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Montréal, Québec, Canada H3C 3P8

*Corresponding author (e-mail: i.bastow@imperial.ac.uk)

Abstract: Hudson Bay Lithospheric Experiment (HuBLE) was designed to understand the pro-
cesses that formed Laurentia and the Hudson Bay basin within it. Receiver function analysis
shows that Archaean terranes display structurally simple, uniform thickness, felsic crust.
Beneath the Palaeoproterozoic Trans-Hudson Orogen (THO), thicker, more complex crust is inter-
preted as evidence for a secular evolution in crustal formation from non-plate-tectonic in the
Palaeoarchaean to fully developed plate tectonics by the Palaeoproterozoic. Corroborating this
hypothesis, anisotropy studies reveal 1.8 Ga plate-scale THO-age fabrics. Seismic tomography
shows that the Proterozoic mantle has lower wavespeeds than surrounding Archaean blocks; the
Laurentian keel thus formed partly in post-Archaean times. A mantle transition zone study indi-
cates ‘normal’ temperatures beneath the Laurentian keel, so any cold mantle down-welling associ-
ated with the regional free-air gravity anomaly is probably confined to the upper mantle. Focal
mechanisms from earthquakes indicate that present-day crustal stresses are influenced by glacial
rebound and pre-existing faults. Ambient-noise tomography reveals a low-velocity anomaly,
coincident with a previously inferred zone of crustal stretching, eliminating eclogitization of
lower crustal rocks as a basin formation mechanism. Hudson Bay is an ephemeral feature,
caused principally by incomplete glacial rebound. Plate stretching is the primary mechanism
responsible for the formation of the basin itself.
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Much of the geological record can be interpreted in
the context of processes operating at the present-
day plate boundaries. While the plate tectonic para-
digm works well to explain processes and products
during the Phanerozoic era, during Precambrian
times, when the oldest rocks were forming, condi-
tions on the younger, hotter, more ductile Earth
were probably very different, making analogies
with modern-day tectonics less certain. The pre-
cise onset of ‘continental drift’ is disputed; it has,
for example, been estimated to be as early as c.
4.1 Ga (e.g. Hopkins et al. 2008), or as late as c.
1 Ga (e.g. Stern 2005) – a time span covering
approximately two-thirds of Earth history (Fig. 1).
Gathering evidence preserved deep within the
plates in stable Precambrian regions (shields) is
thus essential to improve our understanding of
early Earth processes.

Cratonic regions are readily identified in global
tomographic images where they are characterized
by their deep-seated, fast wavespeed lithospheric
keels. Roots can extend to depths of ≥250 km into
the upper mantle, in contrast to the oceans and Pha-
nerozoic continents where the plates are usually
≤100 km thick (Fig. 2; e.g. Ritsema et al. 2011).
The tectosphere, or lithospheric mantle beneath a
craton (e.g. Jordan 1988), is thus thought to have a
thermochemical signature that differs from aver-
age lithospheric mantle, and keel formation is com-
monly associated with Archaean processes, such as
the extraction of komatiitic magmas (e.g. Griffin
et al. 2003), to explain the intrinsic low density of
the tectosphere. It is estimated that the chemical
lithosphere must be more viscous than normal
mantle by a factor of c. 20 (Sleep 2003), enabl-
ing it to survive thermal and mechanical erosion
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during multiple Wilson cycles over billions of years.
Precisely how keels formed remains poorly under-
stood, however.

The geological record of northern Canada spans
more than 2 billion years of early Earth history (c.
3.9–1.7 Ga; Hoffman 1988), making it an ideal
study locale for the analysis of Precambrian Earth
processes. In the heart of the Canadian Shield lies
Hudson Bay, a vast inland sea, which masks a sig-
nificant portion of the Trans-Hudson Orogen (THO),
a Palaeoproterozoic collision between the Archaean
Superior and Western Churchill cratons. The THO
signalled the final stages of assembly of Laurentia
at c. 1.8 Ga (Fig. 3: Hoffman 1988; St-Onge et al.
2006; Eaton & Darbyshire 2010). The region is
underlain by one of the largest continental keels
on Earth (Fig. 2) and is also the site of one of the
largest negative geoid anomalies (e.g. Hoffman
1990). The cratonic keel beneath the Hudson Bay
region extends beneath both Archaean and Protero-
zoic terranes. How these various lithospheric

subdivisions of the Canadian shield were assembled
in Precambrian times, how the deep cratonic keel
formed beneath them, and how the Hudson Bay
basin subsequently developed within the shield,
have each been difficult questions to address until
recently. Hypotheses have been based principally
on evidence from the geological record and poten-
tial field maps (e.g. gravity and magnetics), and seis-
mological studies of the deeper mantle were limited
by the availability of data from only two or three
permanent seismic stations.

To address outstanding research questions exem-
plified by the Hudson Bay region, a broadband
seismograph network in the Hudson Bay region was
deployed by the Hudson Bay Lithospheric Exper-
iment (HuBLE); stations have operated since
2003. The purpose of this contribution is to review
the results of HuBLE, and to synthesize their impli-
cations for Precambrian processes, the formation
of the Laurentian keel, and the reasons for the Pha-
nerozoic development of the Hudson Bay basin. In
addition to reviewing already-published HuBLE
constraints (e.g. Thompson et al. 2010; 2011; Bas-
tow et al. 2011a, b; Pawlak et al. 2011, 2012; Stef-
fen et al. 2012; Snyder et al. 2013; Darbyshire et al.
2013), this contribution presents the results of a
new P-wave relative arrival-time tomographic study
of mantle wavespeed structure beneath the region.

Tectonic setting

The Canadian Shield lies in the heart of Precam-
brian North America. Comprising several Archaean
terranes brought together during a series of orogens
during the Palaeoproterozoic, the region is one of
the largest exposures of Precambrian rocks on
Earth (Hoffman 1988). The major phase of moun-
tain building in the region was believed to have
occurred at c. 1.8 Ga during the THO (Hoffman
1988; St-Onge et al. 2006). The Superior craton
formed the indenting lower plate to the collision;
the Churchill plate, presently lying to the north of
the Superior craton, was the upper plate. Extensive
geological mapping in recent years has added con-
siderable detail to this two-plate picture (Fig. 3).

It is now thought that northern Hudson Bay
comprises seven distinct crustal blocks, including
the Superior, Rae, Hearne, Chesterfield, Meta
Incognita, Sugluk and Hall Peninsula (Fig. 3; see
e.g. Snyder et al. 2013; Berman et al. 2013, for
a more detailed review). The Superior craton to
the south is a collage of Meso- to Neoarchaean
microcontinents and oceanic terranes amalgamated
2.72–2.66 Ga. The Ungava Peninsula bounds east-
ern Hudson Bay and exposes 3.22–2.65 Ga felsic
orthogneiss and plutonic rocks that underlie
c. 2.0–1.87 Ga volcanic and sedimentary rocks of

Hopkins et al., Nature (2008)

Furnes et al., Science (2007)

Cawood et al., GSA Today (2006) 

Hamilton, GSA Today (2003) 

Stern, Geology (2005)

4Ga

2Ga

1Ga

500Ma

E
on

E
ra

P
roterozoic

A
rchaean

H
adean

P
alaeo

M
eso

N
eo

P
alaeo

M
eso

N
eo

E
o

Fig. 1. Estimates of the onset of modern-style plate
tectonics.
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the Cape Smith fold belt (e.g. St-Onge et al. 2009,
and references therein).

The Rae craton comprises Meso- to Neoarcha-
ean, amphibolite- to granulite-facies, tonalitic to gra-
nitic orthogneisses and NE-striking c. 2.9–2.7 Ga
greenstone belts (e.g. Jackson 1966; Wodicka
et al. 2011a). The Rae is intruded by 2.72–2.68 Ga
tonalite, with voluminous c. 2.62–2.58 Ga mon-
zogranitic plutons (e.g. Bethune et al. 2011, and
references therein) extending from northwestern
Saskatchewan at least as far east as Melville Penin-
sula (Wodicka et al. 2011a). Zircon inheritance
and Nd model ages of up to 3.6 Ga confirm the

ancient nature of the northern Rae domain (e.g.
Whalen et al. 2011).

The Hearne craton is characterized by c. 2.7 Ga
mafic to intermediate volcanic rocks (e.g. central
Hearne supracrustal belt; Davis et al. 2004) cut by
c. 2.66 Ga granitic plutons associated with regional
metamorphism (Davis et al. 2004). The Hearne is
distinguished from Rae by its relatively young
(Mesoarchaean) volcanic rocks, and by its lack of
Archaean magmatism or tectonism post 2.66 Ga.
The Chesterfield block (C.B. in Fig. 3; Davis et al.
2006) comprises c. 2.7 Ga supracrustal rocks and
tonalite plutons, but lacks both the komatiitic
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Fig. 2. (a) A slice at 225 km depth through the global shear wave tomographic model of Ritsema et al. (2011). The
regions of fast wavespeed delineate the cratons world-wide. (b) A global view of the lithosphere–asthenosphere
boundary (LAB) based on the model of Ritsema et al. (2011). The depth of the LAB can be defined in several ways (e.g.
Eaton et al. 2009), but is defined here as the depth to the 1.75% fast contour. Areas of apparently thick lithosphere that
are an artefact of high-wavespeed subducting slabs in the mantle are not plotted and thus appear as black (in oceanic
regions) or white (in continental regions).
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assemblages and evolved isotopic character of the
Rae craton. The Chesterfield block is intruded by
2.6 Ga granitic plutons (Davis et al. 2006) that are
thought to have formed after its c. 2.64 Ga accre-
tion to the Rae craton (Berman et al. 2007).
Smaller and less well understood domains in NE
Hudson Bay include the Meta Incognita, Sugluk
and Hall Peninsula blocks (Fig. 3).

The Meta Incognita microcontinent (Fig. 3)
includes Palaeoproterozoic (2.40, 2.34–2.31, 2.15,
1.95 Ga) and lesser Neoarchaean (2.68–2.6 Ga)
components (St-Onge et al. 2006; Wodicka et al.
2011b), overlain by Palaeoproterozoic clastic car-
bonates of the c. 1.9 Ga Lake Harbour Group
(Scott 1997; Wodicka et al. 2011b). The Sugluk
block (e.g. Corrigan et al. 2009, and references
therein) includes Mesoarchaean crust that crops
out on SW Baffin Island and nearby islands in

Hudson Bay. It is inferred from evolved Nd signa-
tures to underlie the northern tip of Quebec (e.g.
Corrigan et al. 2009) where it is heavily intruded
by younger c. 1.86–1.82 Ga plutons (St-Onge et al.
2006). Corrigan et al. (2009) suggested that it may
extend west under Hudson Bay to merge with a
gravity high referred to as the ‘Hudson protoconti-
nent’ (Roksandic et al. 1987; Berman et al. 2005).
Hall Peninsula, southeastern Baffin Island, exposes
Mesoarchaean crust (2.92–2.8 Ga zircon crystalli-
zation ages; Scott 1997) which, given its spatial dis-
tribution, is tentatively considered a separate crustal
block (e.g. Whalen et al. 2010). Amalgamation of
Meta Incognita and the Sugluk block is postulated
to have occurred in an intra-oceanic setting shortly
before c. 1.9 Ga (Wodicka et al. 2011b). The Hall
Peninsula block was also considered to be a part
of this composite block, which is referred to by
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Snyder et al. (2013) as the Meta Incognita–Sugluk–
Hall Peninsula (MISH) block. This composite
block, as well as the adjacent Rae, is intruded by
voluminous charnockitic rocks of the 1.865–
1.845 Ga Cumberland Batholith, thought to have
formed by deep crustal melting subsequent to litho-
spheric delamination (Whalen et al. 2010).
Younger, c. 1.83 Ga plutons form late syn- to post-
tectonic plutons across southern Baffin and South-
ampton Islands (e.g. St-Onge et al. 2006).

The crustal blocks surrounding Hudson Bay
region have been affected by four major tectonic/
metamorphic events between 2.56 and 1.8 Ga (see
Berman et al. 2010a, for a detailed summary and
metamorphic maps). The oldest event, the 2.56–
2.50 Ga MacQuoid orogeny, affected the Chester-
field block and adjacent southeastern flank of the
Rae craton. The 2.5–2.3 Ga Arrowsmith orogeny
(Berman et al. 2005, 2010a; Schultz et al. 2007)
affected much of the western side of the Rae craton
from northern Saskatchewan through Boothia Pen-
insula to northern Baffin Island (Berman et al.
2010a, 2013). The 2.0–1.9 Ga Thelon orogeny
(Hoffman 1988) affected the westernmost Rae
craton, including northern Boothia Peninsula (Ber-
man et al. 2010a). The most widespread tectonic/
metamorphic reworking of the Hudson Bay region
occurred during the 1.9–1.8 Ga Hudsonian orogeny
(e.g. Hoffman 1988; Berman et al. 2010b) when
accretion of microcontinents to the SE flank of the
Rae craton occurred c. 1.9–1.87 Ga. These tectonic
events are known collectively as the Snowbird
phase of the Hudsonian orogeny (Berman et al.
2007).

Proposed under-thrusting of the Superior cra-
ton beneath the Churchill collage and the Cape
Smith belt was initiated by c. 1.82 Ga (St-Onge
et al. 2006). Palaeozoic events include deposition
of carbonate rocks, presently estimated to be up to
1.5 km thick, on crystalline basement rocks of Hud-
son Bay, western Southampton Island, and nearby
Coats and Mansel islands. At least five separate,
potentially diamondiferous, kimberlite fields are
known to have erupted during the Mesozoic and
Cenozoic, providing mantle xenoliths and garnet
xenocrysts that sample the mantle below the study
area (Fig. 3).

Previous seismological studies

of the Canadian Shield

The first constraints on the seismic structure of the
Hudson Bay region were presented in the early
1960s by Brune & Dorman (1963) using surface-
wave dispersion computed from two-station paths
typically thousands of kilometres long. Hobson
(1967) and Ruffman & Keen (1967) subsequently

studied crustal structure using controlled source
data recorded by both land and sonobuoy recorders.
Since then, several studies have mapped wave-
speeds beneath the Canadian Shield using surface
waves in regional to global-scale models. In
general the global models use data from permanent
seismograph networks, resulting in reduced resol-
ution beneath the Bay region; the two or three seis-
mograph stations contributing to the inversions
yield a limited number of surface wave paths
across the shield (e.g. Megnin & Romanowicz
2000; Shapiro & Ritzwoller 2002; Lebedev & van
der Hilst 2008). They indicate that Hudson Bay is
underlain by a c. 200–300 km deep fast wavespeed
mantle keel (e.g. Lebedev & van der Hilst 2008; Li
et al. 2008; Nettles & Dziewonski 2008; Ritsema
et al. 2011). Continent-scale models such as those
of Bedle & van der Lee (2009) and Yuan et al.
(2011) also indicate a deep-seated, fast wavespeed
mantle keel beneath the Canadian Shield.

Some of the tomographic inversions take seismic
anisotropy into account, but the results are variable.
The model of Debayle et al. (2005), for example,
yields east–west fast anisotropic directions beneath
the Bay region, while the model of Marone &
Romanowicz (2007) indicates NW–SE fast direc-
tions in the same depth interval, rotating to NE–
SW at 300 km. Yuan et al. (2011) presented a con-
tinent-scale model of seismic heterogeneity within
the North American craton, using joint inversions
of long-period waveforms and SKS splitting data.
They found evidence for a two-layered lithosphere.
The 150–200 km-thick upper layer has fast polariz-
ation directions correlated with trends in surface
geology, and was interpreted as the chemically
depleted ‘lid’ of the shield. The lower lithospheric
layer, with different anisotropic characteristics,
was interpreted by Yuan et al. (2011) as a signifi-
cantly younger, less-depleted thermal boundary
layer. The Yuan et al. (2011) model attributes aniso-
tropic fast polarization directions at asthenospheric
depths to anisotropic fabric development owing
to absolute plate motion. This model places the
lithosphere–asthenosphere boundary (LAB) at a
depth of c. 200 km depth everywhere beneath the
Bay region and throughout the entire Canadian
Shield, based on the anisotropic stratification of
the upper mantle model.

S to P receiver function studies (Rychert &
Shearer 2009; Abt et al. 2010; Miller & Eaton
2010; Kumar et al. 2012) provide support for an
abrupt change in seismic wavespeed at c. 80–
150 km depth across much of North America. If
interpreted in the context of the two-layered litho-
sphere hypothesis of Yuan et al. (2011) or Darby-
shire et al. (2013), this feature probably represents
a mid-lithospheric discontinuity beneath cratonic
North America.
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The c. 200–260 km lithospheric thickness in
central and northern Canada inferred in the sur-
face wave studies is corroborated by estimates of
the thermal boundary layer, as inferred from joint
interpretation of surface heat flow and S-wave
travel time delays (e.g. Lévy et al. 2010). Although
based on sparse data coverage, heat flow data
from northernmost Ontario and central-northern
Quebec are the lowest anywhere across the
Canadian Shield. The thickness of the thermal
lithosphere beneath the Canadian Shield varies
regionally by up to c. 100 km (Artemieva 2006;
Lévy et al. 2010).

Previous studies of the mantle transition zone
beneath the Canadian Shield were limited to
imaging the receiver-side structure using a small
number of permanent stations located large dis-
tances apart (Bostock 1996; Chevrot et al. 1999),
geographically restricted temporary networks (Li
et al. 1998) or global studies utilizing mid-point
reflections from distant source–receiver combi-
nations (e.g. Gossler & Kind 1996; Gu et al. 1998;
Flanagan & Shearer 1998; Gu & Dziewonski 2002;
Lawrence & Shearer 2006). Several of these studies
showed that the transition zone structure was uni-
form across the region (less than +5 km; Bostock
1996), yet sparse geographical coverage of receiver
functions or lower resolution (PP and SS precur-
sors) meant that it was unclear whether this pattern
was true beneath large swathes of the shield.

On a more local scale, the Teleseismic
Western-Superior Transect (TWIST; see Kendall
et al. 2002 for a review) experiment deployed 11
short-period and 14 broadband seismometers along
a 600 km line in the Superior region of SW Hud-
son Bay in May–November 1997. A further three
broadband stations were deployed further north on
the Hudson Bay coastline (e.g. Kay et al. 1999).
TWIST data were used in regional seismic tomo-
graphic imaging of upper mantle wavespeed struc-
ture (Sol et al. 2002) in an SKS study of mantle
anisotropy (Kay et al. 1999) and a receiver func-
tion study of crustal structure (Angus et al. 2009).
The tomographic study did not yield evidence
for differences between Archaean and Protero-
zoic mantle wavespeed. In contrast, the splitting
study revealed marked differences between the
two domains, with null measurements characteriz-
ing the Proterozoic coastal areas, while moderate
to large splitting was found to parallel Archaean
Superior trends.

The HuBLE seismograph networks

Preliminary discussions began in the early 1990s
concerning a Hudson Bay Lithospheric Experiment
designed to study crust–mantle dynamics beneath

Hudson Bay, to determine the reason for this intra-
cratonic basin, and to understand the Precam-
brian processes that shaped the central Canadian
Shield. Four co-ordinated activities were discussed:
a network of three-component broadband stations
deployed for several years, deep seismic reflec-
tion profiling along 600 km profiles, ocean-bottom
seismometers and single-component land stations
to record the large air-gun array to be used in the
profiling. International co-ordination and funding
of the marine profiling has not yet been achieved,
but the network of three-component broadband
stations has now been completed by the Canadian
and UK components of HuBLE.

The Geological Survey of Canada began de-
ploying POLARIS (Portable Observatories for
Lithospheric Analysis and Research Investigating
Seismicity; Eaton et al. 2005) around western
Hudson Bay in 2004. More stations were deployed
over the next three years such that 17 POLARIS
stations were operating west and north of Hudson
Bay by autumn 2007. The University of Western
Ontario added four POLARIS stations in Inuit com-
munities of northern Quebec in summer 2005. An
additional 12 POLARIS stations were established
in northernmost Ontario, south of Hudson Bay, by
the Geological Survey of Canada from 2003 to
2005. All of the POLARIS stations use Güralp
CMG-3ESP seismometers and Nanometrics Libra,
Trident or Taurus data loggers; most sites are extre-
mely remote, use satellite telemetry for real-time
data acquisition and are powered by solar panels
(Snyder et al. 2013).

The UK component of the HuBLE project
was deployed in the summer of 2007 by personnel
from the University of Bristol, in collaboration
with the Geological Survey of Canada. These 10
stations were situated mainly around the islands of
northern Hudson Bay, providing excellent azi-
muthal coverage around the Bay when combined
with the existing POLARIS and a few permanent
Canadian National Seismograph Network stations
(Fig. 3). Figure 4 shows a completed HuBLE-UK
Natural Environment Research Council seismo-
graph station in northern Hudson Bay. Each site
was equipped with a Güralp CMG-3TD broadband
seismometer, recording at 40 samples per second
(sps). Güralp data collection modules were used at
the stations, which were powered by up to six
solar panels (providing 100–140 W power) and
three 100 A h deep-cycle batteries. Each remote
site was equipped with an iridium satellite modem
that provided access to state-of-health data from
the stations. Utilizing modems over the iridium
network provides pole-to-pole global coverage of
both short message and short data burst services.
In the case of the Güralp data collection module,
this allowed the UK base-station to access weekly
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reports of remote-system state of health. Where
problems were diagnosed, low-latency two-way
communication for reconfiguration of the remote
systems was also utilized via simple terminal inter-
action. Further details of the UK component of the
HuBLE field campaign can be found in Bastow
et al. (2011a).

Nunavut, the homeland of the Inuit, is the most
sparsely populated region of Canada, so centres of
population and infrastructure are few and far
between. Wherever possible, seismograph stations
were deployed in secure compounds such as air-
ports and weather stations with mains power sup-
ply. Elsewhere, vast tracts of wilderness meant that
remote, independently powered recording sites had
to be designed. Transportation to these locations
was by chartered helicopters or light aircraft with
large tundra tyres that permitted landing on rela-
tively flat and well-drained glacial deposits (Fig.
4). Some stations shared logistics with exploration
companies by co-location at their camps. All
HuBLE-UK stations have now been removed and,
with the exception of a few vaults left at airports
for potential future re-occupation, no trace of the
stations’ existence remains at the sites.

HuBLE: the salient results

This section reviews the findings of the major
phases of HuBLE. The ‘Crustal structure’ section
presents the crustal studies of Thompson et al.
(2010) and Pawlak et al. (2011, 2012), which
adopted receiver function and ambient noise tomo-
graphic methods to constrain fundamental par-
ameters such as crustal thickness and seismic
wavespeed structure across the Bay region. The
‘Seismicity in northern Hudson Bay’ section looks
at seismicity in northern Hudson Bay and its impli-
cations for the state of crustal stress in the region.
The section entitled ‘Mantle seismic anisotropy:
evidence from SKS splitting’ reviews the seismic
anisotropy studies of Bastow et al. (2011b) and
Snyder et al. (2013), who performed shear wave
splitting of SKS phases to study mantle anisotropy.
The ‘Surface wave tomography’ section reviews
various regional surface wave studies conducted
across the Bay region (e.g. Darbyshire 2005; Dar-
byshire & Eaton 2010; Darbyshire et al. 2013).
Finally, the section entitled ‘Mantle transition zone
structure’ summarizes the work of Thompson et al.
(2011), who performed a receiver function study of

Fig. 4. HuBLE-UK remote station construction. 20–40 W solar panels on a steel frame re-charged 3 × 100 A h
batteries that powered the seismometer and recording equipment. The GPS antenna provided continuous accurate
timing information for our data. Twice-weekly remote communications with the stations were conducted via the
satellite modems. All field equipment were provided by Natural Environment Research Council’s seismic equipment
pool, SEIS-UK. Modified after Bastow et al. (2011a).
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the mantle transition zone with a view to improving
understanding of its thermal structure.

Crustal structure

Receiver function analysis captures P- to S-wave
conversions that occur at velocity contrasts in the
crust and mantle recorded in the P-wave coda from
distant (teleseismic) earthquakes (Fig. 5a; Langs-
ton 1979; Helffrich 2006). The abrupt change in
wavespeed usually encountered at the Moho makes
receiver function analysis a particularly powerful
means of studying the properties of the crust. The
arrival-times of P to S conversions and subsequent
reverberent phases from the Moho can be used to
constrain bulk crustal properties: crustal thickness
(H ) and Vp/Vs ratio (k) (Zhu & Kanamori 2000).
These parameters can be related subsequently to

bulk crustal composition via Poisson’s ratio (e.g.
Christensen 1996). Thompson et al. (2010) carried
out such a study of crustal structure in northern
Hudson Bay, providing for the first time detailed
constraints on crustal architecture across the bound-
aries between many of the tectonic subdivisions that
comprise the Canadian Shield.

Receiver functions from within the Palaeoarch-
aean Rae domain reveal remarkably simple crust,
with high-amplitude, impulsive Moho conversions
and reverberations (Fig. 5b). The crust is also seis-
mically transparent, with little evidence for inter-
nal architecture. The Rae domain has the thinnest
crust (c. 37 km; Fig. 6a) and the lowest Vp/Vs

ratios (Fig. 6b; ≤1.73) in the region. More northerly
stations display slightly thicker crust, up to c. 42 km.
In contrast to the Rae, the crust and Moho of the
Hearne domain crust is more complex (thus mak-
ing Hk analysis more challenging), with evidence
for internal architecture (Fig. 5c). Crustal thickness
within the Hearne is c. 38 km and the mean Vp/Vs

ratio is c. 1.76 (Fig. 6b). Uncertainties in the Thomp-
son et al. (2010) study are of the order +2 km for
crustal thickness, and +0.03 for Vp/Vs ratio.

Within the Palaeoproterozoic Quebec–Baffin
segment of the THO, bulk crustal properties are
more variable than in the neighouring Archaean
Hearne and Rae domains. Higher Vp/Vs ratios
(.1.75) are found around the Hudson Strait than
further north within Baffin Island and further west
towards NW Hudson Bay (c. 1.73: Fig. 6b). The
thickest crust (c. 43 km) underlies stations in cen-
tral and southern Baffin Island (Fig. 6a). Thompson
et al. (2010) also found evidence, particularly in
the northern Rae domain, for a Hales discontinuity
in the shallow lithospheric mantle at c. 60–90 km
depth (Hales 1969).

Ambient-noise tomography uses the cross-
correlation of diffuse wavefields (e.g. ambient
noise, scattered coda waves) to estimate the Green’s
function between pairs of seismograph stations
(e.g. Shapiro et al. 2005). This technique is a pop-
ular tool for crustal studies and was particularly
useful in the HuBLE project to glean information
on crustal structure beneath Hudson Bay. Pawlak
et al. (2011, 2012) used 21 months of continuous
recording at 37 stations around Hudson Bay to
measure dispersion characteristics of fundamental-
mode Rayleigh wave group velocity. The sig-
nals extracted contain preferred azimuths that are
indicative of stationary coastal noise sources near
southern Alaska and Labrador. Tomographic meth-
ods are then used to reconstruct a velocity model
that is best resolved in areas of dense, crossing
path coverage.

An important feature of the tomographic models
is a prominent low-velocity region beneath Hud-
son Bay (Fig. 7). At mid-crustal depths (i.e. longer
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Fig. 5. Receiver functions from the Rae and Hearne
domains. (a) Ray diagram of phases used in the Hk
analysis. (b) Stacked receiver functions for stations in the
Palaeoarchaean Rae domain. Note the similarities in
Moho Ps (a P-to-S conversion from the Moho) arrivals.
(c) Stacked receiver functions for stations in the
Meso-to-Neoarchaean Hearne domain, where
significantly more variable Ps arrival times and
amplitudes are seen. The increased complexity of the
Moho into the Hearne domain is evident particularly in
the reverberated phases, which have lower amplitude and
are much less coherent than within the Rae domain.
Modified after Thompson et al. (2010).
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Fig. 6. Crustal thickness (a) and Vp/Vs ratio (b) in the Hudson Bay region determined using the method of Zhu &
Kanamori (2000). Black regions are 2.6–2.7 Ga greenstone belts. BaS, Baffin Suture; BeS, Bergeron Suture;
SRS, Soper River Suture. Modified after Thompson et al. (2010).

Fig. 7. A comparison of anisotropic tomographic inversion result for 10 s period (left), with the lithospheric stretching
factor (b) for the Hudson Bay basin (Hanne et al. 2004). The contrast between slow wavespeeds beneath the Trans
Hudson Orogen and the neighbouring Archaean Superior craton persists to at least a 40 s period (see Pawlak et al. 2011,
figs 11 & 12). Modified after Pawlak et al. (2011, 2012).
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periods than shown in Fig. 7), the Pawlak et al.
(2011) study reveals that fundamental-mode Ray-
leigh velocity within the Superior craton (3.18 +
0.03 km s21) is significantly greater than the vel-
ocity within the Trans Hudson Orogen beneath
Hudson Bay (3.10 + 0.03 km s21). Rayleigh-wave
anisotropy inferred from azimuthal analysis of
ambient noise (Pawlak et al. 2012) reveals an
arcuate pattern of fast directions interpreted to be
indicative of the double-indenter geometry of the
Superior craton. At most periods, their results
suggest a significant change in anisotropic direction
across the inferred primary suture beneath Hud-
son Bay. The region of lowest velocity beneath
Hudson Bay (Fig. 7) corresponds remarkably well
with the pattern of lithospheric stretching proposed
by Hanne et al. (2004): c. 3 km of crustal thinning.

Seismicity in northern Hudson Bay

Northern Hudson Bay is a region of moderate intra-
plate seismicity, mainly within the Boothia Uplift–
Bell Arch structure (Basham et al. 1977), where
earthquakes up to Mw ¼ 6.2 have been documented.
Using data from the HuBLE network, focal mechan-
isms for five moderate earthquakes in the time
period 2007–2009 have been determined by fitting

surface waveforms (Fig. 8: Steffen et al. 2012).
These small earthquakes, of depth 3–17 km, have
thrust-fault mechanisms, consistent with previ-
ously determined focal mechanisms for this region
as well as model predictions for glacial isostatic
adjustment. Steffen et al. (2012) performed a stress
inversion using available focal mechanisms and
found a maximum compressive stress direction,
SHmax, oriented approximately NNW–SSE. This
orientation is surprising, as it is rotated by about
908 from previous glacial isostatic adjustment
model estimates, which assume a background stress
field in North American with SHmax oriented NE–
SW. These results indicate that existing crustal
fault zones exert a strong influence on the local
stress field.

Mantle seismic anisotropy: evidence

from SKS splitting

Seismic anisotropy – the directional dependence of
seismic wavespeed – can be measured from the
waveforms of teleseismic earthquakes via analysis
of shear-wave splitting (e.g. Silver & Chan 1991).
When a horizontally polarized shear wave, such as
SKS, enters an anisotropic medium it will split
into two orthogonally polarized waves. Splitting

Fig. 8. Focal mechanisms for earthquakes between 2007 and 2009 and from studies that predate HuBLE (grey). Solid
black lines show faults; the dashed line shows the Phanerozoic zero edge; the dashed–dotted line shows the
Snowbird Tectonic Zone. After Steffen et al. (2012).
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can be quantified by the time delay (dt) between the
two shear waves, and the orientation (w) of the fast
shear wave. These splitting parameters can sub-
sequently be used to understand the preferential
alignment of minerals in the crust and/or mantle,
or the preferential alignment of fluid or melt (e.g.
Blackman & Kendall 1997). Many processes can
lead to such anisotropy, including flow of the asthe-
nosphere parallel to absolute plate motion (e.g.
Bokelmann & Silver 2002; Assumpção et al.
2006), mantle flow around deep continental keels
and slabs (e.g. Fouch et al. 2000; Di Leo et al. 2012),
and a pre-existing fossil anisotropy frozen in the
lithosphere (e.g. Bastow et al. 2007). Bastow et al.
(2011b) and Snyder et al. (2013) used shear wave
splitting of SKS phases at HuBLE and POLARIS
stations in the Hudson Bay region to infer patterns
of seismic anisotropy in the Laurentian crust and
mantle (Fig. 9).

In the northern part of Hudson Bay, Bastow et al.
(2011b) found no significant variation in splitting
parameters at most stations across the HuBLE net-
work. One exception was permanent station FRB
on Baffin Island, for which more than a decade
of data were available. Here, significant back-
azimuthal variation in w and dt was found, raising
the possibility that complex patterns of anisotropy
exist beneath the region (Fig. 10). In a parallel
analysis of SKS splitting, Snyder et al. (2013) pro-
posed that two layers of anisotropy exist beneath

the Bay, one paralleling near-surface tectonic
trends and an underlying fabric paralleling present-
day plate motion.

Surface wave tomography

Studies of fundamental-mode Rayleigh wave dis-
persion were carried out for two-station paths
across the Hudson Bay region by Darbyshire &
Eaton (2010). The dispersion curves clearly indi-
cated a thick, fast lithospheric keel beneath the
region, with phase velocities significantly greater
than those associated with global reference models.
The phase velocities were also systematically
higher than the Canadian Shield average (Brune &
Dorman 1963), corroborating global tomographic
models that place the centre of the high-wavespeed
lithospheric keel beneath Hudson Bay (e.g. Nettles
& Dziewonski 2008). Each two-station disper-
sion curve was inverted for a 1D shear wavespeed
profile representing the average structure along the
inter-station path. The period ranges recovered
from the dispersion analysis allowed for reliable
models from lower-crustal depths (c. 35–40 km)
to mantle depths of c. 300 km. Each path-averaged
model showed a prominent high-wavespeed anom-
aly, interpreted as the lithospheric ‘lid’ in the
upper mantle.

Different proxies for lithospheric thickness
exist in the literature because fundamental-mode

�&"!

Rae

Superior Plate

STZ

Hudson Bay

Hudson Strait

Hearne

Foxe Basin
Soton. Is.

Baffin Island
CumberlandBatholith

Coats Is.

Mansel Is.

Nottingham Is.

NOTN
SHWN

CTSN

MNGN

MANN

SHMN

KIMN

DORN
CRLN

PNGN

FRB

QILN

IVKQ

WAGN

BULN

CMBN

CDKN

YRTN

NUNN

SEDN

(1s)

APM

-70°
-75°-80°-85°

-90°

-95°

62°

64°

66°

Fig. 9. Shear wave splitting parameters (arrows) and null results (solid lines) from HuBLE-UK and neighbouring
POLARIS stations (triangles) in northern Hudson Bay from the study of Bastow et al. (2011b). STZ, Snowbird Tectonic
Zone. Solid black lines are sutures. B.S., Baffin Suture. Inset: Back-azimuth and distance distribution of earthquakes
used in study. Concentric circles indicate 308 intervals from centre of network at 758W, 638N. APM-absolute plate
motion from the HS3-Nuvel-1A model (Gripp & Gordon 2002) in both hotspot reference frame (white APM arrow) and
no-net rotation reference frame (black APM arrow).

THE HUDSON BAY LITHOSPHERIC EXPERIMENT 51

 at Universite du Quebec - Montreal on April 22, 2016http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


surface wave models are essentially insensitive
to first-order discontinuities (see e.g. Eaton et al.
2009). In some studies, negative gradients in the
models are used, although these can be difficult to
constrain. Other authors choose (somewhat arbitra-
rily) a contour of positive Vs anomaly with respect
to the global reference (e.g. PREM, ak135). The
1.5–2.0% anomaly range is commonly used (see
Darbyshire & Eaton (2010) for a more detailed dis-
cussion). Using a proxy based on the depth to the
1.7% fast anomaly, the depth to the base of the litho-
sphere was interpreted to vary from c. 190 km
beneath the Hudson Strait area to at least 240–
280 km beneath central Hudson Bay. Within the
lithospheric lid, maximum seismic wavespeed ano-
malies varied from c. 4 to 7%, which is fast relative
to the global reference (Fig. 11).

The lithosphere–asthenosphere boundary depth
variations inferred from the surface-wave analysis,
and from interpretation of previous studies in the
Canadian Shield, indicate that the lithosphere is
thickest beneath central Hudson Bay (and sig-
nificantly thicker than in the Superior craton to the
south). There appeared to be no spatial correla-
tion between lithospheric thickness, path-averaged
seismic wavespeed anomalies and surface ages
(Archaean v. Proterozoic). This result is similar to
interpretations of the Fennoscandian (Bruneton
et al. 2004) and Australian (Simons et al. 1999;
Fishwick et al. 2005) lithosphere, but contrasts
with systematic changes in lithospheric thickness
between Archaean and Proterozoic domains in
central Asia (Lebedev et al. 2009) and southern
Africa (Li & Burke 2006).

The dispersion curves from a total of 172 inter-
station paths across the Hudson Bay region were
combined in a tomographic inversion by Darbyshire

et al. (2013), solving simultaneously for isotropic
phase velocity heterogeneity and azimuthal aniso-
tropy. The resulting phase velocity maps were sub-
sequently used as the basis for a full 3D model of
shear wave velocity and anisotropy beneath the
region (Fig. 12). The model confirmed the earlier
findings of a thick, fast lithospheric keel, but high-
lighted internal velocity variations and stratifica-
tion of seismic anisotropy within the cratonic
lithosphere.

In the uppermost mantle, probably associated
with the intracratonic basin, seismic velocities
immediately beneath the Bay are relatively low
compared with those beneath the surrounding
Archaean landmass, and anisotropic fast directions
wrap around the Bay. In contrast, in the 70–
160 km depth range, the model shows two high-
velocity cores beneath the central Superior and
Churchill cratons, separated by a near-vertical cur-
tain of lower-velocity material. In this depth range,
no large-scale coherency in anisotropic pattern is
evident. In contrast, the model also images a basal
lithospheric layer with a significantly more homo-
geneous velocity structure than the mid-lithosphere.
Anisotropy within this layer is coherent, with a
pattern strongly reminiscent of the inferred geome-
try of the THO structure (Darbyshire et al. 2013).

Mantle transition zone structure

The seismic discontinuities observed at depths of c.
410 and 660 km define the mantle transition zone
(TZ), and are commonly attributed to phase tran-
sitions in the olivine system (olivine to wadsleyite,
the ‘410’, and ringwoodite to perovskite + mag-
nesiowüstite, the ‘660’, respectively; Bina &
Wood 1987; Helffrich 2000; Ita & Stixrude 1992).
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Described by their Clapeyron slopes, the ‘410’ and
‘660’ will vary in depth if temperature conditions
are varied. The opposite Clapeyron slopes of these
discontinuities result in a thickened transition zone
in cold regions; hot regions will act to thin it (e.g.
Helffrich 2000). By analysing the nature of tran-
sition zone seismic discontinuities using receiver
function analysis, Thompson et al. (2011) explored
the thermal and chemical state of the mantle beneath
the Hudson Bay region.

Thompson et al. (2011) showed that, beneath
a significant portion of cratonic North America,
the TZ seismic discontinuities are unperturbed
compared with the global mean, with the impli-
cation that there is no seismically detectable ther-
mal variation at TZ depths beneath one of the
deepest and most laterally extensive continental
keels on the planet (Fig. 13).

A new relative arrival-time upper

mantle tomographic model for northern

Hudson Bay

Overview

Using teleseismic data recorded by HuBLE and sur-
rounding POLARIS seismograph stations since
2007 a new study of P-wave mantle velocity struc-
ture using least-squares tomographic inversion of
relative arrival-times is presented using the method
of VanDecar et al. (1995). Body wave tomographic
methods such as this benefit from particularly good
lateral resolution of velocity anomalies. The study
thus presents an excellent opportunity to examine
whether variations in seismic wavespeed exist
between Phanerozoic and Archaean mantle juxta-
posed during the THO. This study, which samples
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only Precambrian geology, is particularly valuable
because most studies of cratons using the method
include data from stations deployed within youn-
ger (Phanerozoic) terranes. In Tanzania, for exam-
ple, the high wavespeed Tanzania craton contrasts
with the neighbouring East African Rift (Ritsema
et al. 1998). In SE Canada, the high wavespeed
Superior craton contrasts with lower wavespeeds
associated with the Phanerozoic Great Meteor
Hotspot and Appalachian terranes (e.g. Eaton &
Frederiksen 2007; Frederiksen et al. 2007; Ville-
maire et al. 2012). In contrast, the major anomalies
illuminated in this study will probably be older
than c. 1.8 Ga. After presenting the results of this
new tomographic study, these new constraints are
discussed in light of other tomographic studies in
the region that used complementary methods such
as surface wave dispersion (e.g. Darbyshire &
Eaton 2010).

Method of relative arrival-time

determination

Manual picking of the first arriving P-wave phase
identifiable across the seismograph network was
performed on waveforms that were filtered with a
zero-phase two-pole Butterworth filter with corner
frequencies 0.4–2 Hz. Subsequently, phase arrivals
and relative arrival-time residuals were more accu-
rately determined using the multi-channel cross-
correlation technique (MCCC) of VanDecar &
Crosson (1990); we selected a 3 s window contain-
ing the initial phase arrival and typically one or
two cycles of P-wave energy to cross-correlate.
The chosen bandwidth is similar to that used in
other teleseismic tomographic studies in both tec-
tonically active (e.g. Bastow et al. 2008) and
shield (e.g. Frederiksen et al. 2007) regions. The
filter bandwidth is designed to retain as high a

Fig. 12. (a) Depth slices through the anisotropic surface-wave tomographic model of Darbyshire et al. (2013). The
colour scale represents the percentage deviation of shear wavespeed from the iasp91 global reference model and
the pale yellow bars indicate the direction and relative strength of azimuthal anisotropy across the region. The arrow
on the colour scale shows the 1.7% positive wavespeed anomaly used as a proxy for the base of the seismological
lithosphere (‘LAB’). (b) Cross-section through profile A–A′ of the tomographic model. The black dashed line shows the
inferred depth to the ‘LAB’ proxy. (c) Lithospheric thickness across the Hudson Bay region inferred from the
tomographic model, using the 1.7% ‘LAB’ proxy.
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frequency as possible since our inversion procedure
adopts ray theory (the infinite frequency approxi-
mation). All waveforms with cross-correlation coef-
ficients ,0.85 were eliminated from the analysis.

The MCCC method also provides a means of
quantifying the standard error associated with each
arrival time. In this study relative arrival times
determined in this way have mean standard devi-
ation of 0.02 s. In line with other studies using the
MCCC method (Tilmann et al. 2001; Bastow et al.
2005), we regard the MCCC-derived estimates of
timing uncertainty as optimistic.

Relative arrival-time residuals tRES for each
station are given by:

tRESi = ti − (tei − te), (1)

where ti is the relative arrival time for each station i;
tei is the expected travel time based on the IASP91
travel time tables (Kennett & Engdahl 1991) for
the ith station; and te is the mean of the IASP91 pre-
dicted travel times associated with that particular
event. The final travel time dataset comprises 3682
P-wave travel times (Fig. 14).

Analysis of travel-time residuals

International Seismological Catalogue travel-time
data for permanent station FRB (Fig. 15) in Iqa-
luit, Baffin Island (Fig. 3) show that the mean
absolute delay time with respect to the IASP91
travel-time tables for P-wave arrivals is amongst
the earliest of all permanent stations; mantle seismic
wave-speeds beneath FRB are therefore amongst
the fastest worldwide (Poupinet 1979). All P-wave
velocity anomalies shown in this tomographic
study should thus be considered markedly fast com-
pared with normal mantle, with red low-velocity
regions slower and blue high-velocity regions
faster than the background mean of the shield, not
the global average.

Model parameterization and inversion

procedure

Upper mantle wavespeed structure is imaged using
regularized, least-squares inversion of Canadian
relative arrival-time residuals following the method
of VanDecar et al. (1995). The parameterization

100

200

300

400

500

600

700

800

35 40 45 50 55 60 65 70 75 80
Latitude A′A

D
ep

th
 (

km
)

−130 −120 −110 −100 −90 −80 −70 −60

LongitudeB B′
100

200

300

400

500

600

700

800

D
ep

th
 (

km
)

(a)

(b)

(c)

−140˚ −120˚ −100˚ −80˚ −60˚ −40˚

40˚

60˚

80˚

A

A’

B B’

LAB

LAB

Fig. 13. (a) The orientation of two receiver function
transects plotted in (b) and (c). (b) A north–south
transect through 788W showing the 1.0 Hz migrated
data (S40RTS corrected). The dashed black line is the
+1.75% contour, sometimes chosen as a proxy for
lithospheric thickness (Fig. 2b). (c) Corresponding
east–west transect showing same data as the
north–south transect. Modified after Thompson
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Fig. 14. Back-azimuth and distance distribution of
earthquakes used in study. Concentric circles indicate
308 intervals from centre of network at 758W,
638N. Dark grey dots are direct P-arrivals; white dots are
core phases (e.g. PKP).
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scheme consists of 23 knots in depth between 0
and 1800 km, 50 knots in latitude between 50 and
788N and 85 knots in longitude between 46 and
1148W: a total of 97 750 knots parameterizing
slowness. Knot spacing is 35 km in the innermost
resolvable parts (58–718N, 63–1008W, 0–350 km
depth). Outside this region, knot spacing increases
to 50 km between 350 and 500 km, to 100 km
between 500–1000 km, and then to 200 km at
1800 km depth. Structural interpretations are thus
limited to features of spatial wavelength ≥70 km
in the upper part of the model.

The parameterization scheme continues out-
side the area of interest so that an unwarranted and
spurious structure is not mapped into the region
where structural interpretations will be made: an
Occam’s Razor approach (VanDecar et al. 1995).
In the regularized least-squares inversion procedure,
slowness perturbations, source terms and station
terms are determined simultaneously (VanDecar
et al. 1995). The source terms are free parameters
used in the inversion procedure to account for
small variations in back-azimuth and incidence
angle caused by distant heterogeneities and source
mis-locations. The station terms account for travel-
time anomalies associated with the region directly
beneath the station where the lack of crossing rays
prevents the resolution of crustal structure. Since
the inverse problem is under-determined (more

unknowns than observations), even in the absence
of errors, a unique solution cannot be found. A
model is therefore chosen that contains the least
amount of structure necessary to satisfy the arrival-
time data (e.g. Constable et al. 1987).

By investigating the trade-off between the root
mean square (RMS) residual reduction (the percen-
tage difference between the initial and final RMS
misfit to the travel-time equations) and RMS model
roughness, a preferred model is selected that fits the
data well but does not account for more relative
arrival-time residual reduction than can be justified
by the a priori estimation of data noise levels. All
models in this study account for 95% (from 0.384
to 0.02 s) of the RMS of the relative arrival-time
residuals. Estimates of RMS timing uncertainty
(0.02 s) are thus treated as optimistic bounds when
fitting the data. Subtracting the station terms from
the delay times reduces the RMS of the relative
arrival-time residuals from 0.384 to 0.369 s; these
corrected residuals reflect more accurately the pro-
portion of the delay-time anomalies that will be
mapped into the region of the model where tectonic
interpretations are drawn.

Resolution

The resolving power of the inversion technique in
this study is assessed by analysing the ability of
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Fig. 15. P-Wave travel-time delays for permanent seismograph stations. Note the extremely early arrivals at station
FRB in Iqaluit. Modified after Poupinet (1979).
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the ray geometry to retrieve a checkerboard model
using raypaths through a 1-D Earth. In the checker-
board test, positive and negative slowness-anomaly
(Vp ¼+5%) spheres described by Gaussian func-
tions across their diameter are placed in two layers
at 175 and 400 km depth (Fig. 16a, b). The check-
erboard approach permits assessment of model
sensitivity by highlighting areas of good ray cover-
age, and the extent to which smearing of anoma-
lies occurs. These synthetic velocity structures are
inverted to use identical model parameteriza-
tion and inversion regularization as during the
inversion of the observed data. A Gaussian residual
time error component with a standard deviation of
0.02 s is added to the theoretical P-wave travel
times (the standard deviation of noise estimated
for the observed data). Lateral resolution of the
anomalies in Figure 16b and c is good, with c.
30% amplitude resolution not uncommon in
regularized, under-determined tomographic inver-
sions such as this. Vertical resolution is good in
some parts of the model (e.g. beneath the central
Rae domain; Fig. 16e), but moderate in others. For
example, vertical smearing in areas such as southern
Baffin Island (Fig. 16f ) is considerable, meaning
that the model cannot be used to place tight depth
constraints on wavespeed variations.

The HuBLE P-wave velocity model

Cross sections and depth slices through the new
P-wave velocity model are shown in Figure 17.
Depth sections at lithospheric depths (Fig. 17a, b)
indicate relatively little heterogeneity, with peak-
to-peak amplitudes of ,1%. This compares with
peak-to-peak anomalies of c. 3% in active areas
such as the Ethiopian Rift (e.g. Bastow et al.
2005). Across the Snowbird Tectonic Zone (Rae–
Hearne boundary), for example, there is almost no
discernible variation in seismic wavespeed (Fig.
17a, b, e), although it is acknowledged that this
could be partly the result of poor resolution at the
edge of the model (Fig. 16b).

One area where relatively strong variations in
seismic wavespeed can be observed is the Quebec–
Baffin segment of the THO (Fig. 17a, b, e). Here,
fast wavespeeds associated with the southern edge
of the Churchill plate (i.e. Baffin Island) con-
trast with slower wavespeeds beneath the Baffin
Strait, with a subvertical to south–north-dipping
boundary between the two (Fig. 17e). This region
corresponds to a region of active seismicity and
Palaeozoic faulting (e.g. Steffen et al. 2012). The
depth extent of the low-wavespeed anomaly
beneath the Baffin Strait (Fig. 17e) is c. 300 km,
implying that it may extend through most or all of
the lithosphere (allowing for a finite amount of ver-
tical smearing in the model; Fig. 16). It must be

noted, however, that resolution in this part of the
velocity model is moderate: amplitude recovery is
low and vertical smearing is clearly evident in the
resolution tests (Fig. 16).

Discussion

Causes of seismic heterogeneity in

tomographic models

A number of factors can affect seismic velocity in
the mantle, including temperature, partial melt and
composition (Karato 1993; Goes et al. 2000; Goes
& van der Lee 2002). Variations in seismic aniso-
tropy may be manifest as velocity heterogeneities.
However, temperature is often cited as the main
source of mantle heterogeneity in the upper mantle
(e.g. Goes & van der Lee 2002).

The markedly fast wavespeeds observed in
global and continent-scale tomographic images of
the Canadian Shield mantle indicate strongly that
the lithosphere beneath the Hudson Bay region is
cold relative to the global average (e.g. Darbyshire
et al. 2007; Nettles & Dziewonski 2008; Darby-
shire & Eaton 2010). Composition is also an im-
portant contributing factor, however: shields are
generally associated with cold, depleted, mechani-
cally strong mantle material characterizing their
tectospheric ‘roots’ (e.g. Jordan 1978). It is often
commonly assumed that the Archaean cores of the
continents are characterized by the seismically fast-
est and thickest lithosphere on Earth, with thinner
and slower wavespeed structure characterizing Pro-
terozoic regions (Durrheim & Mooney 1994). More
recent seismic studies of mantle structure in Aus-
tralia (Simons et al. 1999; Fishwick et al. 2005;
Fishwick & Reading 2008), Canada (Darbyshire &
Eaton 2010) and Fennoscandia (e.g. Bruneton et al.
2004) question this simple correlation between
surface geology age and underlying mantle structure
and we revisit this issue in the ‘Implications for
the formation of the Laurentian keel’ section.

As indicated in the ‘Analysis of travel-time
residuals’ section, when interpreting tomographic
images derived from relative arrival-time data (Fig.
17), it is essential to appreciate the background
velocity structure of the region, which is represented
in the tomographic images by the dVp ¼ 0% con-
tour. Studies of Precambrian lithosphere commonly
include data from Phanerozoic terranes as well (e.g.
Tanzania: Ritsema et al. 1998; SE Canada: Ville-
maire et al. 2012). These models illuminate high-/
low-velocity anomalies that are sometimes genu-
inely fast/slow compared with the global mean.
However, our study area’s mean wavespeed struc-
ture is all fast compared with the global average
(Fig. 15), with no stations lying off-shield. Both
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Fig. 16. (a, d) 175 km depth slice and cross-section through the synthetic checkerboard model. Spheres of diameter 90 km (defined by Gaussian functions across their diameter) of
dVp ¼+5% peak anomaly are distributed in layers of depth 175 and 400 km in order to simulate relatively short length-scale velocity heterogeneity in the uppermost mantle
beneath the study area. (b, c) Depth slices through the retrieved checkerboard model at 175 and 400 km depth. (e, f) Cross-sections through the retrieved checkerboard model. The
grey bands at the top of the cross-sections preclude the view of the uppermost unresolved part of the model where ray paths are almost all parallel and vertical. Areas of low
ray-density (fewer than 10 rays per 30 km3) are black. Note the different colour scales used in (a) and (d) compared with (b), (c), (e) and (f ).
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Fig. 17. Depth slices through the P-wave velocity model at (a) 175 km, (b) 250 km, (c) 350 km and (d) 400 km. (e and f) Cross-sections through the P-wave velocity model. Areas of
low ray-density (fewer than 10 rays per 30 km3) are black.
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‘low’- and ‘high’-velocity anomalies presented in
Figure 17 are thus fast compared with the
global mean.

The c. 1.8 Ga elapsed since the last major tec-
tonic event (the THO) means that lithospheric
thermal anomalies associated with magmatism in
the region will have long since dissipated. The vel-
ocity anomalies in Figure 17 imaged are thus proba-
bly sensitive to variable composition across the
network.

Implications for the assembly of the Canadian

Shield: evidence for modern-style plate

tectonics?

Whether or not modern-style plate tectonics oper-
ated throughout Precambrian times is debated: its
onset has been estimated to be as early as the
Hadean (e.g. Hopkins et al. 2008) or as late as c. 1 Ga
(e.g. Stern 2005) – a time span of approximately
two-thirds of Earth history (Fig. 1). At crustal
depths, the receiver function study of Thompson
et al. (2010) revealed that crustal character has a
strong age dependence, with the implication that
crustal formation processes have evolved over time.

The low bulk crustal Vp/Vs ratios of the
Palaeoarchaean Rae domain crust (Fig. 6b) are
indicative of felsic-to-intermediate composition to
rocks in the mid to lower crust (e.g. Christensen
1996). Crustal formation hypotheses involving
island arc accretion are thus not easily applied to
the Rae domain because arcs are believed to have
a basaltic bulk composition (Rudnick 1995). Nair
et al. (2006) explain low bulk crustal Vp/Vs ratios
in the Kaapvaal craton through delamination of
the basaltic lower crust during collision in an
island-arc setting, thereby favouring the uniformi-
tarian view that modern plate tectonics can be
used to describe crustal formation in Archaean
times. In the Rae domain, however, there is a
paucity of evidence to support subduction-related
hypotheses. For example, extensive linear orogenic
trends in surface geology and potential field maps,
which are usually associated with island-arc accre-
tion, are not in evidence (e.g. Eaton & Darbyshire
2010). The absence of greenstone terranes associ-
ated with collisional tectonics in the Rae domain
(e.g. Hartlaub et al. 2004) also makes accretionary
crustal formation models difficult to invoke. The
felsic, uniform thickness (c. 37 km; Fig. 6a) Rae
domain crust, with its remarkably sharp Moho and
paucity of evidence for intra-crustal reflectivity
(Fig. 5b) thus lacks evidence for modern-style
plate tectonics. Models favouring vertical tectonic
processes, such as crustal delamination or plume
activity, were thus considered better suited to the
observations by Thompson et al. (2010).

The Meso-to-Neoarchaean Hearne domain has a
slightly more complex crust (Fig. 5c) with higher
Vp/Vs ratios than the Rae. These properties were
interpreted by Thompson et al. (2010) as a poten-
tially transitional period between non-plate tectonic
and plate tectonic processes. Receiver function
results from the Quebec–Baffin segment of the
THO, however, map out the first-order shape of
the Superior plate under-thrusting Meta Incognita,
the southern tip of the Churchill collage (Fig. 3;
Thompson et al. 2010). The elevated Vp/Vs ratios
in this region (Fig. 6b) are considered to be
representative of the rifted margin of the Superior
craton. Markedly thicker crust (c. 43 km; Fig. 6a)
compared with that observed in the Archaean
domains is coincident with widespread medium to
high-grade metamorphic geology outcropping at
the surface (e.g. St-Onge et al. 2006) and can be
explained by crustal thickening owing to stacking
of accreted terranes during continent–continent col-
lision, analogous to the present-day Tibetan Plateau,
followed by erosion (Thompson et al. 2010), con-
sistent with the hypothesis of St-Onge et al. (2006).

From SKS splitting analysis of seismic aniso-
tropy, Bastow et al. (2011b) and Snyder et al.
(2013, with support from receiver functions)
showed that fast polarization directions in northern
Hudson Bay parallel THO structural trends at the
surface (Fig. 9). Relatively large splitting delay
times (dt up to 1.45 s) require a relatively thick ani-
sotropic layer (and thus major plate-scale defor-
mation), which Bastow et al. (2011b) cited as
evidence that plate tectonics was in operation by
Palaeoproterozoic times at the latest. Corroborat-
ing this conclusion, Snyder et al. (2013) presented
evidence for gently dipping lithospheric layers
deep beneath the SE Rae craton, consistent with
under-thrusting beneath the Hearne and Meta
Incognita Sugluk blocks (Fig. 3). The new tomo-
graphic images presented in this study also yield
evidence for plate-scale under-thrusting beneath
Meta Incognita (Fig. 17a, b, f ). In contrast there is
little evidence in our new wavespeed maps for
such large-scale tectonic processes across the
Rae–Hearne domains to the west of Baffin Island
(Fig. 17a, b, g).

Taken together, the results from the receiver
function, SKS and tomography studies support a
model for secular evolution in processes of crustal
formation formation, with non-plate tectonic pro-
cesses during the Palaeoarchaean evolving towards
fully developed plate tectonics by the Palaeoproter-
ozoic (Thompson et al. 2010).

Based on joint tomographic inversion of
ambient-noise and teleseismic Rayleigh-wave dis-
persion measurements, Pawlak et al. (2012) docu-
mented systematic variations in anisotropic fabric
moving from the upper crust, to the lower crust
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and uppermost mantle beneath Hudson Bay. In par-
ticular, while anisotropic fabrics in the upper crust
and uppermost mantle are consistent with tectonic
fabrics created during the THO, lower-crustal
fabrics exhibit a more uniform north–south orien-
tation. By analogy with models for crustal evolution
in the modern Himalayan orogen, Pawlak et al.
(2012) interpreted this pattern as evidence for
frozen channel flow in the lower crust that formed
during the culmination of the orogenic cycle. This
model furnishes additional evidence that modern-
style plate tectonics was in operation c. 1.8 Ga
during the THO.

Implications for the formation

of the Laurentian keel

The tectosphere or lithospheric mantle beneath
cratons commonly extends to depths of 250 km or
more into the mantle. These ‘keels’ have remained
stable, resistant to thermal and mechanical erosion
during multiple Wilson cycles over billions of
years. Archaean processes, such as the extraction
of komatiitic magmas (e.g. Griffin et al. 2003), are
often invoked to explain the intrinsic low density,
but the Laurentian keel does not fit easily into the
Archaean formation paradigm: it extends below
both Archaean and Palaeoproterozoic terranes. Pre-
cisely how the keel beneath Hudson Bay formed is
thus unclear. Is the present-day keel a relict of
initial craton formation in the Archaean (e.g. Sleep
2003), or do later tectonic processes (specifically
the THO) also play a role, perhaps resulting in a
vertically stratified lithosphere? Stratification of
cratonic lithosphere has been inferred previously
from both geophysical (Fishwick & Reading 2008;
Angus et al. 2009; Abt et al. 2010; Yuan & Roma-
nowicz 2010) and geochemical/thermobarometric
studies (Griffin et al. 2003, 2004). The upper litho-
spheric layer has been interpreted as a highly melt-
depleted peridotite chemical boundary layer; the
lower, more fertile layer has been described as a
thermal boundary layer, formed at a later stage in
keel evolution (e.g. Lee et al. 2011). S to P con-
verted phases isolated in receiver function studies,
initially interpreted as the LAB (Rychert & Shearer
2009), are strong evidence for the latter hypothe-
sis, and have been cited as evidence for mid-
lithospheric discontinuities beneath the Canadian
shield (Abt et al. 2010; Yuan & Romanowicz 2010).

The new tomographic images presented in this
study (Fig. 17) provide compelling evidence that
Palaeoproterozoic mantle associated with the THO
has been trapped between the Archaean cores of
the Superior plate in the south and the Churchill
collage (including Meta Incognita and the Sugluk
block: Fig. 3) in the north. Depth resolution in

such body wave models is never as good as lateral
resolution (Fig. 16), but the inferred trapped low-
wavespeed material between the Superior craton
and the Churchill collage in Figure 17e is certainly
a deep-seated lithospheric feature, not the smeared
result of crustal structure.

The surface wave study of Darbyshire et al.
(2013), which solved simultaneously for isotropic
phase velocity heterogeneity and azimuthal aniso-
tropy, also suggested a multi-stage assembly of
the central Laurentian keel in the Archaean and
Palaeoproterozoic. The Darbyshire et al. (2013)
model (Fig. 12) shows that, in the uppermost
mantle, probably associated with the development
of the intracratonic basin, seismic wavespeeds
immediately beneath Hudson Bay are lower than
beneath the surrounding Archaean blocks, and ani-
sotropic fast directions wrap around the Bay. In con-
trast, in the 70–160 km depth range, the model
shows two fast-wavespeed cores beneath the cen-
tral Superior and Churchill cratons, separated by
a near-vertical corridor of lower-wavespeed mate-
rial. The geometry of this heterogeneous pattern
prompted Darbyshire et al. (2013) to suggest that
it arises from the terminal collision of the Superior
and Churchill cratons, trapping more juvenile Pro-
terozoic mantle between them during the THO. In
this depth range, no large-scale coherency in aniso-
tropic pattern is evident. However, in the deepest
parts of the lithosphere the model reveals signifi-
cantly more homogeneous velocity structure than
the mid-lithosphere. Anisotropy within this layer
is coherent, with a pattern strongly reminiscent of
the inferred geometry of the THO suture. Given
this distinctive deformation pattern, the basal layer
is postulated to have accreted to the base of the
Archaean cratonic lithosphere during or shortly
after the terminal phases of the THO (Darbyshire
et al. 2013).

Neotectonics, and implications for the

development of the Hudson Bay basin

The Hudson Bay basin is the least studied of four
major Phanerozoic intracratonic basins (includ-
ing Williston, Illinois and Michigan) in North
America and the mechanism by which it formed
remains ambiguous. A number of hypotheses have
been proposed over the years, each of which the
HuBLE project has tested.

According to one hypothesis, subsidence
occurred as a result of convective down-welling
within the mantle (e.g. James 1992; Peltier et al.
1992). This explanation has also been championed
to explain the long-wavelength negative gravity
anomaly beneath Hudson Bay (Simons & Hager
1997; Mitrovica 1997; Tamisiea et al. 2007). The
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receiver function study of Thompson et al. (2011)
addressed the issue of whether or not a mantle
down-welling exists below the Bay by constraining
the thermal structure of the mantle at transition zone
depths. Elevated mantle temperatures are expected
to reduce the depth interval between the olivine-
to-wadsleyite (the ‘410’), and ringwoodite-to-
perovskite + magnesiowüstite (the ‘660’) phase
transitions in the olivine system; reduced tempera-
tures in the same depth range will increase transi-
tion zone thickness (e.g. Bina & Wood, 1987; Ita
& Stixrude 1992; Helffrich 2000). The Thompson
et al. (2011) study showed, however, that beneath
the majority of cratonic North America, mantle tran-
sition zone seismic discontinuities are unperturbed
with respect to the global mean, with the impli-
cation that there is little thermal variation at TZ
depths beneath the Laurentian keel (Fig. 13). This
suggests that any mantle down-welling associated
with the long-wavelength negative gravity ano-
maly, and the Hudson Bay basin itself, must be
confined to upper mantle depths. Small-scale con-
vection around the Laurentian keel, if it operates
at all, must also be confined to upper mantle
depths of ,410 km (Thompson et al. 2011).

Two hypotheses for Hudson Bay basin forma-
tion concern the topography generated solely by
crustal processes. In the first of these, basin subsi-
dence was triggered by eclogite phase transform-
ation within an orogenic crustal root (Fowler &
Nisbet 1985; Eaton & Darbyshire 2010); accord-
ing to the second, basin subsidence occurred in
response to lithospheric extension that resulted in
crustal thinning (Hanne et al. 2004). These hypoth-
eses make different, testable, predictions about
crustal thickness trends. The receiver function study
of Thompson et al. (2010) was unable to constrain
crustal structure beneath the Bay itself, but notably
yielded no evidence for an eclogitized lowermost
crust beneath its islands and coastal areas: such an
assemblage around the Moho would result in gra-
dational, not sharp, P to S conversions from the
Moho, as are observed in Figure 5b & c (compare,
for example, to results from the China craton pre-
sented by Zheng et al. 2008).

The study of ambient noise tomography by
Pawlak et al. (2011) did, however, place new con-
straints on crustal structure beneath Hudson Bay.
Tomographic maps and cross-sections obtained in
the 5–40 s period range (Fig. 7) reveal markedly
lower velocities at crustal depths beneath Hud-
son Bay than in the surrounding Archaean cra-
tons (3.10 + 0.03 km s21 within Hudson Bay v.
3.18 + 0.03 km s21 in the Superior craton). The
lowest mid-crustal velocities correspond to the
region of maximum plate stretching near the cen-
tre of the basin, as inferred by Hanne et al. (2004).
Pawlak et al. (2011) present the first compelling

direct evidence (the upwarp of mantle material)
for crustal thinning beneath the Bay, obviating the
need for eclogitization of a remnant lower crustal
root as a mechanism for basin formation.

Analysing intra-plate seismicity in the north-
ern part of Hudson Bay (Fig. 8), Steffen et al.
(2012) noted that waveforms from these small earth-
quakes are consistent with thrust-fault mechanisms,
as inferred from previous studies for the region,
as well as model predictions for glacial isostatic
adjustment. Present-day crustal stresses are thus
influenced by both glacial rebound and pre-existing
faults. Hudson Bay itself is an ephemeral feature
(c. 15 ka), caused by combined incomplete glacial
rebound, mantle flow-driven dynamic topography
and the thermochemical structure of the Laurentian
keel. The seismological results from HuBLE, when
synthesized in light of the sedimentary basin study
of Hanne et al. (2004), and more recent back-
stripping studies of the Hudson Bay basin (Pinet
et al. 2013), suggest strongly that plate stretching
is the primary mechanism responsible for the for-
mation of the Hudson Bay basin.

Conclusions

The Hudson Bay lithospheric experiment has placed
fundamental new constraints on the crust and upper
mantle seismic structure of Laurentia. Highlights
of the experiment (so far) include:

† The strong age-dependence on crustal architec-
ture and bulk crustal properties (crustal thickness
and Vp/Vs ratio) indicates a secular evolution
in processes of crustal formation formation, with
non-plate tectonic processes during the Palaeo-
archaean evolving towards fully developed plate
tectonics by the Palaeoproterozoic.

† Seismic anisotropy, revealed by SKS splitting
and surface wave analysis, indicates the preser-
vation of a fossil lithospheric fabric, interpreted
as evidence for modern-day-style plate tectonics
operating by Palaeoproterozoic times.

† Seismic tomographic images of mantle structure
reveal an age dependence of seismic wavespeed:
the Archaean cores of Laurentia exhibit faster
seismic velocities than Proterozoic material
within the heart of Laurentia, trapped since the
THO. State-of-the-art anisotropic surface-wave
inversions indicate depth-dependent anisotropy.
Taken together with the variable wavespeeds
across the shield, and evidence for mid-litho-
spheric discontinuities in S–P receiver function
studies, this implies that cratonic keel formation
is not confined to Archaean times.

† Deep beneath the Laurentian lithosphere, a
mantle transition zone study shows that the
olivine phase transitions from olivine to
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wadsleyite (the ‘410’) and from ringwoodite to
perovskite + magnesiowüstite (the ‘660’) are at
remarkably normal levels across the Laurentian
keel’s c. 3500 km lateral extent. This implies
that the keel has no significant thermal effect
on the underlying mantle (≤50 K), and any
small-scale convection or cold mantle down-
welling associated with the large free-air
gravity anomaly beneath the Laurentian shield
must be confined to the upper mantle above the
transition zone (i.e. shallower than 410 km).

† Evidence for crustal thinning beneath the Bay,
inferred from ambient noise tomography, indi-
cates that the Hudson Bay basin probably owes
its existence to shallow Phanerozoic tectonic
processes (plate stretching), not deeper mantle
down-wellings.
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