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ABSTRACT

Variable-resolution grids are used in global atmospheric models to improve the representation of regional

scales over an area of interest: they have reduced computational cost compared to uniform high-resolution

grids, and avoid the nesting issues of limited-area models. To address some concerns associated with the

stretching and anisotropy of the variable-resolution computational grid, a general convolution filter operator

was developed.

The convolution filter that was initially applied in Cartesian geometry in a companion paper is here adapted

to cylindrical polar coordinates as an intermediate step toward spherical polar latitude–longitude grids. Both

polar grids face the so-called ‘‘pole problem’’ because of the convergence of meridians at the poles.

In this work the authors will present some details related to the adaptation of the filter to cylindrical polar

coordinates for both uniform as well as stretched grids. The results show that the developed operator is skillful

in removing the extraneous fine scales around the pole, with a computational cost smaller than that of

common polar filters. The results on a stretched grid for vector and scalar test functions are satisfactory and

the filter’s response can be optimized for different types of test function and noise one wishes to remove.

1. Introduction

Numerical models have been used for climate mod-

eling for half of a century, and they are powerful tools

for reproducing the interactions between different com-

ponents of the earth’s system. Such virtual laboratories

would however require computational resources that are

not commonly affordable when using high-resolution

grids to cover the entire globe for long-term simulations.

Two dynamical-downscaling techniques are commonly

used by the climate modeling community to reduce the

computational costs and achieve high resolution over

an area of interest, thus providing potential added value

compared with uniform low-resolution global climate

models (Solomon 2007).

The first and the most common approach is the one-

way nesting of a regional, limited-area model (LAM),

which is a noninteractive approach (e.g., Giorgi and Bates

1989; Pielke et al. 1992; Christensen et al. 1998; Caya and

Laprise 1999; Wang 2001; Jacob 2001; Döscher et al. 2002;

Skamarock and Klemp 2008). LAMs need the specifi-

cation of time-dependent boundary values that control

the regional simulation. Nested models are computa-

tionally efficient because of the use of a limited-area

domain, but this approach makes achieving an adequate

representation of large scales challenging (Fox-Rabinovitz

et al. 2008).

A second approach is that of a variable-resolution

general circulation model, which consists of using high

resolution over a specific region of interest and lower

resolution over the rest of the globe, thus naturally al-

lowing two-way interaction between global and regional

domains (Fox-Rabinovitz et al. 2008; Laprise 2008). The

concentration of resolution over a subset of the earth’s

surface increases computational efficiency, but this does

not come free of some problems owing to the variation

of resolution. Variable resolution can be achieved in dif-

ferent ways, but grid stretching is one of the most ex-

tensively used methods. Over the last few years the

approach of grid stretching in regional climate modeling

gained in popularity—for example, the international

Stretched-Grid Model Intercomparison Project (SGMIP;

Fox-Rabinovitz et al. 2006, 2008) where four major groups

from Australia (McGregor and Dix 1997, 2001), France

(Déqué and Piedelièvre 1995), Canada (Côté et al. 1997,
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1998), and the United States (Fox-Rabinovitz et al.

1997) evaluated the performance of several stretched-

grid general circulation models (SGGCMs) for North

American regional climate.

Despite the fact that the variable-resolution approach

allows continuous multiyear simulations to be autono-

mously performed and that provides consistent inter-

actions between global and regional scales of motion,

the anisotropy of the grid outside the uniform high-

resolution area gives rise to a local degradation in ac-

curacy, which may result in local flow distortions. Surcel

and Laprise (2011, hereafter SL11) argued for the bene-

fits of introducing a special filter to remove the modes

improperly represented in the stretching areas, thus pro-

viding a nearly isotropic and smoothly varying represen-

tation on the entire mesh. That filter can be used in the

stretching areas of a variable grid as well as to alleviate

the ‘‘pole problem’’ specific to latitude–longitude grids.

The filter can also be applied to control potential nu-

merical instabilities common to all numerical models.

The filtering operator is developed using a convolution

with a specific weighting function. A key aspect of the

proposed approach that makes it particularly suitable to

stretched grids is that the weighting function is defined

in terms of the physical distance from the application

point, rather than gridpoint count. In SL11 the filter was

applied in uniform and stretched 1D and 2D Cartesian

grids. In this paper we pursue the development of the

convolution filter by extending it to cylindrical polar

coordinates as an intermediate step toward a spherical

polar longitude–latitude grid.

The origin of a polar coordinate system, similarly to

the north and south poles on a sphere, constitutes point

of convergence for the lines of constant polar angle or

constant longitude. This convergence of meridians re-

sults in the so-called pole problem with latitude–longitude

grids, which imposes severe time-stepping limitations

with most numerical schemes. This issue has been cir-

cumvented in different ways in the literature such as the

use of a ‘‘reduced’’ grid in which the longitudinal in-

terval is kept reasonably constant, which can even be

beneficial in spectral models (Hortal and Simmons 1991);

the filtering of the waves that would become unstable for

a chosen time step (e.g., Williamson and Laprise 2000); or

applying a polar filter (digital or Fourier) poleward of

a specified critical latitude uc (typically 458 or 608), which

may be damaging to the accuracy of zonal differencing

(Purser 1988).

Usually filters are scaled with grid length rather than

physical distance, so their application on anisotropic grids

leads to anisotropic damping. The purpose of filtering on

a variable grid should be to render the solution effectively

isotropic and grid independent. The proposed filter hinges

on the fact that the weighting function in the convolu-

tion depends on the physical distance rather than on the

computational mesh distance, making it particularly suited

for stretched grid and polar geometry and for vectors as

well as scalars.

This paper is organized as follows. The next section

reviews the formulation of the convolution filter in one

dimension and presents its adaptation for a polar stretched

grid. The third section presents examples of filter ap-

plication for different scalar tests functions: the filter

first is applied on a uniform polar grid to test the control

of the pole problem, and then on a variable-resolution

polar grid to verify that the filter can remove the noise in

the anisotropic region outside the high-resolution area.

The fourth section deals with the filtering of vectors. It is

shown that the vectors at the points contributing to the

convolution need to be expressed in the same reference

system. The performance of the convolution operator on

vector fields is tested first on a uniform polar grid and

then on a variable polar grid. Conclusions are presented

in the last section.

2. Description of the convolution filter in polar
geometry

Variable-resolution stretched grids usually have uni-

form high resolution over the area of interest. Outside

this area the grid intervals are increased or stretched in

one or both horizontal directions, often as a geometric

progression with a constant local stretching factor s de-

fined as follows:

s 5 Dxi/Dxi21, (1)

where Dxi and Dxi21 are adjacent grid intervals. The

total (or global) stretching factor is defined as

S 5 Dxmax/Dxmin, (2)

where Dxmax and Dxmin are the maximum and minimum

grid intervals over the domain.

A filtering operator is here designed, which aims in

part to remove unwanted small scales outside the uni-

form high-resolution area. The filter is designed around

the convolution operator. For a field c, the filtered value

c is given by

c(x) 5 (c*w)(x) 5

ð‘

2‘

c(s)w(x 2 s) ds. (3)

The spectral response of the convolution is the ratio of

the spectral amplitudes, as a function of wavenumbers,

of the Fourier transform of the filtered c and original c
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fields. SL11 reviewed the well-known mathematical

property that the weighting function w in the convolution

should be the inverse Fourier transform of the desired

response function after the application of the filter, so:

w(d) 5
1

2p

ð‘

2‘

R(k) exp(ikd) dk.

These studies also showed that this formal result could

be extended to spatially varying response function and

grid mesh, as long as the variations are made gradually.

It is thus necessary to first choose a response function

and its spatial variation. To prevent the propagation of

small-scale signals from the high-resolution region into

the regions where the resolution is degraded and the grid

anisotropic, we chose a filter operator that will remove

the fine scales that are not well represented outside the

uniform high-resolution region. The response function is

defined as R(k) 5 1 in the uniform high-resolution re-

gion; outside this region we choose

R(k) 5

1, 0 # k # a 5 p/Dxmax

cos2p

2

k 2 a

b 2 a

� �
, a , k , b

0, b # k # p/Dxmin

.

8>>>><
>>>>:

(4)

This function is dependent on the wavenumbers a and b.

The parameter a is well determined: a 5 p/Dxmax. In

practice the parameter b is adjusted such as to minimize

the Gibbs phenomenon associated with the change of

response. The parameters that characterize the convo-

lution can be expressed in term of length scales that must

either be retained or removed; therefore a 5 2p/La

where La is the shortest wavelength that will be entirely

preserved and b 5 2p/Lb where Lb is the longest wave-

length that will be completely removed by the filter.

Scales with wavelengths between La and Lb will be

partly damped. Since the response function is even, the

inverse Fourier transform that represents the weighting

function will be symmetrical with respect to the applica-

tion point. Hence Eq. (4) then implies that

w(x) 5
p

2

sinax 1 sinbx

x

1

p2 2 x2(b 2 a)2
. (5)

As shown by SL11, the computational cost can be

greatly reduced by truncating the convolution to a user-

prescribed finite distance dmax between the application

point and the points contributing to the convolution. The

resulting filter’s response then only approximates the

chosen response, but this may often be adequate for

practical applications. SL11 presented examples in

Cartesian geometry, where for simplicity and computa-

tional cost reduction, two-dimensional filtering was ob-

tained by successive applications of one-dimensional

filtering in each direction. The study showed that the

resulting filter’s response was nearly isotropic.

The approach here will be generalized to two-

dimensional polar geometry, and the convolution filter

will be used in the stretching area and near the pole. In

polar coordinates, a point is specified by the radius r, the

distance to the origin of the coordinate system, and the

azimuthal angle l. The Cartesian coordinates x and y

can be obtained from the relations

x 5 r cosl

y 5 r sinl
, where

(

r 5(x2 1 y2)1/2

l5 tan21 y

x

� � , 0 # r , ‘, and 0 # l # 2p.

8<
: (6)

We chose a filter formulation obtained by the separate

applications of the convolution in the radial and the

azimuthal directions, for simplicity and efficiency con-

siderations, while preserving the paramount concept of

physical distance. The filtered function can formally be

written in integral form as

c(r, l) 5 [(c)
l
]
r

(r, l)

5

ð‘

r950

ð2p

l950
c(r9, l9)w[r9(l 2 l9)]w(r 2 r9)r9dr9dl9.

(7)

On a discrete polar grid (ri, lj), fields are represented

as ci,j 5 (ri, lj), with i 5 1, . . . , n; j 5 1, . . . , m and ri 2
[0, Re], lj 2 [0, 2p), where Re is the distance from the

center of the grid to the boundary (henceforth referred to

as the equator), and the discrete convolution is as follows:

c
r, l

(ri, lj) 5

�
k

c
l
(rk, lj)w(dr

i2k)s(rk)

�
k

w(dr
i2k)s(rk)

5

�
k

�
l

c(rk, ll)w(dl
j2l)w(dr

i2k)s(rk)s(ll)

�
k

�
l

w(dl
j2l)w(dr

i2k)s(rk)s(ll)
,

(8)

where dr
i�k and dl

j�l are the radial and azimuthal distances

between grid points (ri, lj) and (rk, ll), and s(rk)s(ll) 5

s(rk, ll) is the surface area around the (rk, ll) grid point. We

stress that the weighting function varies with the physical
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distances, and not on gridpoint count, which is in fact the

critical ingredient in the design of the proposed filter.

As for the Cartesian coordinate case discussed in SL11,

the summation will be truncated to a user-prescribed

distance dmax between the application point and the

points contributing to the convolution; this will greatly

reduce the computational cost when an approximate fil-

ter’s response suffices. For simplicity and further com-

putational efficiency, the convolution is calculated by

successive applications of one-dimensional filtering in

each direction. Because the number of grid points for

a given physical distance in the azimuthal direction varies

with radial distances [in integral Eq. (7) the azimuthally

weighting function depends on the radial distance], it is

important to first apply the convolution in the azimuthal

direction, followed by the application of the convolution

in the radial direction. The convolution in the azimuthal

direction gives

c
l
(rk, lj) 5

�
l

dl
j2l #d

max

c(rk, ll)w(dl
j2l)s(ll)

�
l

dl
j2l #d

max

w(dl
j2l)s(ll)

, (9)

where dl
j2l 5 rk(lj 2 ll) is the distance between points

(rk, lj) and (rk, ll) situated on the same circle rk 5

constant, and s(ll) 5 rk(ll11 2 ll21)/2 is the scale factor

in the azimuthal direction corresponding to the grid

point (rk, ll). The convolution in the radial direction is

calculated as follows

c(ri, lj) 5 (cl)
r
(ri, lj)

5

�
k

dr
i2k # d

max

cl(rk, lj)w(dr
i2k)s(rk)

�
k

dr
i2k # d

max

w(dr
i2k)s(rk)

, (10)

where dr
i2k 5 r

i
2 r

k
is the distance between points (rk, lj)

and (rk, lj) situated on the same azimuth lj 5 constant,

and s(rk) 5 (rk11 2 rk21)/2 is the scale factor corre-

sponding to the radial direction. Figure 1 shows the grid

points participating to the convolutions in the azimuthal

and the radial directions.

The computer implementation is greatly simplified by

introducing an extended grid for l , 0 and l . 2p.

Periodicity considerations give c(r, l) 5 c(r, l 6 2np)

with n an integer. Similarly, in order to avoid having to

resort to special treatment at the pole and equator, we

also use an extension of the physical domain to r , 0 and

r . Re. For r , 0 symmetry of scalars around the pole

gives

c(r, l) 5 c(2r, l6p). (11)

The fields c(r, l) are extended for r . Re by simply using

the analytical functions prescribed for our tests. The

extension of the domain for r . Re is only needed be-

cause of the polar grid used in this study; on the spherical

latitude–longitude grid, this problem does not exist.

3. Application to scalar fields

By the application of the filter on the polar grid we aim

at two objectives: to remove both the pole problem and

the anisotropy outside the uniform high-resolution area

of the stretched polar grid. We will investigate first the

filtering of scalar test functions. The filtering of vector

fields will be dealt with in the next section.

For evaluating the skill of the proposed filtering ap-

proach, we choose a test function composed of a large-

scale field, referred to as the signal or physical component,

and a small-scale field, referred to as the noise, defined in

every grid point as follows:

FIG. 1. Simplified sketch showing a typical uniform polar

grid. The red star represents the grid point where the filter is

applied and the blue circles the grid points contributing to the

convolution.
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c(ri, lj) 5 cl(ri, lj) 1 cn(ri, lj). (12)

As in SL11, the quality of the filter will be quantitatively

assessed using two metrics: the normalized root-mean-

square error (NRMS) and the normalized conservation

ratio (NCR). The NRMS will be computed between the

filtered solution c and the expected analytical solution

Cl (after subtracting the mean error DC), normalized by

the variance of the analytical solution:

NRMS 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
[c(ri, lj) 2 cl(ri, lj) 2 DC ]2s(ri, lj)

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
[cl(ri, lj)]2s(ri, lj)

s ,

(13)

where

DC 5

�
i

�
j

[c(ri, lj) 2 cl(ri, lj)]s(ri, lj)

�
i

�
j

s(ri, lj)

is the domain-averaged error between the filtered so-

lution and the analytical solution. The NCR checks mass

conservation as the mean error between the filtered and

unfiltered solution, normalized by the variance of the

analytical solution

NCR 5

�
i

�
j

[c(ri, lj) 2 c(ri, lj)]s(ri, lj)=�
i

�
j

s(ri, lj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
c2

l (ri, lj)s(ri, lj)=�
i

�
j

s(ri, lj)

s .

(14)

Two types of large-scale signal will be considered:

1) a double cosine in physical space:

cl(ri, lj) 5 Al cos(klricoslj) cos(llri sinlj),

where kl 5 ll 5 2p/Ll, Ll (expressed in km) repre-

sents the wavelength, and Al is the amplitude; and

2) a cylindrical harmonic, eigenfunction of the Laplacian

on the polar grid:

cl(ri, lj) 5 AlJl
l
(klri) cos(lllj),

where Jl1
(k

l
r

i
) is the Bessel function of the first kind

and order ll (Bowman 1958), kl is the radial wave-

number, ll the azimuthal wavenumber, and Al the

amplitude.

The small-scale noise will also be represented by two

different test functions:

1) a double cosine in physical space:

cn(ri, lj) 5 An cos(knri coslj) cos(lnri sinlj),

where kn 5 ln 5 2p/Ln, Ln (expressed in km) repre-

sents the wavelength, and An is the amplitude; and

2) a checkerboard-like noise on the polar grid:

cn(ri, lj) 5 An(61)i1j.

Such noise corresponds to wavenumbers that vary with

radial distance, with a minimum value at the equator

corresponding to a wavelength of 2Dl.

To avoid difficulties with the extension beyond the

artificial boundary of the domain (r 5 Re) for computer

implementation of the convolution, the noise field is

gradually diminished to zero over the last four grid points

in radial direction.

The weighting function used in the convolution filter

formulation represents the inverse Fourier transform of

the desired response. It is important to choose a re-

sponse function with a gradual cutoff, first to minimize

the Gibbs phenomena (Sardeshmukh and Hoskins 1984)

and second because a smooth cut-off will give rise to a

narrower weighting function and the truncation errors

related to the application to a finite set of points will be

decreased. As we saw in Eq. (5), the parameters that

define the weighting function, a 5 2p/La and b 5 2p/Lb,

depend on the length scales that a user chooses to pre-

serve or remove. The convolution will be calculated

considering all grid points located up to a user-chosen

maximum distance dmax in radial or azimuthal directions

from the application point.

a. Application to scalars on a uniform polar grid

To test the skill of the filter at alleviating the pole

problem, we employ a ‘‘uniform’’ polar grid (i.e., a uni-

form radial resolution Dr and isotropic resolution near

the equator ReDl 5 Dr). With n radial grid points, this

implies n 5 Re/Dr 1 1 [i.e., Dr 5 Re/(n 2 1) (with grid

points both at the pole and the equator)]. With m

equally spaced azimuths Dl 5 2p/m, this implies m 5

2p(n 2 1) (i.e., n 5 m/2p 1 1). In the following tests we

have used arbitrarily Re 5 10 000 km, the approximate

distance between the pole and the equator on earth. To

summarize, the discrete uniform polar grid used for our

experiments was represented by (ri, lj) with ri2 [0, Re] and

i 5 1, . . . , n and lj 2 [0, 2p), j 5 1, . . . , m, and ReDl 5 Dr.

The tests performed on the uniform polar grid, using

scalar test functions, were designed to verify the skill of

MARCH 2012 S U R C E L A N D L A P R I S E 923



the filter at removing the small-scale noise around the

pole while preserving the large-scale signal, and to

evaluate the influence of using different choices of

weighting functions.

For the first objective of handling the pole problem,

Fig. 2 presents four examples with different test func-

tions. The uniform polar grid has a resolution of 18 in

azimuthal direction, resulting in an isotropic resolution

near the equator of Dr ffi 175 km. In the first example

(Fig. 2a), the test function is composed of a large-scale

signal in the form of a double cosine with kl 5 ll 5 2p/Ll

and Ll 5 20 000 km and a small-scale noise represented

also by a double cosine with kn 5 ln 5 2p/Ln and Ln 5

500 km. The amplitude of the large-scale signal is Aj 5

1 and that of the noise is An 5 1/4, except for the last

four grid points in radial direction where this ampli-

tude is gradually reduced to zero. The parameters of

the convolution weighting function were chosen to be

FIG. 2. (a) An initial function shown in blue was composed of a large-scale signal defined as double cosine with Ll 5

20 000 km and a small-scale noise in form of a double cosine with Ln 5 500 km; the resulting filtered function is

represented in red. The weighting function used in the convolution aimed at keeping all waves larger than 2400 km

and removing all waves smaller than 800 km. The truncation distance was chosen as dmax 5 1600 km. (b) An initial

function shown in blue was composed of a large-scale cylindrical harmonic with kl 5 ll 5 2 and a small-scale noise in

the form of a double cosine with Ln 5 600 km; the filtered function is represented in red. The weighting function used

in the convolution kept all waves larger than 2400 km and removed all waves smaller than 1000 km. The truncation

distance was dmax 5 2300 km. (c) The initial function is composed from the large-scale signal identical to that used in

(a) but with a random noise. The same weighting function and truncation distance as in (a) were used. (d) The initial

function is composed from the large-scale signal identical to that used in (b) but with a random noise. The same

weighting function and truncation distance as in (b) were used.
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La 5 2400 km and Lb 5 800 km, so the filter should

preserve the large-scale signal and remove entirely the

small-scale noise. With these parameters, the response

function is relatively smooth and the weighting function

needs a truncation distance of dmax 5 1600 km for an

adequate accuracy of the convolution. The test function

represented in Fig. 2b is composed of a large-scale signal

in the form of a cylindrical harmonic with kl 5 ll 5 2, and

a small-scale noise in form of a double cosine with kn 5

ln 5 2p/Ln and Ln 5 600 km. The amplitude of the

large-scale signal was set to Al 5 1 and, to keep almost

the same proportion between the amplitude of the signal

and the noise as in the first example, we chose An 5 1/8

except in the last four grid points where the amplitude is

diminished gradually to zero. To remove the noise we

used a weighting function were La 5 2400 km and Lb 5

1000 km. Because this weighting function has a wider

footprint, then an increased truncation distance is nec-

essary for a proper response of the filter, so we chose

dmax 5 2300 km. The last two examples presented in

Figs. 2c,d used test functions composed of large-scale

signals identical to those used in the first two examples,

but with checkerboard-like noises with amplitudes equal

to 1/8 for Fig. 2c and 1/16 for Fig. 2d. To remove these noise

patterns the convolution filter employed the same weight-

ing function and truncation distances as in the first two

examples. In all four tests shown in Fig. 2, the convolution

filter appears to adequately remove the noise and pre-

serve the signal; we will next verify this assessment with

a quantitative score.

We now assess quantitatively the influence of the trun-

cation distance and filtering cutoff scale Lb. Three differ-

ent weighting functions will be tested in the convolution

filter applied to the test function used in Fig. 2a. All three

weighting functions are designed to remove the noise,

as Ln # Lb, while keeping the large-scale signal; the

parameters that characterize these weighting functions

are

w1 :
La 5 2400 km

Lb 5 1000 km
, w2 :

La 5 2400 km

Lb 5 800 km
, and

((

w3 :
La 5 2400 km

Lb 5 600 km
.

(

Figure 3 shows the curves NRMS and NCR for trun-

cation distances varying between 200 and 2400 km.

Figure 3a shows the NRMS for different weighting

functions. Overall the error decreases as the truncation

distance is increased, although not monotonically; the

oscillations are larger for w1 than for w3 because of

the Gibbs phenomenon associated with a narrower re-

sponse function, which necessitates a wider stencil for

accurate representation. The NCR (Fig. 3b) exhibits

important oscillations, even increasing with overly small

truncation distance; all curves however eventually as-

ymptote toward zero for large truncation distances, in-

dicating good conservation of filtered quantities at large

truncation distances. We note that broader response

functions (such as w3) converge faster because of a re-

duced spurious Gibbs phenomenon. Beyond a trunca-

tion distance of 2400 km the weighting functions become

very small and hence their contribution is unimportant in

the convolution, and hence NRMS and NCR asymptote

toward zero.

We now investigate how the sensitivity to the trun-

cation distance varies depending on the scale of the

noise one intends to remove. In Fig. 4 we chose a test

function composed of a large-scale signal with kl 5 2p/Ll

FIG. 3. The (a) NRMS and the (b) NCR scores as a function of the truncation distance for three convolution filters

with weighting functions w1 :
La 5 2400 km
Lb 5 1000 km

�
, w2 :

La 5 2400 km
Lb 5 800 km

�
, and w3 :

La 5 2400 km
Lb 5 600 km

�
, applied on the same test

function as in Fig. 2a.
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and Ll 5 20 000 km and five different double cosine

noises with wavenumbers knj
5 2p/L

nj
and ( j 5 1, . . . , 5),

with Ln1
5 500 km, Ln2

5 600 km, Ln3
5 700 km, Ln4

5

800 km, and Ln5
5 900 km. We chose a weighting func-

tion characterized by

w :
La 5 4000 km

Lb 5 1000 km
,

�

which should be adequate to remove all the above small-

scale noises; this weighting function has nonnegligible

values over a distance of 1600 km. Figure 4 shows that

shorter-scale noises are most effectively removed and they

tolerate shorter truncation distance in the convolution

filter; as the length scale of the noise increases, con-

vergence is slower and an increased truncation dis-

tance is required. However, it can be noted that the

error asymptotically converges to zero beyond some

truncation distance (in our case 800 km) for all tested

noises.

b. Application to scalars on a variable polar grid

We now turn our attention to the application of the

filter for removing the anisotropy on a stretched polar

grid. We use a uniform high-resolution domain (DHR)

defined by

DHR : r,
l

2p

� �
2 (r1, r2) 3 (t1, t2)

5 (3500 km; 7500 km) 3
5

8
,

7

8

� �
with ti 5

li

2p
,

where the radial resolution is chosen to be Dr ffi 15 km

and the azimuthal resolution Dl ffi p/1080. This implies

that resolution will be isotropic in the middle of the

high-resolution sector at [r, l/2p] 5 (5500 km; 3/4). A

gradual stretching zone, with local stretching rate of sr 5

8% in the radial direction and sl 5 3.8% in the azimuthal

direction, is used adjacent to the high-resolution area,

which defines the stretching domain (DSG):

DHR< DSG : r,
l

2p

� �
2
�
(r3, r4) 3 (0, 1) < (0, Re) 3 (t3, t4)

	
5

�
(2500 km; 8500 km) 3 (0, 1) < (0; 10 000 km)

3
9

16
,

15

16

� �


and DHR \ DSG 5 Ø.

Low resolution is used elsewhere in the domain, with

Dr ffi 90 km and Dl ffi p/180 (DLR), resulting in a total

stretching factor of Sr ffi Sl ffi 6.

The test functions used to verify the performance of the

filter on variable polar stretched grid are similar to those

used for the uniform polar grid. The difference consists in

the representation of the small-scale component, which is

added in the uniform high-resolution area and in the ad-

jacent stretching regions where the grid is anisotropic. In

the uniform high-resolution area (DHR), the small-scale

component will be interpreted as part of the signal; it

constitutes the added value provided by the stretched grid,

and hence the convolution filter will be designed to keep

the small-scale component in the uniform high-resolution

area. Outside the uniform high-resolution area, the small-

scale component will be interpreted as noise that the

convolution filter should remove.

The first example is shown in Fig. 5a. The test function

is composed of a large-scale double cosine with wave-

lengths of 20 000 km and a small-scale component in the

form of a double cosine with a wavelength of 400 km.

The convolution filter uses a weighting function with

La 5 2400 km and Lb 5 1000 km and a truncation

distance of 2300 km. Figure 5b shows the filtered func-

tion and we can see that the convolution filter adequately

removes the finescale noise outside the uniform high-

resolution area.

The next example shown in Fig. 5c presents a test func-

tion composed of a cylindrical harmonic as large-scale

signal and double cosine as small-scale component. The

large-scale signal has wavenumbers kl 5 ll 5 2 and

the small-scale component has wavelength of 500 km.

The weighting function is characterized by La 5 2400 km,

Lb 5 600 km, and a shorter truncation distance of

1000 km, which is sufficient because of the smoother

FIG. 4. The NRMS score as a function of the truncation distance

when a filter with a weighting function w :
L

a
5 4000 km

Lb 5 1000 km

�
is ap-

plied for five test functions containing a small-scale signal with wave-

lengths of Ln1
5 500 km, Ln2

5 600 km, Ln3
5 700 km, Ln4

5 800 km,

and Ln5
5 900 km.
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response than in the first case, resulting in a narrower

footprint of the weighting function. Again we see in

Fig. 5d that the convolution filter adequately removes

the finescale noise outside the uniform high-resolution

area.

We will next quantify the skill of the convolution filter

at removing the small-scale noise outside the uniform

high-resolution area, while keeping the signal (large and

small scales) in the high-resolution area, using similar

quantitative scores as for the uniform polar grid. We first

establish the following notations:

for the test function

c(r, l) 5

cHR if (r, l) 2 DHR
cSG if (r, l) 2 DSG
cLR if (r, l) 2 DLR

,

8<
:

and for the filtered function

c(r, l) 5

cHR if (r, l) 2 DHR

cSG if (r, l) 2 DSG

cLR if (r, l) 2 DLR

.

8><
>:

FIG. 5. (a) The test function composed of a large-scale cosine as signal and a small-scale cosine with Ln 5 400 km as

noise is represented on the polar stretched grid with Sr ffi Sl ffi 6. (b) The filtered function is obtained using the

weighting function w :
L

a
5 2400 km

Lb 5 1000 km

�
and a truncation distance of 2300 km to remove the noise. (c) The initial test

function composed of a large-scale cylindrical harmonic as signal and a small-scale cosine with Ln 5 500 km as noise

is represented on the polar stretched grid with Sr ffi Sl ffi 6. (d) The filtered function is obtained using the weighting

function w :
L

a
5 2400 km

Lb 5 600 km

�
and a truncation distance of 1000 km to remove the noise.
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We remark that the convolution filter is applied only

outside the uniform high-resolution area, so the filter

does not affect the test function in this domain. We

consider the analytical solution cas as

cas(r, l) 5
cHR(r, l) if (r, l) 2 DHR

cl(r, l) for all other (r, l)

�

and the NRMS is calculated as

NRMS 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
[c(ri, lj)2cas(ri, lj)2DCSG]2s(ri, lj)

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
[cl(ri, lj)]2s(ri, lj)

s ,

(15)

where

DCSG 5

�
i

�
j

[c(ri, lj) 2 cas(ri, lj)]s(ri, lj)

�
i

�
j

s(ri, lj)
.

We compute similar scores NRMS_SG and NRMS_LR

only for parts of the domain; so for the stretching domain

DSG and the low-resolution domain DLR, we calculate

NRMS_a 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
[c

a
(ri, lj) 2 cas(ri, lj)]2s(ri, lj)

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
[cl(ri, lj)]2s(ri, lj)

s ,

(16)

where

a [ SG for (ri, lj) 2 DSG

a [ LR for (ri, lj) 2 DLR

.

(
(17)

To check the conservation of filtered quantities, NCR is

calculated as in Eq. (14).

Three different weighting functions will be applied to

the same test function as used in Fig. 5a. By definition,

those functions should remove the noise, as Ln # Lb,

keeping unchanged the large-scale signal. The param-

eters characterizing the weighting functions are

w1 :
La 5 2400 km

Lb 5 1000 km
, w2 :

La 5 2400 km

Lb 5 800 km
, and

((

w3 :
La 5 2400 km

Lb 5 600 km
.

(

Figure 6a shows that NRMS error generally decreases

as the truncation distance increases, although not mono-

tonically. The curves exhibit oscillations that are larger for

the weighting function, corresponding to the most abrupt

response because of the Gibbs phenomenon. These os-

cillations are reduced as the truncation distance increases

and the error then asymptotes toward zero, as is the

case for the weighting function w3, which only requires

a shorter truncation distance in order to reproduce the

theoretical spectral response. The conservation scores

are shown in Fig. 6b. With sufficiently wide weighting

function, NCR eventually approaches zero when using

large truncation distance.

The lower two panels in Figs. 6c,d show the normalized

error over only the stretching domain (NRMS_SG) and

the low-resolution domain (NRMS_LR). The NRMS_SG

curves have similar shape as the NRMS curves, which we

interpret to imply that the main errors arise from the

application of the filter in the stretching region. For a

truncation distance smaller than 600 km, NRMS and

NRMS_SG generally decrease while NRMS_LR is small,

which implies that the convolution filter is effective at

removing the noise in the stretching domain. For an in-

creased truncation distance the NRMS error decreases

more slowly and the NRMS_LR begins to increase until

a value of about 1000 km is reached; this means that the

truncation distances smaller than this value are inade-

quate to reproduce the expected spectral response and

that the Gibbs oscillations produce false amplifications or

attenuations of the large-scale signal. When the truncation

distance is further increased beyond 1000 km, then the

error in the low-resolution domain is mostly responsible

for the total value of NRMS. All errors decrease toward

zero when the truncation distances became large enough

to reach vanishing values of the weighting functions.

To substantiate the above interpretation, we will show

where in the domain the error occurs using the case al-

ready presented in Fig. 5a. The spatial distribution of the

quadratic error is computed as the square of the difference

between the filtered function and the analytical solution:

s2(ri, lj) 5 [c(ri, lj) 2 cas(ri, lj)]2. (18)

Figure 7a shows the quadratic error for a truncation

distance of 400 km. We note that the errors are generally

located in the stretching zones where some noise remains

after the application of the filter. When the truncation

distance is increased to 1000 km (Fig. 7b) then the noise

remains in the regions where the resolution varies rap-

idly. When the truncation distance is further increased to

1400 km, then the error is practically removed, but then

the Gibbs oscillations give attenuation or amplification of

the large scales, resulting in the error pattern shown. The
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spatial error decreases under the values of 1025 (the

minimal value shown in Fig. 7) when the truncation dis-

tance exceeds 1800 km.

The experiments realized on the polar grid showed

the ability of the convolution filter to adequately remove

small-scale noise both in the polar region and also in the

anisotropic ‘‘arms-of-the-cross’’ regions of the variable

polar stretched grid. The convolution filter can be applied

at the same time to address the pole problem and also to

remove anisotropic noise in the stretching region of the

FIG. 6. The (a) NRMS and the (b) NCR scores as a function of the truncation distance for three convolution filters

with weighting functions w
1

:
L

a
5 2400 km

Lb 5 1000 km

�
, w

2
:

L
a

5 2400 km
Lb 5 800 km

�
, and w

3
:

L
a

5 2400 km
Lb 5 600 km

�
applied on the same test

function containing a noise with Ln 5 400 km; (c) the NRMS_SG score is calculated only in the stretching areas; and

(d) the NRMS_LR score is calculated in the uniform low-resolution area.

FIG. 7. The spatial distribution of the quadratic error for the same test as that shown in Fig. 5a. The convolution filter used the weighting

function w1 :
La 5 2400 km
Lb 5 1000 km

�
. The quadratic error is shown for three different truncation distances of (a) 400, (b) 1000, and (c) 1400 km,

respectively.
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grid by choosing appropriate parameters for the convo-

lution weighting function. These parameters depend on

the length scales that a user wants to be retained or

removed in each region of the domain. We reiterate that

because the convolution filter is designed in terms of

physical distance on the grid and not on gridpoint

counts, the resulting response is almost isotropic and

independent of gridpoint spacing.

4. Application to vector fields

When the convolution is applied to vectors on a non-

Cartesian grid, such as the horizontal winds in spherical

polar grid, care has to be taken to use a representation of

the vector components relative to the same local refer-

ence system. This operation is necessary to account for

the effect of the curvature on the sphere and change in the

direction of vector basis (Zhang and Rančić 2007). As

the polar grid used in this paper is an intermediate step

to the application of the filter on a spherical latitude–

longitude stretched grid, the representation of the vector

components will be made by analogy with the spherical

grid. We chose here to express the vectors of the par-

ticipating grid points in the same local reference system as

the point of application of the convolution.

Coordinates on a polar grid are defined by (r, l), with r

the distance from the center of the grid (the equivalent

on the sphere would be the radius of the earth multiplied

by the colatitude angle) and l the azimuth angle (equiv-

alent to longitude on the sphere). The horizontal wind is

defined related to the local coordinate system, as shown in

Fig. 8, with

Vh 5 (u, y) 5 r
dl

dt
, 2

dr

dt

� �
,

where (u, y) correspond to the ‘‘zonal’’ and ‘‘meridional’’

wind components (using the terminology on the sphere),

with the sign convention that u is positive eastward and y

is positive northward. Hence the position on the polar

grid is defined by (ri, lj) and the horizontal wind com-

ponents as

ui,j 5 u(ri, lj)

yi,j 5 y(ri, lj)
with i 5 1, . . . , n; j 5 1, . . . , m; ri 2 [0, Re]; lj 2 [0, 2p).

(
(19)

Following the meteorological tradition, the wind com-

ponents are defined relative to a locally orthogonal ref-

erence system whose base vectors change with location

(only with longitude in fact for the polar grid). Therefore

the application of the filter operator will require repre-

senting the wind components contributing to the convo-

lution at a point in the same coordinate system as that

point.

For each point P0(ri, lj) where the convolution filter is

applied for (u, y), we need to transform all wind vectors

in the neighboring points P(rk, ll) contributing to the

convolution (i.e., those for which their distance is within the

chosen truncation distance for the convolution). The wind

components at point P(rk, ll) are expressed in the coordi-

nate system relative to the application point P0 as follows:

u

y

� �
P

0

(k, l) 5

"
cos(ll 2 lj) 2sin(ll 2 lj)

sin(ll 2 lj) cos(ll 2 lj)

#
u

y

� �
P

(k, l).

(20)

We note that the conversion only involves the longi-

tude angle, not the radial distance, so no transformation

is required for points aligned on the same meridian. The

equivalent operation on the sphere would consist of pro-

jecting the wind vectors of the participating points on the

plane that is locally tangent to the application point P0. We

note that there would be alternative approaches on the

sphere, such as the Lagrange multipliers (e.g., Côté 1988).

As for scalars, it is convenient to introduce an ex-

tended grid that allows applying the general convolution

FIG. 8. The representation of horizontal velocity components in

polar coordinates.
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equation without having to use special treatments near

the boundaries of the domain. Hence, if l , 0 or l . 2p,

periodicity considerations give

u(r, l) 5 u(r, l 6 2np)

y(r, l) 5 y(r, l 6 2np)

�

with n an integer. Symmetry considerations at the pole

suggest the following extrapolation for r , 0:

u(r, l) 5 2u(2r, l 6 p)

y(r, l) 5 2y(2r, l 6 p)
.

�

Again in order to avoid difficulties with the application

of the convolution near the artificial boundary of the

domain (r 5 Re), the noise field is gradually diminished to

zero over the last four grid points in radial direction.

We define test-wind fields by constructing rotational

and divergent motions using the Helmholtz theorem for

two-dimensional vector field Vh as

Vh 5 VR 1 VD 5 k 5 $c 1 $x, (21)

where c is the streamfunction and x the velocity potential.

We then employ test functions similar to those presented

in the previous subsection for use as streamfunction

or velocity potential, and we develop analytically the

corresponding zonal and meridional wind components in

polar coordinates. We will use a signal corresponding to

either a pure rotational or divergent large-scale motion,

and then add to it a small-scale noise that is also either

rotational or divergent.

a. Application of the filter for vectors on a uniform
polar grid

The filter’s ability for application to vectors was tested

first on a uniform polar grid. We verified the performance

of the convolution filter representing a large-scale wind

field, considered as analytical solution; a perturbed wind

field, created by adding a noise to the analytic solution;

and the filtered wind field, identical with the analytical

solution if the filter works properly.

For the first test shown in the Fig. 9, a velocity potential

function represented by a double cosine with wavelengths

of 20 000 km is used to define a purely divergent large-

scale wind field. To this large-scale signal we added a small-

scale noise in the form of double cosines with wavelengths

of 500 km, either as divergent wind (middle-left panel) or

as rotational wind (bottom-left panel). We chose a convo-

lution filter with a weighting function characterized by

La 5 3000 km

Lb 5 600 km

�

and a truncation distance of 900 km. The filtered fields

(presented in the right panels of Fig. 9) show that the

large-scale signal is preserved and the noise is removed.

For this example we used a test field developed ana-

lytically from a large-scale double cosine located spe-

cifically such as to have nonzero winds at the pole.

Numerically the pole is considered as (r1, lj) with j 5

1, . . . , m and the convolution filter is applied there as

for all other grid points. The test revealed that the

convolution filter works properly in the vicinity of the

pole, and the large-scale field is recovered without

distortions near the pole.

The next experiment presented in Fig. 10 used a large-

scale signal represented by streamfunction in form of

a cylindrical harmonic with radial wavenumber kl 5 1 and

azimuthal wavenumber ll 5 2 to show a pure rotational

wind field. As before, this large-scale field is perturbed by

either a pure divergent or a pure rotational wind noise

developed from a small-scale double cosine as velocity

potential or streamfunction fields with wavelengths of

500 km. The convolution filter uses a weighting function

characterized by

La 5 3000 km

Lb 5 800 km

�

and a truncation distance of 1100 km. Again we note in

the right panels that, after the application of the filter, the

noise is removed and the filtered fields recover the ana-

lytical solution shown in the upper panel.

To quantitatively assess the performance of the

filter when is applied for vector fields, we employ the

Wind_RMS score calculated as

Wind_RMS 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV 2 Vlj

2

jVlj
2

vuut 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
f[u(ri, lj) 2 ul(ri, lj)]2 1 [y(ri, lj) 2 yl(ri, lj)]2gs(ri, lj)

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
f[ul(ri, lj)]2 1 [yl(ri, lj)]2gs(ri, lj)

s , (22)
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FIG. 9. The (top) large-scale divergent wind field is perturbed by a (middle left) small-scale divergent wind field

or by a (bottom left) small-scale rotational wind field. (right) The filtered fields are represented. The large-scale

field is built using a scalar cosine function as velocity potential similar to those used when we tested the convolution

filter for scalar variables and it has the wavelength Ll 5 20 000 km. For both tests, the small-scale field (the noise)

was built using cosine scalar functions as velocity potential or streamfunction with Ln 5 500 km. For all tests, the

convolution filter uses the weighting function w :
La 5 3000 km
Lb 5 600 km

�
and a truncation distance of 900 km.
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FIG. 10. The (top) large-scale rotational wind field is perturbed by a (middle left) small-scale divergent wind

field or by a (bottom left) small-scale rotational wind field. The filtered fields are represented in the right

panels. The large-scale field is built using a scalar cylindrical harmonic function as streamfunction similar to

those used for scalar variables with wavenumbers kl 5 1 and ll 5 2. For both tests, the small-scale field (the

noise) was built using double cosine scalar functions as velocity potential or streamfunction with Ln 5 500 km.

For the tests presented the convolution filter used the weighting function w :
L

a
5 3000 km

L
b

5 800 km

�
and a truncation

distance of 1100 km.
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where V 5 Vl 1 Vn, Vl represents the large-scale wind

vector or the expected analytical solution, Vn represents

the small-scale wind vector or the noise that will be re-

moved, and V is the filtered wind vector solution.

Figure 11 shows the Wind_RMS score as a function of

truncation distance for convolution filters using differ-

ent values of La and Lb in the weighting functions. These

tests were carried out with a test-wind field composed of

a large-scale purely divergent wind with wavelengths of

20 000 km and small-scale rotational noise with wave-

lengths of 500 km. Figure 11a shows results obtained

with various values of Lb, using La 5 3000 km:

w1 :
La 5 3000 km

Lb 5 1000 km
, w2 :

La 5 3000 km

Lb 5 800 km
, and

((

w3 :
La 5 3000 km

Lb 5 600 km
.

(

We note that beyond a certain truncation distance, the

error is smaller than 0.4% of the error obtained when the

truncation distance is very small. As was to be expected

the convergence is faster for convolutions with narrower

weighting functions such as w2 and w3. The next tests

shown in Fig. 11b were obtained using Lb 5 600 km with

various values of La:

w3 :
La 5 3000 km

Lb 5 600 km
, w4 :

La 5 2600 km

Lb 5 600 km
, and

((

w5 :
La 5 2200 km

Lb 5 600 km
.

(

The errors show relative insensitivity to changing La. We

hypothesize that this reflects the fact that the error also

contains a contribution from disturbing the large-scale

signal.

To test this hypothesis we compare the performance

of filters using the weighting functions w1 and w4 that

have the same attenuation wavelength bandwidth La 2

Lb 5 2000 km. Test functions similar to those in the

previous tests were used, but with two different large-

scale signals characterized by Ll1
5 16 000 km and Ll2

5

12 000 km, and small-scale noise with Ln 5 500 km.

The resulting Wind_RMS score is represented in Fig. 12.

It is evident that w4 performs better, and both filters are

more effective for larger-scale signals Ll1
5 16 000 km.

FIG. 11. (a) The Wind_RMS score as a function of the truncation distance for three convolution filters with

weighting functions w
1

:
L

a
5 3000 km

Lb 5 1000 km

�
, w

2
:

L
a

5 3000 km
Lb 5 800 km

�
, and w

3
:

L
a

5 3000 km
Lb 5 600 km

�
applied on the same test

function containing a noise with Ln 5 500 km; (b) the Wind_RMS score as a function of the truncation distance for

three convolution filters with weighting functions w3 :
La 5 3000 km
L

b
5 600 km

�
, w4 :

La 5 2600 km
L

b
5 600 km

�
, and w5 :

La 5 2200 km
L

b
5 600 km

�
applied on the same test function containing a noise with Ln 5 500 km.

FIG. 12. The Wind_RMS score as a function of the truncation

distance for two convolution filters with weighting functions

w
1

:
L

a
5 3000 km

Lb 5 1000 km

�
and w

4
:

L
a

5 2600 km
Lb 5 600 km

�
. The test functions

have different large-scale signals with wavelengths Ll1
5 16 000 km

and Ll2
5 12 000 km.
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We note that the curves obtained with w1 weighting

function exhibit larger oscillations, but they eventually

decrease toward zero for larger truncation distance

(around 2200 km).

b. Application of the filter for vectors
on a variable polar grid

We proceed to tests on a stretched grid, using wind

field test functions similar to those used on the uniform

polar grid, in order to check the skill of the filter to

remove the noise outside of the uniform high-resolution

domain. The test functions are composed of a large-scale

wind field, which is either purely rotational or purely

divergent wind developed analytically from a stream-

function or a velocity potential in the form of double

cosines in physical space or cylindrical harmonics, with a

wavelength Ll, and a small-scale field that is either rota-

tional or divergent developed similarly to the large-scale

field but with wavelength Ln. This small-scale field is

gradually added in the stretching zones, where it will be

interpreted as noise, and in the uniform high-resolution

area where it will be part of the signal and represents the

added value of using variable resolution; therefore, in this

latter region, the filter will not be applied.

Figure 13 shows a large-scale purely rotational wind

field with Ll 5 20 000 km (upper panel) perturbed by

divergent or rotational small-scale fields (left, middle,

and bottom panels) with Ln 5 400 km. The filter uses

a weighting function defined by

w :
La 5 1800 km

Lb 5 600 km
.

�

and a truncation distance of 1200 km. Because we

apply the filter only outside the uniform high-resolution

area, and to better display the effect of the filter in the

stretching zones, we only present the test function outside

the uniform high-resolution zone. Visually we observe

that the convolution filter is able to remove the noise, and

after the application of the filter, the large-scale signal is

recovered. No deformations were noted around the high-

resolution domain and the filter works properly in the

stretching zones as well as around the pole.

Finally, Fig. 14 shows a purely divergent wind field

built from a velocity potential function in the form of

a cylindrical harmonic with radial wavenumber 1 and

azimuthally wavenumber 2 (upper panel), and per-

turbed by small-scale fields similar with those used in

Fig. 13 using a weighting function with parameters

w :
La 5 1000 km

Lb 5 600 km
.

�

This weighting function has a broad footprint because it

corresponds to a relatively abrupt response function

(only 400 km between La and Lb) and, for this reason, it

needs a truncation distance of 1800 km to remove the

noise. The results show suitable performance, with the

initial large-scale signal being recovered and no appar-

ent deformations of the wind fields in the stretching

regions.

The performance of the filter in removing noise for

vector quantities on the stretched polar grid will be

quantified using the Wind_RMS score calculated over the

entire grid or separately in the stretching zones or the low-

resolution region of the domain. If we consider a wind

field composed from a large-scale signal and a noise, then

we set up the following notations:

for the test field

V 5

VHR if (r, l) 2 DHR

VSG if (r, l) 2 DSG

VLR if (r, l) 2 DLR

,

8<
:

and for the filtered field

V 5

VHR if (r, l) 2 DHR

VSG if (r, l) 2 DSG

VLR if (r, l) 2 DLR

.

8><
>:

We computed the Wind_RMS score considering the

analytical solution

Vas 5 (uas, yas) 5
VHR if (r, l) 2 DHR

Vl for all other (r, l)
.

�

For the stretched grid, three scores will be calculated.

The first score is calculated for the entire domain fol-

lowing the relationship:

Wind_RMS 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jV 2 Vasj

2

jVlj
2

vuut 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
f[u(ri, lj) 2 uas(ri, lj)]2 1 [y(ri, lj) 2 yas(ri, lj)]2gs(ri, lj)

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

i
�

j
f[ul(ri, lj)]2 1 [yl(ri, lj)]2gs(ri, lj)

s
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FIG. 13. The (top) large-scale rotational wind field is perturbed by a (middle left) small-scale divergent

wind field or by a (bottom left) small-scale rotational wind field. The filtered fields are represented in the

right panels. The large-scale field is built using a scalar cosine function as streamfunction similar to those

used when we tested the convolution filter for scalar variables. For both test fields the small-scale signal (the

noise) was built using cosine scalar functions as velocity potential or streamfunction with Ln 5 400 km. For

the tests presented the convolution filter used the weighting function w :
L

a
5 1800 km

L
b

5 600 km

�
and a truncation

distance of 1200 km. The convolution filter is applied outside the uniform high-resolution area and the test

functions are represented only in the regions where the filter is applied.
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FIG. 14. The (top) large-scale divergent wind field is perturbed by a (middle left) small-scale divergent

wind field or by a (bottom left) small-scale rotational wind field. (right) The filtered fields are represented.

The large-scale field is built using a scalar cylindrical harmonic function as velocity potential similar to those

used when we tested the convolution filter for scalar variables. For both test fields the small-scale signal (the

noise) was built using cosine scalar functions as velocity potential or streamfunction with Ln 5 400 km. For

the tests presented the convolution filter used the weighting function w :
La 5 1000 km
Lb 5 600 km

�
and a truncation

distance of 1800 km. The convolution filter is applied outside the uniform high-resolution area and the test-

functions are represented only in the regions where the filter is applied.
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Similarly, we calculate Wind_RMS_SG score for

(r, l) 2 DSG and Wind_RMS_LR score for (r, l) 2 DLR.

These tests performed for vectors on the stretched

grid used a test-wind field composed of a large-scale

purely divergent wind with wavelengths of 20 000 km

and a small-scale rotational noise with wavelengths of

400 km. The same three weighting function as for the

uniform polar grid were employed, characterized by

w1 :
La 5 3000 km

Lb 5 1000 km
, w2 :

La 5 3000 km

Lb 5 800 km
, and

((

w3 :
La 5 3000 km

Lb 5 600 km
.

(

The scores are represented as a function of the trunca-

tion distance with values between 200 and 2200 km.

The Wind_RMS score for the entire domain is repre-

sented in Fig. 15a. We can remark that the error de-

creases gradually to zero as the truncation distance

increases. This error begins to stabilize after 900 km if

the weighting function w3 is used, after 1500 km if the

weighting function w2 is used, and after 2000 km if

the weighting function w1 is used. As is to be expected,

the required truncation distance is a function of the

width of the weighting function footprint, which is the

largest for w1 and the narrowest for w3. After the trun-

cation distance reaches large values, the errors decrease

to less than 0.4% of the error when the truncation dis-

tance is small.

The convolution filter applied on a variable polar grid

must remove the noise outside the uniform high-resolution

area. The filtering error represents the effect of the fil-

ter operator on the signal in the stretching zones and in

the uniform low-resolution domain. For this reason we

represent the error separately in the stretching domain

(the Wind_RMS_SG score) and in the uniform low-

resolution domain (the Wind_RMS_LR score). The

curve Wind_RMS_SG represented in Fig. 15b has similar

shape with the curve Wind_RMS and the errors stabilize

after the same truncation distance is reached. This means

that the most important part of the error results from the

application of the filter in the stretching area. After the

stabilization of the error, this is about 0.3% of the error

calculated if the truncation distance is small, so we con-

clude that about 75% of the total error derives from the

stretching area. The last curve represented in Fig. 15c

shows the effect of the convolution filter on the large-

scale signal. Because the small-scale signal is introduced

gradually in the stretching domain and in the uniform

high-resolution domain, the only signal represented in the

low-resolution area is the large-scale one. Inspecting the

shape of the Wind_RMS_LR curve, we remark that for

FIG. 15. (a) The Wind_RMS score as a function of the truncation

distance for three convolution filters with weighting functions

w
1

:
L

a
5 3000 km

L
b

5 1000 km

�
, w

2
:

L
a

5 3000 km
L

b
5 800 km

�
, and w

3
:

L
a

5 3000 km
L

b
5 600 km

�
applied on the same test function containing a noise with Ln 5

400 km; (b) the Wind_RMS_SG score is calculated only in the

stretching areas; and (c) the Wind_RMS_LR score is calculated in

the uniform low-resolution area.
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the weighting function w3 this is almost flat, meaning

that in this case the filter does not affect the large-scale

signal. This weighting function has the narrowest foot-

print corresponding to the smoother spectral response

(the attenuation bandwidth is 2400 km). If the attenu-

ation bandwidth is decreased so the spectral response is

less smooth, then the weighting function has a larger

footprint and it needs a larger truncation distance in

order to provide a good filter response. This is demon-

strated by the oscillations that appear on the Wind_RMS_

LR curve shape for w2 and w1. As in the previous cases,

the errors stabilize after the same truncation distance is

reached. The values of Wind_RMS_LR score are close

to zero for large truncation distances, but there is al-

ways a small difference of 0.2% from the initial error,

which can be explained by unavoidable numerical ap-

proximations due to the application of the filter on the

variable mesh.

5. Conclusions

The approach of variable resolution has proven to be

a viable alternative solution to nested limited-area models

for regional climate modeling. Gradually varying resolu-

tion of the stretched grid away from the area of interest

reduces the computational noise, but it does not resolve

the issue of the anisotropy of the grid outside the uniform

high-resolution zone.

An adequate filtering technique designed for a vari-

able stretched grid can be a powerful tool to control

small scales improperly represented outside the high-

resolution region of the zone of interest. The so-called

‘‘arms-of-the-cross’’ regions are characterized by dif-

ferences between gridpoint spacing in latitudinal and

longitudinal directions, which may induce all sorts of

numerical artifacts as well as make difficult the param-

eterization of subgrid-scale physical processes.

A convolution filter developed by SL11 was here

adapted in this study for polar geometry. The convolu-

tion filter uses a weighting function that is the inverse

Fourier transform of the desired response function in one

dimension. In practice, the convolution can be truncated

at some finite distance where the weighting function be-

comes sufficiently small, which reduces substantially the

computational cost, especially in two dimensions. The

main distinction of this convolution filter is its formulation

based on physical distance rather than on gridpoint dis-

tances. Being independent of the underlying grid structure,

this filter provides an almost isotropic response, which can

conveniently be used to control small-scale noise outside

the uniform high-resolution area. The application of this

filter for a polar grid can also naturally handle the pole

problem characteristic of the latitude–longitude grids.

In the first part of the paper, the mathematical for-

mulation for the convolution filter adapted for 2D polar

geometry was described. We found that for application

on a polar grid, the 2D convolution could be conve-

niently cast into the successive applications of 1D con-

volution in radial and azimuthal directions.

The second part of the paper presented applications in

2D uniform and variable stretched grids. The convolu-

tion filter adapted for polar geometry could be applied

for scalar variables to resolve the anisotropy of the

computational stretched grid or for the pole problem.

Choosing cylindrical harmonics or double cosines sig-

nals as test functions, we showed that weighting func-

tions could be designed to remove specific noises. This is

an important point in the design of this filter operator

because it can resolve at the same time both problems

mentioned earlier, without the necessity of changing the

filter formulation to respond to a certain type of noise. To

save on computations, the convolution can be truncated

at some finite distance where the weighting function be-

comes sufficiently small, resulting then in an approximate

response. Tests have revealed that the error decreases for

larger truncation distances and that the filter conserves

approximately the filtered quantities.

It is a common practice to filter the fields (or some-

times their tendencies) in order to remove high wave-

numbers that otherwise will affect the accuracy of a

climate model. Generally these damping methods are

applied to variables such as temperature, pressure, and

humidity, and if filtering is needed for momentum, it is

generally applied to corresponding scalar quantities such

as streamfunction and velocity potential or vorticity and

divergence. In our study we proceed to the filtering of the

wind vectors themselves. The filter is applied simulta-

neously for both wind components and the convolution is

applied successively in radial and azimuthal directions.

With appropriate definition constraints and representing

the wind components for all points contributing to the

convolution relative to the same reference system as the

application point, we were able to remove small-scale

noise superimposed on large-scale signals.

In conclusion, the proposed filtering approach ap-

pears to be an attractive alternative to a conventional

grid point–based smoothing operator for stretched-grid

models. Its versatility, applicability for all variables of

a model, and filtering for different purposes, such as

removing the anisotropy of a variable grid or resolving

the pole problem, offers an attractive possibility to adapt

this approach for spherical variable-resolution global

climate models.
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