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Abstract The paper aims at finding an RCM configura-

tion that facilitates studies devoted to quantifying RCM

response to parameter modification. When using short

integration times, the response of the time-averaged vari-

ables to RCM modification tend to be blurred by the noise

originating in the lack of predictability of the instantaneous

atmospheric states. Two ways of enhancing the signal-to-

noise ratio are studied in this work: spectral nudging and

reduction of the computational domain size. The approach

followed consists in the analysis of the sensitivity of RCM-

simulated seasonal averages to perturbations of two

parameters controlling deep convection and stratiform

condensation, perturbed one at a time. Sensitivity is ana-

lyzed within different simulation configurations obtained

by varying domain size and using the spectral nudging

option. For each combination of these factors multiple

members of identical simulations that differ exclusively in

initial conditions are also generated to provide robust

estimates of the sensitivities (the signal) and sample the

noise. Results show that the noise magnitude is decreased

both by reduction of domain size and the spectral nudging.

However, the reduction of domain size alters some

sensitivity signals. When spectral nudging is used signifi-

cant alterations of the signal are not found.

Keywords Regional climate models � Parameter

perturbations � Internal variability � Spectral nudging �
Domain size

1 Introduction

Nested limited-area Regional Climate Models (RCMs) are

models that dynamically downscale global General Circu-

lation Model (GCM) simulations or objective analyses to

high-resolution computational grids, using a high-resolu-

tion representation of the surface forcing and model

dynamics. RCMs require the information on some prog-

nostic variables as their lateral boundary conditions (LBC).

The choices of integration domains and nesting techniques

are free parameters of RCMs. The optimal integration

domain depends on the particular situation, although there

are some general recommendations that can facilitate

user’s judgment (e.g., Laprise et al. 2008). For example,

Leduc and Laprise (2008) showed that the use of a too

small domain could result in the simulations being deficient

in fine-scale variance. It has been also noted that in large

continental-scale domains RCM large-scale variables can

considerably drift from the driving fields, which can then

result in appearance of large spurious gradients in the

vicinity of the outflow boundaries. Spectral nudging (SN;

Von Storch et al. 2000; Biner et al. 2000) has been

employed to ensure that the model solution remains close

to the large-scale components of the driving fields over the

entire domain. However, the use of spectral nudging

remains an open issue. Alexandru et al. (2009) raised

concern that the application of the SN could suppress the
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proper generation of fine-scale features. However, Colin

et al. (2010) did not find SN to be detrimental on the

modelling of extreme precipitation.

The choice of the integration domain and the use of

spectral nudging can have a large impact on the RCM

internal variability. Internal variability arises due to the

non-linear, chaotic nature of atmospheric models: any

perturbation; however, small it is in magnitude, provokes

the trajectories of the model solution in the phase space to

diverge in time. In autonomous Global Circulation Models

(GCMs) the difference between two simulations conducted

with the same model but departing from initially slightly

different states is on average as large as the difference

between two randomly chosen GCM states, given a specific

season. Internal variability also emerges in RCMs but,

typically, it is smaller than in GCMs; the advection of

information prescribed as the LBC keeps the evolution of

the RCM internal variability somewhat bounded (e.g.,

Giorgi and Bi 2000; Caya and Biner 2004). However,

intermittently in specific areas of the integration domain it

can achieve values as large as in GCMs (Alexandru et al.

2007). Its time evolution appears to depend on the synoptic

situation enforced by the driving fields (e.g., Lucas-Picher

et al. 2008b; Nikiema and Laprise 2010) and is scale

selective (Separovic et al. 2008). Reduction of domain size

or the application of spectral nudging can both consider-

ably reduce internal variability in RCMs (Alexandru et al.

2009). Thus, the average amplitude of internal chaotic

variations appears to be in RCMs, to a certain extent, a

controllable parameter. This fact may be of particular

interest in studies oriented to RCM testing and

modification.

The sensitivity of a RCM to any change in its structure

and configuration, such as a modified parameterization or a

perturbation of its tuneable parameters, generally consists

of the response of the simulated variables to the modifi-

cation (signal), as well as of internal variability noise.

Since the work of Weisse et al. (2000) it has been widely

acknowledged that estimation of the signal in the temporal

evolution of the RCM variables requires ensemble simu-

lations that can be generated, for example, by imposing

perturbations to the initial conditions of both the control

and the modified model versions. Internal variability

deviations are partly filtered in the ensemble mean

depending on the ensemble size, as the variance of the

sample mean of a collection of independent and identically

distributed random variables is inversely proportional to

the sample size (e.g., Von Storch and Zwiers 1999). When

the signal is small or the internal variability is large,

ensembles of large size are needed in order to obtain sta-

tistically significant estimates of the simulation differences

resulting from the model modifications. For sufficiently

long integration times, internal variability deviations are

substantially reduced in the time average. However, esti-

mation of the time averages computed over shorter periods

from years to a decade also necessitates sampling of the

internal variability deviations, since it can be still non-

negligible in the time average of the single model run,

especially for fine-scale variables such as precipitation (de

Elia et al. 2008; Lucas-Picher et al. 2008a, b). When

considering the difference between the time averages in the

control and a modified model version, the variance intro-

duced by the internal variability is twice as large as that in

the time average in each model version, due to the aggre-

gation of error through the difference terms.

Providing statistically significant estimates by means of

ensemble simulations or longer integration periods for the

control and modified model versions is hence computa-

tionally time consuming. While this issue might be of little

relevance when the RCM is to be tested for a single

modification, it can represent a hindrance in studies that

require multiple testing of RCM response to modifications

of a large number of parameters. This would typically be

the situation in deliberate model tuning or in studies that

address uncertainty originating in the RCM’s adjustable

parameters wherein it is essential to identify in a high-

dimensional parameter space the plausible parameter per-

turbations that produce the largest response of the model

(e.g., Sexton and Murphy 2003). The underlying methodo-

logical issue in such RCM studies is thus to optimize the

use of computational resources by finding an appropriate

test bed configuration (prototype simulation) that would be

as inexpensive as possible in terms of the number of

computational points and integration time and that can

provide robust estimates of the model response to the

modifications.

Our working hypothesis is that suppressing the internal

RCM variability by means of domain size reduction or

application of SN would allow for quantifying the signal

with a smaller ensemble size and help to reduce the com-

putational cost (Alexandru et al. 2007, Weisse and Feser

2003). The application of these methods to reduce internal

variability noise requires better understanding of the ways

they might alter the signal of RCM sensitivity to modifi-

cation, e.g., by suppressing its magnitude. Too small

domains are generally non-recommended for climate

simulations and sensitivity studies because of the spurious

effects of the proximity of the lateral boundaries, fine-scale

variance deficiency and lack of continental-scale interac-

tions and feedback among the RCM variables (e.g., Jones

et al. 1995; Seth and Giorgi 1998; Laprise et al. 2008).

Results obtained in such domains are likely to be less

realistic and difficult to extrapolate to the operational RCM

simulations. However, when studying uncertainties origi-

nated in adjustable RCM parameters, a very large number

of tests are required and the user may wish to conduct
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preliminary tests in a computationally inexpensive small

domain. Outside this context the reduction of domain size

and SN should not be considered as competing techniques

to improve the signal-to-noise ratio since the SN has not

been shown to involve similar difficulties.

The manuscript is organized as follows. The model and

the modifications performed on the model parameters in

order to produce modified model versions and the experi-

ments are described in Sect. 2. The analysis of model

sensitivity to modification of parameters within different

simulation configurations is carried out in Sect. 3. Sum-

mary and conclusions are provided in Sect. 4.

2 Experimental design

2.1 Model description

The model used in this study is the fifth-generation Cana-

dian Regional Climate Model (CRCM5; Zadra et al. 2008).

It is a limited-area version of the Canadian weather forecast

model GEM (Côté et al. 1998); the model has a non-

hydrostatic option, although this feature is not exploited

here. GEM is a grid-point model based on a two-time-level

semi-Lagrangian, semi-implicit time discretization scheme.

The model includes a terrain-following vertical coordinate

based on hydrostatic pressure (Laprise 1992) with 58 levels

in the vertical, and the horizontal discretization on an

Arakawa C grid (Arakawa and Lamb 1977) on a rotated

latitude-longitude grid with a horizontal resolution of

approximately 55 km and time step of 30 min. The nesting

technique employed in CRCM5 is derived from Davies

(1976); it includes a gradual relaxation of all prognostic

atmospheric variables toward the driving data in a 10-point

sponge zone along the lateral boundaries. The lateral

boundary conditions (as well as the initial conditions) are

derived from ERA40 reanalysis (Uppala et al. 2005).

Ocean surface conditions are prescribed from Atmospheric

Model Intercomparison Project (AMIP) data (Fiorino

2004).

2.2 Experiments

Modified model versions are obtained by perturbing the

CRCM5 physics parameters. Three different model ver-

sions are considered: the control version (denoted hereafter

as M00) and two perturbed-parameter versions (denoted by

M01 and M10) obtained by perturbing one at a time, the

following two parameters:

P01—Threshold vertical velocity in the trigger function

of the deep convection parameterization (Kain and

Fritsch 1990).

P10—Cloud water to precipitation conversion time scale

in the large-scale condensation parameterization for

stratiform precipitation (Sundqvist et al. 1989; Pudy-

kiewicz et al. 1992).

The values of parameters used in the three model ver-

sions are given in Table 1. Two experts that participated in

CRCM5 development judged the perturbations as being

moderate to strong with respect to their range of variation,

given the horizontal resolution.

Three sets of experiments are carried out in this study,

all based on simulations conducted over a single year. For

every model version multiple perturbed initial-condition

ensemble simulations were performed. The initial condi-

tions were perturbed initializing the model from November

01 1992 at 00UTC onward, 24 h apart. All the simulations,

regardless of model version and initialization time, end on

December 01 1993 at 00UTC. November 1992 is not

considered in order to allow the spin-up of the initial dif-

ferences, thus leaving a 1-year period for the analysis. The

number of ensemble members is the same in all three sets;

there are 10 members for the standard model version M00

and 5 members per each of the two perturbed-parameter

versions M01 and M10; the last column in Table 1 shows

the ensemble size per each model version.

In the first set, denoted as SYNA, the simulations were

performed with the three model versions (M00, M01 and

M10) over the large continental-scale domain, referred to

as NA, consisting of 1202 grid points, and shown in Fig. 1

including the 10-point relaxation zone at the perimeter of

the lateral boundaries.

The second set of experiments, denoted as SYSN, is

identical to SYNA in terms of its domain (NA; Fig. 1),

model versions and number of ensemble members per

every model version (Table 1); the only difference is that

the spectral nudging (SN) was used. The nudging was only

applied to the horizontal wind components, with the trun-

cation at non-dimensional wavenumber 4 (*1,500 km).

The SN strength is set to zero below the level of 500 hPa

and increases linearly with height, reaching 10% of the

amplitude of the driving fields per time step at the top level.

Table 1 Parameters’ settings used in different model versions

Model

version

P10 (h) P01 (m/s) No. of ensemble

simulations

M00 2.8 3.4E-2 10

M01 2.8 6.0E-2 5

M10 10.0 3.4E-2 5

P10 is the time scale of conversion from cloud to precipitable water in

the large-scale condensation parameterization; P01 denotes the large-

scale vertical velocity threshold in the Kain-Fritch deep convection

trigger function. Model version M00 is used as reference
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The choices of the truncation wavelength and the vertical

profile of the nudging strength reflect the intention not to

interfere with the model own interior dynamics at fine and

intermediate spatial scales and in the lower half of the

model’s atmosphere.

The third set of experiments, denoted as SYDS, consists

in reducing the domain size. For every model version, the

single-year ensemble simulations are generated again, but

over a domain of reduced size centred over the province of

Quebec (without SN). The domain for the SYDS experi-

ment consists of 702 grid points and is shown in Fig. 1,

including the 10-point sponge zone.

3 Results

The variables selected for the analysis of results are sea-

sonal-average precipitation and 2 m-temperature. The

analysis is focused on the influence of SN and domain size

reduction on the model sensitivity to perturbations, internal

variability noise and signal-to-noise ratio. This section is

organized as follows. Section 3.1 briefly reviews the sen-

sitivities of CRCM5 seasonal averages to perturbations of

the initial conditions and parameters, as a function of

season and experimental configurations SYNA, SYSN and

SYDS. Section 3.2 presents the spatial distribution of the

internal variability noise in the three configurations. Sec-

tions 3.3 to 3.5 examine the spatial patterns of the sensi-

tivity of CRCM5 seasonal averages to the parameter

perturbations (signals), estimated with the difference of

ensemble means of the control and modified model ver-

sions; these sections also provide the statistical significance

of the sensitivity estimates and compare the signal patterns

in the three simulation configurations. Section 3.6 exam-

ines the computational cost associated with different sim-

ulation configurations in terms of the minimum ensemble

size necessary to achieve significant estimates.

3.1 Spread of differences excited by perturbations

We begin the analysis with a brief review of the magnitude

of the response of the CRCM5 seasonal averages to

the applied parameter perturbations, as a function of the

simulation configuration (SYNA, SYSN and SYDS) and

season (DJF, MAM, JJA, and SON). For this purpose the

square root of the spatially averaged square differences

(denoted as rmsd) is computed for the pairs of seasonal

averages obtained from the simulations that differ either in

the parameters settings (signal) or initial conditions

(internal variability). The rmsd excited by the perturbations

of parameters are calculated using the pairs of seasonal

averages, such that each pair consists of one realization of

the control ensemble M00 and one realization of the per-

turbed-parameter ensemble (M01 or M10). Since the latter

have 5 members (see Table 1), 5 pairs were randomly

chosen from the 10 members of the reference model, and

hence 5 pairs of difference were computed for each

parameter perturbation. The rmsd are displayed in Fig. 2

with the 5 ‘‘plus’’ marks coloured in red for the perturba-

tion of the deep convection parameter and the 5 marks in

blue for large-scale condensation parameter, for seasonal-

average precipitation (a) and 2 m-temperature (b). All rmsd

are computed for each configuration over its own domain

exclusive of the 10-point wide sponge zone; thus in the

SYNA and SYSN experiments, the rmsd is computed over

the large domain, while for the SYDS over the small

domain in Fig. 1. The rmsd displayed with coloured marks

in Fig. 2 are a result of the model response to the parameter

perturbations. Internal variability is displayed with black

marks in Fig. 2. They represent the rmsd excited by dif-

ferent initial conditions of simulations with otherwise

identical model configurations. The rmsd are assessed from

the 10 ensemble members of the control model version

M00 that are organized in five pairs on a random basis.

Figure 2 shows that all rmsd exhibit an annual cycle

with the maximum in summer and minimum in winter. The

magnitude of the rmsd illustrates the physical significance

of the model response to perturbations. The range of

responses for precipitation and 2 m-temperature is

0–0.3 mm/day and 0–0.7�C in winter and 0.3–0.8 mm/day

and 0.6–1.5�C in summer, respectively. Also the rmsd are

in general the largest in the SYNA set and the smallest in

the reduced domain size SYDS set. This holds for the three

kinds of perturbations. The SYSN reduces internal vari-

ability noise (black marks) but it is less efficient in that

Fig. 1 Topography of the two CRCM5 computational domains,

including the lateral boundary relaxation zone. The large domain is

used in the SYNA and SYSN experiments and the smaller domain in

the SYDS experiment
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than the reduction of domain size (SYDS); this being true

for this case and different configurations of both spectral

nudging and domain size could yield different results. The

plots in Fig. 2 also provide a rule of thumb for the statis-

tical significance of the response of the seasonal averages

to the parameter perturbations: if differences between the

control and perturbed-parameter model version (red or blue

marks) tend to lie above the maximum rmsd due to internal

variability noise (black marks), given a season and simu-

lation setup, this suggests the statistical significance of the

corresponding model response to the parameter perturba-

tion. As of precipitation (Fig. 2a), all signal rmsd in the

SYNA setup are barely above noise level, except for

condensation-related parameter P10 in winter. The SN and

reduction of domain size reduce the noise rmsd consider-

ably but also the rmsd due to the parameter perturbations

generally decreases. Thus, for precipitation in the SYSN

and SYDS sets, the situation with statistical significance is

not considerably changed. The exception is in summer

when the convection-related parameter P01 produces sig-

nificant rmsd, especially in the SYDS set. For 2 m-tem-

perature (Fig. 2b) the responses to parameter perturbations

are generally more statistically significant. Despite that,

when the signal is weak, as P01 in winter, or noise very

high, as in spring and summer, the parameter-induced rmsd

appear not to be statistically significant. This also implies

that the signal-to-noise ratio varies for different CRCM5

variables.

It is difficult to infer from Fig. 2 whether the model

response to parameter perturbations is on average smaller

in the SYSN and SYDS sets or whether the lower rmsd in

this set are a sole effect of reducing internal variability. We

investigate this issue more thoroughly in the next subsec-

tions. Further, it can be seen that in winter (DJF), the

perturbation P10 produces considerable and significant

signals for both precipitation and temperature, while P01

produces a smaller response that is difficult to distinguish

from internal variability. Perturbation P01 is related to the

deep convection parameterization that is rarely active in

winter over land. This perturbation produces a considerable

and significant response over land only in the warmer half

of the year.

The spatially averaged square differences may hide

important information on the local behaviour of the

CRCM5 response to the perturbations. In the following we

begin the analysis of spatial patterns by first examining the

noise level and then the spatial patterns of the model

response to parameter perturbations are compared in the

three experimental sets as a function of the parameter

perturbation and season.

3.2 Noise level in the differences

Instead of using a standard measure of noise in seasonal

averages (e.g., ensemble standard deviation in the control

model M00) that would quantify the internal variability in

CRCM variables, we rather analyze the internal variability

of the model responses to the perturbations of parameters.

This way, every difference computed between an ensemble

member of a perturbed-parameter model (M01 or M10)

and a member of the control model ensemble M00 is a

sample of the model response to the parameter perturba-

tion. Internal variability noise in estimates of the CRCM5

response can be measured with the variability in that

sample. Since the variance of the difference of the two

mutually independent identically distributed (iid) random

Fig. 2 The RMS difference between CRCM5 individual simulations

for seasonal-average a precipitation and b 2 m-temperature as a

function of the experimental setup and season. The black marks
display the rmsd in seasonal averages among the ensemble members

of the model M00 (Table 1); they are triggered by internal variability

and are obtained as follows: from 10 ensemble members 5 pairs of

seasonal averages are selected, for each pair the rmsd is plotted. The

coloured marks show the realizations of the rmsd between ensemble

members of M00 and M01 (M10); they are triggered by parameter

perturbations (red) P01 and (blue) P10
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variables is equal to the sum of the variances of the two

variables, the standard deviation of the sample of differ-

ences can be estimated as

r¼ 1

Mx� 1

XMx

m¼1

�xm� �xh ið Þ2þ 1

My� 1

XMy

m¼1

�ym� �yh ið Þ2
" #1=2

;

ð1Þ

where the overbar denotes the time average over a three-

month season, the angle brackets denote the ensemble

average, Mx and My denote the number of ensemble

realizations of a CRCM5 variable in the control (x) and a

modified model version (y), respectively, and are given in

Table 1. This specific measure of noise is employed to

stress the fact that the ensemble variance of the difference

between the two model versions is equal to the sum of the

variances of the control and the modified model ensembles.

The noise measured with the standard deviation (Eq. 1)

is displayed in Fig. 3 for the three single-year sets (SYNA,

SYSN and SYDS) as a function of the parameter pertur-

bation, season and CRCM5 variable. It is computed for

differences between the members of the control (x) and a

modified M10 version (y); similar patterns are obtained

when M01 is used instead of M10 (not shown). Note that

the same colour bar is used for precipitation and tempera-

ture. In winter the noise in precipitation in the SYNA set

(Fig. 3a) is rather low in absolute terms, with values up to

0.3 mm/day over the southeastern portion of the continent

and up to 0.7 mm/day off the East Coast of North America.

However, these values are considerable in relative terms

because the precipitation rates in winter are generally low,

especially over the continent. The spectral nudging and

reduced domain size (Fig. 3b, c) help to reduce noise level

for precipitation in winter to fairly low values. The patterns

of the 2 m-temperature in winter (Fig. 3d–f) are similar to

precipitation; noise locally attains 0.6�C over the northern

Canada in the SYNA set and is almost entirely suppressed

in the SYDS set. However, in summer, the standard devi-

ation of the differences between the control and modified

model versions attains striking values in the SYNA set. For

precipitation (Fig. 3g) it locally attains 2.5 mm/day over

the southern and eastern coastal regions of the continent.

Spectral nudging (Fig. 3h) is not very efficient in reducing

noise. The domain size reduction (Fig. 3i) reduces noise

but locally it is still up to 0.6 mm/day. As of 2 m-tem-

perature in summer (Fig. 3j–l), noise levels are barely

higher than 1�C. Spectral nudging suppresses the noise

below 0.6�C and the reduction of domain size below 0.2�C.

The above considerations emphasize the need for

ensemble integrations when studying RCM response to

modification using single-year simulations. It is not likely

that any reasonable modification performed on the state-of-

the art RCMs would produce larger differences in summer

precipitation than the values of the noise-induced standard

deviation of the differences displayed in Fig. 3g. This

implies a relative error of 100% in the estimates of the

CRCM5 sensitivity to the parameter perturbations obtained

without ensemble integrations. Time averaging over a

season is not sufficient to ensure filtering of internal vari-

ability noise, and averaging over an ensemble or a longer

period is required to assess the signal.

3.3 Signal P10 in winter

In this subsection we examine the change in seasonal

averages due to the perturbation in the large-scale con-

densation parameter P10 (Table 1). As before, we denote

the CRCM5 variable obtained in an individual simulation

in the control model ensemble M00 with x and the same

variable in the modified model ensemble M10 with y. The

change in the CRCM5 seasonal averages due to the per-

turbation P10 is quantified by the difference of time-aver-

age ensemble averages of y and x; the difference is

computed in each simulation setup (SYNA, SYSN and

SYDS) and will be referred to as the signal. Because of the

internal variability in seasonal averages, especially in

summer, and the relatively small number of available

ensemble members for the two modified model versions

M10 and M01, the ensemble averages are also prone to the

noise-induced sampling error. In order to avoid erroneous

interpretation of internal variability residuals in the

ensemble averages as the model sensitivity to the param-

eter perturbations, statistical significance of the responses

is also evaluated using the test for differences of means

(Von Storch and Zwiers 1999). For the purpose of testing,

the true ensemble variances of the control (x) and modified

model version (y) are assumed to be equal, as we believe

that the differences between these variances in model

versions considered here are reasonably small with respect

to the sampling error of their estimates. Under this

assumption, the test statistic for the null hypothesis of no

difference between the two model versions, is given as

t ¼ �yh i � �xh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=Mx þ 1=MyÞS2

w

p ; ð2Þ

where the overbar denotes seasonal average, the angle

brackets ensemble average and Mx (My) are the ensemble

sizes corresponding to x and y. The quantity

S2
w ¼

PMy

m¼1 �ym � �yh ið Þ2 þ
PMx

m¼1 �xm � �xh ið Þ2

Mx þMy � 2
ð3Þ

is the pooled estimation of the ensemble variances of the

control and modified model version. Here, Mx = 10 and

My = 5, as shown in Table 1. The ensemble size of the

control version is doubled in order to increase the signal to
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noise ratio and to estimate well the ensemble variance for

at least one model version. Appendix A provides a dis-

cussion on how to select the number of ensemble realiza-

tions Mx and My in order to optimize the signal-to-noise

ratio (Eq. 2). Under the null hypothesis of equal means of

the two model versions, t follows the Student’s distribution

with f = Mx ? My - 2 degrees of freedom (f = 13 here).

The model response to the perturbation of the large-

scale condensation parameter P10 (signal), as estimated by

the difference of the ensemble means of the model versions

Fig. 3 Sample standard deviation (Eq. 1) of the sensitivity of the

CRCM5 seasonal average to parameter perturbation P10 (Table 1).

The sensitivities are measured as the differences between members of

the perturbed-parameter model M10 and members of the control

model M00 ensembles, as a function of experimental setup, variable

and season: (a, d, g, j) SYNA (b, e, h, k) SYSN, (c, f, i, l) SYDS,

(a, b, c, g, h, i) seasonal precipitation, (d, e, f, j, k, l) 2 m-temperature,

(a–f) DJF, (g–l) JJA
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M10 and M00, is presented in Fig. 4a–c for winter-average

(DJF) precipitation in the SYNA, SYSN and SYDS

experimental sets, respectively. The corresponding fields of

statistical significance are shown in Fig. 4d–f. The regions

of high significance (above the 90% level), corresponding

to the positive (negative) values of the signal, are coloured

red (blue). In the SYNA set (Fig. 4a) the strongest and also

highly significant (Fig. 4d) signal is aligned with the entire

Pacific Coast. It reaches locally up to ±2 mm/day. The

signal is negative over the eastern Pacific Ocean off the

West Coast and more precipitation is brought inland over

the Rocky Mountains region by the westerly flow that

dominates this area in winter. The imposed perturbation

implies that the time scale for conversion of cloud to

precipitable water in the parameterization of the large-scale

(stratiform) condensation in the version M10 is longer than

in the reference version M00. It is worth noting that this

perturbation is independent of the parameterization of deep

convection in CRCM5 and thus should have no direct

effect on convective precipitation, although indirect effects

are possible. Another noticeable feature in the SYNA set

(Fig. 4a) is a mainly negative signal over the southeast

portion of the domain, significant at 95% level. Also note

that in several regions in Fig. 4d over the central part of the

continent the signal is highly significant, but its magnitude

is too low to make a fingerprint with the contour interval

used in Fig. 4a. This illustrates the fact that statistical

significance does not imply a physically relevant signal.

Fig. 4 Difference of the ensemble mean winter-average (DJF)

precipitation (signal) due to the perturbation P10 (Table 1) in

a SYNA, b SYSN and c SYDS experiments and statistical

significance of the responses (d, e, and f, respectively); statistical

significance of the difference of the signals g between SYSN and

SYNA and h between SYDS and SYNA experiments
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When the spectral nudging is applied (Fig. 4b,e) the

statistical significance of the winter precipitation signal

P10 is noticeably enhanced over the entire domain; it

remains low only in the areas where the signal changes

sign. The signal in the SYSN simulation is almost identical

to that in SYNA over the west portion of the domain

(Fig. 4a, b); these regions are closer to the inflow boundary

and the SN is not likely to have a considerable impact on

the large-scale dynamics. Some differences between

Fig. 4a, b appear over the eastern portion of the domain.

When the SYDS setup is considered (Fig. 4c, f) a further

increase in significance occurs: an almost 100% signifi-

cance level can be seen over the entire domain. However,

there is no signal of a magnitude larger than 0.2 mm/day in

the SYDS domain, unlike in the other two setups over these

regions.

Now we examine whether the use of SN or reduced

domain size can produce a significant change in the signal

induced by the perturbation P10. Thus, we aim at finding

physically and statistically significant differences between

the signals in the SYSN (SYDS) displayed in Fig. 4b, c and

the signal in the SYNA set shown in Fig. 4a. The fact that at

a given location the signals in the SYNA (SYDS) and SYSN

are statistically significant does not imply that their differ-

ence is also statistically significant. To quantify the statis-

tical significance of the difference of the signals we again

apply the test for differences of means, but this time on the

difference between the signals in the SYSN (SYDS) and

SYNA (see Appendix 2 for details). The resulting fields of

statistical significance of the signal’s differences are shown

in Fig. 4g (for SYSN-SYNA) and Fig. 4h (SYDS-SYNA).

The differences between the signals are not shown since

they can be inferred from subtracting values from Fig. 4b, c

from Fig. 4a. In Fig. 4g it can be seen that the SN yield

statistically significant differences alterations of the signal

at 90% level or higher only in small patchy areas; the

exception is the north eastern part of the continent where the

regions of significance occupy somewhat larger regions.

The difference of the signals between the SYDS and SYNA

sets (Fig. 4h) is similar to that between the SYSN and

SYNA. From Fig. 4a, b it can be seen that the magnitudes of

these alterations are not of large physical importance. It is

also worth to note that even if the null hypothesis of no

difference between the signals is true, it can be accidentally

rejected. For the significance level of 90% the nominal

rejection rate is 10% but larger rates are not unlikely;

because of spatial correlation of the atmospheric variables,

the nearby grid points tend to yield similar test results and

the points that appear statistically significant only by chance

can cluster, resulting in larger areas of apparent significance

(Von Storch 1982; Livezey and Chen 1983).

The same approach as above is adopted in order to

analyze the winter-average 2 m-temperature response to

the perturbation of the large-scale condensation parameter

P10 (Fig. 5a–c). It can be seen that the statistical signifi-

cance levels for the signal are as high as 99% in all con-

figurations (Fig. 5d–f). The signal in the SYNA set shows a

dipole consisting of warming over the northern half of the

domain and a slight cooling over the southern half, with

magnitudes between -0.6 and 1.4�C. The signal patterns in

the SYSN and SYDS experiments are generally similar to

those in the SYNA set, having, however, somewhat smaller

magnitudes in the SYSN set. The test of the difference of

the SYSN and SYNA signals (Fig. 5g) displays high local

significance levels over the southern and north-central parts

of the continent. In the small SYDS domain (Fig. 5c) the

estimated magnitude of the signal is also somewhat

reduced. Figure 5h shows that this decrease of the sensi-

tivity with respect to the control run of the CRCM5 2-m

winter temperatures to the perturbation P10 in the smaller

domain is statistically significant at very high levels,

especially near the southern boundary of the SYDS

domain.

3.4 Signal P10 in summer

For summer (JJA) precipitation despite a physically rele-

vant magnitude of the model response to the perturbation

P10 over many regions, the response is generally statisti-

cally insignificant, which is the major difference with

respect to the winter case. This happens because the noise

is very large in summer precipitation (as shown in Fig. 3g–i)

and strong signals are required for significance, given our

ensemble size. Because of the lack of significance the

analysis of the summer precipitation response to P10 will

not be presented. It is worth reminding that the lack of

statistical significance is always a function of sample size

and hence a consequence of the small sample used here.

The smaller the signal-to-noise ratio, the larger the sample

needed to achieve significance.

The perturbation P10 produces a statistically significant

response in the JJA 2 m-temperatures (see Fig. 6). A

widespread cooling is notable over most of the continent,

with magnitudes up to 2.2�C (Fig. 6a–c), and the signal is

robust at significance levels higher than 95% over most

parts of the domain for all the three configurations SYNA,

SYSN and SYDS (Fig. 6d–f). In the SYSN and SYDS

setups the rejection levels are almost 100% in the entire

domain, which imply that only a few ensemble simulations

might be required to adequately assess the temperature

signal in these configurations. Over the ocean the 2 m-

temperatures are strongly constrained by the imposed SST

variations, so that the response to parameter perturbations

is small. It is worth noting that the model displays a con-

siderable increase in the cloud cover and relative humidity
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at altitudes below 500 hPa (not shown). Increase in low

clouds might reduce the solar heating at the ground in

summer resulting in cooling but also might reduce the IR

emission over high latitudes in winter resulting in

warming, as in Fig. 5a, b. Further, despite that the tem-

perature signal has a smaller magnitude in the SYSN

experiment than in SYNA (the area in which the cooling

is stronger than -1�C occupies more than a half of the

continent in the SYNA, extending form the Pacific to the

Atlantic coast unlike in SYSN), this difference is not

significant when tested in Fig. 6g. The absence of sig-

nificant differences between the SYSN and SYNA signal

does not mean that there is no change but that it was

small enough to go below our capability to detect it. In

the SYDS set (Fig. 6c, f) the magnitude of the signal is

heavily reduced with respect to the SYNA experiment in

the southwest portion of the SYDS domain, which might

be an artefact of the proximity of the lateral boundaries.

Figure 6h shows that this alteration of the signal in the

SYDS domain is statistically significant. These results

seem to favour the use of SN as a viable tool to study

parameter perturbation.

We proceed to examine the model’s response to the

perturbation of the threshold parameter for the onset of

deep convection (P01 in Table 1). In winter, deep con-

vection activity is at its minimum and is likely absent in

higher latitudes of the domain. For this reason, the per-

turbation P01 produces almost no significant signal in

winter (Fig. 2). Hence, for this perturbation, we focus on

the summer months.

Fig. 5 Same as in Fig. 4 but for winter 2 m-temperature (DJF)
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3.5 Signal P01 in summer

Figure 7 displays the analysis of the difference between the

summer (JJA) averages of the model versions M01 and

M00, for precipitation in the SYNA (panels a and d), SYSN

(b, e) and SYDS (c, f) experimental setups. Also shown is

the statistical significance of the signals’ difference SYSN-

SYNA (g) and SYDS-SYNA (h). For precipitation in the

SYNA set, the signal P01 is mainly negative, with mag-

nitudes reaching 2 mm/day in the southeast part of the

domain. However, the signal is in general not statistically

significant, except in relatively small areas. The region

where the signal is robust is the US southwest and northern

Mexico, where the convective precipitation dominates the

total precipitation. The signal is also significant in scattered

areas over the eastern half of the continent, a region with

important convective precipitation in summer.

The results in the SYSN configuration show a sub-

stantial gain in statistical significance when SN is applied.

The SYSN experiment reveals that the perturbation P01

mainly leads to a decrease in summer precipitation that

varies from -0.2 in the northwest to below -2.0 mm/day

in the southeast portion of the domain (Fig. 7b). The per-

turbation P01 also exhibits a strong effect on summer

precipitation in the small SYDS domain (Fig. 7c); the

model response is negative with values as small as

-1.8 mm/day south of the Great Lakes. Further, the signal

in the SYDS set is quite similar to the SYSN case, with

somewhat smaller magnitudes. In other parts of the small

domain, such as over the province of Quebec and off the

Fig. 6 Same as in Fig. 4 but for summer 2 m-temperature (JJA)
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East Coast, the signal is spatially variable, despite being

highly statistically significant (Fig. 7e) and with consider-

able magnitudes of up to 1 mm/day. Since there are no

remarkable topographic features in the small domain it can

be argued that they are rather fingerprints of instantaneous

weather patterns (storm tracks) that are not filtered out in

3-month averages because of insufficient sample of the

instantaneous atmospheric states and small variability

between the ensemble members. This points to the fact that

in such a small temporal sample, the ensemble means of

the control M00 and perturbed-parameter model M01 are

dependent on the particular year. Figure 7g, h show that

internal variability in summer is too large to permit the

detection of the effect of the SN and domain size reduction

on summer precipitation (if there is any) given the actual

ensemble sizes.

To complete the analysis of the model response to the

parameter perturbations we consider the differences of

means for the CRCM summer 2 m-temperatures induced

by the perturbation P01, displayed in Fig. 8. The model

response to the present parameter perturbation has the same

sign in the three experiments over the entire domain. In the

SYNA set the perturbation P01 produces a warming of

0.2–3.0�C over almost all land points. This warming signal

is statistically significant over most of the southern half of

the domain, while over the northern half either the signal

has a small magnitude or the internal variability of the

difference renders the signal difficult to estimate. In addi-

tion, the magnitude of the signals in the SYSN and SYDS

sets do not appear to be reduced with respect to that in

SYNA, unlike the case of the JJA temperature response to

P10 already shown Fig. 6a, b. Figure 8g shows that the

Fig. 7 Same as in Fig. 4 but for the signals induced by the perturbation P01 for summer precipitation (JJA)
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high statistical significance of the difference between

responses is confined to a few rather small regions, which

can be also result of chance. Further, when the statistical

significance of the difference SYDS-SYNA is examined in

Fig. 8h, the difference of means is mostly non-significant,

and therefore, no evidence is found against the reduction of

domain size in the signal P01.

3.6 Rule of thumb for the minimum ensemble size

The findings in the previous subsections as obtained from

the analysis of the differences of means and their statistical

significance are summarized in Fig. 9, for precipitation

(a) and temperature (b). The plots in Fig. 9 represent the

rms values of the signal and its standard deviation. They

are obtained with the help of the test statistic for the

difference of means. Note that t in (Eq. 2) is in fact the

signal-to-noise ratio. The numerator in (Eq. 2) is the signal

estimated with the difference of ensemble means of the

control and perturbed model version and the denominator

represents the standard deviation of this estimate due to

insufficient sample size. Figure 9 displays the square root

spatially averaged (rms) values of these quantities. The rms

values are computed only over an area common to all the

experiments. The evaluation area consists of 502 grid

points and corresponds to the central part of the small-

domain SYDS simulations (Fig. 1), exclusive of the

10-point sponge zone. Only land points are accounted for

in the computation of the rms. In Fig. 9 the red (blue)

diamonds represent the rms difference of means triggered

by the perturbation P01 (P10), i.e., the spatially averaged

magnitude of the signal, as a function of season and

Fig. 8 Same as in Fig. 4 but for the signals induced by the perturbation P01 for summer 2 m-temperature (JJA)
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simulation configuration. The black step-like line in Fig. 9

represents the standard deviation of the difference of

ensemble means. It is computed as the rms of the

denominator in (Eq. 2).

It can be seen in Fig. 9 that the reduction of domain size

(SYDS) is more efficient in reducing the noise level than the

SYSN. It is worth reminding here that the SN parameters in

the SYSN experiment were adjusted so that the SN forcing

be rather weak and applied only in the upper levels.

Alexandru et al. (2009) showed that a stronger nudging of

large scales, applied at all levels, could substantially reduce

internal variability noise. Whether this would change the

magnitude of the signal cannot be inferred from the

experiments considered here. The signal in the small SYDS

domain has in most of the cases smaller magnitude than

those in the large domain experiments SYNA and SYSN.

Exceptions such as for parameter P01 for summer precipi-

tation (Fig. 9a), could happen due to the contamination of

the SYNA signal with noise, since the noise can alter the

estimate of the magnitude of the signal in both ways—

decreasing and increasing it. Similarly, the smaller signal

magnitudes in SYDS domain in Fig. 9 do not prove that the

small domain suppresses the signal but rather indicate that

this could sometimes be the case. On the other hand, the SN

is fairly efficient in reducing noise, while there is not much

evidence that the model response is smaller.

The calculations of the rms differences of means and

noise levels can be used to derive a rule of thumb for the

minimum ensemble sizes that need to be generated for the

control and modified model versions in order to achieve, on

average, a given level of statistical significance. For this

purpose we define the effective signal-to-noise ratio as

teff ¼
RMS �yh i � �xh i½ �ffiffiffi

2
M

q
RMS Sw½ �

; ð4Þ

where an equal ensemble size M is assumed for the both

control (x) and perturbed-parameter model version (y). The

pooled variance Sw is as given in (Eq. 3). For a significance

level of 95% the t-statistic (Eq. 8) is required to be larger

than t0 = 1.96 for the two-sided test and for infinite

number of degrees of freedom. The latter is correct for very

large ensemble sizes. Substituting 1.96 for teff in (Eq. 4)

and solving for M gives the proposed rule of thumb for the

minimum ensemble size as follows:

Mmin ¼ 2� 1:962 � RMS Sw½ �
RMS �yh i � �xh i½ �

� �2

; ð5Þ

Note that due to the properties of the Student’s

distribution, if a small number of degrees of freedom was

assumed instead of infinite number, the required critical

value t0 that corresponds to the 95% significance would be

larger, resulting in a more conservative (higher) demand

for Mmin. Due to some vagueness of the concept we rather

intend to use Mmin in relative terms, to compare the

required sizes among different perturbations, simulation

setups and seasons, than to recommend it in absolute terms

for achieving specified significance levels.

The rule of thumb for the minimal ensemble size is

displayed in Fig. 10 for seasonal precipitation (a) and 2 m-

temperature (b), for the perturbations of the deep-convec-

tion (P01) and stratiform condensation (P10) parameters, as

a function of season and simulation configuration. In winter

(DJF) the computational cost of providing significant

estimates for the model response to P10 (blue diamonds) is

fairly low for both precipitation and 2 m-temperatures in

all configurations, as the signal is non-negligible and the

noise level is at its minimum. However, the same does not

Fig. 9 The rms signal (diamonds) and noise (step-like line) as a

function of experimental setup and season for seasonal-average

a precipitation and b 2 m-temperature. Signal is estimated as the rms

difference of ensemble means of the perturbed-parameter (red) M01

and (blue) M10 model and control model M00 (Table 1). Noise is

measured with the standard deviation of the difference of ensemble

means
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hold for the response to P01. This perturbation produces

very little response of the model in winter, especially for

temperature; in order to provide significant estimates

relatively large ensembles of 10 members or more would

be necessary, despite that internal variability is very small.

On the other hand, to find out that the signal P01 is small it

is sufficient to estimate the maximum rmsd between two

simulations that differ in initial conditions (this can be done

from the control ensemble M00) and to generate a single

simulation of the modified model M01. Then the rmsd

between this simulation conducted with M01 and a ran-

domly chosen member of the control ensemble M00 would

indicate that the signal is small. This can be clearly seen in

Fig. 2b in winter: all rmsd between pairs of individual

members formed from M01 to M00 are below or at the

maximum noise level, indicating that the signal is negli-

gible with respect to internal variability.

In summer (JJA) the ensemble sizes required for the

significant estimates of seasonal precipitation signals

(Fig. 10a) are much larger. In the large domain with no SN

(SYNA) the minimum number of members is about 25 for

the perturbation P10 and 20 for P01, despite the latter

exciting locally high sensitivities (see Fig. 7a). The spec-

tral nudging (SYSN) almost halves the number of ensemble

members needed to achieve statistical significance, while

the reduction of domain size (SYDS) reduces the minimum

number of members almost 5 times. Both methods of noise

reduction appear to be very efficient for precipitation in

summer. When summer 2-m temperatures are considered

(Fig. 10b) the SYSN and SYDS configuration are still

efficient in reducing the minimum ensemble sizes but

appear less sensitive to reduction of noise. This is due to

the fact that signals in the SYNA configuration in summer

temperatures are relatively strong (see Figs. 6a, 8a); so in

that case the need for ensemble calculations is low in all

the three configurations, as compared to the case of pre-

cipitation. In fact, in the case of 2 m-temperature the sea-

son that is associated with the largest computational cost of

significant estimates is spring when the minimum ensemble

sizes are 20 (Eq. 15) for the response to P10 (P01),

respectively. Also the noise level in the SYNA setup in

spring is slightly higher than in autumn.

4 Summary and conclusions

Development of RCMs and study of uncertainty related to

the choices that must be made in constructing and applying

RCMs often requires multiple testing of model response to

a large number of modifications, which imposes a high

demand on computational resources. A high-resolution

RCM simulation configuration, less computationally

demanding than the operational RCM runs (in terms of the

integration period, computational domain and internal

variability noise), if used as test bed for RCM modification,

would allow the allocation of the computational resources

to testing a larger number of modifications. The objective

of this work was to study the model response to RCM

parameter perturbations using computationally less

demanding configurations than the operational runs and

eventually select an optimal configuration as a result of the

trade-off between the representativeness of results it may

provide and its computational cost. The approach followed

consisted of analysing sets of RCM simulations conducted

for the three parameters’ settings, here referred to as the

model versions: the control (unperturbed) model version

and two modified versions in which two parameters that

control deep convection and stratiform precipitation,

respectively, were perturbed one at a time. These three

model versions were used to generate RCM simulations

Fig. 10 Minimal number of ensemble members needed to achieve

significant estimates at 95% level for the signals induced by the

perturbations (red) P01 and (blue) P10, as a function of season and

experimental setup, as derived from the rule of thumb in Eq. (5)
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within three setups, all with the integration period of a

single year.

In the first setup, denoted as SYNA, we performed

ensemble simulations with perturbed initial conditions over

a large continental-scale domain with spectral nudging

turned off. The parameter perturbations produced fairly

large differences of ensemble means in 2 m-temperature,

especially in summer. These differences were statistically

significant in a large part of the domain. On the other hand,

for precipitation the results in all seasons in the largest part

of the domain were statistically insignificant, with excep-

tion of the topographically rich regions along the West

Coast of North America.

In order to reduce internal variability noise—a nuisance

at the time of quantifying the signal—, we performed

perturbed parameter RCM simulations using two additional

setups: (1) SYSN in which we used the same domain and

number of ensemble members as in the previous two

configurations but applied a weak spectral nudging (SN) at

upper levels, and (2) SYDS in which the domain size is

reduced. The main concern with these two configurations

was that they might alter or even suppress the model sen-

sitivity to parameter perturbations along with reduction of

internal variability. However, the results of these two

experiments when compared to the SYNA configuration

showed that this concern was only justifiable in the case of

a reduced domain. Not surprisingly, in the case of the

large-scale condensation parameter perturbation, the SYDS

signal exhibited deviations of considerable magnitude from

its counterpart in the SYNA set that is taken as reference

here. These changes were statistically significant over lar-

ger areas near the inflow lateral boundaries. The use of the

very small domains, such as SYDS, is known to be asso-

ciated to several flaws, which was discussed in the Intro-

duction section. The alteration of the responses to

perturbations by the proximity of the lateral boundaries,

noted in the SYDS, is in accord with the previous evidence.

The SYDS domain may, however, be attractive for con-

ducting fast and computationally inexpensive RCM sensi-

tivity tests at the development stage of the model. The

reduction of the computational cost when using the small

SYDS domain is twofold: the integration area is much

smaller (and hence computational cost) and the internal

variability is low (hence potentially contributing to

increasing statistical significance or reducing the need of

large ensembles).

The model response to parameter perturbations in the

SYNA and SYSN configurations was rather similar in

pattern as well as in magnitude, and statistically significant

only in rather small, scattered areas (which could be also a

result of internal variability in case the null hypothesis of

equal responses is true). Results did not provide evidence

that the spectral nudging altered the mean model response

to parameter perturbations. However, this should not be

understood as a proof of SN not affecting the signal but

rather as a consequence of the fact that the number of

ensemble members was insufficient to identify the differ-

ences. In addition, the SN configuration used here was

designed to minimally force the large-scale flow and this

only at upper levels. It is not known to the authors whether

a stronger SN (that would better constrain internal vari-

ability deviations) would still exhibit little or no effects on

the signal, as it is the case with the SN configuration used

here.
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Appendix 1: Optimization of sample sizes

for the test of the difference of means

In this appendix we assume the specific situation when

limited resources are available for sampling while, at the

same time, a large family of random variables need to be

sampled, each variable in a separated experiment, and

compared to some control variable using the test of the

difference of means. This corresponds to a situation when a

control climate model is compared with a large number of

perturbed model versions. The objective of this appendix is

to optimize the allocation of sample lengths between the

control variable and those that are to be tested.

For this purpose we assume a control random variable x

and a family of random variables ykf gK
k¼1. We assume that

x will be sampled Mx times while each member of the

family ykf gK
k¼1 will be sampled an equal number of My

times. The total sample length is then L = Mx?KMy and it

needs to fit some non-negotiable constant imposed by the

resources, given as the maximum sample length. Under

these assumptions increasing My by one would increase the

total sample length L by K, while increasing the control

sample size Mx by one would increase the total sample size

L also by one. This shows that My needs to be decided

straightforwardly from the maximum allowed value of L.

Once My is decided such that it leaves some space for the

control size Mx to fit within the maximum total length L,

which value of Mx will optimize the statistical significance
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of the estimates of the differences of means between yk and

x?

For the sake of simplicity we assume that the variables

yk and x are normally distributed and that their true vari-

ances are known and equal to some constant S2. Then the

test statistic for the test of the difference of means is given

as

zk ¼
xh i � ykh i

S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mx
þ 1

My

q ð6Þ

Under the null hypothesis that the two variables have

equal true means follows the normal distribution N(0,1).

Upon defining the ratio of sample sizes of the control and

tested variables as

b ¼ Mx=My; ð7Þ

Equation (6) can be expressed as

zk ¼ rk
b

bþ 1

� �1=2

; ð8Þ

where

rk �
xh i � ykh i
S=

ffiffiffiffiffiffi
My

p ð9Þ

is the signal-to-noise ratio expressed independently of the

control sample size Mx. Fig. 11 displays the plots of the

probabilities (statistical significances) that correspond to

the critical values of the normally distributed test statistics

zk for the two-sided test, as a function of the sample-size

ratio b and signal-to-noise ratios rk. Values of b are given

on the abscissa and each plot represents a given signal-to-

noise ratio. The plots show that the largest increase in the

statistical significance occurs when b is increased from 1 to

2 (that is, when the control sample is twice as large as the

samples of the tested variables) and somewhat less from 2

to 3 (when it is three times larger). Further investment of

the resources in the control sample size would result in no

considerable gain in significance, since for values of

b larger than 3 all curves quickly saturate, implying that an

optimal value of b is to be chosen from the interval [1,3]. In

addition, the jump in statistical significance between b = 1

and b = 3 is larger for lower signal-to-noise ratios.

Appendix 2: Test for the differences of signals

In this appendix we describe the estimation of the differ-

ence between the signals produced with a single parameter

perturbation in two separate simulation setups, namely

SYSN or SYDS and SYNA. In every setup ensemble

simulations are generated for the control model version

M00 and the perturbed-parameter model (M01, M10) by

varying initial conditions. Let us denote the model variable

sampled with the control model ensemble with x and the

same variable in the perturbed-parameter model ensemble

with y. The signal is defined as

d ¼ �yh i � �xh i; ð10Þ

where the overbar denotes seasonal average and the angle

brackets ensemble average. The number of ensemble

members of the control (perturbed) model version is

Mx = 10 (My = 5) for all setups, as given in Table 1. It is

assumed that �x and �y are independent and have equal

variances. Under these assumptions it can be shown that

the variance of d can be estimated as

S2 ¼ 1=Mx þ 1=My

f

XMy

m¼1

�ym � �yh ið Þ2 þ
XMx

m¼1

�xm � �xh ið Þ2
" #

;

ð11Þ

where f denotes the degrees of freedom and is given as

f ¼ Mx þMy � 2: ð12Þ

Now we turn our attention to the difference between the

signal d2 obtained in the SYSN (or SYDS) and d1 in SYNA

setup. The assumption that the variances of d1 and d2 are

equal is not suitable; the SN and smaller domain size can

considerably reduce the internal variability in RCM

simulations (e.g., Weisse and Feser 2003; Alexandru

et al. 2009). This is also implied by results displayed in

Fig. 3. Thus, the test for the difference of means of

variables with unequal variances (Von Storch and Zwiers

1999) has to be used to test the difference of the signals

Fig. 11 Statistical significance derived from the two-sided test of the

difference of means of two samples of unequal sample sizes; the size

of the first sample is kept constant and the size of the second is

increased by the factor b (abscissa), as in Eq. (7). Plots are drawn for

selected signal-to-noise ratios (Eq. 9)
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obtained in two configurations. The test statistic can be

written as follows:

t0 ¼ d2 � d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

1 þ S2
2

p ; ð13Þ

where S2
i is the estimator of the variance of di in the setup

i = 1,2, as defined in (Eq. 11). Because of unequal

variances, the variable t’ does not have t distribution

under the null hypothesis that d1 and d2 have equal means.

To solve this problem we employ the Welch’s approximate

solution (Scheffé 1970) that consists in approximating t0

with a t distribution whose degrees of freedom F are

estimated from the data as follows:

F ¼
S2

1 þ S2
2

� �2

S4
1=f1 þ S4

2=f2

: ð14Þ

The statistical significance is estimated from the local

value t0 as the probability that the absolute value smaller

than |t0| would be obtained under the null hypothesis of no

differences. Since the difference of means has no preferred

sign, the ‘‘two-tailed’’ test is used. The statistical

significance is computed using the cumulative

distribution function of t distribution as:

Pr tj j � t0ð Þ ¼ 1� I F

t2
0
þF

F

2
;
1

2

� �
; ð15Þ

where I is the regularized incomplete beta function (Press

et al. 1992).
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