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Automated detection of circinate exudates in 
retina digital images using empirical mode 
decomposition and the entropy and uniformity 
of the intrinsic mode functions

Abstract: This work presents a new automated system to 
detect circinate exudates in retina digital images. It oper-
ates as follows: the true color image is converted to gray 
levels, and contrast-limited adaptive histogram equaliza-
tion (CLAHE) is applied to it before undergoing empirical 
mode decomposition (EMD) as intrinsic mode functions 
(IMFs). The entropies and uniformities of the first two 
IMFs are then computed to form a feature vector that is fed 
to a support vector machine (SVM) for classification. The 
experimental results using a set of 45 images (23 normal 
images and 22 images with circinate exudates taken from 
the STARE database) and tenfold cross-validation indicate 
that the proposed approach outperforms previous works 
found in the literature, with perfect classification. In addi-
tion, the image processing time was  < 4 min, making the 
presented circinate exudate detection system fit for use in 
a clinical environment.
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Introduction
Diabetic retinopathy (DR) is the leading cause of prevent-
able blindness in Western countries [7], and circinate 
exudates are an important sign in early DR. When they 
occur in the foveal area, the resulting damage results in 
blindness, and elsewhere, they can create severe vision 
problems. Hence, the detection of exudates is of primary 

importance in early DR diagnosis and treatment. These 
lipid deposits due to vascular leakage appear in bright 
yellow in retina digital images, and many automated 
detection efforts have been devoted to them in the litera-
ture, using approaches based on spatial distribution fea-
tures [1, 2, 9, 21, 22, 28, 36], morphology analysis [4, 14, 
31, 34, 35], or segmentation [5–7, 10, 29, 30] as described 
below.

Osareh et  al. [22] presented an automated system 
based on color normalization and local contrast enhance-
ment, followed by fuzzy C-means clustering for image seg-
mentation, and neural network (NN) classification. The 
neural network achieved 93.4% accuracy, 93% sensitiv-
ity, and 94.1% specificity on a dataset of 142 color images. 
Zhang and Chutatape [36] used local contrast enhance-
ment, fuzzy C-means, and SVM to detect and classify bright 
lesions. The obtained sensitivity and specificity were 88% 
and 84%, respectively, on a dataset of 30 exudate images. 
Massey and Hunter [21] employed an algorithm based on 
the spatial clustering of objects and individual appear-
ance to estimate the probability of individual objects 
being circinate exudate. The purpose of the study was to 
classify exudates as bright or dark retinal lesions. Their 
algorithm, called SAGE, achieved an AUC of 0.83 on a 
training set of 105 exudate images and a testing set of 12. 
It also led to a lower cross-entropy error (CEE) than NN 
and SVM for bright and dark lesions alike. Sanchez et al. 
[28] proposed a general approach based on context-based 
features, which takes into account the presence of ana-
tomical landmarks and spatial relationship between can-
didates (exudates) of the same class. Feature selection was 
carried out by sequential forward floating selection (SFFS) 
to establish the 30 most discriminative features. Using a 
dataset of 69 normal and 75 abnormal images, the linear 
discriminant classifier achieved a free receiver operat-
ing characteristic (FROC) curve of 0.945. Agurto et al. [1] 
presented an algorithm to automatically classify images 
with pathologic features commonly found in diabetic 
retinopathy (DR) and age-related macular degeneration 
(AMD). Their algorithm used the amplitude-modulation 
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frequency-modulation (AM-FM) to define the features for 
characterizing normal and pathologic structures based on 
their pixel intensity, size, and geometry at different spatial 
and spectral scales. Then, a sequential backward elimi-
nation process was employed to measure the contribu-
tion of each feature in the improvement of classification 
accuracy. Those that did not improve the classification 
performance were eliminated from the initial feature set. 
The sequential backward elimination process was applied 
independently to each of the pathologic features of inter-
est to obtain the image representation at each frequency 
band. Finally, the partial least-squares regression was 
used to find the relevant features that classify images as 
normal or abnormal according to ground truth. Using 
2247 retinal digital photographs obtained of the eyes 
of 822 patients, the system achieved an average AUC of 
0.89 for detection of DR and of 0.92 for detection of sight-
threatening DR (STDR). In a similar work, Agurto et al. [2] 
employed the AM-FM technique to detect DR in retinal 
images. They used 120 regions of 40 × 40 pixels contain-
ing four types of lesions commonly associated with DR 
including microaneurysms, exudates, neovascularization 
on the retina, hemorrhages, normal retinal background, 
and normal vessels patterns. The texture feature vector 
contained the cumulative distribution functions of the 
instantaneous amplitude, the instantaneous frequency 
magnitude, and the relative instantaneous frequency 
angle from multiple scales. They concluded that there is a 
statistical differentiation of normal retinal structures and 
pathological lesions based on AM-FM features and that 
their methodology can be used in automatic DR screen-
ing. Grisan and Ruggeri [9] presented a system to detect 
and identify hemorrhagic (dark) lesions in retinal images 
in two steps. First, a local thresholding is applied to iden-
tify dark pixels in the image. Second, a density function is 
computed to identify cluster of pixels that are considered 
pixels belonging to candidate lesions. Their approach was 
tested on six images presenting dark lesions extracted 
from a database of 60 annotated images. The obtained 
detection rate was 94% the lesions present in an image. 
According to the authors, the hit-or-miss situation can 
compromise the clinical evaluation when an image pre-
sents only one lesion.

Flemming et  al. [4] used multiscale morphologi-
cal algorithms to obtain candidate exudates that were 
detected with 95.0% sensitivity and specificity using 
training and testing sets with, respectively, 139 normal 
images and 300 with exudates. Walter et al. [34] used high 
gray-level variation and morphological reconstruction 
techniques to find exudates and their contours. Moreover, 
the optic disc was detected with morphology filtering 

techniques and the watershed transformation. Based on 
a small image dataset (15 normal and 15 with exudates), 
the proposed algorithm achieved a mean prediction accu-
racy of 92.4%, with 92.8% mean sensitivity. Sopharak 
et al. [31] used a set of morphological operators including 
threshold image using Otsu algorithm and morphological 
reconstruction by dilation for exudate detection. Based 
on a data set of 40 retinal images with 20 exudates and 
20 normal, the obtained sensitivity and specificity were, 
respectively, 80% and 99.5%. Jaafar et al. [14] proposed an 
automated method based on an adaptive threshold and 
image partitioning. The image was split into a number 
of homogeneous sub-images, and a coarse segmentation 
based on the calculation of a local variation for all image 
pixels was used to outline the boundaries of all exudates. 
Finally, a morphological operation based on application 
of a logical intersection operator on the coarse segmen-
tation and adaptive threshold results was used for final 
exudate detection. Using 76 normal and 114 abnormal 
images, the proposed approach achieved 99.5% accuracy 
with 91.2% sensitivity and 99.3% specificity. In another 
study, Welfer et al. [35] presented a methodology based on 
mathematical morphology to detect exudates in color eye 
fundus images. Their approach was based on two stages: 
1) detection of candidate regions; 2) final exudate detec-
tion. The watershed transform was used to identify the 
optic disk boundary. Then, thresholding was applied to 
detect the candidate exudates. Finally, they used the fore-
ground pixels of the candidate region to define a binary 
image where only the exudates are in the foreground. The 
system achieved an average sensitivity of 70.48% and an 
average specificity of 98.84% using a dataset of 89 images. 
According to the authors, the main drawback of their 
approach is that it has low specificity with and misclas-
sification rate for images that do not contain exudates. In 
addition, there are many parameters to be tuned.

Giancardo et  al. [7] used features based on color, 
wavelet decomposition, and automatic lesion segmenta-
tion to detect the presence of exudates in 169 randomly 
selected images from three different databases. Condi-
tional entropy was applied to the initial features set to 
select the most informative ones, and subsequent clas-
sification was performed by support vector machines 
(SVM). Using receiver operating curve (ROC) analysis for 
performance evaluation, the achieved area under curve 
(AUC) was between 0.88 and 0.93 depending on the data-
base used in the study. Garcia et al. [5, 6] combined global 
and adaptive histogram thresholding methods to segment 
regions with hard exudates. Then, a set of 18 visual and 
statistical exudate features was selected; it included 
color, shape features, region size, and compactness. The 
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subsequent validation with a radial basis function NN 
classifier achieved 92.54% accuracy, with 100% sensitiv-
ity and 81.48% specificity on a dataset of 27 normal and 90 
abnormal images. Harangi et al. [10] used grayscale mor-
phology to identify possible regions containing exudates. 
Then, an active contour-based method used to minimize 
the Chan-Vese energy was applied to extract the borders 
of the exudates. Fifty shape features were extracted for 
exudate discrimination, from which the most efficient 18 
ones were selected based on the t-statistic. Using 89 color 
fundus images, a naïve Bayes classifier achieved 75% 
sensitivity. Soares et  al. [30] used a method for exudate 
segmentation that was based on localization using scale-
space extrinsic curvature and selection of the true ones 
using the local maxima blob response with dynamic 
threshold. Using a database of 46 abnormal and 43 normal 
images, the proposed system achieved a sensitivity of 
97.07% and specificity of 99.90%. Sinthanayothin et  al. 
[29] proposed an automated system for screening of dia-
betic retinopathy. The purpose was to detect retinal lesions 
defined as hard exudates, hemorrhages and microaneu-
rysms. The recursive region growing segmentation (RRGS) 
algorithm was used for exudate detection. This algorithm 
identifies similar pixels within a region to determine the 
location of a boundary. Then, the Moat operator was 
applied to sharpen the edges of the red lesions against 
the red-orange background in the segmented image. 
The algorithm for exudate recognition was applied to 30 
retinal images of which 21 contained exudates and nine 
were normal. In comparison with regions identified by the 
ophthalmologist, the obtained sensitivity and specificity 
were 88.5% and 99.7%, respectively.

Recently, the empirical mode decomposition (EMD) 
[13], an adaptive decomposition technique introduced 
for signal processing, was successfully applied for retina 
digital image processing and feature extraction for diag-
nosis purpose [18–20]. The EMD is a multiresolution 
technique introduced by Huang et al. [13] to perform the 
joint space-spatial frequency decomposition of a signal 
empirically by successive removal of elemental signals, 
the intrinsic mode functions or IMF, which represent the 
oscillatory modes of the original signal going from high- to 
low-frequency ranges. The obtained IMFs can then serve 
to represent the signal. The main advantage of using the 
EMD technique is that the input signal is analyzed without 
need to convolve it with a basis function as done for Fourier 
and wavelet transforms. In addition, the method is data-
driven and, thus, self-adaptive. These features make EMD 
suitable for nonlinear and nonstationary data analysis.

As already mentioned, EMD had triggered a certain 
interest to use it for the automatic diagnosis of retina 

digital images. For instance, the authors in [18] employed 
the discrete wavelet transform (DWT) and EMD to analyze 
retina images in the frequency domain through statistical 
features (namely, the mean, standard deviation, smooth-
ness, third moment, uniformity, and entropy) that were 
extracted from the high-frequency components in the ana-
lyzed images. The purpose was to distinguish normal from 
any of various abnormal images. Three different ocular 
pathologies were considered: circinates, drusens, and 
microaneurysms (MA). Support vector machines (SVM) 
with polynomial and radial basis function kernel were 
used to classify the obtained feature vectors. The experi-
mental results using the leave-one-out method (LOOM) for 
cross-validation showed the efficiency of the EMD-based 
features over the DWT-based ones. In addition, they indi-
cated that a polynomial kernel performed better than the 
radial basis function kernel in the SVM classifier. In their 
subsequent work [19], the authors extended their previ-
ous work to classify normal versus artery, blots, circinates, 
drusens, and MA separately. The EMD-based statistical 
features helped detect circinate images with 95.11% ± 0.04 
accuracy. More recently, the authors in [20] ranked sepa-
rately the extracted features from IMFs according to the 
t-statistic, the entropy statistic, the Battacharrayia sta-
tistic, ROC analysis, and principal component analysis 
(PCA). The selected features were then fed to support 
vector machines (SVM) to perform the normal-against-all 
classification task. Their results were that feature selec-
tion based on the Battacharrayia statistic gives the highest 
classification accuracy when using SVM with polynomial 
kernel: 96.54% ± 0.03.

In general, all the surveyed works exhibited excellent 
classification performance, regardless of the approach 
and features used. However, they fail to achieve perfect 
recognition accuracy, and they follow rather complex 
procedures. For instance, morphology-based approaches 
require detecting the optic disc, watershed transforma-
tion, and subsequent morphological reconstruction. As 
a result, there are many parameters to tune and a large 
number of features to extract. This type of approach also 
carries a significant algorithmic complexity. Spatial trans-
formation-based approaches require the estimation of 
probabilities of occurrence, which is difficult to achieve, 
and start with a large set of features that must be reduced 
by an appropriate dimensionality reduction technique. 
Finally, segmentation techniques are usually computa-
tionally intensive and require a smoothing and denoising 
image-preprocessing step in order to optimize the bound-
aries separating the regions.

In this work, we present a novel EMD-based approach 
that is simpler than the ones described in [18–20] and 
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that addresses the specific case of normal versus circinate 
image detection as done in [4–7, 14, 22, 31, 36]. Our approach 
consists of a four-step process that starts by converting the 
digital retina image to grayscale format and applying the 
contrast-limited adaptive histogram equalization (CLAHE) 
technique [24] to the result in order enhance contrast while 
mitigating noise over amplification during the process [3]. 
Converting the image to grayscale format avoids extracting 
features from each of the red, green, and blue channels, 
thus reducing the computation burden. The contrast-lim-
ited adaptive histogram equalization technique takes into 
account local image information to modify pixel bright-
ness, with the result of an improved contrast between image 
components (Figure 2 provides an example). Overall, the 
first step is relatively simple and low in time consumption.

In the second step, the EMD is applied to the equalized-
scale image for decomposition. Only the first two IMFs are 
determined as they contain most of the high-frequency com-
ponents of the decomposed image, and these may efficiently 
characterize circinate exudates, which have well-defined 
edges. Higher-order IMFs with lower frequency content, 
such as the third IMF, are not helpful in this regard [31].

In the third step, the uniformity and entropy of each 
IMF are computed to form a feature vector; these variables 
were chosen for their reported effectiveness to charac-
terize biological tissue [15, 16]. In our case, as circinates 
cause the proliferation of fibrous tissue and vitreous hem-
orrhagen [11], the structure of the cell components in the 
biological tissue is deteriorated, with the homogeneity of 
the biological texture affected. Because of this, the normal 
retina texture changes substantially and has a much less 
uniform pixel distribution. The uniformity and entropy 
statistics are appropriate to capture such variation.

In the final step, the feature vector is fed to support 
vector machines (SVM) [33] with quadratic kernel to 
perform classification. With respect to other classifiers, 
the SVM has the ability to avoid local minima in addition 
to being accurate [33]. The quadratic kernel is a global 
kernel that allows distant data points from each other to 
have also influence on the kernel values [32]. Moreover, it 
has proven its effectiveness in retina digital image clas-
sification [16, 18–20, 24].

The paper is organized as follows. The methodology is 
presented in the next section. This is followed by simula-
tion results and then we conclude in the final section.

Materials and methods
The proposed automated system for circinate exudate 
detection in retina digital images is presented in Figure 1.  

Retina digital image
Contrast limited

Adaptive histogram
Equalization

Apply
EMD

Extract 
Intrinsic mode

Functions

SVM

First IMF

Gray level

Classification

Second IMF Entropy &
Uniformity

Entropy &
Uniformity

Figure 1 Block diagram of the proposed circinate exudates detec-
tion system.

As mentioned above, the design of the classification 
system consists of four steps:
1.	 The original retina digital image is converted to 

grayscale format before filtering with contrast-limited 
adaptive histogram equalization technique.

2.	 The first and second IMFs are extracted by EMD.
3.	 The entropy and uniformity statistics are computed 

from each extracted IMF to form a feature vector of 
four elements.

4.	 The feature vector serves as input for the SVM to 
classify normal image versus circinate exudates 
image.

Contrast-limited adaptive 
histogram equalization
Basic histogram equalization is a technique that spreads 
out the distribution of pixel intensities within an image, 
with enhanced contrast as a result. The stretching is typi-
cally accomplished by replacing each normalized pixel 
intensity value by its cumulative distribution in the original 
histogram, with the result of progressively increasing the 
difference between adjacent pixel intensities and of a wider 
distribution range between the brightest and darkest values. 
For an image I of size n × n and a histogram h() defined by:

	
2( ) , [ 0, 1]in

h i i
n

= ∈
�

(1)

where i is a normalized pixel intensity, ni the number of 
pixel with intensity i, and n2 the total number of pixels in 
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Figure 2 True color digital retina image with circinate exudates 
before (left) and after applying CLAHE to its grayscale version 
(right).

the image, the histogram equalization algorithm creates a 
new image where each initial intensity i becomes i′ such 
that:

	 0

( )
i

k

i h k
=

=′ ∑
�

(2)

The above algorithm is efficient when the pixel distri-
bution is homogeneous throughout the image; else, adap-
tive histogram equalization (AHE) offers a more efficient 
mapping that considers contextual pixel regions instead 
of the whole image, thus allowing sets of pixels with low 
contrast, but different ranges of intensity distributions, 
to become simultaneously enhanced for visibility [25, 
37]. However, this comes at a high computational cost 
as a region histogram must be computed for each pixel 
in the image. One approach to lower the computational 
burden is to partition the image into a grid of contextual 
regions and use the mappings for the pixels located at the 
cell centers to interpolate those for the remaining pixels 
[23]. This amounts to ranking each pixel by its bright-
ness in comparison to the other pixels in its contextual 
region and assigning a new brightness to it in proportion 
to its rank [23, 26]. Unfortunately, AHE worsens also the 
effect of noise when small contextual regions are used. 
Contrast-limited AHE minimizes the problem by limiting 
the dynamic range of the contrast enhancement process 
by clipping the height of the local histogram and using a 
maximum contrast enhancement factor [23] in the AHE 
algorithm.

The size of the partition grid (and subsequently the 
number of pixels in a contextual region) has an impact on 
the contrast enhancement outcome: small sizes (e.g., 8 × 8) 
lead to enhanced contrast as opposed to large ones. We 
used the same grid size as that of Ramlugun et  al. [26], 
8 × 8, and the clip limit parameter was set to 0.01 in the 
CLAHE algorithm. Figure 2 provides an example of digital 
retina image with circinate exudates and the result of 
applying CLAHE to its grayscale representation.

Empirical mode decomposition
The EMD [13] decomposes a signal into a sum of intrinsic 
mode functions or IMFs, each one satisfying two proper-
ties: (1) It has the same numbers of zero crossings and 
extrema, and (2) it is symmetric with respect to its local 
mean. The IMFs span a scale going from fine to coarse 
and are determined by an iterative procedure, the sifting 
algorithm. For a one-dimensional signal s(t), the sifting 
process is performed as follows [13]:
1.	 Determination of all the local maxima Mi, i = 1, 2, …, 

and minima mk, k = 1, 2, …, in s(t).;
2.	 Computation by interpolation – for instance, a cubic 

spline – of the upper and lower envelopes of the 
signal: M(t) = fM(Mi, t) and m(t) = fm(mi, t);

3.	 Computation of the detail signal d(t) = s(t)-μ(t), where 
μ(t) = (M(t)+m(t))/2 is the average of the upper and 
lower envelopes;

4.	 If d(t) meets the properties of an IMF regarding 
symmetry and the number of extrema:

	 a.	 set the ith IMF as IMF(t) = d(t)
	 b.	 replace s(t) with the residual r(t) = s(t)-IMF(t);

	 else, set s(t) = d(t);
5.	 Iterate through steps 1–5 until residual r(t) satisfies a 

given stopping criterion.

In practice, the stopping criterion for the sifting process 
consists of bounding the standard deviation (SD) calcu-
lated from two successive sifting results [13]:

	

2
-1

0

2
-1

0

| ( )- ( ) |
( )

( )

T

k k
t

T

k
t

d t d t
SD k

d t
ε=

=

= <
∑

∑
�

(3)

where t is the time index, T is the length of s(t), k the index 
of the kth detail signal, and e is a given threshold. Alter-
natively, the sifting process stops when the residue func-
tion becomes monotonic or has one extrema so that no 
more IMF can be extracted. In the end, s(t) is expressed 
as follows:

	 1
( ) ( ) ( )

N

j N
j

s t IMF t +r t
=

=∑
�

(4)

where N is the number of IMFs, which are nearly ortho
gonal to each other and have nearly zero means, and rn(t) 
is the final residue, which indicates the low frequency 
trend of s(t).

The two-dimensional EMD follows the same process 
as the one-dimensional, and the two-dimensional IMFs 
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are defined in a similar manner. In our study, we used a 
one-dimensional decomposition for computational effi-
ciency. For an image of n × n pixels, the corresponding 
one-dimensional signal image is a vector with n2 compo-
nents resulting from concatenating the rows of the image 
starting from the top left corner. Then, the EMD algo-
rithm is applied to this vector, and the processed image 
is reconstructed from it. To perform the EMD, we used the 
algorithm proposed by Rato et al. [27], which minimizes 
computation errors with four modifications of the origi-
nal EMD algorithm. Figure 3 shows an example of normal 
retina color image, the result of applying CLAHE to its 
grayscale version, and the final one-dimensional signal 

(1D) of the latter. Finally, Figure 4 shows the first 14 IMFs 
extracted from the same 1D signal.

Feature extraction and 
classification

Feature extraction

Two statistical textural features, entropy and uniformity, 
are extracted from the first and second intrinsic mode 
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Figure 3 Normal retina color image (left), after applying CLAHE (middle), and CLAHE 1D signal representation (right).
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Figure 4 EMD decomposition of normal 1D signal shown in Figure 3 – right.
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functions. Higher intrinsic mode functions, which contain 
lower frequency content, were ignored since we made the 
hypothesis that only the high-frequency elemental signals 
capture sudden and distinctive changes in the biologi-
cal tissue. Initially, we started with a set of features that 
included the mean, standard deviation, kurtosis, third 
moment, uniformity, and entropy, but we obtained poorer 
classification results than when using the last two vari-
ables alone. This might be due to an antagonistic interac-
tion between predictive variables where general statistics 
such as the removed features are detrimental to the pre-
dictive power of more focused “structural” statistics such 
as entropy and uniformity.

Entropy and uniformity have already been shown to 
be effective at distinguishing different types of biological 
tissues [17]. The former measures random variability and, 
thus, can help detect variations and discontinuities in the 
signal such as sudden changes in the retina biological 
tissue caused by lipid deposits. The latter is an indicator 
of the regularity of a signal distribution. Therefore, it is 
suitable to measure the degree of overall homogeneity in 
retina biological tissue. Together, entropy and uniformity 
may capture the abrupt and frequent image contrast vari-
ations that are observed in the presence of circinate exu-
dates. They are defined by [8]:

	

-1

2
0

- ( ) log ( )
L

i i
i

Entropy p z p z
=

= ∑
�

(5)

	

-1
2

0

( )
L

i
i

Uniformity p z
=

=∑
�

(6)

where z is a random variable for intensity, p is the prob-
ability density of the ith pixel in the histogram, and L is 
the total number of intensity levels.

Feature vector classification

In order to solve a binary classification problem in which 
the output y∈{+1,-1}, the SVM [33] implements a hyper-
plane w.Φ(x)+b = 0 to separate the data from the classes +1 
and -1 with a maximal margin. Here, x denotes the input 
feature vector, w is a weight vector, b is a bias term, and Φ 
is a function that maps the feature data to a higher dimen-
sion space where it is linearly separable. The decision 
frontier between the two classes is determined with the 
Lagrange multiplier optimization technique. It is given by:

	
( ) ( ) ( )

i

i i i
x

f x y x x bα Φ Φ= ⋅ +∑
�

(7)

where each αi is a Lagrange coefficient to be determined 
from the data. In practice, only the scalar product of Φ by 
itself is needed n equation 6. Hence, it is not necessary to 
know Φ if a kernel function provides the result. Then, the 
optimal decision separating function is:

	 1
( , )

n

i i i
i

y sign y K x x bα
=

 
= +  ∑

�
(8)

where K(xi, x) is a kernel that replaces the product 
Φ(xi)‧Φ(x). In this study, a polynomial kernel was adopted 
as its order is only parameter to set. We tried orders 
from 2  to 4 and found that they provide similar results. 
Therefore, we chose the second-order kernel for compu-
tational efficiency. The second-order kernel is defined as 
follows:

	
2( , ) (( ) 1)i iK x x x x= ⋅ +

� (9)

Experimental results and  
performance evaluation
We evaluated the performance of the proposed circinate 
exudate detection system with a set of 23 normal images 
and 22 images with circinate exudates taken from STARE 
[12], a publicly available dataset. All images are of size 
150 × 130 pixels. The choice of just a subset of STARE was 
motivated by the fact that this database contains unequal 
numbers of image types, which may lead to category 
overfitting and a biased statistical significance of the 
classifier’s results; using equal partitions of normal and 
abnormal images avoids these problems. The choice of a 
balanced dataset is also made in [28, 30, 31, 34], in contra-
diction to other works such as [5, 6], where 27 normal and 
90 abnormal images were considered, and [14], where 76 
normal and 114 abnormal images were used. Such unbal-
anced datasets question the relative robustness of the 
obtained results.

Figures 5 and 6 exhibit example mesh images of 
the first and second intrinsic mode functions related to 
normal and circinate exudates images, respectively. The 
two abnormal IMFs clearly show more high-frequency 
content than the normal ones, hence, corroborating the 
hypothesis that the components (intrinsic mode func-
tions) from which the entropy and uniformity statistics 
are computed are different among normal and abnormal 
images.

Using tenfold cross-validation, the results were that 
the proposed circinate exudate detection system achieves 
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Table 1 Comparison with previous studies.

Study   Approach   Classifier   Performance

[7]   Wavelet decomposition, 80 features, conditional 
entropy for feature selection

  SVM   0.88–0.93 (AUC)

[22]   Color normalization, local contrast enhancement, 
fuzzy C-means clustering

  Neural network   93.4% (accuracy)
93% (sensitivity) 94.1% (specificity)

[36]   Local contrast enhancement, fuzzy C-means   SVM   88% (sensitivity)
84% (specificity)

[21]   Spatial clustering of objects   Expectation maximization algorithm   0.83 (AUC)
[28]   Contextual features, feature selection, 30 most 

discriminative features
  Linear discriminant classifier   0.945 (AUC)

[4]   Multiscale morphological algorithms   Clinical reference standard   95% (sensitivity)
84.6% (specificity)

[34]   High gray level variation, morphological 
reconstruction, watershed

  Human expert   92.8% (sensitivity)
92.4% (specificity)

[31]   Otsu algorithm, morphological reconstruction   Human expert   80% (sensitivity)
99.5% (specificity)

[14]   Adaptive threshold and image partitioning   Human expert   99.5% (accuracy)
91.2% (sensitivity)
99.3% (specificity)

[5, 6]   Global and adaptive histogram thresholding, 18 
statistical features

  Neural network with radial basis 
function

  92.54% (accuracy)
100% (sensitivity)
81.48% (specificity)

[10]   Grayscale morphology, Chan-Vese level set 
segmentation, 15 shape features

  Naïve Bayes   75% (sensitivity)

[30]   Scale-space extrinsic curvature, local maxima blob 
response

  Human expert   97.07% (sensitivity)
99.90% (specificity)

Our work   EMD+uniformity+entropy   SVM   100% (accuracy)
100% (sensitivity) 100% (specificity)
1 (AUC)

Figure 5 Normal image: first IMF (left) and second IMF (right).
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Figure 6 Circinate exudates: first IMF (left) and second IMF (right).

perfect classification accuracy. It is also seen from Table 1 
that it outperforms previous comparable studies, which 
considered only the problem of classification of normal 
retina images against exudate ones as we did1 [4, 5, 10, 
21, 22, 31, 34, 36]. Furthermore, the system presented here 
uses only two features to distinguish between healthy 
retina digital images and unhealthy ones, in contrast to [7] 
with 80 features, [5] and [6] with 18, [28] with 13, and [10] 
with 15. It appears then that our retina diagnosis system is 
simpler to implement.

On the negative side, the obtained performance came 
at the cost of substantially longer processing time in com-
parison to other works, due mainly to the envelope inter-
polation stage in the EMD algorithm. The simulation of 
EMD with Matlab© R2009a running on a 1.5-GHz Core2 
Duo processor, took up to 33 min for normal images and up 
to 80 min for abnormal images. However, this processing 
time went down to 193 s on a 3.30-GHz Core™ i5-2500 CPU. 
Thus, with fast CPU such as the ones used in recent multi-
core processing stations, the presented approach for clas-
sification of normal against retina with circinate exudates 
may be suitable for near real-time machine diagnosis.

1 In [5–7, 10, 30], the main purpose was the segmentation of abnor-
mal images affected with exudates, and the morphology-based stud-
ies [4, 14, 31, 34] were evaluated by human experts or by using clini-
cal standards.

Conclusion
This paper described an automated processing system for 
the detection of circinate exudates in retina digital images. 
The empirical mode decomposition is applied to an image 
to obtain the first two intrinsic mode functions, and their 
entropy and uniformity statistics are computed to form a 
four-component feature vector that feeds a support vector 
machine with quadratic kernel. Using ten-fold cross-vali-
dation, the system classified correctly all the samples in 
the STARE database that we used, thereby, outperform-
ing the previous systems described in the literature. The 
simplicity and relatively fast image processing of the 
proposed automated circinate exudate detection system 
make it promising for clinical applications.

The empirical mode decomposition processing time 
depends on the type of retina image. In particular, an 
image with circinate exudates takes substantially more 
processing than a normal retina image. One may think of 
reducing the processing time by improving the algorithm 
of the empirical mode decomposition, particularly the 
envelope construction step, or by using faster processors 
than the ones used in this work. Future work should also 
consider a larger base of retina images to check the consist-
ency of the presented circinate exudates detection system.

Received April 19, 2013; accepted February 11, 2014; online first 
March 11, 2014
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