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ABSTRACT

Total precipitable water (TPW) retrieved from Special Sensor Microwave/Imager (SSM/1) brightness tem-
peratures and specific humidity retrieved from Geostationary Operational Environmental Satellite (GOES)
radiances are assimilated using a one-dimensional (1D) variational analysis technique. The study is divided
into two parts. First, collocations with radicsondes are performed to assess the quality of the satellite water
vapor retrievals. Collocations are also performed with 6-h forecast fields. Second, SSM/1 TPW and GOES
specific humidity are assimilated using a 1D variational analysis technique that minimizes the ervor variance
of the analyzed field.

A global collocation study over the oceans for SSM/I TPW retrievals and 6-h forecasts of TPW shows that
the rmse (with respect to radiosondes) are, respectively, 4.7 and 5.0 kg m™2. A separate coltocation study over
both the oceans and land for GOES retrieved TPW and 6-h forecasts of TPW yields rmse of 4.6 and 4.4 kg m™2,
respectively, in the midlatitudes and 6.8 and 5.9 kg m™2 in the Tropics.

The reduction of the 6-h forecast rmse when assimilating SSM/I TPW is 1 kg m™2, which is a reduction of
20% in the rmse. When GOES retrievals of specific humidity are assimilated, the effective reduction is 0.6
kg m~2, It is shown that in the upper levels of the troposphere (above 600 mb), the error reduction of specific
humidity is largely due to the GOES retrievals, whereas in the lower troposphere (850 and 700 mb), the
reduction is mostly due to the SSM/I TPW, This emphasizes the complementarity of the information contained
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at different wavelengths and the advantage of using multisensor retrievals in data analysis.

1. Introduction

Earlier studies that considered the importance of
specifying the initial moisture field (Mintz 1964; Sma-
gorinsky et al. 1970) with a large-scale GCM (acronyms
listed in appendix A) showed that water vapor behaved
like a passive tracer. However, recent studies have since
shown that an accurate measure of the humidity field
is necessary for proper initialization of high-resolution
short- to medium-range NWP models, especially in
the Tropics where the “spinup” time of the moisture
field is of the order of 3 days rather than 12-15 h as
in the midlatitudes. Medium-range forecasting in the
midlatitudes is influenced by humidity generated in
the Tropics. Also, precipitation forecasts are sensitive
to initial moisture conditions (e.g., Illari 1989; Kuo et
al. 1993).

Humidity observations are available through con-
ventional observations (e.g., surface and upper-air ob-
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servations or radiosondes, ship measurements, and
aircraft reports). Because of the high spatial and tem-
poral variability of the humidity field, point observa-
tions, if too sparse, will have a high error of represen-
tativeness. This is certainly the case in the Southern
Hemisphere where the number of radiosonde launch
sites is very small and its distribution uneven. Satellite
retrievals of humidity are potentially advantageous
when compared to radiosonde data because of their
high temporal and spatial resolution (sometimes lim-
ited to oceanic areas only). The verification of satellite
data retrieval algorithms is difficult to accomplish be-
cause they are generally compared with conventional
data that are very sparse over oceans. Often, only the
Northern Hemisphere radiosonde network over con-
tinents is adequate.

Satellite retrievals of moisture fields have been ob-
tained from both microwave and infrared observations.
Microwave observations at longer wavelengths are less
affected by clouds and thus are a better tool to retrieve
water vapor in cloudy atmospheres. The SSM/I, which
is onboard of the polar-orbiting DMSP satellite, sees
the same location on the globe about twice a day. About
60% of the globe is covered by one satellite in one day.
There are gaps in the equatorial regions and the number
of overpasses at the same location increases as one
moves toward northern latitudes. Over the ocean sur-
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face, due to the low surface emissivity values, micro-
wave brightness temperatures at the top of the atmo-
sphere appear warm with respect to the ocean surface.
Over land, the surface emissivity is higher and more
variable and thus the retrieval of atmospheric water
vapor is much more difficult. Retrievals of water vapor
obtained from infrared sensors on the geostationary
satellites are usually limited to cloud-free areas. Tech-
niques that obtain humidity profiles based on cloud
classification schemes are an exception to this. Infrared
water vapor retrievals are also available over land and
have a higher sampling frequency (30 min). Thus, a
combination of both retrieval techniques (IR and mi-
crowave ) would give access to the largest observation
dataset. Both sensor types are used in this study to
retrieve the moisture field.

Retrievals of atmospheric hydrological variables over
the oceans (such as total precipitable water, which is
equal to the column-integrated atmospheric water va-
por, cloud liquid water, and precipitation rate) from
DMSP SSM /1 brightness temperatures have been used
in the context of mesoscale analysis (¢e.g., Chang et al.
1993; Alliss et al. 1993), NWP [e.g., Isaacs et al. 1986
(review paper); Illari 1989; Nehrkorn et al. 1993], and
in the production of global climatologies (e.g., Tjemkes
and Stephens 1990; Liu et al. 1992; Bauer and Schlues-
sel 1993). In this paper, the focus is on the retrievals
of TPW and specific humidity ¢ from DMSP and
GOES satellite data.

TPW retrievals are obtained from SSM /I brightness
temperatures using a statistical regression approach.
The SSM/I has four channels (19.3, 22.2, 37.0, and
85.5 GHz), three of which have dual polarization. The
22.2-GHz channel has only a vertical polarization and
samples the water vapor absorption line. The retrieval
of TPW has the highest correlation with that channel
(Schluessel and Emery 1990). The other channels
usually reduce the rmse by compensating for varying
surface wind speeds (which modify the surface emis-
sion) and/or liquid water content. A technical de-
scription and evaluation of the SSM /I for the FO8 sat-
ellite may be found in Hollinger et al. (1990). Retrieval
accuracies obtained from radiosonde collocations for
TPW are usually less than 5.0 kg m~2 (Alishouse et al.
1990; Schmetz and van de Berg 1991, their Table 1;
Colton 1993).

Retrieval techniques based on IR usually have sim-
itar or higher rmse for TPW than the microwave tech-
niques (Schmetz and van de Berg 1991 ). Comparisons
between IR and microwave retrievals have been per-
formed previously by Tjemkes and Stephens (1990)
and Liu et al. (1992). Both studies compared water
vapor retrievals obtained from TOVS HIRS-2 and the
SSM/I over oceans and showed the superiority of
SSM/I retrievals. However, the technique to retrieve
precipitable water from HIRS-2 used as a first guess a
combination of eigenvectors obtained using radiosonde
data (Smith and Woolf 1976). This may lead to fields
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that are too smooth especially in data sparse areas. The
problem with cloud contamination also remains a dif-
ficult problem for most IR-based methods.

In this paper, retrievals of g are obtained using the
so-called “Humsat” technique (humidity from satel-
lites), which is based on a cloud-classification scheme
developed by Garand (1993). Three channels of full
disk GOES-7 images are employed—the infrared
channel (10.5-12 um), the visible channel (0.55-0.75
pm) when available, and the water vapor channel (6.7
um) also when available. The weighting function of
the water vapor channel peaks near 400 mb. An ad-
vantage of such a method is that retrievals are available
in cloudy atmospheres.

Assimilation of humidity fields to provide good
analyses for NWP models has been explored before.
Haydu and Krishnamurti (1981 ) developed an analysis
scheme to obtain 3D fields of g (from 1000 to 500
mb). The scheme used microwave retrievals of TPW,
radiosonde, and conventional surface observations of
specific humidity. First, they calibrated the microwave
TPW to that derived from the radiosondes and at the
same time, using a relaxation technique, preserved the
satellite-derived Laplacian. Thus, satellite moisture
gradients were preserved. Second, assuming an expo-
nential decay of g with height, the surface specific hu-
midity was extrapolated upward under the constraint
that its vertical integral be equal to the calibrated TPW.
The major problem with this technique is the sparsity
of radiosondes and conventional surface measurements
of humidity, particularly in the Tropics.

Kuo et al. (1993) described a method where a linear
correction is performed on the vertical profile of the
trial field precipitable water to constrain TPW of the
trial fields to equal that obtained from analyzed fields.
Iterations were performed to ensure that supersatura-
tion does not occur. They hoped that eventually the
analyzed fields could be replaced by SSM /I retrievals
of TPW to correct the vertical profile of specific hu-
midity of the trial field. However, this approach does
not weigh in an optimal manner the information con-
tained in the retrieval and the trial field.

Illari (1989) compared the quality of precipitable
water obtained from 1) 6-h forecasts with the ECMWF
NWP model (T63 spectral model); 2) radiosondes;
and 3) satellite retrievals. The satellite retrievals of pre-
cipitable water were obtained with an algorithm that
uses TOVS channels. She found that all three fields
have comparable accuracy and from a data assimilation
experiment concluded that the inclusion of satellite
data in the humidity analysis had a positive impact on
the forecast and that the largest impact was for the
tropical precipitation forecast.

In this study, satellite retrieved SSM/I TPW and
specific humidity retrieved from GOES imagery are
assimilated using a 1D variational analysis technique
(Lorenc 1986, 1988; Daley 1991). This is a preliminary
study for the 3D variational analysis method currently
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being developed at CMC. In the variational approach,
the analyzed field is obtained by combining a 6-h fore-
cast with the retrieved satellite data (both with known
error covariances) by minimizing the analysis error
variance.

The study is divided into two parts: first, in section
2, an evaluation of the accuracy of the retrievals of
total precipitable water and specific humidity profiles
is done by comparing them with collocated upper-air
radiosondes. The retrievals of TPW and g are also
compared with 6-h forecasts or trial fields obtained with
the CMC operational NWP model [global spectral
model, T79 (see Ritchie 1991), which corresponds to
a horizontal resolution of 250 km at the equator]. Sec-
ond, in section 3, a 1D variational analysis system is
used to obtain the best estimate for specific humidity
profiles using all three types of data. Results of the
collocation study and assimilation are presented. An
example of joint assimilation of SSM /I and GOES hu-
midity retrievals is also given. Finally, in section 4,
conclusions are presented.

2. Methodology

a. Retrieval of total precipitable water from DMSP
SSM /I brightness temperatures

Total precipitable water was computed from DMSP
SSM /1 brightness temperatures for two periods of 12
days each. The first dataset extended from 1 June to
12 June 1991 and was available for the two satellites
FO08 and F10. The second dataset extended from 1
March to 12 March 1992 and was available for the F10
and F11 satellites. The procedure described in Wentz
(1991) was used to transform the antenna temperatures
to brightness temperatures. Remapping was performed
on a 0.3° X 0.3° latitude-longitude grid by nearest
neighbor resampling. Numerous statistical and physi-
cal-statistical algorithms are available to retrieve TPW.
For simplicity, an empirically based algorithm was
chosen. The most recent intercomparison between such
algorithms may be found in Colton (1993). The rmse
(with respect to radiosondes) varies between 2.6 and
6.0 kg m~2 according to the intercomparison performed
by Petty and listed in Colton (1993). In our study, a
nonlinear regression equation (Alishouse et al. 1990)
was used to retrieve TPW from SSM /1 brightness tem-
peratures over the ocean. This algorithm was used be-
cause it has low rmse values and it is widely used in
the literature (the algorithm was chosen as the calibra-
tion—validation algorithm to retrieve TPW, see Hol-
linger 1991). The regression equation was developed
for a global dataset obtained from the FOS satellite and
for a dataset that spanned almost a-year (June 1987
to April 1988). Alishouse et al. (1990) obtained a rmse
of 3.0 kg m™2 with 0.0 bias for the dependent dataset
(dataset with which the empirical relationship was de-
veloped) and a rmse of 4.2 kg m™2 with a bias of —0.7
kg m~? for an independent dataset (Hollinger 1991).
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The nonlinearity in the regression arises from a qua-
dratic term for the 22.2-GHz channel. The equation
is as follows:

TPW (kgem™2) =cy+ ¢, T + &, T
+ 6T + el TF®)?, (1)

where T are brightness temperatures (K) for the fre-
quencies f(GHz) with vertical polarization. The coef-
ficients co—-c4 are, respectively, 232.89, —0.148596,
—1.829125, —0.36954, and 0.006193. Regression
equation ( 1) was developed in nonprecipitating areas.
Therefore, a precipitation screen (Hollinger 1991) has
to be applied prior to computing TPW. The precipi-
tation screen (based on the 37.0-GHz vertical and hor-
izontal polarization channels) is defined as follows. If

—11.7939 — 0.02727T 3 + 0.09929T3" < 0 K, (2)

then TPW is computed, otherwise, it is not.

Collocations between SSM /I TPW pixels and ra-
diosondes were performed to estimate the accuracy of
the retrievals from (1). Collocations were global but
restricted to be located between 60°N and 60°S. An
SSM/I TPW pixel was chosen as a collocation pixel
provided that both the distance to the radiosonde
(<300 km) and the difference in observation time (<3
h) were minimized. Collocations were performed only
for radiosondes that were launched from small islands
to minimize land contamination. As in Alishouse et
al. (1990), for an island to qualify as small, its area
has to be less than 20% of the incident field of view of
the 19-GHz channel (which has the lowest resolution).

Vertical profiles of g for 6-h trial fields obtained with
the spectral global NWP model (Ritchie 1991) were
also available at the location of the radiosondes. The
data that is assimilated for initializing the forecast falls
into three categories: upper-air data, satellite data, and
surface observations. The upper-air data consists of ra-
diosonde observations (temperature, dewpoint tem-
perature, pressure, and geopotential height ) and aircraft
data (temperature, wind speed, and direction). The
satellite data consists of satob observations (geosta-
tionary satellite observations of wind speed and direc-
tion at various levels) and satem observations (NOAA
series satellite observations of temperature at various
levels). Synoptic surface meteorological observations
and fixed and drifting buoy observations form the sur-
face observation dataset. Thus, over the oceans the only
moisture data that are assimilated come from radio-
sonde observations and surface observations. For the
trial fields and the radiosondes, TPW was computed
from vertical profiles of g as follows:

[ [300mb
TPW (kg m™) = —f qdp,
& Y1000 mb
where g is the gravitational constant and p is pressure.
The integral was discretized using the trapezoidal rule
and leads to the following equation:

(3a)
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| 6
TPW = Zg > (g + g+1)(D; — Pjx1), (3b)

Jj=1

where j is the level index. The levels used in this study
are 1000, 850, 700, 500, 400, and 300 mb. These levels
coincide with the mandatory levels for radiosonde ob-
servations. There are two reasons why the upper limit
of the integral is chosen to be 300 mb. First, the radio-
sonde reports rarely include humidity observations
above that level, and second, the largest integrated wa-
ter vapor amounts above 300 mb are less than 1% of
the value measured below 300 mb.

b. Retrieval of specific humidity from GOES imagery

Humsat retrievals (Garand 1993) of DPD profiles
from GOES-7 were performed in the —60° and 60°
latitude and 190° to 320° longitude window and on a
1° X 1° grid. Retrievals were obtained for 29 May 1991
to 12 June 1991 and 26 February 1992 to 12 March
1992 and overlap with the SSM/I datasets. DPD was
converted to specific humidity g by using temperature
profiles provided by the 6-h forecast. A brief description
of the Humsat technique follows.

Three features are extracted when GOES radiances
are available for both the VIS and IR channels. These
are cloud-top pressure (which is determined by using
the 6-h temperature trial field and the IR channel),
cloud fraction (based on the albedo and temperature
thresholds), and mean cloud albedo. In the case where
only the IR channel is available, the mean cloud albedo
is not extracted and cloud fraction is obtained by using
an IR threshold based on the 6-h temperature trial fields
at 850 and 1000 mb and also SSTs obtained from an
operational analysis. The features are then identified
with a cloud class. Each cloud class has an assigned
profile of DPD (obtained from radiosonde observa-
tions), which is used as a first guess for the retrieval
profile. TBWYV and 6-h trial field surface temperatures
are used to improve on the first guess. A description
of how the cloud classes were obtained and how the
first-guess profile was improved on follows.

Cloud classes were determined with a clustering al-
gorithm based on the analysis of the features (Duda
and Hart 1973, section 6.9). Nine classes were obtained
for the VIS-IR scheme and seven classes for the IR-
only scheme. Medians of DPD obtained from collo-
cated radiosondes were assigned to each class. For the
midlatitudes (35°-60°N), Meteosat and GOES DPD
medians were averaged. For the Tropics, medians were
obtained from the GOES retrievals only.

The first guess (based on class medians) is improved
on by applying empirical, class-dependent, relation-
ships that significantly reduce the rmse. First, the
TBWYV when available is used to estimate the humidity
above 600 mb. Linear relationships between DPD and
TBWYV were determined at 500, 400, and 300 mb.
These relationships are used at all latitudes. Second,
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an empirical relation between DPD and the 6-h tem-
perature trial field at 1000 mb was developed and used
to replace retrieved DPD at 1000 mb. The dynamic
range of such a relation is too low in the Tropics; hence,
the relation is only used in the midlatitudes or over
desert areas. A “supermoist” class (defined by DPD
values in the range of 1-3 K depending on the level)
was added in the case where cloud-top pressure exceeds
150 mb. This class occurs mostly in the Tropics and
is associated with convective precipitation.

A collocation study with radiosondes over Europe
(for an independent dataset) showed that a bias cor-
rected rmse of 4.5 kg m 2 for TPW was obtained. The
dataset had a mean TPW of 22.9 kg m~2 and a standard
deviation of 11.4 kg m~2. A few improvements mainly
concerned with data quality checking were recently
added to the algorithm and are summarized in appen-
dix B. At the CMC, vertical profiles of DPD are re-
trieved from GOES radiances operationally four times
daily and were introduced into the optimal interpo-
lation cycle in July 1993.

¢. Data assimilation formalism

Specific humidity g was chosen to be the working
variable of the 1D variational analysis of humidity and
is linearly related to TPW via (3). We evaluate ¢ at
the following six pressure levels: p, (kK = 1, ..., 6)
= 1000, 850, 700, 500, 400, and 300 mb. The model
state was restricted to where Humsat data were avail-
able. The aim of the 1D variational analysis is to pro-
vide the best estimate for the vertical profile of specific
humidity by combining different sources of observa-
tions and a background field chosen to be the 6-h trial
field obtained from a forecast model.

If one assumes that observations and background
error have Gaussian error distributions, then mini-
mizing the cost function J(g) gives an estimate that
minimizes the error variance of the analyzed field
(Lorenc 1986, 1988). The cost function J(g) for the
1D univariate variational analysis (¢ is the only variable
that is assimilated) is given by

J(@) =3 (a1~ a)"P" (4 - @)

+3[H(g) — 207 '[H(g) — 2]. (4)

The first term on the rhs of (4) is the contribution to
the cost function from the background field and the
second term comes from the observations; z are the
observations to be assimilated; and H(g) is the so-called
forward model for the variable z. A forward model
produces the model equivalent of observations. Here
q, is the background field of specific humidity, and P
and O are the error autocovariance matrices of the
background field and observations, respectively. The
computations involved in obtaining these matrices are
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described in section 2d. The minimum of J(gq) is found
by solving for the zero of the first derivative of J(g),
which is given by

J(q) =P '(q—q) + HTO'[H(g) — z], (5)

where H' is the tangent linear operator to H in the vi-
cinity of q.

If H(q) is nonlinear, then an iterative procedure
would probably be required to find the zero of (5)
(Gilbert and LeMaréchal 1989). In the case where z
is equal to the SSM /1 TPW, the forward model simply
consists of the integral operator (3a), and thus H(g) is
linear. In the case where z represents the Humsat q
observations, then the forward model is the identity
matrix. When H(q) is linear as is the case in our study
and we define H(g) such that H(g) = Hq [hence H'(g)
= H], then an exact solution for the zero of (5) may
be found (Lorenc 1986) and is given by

P'(q. — q») + HHO'[H(q, — a5) + H(qs) — 2] = 0,
(6a)
where q, represents the field that minimizes the error

variance of the analysis. The equation may also be re-
written as

9 — g = (P7' + H'O"'H)'HTO™'[z — H(q,)] (6b)
or

a4, = @ + K[z — H(qy)], (7)

where

K=(P'+HO'H)'H'O". (8)
After some algebraic manipulations, K may also be
shown to be given by

K =PHT(O + HPH™) !, 9

where K is referred to as the gain matrix and z — H(g;)
the innovation vector. The error autocovariance of the
analyzed field q, may also be computed and is shown
below to be given by

P, =[] (10)
From (4), one has that
J'(q) =P'+ HTO'H (11)
and (8) may be rewritten as
K=J"HO". (12)
On the other hand, one has (Ghil 1989):
P.=(1—KH)P = (1 - J"'HTO"'H)P. (13)

Finally, using (11) in the above equation completes
the derivation of (10).

In the assimilation performed in this study, the two
sources of observations (for which the errors are not
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correlated ), thus are SSM /I TPW and Humsat ¢, and
it follows that z, O, and H(q) may be written as ’

_|2m]. =Qm 0 . =Lmq
z—[qh], 0 [0 oh]’ H(q) [q],(m

where z,, = SSM/I TPW, g, is the Humsat retrieved
specific humidity, O,, is the error variance for the
SSM/I TPW, and O, is the matrix of the error auto-
covariance for Humsat retrievals of ¢g. Here L,,g is the
vertical integral of g, and L,, is given by [see (3b)]

1
L., = 2—(171 — D2, P\ — D3, D2 — Da,
g

D3 — Ds, Ds — D6, Ps — Ds). (15)

d. Autocovariance error matrices

Because a 1D univariate analysis is performed, in
the case of g, only vertical correlations of errors need
to be computed. Since the errors vary with season and
latitude, they were computed by latitude band (mid-
latitudes: 30°-60° and Tropics: 0.0°-30°) and for each
dataset separately. The computation of error autoco-
variances by latitude band and season is a standard
procedure that is performed in the optimal interpola-
tion analysis at CMC (Mitchell et al. 1990, 1993).

By definition, errors have to be computed with re-
spect to so-called “true” values. Frequently, however,
the errors reported are with respect to radiosonde val-
ues. An example as to how these errors are related for
TPW follows. Let us define e? as the (rmse )? between
SSM /I TPW (TPW,,)) and TPW obtained from radio-
sondes (TPW,). Then e? may be written as follows

e* = {(TPW,, — TPW,)?), (16)

where the brackets denote ensemble averaging. Sub-
stituting TPW,,,in (16) by (TPW,, — TPW,) and TPW,
by (TPW, — TPW,) where TPW, is the true value of
TPW, one obtains

e? = ((TPW,, — TPW,)?) + {(TPW, — TPW,)?)
~ 2{(TPW,, — TPW,)(TPW, — TPW,)). (17)

The last term in the above equation vanishes because
radiosonde errors are uncorrelated with TPW,,,. Both
¢* and the second term on the rhs of the above equation
may be computed, and thus the error of the microwave
retrievals with respect to the true values could be ob-
tained as a residual of the above equation. The rmse
error of radiosondes was estimated to be 1 kg m~2 for
the United States network ( Alishouse et al. 1990). Ra-
diosonde errors have been estimated in units of relative
humidity by Illari (1989). In her study, radiosonde
errors were estimated to be similar to those of the IR
satellite retrievals obtained with TOVS.

In our study, we compare errors between three da-
tasets: SSM /1 TPW, Humsat ¢, and 6-h trial fields. In
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TABLE 1. SSM/I, trial field, and assimilated total precipitable water collocation statistics (kg m~2).
Radiosonde Radiosonde
Sample size/No. of stations mean SD Technique SD rmse Bias
Dataset: 1-12 June 91—F08

163/27 39.0 12.9 SSM/I 12.1 4.3 1.0

Trial field 12.7 4.7 1.1

Assimilate 12.2 3.7 1.1

Dataset: 1-12 June 91—F10

242/37 37.0 15.0 SSM/1 14.3 5.4 1.1

Trial field 15.0 4.6 1.0

Assimilate 14.4 4.4 1.1

Dataset; 1-12 March 92—F10
182/35 31.2 14.0 SSM/I 13.0 4.8 —0.63
Trial field 13.8 5.7 1.7
Assimilate 13.1 4.4 0.25
Dataset: 1-12 March 92—F11

95/27 36.9 12.3 SSM/I 12.7 4.4 -1.3

Trial field 12.6 5.2 1.1
Assimilate 12.3 37 -0.41

all cases, the errors are computed with respect to ra-
diosondes and therefore are comparable. Thus, P, O,,,,
and O, were determined by collocation with radiosonde
observations without removing the radiosonde error.
For the SSM /I TPW, the error variance of TPW
needs to be computed since there is only one value per
horizontal coordinate. For Humsat ¢ and the 6-h fore-

casts of ¢, error autocovariance matrices have to be
computed. Error statistics were obtained by collocating
model and satellite retrievals with radiosonde obser-
vations. The error autocovariance matrices are com-
puted as follows. Let g« and g, be the satellite and
radiosonde specific humidity at collocation point ; and
level k and also define the error to be given by Ej

TABLE 2. Humsat, trial field, and assimilated total precipitable water collocation statistics (kg m™2).

Radiosonde Radiosonde
Sample size/No. of stations mean SD Technique SD rmse Bias
Dataset: 29 May 1991 to 12 June 1991 Midlatitudes
809/80 24.8 11.9 Humsat 10.6 5.1 -0.37
Tral field 11.3 4.5 0.90
Assimilate 10.8 4.1 0.33
Tropics
238/34 40.6 9.3 Humsat 7.6 6.7 0.49
Trial field 8.1 6.4 —-0.24
Assimilate 7.3 5.5 —0.25
Dataset: 26 February 1992 to 12 March 1992 Midlatitudes
251/29 13.5 8.3 “Humsat 9.2 4.0 0.56
Trial field 9.1 4.2 2.3
Assimilate 8.8 3.5 1.5
Tropics
231/38 39.8 11.3 Humsat 10.4 6.9 —0.89
Trial field 11.3 5.4 —0.84
Assimilate 10.5 5.1 -0.86
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F1G. 1. Assimilation of Humsat specific humidity. Both the bias (the three left-most curves in each graph)
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Tropics, March 1992 dataset; (¢) midlatitudes, June 1991 dataset; and (d) Tropics, June 1991 dataset.

= ¢,k — 4r;x- Then the mean and autocovariance are
given, respectively, by

E, = Ey (18a)

™M=z

1
N

i=1

1

N
Ciom = 2 (Eix = EQ)(Eim — Ep).  (18b)

N_lil

3. Results and discussion

a. Retrieval of total precipitable water and specific
humidity

To evaluate the quality of moisture retrievals, three
collocation studies with radiosondes were performed.
The first study derived the rmse of SSM /1 TPW values

for collocated radiosondes, the second study derived
the rmse for Humsat retrievals and radiosondes, and,
finally, collocations were performed between SSM/1
TPW, Humsat ¢, and radiosondes. In all three cases,
statistics were also available for the 6-h trial fields in-
terpolated from an NWP grid to the location of the
radiosondes.

Table 1 summarizes the collocation analysis for the
SSM /I TPW retrievals (over ocean only). In Table 1,
the total number of collocations (sample size) and the
number of different radiosonde launch sites are listed.
The radiosonde mean and standard deviation are listed
in the second and third column. The column entitled
“technique” lists the statistics for the SSM /I TPW and
the 6-h trial field. The mean of these fields may be
obtained by adding the bias to the radiosonde mean.
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TABLE 3a. Autocovariance error statistics for specific humidity (g° kg ~?) (March 1992).
Trial field mean error and error autocovariance matrix (P)
Error autocovariance matrix
Pressure
level Mean error 1000 mb 850 mb 700 mb 500 mb 400 mb 300 mb

1000 mb 0.64 0.85 (30°-60°N): N = 4246

850 mb 0.13 0.23 0.53

700 mb 0.036 0.049 0.098 0.27

500 mb 0.047 0.019 0.023 0.029 0.058

400 mb 0.038 0.0076 0.011 0.010 0.017 0.015

300 mb 0.011 0.0033 0.0035 0.0018 0.0033 0.0034 0.0018
1000 mb 0.37 4.0 (0°-30°N): N = 1123

850 mb —0.27 0.88 32

700 mb —-0.026 0.27 0.69 1.9

5060 mb -0.10 0.089 0.24 0.31 0.62

400 mb 0.0013 0.061 0.098 0.15 0.20 0.20

300 mb —0.0065 —0.0081 0.037 0.028 0.041 0.040 0.031
1000 mb 1.2 5.2 (0°-30°S): N = 375

850 mb 091 1.2 4.3

700 mb 0.41 0.12 1.2 34

500 mb —-0.12 0.059 0.33 0.96 L5

400 mb 0.069 0.047 0.16 0.50 0.51 0.50

300 mb 0.051 0.019 0.029 0.14 0.13 0.10 0.084
1000 mb 1.0 2.8 (30°-60°S): N = 290

850 mb 0.60 0.84 3.1

700 mb 0.45 0.071 0.55 2.0

500 mb 0.27 0.12 0.29 0.18 0.55

400 mb 0.16 0.044 0.040 0.048 0.15 0.13

300 mb 0.079 0.0026 0.0070 0.012 0.024 0.023 0.015

The magnitude of the rmse (4.3-5.7 kg m~?) with re-
spect to radiosonde observations is similar to that ob-
tained in other studies (see section 2a). The collocation
time window and range chosen in our study was 3 h
and 300 km, respectively. Decreasing the collocation
time window and range to 2 h and 200 km (matches
the one used in Alishouse et al. 1990), respectively,
decreases the rmse by 0.5 kg m™ for three of the da-
tasets and 0.1 kg m~2 for the fourth (1-12 March 1992,
F11 dataset). The sample sizes of the collocations are
also reduced considerably (up to 60% depending on
the dataset).

Data merging for different sensors were not per-
formed because equations for the intercalibration be-
tween the different satellites were not available. How-
ever, differences between satellites were estimated by
Hollinger in Isaacs et al. (1992) by comparing near
coincident pixels in time for different satellites over
selected regions. The differences in the mean that they
obtained between F10 and FO8 were less than 0.5 K
for channels 19.3, 22.2, and 37 GHz. The differences
between the F10 and F11 satellites were 1.6 K for the
22.2-GHz channel and less than 0.5 K for the 19.3-
and 37.0-GHz channels.

The rmse for the SSM /I TPW are smaller than for
the 6-h trial fields except for one of the datasets ( Table

1). This shows a higher performance of the SSM/I.
The trial field bias of TPW is positive for all datasets
implying overestimated moisture. Actually, atmo-
spheric water vapor (at least below 400 mb) is reason-
ably well predicted by numerical weather prediction
models and in particular when the performance is
compared with the forecast of cloud liquid water and
surface rain rates.

The rmse of TPW values obtained with Humsat are
listed in Table 2. Since more collocations were available
for Humsat (both land and ocean cases were consid-
ered), the datasets were split by latitudinal bands. The
rmse for Humsat TPW is lowest for the midlatitudes
and is comparable to that of the trial fields (5.1 kg m™~2
for the former compared with 4.5 kg m™2 for the latter
and for the June dataset, these values are 4.0 kg m™2
compared with 4.2 kg m~2 for the March dataset). For
the tropical datasets, the Humsat TPW rmse are 6.7
kg m~2 for the June dataset and 6.9 kg m~2 for the
March dataset. The 6-h trial field performs slightly bet-
ter than Humsat in the Tropics (Table 2). The bias of
the trial field is positive in the midlatitudes and negative
in the Tropics. The rmse values obtained for the mid-
latitudes are similar to the ones reported in Garand
(1993) and summarized in section 2b. In the Tropics,
the mean TPW is larger (Table 2) and thus a larger
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TABLE 3b. Autocovariance error statistics for specific humidity (g% kg 2) (March 1992).
Humsat mean error and error autocovariance matrix (Oy)
Error autocovariance matrix
Pressure
level Mean error 1000 mb 850 mb 700 mb 500 mb 400 mb 300 mb

1000 mb 0.17 1.6 (30°-60°N): N = 223

850 mb 0.065 0.26 1.56

700 mb 0.012 0.079 0.41 1.13

500 mb —0.057 0.020 -0.015 0.070 0.089

400 mb —0.0053 -0.011 -0.015 0.0074 0.017 0.013

300 mb 0.0081 0.0018 —0.0045 -0.0051 0.00005 0.00086 0.00054
1000 mb 0.22 5.3 (0°-30°N): N = 108

850 mb 0.20 1.7 5.1

700 mb -0.011 0.58 0.79 2.5

500 mb —0.18 0.24 -0.21 —0.044 0.26

400 mb -0.23 —0.11 -0.15 0.040 0.052 0.076

300 mb —0.093 0.0038 —0.053 0.020 0.017 0.0089 0.021
1000 mb -0.27 5.3 (0°-30°S): N = 123

850 mb 0.59 1.7 5.6

700 mb -0.82 0.83 1.9 4.2 >

500 mb -0.51 0.099 0.24 1.0 1.1

400 mb -0.019 0.18 0.16 0.20 0.27 0.26

300 mb —0.038 0.0090 —-0.00081 —0.0030 0.017 0.021 0.024
1000 mb -0.21 10.4 (30°-60°S): N = 28

850 mb 0.91 3.1 5.6

700 mb 0.89 —-0.23 0.17 2.37

500 mb 0.48 —0.045 0.12 0.022 0.30

400 mb 0.12 0.016 0.14 —0.16 0.041 0.058

300 mb 0.042 0.0046 0.0045 0.028 -0.018 —0.0037 0.0064

rmse is to be expected. The explained variance (1 minus
the ratio of the retrieval error variance to the observed
variance ) was 82% and 77% for the midlatitudes (June
and March, respectively) and 47% and 63% for the
Tropics (June and March, respectively). Thus, in the
midlatitudes, the performance of Humsat is superior
to that in the Tropics. This may be explained in part
by the fact that the empirical equation that relates sur-
face DPD to the 6-h temperature trial field is not used
in the Tropics (section 2b).

Finally, collocation statistics of TPW for SSM/I,
Humsat, and the 6-h trial field were also performed
but are not shown because the number of samples is
substantially reduced and thus quantitative conclusions
cannot be made.

Even if Humsat TPW estimates are the least accu-
rate, statistics of specific humidity by level (Fig. 1, vari-
able g, ) show that Humsat retrievals of ¢ have lower
rmse than the 6-h trial fields (Fig. 1, variable g,) for
the 500-, 400-, and 300-mb levels. The reason that
Humsat performs better there is mostly due to the WV
channel whose weighting function peaks above 600 mb.
For the midlatitude datasets, the retrieval of g at 1000
mb performs better than the 6-h trial field. This is not
the case for the tropical datasets (Fig. 1b and 1d). As

noted earlier, this is probably due to the fact that the
empirical equation developed at the surface that relates
DPD and the 6-h temperature trial field is not used in
the Tropics (section 2b). Thus, the levels where Hum-
sat performs worst are 700 and 850 mb.

A complementarity between SSM/I and Humsat
humidity retrievals exists in the sense that Humsat re-
trievals of specific humidity are better than the trial
fields at the higher levels, whereas for TPW, SSM/I
retrievals are comparable (slightly better) to the trial
fields and are superior in quality to Humsat. As most
of the atmospheric humidity is concentrated in the
lowest 2 km of the troposphere, the contribution of
the SSM/I should be largest in the lowest levels.

b. Assimilation of TPW and specific humidity

Before one can perform the computation of g, or
the analyzed field in (7), one has to define the back-
ground error autocovariance matrix P, and the analog
for the satellite retrieval errors Oy and O,,. Error sta-
tistics were computed according to ( 18). Because there
is a strong dependence of the error statistics with lati-
tude and season, they were computed separately for
each latitude band of 30° and for the June and March
datasets.
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FIG. 2. Assimilation of SSM/I total precipitable water. Both the
bias (the two left-most curves in each graph) and the rmse of the
specific humidity are illustrated (the two right-most curves in each
graph). Here g, represents the background (6-h trial field) specific
humidity and g, represents the analyzed field. (a) June 1991 dataset
obtained with the FO8 satellite (results are similar for the F10 satellite),
and (b) March 1992 dataset obtained with the F10 satellite (results
are similar for the F11 satellite).

Background error statistics (difference between
background field and radiosondes) were computed
from a dataset that included both radiosondes and trial
field values interpolated at the location of the radio-
sondes. The June dataset extended from 29 May 1991
to 12 June 1991 and the March dataset extended from
26 February 1992 to 12 March 1992. As expected, the
magnitudes of the error autocovariances in the Tropics
are similar for both the June dataset and March dataset.
Table 3a illustrates the error statistics for March only.
In the midlatitudes, the errors vary considerably with
seasons. The smallest errors are obtained for the March
northern midlatitude band and results from the fact
that lower values of ¢ occur during colder and hence
drier periods (can contain less water vapor). The mean
error at 1000 mb is positive for both the March (Table
3a) and June (not shown) datasets, which indicates
that the surface 6-h trial field is too moist.

DEBLONDE ET AL.
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Humsat specific humidity error statistics for March
are listed in Table 3b. The number of collocations is
substantially smaller than for the background field,
which in certain cases produces a very small sample
size (e.g., 30°-60°S). This is because the background
field errors are computed over the globe, whereas
Humsat errors are computed over the GOES window.
If one considers the diagonal terms only (variance),
trial field errors usually are smaller than those for
Humsat in the lower levels (1000, 850, and 700 mb)
and are larger for the higher levels.

The error variance for the SSM/I retrievals (O,,)
was computed for the same datasets as used in Table
1 by latitude bands of 30°. However, because of the
small sample size, the number of cases for some mid-
latitude bands dropped to as low as 5. Therefore, an
estimate for the error variance as a function of latitude
and season had to be used. The estimate is based on a
relationship for the relative uncertainty of TPW as a
function of latitude and season (Li and Leighton 1993).
In short, the magnitude of the error is related to the
magnitude of the estimate. The details are given in
appendix C.

Satellite retrievals of SSM/I TPW and Humsat ¢
were assimilated by solving (7). Assimilation of
SSM /I TPW was performed for the SSM /I datasets as
given in Table 1. The assimilation reduced the TPW
rmse with respect to that of the 6-h trial field (back-
ground field) by as little as 0.2 and as much as 1.5
kg m~2 as indicated in Table 1. Figure 2 illustrates the
rmse reduction (as a function of pressure ) between the
analyzed field g, and the background field g,. The larg-
est reductions occur at the 700- and 850-mb levels.
There is almost no reduction in rmse at the surface
(1000-mb level). The integral operator L,, based on
the trapezoidal rule took on the following value: L,,
= (1/2g)(150, 300, 350, 300, 200, 100) mb. Thus the
weight for the surface level is one-half that of the next
level up. This will limit corrections at the surface and
implies that the vertical integral operator should be
defined and tested carefully.

Assimilation of Humsat g was evaluated for the da-
tasets presented in Table 2. The resulting TPW rmse
was reduced by between 0.3 and 0.9 kg m~2. This is
about one-half the reduction by SSM/I TPW. How-
ever, for the assimilation of Humsat, both ocean and
land surfaces are considered. Only a small percentage
of the collocation sample is over ocean surfaces ( 14%
of collocations for March and 26% for collocations for
June). The g rmse profiles for the background field,
the analyzed field and Humsat g are illustrated in Fig.
1. The rmse of the analyzed field are reduced at all
levels but by only a small amount. The corrections
that occur for the levels above 600 mb are mostly due
to the contribution of the WV channel. The rmse of
the background g at the surface is the largest as is typical
over land surfaces. As is illustrated in Fig. 2, over ocean
surfaces, the rmse of the 6-h trial field of g is smaller
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FIG. 3. Assimilation of SSM/I TPW and Humsat g for 7 March 1992 at 0600 UTC. The fields illustrated represent total precipitable
water. Units are in kilograms per square meter, and the geographical grid spacing is 20°. (a) Background field (6-h trial field), and (b)

analyzed field of TPW.

at the surface than at the 850- and 700-mb levels. This
is typical over ocean surfaces and is due to the lower
variability of ¢ at the ocean surface.

An example of assimilation for 0600 UTC 7 March
1993 was also performed (Figs. 3 and 4) to illustrate
the impact of assimilating (SSM /I TPW and Humsat
q) on the resulting analyzed TPW field. The area an-
alyzed extends between 60°S and 60°N latitude and
190° and 320° longitude (with a grid of 1.0°). The
6-h trial field of TPW is illustrated in Fig. 3a and is
relatively smooth because of the fairly low resolution
(T79) of the model. The ITCZ is noticeable with TPW
values above 50 kg m™2. Dry areas are found on the
west coasts of South America and the United States.
A large frontal system is located in the South Pacific
Ocean (40°S, 120°W). Figure 4a illustrates the
SSM /1 TPW composite that was obtained by retaining
pixels with times closest to 0600 UTC (%3 h) for both
ascending and descending passes. As it turns out, this
particular composite mostly contains F10 ascending
orbits. The higher resolution (0.3°) SSM/I data were
combined by averaging the 12 pixels nearest to each
grid point of the 1° analysis grid. Values of —10.0 in-
dicate missing values due to the application of the pre-
cipitation screen and are obviously not used for the
analysis (section 2a). Values of —20 indicate missing
data. The frontal system mentioned above is also pres-
ent, but most of the data in the core is absent due to
the precipitation screen. Humsat data illustrated in Fig.
4b was obtained within 30 min prior to 0600 UTC.
The missing data in the Humsat image (indicated by
—10 values) are due to the application of the rejection
criteria described in appendix B. Essentially, data are

N

missing over mountainous areas and where the differ-
ences between retrievals and the background field (or
trial field) are very large. A broad region was rejected
off the coast of Chile where Humsat detected low clouds
but inferred too much moisture from the surface to
700 mb, an indication that these clouds are relatively
thin.

The analyzed field of TPW (Fig. 3b) is a result of
the assimilation of Humsat ¢ and/or SSM/I TPW
when available. If no satellite data are'available, then
the analyzed field is set equal to the background field.
The difference between the analyzed field and the 6-h
forecast is illustrated in Fig. 4c. Negative values of —50
indicate missing data. Most adjustments to the back-
ground field are bound between 0.0 and 10.0 kg m™2
(absolute values). Large areas of negative adjustments
show that the background field of TPW is generally
more humid. The frontal system in the South Pacific
(mentioned above) is less humid for the analyzed field.
Some of the drier zones in the background field are
too dry (e.g., 40°S, 100°W). The intertropical con-
vergence zone (ITCZ) in the model (Fig. 3a) appears
to be rather uniformly moist as opposed to the satellite
image (Fig. 4b), which indicates some clear sky breaks
in the ITCZ. The analyzed field is not as smooth as
the background field, which is desirable. There is vari-
ability at smaller horizontal scales in the satellite data.
This effect may disappear somewhat under 3D varia-
tional analysis where horizontal error autocorrelations
will also be considered.

Assessment of the errors using collocations cannot
be performed for this case, because the number of col-
locations with radiosondes is too low. However, a
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theoretical error estimate (P,) may be obtained via
(10). Bias corrected rmse values for the analyzed field
of TPW given by L,,P,L], [see ( 15)] are listed in Table
4. The theoretical bias corrected rmse for TPW nearly
decreases by one-half with respect to the background

TABLE 4. Theoretical estimate of analyzed total precipitable water
bias-corrected rmse (kg m™2) (March 1992).

TPW,
Latitude TPW, TPW, (SSM/1
band TPW, (SSM/T) (Humsat) + Humsat)
30°-60°N 2.1 1.6 1.7 1.4
0°-30°N 5.4 33 37 2.7
0°-30°S 7.0 4.2 5.0 3.6
30°-60°S 5.0 3.0 3.6 2.6

DEBLONDE ET AL.

FIG. 4. Total precipitable water (units are in kilograms per
square meter and the geographical grid spacing is 20°) for
0600 UTC 7 March 1992. (a) SSM/I1 TPW rctrievals. (Missing
values are represented by values of —20 and values of —10
illustrate where the precipitation filter was applied.) (b) Humsat
q (integrated to give TPW) retrievals. (Missing values repre-
sented by values of —10.) (¢) Analyzed field minus background
field as illustrated in Figs. 3b and 3a, respectively. (Missing
values represented by values of —50 kg m~2.)

field (Table 4, second column) when both satellite data
sources are assimilated (fifth column). As expected,
the assimilation of SSM /I TPW would lead to the larg-
est decrease in rmse (third column) except for the
Northern Hemisphere midlatitudes where it is com-
parable with the assimilation of Humsat ¢ (fourth col-
umn). The errors for the 6-h trial field of ¢ and Humsat
¢ are not fully independent, because the 6-h temper-
ature trial field was used to obtain the retrievals of
Humsat g, and, therefore, (10) is not strictly applicable.

4. Conclusions

A variational analysis study was performed by con-
centrating on a 1D variational analysis technique for
specific humidity and total precipitable water. First,
the accuracy of the satellite retrieved fields was esti-
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mated by computing the rmse using collocated radio-
sondes. The retrieval of SSM/I TPW over the oceans
had an rmse of 4.7 kg m~2. This is somewhat smaller
than the rmse error of the 6-h trial field (5.0 kg m™2).
The retrieval of DPD obtained from a combination of
GOES radiances and ancillary data that was subse-
quently integrated to give TPW had an rmse of 4.6
kg m~2 (in the midlatitudes), while trial field TPW
errors were 4.4 kg m~2, In the Tropics the rmse were
higher and, respectively, equal to 6.8 and 5.9 kg m—2.
These results are in agreement with prior findings. As
expected, the rmse of ¢ was smaller at the surface than
at 700 and 850 mb over oceanic surfaces but not over
land.

Assimilation of SSM /1 TPW and Humsat g was first
performed separately at the collocations with radio-
sondes. The results showed a reduction in the rmse
(with respect to the 6-h trial field) for the total precip-
itable water of 1 kg m~2 when SSM/I TPW (limited
to ocean surfaces ) was assimilated and 0.6 kg m™ when
Humsat g was assimilated. The reduction in TPW rmse
for the SSM /1 occurred mainly at the levels of 700 and
850 mb. For the Humsat ¢ assimilation, a small re-
duction in the rmse of ¢ occurred everywhere. The
corrections above 600 mb were mainly due to the effect
of the WV channel in the retrievals. Thus, the SSM/I
mainly determines humidity at the lower levels where
most of the atmospheric water vapor is located, whereas
Humsat provides important information at the higher
levels and nonnegligible information at the surface in
the midlatitudes and at other lower levels when
SSM /1 data are not available.

The multiple collocation study performed in our
study (SSM/I, Humsat, and radiosondes) was not fully
satisfactory because of the small sample size of radio-
sondes against which the data could be verified. An
alternative to this problem would be to use larger da-
tasets or to obtain vast amounts of ground data from
intensive campaigns, for example.

In the future, we expect to implement changes in
the Humsat algorithm that will yield improved specific
humidity retrievals in the Tropics. Efforts are under
way to develop a new retrieval algorithm that takes
into account anticipated data from future GOES-Next
satellites. We also hope to use sounding data from the
DMSP SSM/T-2 (Nehrkorn et al. 1993), which will
allow even better specification of tropospheric water
vapor as well as TOVS humidity soundings.

This study was a necessary step toward a more re-
alistic 3D variational analysis technique to assimilate
both total precipitable water and vertical profiles of
specific humidity. Such a system will produce more
realistic global analyses of water vapor by explicitly
accounting for the full 3D error covariances of the data
and the background field. A 3D variational analysis
system is currently being developed at the Atmospheric
Environment Service of Canada for eventual imple-
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mentation within the operational NWP analysis/fore-
cast system.
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APPENDIX A

List of Acronyms

CMC Canadian Meteorological Centre

DPD Dewpoint depression (temperature minus
dewpoint temperature)

DMSP Defense Meteorological Satellite Program

ECMWEF European Centre for Medium-Range
Weather Forecasts

GCM general circulation model

GOES Geostationary Operational Environmental
Satellite

IR infrared

ITCZ intertropical convergence zone

HIRS High-Resolution Infrared Radiometer
Sounder (second instrument)

Humsat  specific humidity retrieval algorithm de-
veloped by Garand (1993)

NWP numerical weather prediction

rmse root-mean-square error

SSM/1 Special Sensor Microwave /Imager

SST sea surface temperature

TOVS TIROS-N Operational Vertical Sounder

TBWYV water vapor brightness temperature

TPW total precipitable water

VIS visible

\YAY% water vapor

APPENDIX B
Update of Humsat Retrieval Scheme

The main modifications to the original Humsat
technique (Garand 1993) are the following.

1) An additional cloud class was added with mean
cloud fraction of 85%, mean cloud-top pressure of 775
mb, and mean cloud albedo of 50%. The IR scheme
now has 8 classes and the VIS-IR scheme has 10 classes.

2) Quality control was implemented. No profiles
are sent to the analysis system in the following cases:

(a) The temperature profile as inferred from the
6-h trial field is nearly isothermal in the lower
troposphere, making the determination of the
cloud fraction difficult when visible data is not
available. The rejection criterion is met when
the 6-h temperature trial field at 1000 mb minus
10 K is colder than the 600-mb temperature.
Arctic air masses are rejected by this criterion
in winter, but virtually no rejections occur in
the tropical band 30°S-30°N.
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(b) The 6-h trial field (TPW,) and Humsat esti-
mates of TPW (TPW,,) differ by more than 2.1
times an estimate of the rmse of TPW,. The
method used to compute an estimate for the
rmse of TPW, is described in appendix C. Most
rejections over oceans are due to that criterion
(see Fig. 4b).

Humsat cannot detect cases where the atmo-
sphere is humid at high levels (300-500 mb),
but very dry at lower levels (700 and 850 mb).
When the 6-h trial field indicates such a struc-
ture and Humsat detects high-level humidity,
the profiles are not used. This occurs in about
1% of the cases, essentially ahead of depressions
where cirrus clouds prevail.

(c)

Humsat does make retrievals over mountains. How-
ever, in this study, we considered only regions where
data were available at all the six lowest mandatory
pressure levels.

APPENDIX C
Estimate of TPW Error Variance
a. Determination of SSM /I TPW error variance

For a climatological dataset of total precipitable wa-
ter, one may assume that the uncertainty or error on
the estimate of daily values of TPW is given by the
standard deviation (6§ TPW ) of daily TPW with respect
to monthly mean TPW (m TPW). Based on the cli-
matological data of Oort and Rasmusson (1971) and
Oort (1983), Li and Leighton (1993) (their Fig. 20)
have shown that

STPW ~ ay + a;(mTPW)'/2, (C1)

where the units of TPW are kilograms per square meter
and aq and a, are constants equal to 0.0 and 2.2, re-
spectively. Thus, sTPW (TPW)~!/2 does not depend
on latitude or season provided ay is small.

In this study, we apply the same relationship to the
rmse of the SSM/I retrievals. If we assume that the
rmse in the Tropics is of the order of 5.0 kg m~2 and
use the mean radiosonde TPW for March (43 kg m™2)
in (C1), then qa, is estimated to be 0.75 (ap is assumed
to be zero). Since the errors for the background field

TABLE Cl. Estimated values of rmse for SSM/I
total precipitable water (kg m™2).

DEBLONDE ET AL.

June 1991 March 1992
Estimated Estimated
Latitude Radiosonde rmse Radiosonde rmse
band mean (SSM/I) mean (SSM/I)

30°-60°N 25.6 38 99 2.4

0°-30°N 43.0 5.0 30.3 4.1

0°-30°S 337 4.4 46.7 5.1
30°-60°S 17.8 3.2 26.6 3.8
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FiG. CI. Illustration of the validity of Eq. (C1) for the 6-h trial
field of total precipitable water. The x axis represents binned values
of TPW}* [bin width of 0.5 (kg m~2)'?] for the radiosonde datasets
used in this study (combined June 1991 and March 1992 data), and
the y axis represents the TPW rmse of the 6-h trial field with respect
to the radiosondes for each bin.

and Humsat retrievals were specified by latitude band
and season, we do the same for the SSM/I TPW by
applying (C1) with values for mTPW taken to be the
latitude band means obtained from radiosonde obser-
vations. The resulting rmse estimates are listed in Table
C1. The values obtained for the errors are comparable
with those in Alishouse et al. (1990).

b. Estimate of rmse of the 6-h trial field of total
precipitable water

The same relationship as (C1) is shown to hold for
the rmse of the 6-h trial field of precipitable water ( Fig.
Cl1) with a; = 097 and a9 = —0.24. Note that the
value of the intercept is small. The x axis in Fig. C1
represents binned values of TPW !/2 [bin width of 0.5
(kg m~2)!/2] for the radiosonde datasets used in this
study (combined June 1991 and March 1992 data)
and the y axis represents the TPW rmse of the 6-h trial
field with respect to the radiosondes for each bin. Es-
sentially then, TPW errors may be defined as a function
of the square root of the absolute value of TPW, which
avoids the need to specify the errors per latitude band
and season. The absolute error decreases with latitude
as expected, but the relative error increases.
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