17,18]. In these cases, the higher the discrepancy

between the results, the more biased the PQL estimated odds ratio

was.

We found that the absolute difference in s2
uPQL and s2

uQUAD

was not a strong predictor for the absolute bias of s2
uQUAD or the

odds ratios estimated via PQL or QUAD. Moineddin et al. found

that with two level data structures, the variance components were

extremely overestimated with small groups and slightly underes-

timated with moderate group size for GLMM estimated via

quadrature [19]. PQL has been found to underestimate the

variance components when the denominator is small [7]. We

found that absolute percent bias for s2
u was greater for PQL than

Figure 5. Barplot depicting the proportion of scenarios in which the effect of the absolute percent difference in sPQL and sQUAD was
a statistically significant predictor on the absolute percent bias in sQUAD or sPQL, respectively from separate simple linear
regressions, overall and by data generation parameters.
doi:10.1371/journal.pone.0084601.g005
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quadrature. For PQL, bias was worse when group size was small

while for QUAD bias was worse when the number of groups was

small.

Given how markedly results varied depending on data set

characteristics, specifying some cutpoints above which indicated

biased results proved impossible. For example, when identifying

odds ratios estimated via QUAD or PQL that were more than

30% biased and using the discrepancy between QUAD and PQL

as the test, the area under the curve of the receiver operator curve

was 66% for QUAD and 60% for PQL across all scenarios.

Despite this, our results show that discrepant results may indicate

increased bias.

One strength of this work was the use of simulations to

systematically investigate the robustness of the association between

similarity in PLQ and QUAD estimates as predictors of bias PQL-

and QUAD- regression coefficients and variance components.

This allowed us to investigate the impact of a wide range of data

set characteristics on these associations. Indeed, we varied data set

size and composition, proportion of subjects with the outcome,

magnitude of the effect under study, and inter-cluster variability in

over 400 distinct data generation scenarios. Despite this, our

scenarios were certainly not exhaustive.

Moreover, we made many simplifying decisions. We considered

data sets with only one categorical predictor, only one level of

clustering, and only generated data with normally distributed

random intercepts, not random slopes, or more complicated

correlation structures. Finally, we have only compared two

methods, whereas some may also have been interested in

comparing Bayesian methods of estimation [20], or other

approaches.

This work suggests that comparing results from generalized

linear mixed models estimated via PQL and QUAD is a

worthwhile exercise for regression coefficients and variance

components obtained via QUAD, in situations where PQL is

known to give reasonable results. Results were less useful for results

obtained via PQL. In both cases, results strongly depended on

features of the data set, making it difficult to create a simple-to-

implement rule.

Figure 6. Boxplot depicting the R2 from separate simple linear regressions for the effect of the absolute percent difference in sPQL

and sQUAD on the absolute percent bias in sQUAD or sPQL, respectively, overall and by data generation parameters. Median
(interquartile range) of the R2 is the center of the box, box edges are the 25th and 75th percentile respectively, ends of the dashed lines are the 10th

and 90th percentile, respectively.
doi:10.1371/journal.pone.0084601.g006
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Data QUAD PQL

Generation Parameter Value Slope (95% CI) Vara Slope (95% CI) Vara

Absolute percent difference in ORQUAD and ORPQL – 20.01 (20.21, 0.18) 0.29 0.11 (0.00, 0.22) 1.46

b1 Log(1) Ref Ref

Log(1.5) 0.00 (20.01, 0.01) 0.00 (20.03, 0.02)

Log(2) 20.01 (20.02, 0.01) 0.00 (20.02, 0.02)

s2
u 0 Ref Ref
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0.2 20.10 (20.13, 0.06) 20.06 (20.09, 20.04)

0.5 20.12 (20.16, 20.08) 20.09 (20.12, 20.06)

Total n 150 Ref Ref

450 20.11 (20.15, 20.07) 20.03 (20.06, 20.01)

1500 20.18 (20.24, 20.13) 20.06 (20.12, 0.00)

Dataset composition Many large cluster Ref Ref

Many small clusters 20.17 (20.34, 0.00) 0.14 (0.07, 0.21)

Moderate 20.15 (20.22. 20.08) 0.03 (20.07, 0.13)

a: This is the variance of the random slope.
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