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ABSTRACT 

Dendrimers are well-defined, hyperbranched, monodisperse, three dimensional 

macromolecules which have attracted the focus of the scientific community for more 

than three decades now. Due to their unique architectural design and morphological 

prope1iies, dendrimers have been extensively used in areas such as nanomedicine, 

catalysis, tissue engineering, diagnostics and electronics. In spite of the large number 

of reports on dendrimer synthesis, only a few have reached commercial availability. 

This limitation is due to the challenges associated with their complex multistep 

syntheses and the high cost involved. There is a need to expand the way dendrimers 

have been synthesized using classical strategies involving the same repeating units, 

which do not permit full control oftheir potential biophysical properties. To meet the 

increasing demands for dendrimers due to their numerous applications, there is a 

requirement for accelerated and modular synthetic strategies which can provide rapid 

and accurate access to these macromolecular entities. This thesis is an attempt to 

develop highly efficient and versatile synthetic strategies which can provide quick , 

easy, and economical routes to highly diversified dendrimers. We have developed a 

novel "onion peel strategy" for the construction of glycodendrimers using different 

families of building blocks at each layer of the dendritic growth. Dendrimers with 

chemically heterogeneous layers were constructed via a combination of successive 

highly efficient, versatile, and robust chemical reactions, namely thiol- ene or thiol

yne, esterification, and azide- alkyne click chemistry. Dendrimers constructed using 

this methodology are fundamentally different to conventional dendritic systems that 

are usually built fi:om repetitive building blocks (nanosynthons). The dendrimer's 

surface was decorated with N-acetyllactosamine azide using click chemistry which 

led to new glycodendrimers having high affinities as compared to the corresponding 

monovalent analogs towards Erythrina cristagalli, a leguminous lectin known to bind 

natural killer cells through its galactoside recognition ability. We further evaluated 
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the versatility of this strategy by applying both convergent and divergent routes to 

produce dendrimers with rationally programmed branching units. Both the synthetic 

routes were efficient to synthesize structurally perfect dendrimers emplo ying our 

"onion pee l approach". One of the g lycodendrimer constructed using this 

methodology resulted in one of the best multivalent ligands known against the 

virulent factor from a bacterial lectin isolated from Pseudomonas aeruginosa. In 

arder to further explore the potential of our strategy, we deve loped a facile and 

accelerated microwave assisted "anion peel approach" for dendrimer synthesis to 

introduce a large number of functional groups at lower generations. In general, large 

nu mbers of end groups are achieved at higher generations after multi step synthesis 

using trivial synthetic protocols. Due to the increasing applicat ion of dendrimers 

having severa! end groups in gene delivery and electronics, new accelerated 

approaches are required which can generate monodisperse dendrin1ers at industrial 

scale. We prepared generation three dendrimers involving hypermonomers and 

hypercores to afford 108, 180 or 252 hydroxyl end groups. The synthetic sequence 

employed the combination of orthogonal building blocks and highly efficient 

chemical transformations hence did not require any protection/deprotection steps. 

This is one of the rarest reports where such highly dense dendritic structures have 

been acquired at lower generat ions. These dendrimers showed very low cytotoxicity 

which makes them potential candidates for biomedical applications. The onion peel 

strategy presented herein is an additional contribution to the wide arsenal of existing 

methodologies towards synthetic dendrimers and it should open new horizons in 

dendrimer research for the synthesis of much richer family of functiona lized complex 

dendritic architectures in a rapid and efficient manner. 
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RÉSUMÉ 

Les dendrimères sont des macromolécules tridimensionnelles bien définies, 

hyperbranchées, monodisperses, qui attirent l' attention de la communauté scientifique 

depuis maintenant plus de trois décennies. De par leur conception architecturale et 

leurs propriétés morphologiques uniques, les dendrimères ont été employés dans de 

nombreux domaines tels que la nanomédecine, la catalyse, l' ingénierie tissulaire, le 

diagnostic et l' électronique. Malgré le grand nombre d'études portant sur la synthèse 

de dendrimères, un nombre restreint a atteint l' étape de commercialisation. Cette 

limite est due à deux défis : la synthèse multi étapes complexes et les hauts coûts 

impliqués. Il est donc nécessaire de développer de nouvelles stratégies de synthèse de 

dendrimères, les classiques, impliquant la même unité de répétition, ne permettant pas 

un plein contrôle des propriétés biophysiques potentielles. Afin de répondre à la 

demande croissante en dendrimères dans de nombreux domaines, des stratégies de 

synthèse accélérées et modulaires, permettant d'accéder rapidement et précisément à 

ces entités macromoléculaires, doivent être envisagées. Ce projet de thèse porte sur Je 

développement de stratégies de synthèses hautement efficaces et versatiles permettant 

d'obtenir rapidement, fac ilement et de manière économique des dendrimères 

hautement diversifiés. Nous avons développé une nouvelle stratégie de type "pelure 

d'oignon" pour la construction de glycodendrimères utilisant différentes familles de 

fragments à chaque couche de la croissance dendritique. Les dendrimères avec des 

couches chimiquement hétérogènes ont été construits via une combinaison de 

réactions successives, hautement efficaces, versatiles et robustes, à savoir thiol-ène 

ou thio l- yne, estérification, et chimie "click" ou cycloaddition azoture- alcyne. Les 

dendrimères construits à partir de cette méthodologie sont fondamentalement 

différents des systèmes dendritiques conventionne ls, qui sont généralement construits 

à partir de fragments répétit ifs (nanosynthons). La surface des dendrimères a été 

décorée d' azoture de N-acetyllactosamine menant, après chimie . "click", à de 
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nouveaux glycodendrimères ayant une haute affmité comparés aux analogues 

monovalents correspondants, vis à vis de la lectine légumineuse, Erythrina 

Cristagalli, comme pour lier des cellules NK grâce à sa capacité à reconnaître les 

galactosides. Par la suite, nous avons évalué la versatilité de cette stratégie en utilisant 

à la fois les voies divergente et convergente afin d 'obtenir des dendrimères avec les 

unités de branchement désirées. Chacune des voies de synthèse a été efficaces afin de 

synthétiser des dendrimères parfaitement structurés via notre approche "pelure 

d 'o ignon". Un des glycodendrimères construit via cette méthodologie s'avère être un 

des meilleurs ligands multivalents co mm contre le facteur de virulence d 'une lectine 

bactérienne isolée de Pseudomonas aeruginosa. Afin d 'approfondir le potentiel de 

notre stratégie, nous avons développé une approche "pelure d 'o ignon" facile et 

accélérée, à l'aide d 'énergie microonde, pour la synthèse de dendrimères en 

introduisant un grand nombre de groupements fonctionnels aux plus basses 

générations. Généralement, un grand nombre de groupements terminaux est atteint 

aux plus hautes générations, après des synthèses multi étapes utilisant des protocoles 

usuels . Due à l'application croissante des dendrimères ayant plusieurs groupements 

terminaux, dans la libération de gènes et l' électronique, de nouvelles approches 

accélérées, pouvant générées des dendrimères monodisperses à l'échelle industrielle, 

sont nécessaires . Nous avons préparé des dendrimères de troisième génération 

impliquant des hypermonomères et des hypercoeurs afin d'obtenir 108, 180 et 252 

groupements terminaux hydroxylés. La séquence synthétique a combiné 

l' introduction de fragments orthogonaux et des transformations chimiques hautement 

efficaces, ne nécessitant aucune étape de protectionldéprotection. Il s' agit d' un des 

plus rare cas où des structures dendritiques aussi denses ont été obtenues à des plus 

basses générations. Nos nouveaux dendrimères ont montré de très faibles 

cytotoxicités, ce qui en fait de très bons candidats potentiels pour des applications 

biomédicales. La stratégie "pelure d'oignon" présentée ici est une contribution 

additiom1elle au large arsenal des méthodologies existantes dans la synthèse de 

dendrimères et permettra d'ouvrir de nouveaux horizons dans la recherche en 
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dendrimères portant sur la synthèse rapide et efficace d' architectures dendritiques 

complexes fonctionnalisées . 
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CHAPTER 1 

INTRODUCTION AND SCOPE OF THE THESIS 

1.1 Introduction to dendrimers: 

Dendrimers are hyperbranched, monodisperse tlu·ee dimensional tree like 

macromolecules which have been extensively studied during the last twenty years. 1
·
5 

Historically, the concept was the brainchild of Flory, who proposed the theoretical 

evidence for three dimensional hyperbranched polymerie architectures in 1940s.6·
9 

The scientific community took almost 40 years to interpret this riddle and finally a 

German sc ientist Fritz Vogtle successfully synthesized these molecules in 1978 at 

University ofBonn.10 He referred the cascade like synthesis of polyamines as cascade 

molecules. The synthesis involved the Michael reaction of acrylonitrile with mono or 

diamine derivatives to yield cyano terminated molecules which were further reduced 

to amines in the next step to yield polyamine compounds (Scheme l-1) . 

• 
1 

. ! "\ ! "\ i l CO(Il), NaBH.._ 

f

N'I CO(m,N•BR,, ! \ A~ M.OR,lbr N N 

NC J. l___C~cOR,lbr NH, 2 NH, fN'l CN\ ! \ (\ 
NC CN CN CN î 

J NHz NH1 NH1 NH2 

Scheme 1- 1 Synthesis of cascade molecules by Vogtle .10 

Tiu·ee years later, in 1981 R. G. Denkewalter patented lysine based highly 

branched macromolecules up to 10111 generation (Scheme 1-2) .3 In 1985 Donald 

Tomalia co ined the term 'dendrimer' for these macro-entities and got acceptance 

from who le scientific community. 11 In the same year, Newkome assigned his 
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branched structmes the term 'arborais' which consisted of saturated hydrocarbon 

skeleton. 12 
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Scheme 1-2 Synthesis ofPoly-Lysine dendrimer by Denkewalter and co-workers in 
1981. 3 

The word 'dendrimer' bas been derived fi:om Greek language and consists of 

two words ' dendron' means "tree like" and ' meras ' means "part of'. Dendrimers are 

constructed in a sequential manner around a central core in a layer by layer fashion, 

where each layer provides new generation. The size (hydrodynamic radius) of the 

dendrimers tends to increase linearly with increase in generation numbers. In general, 

lower generation dendrimers are more planer and asymmetrical, while higher 

generation dendrimers tends to become spherical which results in interna! cavities. 

There is an exponential increase in the number of surface groups with an increase in 

generation number. As the dendrimers grow bigger and bigger, the surface becomes 

more crowded and finally it cannat grow any further due to the steric factors 

involved. This phenomenon is ca lied as "star burst limit effect" and occurs at different 

generations for different dendrimers. Figure 1-1 shows the anatomy of a dendrimer. A 
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typical dendrimer is made up of fo llowing structural components: 1) a central core; 2) 

repetitive branching units which form the generations, 3) peripheral end groups, and 

4) internai cavities. Different components of dendrimers contribute to different 

properties. The core determines the overall shape and directionality of the 

dendrimers. The central core also affects the number of surface groups since the 

multiplicity of branches depends upon the type of core around which the dendrimer is 

built. The internai cavities of the dendrimers provide opportunities to physically 

entrap the guest species e.g. drug molecules in case of applications for drug delivery. 

Ali the structural elements listed above decide the physical and chemical properties of 

dendrimers but the solubility of these macromolecules mostly depends upon the 

nature of end groups. 

Figure 1-1 Anatomy ofdendrimer. 
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1.2 Myths and facts about dendrimers: 

Ever since their discovery, dendrimers have constantly found new applications in a 

variety of disciplines ranging from catalysis, sensing, electronics and drug and gene 

delivery. However, during the early years of their invention, many myths existed 

about these macromolecular entities. Scientists assumed that the cost of constructing 

dendrimers was too high to be useful for any kind of commercialization, and they 

were far away from real world app lications. These myths have been knocked down 

by Starpharma, an Australian based pharmaceutical company, who has developed 

world's first dendrimer based drug VivaGel® which prevents the transmission of 

infection against HIV virus, HSV-2 and other sexually transmitted diseases (Figure 1-

2).13 In addition, it also has spermicidal properties, tbus can serve as a potential 

contraceptive. The drug has already been approved to be launched in the markets in 

Japan and Australia. The active component of the drug, SPL7013 , is a fourth-

generation polylysine dendrimer harbouring thirty-two sodium 1-

(carboxymethoxy)naphthalene-3 ,6-disulfonate moieties on the surface attached via 

amide linkages. It is believed to work by attaching gpl20 glycoproteins present on 

the surface of HIV loop and blocking the ir attachment with CD4 receptors present on 

the host cell. 

Figure 1-2 Structural representat ion ofSPL 7013 , the active component of 
VivaGel. 13 
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The Stratus® CS (Oade Behring, Inc.) is another dendrimer based commercial product 

which is used as a fast detection tool for myocardial ischemia. 14 This specifie 

cardiac biomarker rapidly detects the presence of cardiac troponins in the serum 

which strongly indicates myocardial damage. ln these systems, antibodies are frrst 

attached to the surface of 5111 generation P AMAM dendrimers which are positively 

charged, and then these antibodies are glued with a glass fibre with the help of 

electrostatic interactions. The US army research laboratory has developed dendrimer

based diagnostic agent for anthrax detection, which is also referred as "Alert Ticket" . 

SuperFect of Qiagen is a very famous gene transfection product which consists of 

·spherical polycationic dendrimers consisting primary amines on periphery and 

tertiary amine on the branching units. The cationic polyamines can interact with 

negatively charged phosphates present on nucleic acids and the dendriplex formed 

can be taken up into the cell by the process of endocytosis. Gadomer-17 also known 

as Gd-DTP A-17, SH L 64 3 A, is an investigational magnetic resonance contrast agent 

based on dendrimers currently in phase II clinicat trials. 15 It is a po !y-lysine 

dendrimer which consists of 24 terminal amino groups which are covalently linked to 

24 gadolinium chelate groups capping the periphery of the dendrimer. Dendrimers 

also have applications in beauty industry and L'Oreal possesses highest number of 

patents on dendrimers. Moreover, a wide variety of dendrimers are commercially 

available these days (Figure 1-3). 

1.3 Applications: 

Dendrimers have been explored for applications in a wide range of fields such 

as 1 . 16-1 8 cata ys1s, drug and gene d 1. 19-22 e 1very, . 23.24 sens mg, electronics, 25
·
26 

diagnostics27
' 

28 and nanoengineering29 (Figure 1-4). The dendrimers' unparalleled 

molecular uniformity, monodispersity, presence of internai cavities, and 

multifunctional surface make them potential candidates for various applications. The 

surface, interior as well as the core of the dendrimers can be used to attach different 

functional moieties. 



Figure 1-3 Chemical structures of the most common commercially avai lable 
dendrimers. 
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Dendrimers have been we il explored for applications in drug de livery due to 

their monodisperse architecture and nanometer size range. A variety of dendrimers 

have been evaluated thoroughly for drug delivery, for example, PAMAM,30
· 

31 PPI ,32 

poly-L-Iysine33 and triazine dendrimers34
. The drug molecules and targeting agents 

can be covalently attached to the multivalent surface of the dendrimers or can also be 

physically incorporated into the internai voids of higher generation dendrimers. 35 The 

dendrimers can provide site spec ifie drug de li very and controlled release of the drugs, 

and can in turn significantly improve the bioavailability as we il as reduce the 
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cytotoxicity of the drugs by decreasing their undesired localization. In addition to 

this, dendrimers can also facilitate the passive targeting of drugs to so lid tumors due 

Figure 1-4 Representation of applications of dendrimers. 

to leaky vasculature at tumor sites and the phenomenon is known as enhanced 

permeation and retention (EPR) effect. Recently, an interesting piece of work has 

been reported by Murdoch and coworkers. 36 They have developed molecularly 

precise dendrimer-camptothecin (CPT) conjugates as macro mo lecular prodrugs for 

cancer treatment with a tunable release of drug (Figure 1-5) . They buried the anti

cancer drug CPT inside poly-L-lysine dendrimers as their core and the dendrimer

drug conjugates had fixed drug content. In addition to this, as the drug was not 

present at the surface and thus could not interact with blood components keeping its 

pharmacokinetics intact. The drug release rates were tunable depending upon the 

generation of dendrimer, surface chemistry and pH. 
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Figure 1-5 Structure of dendrimer-Camptothecin conjugate. 36 

Weil defmed architecture of dendrimers and high ratio of multivalent surface 

moieties to molecular volume also make these materials potential candidates to be 

used to develop non-viral vectors for the delivery of nucleic acids. The interaction 

between cationic dendrimer and nucleic acid is based on electrostatic interactions and 

the resulting complex is called dendriplex. A wide variety of polycationic dendrimers 

have been explored for gene delivery including, PAMAM, poly(propylene imine) 

(PPI), poly(L-lysine), carbosilane, and triazine dendrimers etc. 37 Among these, 

P AMAM dendrimers have been most widely reported as siRNA delivery vectors due 

to their ease in synthesis and commercial availability. Although dendrimer-based 

gene delivery vehicles have shown considerable potential as tools for the 

development of gene therapy, still most of them have not been explored for in vivo 

administration. In a recent example, Peng and coworkers have reported a novel 

amphiphilic dendrimer-based nanoassembly as a versatile carrier for functional 

siRNA delivery (Figure 1-6).38 This amphiphilic dendrimer could self assemble into 



9 

vesicle like dendrimersome and upon its interaction with siRNA could rean·ange itself 

to smaller spherical micelles in order to maximise its interaction with siRNA. This 

dendrimer had the combined advantages of both polymer and lipid vectors and could 

successfully deliver siRNA into various cell types including human primary cells and 

stem cells which are quite challenging. This amphiphilic dendrimer based 

supramolecular nanoassembly vector for effective and safe delivery of siRNA 

represents a novel design in the field of siRNA based gene therapy. 
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Figure 1-6 A) The structure of amphiphilic dendrimer and B) schematic illustration 
of self-assembly of dendrimer upon interaction with siRN A. 38 

Dendrimers have also gathered a great deal of attention to be used for imaging 

contrast agents. 39 The highly branched interior and polyvalent peripheral structure 

offers unique advantages for dendrimers to be useful for the applications of contrast 

agents for various biomedical applications. Multiple imaging agents can be directly 

attached to the periphery of the dendrimers in order to have dual or multi modal 

imaging capabilities. There are different ways by which the dendrimers can be 

modified to be used as contrast agents. For example, dendrimers can be conjugated to 

the fluorescent molecules or can be used as templates to form dendrimer trapped or 

stabilized metal nanoparticles. Dendrimers based multimodal contrast agents can 

highly improve the diagnosis accuracy. In a recent study by Shi et. al. , 

multifunctional gadolinium-loaded dendrimer entrapped gold nanoparticles (GdeAu 
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DENPs) were developed for dual imaging applications involving computed 

tomography (CT) and magnetic resonance (MR) (Figure 1-7).40 

Figure 1-7 Schematic illustration of gadolinium-loaded dendrimer entrapped gold 
nanoparticles. 40 

They used 5th generation amine terminated PAMAM dendrimers modified with 

Gd(III) chelator and polyethylene glycol (PEG) monomethyl ether to act as templates 

to construct go ld nanoparticles in the interior of dendrimer. Due to the presence of 

double radiosense imaging materials go ld nanoparticles and Gd(III) within one 

system, the formed GdeAuDENPs could show both r1 relaxivity for MR imaging 

mode and X-ray attenuation for CT imaging mode, thus enabling CT/MR dual mode 

imaging ofthe heart, liver, kidney, and bladder ofrat or mouse within a time fi·ame of 

45 min. These types of advanced imaging tools can be highly beneficiai for the 

detection of early stage cancer with great accuracy. 

Catalysis is another promising area where dendrimers have shown their 

potential.4 1 Since their first repolis by the groups of van Leeuwen,42 Brunner,43 van 

Koten,44 and DuBois,45 the field has advanced rapidly and severa! examples are now 

available in literature showing the role of dendrimers as catalysts. 46 The advantages 
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of using dendrimers to anchor catalytic sites are due to their weil defined structures 

and molecular features , which can be highly useful for detailed analysis of catalytic 

eve nts. High generation dendrimers consist of nanoscopic internai cavities and these 

cavities can serve as nanoscale reactor sites for catalysis. Dendrimers provide a 

unique platform where the advantages of both homogeneous and heterogeneous 

catalysis can be combined together. The dendrimer based catalysts can be designed in 

two ways: 1) The multivalent periphery of the dendrimers can be used to introduce 

multiple catalytic sites at the surface of dendrimers, 2) The catalytic site can be 

introduced at the central core of the dendrimer due to a weil defmed nano

environment and presence of voids in their interior which are isolated from the 

outside environment. The presence of large number of catalysts on the surface of 

dendrimers can provide additive or multivalent dendritic effect in terms of catalyst 

activity, which in turn will require Jess catalytic loading. Catalysts located at the 

periphery of the dendrimers can become easily accessible for various molecular 

interactions. On the other band, large size of dendritic catalysts makes it easier to 

remove them from reaction mixture by simple precipitation or nana-filtration method. 

Moreover, the properties of dendritic catalysts can be easily fme-tuned by altering the 

dendrimer structure, size, shape, solubility and number of end groups. A large 

nu mber of articles are available in the literature dealing with the applications of 

dendrimers in the field of catalysis. 46 An interesting example of application of 

dendrimers in catalysis has been recently reported by Astruc et. al. 47 They have 

developed a dendrimer based recyclable catalyic nanoreactor for the catalysis of 

extremely useful Cu(I) catalyzed alkyne-azide Click (CuAAC) reaction in water 

using as low as parts per million concentration of Cu(I) . The amphiphilic dendrimer 

having 27 triethylene glycol termini and 9 intradendritic triazo le rings works as a 

molecu lar micelle nanoreactor and considerably accelerates the CuAAC reaction 

using Cu(hexabenzyl triaminoethylamine)Br as a catalyst (Figure 1-8). In addition, 

this dendrimer nanoreactor is fully recyclable and can be used multiple times without 

decomposition. Moreover, as a synergistic effect, this dendrimer with intradendritic 
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triazole rings also activates commercial CuS04.5H20 and sodium ascorbate in water 

under ambient conditions decreasing their amounts upto 4 ppm for quantitative yields 

and 1 ppm for 50% yields. The development of this fully recyclable dendrirner 

nanoreactor for click reaction with a considerable decrease in the use of copper 

catalyst is a remarkable achievement for click reaction, and can be highly beneficiai 

for the use of this reaction for biomedical applications. 

dendrimer 
nanoreactor 
and ligand ~ 

' . 

Figure 1-8 Dendrirner nanoreactor for catalysis of Cu(I) catalyzed click reaction. 47 

Dendrimers have also shawn promising results for application in waste water 

treatment.48
· 

49 They have unique physicochemical prope11ies and excellent abilities to 

coordinate metal ions which make them potential candidates to be used as separation 

and reaction media for water purification. Dendrimers can encapsulate a wide range 

of cations, anions and organic compounds present in water. The presence of toxic 

metals e.g. lead in water is a serious threat to human health. Even minute 

concentrations of these heavy metals are toxic. Adsorption is a very useful and 

economie teclmique in recent time to remove heavy metals from aqueous so lutions , 

and most widely the activated carbon has been used for this purpose. But being 

expensive, constant efforts were made to find alternatives and dendrimers seem to 

have potential for this application. The recent example of use of dendrimers for Pb2
+ 

ions adsorption from aqueo us solutions is reported by Woodcock and colleagues.48 
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They used generation 4 polyamidoamine dendrimer immomobilized over titanium(iv) 

oxide as adsorbent to remove lead ions fi·om aqueous solutions and the maximum 

capacity of P AMAM dendrimers to adsorb Pb2
+ ions came out to be around 400 

mg/g. 

In addition to these, dendrimers have applications as demulsifiers,50 bacterial 

biofilm inhibitors,51 in detection of explosives, 52 and as therapeutic age nts53
. Despite 

this long list of applications, dendrimers teclmology still has a long road ahead. 

1.4 Strategies for dendrimer synthesis: 

!. 4.1 Classical methods: There are many exist ing synthetic routes and protocols for 

dendrimer construction but dendrimer synthesis is generally followed by two most 

widely used classical synthetic approaches: divergent 11 and convergent54
· 

55 (Figure 1-

9). Each approach has its own advantages and disadvantages. 

Dendron 

Convergent 

l 
~Core 

! 
Core 

1 
Divergent 

Figure 1-9 Divergent and convergent methods for dendrirner synthesis. 

1.4.1.1 Divergent Method: Ali the pioneers in the field like Tomalia, 11 Vogle 10 and 

Newkome 12 used divergent approach for the construction of dendrimers. In fact for 
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the frrst decade after theil· discovery, every single dendrimer was constructed usli1g 

divergent method. The divergent method is an inside-outward approach, where the 

synthesis starts at the core and progresses towards the periphery generation after 

generation in a repetitive manner. The classica l divergent method involves protection 

and deprotection, and the activation is requu·ed at each generation which dramatically 

increases the number of reaction steps. The divergent approach allows to construct 

higher generation dendrimers as reported by, Tomalia et al who have synthesized 

dendrimers up to seventh generation usmg divergent approach around 

ethylenediamine core via iterative sequence of Michael addition and aminolysis 

(Scheme 1-3). 11 

G 10 

Repetition of 1 
and 2 

Scheme 1-3 Divergent synthe sis of P AMAM dendrimers with ammonia as a core. 11 

Another advantage of using divergent methodology is that the synthesis can 

be stopped at any generation and surface can be functionalized with various end 

groups which is not possible during the convergent growth. Divergent synthesis is the 
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only successful approach which provides high generation dendrimers in kilogram 

scale and most of the commercially available dendrimers are synthesized using 

divergent approach. The main drawback of divergent strategy is that as we proceed 

towards higher generations, the chances of getting defect-free dendrimers decrease. 

This is because the number of end groups increases exponentially with each 

generation. Due to the dense packing of surface groups at higher generations, the 

steric factors start to play their role and prevent the full conversion even with the 

addition of large excess of reagents and monomers. The physical and chemical 

properties of dendrimers with slight imperfections are so close to the structurally 

perfect dendrimers that it is almost impossible to purify those using standard 

teclmiques. These reasons make the dendrimers synthesis troublesome and time 

consuming. In addition, the divergent approach does not provide us the freedom to 

introduce multiple functions at the periphery due to identical nature and reàctivity of 

surface groups. 

1.4.1.2 Convergent Method: In order to deal with the problems of divergent synthesis, 

Fréchet and Hawker in 1990 introduced a convergent approach for dendrimer 

synthesis.55 The methodology was used to construct dendrimers with poly aryl ether 

units (Scheme 1-4). This is an outside inward approach wh ich starts with the 

synthesis of dendron wedges followed by their attachment onto the core. The 
' 

convergent synthesis concept is very similar to the retro synthesis where a target 

chemical entity is achieved by backward synthesis. The convergent method produces 

dendrimers with much higher purity as the number of sites per reaction are far less 

than in the case of divergent, thus reducing the number of structural defects. The 

dendron wedges are mucb smaller in size than their dendrimer analogs and are thus 

easier to purify at each step. Overall, there is a greater control and reduced 

consumption of reagents throughout the synthesis . The convergent approach can also 

be used to develop multifunctional dendrimers by attaching different dendrons to 

polyfunctional cores. The drawback of convergent methodology is that only lo w 

generation dendrimers can be successfully achieved with this methodology as the 



16 

linking of higher generation dendron wedges on to the core 1s tedious due to the 

invo lvement of steric hinderance. 

G4 de nd rimer 

Scheme 1-4 Synthesis ofpoly benzyl ether dendrimers by convergent method. 

1. 4. 2 Accelerated approaches for dendrimer .synthesis: With the increasing popularity 

of dendri mers and their great potential in many vibrant fields , the scientific 

community sensed the urgency of highly efficient alternative synthetic protocols for 

theu· development. The last few years have seen exponential increase in the number 

of publications and patents in the field of dendrimer chemistry but not many 

dendrimers have successfully fulfilled the commercial requirements. The classical 

approaches used for dendrimer synthesis are very long, tedious and time consuming. 
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In addition, huge excess of reagents make the purification troublesome. On an 

average, two synthetic steps are required for each generation growth, for example, at 

!east ten reaction steps are needed to cons tru ct a 5111 generation P AMAM dendrimer. 

The situation becomes even more demanding in the case of high generation 

dendrimers. Therefore, innovative synthetic protocols are desired which can provide 

the shortest possible route by decreasing the number of reaction steps. 

1 

1.4.2.1 Double stage convergent method: To improve the existing strategies and for 

rapid synthesis of high generation dendrimers, first attempt was done by Fréchet and 

coworkers in 1990 who developed double-stage convergent method. 56 To build high 

generation dendrimers using divergent methodology can lead to imperfect dendrin1ers 

due to the presence of huge number of end groups involved in chemical conjugation 

and, on the other band, with convergent approach steric factors are involved due to 

the use of bulkier dendrons. This double stage convergent approach was the 

combination of convergent and divergent strategies where generation 3 flexible 

dendrons were prepared with protected peripheral groups (Scheme 1-5). During the 

next step these dendrons were clicked on the multifunctional core through the focal 

points. Subsequent deprotection of terminal groups yielded generation 3 flexible 

dendrimer with large number of reactive termini on the surface, which was further 

reacted with chemically different more rigid 4 111 generation dendron in a divergent 

manner to provide a perfect generation 7 dendrimer in 61% yield. The constructed 

dendrimer consists of two different layers, a flexible inner layer and a rigid outer 

layer; and due to heterogeneous layers was known as layer block dendrimer. The 

success of this approach lies in the deliberate selection of flexible hypercore made up 

of longer spacers which reduces the impact of steric hindrance. The other advantage 

provided by this approach was the less number of reactive end groups at the periphery 

of hypercore as compared to numerous groups in divergent approach which insures 

the formation of perfect dendrimer. The drawback of this strategy is that it was not 

able to minimize the number of reaction steps as a lot of reaction steps were still 
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required for the synthesis of dendrons and hypercore which were constructed using 

classical methods. Due to this reason it is not an extensively used method for 

dendrimer synthesis. 
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Scheme 1-5 Schematic representation ofsynthesis ofG7 layer block dendrimer using 
"6 double stage convergent method. ) 

1.4.2.2 . Hypermonomer strategy: In contrast to classical methods where generally 

AB2 and AB3 monomers are explored , hypermonomer strategy emplo ys the use of 

denser monomers like AB4, AB 5 and ABs which result in dendrimers with buge 

number of end groups in fewer steps. Most conunonly the lower generation dendrons 

are used as hyper monomers. This strategy was first reported by Fréchet and co-
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workers where they successfully constructed fifth generation poly-aryl dendrimer 

reacting generation 2 AB4 hypermonomer and generation 3 dendron having 8 benzene 

rings on the periphery (Scheme 1-6).57 Although this strategy exponentially increased 

the number of end groups and resulted in high molecular weight dendrimers but it 

couldn't remove protection/deprotection steps. In addition, it requires additional steps 

for the syntheses of hypermonomers. Hence, this is not a frequently employed 

strategy for dendrimer synthesis. 

Scheme 1-6 Schematic representation of synthe sis of po !y benzy 1 ether dendrimer by 
-7 

hypermonomer method.) 
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1.4.2.3. Double exponential method: This elegant accelerated approach was designed 

by Moore and co-workers in 1995 where they obtained generation 4 poly-phenyl 

acetylene dendrimer in a rapid mam1er (Scheme 1-7). 58 
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Scheme 1-7 Construction of G4 polyphenylacetylene dendrimer by double 
exponent ial method.58 

This method reqlllres an AB2 monomer in which peripheral groups and the focal 

point is protected with different protecting groups (Scheme 1-8). These protecting 

groups can be cleaved select ively under diffe rent chemical conditions, which results 

in two different sets of periphery activated and focal point activated mono mers. These 
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two monomers are coupled together to obtain a higher generation protected dendron 

which is finally stitched to the active multifunctional core. A coupling reaction 

between a second generation fo cal point act ivated dendron and second generation 

periphery activated hypermonomers can provide 4111 generation dendron. Notably, 

there is a generation jump after every iterat ive sequence of activation and coupling. 

This strategy is exce llent for the co nstruction of higher generation dendrimers as 

number of steps are reduced considerably due to a generation jump. As this strategy 

was the combination of divergent and convergent approaches, the drawbacks of both 

the strategies were present. Steric hindrance is the limiting factor for the synthesis of 

high generation dendrimers and the protectionldeprotection of different protecting 

groups requires highly selective reactions. 
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Scheme 1-8 Construction of dendrimers by double-exponential method. 
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Huit and co-workers used double exponential strate gy for the formation of 4 th 

generation 2,2-bis(methylol)-propionic acid (bis-MPA) based polyester dendrimers 

(Scheme 1-9).59 A second generation dendron was first constructed by convergent 

method which consisted of two acetonide protected peripheral groups and a focal 

point protected with benzyl group. Chemoselective deprotection of the dendron 

yielded two different monomers, one having free peripheral hydroxyl groups with 

protected focal point, and the other having free acid group with protected periphery. 

These two monomers participated in an esterification reaction to yield high 

generation dendron. U sing sequential deprotection and esterification, a 4th generation 

acetonide protected bis-MPA monodendron was produced which was further 

conjugated to a triphenolic core in a divergent fashion. Final deprotection step yielded 

a 41
h generation bis-MPA dendrimer having 48 hydroxyl groups on the periphery. 
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Scheme 1-9 Synthesis of G4 de nd rimer using double-exponential method. 59 
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1.4.2.4. Orthogonal accelerated synthesis: The concept of orthogonality was given by 

Bar any and Merrifield in 1977.60 According to this concept a particular protecting 

group can be selectively removed from a group of protecting groups by different 

chemical mechanism. Orthogonal accelerated synthesis involves convergent or 

divergent growth by employing two types of different AB 11 (AB2, CD-+) monomers 

which are harbouring chemoselective functional groups (Scheme 1-10). These 

functional groups should be selected in such a manner that the peripheral groups of 

one monomer will react only with the focal point of other mono mer. For example, it 

has been depicted in the scheme below where A group from AB 2 can only react with 

the 0 group in CD2 and B can only react with C, by involving two different 

chemoselective chemical reactions. This kind of 011hogonal approach removes the 

need of protection and deprotection steps, and pro vides much shor1er synthetic routes 

which makes dendrimer synthesis less tedious and more econom.ical. This type of 

strategy is very efficient for the construction of high generation dendrimers as every 

reaction step provides a new generation having exact double number of functional 

groups than the previous generation. The use of monomers with high branching like 

AB4, AB5, AB6 and AB7, can generate high density dendrimers at lower generations 

which can be useful for various applications. 

Scheme 1-10 Synthesis ofG4 dendrimer using orthogonal accelerated approach. 

The orthogonal strategy was proposed by Spindler and Fréchet back in 1993 , 

who synthesized poly(ether urethane) dendron using 3,5-diisocyanatobenzyl 

chloride and 3,5-dihydroxybenzyl alcohol as orthogonal monomers.61 A combination 
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of Williamson etherification and urethane formation reaction (between isocyanate and 

alcoho l) was selected for this one pot transformation. Unfortunately , because of low 

chemoselectivity and potency, these reactions couldn' t succeed to deliver high 

generation dendrimers. The first successful attempt for orthogonal strategy was 

provided by Zimmerman and Zeng in the year 1996 where 6th generation dendrimer 

was synthesized with this methodology by the combination of two orthogonal 

coupling reactions i.e. Mitsunobu and Sonogoshira coupling (Scheme 1-11).62 Using 

two orthogonally different monomer, 4th generation dendrimer was synthesized in 

just four steps. This path breaking work of Zimmerman and co-workers was followed 

by many reports where numerous ' new combinations of different highly 

chemoselective, robust and high yielding reactions were explored. Malkoch and co

workers63 developed accelerated approach where they used the cocktaii of 

chemoselectivity with highly efficient chemical transformations. A combination of 

CuAAC and etherification reactions was used to for the successful formation of 

generation 4 bis-MPA and Fréchet type dendrimer. 

G4 

GJ 

Mitsunobu: DEAD, Ph3P, THF 

Sonogosbira: Pd(PPh3),CI2, Cul ! 

Scheme 1-11 Orthogonal accelerated synthesis of generation 4 dendron using 
Mitsunobu and Sonogoshira reactions. 62 
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1.4.3. The 'Click' chemistry concept: Dendrimer synthesis has been a very tedious 

task and usually requires an excess of reagents. The situation becomes more difficult 

when the building blacks require multistep syntheseis. Moreover, the reactions which 

show high efficiency and great yields for the synthesis of lower generation 

dendrimers, can become inefficient for multiple sites in case of higher generation 

dendrimers, and lead to imperfect structures. Recently, the introduction of "click 

chemistry" to dendrimer , synthesis has benefitted the field in various ways. 64
-
68 The 

"click chemistry" involves the group of reactions which have high yields, high atom 

economy, can be performed in a variety of solvents, have tolerance to a wide range of 

functional groups and have minimum side products. 69 The emergence of "click 

chemistry" has brought a revolution in the synthesis of dendrimers. 

1.4.3.1. Cu (I) catalyzed alkyne-azide click (CuAAC): Although a number of 

reactions fall in the category of click chemistry, CuAAC is the most famous click 

reaction which fuses together an azide and alkyne stereospecifically to yield 1,4 

triazoles. During the last decade it has become a cornerstone for the scientific 

community. It was first repo1ted by Meldat7° in 2001 and published by Kolb69 at the 

same time. Historically 1,3 dipolar cycloaddition to form 1 ,2,3 triazoles was first 

introduced by Huisgen in 1963 but it was not explored due to requirement of high 

reaction temperature and pressure, and formation of mixture of 1,4 and 1,5 

regioisomers as the products. The addition of Cu(I) not only accelerated the rate of 

reaction by 107 but also made it regiospecific. CuAAC is a very powerful reaction 

which is having inherent potential to generate rapid liabraries of molecules in 

medicinal chemistry and due to this feature it has become a very desirable reaction in 

pharmaceutical industry. 

'-------------------- --- - - - --- -- - - - - -- - -



26 

.-N 

R~N~~ 
H+-{ 

!Cu] 

R1 H 

\__ ~ rsuJ1 
' R1 _. H~( (CuJe 

~w 
N-::.N, 
l......_ /N-R2 

R{\ • !Cu] R
1 == (Cula 

~ R2 R
2

) , 1 

(Cu] N-N @ , N0 
N'' •', N 

F<
( ' _;. [Cu] (Ill '\, . N3-R2 

.' -~ N~ lCu!a 
R " \ ,' 

I(>J1 1 ' 
• J • R [Cuja 

[Sufl 
1 

Figu 1·e 1-10 Proposed mechanism for CuAAC click reaction. 71 

The click chemistry was introduced to dendrimers synthesis by the groups of 

Hawker, Sharpless, and Fokin. 72 T hey constructed generation 4 dendrimer in a 

convergent way using CuAAC reaction in high purity and excellent yield (Scheme 1-

12). The synthesis involved the construction of generation three dendron with 

chloride functional group which was subsequently converted to an azide to participate 

in click reaction. The dendron was fu rther clicked on to a polyacetylene core to obtain 

generation 4 triazole dendrimer in a convergent way. Since then the click reaction has 

been extensively utilized both in the convergent and divergent synthesis of 

dendrimers as well as for the ir per ipberal functionalization. 64 
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Hawker and co-workers further exploited the potential of CuAAC and 

claimed to synthesize 6th generation dendrimer within a day. 73 For the construction of 

dendrimers, two different orthogonal building blocks AB 2 and CD4 were synthesized. 

Thiol-ene reaction was first performed reacting AB2 monomer with tri-ally! core 

which resulted in G 1 dendrimer consisting of six azido peripheral functionalities. The 

reaction was catalyzed photochemically by employing uv light and 2,2-dimethoxy-2-

phenylacetophenone as initiator. During the next step, CuAAC was performed using 

CD2 mono mer in which the propargyl group was reacted with 6 azido moieties on G 1 

dendrimer providing 02 dendrimer with 12 allylated groups. Repetition of thiol-ene 

and click chemistry in sequence yielded 6th generation dendrimer with high yield and 

high purity (Scheme 1-13). The combination of both click reactions and orthogonal 

building blocks provided high generation dendrimers within a day and proved that 

high generation dendrimers can be acquired with ease by opting highly efficient 

chemical transformation and orthogonal monomers. 
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Scheme 1-13 Synthesis of generation 6 dendrimer via thiol-ene and CuAAC click 
reactions. 73 

Although click chemistry contributes as a potential synthetic tool towards 

dendrimer synthesis, however the cytotoxicity of copper is a major drawback of this 

reaction for biological applications. To overcome this issue, significant modifications 

have been done, for example, the addition of copper sequestering agents and the use 

of copper wire, but none of these methods could result in completely copper free 

products, which resulted in limited use of this reaction for biomedical purposes. 74
· 

75 

To address this issue, Bertozzi and coworkers have developed an interesting strain 

promoted copper fiee click reaction for covalent m~dification ofbiomolecules. 76 This 

reaction works by the release of ring strain in a cycloalkyne precursor and ultimately 

lowers the activation energy for the cycloaddition process. Weck and coworkers first 

reported the use of strain promoted azide-alkyne click (SPAAC) reaction for 

dendrimer synthe sis. 77 Employing SP AAC strategy they were able to synthesized 

cyclooctyne functionalised Poly (amide) based dendrimers with high yields, under 

mild reaction conditions. 
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Scheme 1-14 Synthesis of dendrimers using SP AAC strategy. 77 

The absence of residual copper makes this mild and metal free reaction a highly 

useful tool to construct biomaterials. They used functionalized cyclooctynes as 

strained alkynes to facilitate the reaction without the addition of Cu(I) catalyst to 

construct poly(amide) based dendrons and dendrimers. (Scheme 1-14). Although 

SPAAC is becoming more and more popular in -the recent time, still it has sorne 

disadvantages. 1) lt is not as quick as copper catalyzed reaction. 2) The reaction 

provides mixture ofregioisomers i.e. 1,4 and 1,5 triazoles. 3) lt involves the multistep 

syi1thesis to construct cyclooctyne based building blocks and moreover, multiple 

cyclooctyne rings are introduced in the molecule. There is no doubt that copper 

catalyzed click is a better chemical transformation and clearly stands out of these 

existing non metal based methods. 

Recently, Syringaldehyde- and vanillin-based dendrimers have been reported 

by Du and co-workers where copper granules were employed for azide- alkyne click 

(Scheme 1-15). 78 The reactions were performed using microwave energy as there was 

no reaction observed at room temperature and upon refluxing. Microwave energy 

accelerated the rate of reactions and yielded generation one dendrimers with more 
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than 90% yield after 8 hrs. ICP-MS analysis showed negligible amounts of copper. 

The reaction provided products without the use of any reducing agents. The reaction 

was sluggish and took almost 8 hrs for only 3 click conjugations under microwave . 

The situation would become more difficult when multiple click reactions have to be 

perfo rmed or higher generation dendrimers are pursued. This methodology is also not 

suitable fo r microwave sensitive substrates. 
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Scheme 1-15 Microwave assisted synthesis ofpolyphenol dendrimers using copper 
gr a nu les. 78 

1.4.3.2. Thiol-ene click (TEC): The click reaction which is emerging very rapidly in 

the fie ld of dendrimer synthesis as an alternative of CuAAC is metal free thiol-ene 

click reaction. 79
•
82 It is indeed a very efficient reaction having comparable qualities to 

the CuAAC. Thiol-ene reaction was discovered almost 100 years ago and has been 
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used in making crosslinked networks. This reaction proceeds by the addition ofthiol 

radicals to non-activated double bonds either thermally or photochemically in an anti

Markovnikov's fashion to yield thioethers (Figure 1-11 ). Although radical initiation 

can be achieved by employing u.v light of 254 1m1 by homolysi s of sulphur and 

hydrogen bond, but for faster radical generation a variety of photoinitiators are used 

and most commonly used ones are benzophenone and DMP A. This reaction like 

CuAAC click is highly efficient, modular, orthogonal to wide range of functional 

groups, easy to execute, does not need inert environment, and sometimes can even be 

performed without solvent. Moreover, this reaction does not require the use of toxic 

transition metal catalysts. 

Figure 1-11 Mechanism of radical mediated thiol-ene click reaction. 

Thiol-ene reaction was used recently by Hawker and coworkers for dendrimer 

synthesis and they reported the successful synthesis of 4th generation poly(thioether) 

dendri mers in 8 steps using commercially available monomers .g2 Synthesis of 
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dendr imer was started with 2,4,6-triallyloxy-1 ,3,5-triazine selected as a core molecule 

on which photoinitiated thiol-ene was performed using thioglycerol as AB2 monomer 

in the presence of trace amount of 2,2-dimethoxy-2-phenylacetophenone as 

photo init iator. The reaction was carried out neat under u.v light of 365 nm for 30 

minutes which provided G 1 dendrimer harbouring 6 peripheral hydroxyl groups in 

quant itative yield. In the next step, 6 hydro xyl end gro ups of G 1 dendrimer were 

util ized in esterification reaction with 2,4-pentenoic anhydride to yield G 1 dendrimer 

having 6 alkene peripheral groups. The repeated sequence of thiol-ene and 

esterification was performed to synthesize 4111 generation poly(thioether) based 

dendrimer (Scheme 1-16). 

Roy and coworkers developed an acce lerated orthogonal approach by 

combining thiol-ene chemistry and SN2 reaction to construct multifunctional 

glycodendrimers. 68 They constructed two different orthogonal AB4 monomers 

(Scheme 1-17). First monomer consisted of a chloroacety l group as a focal point with 

4 ally! groups on the periphery while the other was a thiogalactoside consisting of

SH focal point and 4 hydroxyl groups on the surface. The synthesis began around A6 

hexaacetylated core by performing SN2 reaction using tètraallylated AB4 precursor 
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Scheme 1-16 Synthesis of generation 4 dendrimer via thiol-ene click and 
"fï . . 82 esten 1cat1on react10n. 

yielding 24 alkene groups at G 1 stage. In the next step, thiol-ene reaction between 

thiogalactoside mono mer and G 1 dendrimer yielded 2nd generation glycodendrimer 

harbouring 24 galactose on the periphery. No protection/deprotection steps were 

required throughout the process and monodisperse dendrimers were achieved with 

great ease in decent yields. 
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Scheme 1-17 Synthesis ofG2 glycodendrimer with 24 galactose units at the 
. h 68 penp ery. 
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During Jast 5 years, there has been a tremendous growth in the number of 

publications wbere tbiol-ene click is involved in generating wide variety of 

dendrimers and polymers. The scientific community bas declared it as a powerful 

alternative of copper catalyzed click reaction because it doesn ' t require any metal 

catalysts. This reaction has its own limitations and drawbacks. The excess of thiols 

used in the reaction cause problem by making disulfide and other impurities. The 

reaction produces certain percentage of Markonikov's addition product whicb is 

usually not highlighted by the researchers. 65 

1.4.3 .3. Thio l-Michael addition click: The thiol-Michael addition reaction is another 

highly efficient and modular thiol mediated click reaction tbat bas been extensively 

implemented for polymer synthesis and functionalization.80
• 

83
· 

84 lt is a reaction 

between a thiol and an electron-deficient viny! group that can be carried out under 

benign and so lventfree conditions using mild catalysts. Bowman and coworkers have 

recently reported the use of kinetically selective thiol-Michael addition reaction for 

the synthesis of dendrimers and dendritic linear polymer conjugates. 85 This was the 

first example where dendrimers were synthesized using single chemistry witho ut 

carrying out any protection/deprotection steps. They designed A* A2 viny! and B*B2 

thiol based monomers with three functional groups, with one functional moiety 

se lectively having much higher reactivity than the other two, and were successfully 

able to construct fifth generation dendrimer with 96 end groups in Jess than half a day 

using so lely single chemistry (Scheme 1-18). 
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Scheme 1-18 Synthesis offifth generation dendrimer via thiol-Michae l addition click 
reaction. 85 

1.4.3.4. Thiol-yne click: Thiol-yne reaction is another efficient reaction which 

possesses the features of click chemistry. 65
• 
66

• 
86

-
88 Thio 1- y ne is more than a 100 years 

old reaction and cana Iso be considered as a sister reaction of thiol-ene click; the on! y 

difference is the double hydrothiolation addition around the alkyne (Figure 1-12). 

3. 

Figure 1-12 Mechanism of radical mediated thiol-yne click reaction. 
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Thiol-yne reaction is the new entry in the family of click reactions because it 

possesses many traits of the click reactions and it can be a very handy tool for 

generating novel multifunctional dendritic structures. Radical initiation can be 

introduced via photochemical and thermal sources. Radical mediated thiol-yne 

polymerisation is already a popular method to make hyperbranched polymers that bas 

potential applications in drug delivery, gene therapy and catalysis. Recently, this 

reaction was explored for the first tune for the construction of dendrimers by Stanzel 

and coworkers.86 Thu·d generation (G3) dendrimers were synthesised in a divergent 

manner using the combination of photochemical addition of thiol to alkyne (thiol

yne) and base catalyzed esterification reaction in five synthetic steps (Scheme 1-19). 

The frrst reaction was carried out around benzene core having tlu·ee acetylenes on the 

periphery using commercially available 1-thioglycerol in the presence of DMPA as 

photoinitiator under u.v light (365 nm). The reaction was very quick and delivered 

G 1 dendrimer having 12 peripheral hydroxyl groups. Thiol-yne reaction was 

followed by esterification with acetylene anhydride which helped in anchoring the 

same number of alkynes as the peripheral functional groups. Repeating both reactions 

in sequence provided final G3 dendrimer with 192 hydroxyl end groups with decent 

yield. Unlike other click reactions, thiol-yne introduces two functionalities around 

one acetylene and because ofthis particular advantage thiol-yne is the perfect choice 

for accelerated synthesis of dendrimers. 
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Scheme 1-19 Synthesis ofG3- Hydroxyl dendrimer with 192 end groups. 86 

In one recent report , 5th generation dendrimer has been synthesized only in five steps 

using a combination ofhighly efficient thiol-yne and aza-Michael addition reaction. 87 

Aza-Michael addition reaction is also very efficient and an orthogonal reaction which 

possesses the characters of a click reaction. The reaction is easy to execute as well as 

having high tolerance for a variety of functional groups. The use of two orthogona l 

reactions resulted in high generation dendrimers in facile and highly efficient manner . 

The purifications were very easy requiring only precipitation and extraction. The 

synthetic protocol was followed under benign reaction conditions without the use of 

any transition metal catalyst. Moreover, thiol-yne was performed in a solvent free 
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environment providing a greener approach for dendrimer chemistry (Scheme 1-20). 
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Scheme 1-20 Synthesis of 05 dendrimer using thiol-yne and aza Michael addition 
reaction. 87 

There are a few drawbacks for thiol-yne react ion also . Thiol-yne addition ts 

generally slower than the thiol-ene reaction because of double hydrothiolation and 

thus requires high excess ofthiols to ensure the complet ion of reaction. The excess of 

thiols results in the formation of disulfide and other side products. Another 

disadvantage is that the dithiolation addition around triple bond creates a chiral centre 

in the molecule, and in case of dendrimers where multiple TYC reactions are 

performed at numerous end groups, it results in a soup of diastereomers which ts 

indeed a limiting factor for the construction of biomaterials. 
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1.4.3.5. Diels-Alder click: Diels-Alder click is a thermosensitive and metal free 

addition reaction between an electron-rich diene and electron-deficient dienophile to 

give rise to a cyclic adduct. Like other click reactions mentioned above, Diels-Alder 

click reaction is another greener approach towards dendrimer synthesis.64
· 

89 The 

reaction can be carried out even in water, produces minimum by-products, and 

requires simple purification techniques. The reaction has been first demonstrated for 

dendrimer construction by Müllen and coworkers in 1990's to synthesize 

polyphenylene dendrimers. 90 Since then many reports have been published by various 

groups for the use of Diels-Aider reaction in macromolecules synthesis and 

functionalizations. 89
• 

90
' 

91 Recently , Müllen and coworkers have demonstrated the 

divergent synthesis of up to generation 9 polyphenylene dendrimers using catalyst 

free Diels-alder click reaction. 92 They claimed the dendrimer structures to be highly 

perfect and monodisperse as revealed by MALDI-TOF mass spectrometry. The 

synthesis was carried out around a large perylenediimide (POl) core using repetitive 

Diels-Alder cycloaddition reaction to produce G 1-09 dendrimers in high yields 

(Scheme 1-21). The syntheses of such high generations were successfully achieved as 

the reactive end groups were easily accessible due to lack of backfolding in these 

rigid dendrimers. The ninth generation dendrimer reported by Müllen's group bad an 

expected molecular mass ofup to 1.9 MDa and the longest-extension diameter ofup 

to 33 1m1, as confirmed by TEM imaging teclmique. Tbese scales make this 

polyphenylene 09 dendrin1er as the biggest aromatic dendrimer reported so far. 
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Another interesting feature of Diels-Aider cycloaddition reaction IS its 

reversible nature due to beat sensitivity and this attribute of the reaction has been 

utilized by Kakkar and coworkers to construct thermosensitive dendrimers for drug 

delivery applications. 93 They have developed a dendrimer based formulation to 

deliver the therapeutic agent at physiologically relevant temperature. The dendrimer 

synthesis was carried out divergently around a four-arm flexible core using a 

combination of CuAAC and Diels-Alder "click" reactions in sequence (Scheme 1-

22). The periphery of the dendrimer was functionalized with multiple units of anti

oxidant lipoic acid as a mode! therapeutic agent via Oiihogonal Diels-Aider 

cycloaddition reaction. These drug molecules could be released under physiological 

(37 °C) or pathological (42 °C) temperatures by retro Diels-Aider reaction. This 

strategy clearly demonstrates that the release of active drug molecules via retro Diels

Aider at physiological temperature range can be highly advantageous to design drug 

delivery systems. 

1.4.4. Mufti component reactions based approachfor dendrimer synthesis: 

In the recent times multicomponent reactions (MCR) based approach has gained a lot 

of attention for the construction of polymers and dendrimers. 94 The first 

multicomponent reaction was introduced back in 1850 by Strecker which consists of 

three components amine, aldehyde and hydrogen cyanide, and known as the Strecker 

reaction. MCR invo lves multiple components which are allowed to react in one pot 

and give rise to core structural motif without producing lot of side products under 

benign reaction conditions. Here are a few MCRs which are very famous in the field 

of organic synthe sis like Passerini, U gi, Mannich and Gewald reaction. 95
' 

96
· 

97 The se 

reactions possess the inherited potential for rapid development of structurally diverse 

multifunctional dendrimers and polymers. From the synthetic point of view, it is a 

challenging job to design bi-functional or tri-functional dendritic structures which can 

offer many advantages in tenns ofbiological applications and can be achieved 
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Scheme 1-22 Synthesis and functionalization of G 1-03 thermosensitive 
9' dendrimers. J 

conveniently by employing multicomponent reactions. The first report for polymer 

synthesis using MCR was given by Meier and coworkers where three component 

Passerini reaction was employed for the synthesis of novel polyesters having amide 

side chains.98 In case of dendrimers, frrst report came in 2011 by Rivera and 
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coworkers, who employed Passerini three component and Ugi four component 

reactions for the synthesis of 4111 generation peptide-peptoidic dendrirners in a 

divergent manner (Scheme 1-23).98 These two reactions which involve coupling of 

isocyanides with aldehydes and carboxylic acids are the most widely explored MCR 

reactions for the synthesis of dendrimers. 
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Scheme 1-23 Synthesis ofmonomers by Passerini 3CR and Ugi 4CR. 98 

Rudick and coworkers reported an efficient method to construct surface tri

black dendrimer in convergent mmmer using 3CR Passerini reaction.99 Three integral 

components of Passerini reaction i.e. isocyanide, aldehyde and carboxylic ac id 

bearing dendrons of second generation were synthesized separately and then fused 

together using simple reaction conditions (Scheme 1-24). This reaction bas provided 

a one step strategy to access triblock dendrimers which was considered a highly 

challenging task in the dendrimer synthesis. 
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Scheme 1-24 Convergent synthesis ofsm·face block dendrimer using Passerini 
. 99 reactron. 

Li and coworkers have recently · published the divergent synthesis of 

structurally diverse dendrimers using a combination of two efficient and orthogonal 

multicomponent reactions (ABC Passerini and ABB thiol- yne) (Scheme 1-25) .100 

Using this strategy, they synthesized two different kinds of dendrimers; 1) G2 

dendrimers in three steps and 2) G2 functional dendrimers in five steps having three 

different kinds of functional moieties-type one in the interior of dendrimer and two 

other types on the surface. During the frrst synthetic step, Passerini reaction was 

employed to react 1 ,6-hexanedioic ac id, 5-hexyn-1 -al, and propargyl 

isocyanoacetamide in THF to provide tetrapropargylated GO core molecule. It was 

then followed by photocatalysed thiol-yne click reaction on GO with the 

commercially available 3-mercaptopropionic ac id and resulted in G 1 dendrimer 

having 8 carboxyllic acids on the periphery. During the final step Passerini reaction 

was again performed to yield G2 dendrimer harbouring 16 alkyne end groups. The 

whole synthetic protocol was easy to execute and products were purified with 

minimum efforts. 
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Kakkar, Li and coworkers have recently reported a versatile synthetic strategy 

for the construction of dendrimers for biomedical applications using a combination of 

highly e ffi cient CuAAC click and multicomponent A3 coupling reactions. 10 1 The 

dendr i1 1ers up to generation 3 were synthesized using convergent approach. The 

dendro1 s were first assembled together utilizing copper (I) catalyzed alkyne-azide 
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click reaction and then dendrimers were st itched on to p1perazme based core via 

multicomponent A3 click react ion (Scheme 1-26). The surface of the dendrimers was 

utilized to covalently append a variety of functional groups including imaging agents, 

therapeutic molecules and solubilizing polymers. The A3-click dendrimers were non

cytotoxic up to 1 f..tM concentration and thus have potential to be used as biological 

tools to develop dendrimer based imaging and drug delivery systems. 

Multicomponent reactions are not very successful to construct high generation 

dendrimers due to steric hindrance involved. 

R=H 

TBAF, -60 °C 

THF. 2 h 72% 

Scheme 1-26 Synthesis of A3 -Click G2 dendrimer. 101 
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1.5 Conclusions: 

Since their fu·st reports in 1978, the construction of dendrimers has gone through 

remarkable development. A wide range of methodologies now exist for the synthesis 

of these unique macromolecular entities. The introduction of highly efficient click 

reactions have brought a revolution to the field and generated various dendritic 

scaffolds. However, despite the development of various versatile and facile strategies 

for the synthesis of dendrimers, the field still suffers from tedious synthetic protocols 

especially for the construction of high generation dendrimers with buge number of 

surface groups. The increasing potential of dendrimers towa.rds various applications 

requires the development of novel strategies which can allow the easy a:nd accelerated 

synthesis of structurally diverse dendrimers. 

1.6 Scope ofthe thesis 

Dendrimers are highly branched mono-disperse macromolecules with precise 

constitutions that have been explored in a wide variety of chemical, biological, and 

material studies. A large number of synthetic strategies have been developed for their 

construction such as the most popular convergent, divergent and accelerated 

approaches. However, despite these major achievements, theil· syntheses can still be 

problematic due to the multistep protocols, and trivial purifications. This dissertation 

is an attempt towards the development of novel highly efficient synthetic strategies 

which can deliver dendrimers in an improved and rapid ma1mer. Following is the 

summary ofthe results presented in the thesis: 

Chapter 1: Chapter 1 pro vides us an overview about the origin of dendrimers, the ir 

applications in modern world and the famous synthetic strategies used for the 

construction of dendrimers. 

Chapter 2: Chapter 2 presents the development of a novel "onion peel strategy" for 

the divergent construction of glycodendrimers using different families of buildmg 

blocks at each layer of the dendritic growth. A combination of successive highly 

efficient, orthogonal, atom economical, and robust chemical reactions generated 
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dendrimers having chemically heterogeneous layers. The dendrimers constructed 

using this strategy are fundamentally different to conventional dendrimers which are 

usually built from repetitive building nanosynthons . 

Chapter 3: In this chapter, we further evaluated the versatility of onion peel 

approach by developing an inverted strategy with multivalent presentation of 

different types of ligands around a fixed " onion peel" dendritic scaffold. We 

assembled chemically heterogeneous layers at each generation by both convergent 

and divergent strategies using a combination of orthogonal building blocks and 

highly efficient chemical reactions. We demonstrated that the structural diversity in 

the construction of " onion peel" dendrimers, accessible via both convergent and 

divergent routes, represents an additional strategy for the build-up of dense surface 

groups at low dendrimer generations. The glycodendrimer resulted in one of the most 

potent multivalent ligands known against the viru lent factor from a bacterial lectin 

isolated from Pseudomonas aeruginosa. 

Chapter 4: High generat ion dendrimers with numerous end groups have great 

importance with applications in the fields of gene transfection and photonics. It is 

really a challenging task to construct low generation dendrimers with huge number of 

terminal functions due to time and cost involved in the synthetic procedures. In this 

chapter, we tried to address this problem by utilizing acce lerated onion peel approach 

for constructing low generation dendrimers with high number of peripheral groups. 

We involved hypercore and hypermonomers and successfully demonstrated the 

formation ofhighly dense (252 end groups at 03) low generation dendrimers in just 4 

steps. The onion peel strategy presented here in may lead to new directions in 

dendrimer research for the synthesis of much richer fami ly of functionalized dendritic 

structures . 

Chapter 5: This chapter describes the summary of our results as weil as the future 

perspectives of the research in the field of dendrimer construction. 
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"ONION PEEL" DENDRIMERS: A STRAIGHTFORWARD SYNTHETIC 

APPROACH TOW ARDS HIGHL Y DIVERSIFIED ARCHITECTURES 
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In this chapter, we have developed a novel "onion peel strategy" for the divergent 

construction of glycodendrimers using different building blacks at each layer of the 

dendritic growth. A combination of successive highly efficient , versatile, and robust 

chemical reactions, namely thiol-ene or thiol-yne, esterification, and azide-alkyne 

click chemistry, generated dendrimers having chemically heterogeneous layers, some 

of which with UV -visible functions . The strategy is fundamentally different to 
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conventional dendritic systems usually built from repetitive building nanosynthons of 

limited surface groups. The valid ity of this nove l approach towards the construction 

of biologically active glycodendrimers having dense surfac e sugar residues within 

low dendrimer generations was fu lly demo nst rated us ing Erythrina cristagalli , a 

leguminous lectin known to bind natura l kil ler cells through its galactoside 

recognition ability. The dendrimer' s surface was decorated with an azido derivative 

of N-acetyllactosarnine using click chemistry which led to new g lycodendrimers 

having high affinities as compared to the corresponding monovalent analog. The 

ongoing quest for a better parameterization of critical carbohydrate -protein 

recognition factors urgently requires structures with tailored biophys ica l properties, 

sizes, and shapes together with optimized tri -d imens io na l architectures. The proposed 

methodology, fo r which entirely orthogonal bu ilding blocks can be applied, 

represents an additional contribution to the wide arsenal of ex isting strategies which 

can create higher structural diversity amo ng dendr it ic structures of bio log ica l 

interests. 

Reproduced in part with permission fi·o m: 

Rishi Sharma, Kottari Naresh, Yoann M. Chabre, Rabindra Rej, Nadim K. 

Saadeh and René Roy Polymer Chemistry, 2014, 5, 4321-4331. 

Copyright, 20 14, Royal Society of Chem istry 
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2.1 Introduction: 

Dendrimers are highly branched mono-disperse macromolecules with prec1se 

constitutions that have been explored in a wide variety of chemical, biological, and 

material studies. 1 A large number of synthetic strategies have been developed for 

theil· construction such as the most popular convergent, divergent and accelerated 

approaches. 1 However, despite these major achievements, theil· syntheses can stiJl be 

tedious due to the inherent complexities associated with each repetitive methodology, 

most of which using narrow AB2 monomer building blocks . Based on this 

observation, new strategies allowing easier preparation of homogenous and 

constitutionally diversified macromolecular structures are deemed necessary . 

Interestingly, besicles classical strategies involvil1g "hypercores"2 and 

"hypermonomers",3 one of the first breakthroughs towards accelerated dendritic 

syntheses bas been carried out in the mid-90s4 with the application of orthogonal 

coupling strategies5 allowing the building of complex biomolecules. 6 The 

orthogonality concept dramatically reduced the number ofrequil·ed synthetic steps by 

using complementary bifunctional precursors that were coupled together by obviating 

deprotection or activation steps. Moreover, most conunon dendrimers are based on 

identical repeating units at each generation, thus greatly limiting the tailoring of 

biophysical properties that prevent structural diversity. 

More particularly and despite their roles as well-defmed artificial glycoconjugates, 

most glycodendrin1ers7 do not depart from these constraints. Since the frrst report, 8 

the ongoing quest toward more active hypervalent carbohydrate-loaded dendrimers 

exhibiting a range of activities bas systematically grown. 9 The emergence of the se 

mono-disperse glycomacromolecules has significantly contributed to our 

understanding of multivalent carbohydrate-protein mteractions through the "cluster 

g lycoside effect", according to which the binding affmities of multivalent 

carbohydrates are significantly higher than the sum of individual ligands. 10 In 

addition, glycodendrimers have received considerable attention for their use m 
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biomedical applications, such as anti-adhesins, drug delivery, biosensors, gene 

transfections, and vaccines. 11 As the design of multivalent glycodendrimers strongly 

depends on the unique structural features of the protein receptors, the conception of 

tailored systems is highly desirable. It can thus be considered that the ar1 of synthetic 

design of multivalent scaffolds remains open to alternative and improved strategies 

that will allow better controlled structural diversity. 

To address these issues, we propose a new type of "onion peel strategy" for the 

divergent construction of original dendritic architectures, involving the incorporation 

of different families of building blocks containing orthogonal functional groups at 

each layer (or generation) sorne of which having UV -visible moieties. The flexibility 

of the strategy will be demonstrated by choosing intentionally different but adapted 

building blacks that could differ in terrns of constitution, valency, and peripheral 

functionalities. The layout diversity of each final biomolecule is thus prograrm11ed. 

Hence, the proposed approach leading to a controlled assembly of structural elements 

does not only rely on a "branching pattern" requirement but can extend the concept to 

smart multifunctional tools with tailored structures and properties. For example, once 

optimized, this approach may generate the desired hydrophobic/hydrophiiic and 

rigidity/flexibility balances at each· step of the dendritic growth. The general 

methodology for the sequential construction of our set of glycosylated architectures is 

proposed in Scheme 2-1. The application of a distinct mode of coup ling at each layer 

generated an original heterogeneity in the internai functionalities and branched 

moieties, as opposed to conventional dendritic systems built from repetitive, or at 

!east alternate, synthetic patterns. Thus, the proposed "onion peel" methodology, for 

which an entire orthogonality can be applied, could represent an alternative 

contribution to the wide arsenal of methodologies towards the rapid and sequential 

construction of dendritic architectures. 



Esterification 
or amidation 

AB, dendron 

Divergent "onion pee l" 
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TEC or TYC 
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Bioconjugation 
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Act1ve peripheral functions 
(R =OH, NH2, COOH) 

"Onion peel" glycodendrimer 

Scheme 2-1 Sequential construction of sugar decorated "onion peel" dendritic 
structures via an accelerated divergent strategy. 
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By successfully adapting the proposed onion peel strategy, we present herein the 

synthesis of a new family of mode\ glycoclusters and glycodendrimers 1-5 decorated 

with N-acetyllactosamine (LacNAc) termini (Figure 2-1) . The key-reactions involved 

in the elaboration of our set of glycosylated structures concerned the application of 

three different atom economical-"click" reactions that can pro vide high yields from 

simplified set-up and purification protocols, together with a highly desired tolerance 

toward a broad range of solvents and functional groups. 12 High chemo- and 

regioselectivities popularized some of these fast-growing orthogonal methodologies 

to ease the construction of sophisticated but well-defined (glyco )dendritic 

architectures. 13 Among the most efficient and orthogonal, the photolytic thiol-ene 

coupling (TEC) 14 will be advantageously applied to initiate the uniform growth of our 

dendritic scaffolds through the formation of internai robust thioether linkages. Higher 

degree of branching will be insured with the utilization of Jess-developed thiol-yne 

coupling (TYC) 15 involving a double hydrothiolation of terminal alkynes via a similar 

free-radical chain mechanism. EDC-mediated esterifications (or amidations) 16 will 

represent the last step of the dendritic growth with the introduction of 

polypropargylated dendrons equipped with the complementary focal function. The 

regioselective Cu(I)-catalyzed azide-alkyne [ 1,3 ]-dipo Jar Hui sgen cycloaddition 
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Figure 2-1 Molecular structures of targeted glycodendrimers 1-5. 

(CuAAC) 17 will be performed as an efficient ligation methodology for the 

peripheral glycoconjugation. In this context, LacNAc was chosen as a decorative 

sugar head group. It notably represents part of biologically active tumor associated 

carbohydrate antigens found in severa! natural glycoproteins and glycolipids 

presented by the blood groups, Lewisx, and Lewisy. 18 Similarly important, LacNAc 

possess strong binding affinities toward a cancer associated family ofproteins known 
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as galectins. 19 In spite of its biological significance, the multivalent display of 

LacNAc residues onto dendritic scaffolds has been only reported in scarce 

occasions. 2° Consequently, the prote in binding studies invo lving derivatives 1-5 have 

been assessed by using surface plasmon resonance (SPR) with a mode! leguminous 

lect in fro m Erythrina cristagalli agglutinin (ECA). 21 The main goal of this 

experiment is to establish the validity of the "onion peel" approach for the 

construction of biologically functional glycodendrimers. In addition, the influence of 

subt le structural parameters on the relative binding properties will be evaluated to 

extract fundamental trends towards optimized parameters. 

2.2 Results and discussion: 

2. 2.1 Synthe sis 

The fu-st step of our synthetic investigat ion dealt with the photolytic addition of N

Boc-cysteamine 7 on tetraki.s-allylpentaerythritol 6 under standard TEC conditions 

(Scheme 2-2) to afford 8. Similarly to well-documented quasi-exclusive anti

Markovnikov addition observed for this type of hydrothiolation, 14
·
22

•
23 we also 

noticed an analogous trend for some a-addition. (See Appendix A, SI for ali tested 

condit ions) . 

Subsequent remo val of Boc-protecting groups in 8 using TF A in DCM furnished 

intermediate 9 after solvent evaporation in 75% yield over two steps. Amide coupling 

of 9 with bifunctional AB3 derivative 1024 under basic conditions resulted in the 

for mation of dodecapropargylated 11 in 57% yield (87% yield per amidation). The 

complete attaclm1ent of the protected ~-azido LacNAc derivative 1225 under classical 

CuAAC conditions led to the multivalent derivative 13. MALDI-TOF experiment 

furnished a unique signal in the expected region (11457.6 for a theoretical M.W. = 

11 448 .9) while GPC indicat~d the unifonnity ofthe structure (PDI (Mw!Mn) = 1.031) 

(Appendix A, SI). Finally, TBAF removal of TBDPS-protecting groups in the sugar 
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residues, followed by de-0-acetylation under Zemplén conditions (NaOMe, MeOH) 

efficiently provided glycocluster 1 having twelve LacNAc moieties. 

Ill 
L ) ~ l ~ \'o~~R o~: o J h 

[ 
8 R = NHBo~ ] "' f p~ ) 

UV (365 nm) , DMF TFA · DCM 0 OH 10 H "" ] 
rt , 12h rt , 6 h 9 R=NH3' TFA' O~S~N " ~ 

75% (2 EDC , DMAP , 50' C , 12 h 0 '<:: 

steps) AcQ OAc 57% 11 4 

DMPAP (10 mol%) 

AcHNhfh~OAc 
/'Q/') AcO Act\~~c OTBDPS 1 

rr~·N OTBDPS Aco4-o~N3 
0 o_.}!--N' AcO HO AcHN 

1) TBAF, THF , rt , 12h ~ NHAcOH OAc 12 
1 - 0~s._/~ y-o'-f'_~~o~oAc 

2) 1 M MeONa 1 MeOH 0 wN OTBDPSAcO OAc CuSO, ·SH20 , Asc. Na 

rt • 12 h 13 ~ NHAc THF/H20 , 45' C , 12 h 
75% (2 steps) N~N~OH OAc 71% 

TBDPS'by.::Q~ 
l'lr:';;Jl OAc 
AcOAcO 

Scheme 2-2 Synthesis of glycocluster 1 through TEC-Amidation-CuAAc ( 4x l x3) 
sequence. 

An alternative synthetic pathway was next explored to circumvent the above 

activation/deprotection steps in arder to obtain congeners with equal or higher surface 

groups. As illustrated in Scheme 2-1 , the optimized sequence was based on the 

integration of an orthogonal three steps-sequence consisting 111 

hydrothiolation/esterification/click cycloaddition. Table 2-1 summarizes the structural 

elements that were assembled. Scheme 2-3 illustrates the critical steps towards the 

accelerated syntheses of glycoclusters 2-5 through an orthogonal and divergent 

dendrit ic growth. 

The photoaddition of mercaptoethanol 14 on pentaerythritol derivative 6 

afforded tetrahydroxylated core 15 in 85% yield which initiated the sequence towards 

the synthesis of glycocluster 2 (Scheme 2-3, sequence 1 ). Interestingly, the 

proportions of a-addition remained negligible in this case (.S 5%), in agreement with 

previous works using hydroxylated thiol precursors. 14
d,2J The 1 H NMR spectra clearly 

illustrated completion of the multiple hydrothio lation process by the entire 

disappearance of signais belonging to the alkene function at b 5.90 and 5.25 ppm 
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together with the presence of the characteristic quintuplet signal at 6 1.80 ppm 

co1Tesponding to the newly formed aliphatic -OCH2CH2CH2S- motif (Figure 2-2). In 

addition, all the relative integrations of each proton presented in the external section 

of the core were in perfect agreement with those of the internai CqCH20 region. 

Esterification of tetraol 15 in the presence of TRIS-based AB3 dendron 1626 further 

insured the efficient incorporation of surface active propargylic functionalities to 

pro vide 17. Figure 2-2 illustra tes completion of esterifications by the addition of 

characteristic signais ofthe succinate (6 2.70 ppm), TRIS (6 4.15 and 3.55 ppm), and 

propargylic signais (doublet at 6 4.10 and triplet at 6 2.45 ppm) showing the expected 

relative integrations. , 

Table 2-1 Structural elements used to build polypropargylated scaffolds via an 
accelerated and orthogonal divergent strategy. 

Entr 
y 

1 

2 

3 

4 

Core 

'o-Q-o, 
19 

fa~) 
24 4 

N3P3{o-Q-o, J 
27 6 

Thiol 
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type 

HS~OH 

14 

TEC 

HS~COOH 

20 
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Twelve deprotected LacNAc termini were subsequently grafted via standard 

CuAAC conditions. The presence of interna! ester functions implicated the use of 

deprotected B-azido LacNAc 1825 which was successfully integrated to the 

polypropargylated scaffo ld to lead to dodecavalent cluster 2 in 68% yie ld . The direct 

coupling of hydroxylated ligands advantageously avoided classical de-0-acetylation 

step and purifications by column chromatography when protected sugars are used. 

a) - TEC-Esterification-CuAAc-

b) 

1) 6+14 -
1 

' L- -~H\ 
85% \-o-...._,' J il , 59% 

16 

15 4 

(4x1x3) sequence 

- TYC-Esterification-CuAAc -

2) 19 + 20 -· -
1
-· - ~ S_;-COOH ) 

85% ~\ '----\_s 
(2x2x3) sequence 21 '-----cooH 2 

ii ' 70% 

22 

Conditions and reagents: 
i : DMPAP (10 mol%), UV (365 nm) , DMF, rt , 12 h. 

ii : EDC , DMAP , sooc , 12 h. 
iii : CuS04 -SH20 , Asc. Na , THFIH20 , 45°C , 12 h. 

10 
3) 24+14 

ii , 70% 

(4x2x3) sequence 

f
,__j_='\_n rCOOH ) 22 

4) 27 + 20 N3P3 ,,-~_fr'\ ... l -'S\..._ 
76% \..... """""\ ii ' 72% 

(6x2x3) sequence 28 cOOH 6 

H<t_(O~ OH 

HO~~o:fi._N, 
HO AcHN 

HO~OH OH 
o ... C(j N-N 

HO ~~N~OH 
HO AcHN 

18 30 

0 

s~o_ft 
,...1 

5

~ 
0

Î~ Il l 
" 

0 0 26 

~( ~ 
Ill 
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HO OH 

HO~O~NH 
HO 2 
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18 
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iii ' 68°/e 
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iii, 76% 

Scheme 2-3 a) Accelerated divergent strategies for the syntheses of glycoclusters 2-5 
harbouring surface LacNAc residues ; b) Structures ofmonomer used as references for 

SPR studies (see Appendix A, SI for the synthesis of 30). 
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In order to explore the flexibility of our global synthetic approach and to 

enhance the density of termini using a limited number of steps, poly-propargylated 

cores were used to perform TYC chemistry that enabled to double the number of 

attachments at each individual reactive terminal alkyne. Accordingly, a third 

dodecavalent homolog was synthesized, differing from the previous ones by the 

nature of the core from which emanated the clusters of epitopes, together with the 

mode of dendritic growth. To this end, a double hydrothiolation was flrst performed 

Ill ,. .. • • 

24 8 8 8 168 12 . l· À 

• 1 , 1l Ï = , Abson~:-o~ ~~~~~~: .~-~9::~ --- ------ -··-- ··------- ·······-------)\ ____ iij~~--!1 _______ ····-·····--)tJ~t_l ____ ··········----__}\__\ __ _ 
15 

8 8 8 • 

_8 

6.0 5.5 5.0 4.5 4.0 J.S J .O 2.5 2.0 LS 
fl (ppm) 

Figure 2-2 Comparison of 1H NMR spectra (CDCb, 300 MHz) of 6, 15 and 17 with 

the appearance/disappearance of characteristic signais towards the construction of 

dodecapropargylated scaffo ld 17 ( observed proton integrations are indicated in italie 

below each signal. 

on dipropargylated hydroquinone 1927 by means of mercaptopropionic acid 20 to 

provide pure derivative 21 in 85% (Scheme 2-3, sequence 2). This scaffold, having 

four carboxylic acids, was subsequently treated with hydroxylated AB 3 dendron 2226 

tlu·ough the efficient formation of ester bonds via EDC/DMAP coupling. As 

described above, complete capping with LacNAc residues 18 was accomplished on 

the new ly formed dodecavalent derivative 23 using the above CuAAc conditions to 
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afford 3 in good yield. Thus, three linear orthogonal synthetic steps with an overall 

43% yield allowed the straightforward formation of a dodecavalent LacNAc 

dendrimer. Interestingly, the application of similar tlTiee steps-sequences consisting in 

successive TEC/TYC-esterification-CuAAc allowed the addition oftwo dodecavalent 

"onion peel" glycoclusters to 1, creating structural diversity in 1) the dendritic growth 

with 4 x 1 x3 - (for 1 and 2) or 2x2 x3- (for 3) patterns together with the possibility to 

integrate efficient mthogonality; 2) the limer functionalities responsible for the 

stability of the constructs by the presence of thioether, ester and amide linkages; 3) 

the compaction of the scaffolds; 4) the aromatic/aliphatic character of the ùmer 

sections using gallic acid or pentaerytbritol derivatives as secondary cores; 5) the 

presentation of the peripheral sugar termini emanating from the main and secondary 

cores . 

The generation of higher analogs containing more sugar residues bas also 

been explored via the proposed orthogonal tlu·ee steps sequence. Thus, the first 

hyperbranched glycosylated structure ( 4) emanated from the known 24,28 (See 

Appendix A, SI for improved synthesis of 24) obtained in high yields according to 

optimized conditions on which was performed the TYC chemistry in the presence of 

mercaptoethanol 14 (Scheme 2-3, sequence 3). The resulting octa-hydroxylated 
1 

scaffold 25 was further decorated with eight aromatic carboxylic acid precursor 10 to 

afford tetracosa-propargylated core 26 harbouring 24 reactive propargyl functions in 

a 70% yield (96% yield per individual esterification sequence). Once again, complete 

derivatization was confirmed by mass spectrometry together with IR and NMR 

spectroscopy. In particularly, the 1H NMR spectra clearly indicated the disappearance 

of propargylic signais for 25 (6 4.20 and 2.40 ppm in precursor 24) and the predicted 

relative integration of newly formed moiety in comparison to protons located in the 

core (Figure 2-3, middle section). In addition, esterification also led to distinctive 

addition of signais such as those corresponding to aromatic (6 7.45 ppm) and terminal 

propargylic protons (6 4.75 and 6 2.50 ppm) having the calculated integrations. As 

observed for previous analogs with exposed LacNAc residues, final bioconjugation 
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proceeded efficiently usmg azido sugar 18 to afford the densely packed 

macromolecule 4 having 24 termini after dialysis. 

A similar methodology was adapted with the same efficiency for the synthesis 

of lligher analogue 5 containing 36 LacNAc appendages and an aliphatic backbone. 

The construction started from hexapropargylated cyclotriphosphazene 2729 known to 

afford 3-up/3-down wedges in both solid state and solution. 30
,30b Twelve-fold addition 

of mercaptopropionic acid 20 on 27 led to 28 in good yield (76%) after pmification 

by silica gel chromatography (Scheme 2-3, sequence 4). Once again, high resolution 

mass spectrometry (ESI- teclmique) confu:med the formation of [M-2Ht adducts, 

thus perfectly matching the expected theoretical pattern (Figure 2-4, see Appendix A, 

SI for full spectrum) . 

• 

• :z1L_ 3 
16 8 8 4+16+8 16+8 

to~~T:• ~: ~ Ji'- 1 : • 'Ç'" "'~'""'"" 
________ ,. ________ ----------:·M.J_j~~J1_L_ ___ _ 

l ""' ~~· ._... L 
---~---------------~ . 4 
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Figure 2-3 Direct comparison of 1 H NMR spectra (in CDCb for top and bottom 
spectra and in D20 for middle spectrum, 300 MHz) of 24, 25 and 26 with the 
appearance/disappearance of characteristic signals towards the construction of 

tetracosavalent scaffold 26 ( observed proton integrations are indicated in italie below 
each signal and stars in middle spectrum indicates the absence of propargylic signais). 
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Figure 2-4 Specifie region of negative HR-ESI observed (top) and theoretical 
(bottom) isotopie distributions for 28 exhibiting 12 carboxylic acid functions ([M-

. 2Ht signal). 

Tripropargylated AB3 wedges 22 were subsequently anchored via 

carbodiimide- mediated esterification to achieve the construction of hypercore 29 in 

an excellent yield . The exhibited thirty-six propargylated peripheral functions of 29 

were finally transformed into triazoles during the multiple CuAAC process. Complete 

bioconjugation of 29 in the presence of 18 provided glycodendrimer 5, as seen from 

its 1H NMR spectra showing the absence of propargylic signais using the above 

conditions. 

Interestingly, low and high resolution Mass Spectrometry analyses furnished 

consistent results for the hyperbranched macromolecules together with 

polypropargylated precursors as indicated in Table 2-2. 

Table 2-2 Mass Spectrometry results obtained from MALDI-TOF, ESI, and APCI 
Techniques for hyperbrancbed derivatives. 

Entry 

2 

Compound M.W.0 Exp. Mass [adductl 
(Techni ue 

Polypropargylated scaffold5 

11 1668. 5501 

17 1936.7585 

1691.5360 [M+Nat 
HR-ESt 

1937.7621 [M+Ht 
HR-APCt 



- ---------------------, 

69 

" 23 1538.5433 
1539.5506 [M+I--It 

.) 

HR-ESt 

4 26 3043.4 
3049.0 [M+Lit 

LR-MALDI-TOF 

5 29 5078.9 
5077 .5 

LR-MALDI-TOF 
LacNAc-terminated dendrimerl 

6 13 11448.9 11457.9 

7 1 6570.3 6597.9 
1 

8 2 6838.6 6862.3 

9 3 6440.2 6464.0 

10 4 12844.1 12735 .6 

11 5 19779.9 19774.8 

a Exact mass values are indicated in italie when high resolution analyses were 
performed.b Law-resolution mass values were obtained by MALDI-TOF teclmigue 
([M+Nat adducts). 

2. 2. 2 Swface plasmon resonance studies 

Subsequent to synthesis, surface plasmon resonance (SPR) studies have been 

conducted to assess the relative protein binding abilities of glycodendrimers 1-5 with 

the LacNAc-specific leguminous lectin (ECA) from Erythrina Cristagalli. In these 

studies, the lectin was immobilized onto CM5 sensor surface (Biacore) to a leve! of 

~ 1200 RU, by using the manufacturer ' s amide coupling methodology. As a blank 

reference, ethanolamine was immobilized onto one ofthe flow cell of the sensor chip . 

Solutions with various concentrations of LacNAc-functionalized dendrimers have 

been flowed over surface-bound lectin and significant interactions were determined 

for each glycodendrimers and compared to monovalent standard 30. A representative 

sensorgram was obtained for each ligand (see Figure 2-5 for glycodendrimer 4 and 

Appendix A, SI for the remaining compounds). Determination of the kinetic 

parameters re lative to the glycodendrimer-lectin interactions were fitted by using a 
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1: 1 Langmuir mode! available in BIAevaluation software. 31 The conesponding data 

(k0 11 , korr, Ko and relative binding affinities) are given in Table 2-3. 
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Figure 2-5 SPR sensorgrams for the interactions of glycodendrimer 4 (0.306 11M to 
20 11M) with the surface bound ECA lectin. The binding data are overlaid with the fit 

(in red) of a 1: 1 Langmuir interaction mode!. 

In each case, simple-exponential binding profiles were obtained with association 

phase fiee of mass transpo1i phenomenon. Overall and as expected, the 

glycodendrimers exhibited higher k011 and lower korr values than those of monovalent 

30. As a result , multivalent compounds exhibited high nanomolar affinities with the 

dimeric ECA. Although no Ko values were previously determined by SPR for 

monovalent LacNAc derivatives with ECA, the experimental value for 30 

consistent ly stands in micromolar values as compared to similar references. 20
ct,J

2 The 

glycodendrimers exhibited interesting high relative potencies, with an up to 216-fold 

enhancement in global affinity for the best candidate 4, while corresponding to a 

modest improvement for each periphera l LacNAc moieties of 4 compared to 30. In 

fact , the meek glycocluster effects observed throughout the series is typical of 

divalent lectin interactions which usually reflect a predominance of klnetic (82-fold 

faster k0 11 ) rather than thermodynamic improvement. In fact , the best recorded value 

was obtained with dodecavalent 2 for which each termini was only 14-fold more 
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active than the reference monomer. With a noticeable exception, 33 this observation 

remains consistent with earlier investigations that ascertained the fact that ECA bad a 

small multivalency enhancement ability, as determined with LacNac-
'4 glycopolymers. J 

Table 2-3 Kinetic parameters obtained for the interactions of glycodendrimers with 
the bound ECA. Data were fitted by using a 1:1 Langmuir mode! available in 

BIAevaluation software. 

Cpd 
kon korr Ko 

(M-1s-1) (s-1) (nM) 
r.p.0 r.p./sugar 

30 375 7.26 x l0-3 19400 ± 

560 

1 6.13 x!03 3.33 x 1 o-3 543 ± 28 35 2.9 

2 3.25 x 104 3.57x l0-3 109 ± 7 176 14.6 

3 1.79xJ04 4.7l xl0-3 263 ± 14 75 6.2 

4 3. 08 x ] 04 2.82 x ] o-J 92 ± 4 216 9 

5 3.05 xJ03 l.OO xl0-3 329 ± 20 58 4.8 

a Relative potency 

Although no impressive thermodynamic trends can be extracted fi:om the above 

data, the relative kinetic values can lead to interesting observations that pinpoint the 

influence of structural parameters toward relative affinity with ECA. First, 

glycodendrimer 5 harbouring the largest number of peripheral sugars do not 

necessarily represent the best candidate, since its K0 value is worst than two of the 

three dodecavalent congeners 2 and 3. Interestingly, although exhibiting similar 

lowest valencies, these clusters were built around distinct building blocks and 

displayed different kinetic values. Predominantly, distinct k0 11 values indicate that the 

rates of association were strongly dependent to the nature of the structural elements 

that dictate the tri-dimensional organization of the sugars. In this series, aromatic 

branching units as in 1 seemed to hamper the optimal display of the LacNAc residues 

while aliphatic homologs, and especially elongated 2 allowed a better recognition. On 

the other hand, a noticeable enhancement in affinity was obtained for 4 having UV-
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visible gallic acid moieties incorporated in the scaffold, in comparison to 1 (Figure 2-

6). 

Figure 2-6 Superimposition of glycoclusters 1 (black, 12 sugars) and 4 (black+ 
green + red, 24 su gars) to illustrate the ir similar composition but different epi topes' 

density. 

This result further highlights the role of multivalency and more precisely the 

epitopes' density which led to an enhancement in activity from binding events. 

Noteworthy is the fact that this trend is not obvious when comparison between 3 and 

5 is made. Although similar cluster of six epitopes emanating from the same 

dithiolated moieties are present at the periphery, their spatial presentation is insured 

f:i"om various cores and is responsible for the different binding behaviours against 

ECA. Thus, in this experiment, the focal branching emanating fi·om the templates that 

direct the repeating units is also likely playing a critical ro le in the ligand -lect in 

recognition phenomenon. In addition, the stereoisomers created by the TYC reaction 

could not be accounted for the binding differences as the chiral centers are 14-15 
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atoms away from the anomeric carbon of the Glc residues bound to the external outer 

limit ofthe galactoside binding site (see Appendix A, Fig SJOI). 

In arder to get more insight into the relative "multivalent effect" of the 

glycodendrimers, we have also performed another SPR-based assay involving a 

competitive inhibition studies. In this context, 6-amino hexyl ~-D-galactopyranoside 

31 35 was immo bilized onto the sensor surface to provide a more realistic mimetic 

system of the eukaryotic cell surface that can recognize the lectin. For the 

determination of IC50 values, equilibrium mixtures of ECA (5 ~M) in contact with 

increasing concentrations of glycodendrimers 1-5 and mono mers 18 and 30 have been 

used as analytes over the surface ofgalactoside 31. Thus, the affinity ofECA towards 

the bound galactoside in the presence of different concentrations of glycodendrimers 

was measured (Table 2-4). 

Table 2-4 IC50 values of the glycodendrirners 1-5 and monomers 18 and 30 derived 
from competitive inhibition SPR studies. 

Cpd ICso ütM) r.p. a r.p./sugar 

18 563 ± 34 

30 362 ± 20 1 

1 3.82 ± 0.23 95 8 

2 3.07 ± 0.09 118 10 

3 6.19 ± 0.52 58 5 

4 0.61 ± 0.02 593 25 

5 0.31 ± 0.01 1168 32 

a Relative potency 

A typical sensorgram profile and the corresponding inhibition curve derived from 

the sensorgrams are shown in Figure 1-7 for glycodendrimer 5, the best ligand in this 

experiment (see Appendix A, SI for the remaining glycodendrimers 2-5 and for 

monomers 18 and 30). Once again, consistent high micromolar IC50 values were 

obtained for monomers 18 and 30, with a slightly better activity for the latter having a 
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triazole group at the anomeric position which could be attributed to known "aglycon

assisted" binding events. 36 
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Figure 2-7 (a) Sensorgrams obtained by injection of ECA (5 f.J.M) incubated with 
different concentrations of glycodendrimer 5 varying from 0.008 pM (top curve) to 

62 f.J.M (bottom curve) on the surface ofimmobilized galactoside 31. (b) The 
inhibitory curve for the glycodendrimer 5. IC5o value was extracted fi:om the 

sigmoidal fit of the inhibition curve. 

Overall, similar tendencies obtained during the prev1ous assays were 

observed, however with enhanced effects. Indeed, the improved affinity corresponded 

to an increased number of ligands with relative potencies exceeding 1000 for the best 

candidate 5, resulting in a 32- fold better affinity for each sugar in comparison to 

monomer 30. Also, similar discrepancies were obtained throughout the dodecavalent 

glycoclusters 1-3, reinforcing the importance of structural parameters' arrangement 

and the induced organization of dendronized moieties. ln this series, elongated ligand 

2 exhibited the best results with an interesting 3.1 f..LM value. As o bserved earlier, the 

addition of four trivalent dendrons (comparing between 1 and 4, Figure 2-6) allowed 

favorable effects since the increase in density was responsible for an important drop 

in IC50 values. Notably, this corresponds to a relative potency enhancement of 2.5-

fold for each epitope on tetra-cosavalent 4 compared to dodecavalent glycocluster 1. 

Contrary to studies for K0 determination, this tendency is also effective with the 
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multivalent contribution afforded by aliphatic scaffolds. While 3 constitutes the worst 

ligand overall, the multiplication of the hexavalent motif from dithiolation strategy 

afforded stunning enhancement in affinity with best results for S. 

Though the relative affinities differ fi·om both SPR studies, the proposed family of 

multivalent LacNAc- dendrimers 1-5 contains some of the best ECA ligands known 

to date, with high nanomolar affinities. The observed discrepancies throughout the 

assays may be explained from the fact that the kinetic data (Table 2-3) was obtained 

by assuming the simple 1:1 Langmuir mode! binding between the surface-bound 

dimeric ECA and the multivalent ligands, although attempts to avoid this situation 

were made by low density ligand immobilization. It is interesting to note that the 

relative potencies were found to be higher in competitive inhibition studies than in 

the surface-bound ECA. It may be partly attributable to the fact that in solution phase 

competitive studies, upon equilibration for 1 h, glycodendrimers may have enough 

time to bind almost i.rreversibly with ECA through multivalent cross-linking lattice 

interactions when compared to instantaneous bindi.ng in solid phase interactions. 

2.3 Conclusions: 

In conclusion, a novel type of onion peel strategy was designed for the synthesis of 

glycodendrimers by using different families of building blocks containing orthogonal 

functional groups at each layer or generation of the dendritic gro\vth. The synthesis 

was achieved by using highly efficient reactions, such as, thiol-ene or thiol-yne, 

esterification, and azide-alkyne click chemistry. The robustness and flexibility of this 

approach were translated by the efficiency of each coupling step, regardless of the 

nature of terminal reactive functionalities, as exemplified with the elaboration and use 

of polyamine, polyol, polyacid, polyalkene, and polyalkyne multivalent templates. 

The onion peel strategy presented herein may lead to new directions in dendrimer 

research for the synthe sis of much richer family of functionalized dendritic structmes 

and for creating higher structural diversity. To exemplify the influence of such 

structural diversity, two distinct SPR studies with the leguminous lectin Erythrina 
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cristagalli (ECA) as a mode! were conducted and led to interesting results towards 

the design of optimized lectin ligands. Most importantly, the proposed synthetic 

approach validates the concept according to which each structural element influences 

the recognition processes. Thus, this work brings a valuable complement to a recent 

studi 7 that investigated the influence of different "c lick" ligation modes on 

glycodendrimers-induced lectin recognition. The present synthetic strategy allows a 

better rationally progranuned arrangement of branching units towards biologically 

active multivalent constructs. This investigation is directed to the development and 

the application of this approach towards the construction of potent ligands against 

human lectins. The conception offunctionalized templates as promising candidates in 

vaccine immunotherapi 8 is also under the scope and will be reported in due course. 
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CHAPTER 3 

HIGHL Y VERSATILE CONVERGENT/DIVERGENT "ONION PEEL" 

STRATEGY TOWARD POTENT MULTIVALENT GLYCODENDRIMERS 
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In this chapter, we have further explored the versatility of "onion peel approach" 

reported in previous chapter. We used both convergent and divergent routes to 

construct "onion peel" glycodendrimers and demonstrated that this strategy is highly 

efficient in both ways and represents an aditional strategy for the construction of 

highly diversified dendrimers . We assembled chemically heterogenous layers at each 

generation by using a combination of 01ihogonal building blocks and highly efficient 

chemical reactions. Glycodendrimers constructed using this methodology resulted in 

one of the best multivalent ligand known against the virulent factor from bacterial 

lectin isolated from Pseudomonas aeruginosa. 
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3.1 Introduction: 

Dendrimers are well-defined, hyperbranched tree like macromolecules which have 

shown great potential for applications in diverse areas ranging fi·om nanoengineering 

to medicine. 1 The ir striking architecture leads to excellent propetiies, but 

unfortunately brings in many synthetic challenges as weil. Traditionally, their 

iterative construction emanates from a central core in a layer by layer fashion using 

repetitive moieties via most popular divergene and convergent3 methods. Both 

strategies have theil· own drawbacks and often require tedious repetitive synthetic 

steps, with classically only a slow enhancement in the number of peripheral 

functionalities at each generation. To meet the increasing demand of dendrimers for 

advanced applications, the scientific focus has been shifted towards their efficient and 

rapid construction involvit1g a minimum number of reactions and with access to a 

large number of surface active functionalities. Notably, the introduction of orthogonal 

building blocks, the use of hyperfunctionalized synthons combined to robust and 

highly efficient chemical reactions has recently fulfilled these specifications.4
-
6 

Glycodendrimers in particular, with their widespread applications7 as microbial 

antiadhesins, biosensors, vaccines, drug delivery, and gene transfection do not depart . 

fi·om this efficacy pursuit. In this context, we recently repotied a novel divergent 

"onion peel" approach to construct glycodendrimers using distinct and otihogonal 

building blocks at each generation growth. 8 With this strate gy, we demonstrated that 

structural diversities could be efficiently and rapidly harnessed at low generation. 

Notably, distinct hydrophobic/hydrophilic and rigidity!flexibility balances together 

with different epitopes' presentations clearly influenced their potencies as protein 

ligands. In complement to this rationally programmed arrangement of branching 

units, we wish to report herein the inverted strategy with the multivalent presentation 

of different types of ligands around a fixed "onion peel" dendritic scaffold. 

Chemically heterogeneous layers were assembled at each generation in both 

convergent and divergent strategies using a combination of otihogonal building 
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blocks and highly efficient chemical reactions such as radical initiated photochemical 

thiol-ene reaction (TEC),5
'
9 amidation, 10 and copper-catalyzed azide-alkyne 

cycloadditions (CuAAc) reactions. 11 

3.2 Results and discussion: 

The divergent construction of these novel dendrimers was initiated with inexpensive 

commercially avai lable dipentaerythritol 1 serving as a dense A6 core. Per-0-

allylation with ally! bromide in the presence of NaH in DMF provided 

hexakisallylated G(O) derivative 2 in 80% yield (Scheme 3-1). Complete allylation 

was clearly confirmed by 1H NMR, which showed the characteristic allylic signais at 

o 5.90 and 5.34-5.08 ppm and the disappearance of OH signais together with its 

predicted HRMS. Core structure 2 was next subjected to radical TEC reaction with 

excess of cysteamine hydrochloride in the presence of photoinitiator 2,2 dimethoxy-

2-phenylacetophenone (DMPAP, 10 mol%) under UV irradiation at 365 nm in DMF. 

Water soluble hydrochloride 3 was uneventfully isolated in 75% yield after dialysis 

and fully characterized by 1H- and 13C-NMR spectroscopy that showed the absence of 

olefmic signais, and by HRMS. Polyamine 3 was then treated with tripropargylated 

gallic acid derivative 4 12 by amidation under classical carbodiimide coupling (72%). 

Notably, the use of AB 3 monomer 4, when combined to our A6 core 2, readily 

provided G( 1) hypercore 5 already possessing eighteen surface functional gro ups. For 

comparison pm·poses, P AMAM dendrimers and the like, built around AB2 

monomers, only reach these values at the 0(2) leve!. Dendrimer 5 was next treated 

with peracetylated ~-D-galactopyranosy l azide 613 under classical click reaction 

conditions (CuS04 · 51-bO, Na-ascorbate in THF/H20) to afford octadecavalent 

galactodendrimer 7. 1H-NMR spectrum showed the complete disappearance of the 

propargylic C=CH signais at 8 2.50 ppm and the expected appearance oft-vvo distinct 

triazole signais integrating in a 2: 1 ratio at o 8.09 and 8.16 ppm. Another evidence for 

the monodispersity ofthe dendritic structure was further confirmed by gel permeation 

chromatography (GPC) which showed a narro\V and symmetrical Gaussian pattern 



85 

with a PDI of 1.03 . Subsequently, de-0-acetylation of 7 under Zemplén conditions 

(NaOMe, MeOH) provided the final glycodendrimer 8 having 18 deprotected 

galactopyranoside moieties in quantitative yield (a molecule having 72-0H groups)! 

2 

Scheme 3-1 Divergent and convergent synthesis of octadecavalent galactodendrimer 
8. 

Reagents and conditions: (i) NaH, Allyl bromide, DMF, 0°C to rt , Sh, 80%; (ii) 
Cysteamine ·HCl , DMPAP, DMF, 365 nm, 3h, 75%; (iii) EDC, DMAP, DIPEA, 
DMF, 60°C, o.n. , 72%; (iv) CuS04·SH20, Na ascorbate, THF/H20 (1 :1), 40°C, 12h, 
81 %; (v) MeONa/MeOH, rt, o.n., 88%; (vi) EDC, DMAP, DMF, rt, o.n. , 78%; (vii) 
CuS04·SH20, Na ascorbate, THF/H20 (1:1), 40°C, Sh, 84%; (viii) Et3SiH, TFA, Ü°C, 
3h, DCM, 85%; (ix) AIBN, Dioxane, 75°C, Sb, 53%. 

· In arder to illustrate the full versatility of this "anion peel" strategy for the 

rapid access to structurally diversified dendrimers, we also envisaged the construction 

of dendrimer 7 by a convergent approach. This alternative was initiated with S-trityl 

cysteamine 9 prepared by a slight modification (Appendix B, SI, Scheme 1) of 

literature procedure. 14 Classical amidation conditions with 4 (EDC, DMAP, DMF) 

provided intermediate 10 in 78% yield. Cu-catalyzed click reaction was then 

performed in the presence of galactosyl azide 6 to afford wedged glycodendron 11 in 

84% yield . Once again, the apparition of two discrete triazole singlets in 1H NMR 
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with suitable integration (8 8.04 and 8.15 ppm; 2:1 ratio), coupled with the 

disappearance ofpropargylic signais confirmed the triple grafting ofthe sugar ligand. 

Chemoselective deprotection of the thiol group using 5% TF A in the presence o( 

Et3SiH as a cation scavenger afforded dendron 12 in excellent yield (85%), without 

any trace of disulfide side-products. The aromatic protons corresponding to the trityl 

group at 8 7.46-7.17 ppm completely disappeared. Notably, the triplet corresponding 

to the CH2 in the a-position oftritylated thiolll at 8 2.50 ppm shifted down-field at 8 

2. 75 ppm. Final ligation of thiol 12 with hexakisallylated core 2 was achieved using 

thiol-ene coupling reaction (AIBN, Dioxane, 75°C, 5h.) to provide pure 

glycodendrimer 7 in a 53% yield (not optimized). Hence, we clearly demonstrated 

that the convergent sequence could be applied toward the construction of 

functionalized "onion peel" glycodendrimers without substantial Joss of efficiency (5 

steps and 24% overall yield fi·om 1 vs 4 steps and 35% for the divergent method). 

It is weil established that key factors for in1proving the overall avidity of 

glycodendritic architectures against bacterial and leguminous lectins through 

multivalent binding pro cesses originate from: 1) the relative accessibility of the sugar 

ligands at the dendritic surfaces8 and 2) the iru1er scaffold structures/valency 

themselves.7
c,IS , t

6 In order to further our understanding and the rationalization ofthese 

features using the above unique flexible "onion peel" template from which emanated 

galactopyranoside ligands with different aglycones, glycodendrimers with longer 

penultimate spacers were next constructed. Hence, for lect in ' s better accessibility 

toward the sugar ligands, longer branching residues and the choice of the peripheral 

sugars should constitute improved design. Toward this goal , we synthesised both 

galactopyranoside and lactoside dendrimers with tetraethylene glycol (TEG) spacers 

(Scheme 3-2). 

Treatment of galactopyranose pentaacetate 13 with monotosylated 

tetraethylene glycol14 17 under Lewis acid-catalyzed conditions (BF3·Et20 in DCM) 

afforded compound 15 in 55% yield. Substitution of the tosylate in 15 by a terminal 

azide function was readily accomplished using NaN3 in DMF to give 16 in 82% 
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yie ld. Analogously, coupling tosylated TEG derivative 14 onto its peracetylated 

lactose homo log, followed by substitution with azide were perfonned as· previously 

described , 17 but better results were ultimately obtained through the per-benzoylated 

derivative 17, which allowed easier purification and increased yields (see Appendix B, 

SI for protocol). Both azido-terminated sugar ligands 16 and 17 were coupled onto 

scaffo ld 5 via CuAAc to afford glycodendrimers 22 and 24 in 76-77% yields, which 

correspond to nearly quantitative individual coupling (Scheme 3-3). 

a) 

Bz~~~OBz 
BzO~~zO 0 O. J. 

BzO ~ {N3 BzO 4 

AcO OAc H~O~OTs AcO~OAc 
~Q 14 4 ° .\ 

AcO~OAc ----+- AcO 0'--'( 
AcO i AcO 4X 

13 .. ( 15 X = OTs 
11 

16 X = N3 

17 

b) HO OH 

HO~Zh 
OH OH HO~OH OH 

00~ 

c) 

HO OH 

18 

HO 0 HO HO 0 
HO 0~~ HO HO 0~~ 

4 N:::N OH 4 N==t.j OH 
19 20 

Scheme 3-2 a) Syntheses ofmonomeric azido precursors 16-17, b) reference 
compounds 18-19 and c) lactoside derivative immobilized on the chip for SPR 

studies. 
Reagents and conditions: i) BF3· Et20 , DCM, OoC to Ii, 4h, 55%; ii) NaN3, DMF, 
90°C, o.n., 82%. 

Unequivocally, both 1H and 13C NMR spectra indicated complete disappearance of 

propargylic signais and sugar incorporation with calculated relative integration. 

HRMS together with the presence of molecular ions and fragmentations 

COITesponding to regular !osses of carbohydrate moieties gave convincing proofs of 

structural integrity. Zemplén transesterification (NaOMe, MeOH) furnished two 

additional water soluble glycodendritic candidates 23 (90%) and 25 (86%) for 
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comparative inhibition experiments with a bacterial lectin fi:om Pseudomonas 

aeruginosa. Note that dendrimer 25 possesses 126 peripheral OH groups and thus, 

can serve on its own as an interesting precursor for further functionalization and 

applications. 

16or 17 

Scheme 3-3 Synthesis of glycodendrimers 23 and 25. 
Reagents and conditions: i) CuS04 ·5H20 , Na ascorbate, THF/H20 , 40°C, 12h, 76%-
22, 77%-24; ii) NaOMe, DCM, MeOH, pH 9-10, rt, o.n. , 90%-23, 86%-25. 

In this context, the relative binding affinities of three novel glycodendrimers 8, 23, 

and 25 were evaluated by competitive surface plasmon resonance (SPR) using the 

galactoside specifie bacteriallectin from the gram-negative bacteria P. aeruginosa.6
•
18 

This protein constitutes a virulence factor and is involved in the pathogenesis of the 

bacteria in cystic fibrosis patients. To suitably evaluate the beneficia! presentation of 
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the multivalent sugar ligands, monomeric standards 1819
, 19 and 20 conesponding to 

mimetics of the peripheral saccharidic belt of each conjugate were synthesized. To 

this end, CuAAc conditions were applied on glycosyl azides 6, 16, and peracetylated 

derivative of 17, respectively, in the presence of propargylic alcohol, followed by 

classical de-0-acetylation under the Zemplén conditions (see Appendix B, SI for 

protocols). 

Table 3-1 IC50 values of glycodendrimers and their monomeric analogs derived fi·om 
competitive inhibition SPR studies. 

Entry Cpd ICso {l.tM) R.p.a R.p./suga~;b ~b 

Galactoside 

1 18 43 ± 1.5 1 1 
11 

2 8 0.22 ± 0.02 195 1 1 

TEG-Galactoside 

" 19 21 ± 1.5c 2 2 .) 

32 
4 23 0.037 ± 0.005 1162 65 

TEG-Lactoside 

5 20 958 ± 34 0.05 0.05 
11 

6 25 4.2 ± 0.4 10 0.6 

a Relative potency. b Potency enhancement of individual sugar throughout the same 

family. c This value is consistent with the one previously described for the 

tri(ethylene)glycol congener. 21 

For the competitive inhibition studies, the lactoside derivative 21 20 was 

immobilized onto the conm1ercial SPR sensor chip (CM5) following the 

manufacturer ' s procedure. IC50 values (Table 3-1) were determined from the pre

incubated mixtures of PA-IL lectin (1.5 11M) with increasing concentrations of 

rnonorners or glycodendrirners used as analytes over the surface of CM5-bound 21. 

The SPR experiments clearly demonstrated that glycodendrimers 8, 23, and 25 

exhibited much higher binding affinity compared to their corresponding monovalent 
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derivatives 18, 19, and 20 due to "multivalent or glycoside cluster effect". 22 As 

expected, monomeric lactoside 20 represented a weaker ligand for PA-IL18 while the 

addition of a TEG linker to the galactoside moiety (19 vs 18) allowed a 2-fold 

enhancement of the affinity for the lectin. Thus, the additional glucoside residue in 

lactosides is playing a detrimental effect which therefore cannat just be simply 

accounted for a longer linker. Interestingly, galactosylated dendrimer 8 exhibited low 

micromolar IC5o values (0.22 11M), while most notably, the multivalent presentation 

ofTEGylated galactodendrimer 23 afforded one of the best ligand known to date with 

an IC5o value of 37 nM that compared weil with the results obtained with multivalent 

conugates built around flexible or rigid scaffolds. 23 These results unambiguously 

highlight the key-role of linkers in the interactions with lectin, with a counter

balanced entropie cost due to their flexibility. Additionally, tri-dimensional 

distribution of terminal and optimized galactosides crucially contributed to high 

potencies since a substantial improvement (32-fold) was observed for each ligand in 

23, when compared to monomeric reference 19, while weaker individual 

enhancements were obtained with congested (8 vs 18) or unoptimized (20 vs 25) 

conjugates (11-fold) . 

3.3 Conclusions: 

In summary, we demonstrated that the structural diversity in the construction of 

"onion peel" dendrimers, accessible via both convergent and divergent routes, 

represents an additional strategy for the build-up of dense surface groups within low 

dendrimer generation. It also represents clear advantages over existing approaches by 

providing versatile hypercore building blocks. Moreover, by not restricting layer by 

layer syntheses with identical subunits, one can programme the physicaVbiophysical 

properties of the dendrimers, as exemplified here with TEG residues. Of particular 

interest in this instance, is the use of underexploited dipentaerythritol as an A6 core 

molecule. In fact , work is now in progress for further application on this useful 

building block as an AB5 moiety. The work presented herein will undoubtedly be 
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useful to generate efficient and programmable multivalent antiadhesive agents against 

bacterial infections. ?a,
24 Rationalization of the preferential binding mode(s) together 

with determinat ion of the precise role of each structural parameter leading to high 

avidity ligands such as in compound 23 are under investigation. Multivalent "onion 

peel" inhibitors harbouring optimized sugar epitopes, notably containing aromatic 

residue, are also presently under the scope. Further applications as antiadhesins 

towards galectins, 17 or as vectors for vaccines or drug targeting nanomaterials25 are 

also under investigation. 
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CHAPTER 4 

A FAST TRACK STRATEGY TOWARD HIGHLY FUNCTIONALIZED 

DENDRIMERS WITH DIFFERENT STRUCTURAL LA YERS: "ONION PEEL 

APPROACH" 

ln this chapter, we report an accelerated anion peel strategy to construct a library of 

third generation dendrimers with 108, 180 and 252 hydroxyl end groups using a 

combination of microwave assisted highly efficient CUAA C and thiol-ene click 

reactions. These dendrimers were conveniently acquired with high purity and good 

yields in divergent mann er using a variety of otihogonal building blacks having \---4 3, 

1---45 and 1-7 branching motifs. Multihydroxylated dendrimers tested in severa! 
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human cel! t ypes did not impair mitochondrial metabo lic function or cell viability 

suggesting that they are good candidates for applications in biologica l investigations. 

Reproduced in part with permission from: 

Rishi Sharma, Issan Zhang, Leïla Abbass i, Rabindra Rej , Dusica Maysinger, and 

René Roy Po/y mer Chemistry, 20 15 (Accepted). 

Copyright , 2015 , Royal Society of Chemistry 
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4.1 Introduction: 

The last tl1ree decades have rnarked the emergence of dendrimers with their 

manifold uses in diverse areas ranging from nanomedicine, drug delivery, 

pharmaceuticals, material sciences, catalysis, and gene therapy. I-S Due to the 

staggering growth and high demands for the rapid and efficient access to dendrimers, 

researchers were motivated to introduce new innovative strategies to produce these 

macromolecular entities in higher yields, fewer steps, and in more economical ways. 

Recent advances in synthetic methodologies have boosted the development of 

dendrimers in an efficient and rapid rnanner, but access to low generation dendrimers 

with large number of surface groups is still a challenge. 

S ince the first attempts toward accelerated construction of high generation 

dendrimers using double stage convergent method were described, 9 one of the major 

breakthrough was introduced wherein protection/deprotection steps were eliminated 

using orthogonal building blocks. 9
·
10 The concept of or1hogonality was next exploited 

whereby successful sixth generation dendrimer could be achieved rapidly. 11 Higher 

generation dendrimers with large nurnber of surface groups have gained great interest 

in recent years due to theil· potential use in electronics and nanomedicine. 12
-
18 

However, only a handful approaches exist to synthesize dendrimers with large 

number of surface groups in few steps. One such example is a tlu·ee-step synthesis of 

a POSS dendrimer having 392 end groups. 19 Hence, an additional clue for the rapid 

grov.1:h lies in the choice ofhighly functionalized cores. 

In order to improve the art in the synthetic design of these well-defined 

macromolecular architectures, an "onion peel" approach was recently introduced by 

employing a combination of a variety of orihogonal building blacks and robust 

chemical reactions at each generation giving rise to structurally controlled smart 

dendrimers. 20 The versatility of this strate gy was further demonstrated using bath 

convergent and divergent routes to produce dendrimers with rationally programmed 

branching units. 21 Herein, a facile and accelerated "anion peel" dendrimer synthesis 
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approach to provide large numbers of surface groups at low generations is reported . 

Thus, G3 dendrimers using AB3, AB5 and AB7 orthogonal hypermonomers were 

generated to afford 108, 180, and 252 surface groups respectively in only 2 steps 

starting from a common G 1 dendrimer (Figure 4-1). These hypermonomers were 

systematically scaffolded employing highly efficient atom economical chen1ical 

reactions such as Cu(l)-catalyzed alkyne-azide (CuAAC)22 and thiol-ene reactions2324 

using microwave radiations.25 Microwave-assisted reactions have been used in 

severa! instances in pol ymer synthesis to pro vide remarkable accessibility of reactive 

functionalities leading to higher yields. 26
' 

27 The present strate gy also takes ad van tage 

of microwave radiations to enhance the rate of reaction and decrease the reaction time 

as we were attempting to conjugate bulky building blacks on large number of reactive 

surface functionalities. The syntheses were fast , convenient, and resulted in defect 

free monodisperse dendrimers in high yields. 

Generally, the binding interactions between synthetic ligands and their cognate 

biological tm·gets increase with increasing number of peripheral groups.28
.
30 It is 

necessary to compare different generations of multivalent dendrimers to observe the 

effect of multivalency. The most attractive advantage of this accelerated approach is 

that by using orthogonal building blacks with different number of surface groups, it is 

possible to generate a library of dendrimers with different numbers of functional 

groups at the same generation. 

To assess the dendrimers safety m biological systems, the cytotoxicity of the 

synthetic dendrimers with 108, 180 and 252-0H terminal groups in human liver 

carcinoma (HepG2), glioblastoma (U251 ), and breast adenocarcinoma (MCF -7) ce lis 

were evaluated. 

------------------------------------------------------------------------------------
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Figure 4-1 Schematic illustration of accelerated divergent dendrimer synthesis from 
octadecavalent hypercore 1 via onion peel approach using CuAAC and thiol-ene click 

reactions with AB3, AB5, and AB7 monomers giving rise to G(3)-dendrimers 
containing 1'08, 180, and 252 end groups respectively. 

4.2 Results and Discussion: 

The new polyhydroxylated dendrimer series (3 , 5, 7, and 9) were constructed by a 

divergent marmer a round an octadecavalent hypercore 121 equipped with propargy 1 

groups and hypermonomers to generate large number of surface groups at very low 

generations (Fig. 4-1). Scaffold 1, incorporating a dipentaerythrito 1 and gallic ac id 

moieties, was synthesized by employing a previously reported procedure to provide 

18 terminal acetylene groups at the G 1 stage. 21 Novel orthogonal AB3, AB5, and AB7 

dendrons having different branching subunits with a focal azide group and terminal 
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alkenes functiona1ities were created to first participate into powerful Cu(I) catalyzed 

alkyne-azide cycloadditions (CuAAC) followed at the next layer by multiple thiol

ene reactions (Scheme 4-1) . The synthesis ofthe initial AB3 building block 13 was 

initiated by treating pentaerythritol 10 with ally! bromide and sodium hydroxide that 

provided pentaerythritol triallyl ether 11 in 75 % yield. 31 Compound 11 was next 

reacted with monotosylated tetraethylene glycol azide 1232 (NaH and DMF) to afford 

frrst intermediate 13 in 80% yield (Scheme 4-lA) clearly showing its characteristic 

stretching azide band at 2102 cm-1 by IR spectroscopy. 

Analogous aliphatic AB5 monomer 16 was similarly prepared using commercially 

available and inexpensive dipentaerythritol 14, which upon treatment with ally 1 

bromide (10 equivalents) in 40% so lution of sodium hydroxide in DMSO gave 

pentakis ally! derivat ive 15 in 40% yield along with its partially tetrakis allylated 

intermediate in 49% yield . It is worth mentioning here that the use of NaH instead of 

NaOH resulted in the formation of full y ally lated derivative as the major product with 

minor amount ( 15%) of the pentakis ally! derivative 15. Compound 15 was 

transformed as above with 12 into azide 16 in 68% yield (NaH, DMF, 4 h, 0°C) after 

colunm chromatography (Scheme 4-1A). 

Alternatively, subsequent aromatic AB5 dendron 26, possessmg the analogous 

azido-alkene functionalities, was prepared starting from 

hexachlorocyclotriphosphazene 17 (N3P 3C~) (Scheme 4-1B) . To this end, 

monofunctionalization of 17 was frrst carried out by treatment with 0.5 equivalent of 

N-Boc-protected 4-aminophenol (18) in the presence of dry cesium carbonate (THF, 

reflux, 18 h) to afford the expected compound 19 in a moderate yield (50%). The 31P

NMR spectrum of 19 showed the characteristic triplet s igna l of the P-0-linked 

phosphorous at o 12.8 ppm and a doublet signal at o 22.4 ppm (P-CI) due to the 

unsymmetrical environment of the '3 molecule. ) Using similar conditions, 

pentachloride 19 was treated with excess of p-allyloxyphenol 20 to provide pentakis

allylated dendron 21 in 88% yield, which showed identical phosphorous chemical 

shift at o 9.89 ppm (triplet). N-Boc-deprotection of 21 (TFA, DCM, 0°C-rt) and 
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subsequent N-chloroacetylation with chloroacetyl chloride and Hunig's base provided 

22 in 76% yield. The chloride group in 22 was further substituted by an azide group 

using NaN3 and Nai in DMF to give 23 in 81% yield. An upfield shift of the a

methylene protons from 8 4.18 to 4.12 ppm in its 1H-NMR spectrum unequivocally 

confirmed the product formation. · 

[ A · Aliphat!c AB3 and AB5 systems ) 

H~O tf;,OH] HO O]H 
H l H n 

10 n =0 
14 n = 1 

ifor 10 

~ 

[ C • Sugar-based AB7 system 1 

OAc OA 

~
~Q H0.._/"-8 

A~ Ac~OAc ---' 
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Scheme 4-1 A. Synthesis of aliphatic AB 3 (13) and AB5 building blacks 
(16).Reagents and conditions: (i) Ally!Br, NaOH, H20,rt, 75%; (ii) Ally!Br, 40% 
NaOH, DMSO, 16h. , 0°C-rt, 40%; (iii) NaH, DMF, 4h. , 0 °C, 80% for 13 and 68% 
for 16. B. Synthesis of AB5 aromatic building block 26. Reagents and conditions: (iv) 
Cs2C03anhy ,dry THF, reflux, 18h., 75% (with 0.5 eq . of 18) and 88% (with 10.0 eq. 
of20); (v) TFA, DCM, 0 °C-rt, 4h. then DlPEA, chloroacetyl chloride, DCM, rt, 4h. , 
76% (2 steps); (vi) NaN3, Nal, DMF, 60°C 12h. , 81% for 23 and 86% for 26; (vii) 
CuS04 · 5H20, Na Asc. , THF/water (1 :1), 55°C, overnight, 64%. C. Synthesis of AB 7 

sugar-based building block 31. Reagents and conditions: (viii) BF3etherate, DCM, 
0°C, 4h., 50% ; (ix) NaN3, DMF, 70°C,4h. , 92%;(x)NaOMe/MeOH,rt, 3h., 90%; 
(xi)Ally!Br, NaH, DMF, Ü°C-rt , 2h. , 85%. 
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To avoid the possibility of partial reactions due to the steric hindrance of this 

bulky AB5 system with the dense G 1 core, an extended linker was incorporated. 

Thus, azido alkene 23 was treated with monopropargylated tosy ltetraethylene glycol 

(TEG 24)34 under classical click reaction conditions (CuS04.5H20, Na ascorbate in 

THF/H20) to afford dendron 25 in 64% yield . 1H-NMR spectroscopy confirmed the 

completion of reaction as the sharp singlet for triazo le proton appearing at 8 7.81 ppm 

integrated nicely with the NH (8 8.73 ppm) and one of the al ly! signal (8 6.08-5.93 

ppm). In the next step, the tosyl group of dendron 25 was substituted with an azide 

group using NaN3 in DMF to afford 26 in 86% yield (Scheme 4-lB). ln the 1H NMR 

spectrum of the final pentaallylated azidodendron, the diagnostic signais related to 

tosyl group at 8 7.37, 7.26 and 2.38 ppm completely disappeared, thus confrrming 

complete conversion.For the synthesis of the sugar-based AB7 hypermonomer 31, 

boron trifluoride etherate (BF 3.Eh0) promoted glycosylation was performed between 

cellobiose octaacetate 27 and 2-bromoethanol which lead to the formation of 28 in 

50% yield based on the isolated (3-anomer. Bromide substitution in 28 using sodium 

azide in DMF gave azido derivative 29 in 92% yield. Aga in, the characteristic 

frequency of the azide stretching was observed in the IR spectrum at 2105 cm-1
• 

Treatment of peracetate 29 under typical Zemplén conditions (NaOMe/MeOH) 

provided completely de-0-acetylated dendron 30 in 90% yie ld. Per-0-allylation with 

ally! bromide under usual conditions (NaH, DMF) provided cellobiose-based AB 7 

derivative 31 in 85% yie ld (Scheme 4-lC). Complete allylation was confirmed by 
1H-NMR as distinct ally! signais appeared at 8 6.07-5.79 and 5.35-5.04 ppm. 

All the 011hogonal building blacks were thus successfully achieved in high purity 

with excellent to moderate yields. They were fully characterized by 1H-, 13C-, 31P

NMR, COSY experiments, HRMS, and IR spectroscopy (see Appendix C). These 

modular bifunctional building blacks were designed and synthesized to satisfy the 

ongoing quest to create complex dendritic scaffolds with high functionalities at low 

generation and using efficient ligation chemistry. 
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A:fter building the hypermonomer sub:fragments 13, 16, 26, and 31 , representing 

perallylated azides, key steps to construct the final dendrimers were followed. In 

order to construct the final dendrimers, a divergent "onion peel" route using CuAAC 

and thiol-ene reactions as synthetic tools were followed. Both these reactions have 

been successfully established for the synthesis of dendrimers and polymerie materials 

due to their desired features including simple execution, high reaction yields, few 

undesired side products, and easy purifications. The most attractive feature of these 

reactions is the introduction of orthogonality, which improves the synthetic route by 

dramatically decreasing the number of reaction steps. The synthesis of the next G2 

dendrimer 2, having 54 peripheral allyl groups, was achieved by ligating the AB 3 

building block 13 with hypercore 1 employing standard CuAAC click reaction under 

microwave at 50°C (Scheme 4-2) . The complete conversion was obtained within 5 

hours to yield the G2 dendrimer 2 easily purified using silica gel colunm 

chromatography in 78% yield. 
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Scheme 4-2 Synthesis of hyperbranched Odendrimers through a highly divergent 
accelerated approach. Reagents and conditions: (i) CuS04 · 5H20 , Na Asc. , 50°C, 5h. , 
microwave, G(2)-54 Allyl(2, from 13): 78%, G(2) -90 Ally!( 4, fi·om 16): 71%, G(2)-
90 Allyl(6 , from 26): 50%, G(2)-126 Allyl(8, from 31): 75%; (ii) 1-Thioglycerol, 
AIBN, methanol, 90°C, 6h. , microwave, G(3)-108 OH (3): 86%, G(3)-180 OH (5): 
82%, G(3)-180 OH (7): 63%, 0(3)-252 OH (9): 85%. 

Completion of the reaction was clearly established by 1H NMR spectroscopy 

which showed the complete disappearance of the propargylic C=CH signais at 8 2.50 

ppm and the expected appearance of two distinct triazole signa is integrating in a 2:1 

ratio at 8 7.92 and 7.84 ppm, respectivel y. In addition, cbaracteristic signais for the 

a llylic proton were also observed at 8 5.93-5.80 ppm. 
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3 (G3-108) 5 (G3-180) 

Figure 4-2 Molecular structures of dendrimers with 108, 180, and 252 end groups at 
third generation_ 

The monodisperse nature of dendrimer was also confirmed by MALDI-TOF 

data and GPC MALDI-TOF spectrum showed the molecular ion peak corresponding 

to Na+ adduct at 10814 (10791 M+ + 23)_ The same (click) reaction was also carried 

out using an oil bath under simi1ar conditions, but multiple spots were observed on 
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TLC indicating partial conversions. Dendrimer 2 was further subjected to thermal 

thiol-ene reaction using 1-thioglycerol as an AB2 monomer to afford G3 dendrimer 3 

having 1 08-0Hs surface groups. The purification was carried out by simply washing 

the reaction mixture with diethylether, followed by dialys ing against distilled water 

using 1 000-MW eut-off dialysis membrane. Complete disappearance of allylic 

signais and appearance of signais for protons corresponding to thioglycerol confirmed 

the product formation. HRMS (ESt) spectrum showed the expected molecular ion 

peak at 16631 (see Table 4-1 and SI (Apendix C)). 

A ft er the successful execution of the above synthetic strate gy with al iphatic AB 3 

mono mer 13, the synthesis of the next higher order branching units was attempted. 

The synthesis of perallylated dendrimer 4 was carried out by treating hypercore 1 

with penta-allylated AB5 monomer 16 using the above CuAAC conditions under 

microwave to afford G2 dendrimer 4 harbouring 90 active alkene functions in 71 % 

yield. The terminal alkenes of dendrimer 4 were next treated with 1-thioglycero l as 

above to provide G3 dendrimer 5 accommodating 180 terminal hydro xyl groups. The 

dendrimer was purified by precipitation with diethyl ether followed by dialysis 

against water to give the pure product in 86% yield. Once again, our accelerated 

"onion peel" approach proved to be efficient enough to introduce 180 surface groups 

at G3 stage only. 

The next goal was to try even bulkier building blocks to test the potential of the 

strategy for complex dendrimers construction. In general, bulky hypermonomers are 

responsible for creating structural defects in dendritic scaffo lds due to steric 

hindrance. Perpropargylated hypercore 1 was further reacted with a bulkier AB5-

based hypermonomer 26 (N3P3 core) via CuAAC click reaction using microwave 

radiations to generate G2 dendrimer 6 in an acceptable 50% yield after purification as 

above. The GPC chromatogram showed a narrow and symmetrical Gaussian pattern 

with a polydispersity index of 1.03 , confirming the monodisperse nature of the 

dendrimer. Its 31P-NMR spectrum showed a singlet for phosphorons indicating the 

symmetrical structure. In the next step, dendrimer 6 was subjected to the above thiol-
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ene conditions with 1-thioglycerol to afford dendrimer 7 with 180-0Hs surface 

groups in 63% yield. The 1H- NMR spectrum indicated the complete disappearance 

of all the ally lie signais, again confirming the product formation. 

Finally, the synthesis of perallylated dendrimer 8 usmg the novel 

glyconanosynthon, 8 constituting an AB7 branching motif, was carried out. It has to be 

noted that the use of such an hyper functionalized synthons has been rarely described 

in the literature and reported only once for dendrimer synthesis. 19 The synthesis was 

achieved by treating hepta-allylated AB7 monomer 31 with 1 using CuAAC click 

reaction under microwave to furnish G2 dendrimer 8 possessing 126 ally) groups at 

the periphery in 75% yield. Final coup ling of excess 1-thioglycero l onto dendrimer 8 

was achieved through thiol-ene coupling as mentioned in the general protocol 

described above. To test the reliability and sensitivity of NMR for complete 

conversion, the reaction conditions described above was used . As shown by 1 H-NMR 

spectroscopy (F igure 4-3) , incomplete conversion (80%) was observed after 5 hours. 

The reaction was resubmitted for another 2 hours with the addition of more 1-

thioglycerol (2 eq/alkene), which led to complete conversion as shown by the 1H

NMR spectrum which indicated complete disappearance of ali ally! signais. MALDI

TOF spectrometry also confirmed product f01mation by showing mass peaks 

conesponding to sodium adducts perfectly matching with the calculated value (SI, 

Appendix C). It is wotih mentioning here that the resulting dendrimer 9 possesses 

252 hydroxyl surface groups at the G3 stage only and can still be used as a precursor 

for further functionalization. There is still the possibility to generate an even greater 

number of peripheral groups at the G3 stage by using higher order AB3 or AB4 

building blacks such as the AB2 monomer (1-thiogycerol) used above. As a 

comparison, PAMAM dendrimer with ethylenediamine core (A2 and AB2 building 

blocks) bem·ing 256 surface groups requires generation 6 (G6) and approximate !y 

twelve steps, while the accelerated "onio n peel" strategy allows us to acquire 252 

surface groups at exactly half the number of generations and one third of the number 

of necessary reaction steps. 
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Ally! signais indica ti ngpart ia l 
th io l-e ne coup ling 

9.0 e.s ~ ~s 7~ 65 ~o u ~ 4.5 i~ 35 J.o Ls z~ ~~ ~ ~ o5 
ft (ppm) 

Figure 4-3 1H NMR spectrum of9 (G3-252) (ToQ) After 5 hours in microwave ~0 
°C indicatin~ 80% conversion, (Bottom) After 7 hours in microwave at 50 C 
indicating 1 vO% conversion. 

Ail dendrimers described herein were full y characterized using NMR ( 1H, 13C, 

3 1
- P, COS Y), IR, mass spectrometry and were shown to be in full agreement with the 

structures presented. Gel permeation chromatography (GPC) were performed at the 

penultimate steps and all the chromatograms showed narrow peaks with low 

polydispersity indexes (PDI) indicating the monodisperse nature of the products 

(Figure 4-4 and Table 4-1 ). The Mn values obtained from GPC exhibited very good 

conelation with theoretical molecular weights as well as mo lecular weights acquired 

from mass spectrometrie data. The dendrimer diameters in solution were calculated 

with the help of dynamic light scattering (DLS) and diffusion NMR spectroscopy 

experiments (Table 4-1). Diffusion NMR experiments were carried out in methanol at 

25°C to measure diffusion coefficients D. 35 The corresponding solvodynamic 

diameters (Ds = 2 x Rs) were calculated using the Stokes-Einstein equation and the 

viscosity of pure CD30D (Table 4-1). The sizes ofthe dendrimers were also obtained 

using DLS technique in methanol. Hydrodynamic diameters calculated fi:om both 

methods were remarkably close and were in the range of approximately 2-8 nm for 

the G3 dendrimers. Interestingly, dendrimer 7, having a dense N3P3 scaffold, appears 
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as an unusually packed structure by both DLS and DOSY -NMR, Table 4-1). This 

could be rationalized on the basis of its 3D structure having 3-up/3-down substituent 

orientations. 333 

6 8 4 2 

20 21 22 23 24 25 26 27 28 

Retention ti me /min. 

Figure 4-4 GPC traces of the dendrimers: (2)G2-54, (4)G2-90, (6)G2-90,and (8)G2-
126 



Table 4-1 Summary of characterization of dendrimers. 

Ent Dendrime Theo ret Exp. Mn a PDI Do D/ 
ry r ical Mass (g/mol (m2s-t) (nm) 

MW [MALDI/ e) 
MS] 

1 2 (G2-54) 10791.1 10814.39 10770 1.08 - -

392 20 
[M+Nat 

2 3 (G3-108) 16631.7 16631.74 - - 1.15 x 6.30 
479 80 10-10 

3 4 (G2-90) 14359.7 14385.10 14490 1.2 - -
980 00 

[M+Nat 
4 5 (G3-180) 24110.1 24124.90 - - 1.05 x 6.90 

882 40 10-10 

5 6 (G2-90) 26481.1 26249.78 26350 1.03 - -

320 70 
6 7 (G3-180) 36215.4 37226.67 - - 2.54 x 2.85 

798 20 1 o-lo 

7 8 (G2-126) 15007.6 15011.01 15140 1.07 - -
007 80 

8 9 (G3-252) 28667.7 28690.03 - - 1.23 x 5.90 
725 70 10-1 0 

[M+Nat 
aDetermined from GPC. 
bDiffusion coefficient measured in CD30D at 25 °C. 
cSo1vodynamic diameter from diffusion NMR experiment calculated using the 
Stokes-Einstein equation. 
d Hydrodynamic diameter determined from OLS experiment in methanol. 
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DHrJ 

(nm) 

-

5.70 

-

8.22 

-

1.95 

-
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Figure 4-5 Low cytotoxicity of dendrimers in human cells. Dendrimers 3 (03-
1 08), 5 (03-180) and 9 (03 -252) were tested in: (A) Hep02 liver carcinoma, (B) 
U251N glioblastoma and (C) MCF-7 breast adenocarcinoma cells. Increasing 
concentrations of dendrimers (1 nM - 10 ~M) were incubated with the ce ils for 
24h. Mitochondrial metabolic activity was assessed using the MTT assay. Values 
are presented as mean percentages ± S.D relative to untreated controls (set as 
100% ).The data is reported for six measurements for each concentration. Three 
independent experiments performed *(p < 0.0 1) 
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The cytotoxicity of the polyhydroxylated dendrimers 3, 5 and 9 was evaluated in 

vitro using tlu·ee different human cell !ines. Human liver, glioblastoma and breast 

cancer cells were selected as models commonly used for the screening of polymerie 

biomaterials. Mitochondrial metabolic activity was determined using the MTT assay 

(i.e . formazan production by mitochondrial dehydrogenases). 37 Cell viabi lity upon 

dendrimer treatment was also determined by nuclear labellirig with Hoechst 33342 

( 10 ~M, 10 mins), and ce Ils were imaged with a fluorescence microscope. The 

concentration range used in both assays (1 nM to 10 ~M) was delimited based on 

previous de nd rimer cytotoxicity studies. 38 Concentration-dependant effects of 

dendrimers on mjtochondrial activity in human cells exposed for 24b is shown 

(Figure 4-5) . 

No significant decrease in metabolic activity was observed in Hep02 and 

MCF-7 cells at any treatment concentration. In turn, dendrimers 3 and 9 were mildly 

cytotoxic in the highly proliferative U251 N cells at 5-l 0 ~M and 1-10 ~M 

concentrations, respectively. Similar results were obtained in the viabi lity assay based 

on nuc lear labelling with Hoechst 33342 and subsequent cell counting (Figure 4-6). 
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The suitability of dendrimers for drug delivery or other biomedical applications is 

dependent on the number and the nature of the ir end groups. 7 Here, the hydroxy l 

groups found on the surface of dendrimers 3, 5, and 9 provide a neutra! outer shell 

that reduces toxicity. 39· 40 In contrast, cationic end groups, su ch as the primary 

amines in poly(amidoamine) dendrimers, tend to induce concentration-dependent and 

generation-dependent toxicity both in vitro and in vivo .4143 Overall, dendrimers 3, 5, 

and 9 displayed very low toxicity in the human cel! !ines and concentration range 

tested, rendering them suitable for biomed ical applications. 

A Ul51N B U251N C HcpG2 0 MCF-7 

Contiol y~>(' 

3 (G;l-108) 
>_.., 

·~ 
'c.; 

~(: "'"' \ OJ o'"' 
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150 i l SO , ~-- ---·-·---------·- ISO 1 

. , 1 ; 1 100 · ~ ~ ~ 100 1., 100 ~ ~ s i 

:JJJII! ::' : m 
~).!!:. S:w•-

l 2'""'S: ci-~ ci-~ ~ ci .... S ci .... ~ ;;-~ ~ 6 .... 2 ci .... 9 ;;l'""'~ 
8 Conc~ntrat1on tuM) 8 Concentration (uMI 8 Conccntrauon (uM) 

L Con!rol • J(G3 ·lOS1 85 (G3·180) " 9(G3-2S1J 

Figure 4-6 Concentration-dependent effect of dendrimers on human cell 
viability. Fluorescence micro ara ph (A) U251 N glio blastoma treated with 
dendrimers 3, St-and 9 (10 11M, ~4h) anèllabelled with~Hoechst 33342 (10JJ:M, 10 
mins) (scale = ;:,0 !!111). The c)1otoxicity_ of dendrimers 3 (G3-108).,T5 (G3-180) 
and 9 (G3-252) was tested in (B) U25 1N glioblastoma. (Cb rtepG2 liver 
carcinoma, and (D) MCF-7 breast adenocarcinoma ce1ls. endrimers in 
increasing, concentrations (up to 10 ..uM) were incubated with the cells for 24h. 
C~ll viapuity_\Ya~ <:tSSe~_seçi by_ higJ:Hhroughput imagipg (Operetta, .P~rki~ E_lmer) 

4.3 Conclusions: 

The syntheses ofG3 dendrimers bearing 108, 180, and 252 hydroxyl surface 

groups using AB3, AB5, and AB7 hypermonomers were successfu lly achieved. The 

dendrimers were constructed using highly efficient and facile accelerated "anion 

peel" approach · without requiring any protection/deprotection steps. The use of 

hypercore and hypermonomers along with the combination of highly efficient 

chemical reactions (CuAAC and thiol-ene) provided rapid access to i.ntroduce high 

number of precise surface groups at low generations. Click reactions turned out to be 

highly efficient in ligating large number of functional groups and producing 
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monodisperse dendrimers. The outer hydroxyl terminal groups provide a reactive 

platform for further growth and attaclm1ent of severa! other types of functionalities. 44
-

51 Hydroxylated dendrimers presented here and theil· derivatives could be easily 

synthesized and used for diverse range of applications. A particular attraction of these 

dendrimers for applications in biology is theil· low toxicity. Future studies should 

include the investigations of dendrimer pharmacokinetics and pharmacodynamies as 

well as theil· cellular uptakes. Relative ease of tailoring dendrimer chemistry to best 

fit physical and chemical properties of selected biologically active agents makes these 

dendrimers attractive candidates for further biological investigations in primary 

human cell cultures and experimental animal models mimicking different 

pathologies. ln addition, the strategy described hereil1 nicely complements the one 

using self-assembling Janus dendrimersomes. 52
-
53 
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CHAPTER 5 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

5.1 Conclusions 

In recent years, dendrimers have gained enormous success in diverse areas ranging 

fiom biomedicine to nanoengineering. In general, dendrimers synthesis is very 

lengthy, tedious and time consuming especially in the case of high generation 

dendrimers. Due to theil· increased demand for various applications, new highly 

efficient and shorter synthetic protocols are required for the construction of 

dendrimers which can deliver these macromolecules with perfect structure in a rapid 

mann er. 

ln this thesis, we have presented a novel "onion peel strategy" for the 

construction of dendrimers. This highly versatile synthetic approach is different from 

conventional methods of dendrimers synthesis in terms of using different families of 

building blocks containing orthogonal functional groups at each layer ofthe dendritic 

growth. The dendrimers were synthesized using a combination ofhighly efficient and 

robust chemical reactions, namely, thiol-ene, thiol-yne, esterification, and azide

alkyne click chemistry. Using this strategy, we demonstrated that structural 

diversities could be efficiently and rapidly harnessed at low generations. By carefully 

optimizing the choice of monomers, we generated a library of dendrimers with 

desired hydrophobic/hydrophilic and rigidity/flexibility balances at each generation 

of dendrimers growth. The dendrimer's surface was decorated with an azido 

derivative of N-acetyllactosamine which led to new glycodendrimers having high 

affinities as compared to the corresponding monovalent analog towards Erythrina 
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cristagalli, a leguminous lectin known to bind natural killer cells through its 

galactoside recognition ability. 

In order to evaluate the versatility of "onion peel strategy" we employed this 

approach to construct dendrimers in both convergent and divergent maru1er. The 

approach turned out to be extremely fasci le to construct lactoside and galactoside 

based dendrimers in both ways. The dendrimers constructed using this strategy 

resulted in one of the most potent multivalent ligands known against the viru lent 

factor from a bacteriallectin isolated from Pseudomonas aeruginosa. 

In our next attempt, we evaluated the potential of "onion peel approach" and 

developed microwave assisted accelerated strategy to construct dendrimers with large 

number of exact end groups at lower generations. The use of hypercore and 

hypermonomers along with the combination of highly efficient chemical reactions 

(CuAAC and thiol-ene click) provided rapid access to dense dendrimer scaffolds. The 

hydroxyl terminated dendr imers displayed very low toxicity in the human ce l! !ines, 

making them suitable for various biomedical applications. 

The novel onion peel approach presented in this thesis bas numerous 

advantages over the existing strategies for the construction of complex 

macromolecular structures. In fact , this is highly efficient method where a dendrimer 

can be constructed with precise sequence in a tailor made fashion to address many 

biological issues. Freedom of using different building blocks provides exce llent 

control at each growth stage and helps to regulate the rigidness and flexibility 

required in the backbone. It also allows us to create vital hydroppobic and hydrophilic 

balance in the molecule with the help of smart orthogonal building blocks; and even 

molecularly precise modifications can be introduced. This approach opens up new 

avenues \vhere we can generate dendrimers with a wide variety of functional end 

groups which can be further employed in different chemical transformations of our 

choice. This strategy is quite convenient in conjugating different molecules on the 

periphery as weil as can enable us to include exact number of the required ligands. 

Due to flexibility of the approach, entire synthetic protocol up to the final mo !ecule 
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can be achieved maintaining orthogonality and leads to rapid construction of 

dendrimers involving fewer synthetic steps which makes overall process greener. 

Even the selection of the orthogonal building blocks at each generation can be 

performed in such a manner that available surface groups remain act ive a li the time 

for further functionalization. It is observed in many cases that a particular reaction 

which is used to construct dendrimers is very effective at Jower generations where 

very few end groups are involved in chemical transformation , but becomes very 

sluggish when higher generation dendrimers are pursued and ends up forming 

imperfect dendrimers. Onion peel approach allows us to introduce similar building 

block to synthesize higher generation dendrimer by employing a variety of highly 

efficient chemical transformation which can work better with large number of end

groups. The most important and attractive feature of this approach is that by using 

chemically similar orthogonal buildings block with different valency, it is possible to 

generate a library of dendrimers with different number of end gro ups at same 

generation. Hence, this type of strategy eliminates the need of comparing different 

generations to observe the effect of multivalency, rather it can be achieved at same 

generation. 

5.2 Suggestions for future work 

Multifunctional dendrimers have recently shown remarkable potential for 

applications in biology. The multifunctionalization of most wide ly studied and 

comrnercially available PAMAM dendrimers is usually carried out in a random 

statistical marmer, which 1eads to the formation of a complex mixture of products 

without any control on the attaclunent of individual functional moiety. The 

construction of well-defined multifunctional dendrimers with exact number of 

different functional moieties is a challenging task, and is highly required for 

applications in drug delivery. The developments of synthetic strategies which can 

build dendrimers with different functionalmoieties in a controlled marmel' are highly 

desirable. 



5. 2.1 Design and development of trijimctional dendrimers using a combination of 
"anion peel" approach and "multicomponent Passerini reaction" 

Onion peel dendrons with different 
peripheral functionalization 
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Figure 5-l Schematic representation of construction of trifunctional dendrimer 
combining "onion peel" approach and Passerini reaction 

In this thesis, we have developed a novel "anion pee l" approach to synthesize 

monofunctional dendrimers. We have demonstrated that this approach provides us 

full freedom about the choice of building blocks, which results in diverse range of 

dendrimers with different properties, sizes, and number of end groups at same 

generations. This "anion peel" approach has a lot of potential which can be exploited 

to build multifunctional dendrimers . It will be interesting in future to combine the 

advantages of "anion peel" approach together with "multicomponent Passerini 

reaction" to develop trifunctional dendrimer in a convergent way (Figure 5.1 ). Three 

different dendrons can first be synthesized via "onion peel" strategy usi.ng atom 

economical reactions and orthogonal building blocks. Ali three dendrons wi ll be 

consisting of three different focal points (i.e. isocyanide, aldehyde and carboxylic 

acid) to participate in the Passerini reaction to yield the trifunctional dendrimer in one 

step in a convergent way. The periphery of dendritic wedges can be decorated with 
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desired functionalities e.g. drug molecules, targeting ligands, and imaging dyes etc. 

This approach can be highly advantageous to construct multifunctional dendrimers in 

a tailor made fashion. 
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APPENDIX A 

SUPPORTING INFORMATION-CHAPTER 2: "ONION-PEEL" DENDRIMERS: A 

STRAIGHTFORWARD SYNTHETIC APPROACH TOWARDS HIGHLY 

DIVERSIFIED ARCHITECTURES 

1. Materials and methods: 

Al! reactions in organic medium were performed in standard aven dried glassware 

under an inert atmosphere of nitrogen using freshly distilled solvents. Cl-bCb was 

distilled from CaH2 and DMF from ninhydrin, and kept over molecular sieves. 

Solvents and reagents were deoxygenated when necessary by purging with nitrogen. 

Water used for lyophilisation of final dendrimers was nanopure grade, purified 

through Barnstead NANOPure II Filter with Barnstead MegOlm1-CM Sybron meter. 

All reagents were used as supplied without prior purification unless otherwise stated, 

and obtained from Sigma-Aldrich Chemical Co. Ltd. Reactions were monitored by 

analytical thin-layer chromatography using silica gel 60 F254 precoated plates (E. 

Merck) and compounds were visualized by 254 nm light, a mixture of Iodine/silica 

gel and/or mixture of Ceric Ammonium Molybdate solution (1 00 ml H2S04, 900 ml 

H20, 25g (NH4)6Mo70z4Hz0, 1 Og Ce(S04)z) and subsequent development by gentle 

warming with a heat-gun. Purifications were perfonned by flash colunm 

chromatography using silica gel from Silicycle (60 A, 40-63 !l111) with the indicated 

elue nt. 

1H NMR and 13C NMR spectra were recorded at 300 or 600 MHz and 75 or 150 

MHz, respectively, on a Bruker spectrometer (300 MHz) and Varian spectrometer 

(600 MHz). Al! NMR spectra were measured at 25 °C in indicated deuterated 

solvents. Proton and carbon chemical shifts (8) are reported in ppm and coupling 

constants (J) are reported in Hertz (Hz) . The resonance multiplicity in the 1H NMR 

spectra are described as "s" (singlet), "d" (doublet), "t" (triplet), "quint" (quintuplet) 

and "m" (multiplet) and broad resonances are indicated by "br" . Residual protic 

solvent ofCDCh ( 1H, 8 7.27 ppm; 13C, 8 77.0 ppm (central resonance ofthe triplet)) , 

D20 (1H, 8 4.79 ppm and 30.9 ppm for CH3 of Acetone for 13C spectra of de-0-

acetylated compounds), MeOD ( 1H, 8 3.31 ppm and 13C, 8 49.0 ppm). 20 

Homonuclear correlation 1 H-1 H COSY experiments were used to confrrm NMR 

peak assignments. Gel Permeation Chromatography (GPC) was performed using THF 

as the eluent, at 40°C with a 1 mL/min flow rate on a Viscotek VE 2001 GPCmax 

(SEC System) with Wyatt DSP/Dawn EOS and refractive index RI/LS system as 

detectors. 2 PLGel mixed B LS (10 !ll11, 300x7.5 mm) and LS-MALLS detection with 
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performances verified with polystyrene 100 kDa and 2000 kDa were used to 

determine the number-average molecular weight (Mn) and polydispersity index 

(Mw!Mn). Calculations were performed with Zimm Plot (mode!). Fourier transform 

infrared (FTIR) spectra were obtained with Thermo-scientific, Nico let mode! 6700 

equipped with ATR. The absorptions are given in wavenumbers (cm-1
) . The intensity 

of the bands is described as s (strong) , rn (medium) or w (weak). Metting points were 

measured on a Electrothermal MEL-TEMP apparatus and are uncorrected. 

Accurate mass measurements (HRMS) were performed on a LC-MSD-ToF 

instrument from Agitent Technologies in positive electrospray mode. Law-resolution 

mass spectra were performed on the same apparatus or on a LCQ Advantage ion trap 

instrument from Thermo Fisher Scientific in positive electrospray mode (Mass 

Spectrometry Laboratory (Université de Montréal), or Plateforme analytique pour 

molécules organiques (Université du Québec à Montréal) , Québec, Canada). Either 

protonated molecular ions [M+nHt+ or adducts [M+nXt+ (X == Na, K, NH4) were 

used for empirical formula confirmation. MALDI-TOF experiments were performed 

on an Autoflex III from Brucker Smarteam in linear positive mode (Mass 

Spectrometry Laboratory (McGill University)) to afford adducts [M+nX]n+ (X == Na, 

K or Li). Samples were solubi lized in H20 for a final concentration of 6 mg/mL. 

Dihydroxybenzoic acid (DHB) was used as the matrix. Cationization was eased by 

the use ofthe corresponding sodium salt (2 mg/mL). 

Particle size distribution (DLS) was measured in water with the help of Zetasizer 

Nano S90 from Malvern. 

2. Synthetic protocols and characterization: 

General procedure for thiol-ene click reaction (Procedure A): 

To a stirring solution of alkene derivative (1.0 eq.), 2,2' -dimethoxy-2-

phenylacetophonone (DMPA) (10 mol %) in dry DMF (0 .2 mllmmol) was added 

thiol derivative (excess per alkene) under nitrogen. The via l was then purged with N 2 

for 10 min and irradiated for 12 hrs using UV lamp at room temperature (classical 
glassware, UV lamp (365 mn, Mode! UVGL -58 MINERALIGHT® LAMP) in a 
cardboard box) . Upon completion of reaction, the solvent was removed under 

vacuum and residue was subsequently washed tlu-ee times with diethyl ether to 

remove excess of thiol, affording a clear viscous liquid. The crude product was 

further purified by column chromatography. 



--- - -··-· ----------------------------------------------

123 

Optimized conditions for the synthesis of derivative 8 will be summarized in the 

corresponding section. 

General procedure for thiol-yne click reaction (Procedure B): 

To a stirring solution of alkyne derivative (1.0 eq.), 2,2 ' -dimethoxy-2-

phenylacetophonone (DMPA) (lü mol %) in dry DMF (0.2 mllmmol) was added 

thiol derivative (excess per alkyne) under nitrogen. The vial was then purged with N2 

for 10 min and irradiated for .12 hrs using UV lamp at room temperature (classical 

glassware, UV lamp (365 nm, Madel UVGL-58 MJNERALIGHT® LAMP) in a 

cardboard box). Upon completion of reaction, the solvent was removed under 

vacuum and residue was subsequently washed three tin1es with diethyl ether to get rid 

of e~cess of thiol, affording a clear viscous Iiquid. The crude product was further 

purified by colurnn chromatography. 

General procedure for CuAAC click reaction (Procedure C) : 

To a solution of acetylene terminated dendrimer (1.0 eq.) in THF (5 ml/mmol) was 

added azido derivative (1 .2 eq. per acetylene) dissolved in H20 , followed by the 

addition of sodium ascorbate (0.5 eq. per acetylene) and CuS04 ·5H20 (0.5 eq. per 

acetylene) dissolved in minimum amount ofwater. The final ratio ofH20 to THF was 

kept 1:1. The reaction mixture was stirred at 40°C for 12 hrs. The so lvent was 

evaporated and residue was dissolved in minimum amount ofwater. The solution was 

then dialyzed using 2kDa eut off membrane bag against 5% aqueous EDT A so lution 

followed by millipore water. The dialysis was continued until light green colour 

disappeared in aqueous solution in the bag. The sample was lyophilised to afford 
white amorphous solid. 

BocHN NHB 
'~ oc s, ~ 

b ~s 

1~0 
0 o, 

s_r-/ '\ 
r-J a s~ 

BocHN '-NHBoc 

Synthesis of compound 8: Compound 6 (0.150 g, 1.027 mmol, 1.0 eq .), and 

compound 7 (1.456 g, 8.216 mmol, 8.0 eq) were reacted together according to 

procedure A to give 8 which was further purified by column chromatography. The 
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pure product (0.597 g, 0.791 mmo1) was isolated using 60% Et20 in Toluene as 

eluent. Yield: 77%. 

1H NMR (300 MHz, CDCh) 8 (pprn) 5.00 (s, 4H), 3.45 (t, J = 6.0 Hz, 8H), 3.38-
3.26 (rn, 16H), 2.70- 2.52 (rn, 16H), 1.96-1.71 (m, 8H), 1.45 (s, 36H). 
13CeH} NMR (75 MHz, CDCh) 8 (ppm) 155.8, 79.3 , 69.6, 45.4, 39.7, 32.2, 29.8 , 
28.4. 
HRMS (ESI+-TOF) m/z: calculated for C45HssN4012S4 [M+Nat: 1027.5174, found: 
1027.5194. 

>----r-' ~ T 'T' 1'! g i!l' ~ ~ g : ~ ~!:: w 

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 
f1 (ppm) 

Figure Sl 1H NMR spectrum of compound 8 (CDCh, 300 MHz). 
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Figure S2 13C NMR spectrum of compound 8 (CDCh, 75 MHz). 
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MS Spectrum Peak list 
Ion lon Formula Abu nd Expe. m/z Cale. m/z Diff(ppm) 

(1·1+H) + C45H89N4012S4 5925 .7 Hl\15.53389 1005.53543 -1.53 
(r··1+Na)+ C45H88N4Na012S4 457463.9 1027.51942 1027.51738 1.99 

Figure S4. HRMS analysis (ESt) for compound 8. 
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Figure SS. Comparison of proportion of undesired a-addition during thiol-ene 
process between compounds 6 and 7, depending on experimental conditions. 
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Synthesis of compound 9: To a stirring solution of compound 8 (430 mg, 0.42 

nunol) in DCM (10 ml) , was added 1.5 ml oftrifluoroacetic acid (TFA) at 0°C and 

reaction mixture was left at room temperature for overnight. The completion of 

reaction was monitored by TLC. Upon completion, the solvent was evaporated. The 
residue was diluted with 10 ml methanol and co-evaporated with Toluene under 

reduced pressure. This step was repeated 5-6 times. Yield: 97% (as a TF A salt). 

1H NMR (300 MHz, MeOD) 8 (ppm) 3.49 (t, J = 6.0 Hz, 8H), 3.38 (s, 8H), 3.14 (t, J 
= 6.9 Hz, 8H), 2.80 (t, J = 6.9 Hz, 8H), 2.66 (t, J = 7.2 Hz, 8H), 1.93- 1.77 (m, 8H). 
13CeH} NMR (75 MHz, MeOD), (TFA salt not indicated) 8 (ppm) 70.6, 49.9, 46.7 , 
39.9, 30.6, 29.7, 29.2. 

~--~--~--~--~----~--~--~--~--~~~------------~ 
6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.! 

f1 (ppm) 

Figure S6. 1H NMR spectrum of compound 9 (MeOD, 300 MHz) . 
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Figure S7. 13 C NMR spectrum of compound 9 (MeOD, 75 MHz). 
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Figure S8. COSY spectrum of compo und 9. 
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Synthesis of compound 11: To a solution of compound 9 (50 mg, 0.047 nm1ol, 1.0 

eq.) in DMF (1 ml) , was added diiosopropylethylamine (0.04 ml, 0.24 mmol, 5.0 eq.) 

and stirred for 30 min., followed by the addition oftripropargylated gallic acid 10 (80 

mg, 0.28 mmol, 6.0 eq.), EDCHCl (54 mg, 0.28 mmol, 6.0 eq.), DMAP (46 mg, 0.38 

mmol, 8.0 eq.). The reaction mixture was heated at 50°C overnight. The completion 

of reaction was monitored by TLC. Upon completion, the reaction mixture was 

diluted with water (2 ml) and extracted with ethyl acetate (3xl 0 ml) . The combined 
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organic extracts were washed with 0.1N HCl (3x5 ml) , followed by saturated 

NaHC03 solution and brine. The organic layer was dried over anJ1ydrous sodium 

sulfate, filtered and then evaporated under reduced pressure. The crude mixture was 

then purified with the help of column chromatography on silica using 70% ethyl 

acetate in hexanes as eluent to afford the desired compound 11 as colorless viscous 

oil (0.027 nm1ol, 45 mg). Yield: 57%. 

1H NMR (300 MHz, CDCh) 8 (ppm) 7.24 (s, 8H), 6.91 (br s, 4H), 4.78 (2xd, J = 2.4 
Hz, 24H), 3.61 (d, J = 5.9 Hz, 8H), 3.44 (t , J = 5.9 Hz, 8H), 3.32 (s, 8H), 2.75 (t, J = 
6Hz, 8H), 2.60 (t, J = 6Hz, 8H), 2.55 (d , J = 2.2 Hz, 8H), 2.47 (d, J = 2.4 Hz, 4H) , 
1.81 (s, 8H). 
13CeH} NMR (75 MHz, CD3Cl) 8 (ppm) 166.6, 151.5, 140.0, 130.2 , 107.9, 69.5 , 
60.3, 57.2, 39.0, 31.6, 29.7 , 28.3. 
IR(cm-1)3284, 2924, 2867, 2121 , 1639, 1582, 1493 , 1323, 1208, 1107, 1033, 991. 
HRMS (ESI+-TOF) m/z: calculated for Cs9H96N40 2oS4 [M+Nat: 1691.5393 , found: 
1691.5360. 

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ·0.! 
fl (ppm) 

Figure S9. 1H NMR spectrum of compound 11 (CDCb, 300 MHz). 
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Figure SlO. 13 C NMR spectrum of compound 11 (CDCb, 75 MHz). 
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Figure 812. COSY spectrum of compound 11. 
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Figure S13. HRMS analysis (ESI+) for compound 11. 
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Synthesis of compound 13: To a stirring solution of compound 11 (12 mg, 0.007 

mmol, 1.0 eq.) and compound 12 (81 mg, 0.10 mmo l, 14.4 eq.) in THF/H20 mixture 
(1 :1) was added sodium ascorbate (1 1 mg, 0.051 mmol, 7.2 eq.) and stirred for 5 



133 

minutes . lt was followed by dropwise addition ofCuS04·5H20 (9 .0 mg, 0.051 mmol, 

7.2 eq.) dissolved in water (1 ml). The reaction mixture was then stirred for 12 hrs at 

40°C. A 30 ml of EtOAc/aqueous solution of saturated NH4Cl (20: 10) was added to 

the mixture. Extraction, followed by subsequent washing of organic phase (2 x 10 ml 

of H20), drying over anhydrous Na2S04, filtration and evaporation in vacuo 

furnished a crude oil. Silica gel column chromatography was performed and pure 

compound was obtained as a colorless oil using 80% EtOAc in hexanes as eluent (57 

mg, 5.0 ~unol). Yield: 71%. 

1H NMR (600 MHz, CDCh) 8 (ppm) 7.94 (s, 8H), 7.72- 7.46 (m, 52H), 7.43-7.28 
(m, 44H), 7.27- 7.12 (m, 36H), 6.03 (m, 12H), 5.39 (s, 12H), 5.34- 5.09 (m, 32H), 
4.99 (d, J = 8.6 Hz, 12H), 4.83-4.67 (m, 12H), 4.33-3 .58 (m, 134H) 3.45 (br s, 12H), 
3.34 (br s, 8H), 2.75 (br s, 8H), 2.63 (br s, 8H), 2.24- 1.92 (m, 11 2), 1.85- 1.63 (m, 
76H), 1.10- 0.94 (m, 108). 
13CCH} NMR(151 MHz, CDCh) 8 (ppm) 171.0, 170.3, 170.1 , 169.8, 169.1, 152.1 , 
143.7, 135.6, 135.4, 133.1 , 132.3, 129.9, 128.1 , 126.9, 122.3, 108 .7, 101.14, 85 .6, 
79.7, 72.6 , 71.8 , 71.2 , 70.7, 69.4, 68.7, 66.7 , 63 .3, 61.6 , 61.1 , 55.4, 39 .6, 31.2, 29.6 ' 
28.5 , 26.8, 22.9, 20.5, 19.2 . 
IR (cm-1

): 2955 , 2927, 2856, 1752, 1667, 1428, 1369, 1428, 1369, 1218, 1104, 1069. 
(MALDI-TOF) m/z: calculated for Cs4sH696NszOi ssS-ISi1z: 11448.879, found : 
11457.922. (DHB matrix) 
GPC: M 11=11220 g/mol, M,/Mn= l.031. 
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Figure S14. 1H NMR spectrum of compound 13 (CDCh, 600 MHz). 
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Figure SlS. 13C NMR spectrum of compound 13 (CDCb, 150 MHz) . 
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Figure S16. MALDI-TOF trace for compound 13 (DHB matrix) . 
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Synthesis of compound 1: To a stirring so lution of compound 13 (55 mg, 5.0 )lmol, 

1.0 eq.) in THF, TBAF (0.078 ml, -o.078 mmol, 15 .6 eq.) was added at 0°C. The 

reaction mixture was stirred at room temperature for 6 hrs. The solvent was then 

evaporated and solid was washed with diethylether. The residue was dissolved in 3ml 

of methanol followed by the addition of lM solution of MeON a in MeOH to adjust 

the pH 9-10 and reaction mixture was le ft for stirring overnight. The reaction pH was 

then adjusted with H+ resin to reach 6. After filtration, solvent was evaporated and 

residue was dissolved in 3ml ofwater and extracted with diethyl ether (3x15 ml). The 

aqueous layer was lyophilized to yield a white solid (25 mg, 3.8 )lmol) . Yield: 75%. 

1H NMR (300 MHz, D20) 8 (ppm) 8.27 (2xbr s, 12H), 7.19 (br s, 8H), 5.79 (m, 
12H), 5.39-4.82 (rn, 24H), 4.54 (rn, 12H), 4.26 (m. 12H), 4.13- 3.00 (rn, 156H), 2.60 
(2xbr s, 16H), 1. 70 (rn, 44H). 
13C{1H} NMR (151 MHz, D20) 8 (ppm) 174.2, 169.0, 152.1, 143.7, 139.1 , 130.6, 
124.7, 107.5, 103.6, 86.8, 86.6, 85.7, 78.5 , 78.2, 76.0 , 73.0, 72.8, 71.6, 70.3, 69.2, 
65.5 , 62.5 , 61.7, 60.4, 58.7, 55.5, 55.3, 40.1 , 31.3, 29.0, 28.7, 28.6, 23 .7, 22.3, 19.8, 
13.4. 
IR (cm-1

): 3289,2868, 1650, 1543, 1426, 1374, 1321, 1236, 1040, 896, 727. 
(MALDI-TOF) m/z: calculated for C2s7H3s4Ns2Üt4oS4 [M+Na( 6593.3, found: 
6597.9. 
Melting point: 2: 214°C (dec.). 



137 

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 .! 
fl (ppm) 

Figure S19. 1H NMR spectrum of compound 1 (D20 , 300 MHz) . 
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Figure S20. 13 C NMR spectrum of compound 1 (D20 , 150 MHz). 
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Figure S22. IR spectrum of compound 1. 
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Figure S23. MALDI-TOF trace for compound 1 (DHB matrix) . 
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Synthesis of compound 15: Compound 6 (200 mg, 0.680 mmol, 1.0 eq.) and 14 

(1.91 ml, 27.2 mmol, 40.0 eq.) were reacted together following the procedure A and 
was fiuiher purified by column chromatography (5% MeOH in DCM as eluent) to 

yield compound 15 as a viscous oil (31 0 mg, 0.507 mmol). Vield: 75%. 
1H NMR (300 MHz, CDCh) o (ppm) 3.72 (q, J = 6.0 Hz, 8H), 3.46 (t, J = 6.0 Hz, 
8H), 3.34 (s, 8H), 2. 72 (t, J = 6.0 Hz, 8H), 2.59 (t, J = 7.5 Hz, 8H), 2.48 (t, J = 4.5 
Hz, 4H), 1.90- 1.74 (rn, 8H) . 13CCH} NMR (151 MHz, CDCI3) o (ppm) 69.6, 60.6, 
60.3, 35.3, 29.8, 28.4. 
IR (cm-1

): 3385, 2916, 2868, 1461 , 1420, 1371 , 1266, 1170, 1069, 1043 , 1009, 933 , 
903, 667. 
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HRMS (ESI+-TOF) m/z: calculated for C25H5208S4 [M+Ht: 609.2618; found: 
609.2604. 
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Figure S24. 1H NMR spectrum of compound 15 (CDC!o, 300 MHz). 
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Figure S25. 13 C NMR spectrum of compound 15 (CDCb , 75 MHz). 
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M s Spectrum Pea k List 
m/z ICalcmjz Diff{ppm) z Abu nd !Formula 11on 

591.2492 468071 

591.2492 591.2512 -3.36 1 468071 C25 H51 07 54 (M+H)+[-H20] 

591.5557 26900 

591.855 3896 

592 .2527 592.2542 -2.55 135373 C25 H51 0 7 54 (M+H)+[-H20) 

592.5604 6257 

593.248 593 .2495 -2.47 97508 C25 H51 07 54 (M+ H)+[ -H20] 

593.5528 3929 

594.2503 594.2514 -1.92 21101 C25 H51 07 54 (M+H)+[-H20] 

595.2471 6962 

609.2604 609.2618 -2.2 1 86750 C25 H53 08 54 (M+H)+ 

610.2642 610 .2648 -0.92 1 22764 C25 H53 08 54 (M+H)+ 

611.2591 611.2601 -1.7 1 15941 C25 H53 08 54 (M+H)+ 

612.2606 612.2621 -2.49 1 3860 C25 H53 08 54 (M+H)+ 

626.287 626.2883 -2 .08 1 3386 C25 H56 N 08 54 (M+NH4)+ 

631.2418 631.2437 -3.06 1 79852 C25 H52 Na 08 54 (M+ Na)+ 

632.2453 632.2467 -2.36 1 20401 C25 H52 Na 08 54 (M+Na)+ 

633.2368 633 .2421 -8.3 1 17552 C25 H52 Na 08 54 (M+Na)+ 

634.2377 634.244 -10.02 1 4397 C25 H52 Na 08 54 (M+ Na)+ 

647 .2159 647.2177 -2.67 1 7061 C25 H52 K 08 54 (M+ K)+ 

Figure S27. HRMS spectra and repo11 for compound 15. 
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Synthesis of compound 17: To a solution of compound 15 (200 mg, 0.328 mmol, 1.0 

,eq.) , EDC· HCI (307 mg, 1.59 mmol, 4.8 eq.), and DMAP (240 mg, 1.97 mmol, 6.0 

eq.) in DMF (Sm!) was added derivative 16 (4-oxo-4-((3-(prop-2-yn-1-yloxy) -2,2-

bis((prop-2-yn-1-yloxy) methyl)-propoxy)methoxy)butanoic acid) (633 mg, 1.80 

mmol, 5.5 eq.). The reaction mixture was heated overnight at 50°C. The completion 

of reaction was monitored by TLC. Upon completion, the reaction mixture was 

diluted with water (2ml) and extracted with ethyl acetate (3x1 Oml). The combined 

organic extracts were washed with 0.1 N HCJ (3x5ml), followed by satûrated 

NaHC03 solution (3xl Oml) and brine. The organic layer was dried over anhydrous 

sodium su lfate , filtered and evaporated under reduced pressure. The crude mixture 

was then purified with the help of column chromatography using 5% acetone in 
hexanes as eluent. A yellowish oil was obtained (375 mg, 0.194 mmol) . Yied: 59%. 

1H NMR (600 MHz, CDCh) 8 (ppm) 4.24 (t, J = 7.1 Hz, 8H), 4.16 (s, 8H), 4.12 (d, J 
= 2.4 Hz, 24H), 3.52 (s, 24H), 3.45 (t , J = 6.1 Hz, 8H), 3.34 (s, 8H), 2.74 (t, J = 7.1 
Hz, 8H), 2.69- 2.56 (m, 24H), 2.43 (t, J = 2.3 Hz, 12H), 1.90- 1.73 (m, 8H). 
13CCH} NMR (151 MHz, CDCb) 8 (ppm) 172.2, 171.9, 79.9, 74.5, 69.7, 68.7, 63.8 , 
58.8, 45 .5, 44.1 ' 30.4, 29.9, 29.2. 
IR (cm-1

): 3282, 2980, 2881 , 211 6, 1732, 1474, 1384, 1358, 1264, 1156, 1020, 958, 
907, 658. 
HRMS (APCI+) m/z: calculated for C97Hm032 S4 [M+Ht: 1937.7657, found: 
1937.7621. 
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Figure S28. 1H NMR spectrum of compound 17 (CDCb, 600 MHz). 
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Figure S29. 13 C NMR spectrum of compound 17 (CDCl] , 150 MHz). 
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Figure S30. IR spectrum of compound 17. 
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Figure S31. HRMS (APCI+) for compound 17. 
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Synthesis of glycodendrimer 2: Compound 17 (13.0 mg, 6.71 !lmol, 1.0 eq.) and 

compound 18 (46.6 mg, 0.114 mmol, 17.0 eq.) were reacted together using 

procedure C to give dendrimer 2 as a colorless solid (31.2 mg, 4.56 !lmol). Yield: 
68%. 
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1H NMR (300 MHz, D20) 8 (pprn) 8.21 (s, 12H), 5.87 (d, J = 9.5 Hz, 12H), 4.55 (br 
s, 36H), 4.29 (m, 24H), 4.14- 3.14 (rn, 172H), 2.85- 2.47 (rn, 36H), 1.78 (s, 44H). 
13CeH} NMR (75 MHz, D20) 8 (ppm) 180.7, 175.7, 175.1, 174.6, 145.0, 124.3, 
103.6, 86.9, 78 .3, 76.1 , 73.2, 72.9, 71.7, 70.0, 69.6, 68.7 , 64.8 , 64.2 , 61.7, 60.5 , 55 .6, 
44.6, 30.6, 29.5 , 28.9, 22.4. 
IR (cm- 1

): 3840, 3364, 2927, 1731 , 1657, 1593 , 1375, 1315, 1046. 
(MALDI-TOF) rn/z: calculated for C26sH42oN4s0152S4 (M+Nat: 6861.6, found: 
6862.3. 
Melting point: ~ 218°C ( dec.). 
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Figure S32. 1H NMR spectrurn of glycodendrimer 2 (020 , 300 MHz). 
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Figure S33. 13 C NMR spectrurn of glycodendrirner 2 (020 , 75 MHz). 
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Figure S34. COSY spect rum of glycodendrimer 2 . 
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Figure S35. IR spectrum of glycodendrimer 2. 
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Figure S36. MALDI-TOF trace for glycodendrimer 2 (DHB matrix). 

Synthesis of compound 21 : Compound 19 (50 mg, 0.27 mmol, 1.0 eq.) and 

compound 20 (227 mg, 2.15 mmol, 8.0 eq.) were reacted together according to 

general procedu re B and then purified by column chromatography using 5% MeOH 
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in DCM as eluent to give compound 21 as a colorless oil (140 mg, 0.227 nunol). 

Yield: 85%. 
1H NMR (300 MHz, CD30D) 8 (ppm) 6.91 (s, 4H), 4.22--4.13 (m, 4H) , 3.21 (m, 
2H), 3.04- 2.86 (m, 8H), 2.82 (m, 4H) , 2.63 (m, 8H). 
13CeH} NMR (75 MHz, CD30D) 8 (ppm) 176.0, 154.3, 116.9, 71.4, 46.7, 36.0, 
35.7, 35.5 , 28.8 , 27.6. 
IR (cm1

): 3334, 2944, 2832, 1449, 1022, 639. 
HRMS (ESr-TOF) m/z: calculated for C24H34010S4 [M-H]": 609.0964; found: 
609.0962. 
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Figure S37. 1H NMR spectrum of compound 21 (CD30D, 300 MHz). 
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Figure S38. 13C NMR spectrum of compound 21 (CD30D, 75 MHz). 
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Figure S39. COSY spectrum of compound 21. 
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Figure S40. IR spectrum of compound 21. 
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Figure S41. ESr spectrum of compound 21. 

Synthesis of compound 23: To a stmmg solution of compound 21 ( 41 mg, · 

0.067mmol, 1.0 eq.) in DMF (l ml) , were added compound 22 (85 mg, 0.35 mmol, 

5.2 eq.) , EDC·HCI (77 mg, 0.40 mmol, 6.0 eq.), DMAP (66 mg, 0.54 mmol, 8.0 eq.) 

and the reaction mixture was heated overnight at 50°C. The completion of reaction 

was monitored by TLC. Upon completion, the reaction mixture was diluted with 
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water (2 ml) and extracted with ethyl acetate (3x1 Oml). The combined organic 

extracts were washed with 0.1 N HCI (3x5ml), followed by saturated NaHC0 3 

so lution (3x5ml), and brine. The organic layer was dried over anhydrous sodium 

sulfate, filtered and evaporated under reduced pressure. The crude mixture was then 

purified by colunm chromatography using 5% Acetone in DCM as eluent to afford 23 

as a yellowish foam (72 mg, 0.047 mmol) . Yield: 70%. 
1H NMR (300 MHz, CDCh) 8 (pprn) 6.85 (s, 4H) , 4.18-4.08 (2xs, 36H), 3.52 (s, 
24H) 3.16 (rn, 2H), 3.07- 2.79 (rn, 12H), 2.65 (rn, 8H), 2.42 (tapp, 12H). 
13CeH} NMR (75 MHz, CDCh) 8 (pprn) 171.4, 171.4, 153.0, 11 5.8, 79.9, 74.5 , 
70.4, 68.7, 63.8, 63 .8, 58.7, 45.7, 44.1, 35.1 , 34.9, 34.9, 28.2, 26.8. 
IR (cm-1

): 3285 , 2875 , 2115 , 1731 , 1506, 1440, 1358, 1223, 1019, 958, 905, 805 , 
638. 
HRMS (ESI+-TOF) m/z: calculated for C80H980 22S4 [M+H(l539.5505 ; found ; 
1539.5506. 
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Figure S42. 1H NMR spectrum of compound 23 (CDCb, 300 MHz). 
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Figure S43. 13C NMR spectrum of compound 23 (CDCb, 75 MHz) . 
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Figure S44. COSY spectrum of compound 23. 
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Figure S45. IR spectrum of compound 23. 
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1563.5351 1563.5358 -0.48 1 674 CBO H98 Na 022 54 (M+Na)+ 

1577.5174 1577.5064 6.94 1 369 cao H9B K 022 54 (M+ K) + 

Figure S46. ESt trace ( + repoti) of compound 23 . 
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Synthesis of compound 3: Compound 23 (20 mg, 0.013 n1mol, 1.0 eq.) and 

compound 18 (85 mg, 0.2 1 n1mol, 15.8 eq.) were reacted together according to 

procedure C to give glycodendrimer 3 as a white solid (6 1 mg, 9.5 1-lmo l). Yield: 
73%. 
1H NMR (300 MHz, 0 20) 8 (ppm) 8.17 (br s, 12H), 6.88 (br s, 4H), 5.85 (d, J = 9.3 
Hz, 12H), 4.69--4.24 (m, 44H), 4.07- 3.37 (m, 174H), 3.08- 2.38 (m, 20H), 1.77 (s, 
36H). 
13CeH} NMR (75 MHz, D20) 8 (ppm) 174.4, 172.1, 153.3, 145 .0, 124.4, 117.0, 
103.6, 87.0, 78.4, 78.2, 76.1, 73 .2, 72.9, 71.7, 69.2, 68 .5, 64.2, 61.7, 60.5, 58 .9, 55.6, 
52.5, 44.6, 34.8, 34.7, 34.6, 28.1 , 26.7, 22.4. 
IR (cm· ' ): 3320, 2884, 1723, 1608, 1507, 1404, 1317, 1234, 1046, 898. 
(MALDI-TOF) m/z: calculated for C24&H386N4sO I42S4 [M+Nat: 6463.2, found: 
6463.7. 
Melting point :~ 210°C (dec.). 
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Figure S47. 1H NMR spectrum of glycodendrimer 3 (D20 , 300 MHz). 
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Figure 848. 13C NMR spectrum of glycodendrimer 3 (D20, 75 MHz). 
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Figure 849. COSY spectrum of glycodendrimer 3. 
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Figure SSO. IR spectrum of glycodendrimer 3. 
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Figure SSl. MALDI-TOF spectrum (full + zoom) ofglycodendrimer 3 (DHB 
matrix). 
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Synthesis of compound 25: Compound 24* (400 mg, 1.39 mmol, 1.0 eq.) and 

campo und 14 ( 4. 0 ml, 57 mmo 1, 40 eq.) were reacted to gether according to 

procedure Band subsequent purification by co lumn chromatography (1 0% MeOH in 

DCM as eluent) afforded compound 25 as a viscous transparent oil (825 mg, 0.904 
mmol). Yield: 65% . 
1H NMR (600 MHz, D20) o (ppm) 3.75 (m, l6H + 4H), 3.67 (dd, J == 10.4, 5.9 Hz, 
4H), 3.50- 3.43 (br s, 8H), 3.15 (m, 4H), 2.96 (dd, J == 13.5, 7.0 Hz, 4H), 2.90 (dd, J = 
13.5, 6.2 Hz, 4H), 2.84- 2.75 (m, 16H). 
13CeH} NMR (151 MHz, D20) o (ppm) 73.4, 69.9, 61.5 , 61.2, 46.3, 45.8 , 35.1 , 
34.8, 34.6, 28.9. 
IR (cm-1

): 3359, 2915, 287 1, 1458, 1418, 1366, 1288, 1172, 1108, 1010, 755. 
HRMS (ESI+-TOF) m/z: calculated for C33 H6s012Ss [M+Ht: 913 .2549 ; fow1d , 
913.2521. 
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Figure S52. 1H NMR spectrum of compound 25 (D20 , 600 MHz). 

* Protocol for the synthesis of tetrapropargylated pentaeryt!u·itol 24 was optimized, 
based on the one previous described by Gervay-Hague et al. (Che m. Commun., 2007, 
7, 695-697). Modifications mainly concerned temperature (0°C) and reaction time (2 
hours) that allow a very clean work-up by only quenching with an aqueous saturated 
solution of NH4Cl,extraction and a co lumn chromatography (in contrast with 
reactions involving higher temperature or KOH as a base for which extraction steps 
are more tedious). Yield is 75%. 
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Figure 853. 13C NMR spectrum of compound 25 (D20, 150 MHz). 
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Figure 854. COSY spectrum (zoom) of compound 25 . 
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Figure S55. IR spectrum of compound 25. 
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915.2502 915.2531 -3.1 1 17381 C33 H69 012 58 (M+H)+ 
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Figure S56. ESI+ spectrum of compound 25. 
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Synthes is of compound 26: To a stirring solution of compound 25 (33 mg, 0.036 

mmol, 1.0 eq.) in DMF (1 ml), were added tripropargylated gallic acid 10 (106 mg, 

0.375 rnmol, 10.0 eq.), EDCHCI (71 mg, 0.38 mmol, 10.0 eq.), DMAP (70 mg, 

0.577 mmol, 16.0 eq.) and the reaction mixture was heated overnight at 50°C. The 

completion of reaction was monitored by TLC. Upon completion, the reaction 

mixture was diluted with water (2 ml) and extracted with eth y! acetate (3x1 0 ml). The 

combined organic extracts were washed with 0.1 N HCl (3x5 ml), followed by 

saturated NaHC03 solution (3x5 ml) and finally with brine. The organic layer was 

dried over anhydrous sodium su lfate, filtered and then evaporated under reduced 

pressure. The crude mixture was then purified by co lunm chromatography using 4% 

Acetone in DCM as eluent to afford desired compound as colorless viscous oil (76 

mg, 0.025 n11nol). Yield: 70%. 

1H NMR (300 MHz, CDCh) o (ppm) 7.43 (d, J = 0.9 Hz, 16H), 4.81 (d, J = 2.4 Hz, 
l 6H), 4.78 (d, J = 2.4 Hz, 32H), 4.43 (t, J=6.9 Hz 16H), 3.69 (dd, J = 9.9, 4.7 Hz, 
4H), 3.59 (dd , J = 9.8, 5.7 Hz, 4H), 3.41 (s, 8H), 3.12- 3.00 (m, 4H), 3.01 - 2.78 (m, 
24H), 2.63-2.52 (m, 16H), 2.4 7 (t, J = 2.4 Hz, 8H). 
13CeH} NMR (75 MHz, CDCh) o (ppm) 165.4, 151.3, 141.4, 125.4, 125.4, 1 10.1, 
78.7, 78.0, 73.0, 69.7, 64.3, 64. 1' 60.3 , 57.2, 46.4, 45.8 , 35.2, 31.6, 30.1. 
IR (cm-1): 3725, 3608, 2924,2850, 2181 , 2148, 1729, 1436, 1264, 730. 
(MALDI-TOF) m/z: calculated for Ct6tH 14sÜ44Ss [M+Lit: 3050.3 , Found: 3049.0. 
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Figure S57. 1H NMR spectrum of compound 26 (CDCb, 300 MHz) . 
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Figure S58. COSY spectrum of compound 26. 

2.5 2.0 

163 

0.0 ..0.! 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

I 
5.0 ~ 

5.5 

6.0 

6.5 

7.0 

7.5 



200 190 180 170 160 150 140 130 120 llO 100 90 80 70 60 50 40 30 20 10 
fi (ppm) 

Figure S59. 13 C NMR spectrum of compound 26 (CDCb, 75 MHz). 
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Figure S60. IR spectrum of compound 26. 
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Figure S61. MALDI-TOF spectrum of compound 26 (DHB matrix) . 
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Synthesis of compound 4: Compounds 26 (10 mg, 3.3 )..1.11101, 1.0 eq.) and 18 (41 mg, 

100 ).!mol, 30 eq.) were reacted together according to procedure C to give dendrimer 

4 (31 mg, 2.4 !J.mol) . Yield: 74%. 

1H NMR (300 MHz, D20) 8 (ppm) 8.40- 8.05 (m, 24H), 7.40- 6.95 (rn, 16H), 6.05-
5.70 (rn, 24H), 5.22-4.97 (br s, 48H), 4.55-4.22 (m, 64H), 4.15- 2.68 (rn, 308H) , 1.68 
(m, 72H). 
13C{1H} NMR (150 MHz, D20) 8 (ppm) 175.5, 174.0, 171.6, 152.0, 143 .9, 143 .6, 
140.8, 125 .9, 125.2, 124.8, 109.3, 103 .6, 89.2, 86.7, 78 .5, 78 .3, 77.4, 76.0, 73 .2, 73.0, 
72.9, 72.0, 71.6, 69.2, 65.6, 62.6, 61.6 , 60.5 , 58.0, 55.5, 55.2, 52 .0, 46.3, 45.8, 35.3 , 
31.8, 30.2, 22.7, 22.4. 
IR (cnf 1

) : 3705, 3680,3667, 2900, 2864, 2843 , 2826, 1346, 1054, 1032, 1015. 
(MALDI-TOF) m/z: calculated for C497H724N960284Ss: 12844.1, Fo und: 12735 .6. 
Melting point: ~ 222°C (dec.). 
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Figure S62. 1H NMR spectrum of glycodendrimer 4 (020 , 300 MHz). 

RiShi-81-1 15 again-cosy 
Rishi-81-115 again-cosy 
cosy 020 C:\BnJker\TOPSPIN Roy 

L 

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4~ 3.5 3.0 2.5 2.0 1.5 
f2(ppm) 

Figure S63. COSY spectrum of glycodendrimer 4. 
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Figure S64. 13C NMR spectrum of glycodendrimer 4 (D20 , 150 MHz). 
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Figure S65. IR spectrum of glycodendrimer 4. 
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Figure S66. MALDI-TOF spectra of glycodendrimer 4 (DHB matrix, zoom). 
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Figure S67. Size distribution of glycodendrimer 4 by DLS (in water). 
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Synthesis of compound 28: Compounds 27 (25 mg, 0.026 mmol, 1.0 eq.) and 20 (66 

mg, 0.62 mmol, 24.0 eq.) reacted together according to procedure B and purificat ion 

by column chromatography (10% MeOH in DCM then 10% H20 in ACN as eluents) 

furnished desired compound 28 (41 mg, 0.0 18 nunol). Yield: 68%. 

1H NMR (300 MHz, CD30D) o (ppm) 6.73 (rn, 24H), 4.17 (m, 12H), 3.21 (rn, 6H) , 

3.06-2.84 (rn, 24H), 2.79 (t, J = 7.1 Hz, 12H), 2.58 (m, 241-f). 
13

C{'H} (75 MHz, CD30D) o (ppm) 176.0, 157.2, 145 .6, 123.1 , 116.6, 71.4, 46.8, 
36.5 , 36.1, 35.7, 29.1 , 28.0. 
31 P NMR (122 MHz, CD30D) o 10.4 (s, N3P3). 

HRMS (ESf-TOF) m/z: calculated for C9oHI14N30 36P3S12 (M-2Hf: 1143.6449, 
Found: 1143.6473 . 
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Figure 868. 1 H NMR spectrum of compound 28 (CD30D, 300 MHz). 
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140 120 100 80 60 40 20 0 ·10 ·30 -50 ·70 -90 ·110 -140 -170 -200 -230 
f1 (ppm) 

Figure S70.31P NMR spectrum of compound 28 (122 MHz, CD30D). 
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Figure 871. 13 C NMR spectrum of compound 28 (CD30D, 75 MHz). 
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Synthesis of compound 29: To a stirring solution of compound 28 (25 mg, Il jlmol, 

1.0 eq.) in DMF (1 ml), were added EDCHCl (32 mg, 0.16 mmol, 16.0 eq.) and 

DMAP (32 mg, 0.26 mmol, 26.0 eq.) . After 10 minutes under nitrogen atmosphere, 

compound 22 (41 mg, 0.16 mmol, 16 eq.). The reaction mixture was heated overnight 

at 50°C. The completion of reaction was monitored by TLC. Upon complet ion, the 

reaction mixture was diluted with water (2 ml) and extracted with ethyl acetate (3xl0 

ml) . The combined organic extracts were washed with O. lN HC! (3x5 ml), followed 

by saturated NaHC03 solution and brine. The organic layer was dried over anhydrous 

sodium sulfate, filtered and evaporated under reduced pressure. The crude mixture 

was purified by column chromatography using 2% MeOH in CHCh as eluent to 

afford 28 (36 mg, 7.2 jlmol) as a pale yellow oil. Yield: 72%. 

1H NMR (600 MHz, CDCb) ù (ppm) 6.98- 6.70 (rn, 24H), 4.22-4.08 (rn, 108!--I), 
3.52 (rn, 72H), 3.25-3.15 (br s, 6H), 3.09- 2.77 (rn, 36H), 2.66 (rn, 24H), 2.54- 2.42 
(rn, 36H). 
13CeH} (150 MHz, CDCh) o (ppm) 171.3, 155.4, 144.7, 121.9, 115 .2, 79.8, 74.5, 
70.1 , 68.6, 64.2, 63.7, 63.6, 58.7, 47.4, 45.5 , 43.9 , 35.0, 34.8, 34.8, 29.7, 28.1, 26.8. 
31 P NMR (122 MHz, CDCh) o 9.01 (s, N3P3). 
IR (cm-1

): 3291,2921,2115, 1731 , 1640, 1500, 1358, 1464, 1358, 1242, 1168, 1010 , 
884, 833, 733. 
(MALDI-TOF) m/z: calculated for CzssH3o6N30nP3Stz: 5078.9, found: 5077.5 (With 
regular fosses of peripheral moieties). 
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Figure S73. 1H NMR spectrum of compound 29 (CDCb , 600 MHz). 
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Figure S74. 31P NMR spectrum of compound 29 (CDCh, 122 MHz). 
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Figure S75. 13C NMR spectrum of compound 29 (CDCb, 150 MHz). 
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Figure 876. COSY spectrum of compound 29. 
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Figure 877. IR spectrum of compound 29. 



-------···-·------····-·-·--·----------·-------------·-·--,--- - ----------------
[) !>ou.::. :!OU M:t!di Dm.:. f'n1dcr'- . R :t~c- t~,\~ l l lf:•.-\M )'I <! 1 [-l-R<"nrRv~ -n i~1tÏ-•i71-SSD1 cal i.Ptîutpt<lT n_ J2 J \St-i;l 

COIW:Ii!r>/1 

Commtm~2 

" 

C6 

SSGT r.al LPC !mprc! 

~" 4~ odd 2500 

~ 

~ 

~ 

~ 

1 

~ 
!;: 
~ 

i 
1 : 

' 
' ' 

1 '\: r · 

\~ ···,· • IJ· .. _, ,,.:.,." ~1,.....-..,.." 
4000 

3<ük., Daltonocs-;;Oe.,.-x"'An-,.,alys- ,-. -------------··----------

j --
5000 

11/1 .412013 112 34 pij 

Figure S78. MALDI-TOF spectra of compound 29. 

176 



----- - ---- -----------------------------------------------------------------------------------------------, 

177 

HO OH 

HO OH H0\00H ~OH mOH OH 

OH ~OH ~0 0 OH {fiOH OH HO 0 9.t~{fi0H 
HO~ HO 0 HO 0 HO 0 oOH 

OH O 0 0 OH lb OH 0 0 HO 0 0 
OH HO HO HO 0 HO OH 

HO.f§i_H H~N-cf~HN0;~:N~~~N~:: ~H llcHN 'ic~~th~H OH~-~H 
HO O~~;A( N "<(\ 1~ N-~ 7-0 é {•~ N.'ifHN H~o'2 OH 

HO OH HO 0 N~ ~N ~N ~N}N.,~ ( N ~-'N 0 OH OHO OH~~~H 
tfx'oHAcHN .N . ) _) l 

0
) \ N O 

0
J (\ N,rtcHN.J5i t?o~ OH 

HJ\( N,_;__r 0 0 O~o ?LO__)-N N/o'ci. OHO OH 

0 \.-o~ ~ ,N AcH~ 
OH HO OH N 0 OH 

HO 0 0 0 0 0 0 0 N. . HO OH 
HO ~ ' 

HO ~O~,fcHN N.N.- N 0~ ):::o "'\ koJii~<~o~OH 
HO 0 N-N '={ ' \._S > ( . r,-N" 'o:'J HO OH 

HO NHAcN :. ' ) S S 0 0~ •• N HO HO 

HO 
0~H ~ O ~ \ 

5
-.r{; N AcHN~O~OH 

~H HO 0 N- N y__ 0 ( 0 -<c;")-
HO N- 0 1 ': o~H NHIIc ~0 o-f G- 0° ~.N 'llo ~HO OH 

OH HO O ~:N ~ /. '/ \ 0 AcHN OH 
• N ,-L s - 0 r-E ·~o ~o OH 

NHA -v'{ 0~ Q 0 N' 't?~ 
oH wJ< o s__}-., " 1 ;,-.N·p' ,_J-o 0'--'f ;, HO 

Ho~OH <::..o . 1.FoyO-~ - 0'• . .o'o-v _ /"'S 0 N' NHAc 
0 0~ \\ N, , N 1 /. ' \ \.._ /.'N~ 

HO OH HO NHAc w.N...__/0 0 ~O.P'QO 0 S" ~,;:N ~0 O~~OH 
0~_,_;,g ~ " 1 _,7--o~oY!'~NHAc ~.;1'1 

HO~Ol(, orNHAc 0 0 - 0 \ '-o N-N 0 OH HO HO 

N sJ O O 1_ "" HO 0~ 
HO OH OH H"· 0~ _) 5 \,... -N NHAc 0 OH Ho~0H Co. 'NFo:y s :>-t ~ N=N ~oH HoHo Ho 

oo~.... ,( ~ s N H~o~ HO HO NHA..,.·jO ~ N: N' ~HAc OH N' 1 0 0 OH 
'N 0 0 0 HO 

H0'?( N_) 0 0 O 0 HO OH HO 

~NHAc N:· !1 ~ ~ h O~H 
HOHO 0 0HO HO 0 N ~ 0 (\ ·o~ 0 

"(_/J~H ~AcN.' -r:-{0 O {0 0 0 0 N.- .N HO OH 
H~~l 0HO N i ~0 À ( ( N ~HAc HO 

HO 0 HO 0 ~~ \ ~~ \: ~ )-='\ O 
WaH ~O,O~A~ ' N ~ \ N.N N , '(. ~ N .• ' N N.kN~HO OH 

HO oGI'NHW; >I.N cg ·N-N N• N·~ 0 NHAc 0 OH 

HO O NHA~ HO 0 NHAc~ ~ fJ NHAc ~ 
HO OH HO 0 NHAc 0 NH~b 0 NH~O HO ~H HO OH 

HO 0 OH OOH HO OH OH ~H HO 

Hl]jO OH 0 OH HOWOH ~0 OH 0\0 ~: OH H0° OH 

~ 
~0~ ~ 

HO HO OH HO HOO HO HO 

HO HO HO OH 
HO HO HO HO HO HO 

Synthesis of compound 5: Compounds 29 (15 mg, 2.9 ).lmol, 1.0 eq.) and 18 (60 mg, 

0.15 mmol, 50 eq.) were reacted to gether according to procedure C to obtain 

g lycodendrimer 5 ( 48 mg, 2.2 J..ll11ül) as a white amorphous solid. Yield: 76%. 

1H NMR (300 MHz, D20) 8 (ppm) 8.22 (s, 36H), 7.01 - 6.58 (m, 24H), 5.92 (m, 
36H), 4.75- 2.62 (rn, 714H), 1.82 (br s, 108H). 
13C{ 1H} NMR (151 MHz, D20) 8 (ppm) 174.3, 173 .0, 156.3 , 145.0, 124.3 , 122.6, 
116.3 , 103.6, 86.9, 78.4, 78.2 , 76.0, 73.2, 72.9, 71.6, 69.2, 68.7, 64.2, 61.8, 61.2, 
60.5 , 57.2, 55 .6, 45 .0, 44.7, 35.2, 30.5, 25.1, 27.8, 26.9, 22.5 . 
31 P NMR (122 MHz, D20) 8 10.8 (s, N3P3). 
(MALDI-TOF) m/z calculated for C762H117oNI47Ü432P3S12: 19779.8, Pound: 19774.7 
(DHB matrix). 
Melting Point: :::: 219°C (dec.). 
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Figure S79. 1H NMR spectrum of glycodendrimer 5 (D20 , 300 MHz). 
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Figure S80. 31P NMR spectrum of glycodendrimer 5 (D20 , 122 MHz). 
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Figure S81. 13C NMR spectrum of glycodendrimer 5 (D20 , 150 MHz). 

.1 



179 

D:\Dm\2013 Maldi O.ta FoldtniR<oe RDy (UQ,>\M)\IJ02Zl-SSDflB-koy UQAM·Rishi-116·15000 10000<al-!11122l ?CiinProi\O_BI711115Lin 

Cotr.ment f SS DHB cal1 ~ 1122LPCiinl'rot 

C<xnment 2 lp -16 odd 2000 

19357.731 

t898J .700, 

100 

16000 19000 21000 22000 23000 24000 25000 rntt 

Commen! 1 SS DHO cai 121122LPChnPtot 

Comment2 lp 46 add 2000 

~ 
~ s 15() 
~ 

~ "' N g 
:;; "' .; .., 

~ "' 
.., ,. 

~ G ill 
125 -.. ~ '!! ~ 

[; !ii 
"' M ., 

~ '!! 
.,; 
~ 

100 '!! 

75 

! 1 

50 1 
1 

! 
1 

'! 
25 -

- -- · .,.. .. ~-"---~v-•• ' "T" v ·-··r ' ' 1 
16000 16500 17000 17500 18000 18500 10000 19500 20000 

mlz 

Figure S82. MALDI-TOF spectrum of glycodendrimer 5 (DHB matrix) 
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Synthesis of compound 30: To a solution of compound 18 (40 mg, 0.098 nm1ol, 1.0 

eq.) in TI-IF (1 ml) was added propargyl alcohol (17.5 fll, 0.30 mmol, 3.0 eq.) under 

stirring. Water (1.0 ml) was then added, followed by sodium ascorbate (19 mg, 0.098 

mmol, 1.0 eq.) and CuS04·5H20 (24 mg, 0.098 mmol, 1.0 eq.). The final ratio of 

H20 to THF w~s kept 1:1 . The reaction mixture was stirred at 40°C for 12 hours. 

After completion of reaction, the so lvent was evaporated and crude mixture was 

directly loaded on colunm for purification. The impurities were removed using 5% 

MeOH in CHCh as eluent. The pure compound was obtained, using a gradient of 

eluents varying from 5% MeOH in CHCb to 15% MeOH in CHCb, as a white 

amorphous solid (29 mg, 0.06Jnm1ol). Yield: 64%. 

11-1 NMR (300 MHz, CD30D) o (ppm) 8.22 (s, 1H), 5.88 (d, J = 9.6 Hz, lB), 4.73 (s, 
2H), 4.54 (d, J= 7.7 Hz, IH) , 4.32 (t, J= 9.7 Hz, IH), 4.12- 3.85 (m, 6H), 3.84- 3.73 
(m, 3H), 3.69 (dd, J = 9.9, 3.3 Hz, lH), 3.58 (dd, J = 9.9, 7.7 Hz, 1H), 1.82 (s, 3H). 
13C{

1
H} NMR (75 MHz, CD30D) o (ppm) 173.4, 149.3, 123.0, 105.1 , 88.1, 79.9, 

79.6, 77.2, 74.8, 74.0, 72.6, 70.3 , 62.5 , 61.4, 56.5, 56.2, 22.5. 
IR(cm-1)3340,2943, 2167, 1973, 1654,1561 , 1374, 1314, 1057, 1033. 
HRMS (ESI+-TOF) m/z calculated for C17H28N401 1 [M+Nat: 487.1647, found: 
487.1668. 

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 LO 0.5 0.0 -ü.! 
fl (ppm) 

Figure S83. 1H NMR spectrum of compound 30 (CD30D, 300 MHz). 
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Figure S84. 13C NMR spectrum of compound 30 (CD30D, 150 MHz). 
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Figure S85. COSY spectrum of compound 30. 



""' 
1 

(i 
"" 
sa 

''::/7 

"' 
95 

"' 
"" 
?:" 

o• 

"' .. 
~ 

., 
,. 
ss 

"'-""' 3~)() 1000 

Figure S86. IR spectrum of compound 30. 
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Figure S87. ESI+-TOF spectra (+ report) for compound 30. 
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3. Surface Plasmon Resonance Studies 

Surface plasmon resonance studies (K 0): The studies were conducted using a 
Biacore T200 SPR instrument with a CMS sensor chi p. A continuo us flow of HEPES 
buffer (10 m111 HEPES and 10 111m NaCl, 2 mM CaCb, 2 mM MnCb, pH 7.4) was 
maintained over the sensor surface at a flow rate of 10 111/min. The CMS sensor chip 
was activated with an injection of a solution containing N-ethyl-N' -(3-
diethylaminopropyl) carbodiimide (EDC) (0.2 M) and N-hydroxysuccini111ide (NHS) 
(0.05 M) for 7 minutes. ECA lectin (Pure Erythrina cristagalli (Coral Tree) from EY 
Laboratories, Inc. , 50 11g/mL) in NaOAc buffer (pH 4.5) was injected over the 
activated flow cel! at flow rate of 10 111/min for 1 minute to achieve a - 1200 RU 
im111obilization. The immobilization procedure was completed by an injection of 
ethanolamine hydrochloride (1 M) (70 11L), followed by a flow of the buffer (100 
11Limin.), in order to eliminate physically adsorbed compounds. Ethanol amine alone 
was used in one of the flow-cell as a reference. Glycodendrimers 1-5 and monomer 
30 were dissolved in running HEPES buffer and passed over flow ce lis of the ECL 
lectin and ethanol amine (Association: 5 min and dissociation: 5 min) . The sensor 
chip was regenerated with D-Galactose (0.25 M, 5 min) , 10 mM Glycine.HCI (pH 
2.0, 90 sec) followed by an injection of running buffer for 3 minutes. Response units 
from the surface of ECL lectin were subtracted from the surface of ethanol amine to 
eliminate non-specifie interactions, as well as, bulk change in RU due to var iation in 
re:fractive index of the medium. The primary subtracted sensorgrams were analyzed 
by 1:1 Langmuir mode! fitting, using the BIAevaluation software. 

For ICso determination: The studies were conducted using a Biacore T200 
SPR instrument with a CMS sensor chip. A continuous flow of HEPES buffer (1 0 
111111 HEPES and lü mm NaCl, 2 mM CaCb, 2 mM MnCb, pH 7.4) was maintained 
over the sensor surface at a flow rate of 10 111/min. The CMS sensor chip was 
activated with an mJection of a so lution contammg N-ethyl-N'-(3-
diethylaminopropyl) carbodii111ide (EDC) (0.2 M) and N- hydroxysuccinimide (NHS) 
(0.05 M) for 7 minutes. Galactoside 31 (200 11g/mL) in NaOAc buffer (pH 4.5) was 
injected over the activated flow cel! at flow rate of 10 111/min for 3 minute to achieve 
a - 170 RU in1mobilization. The i111mobilization procedure was completed by an 
injection of ethanolamine hydrochloride (1 M) (70 IlL), followed by a flow of the 
buffer (lOO 11Limin.), in order to eliminate physically adsorbed compounds. Ethano l 
amine alone was used in one of the flow-cell as a reference. The solutions of pre 
incubated (1 h) mixtures of glycodendri111ers or mono111er (with the various 
concentrations) and ECL lectin (5 11M) in running HEPES buffer are passed over 
flow cells of the galactoside and ethanol amine (Association: 2 min and dissociation: 
2 min). The sensor chip was regenerated with D-Galactose (0 .25 M, 5 min) , 10 mM 
Glycine · HCJ (pH 2.0, 90 sec) followed by an injection of running buffer for 3 
minutes. For each inhibition assay, ECL lectin (5 mm) without inhibitor was injected 



184 

to observe the full adhesion of the lectin onto the sugar-coated surface (0% 
inhibition). Response units from the surface of galactoside were subtracted fi·om the 
surface of ethanol amine to eliminate non-specifie interactions, as weil as, bulk 
change in RU due to variation in refractive index of the medium. The primary 
subtracted sensorgrams were analyzed by 1:1 Langmuir mode! fitting, using the 
BIAevaluation software. For IC50 evaluation, the response units at the equilibrium 
was considered as the amount of lectin bound to the sugar surface in the presence of a 
defmed concentration of inhibitor. Inhibition curves were obtained by plotting the 
percentage of inhibition against the inhibitor concentration (on a logarithmic scale) by 
using Origin 7.0 software (OriginLab Corp.) and IC50 values were extracted from a 
sigmoidal fit of the inhibition curve. 

4. Sensorgrams obtained from SPR studies: 
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Figure S88. SPR sensorgrams for the interactions of glycodendrimer 1 (12-mer) 
(0.306 ~M to 5 ~M) with the surface bound ECA lectin. 
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Figure S89. SPR sensorgrams for the interactions of glycodendrimer 2 (12-mer) 
(0.163 f.!M to 5 f.!M) with the surface bound ECA lectin. 
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Figure S90. SPR sensorgrams for the interactions of glycodendrimer 3 ( 12-mer) 
(0.163 f.!M to 20 f.!M) with the surface bound ECA lectin. 
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Figure S91. SPR sensorgrams for the interactions of glycodendrimer 4 (0.306 f.!M to 
20 f.!M) with the surface bound ECA lectin (24-mer). 
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Figure S92. SPR sensorgrams for the interactions of glycodendrimer 5 (0.306 f.!M to 
10 f.!M) with the surface bound ECA lect in (36-mer) . 
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Figure S93. SPR sensorgrams for the interactions of mono mer 30 ( 40 ~M to 320 
~M) with the surface bound ECA lectin. 

Competitive studies with sugar on chip (IC50 va lues) 
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Figure S94. (left) Sensorgrams obtained by injection ofECA (5 ~LM) lectin incubated 

with different concentrations of 18 varying from 0. 125 mM (top curve) to 16 mM 
(bottom curve) on the surface of immo bilized galactoside 31. (right) The inhibitory 

curve fo r the compound 18. 
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Figure S95. (lefl) Sensorgrams obtained by injection of ECA (5 !lM) lect in incubated 

with different concentrations of 30 varying from 0.062 mM (top curve) to 16 mM 

(bottom curve) on the surface of immobilized galactoside 31. (righi) The inhibitory 

curve for the compound 30 . 
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curve for the glycodendrimer 1. 
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Figure S97. (left) Sensorgrams obtained by injection ofECA (5 11M) lectin incubated 

with different concentrations of2 varying from 0.062 11M (top curve) to 256 11M 

(bottom curve) on the surface ofimmobilized galactoside 31. (righi) The inhibitory 

curve for the glycodendrimer 2. 
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Figure S98. (lefi) Sensorgrams obtained by injection ofECL (5 11M) lectin incubated 
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(bottom curve) on the surface of immo bilized galactoside 31 . (right) The inhibitory 

curve for the glycodendrimer 3. 



190 

110 0 ~M 100 

100 
0.031 ~~ 

c: ... ---Cf) .. 
~ 0.062 ~~ 0 
t: 90 0.125 ~~ :e 80 :::l 
Q) 80 0.25 ~M .c IC

50
:0.61±0 .02 11M 

Cf) 0.5 ~M ..c: 
t: 70 

1 ~M c: ~ 
0 60 a. 60 2~M Cil 
Cf) Ol . Q) 

50 4~M ra ... 
8 ~M 

.... 
~ -"0 c: 40 

Q) 40 16 ~M Cil 
.~ 

32 ~M e 
<tl 30 

Cil 
E 20 

64 ~M a.. 20 ... 128 ~M 0 z 10 

0 
..__ __ • ____ __....1Î· 

-10 
100 200 300 400 500 0.1 1 

Time (Sec) Ligand Concentration 

Figure S99. (left) Sensorgrams obtained by injection ofECL (5 1-l.M) lectin incubated 

with different concentrations of 4 varying from 0.031 1-l.M (top curve) to 128 1-l.M 
(bottom curve) on the surface ofimmobilized galactoside 31. (right) The inhibitory 
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Figure SlOl. X-Ray structure of a monomer ofthe lectin ECA bound to Lactose 

clearly shows the anomeric carbon of the Glucose residue pointing out of the shallow 

binding pocket wherein the Galactoside moiety resides. The stereocenters formed 

during the TYC reaction are found 14-15 a toms away from the anomeric G le carbon. 

Figure obtained fl'om Protein Data Bank (PDB) access No.l vOO 
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APPENDIX B 

SUPPORTING INFORMATION-CHAPTER 3: HIGHLY VERSATILE 

CONVERGENT/DIVERGENT "ONION PEEL" STRATEGY TOWARD POTENT 

MULTIVALENT GL YCODENDRIMERS 

1. Materials and methods: 

Al! reactions in organic medium were performed in standard oven dried 
glassware under an ineti atmosphere of nitrogen using freshly distilled solvents. 
CH2Ch and DMF were distilled from CaH2 and ninhydrin respectively, and kept over 
molecular sieves. Solvents and reagents were deoxygenated when necessary by 
purging with nitrogen. Water used for lyophilization of final dendrimers was 
nanopure grade, purified through Barnstead NANOPure II Filter with Barnstead 
MegOhm-CM Sybron meter. AU reagents were used as supplied without prior 
purification unless otherwise stated, and obtained from Sigma-Aldrich Chemical Co. 
Ltd. Reactions were monitored by analytical thin-layer chromatography (TLC) using 
silica gel 60 F254 precoated plates (E. Merck) and compounds were visualized by 
254 nm light, a mixture of iodine/si lica gel and/or mixture of ceric ammonium 
molybdate solution (100 ml H2S04, 900 ml H20 , 25g (NH4)6Mo70 24H20 , lOg 
Ce(S04)2) and subsequent development by gent le warming with a heat -gun. 
Purifications were performed by flash column chromatography using silica gel from 
Silicycle (60 Â, 40-63 ~rn) with the indicated eluent. 

1H NMR and 13C{ 1H} NMR spectra were recorded at 300 or 600 MHz and 75 
or 150 MHz, respectively, on a Bruker spectrometer (300 MHz) and Varian 
spectrometer (600 MHz). Ali NMR spectra were measured at 25°C in indicated 
deuterated solvents. Proton and carbon chemical shifts (o) are reported in ppm and 
coupling constants (J) are reported in Hertz (Hz). The resonance multiplicity in the 1H 
NMR spectra are described as "s" (singlet), "d" (doublet), "t" (triplet), "quint" 
(quintuplet) and "m" (multiplet) and broad resonances are indicated by "br" . Residual 
protic solvent of CDCb (1H, o 7.27 ppm; 13 C, o 77.0 ppm (central resonance of the 
triplet)), D20 eH, 84.79 ppm and 30.9 ppm for CH3 of Acetone for 13 C spectra of de-
0-acetylated compounds), MeOD ( 1H, 83 .31 ppm and 13 C, o 49.0 ppm. 2D 
Homonuclear correlation 1H- 1H COSY experiments were used to confirm NMR peak 
assig1m1ents. Gel Permeation Chromatography (GPC) was performed using THF as 
the eluent , at 40°C with a 1 mL/min flow rate on a Viscotek VE 2001 GPCmax (SEC 
System) with Wyatt DSP/Dawn EOS and refractive index RIILS system as detectors. 
2 PLGel mixed B LS (10 ~rn, 300 x7.5 mm) and LS-MALLS detection with 
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performances verified with po lystyrene 100 kDa and 2000 kDa were used to 
determine the number-average molecular weight (Mn) and polydispersity index 
(MwiM11). Calculations were performed with Zimm Plot (mode!) . Fourier transform 
infrared (FTIR) spectra were obtained with Thermo-scientific, Nicolet madel 6700 
equipped with ATR. The absorptions are given in wavenumbers (cm-') . 

Accurate mass measurements (HRMS) were performed on a LC-MSD-ToF 
instrument from Agilent Teclmologies in positive electrospray mode. Law-resolution 
mass spectra were performed on the same apparatus or on a LCQ Advantage ion trap 
instrument from Thermo Fisher Scientific in positive electrospray mode (Mass 
Spectrometry Laboratory (Université de Montréal) , or Plateforme analytique pour 
molécules organiques (Université du Québec à Montréal) , Québec, Canada). Either 
protonated molecular ions [M+nHt+ or adducts [M+riXt+ (X = Na, K, NH4) were 
used for empirical formula confirmation. MALDI-TOF experiments were perfonned 
on an Auto'flex Ill from Brucker Smarteam in linear positiv'e mode (Mass 
Spectrometry Laboratory (McGill University)) to afford adducts [M+nX]n+ (X = Na, 
K or Li) . Samples were solubi lized in H20 for a final concentration of 6 mg/mL. 
Dihydroxybenzoic acid was used as the matrix. Cationization was eased by the use of 
the corresponding sodium salt (2 mg/mL). 

2. Synthetic protocols and characterization: 

Synthesis of compound 2: A flame dried two-neck round bottom flask (250mL) was 
charged with dipentaerythritol 1 (4 .00g, 15.7mmol) and sodium hydride (3.77g, 
157.4mrnol). To this, DMF (60ml) was added slowly at 0°C under nitrogen 
atmosphere. The reaction mixture was stirred for 20 minutes at 0°C. It was fo llowed 
by the addition ofallyl bromide (16.3mL, 188.8mmol) and stirred for 5 hrs at room 
temp. The completion of reaction was monitored by TLC. The reaction mixture was 
then quenched with methanol at 0°C. Solvent was evaporated and the residue was 
dissolved in ethyl acetate (lOOmL) and washed with water. Organic layer was 
separated, dried with Na2S04, filtered and concentrated under reduced pressure. The 
crude compound was purified by colurnn chromatography using 7% ethyl acetate in 
hexanes as eluent to afford desired compound 2 (6.22g, 12.6mmol) in 80% yield as 
light yellow ail. 
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1H NMR (300 MHz, CDCh) 8 5.88 (ddt, J = 17.1, 10.5, 5.3 Hz, 6H), 5.34- 5.08 (rn, 
12H), 3.94 (dt, J= 5.2, 1.4 Hz, 12H), 3.46 (d, J= 7.9 Hz, 12H), 3.40 (s, 4H). 
13CeH} NMR (75 MHz, CDCb) 8 135.3, 116.0, 72.3, 70.1, 69.4, 45 .6. 
IR (cm-1

) 3079, 2980, 2903,2867, 1646, 1478, 1420, 1349, 1269, 1173, 989, 920. 
HRMS (ESI+) for C28H4607 m/z cale for C28H460 7, 495.3316 [M+Ht; found: 
495 .3299. 

--------~--------~"'~~~ ----~ 
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Figure Sl. 1H NMR spectrum of compound 2 (CDCh, 300 MHz) . 
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Figure S2 . 13C{ 1H} NMR spectrum of compound 2 (CDCh, 75 MHz). 
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Synthesis of compound 3: To a stirring solution of hexa-allyl derivative 2 (300mg, 
0.606mmo1), 2,2' -dimethoxy-2-phenylacetophonone (OMP AP) (155mg, 0.606nunol) 
in dry OMF (3m1) was added cysteamine hydrochloride (1.03g, 9.07mmol) under 
nitrogen. The vial was then purged withN2 for 10 min and in:adiated for 4-6 hrs with 
UV lamp (365nm) at room temperature. Upon completion of the reaction, the 
contents of the vial were washed three times with diethy 1 ether to remove excess of 
thiol, affording a clear viscous liquid. lt was further purified using dialysis bag (eut
off 1000 Da, spectrum). Oialysis bath water was changed 4-5 times in the span of 6 
hrs to remove all the impurities. The compound was lyophilized to yield white 
hygroscopie solid 3 (534mg, 0.455mmol) in 75% yield. 

1H NMR (300 MHz, 0 20) o 3.62 (t, J = 6.2 Hz,12H), 3.48 (s, 12H), 3.39 (s, 4H) , 
3.26 (t, J = 6.7 Hz, 12H), 2.90 (t, J = 6.8 Hz, 12H), 2.70 (t, J= 7.2 Hz, 12H), 1.98-
1.83 (rn, 12H). 
13CCH} NMR (75 MHz, 0 20) o 70.5, 69.9, 45.8, 38.9, 28.8, 28.0. 
IR (cm- 1

) 3637, 2980,2971,2883, 1382, 1150, 1070, 954. 
HRMS (ESI+) mlz cale. for C4oHssN607S6, 957.5112 [M+Ht ; found, 957.5134. 

U U U M ~ U M ~ ~ U U U ~ U U U ~ U M 
fi (ppm) 

Figure S6. 1H NMR spectrum of compound 3 (300 MHz, 0 20). 
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Figure S7. 13CC H} NMR spectrum of compound 3 (75 MHz, D20). 
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Figure SlO. IR spectrum of compound 3. 

Synthesis of compound 5: A solution of hexa-amine hydrochloride 3 (150mg, 
0.127mmol) and N,N-diisopropylethylamine (0.26ml, 1.48mmol) in DMF (2ml) was 
stirred for 30 minutes. In another two neck flask, 1-ethyl-3-(3-dimethylaminopropyl) 
carbodiimide hydrochloride (EDC.HCI) (243mg, 1.27mmol), and 4-
( dimethy lamino )pyridine (D MAP) ( 15 5 mg, 1.2 7 mmo l) were added in D MF ( 4 mL) 
and stirred for 10 minutes fo llowed by the addition of tripropargylated gallic ac id 4 
( 434mg, 1.53mmol). The free amine solution from first flask was then transfened to 
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the reaction mixture of the second f1ask with the help of canula syringe and was 
heated at 50°C for overnight. The completion of reaction was monitored by TLC. 
Upon completion, the reaction mixture was diluted with water ( 40mL) and extracted 
with ethyl acetate (3 x40mL). The combined organic extracts were washed with 0.1 N 
HCl (3 x l5mL), followed by saturated NaHC03 solution and brine. The organic layer 
was dried over anhydrous sodium sulfate, filtered and evaporated under reduced 
pressure. The crude mixture was then purified with the help of fl ash column 
chromatography using 80% EtOAc in hexanes as eluent. The desired compound 5 
(232.5mg, 0.0910nm1ol) was achieved in 72% yield as light yellow oil. 

1 

1H NMR (300 MHz, CDCb) o 7.27- 7.23 (m, 12H), 7.07 (br s, 6H), 4.78 (dd, J= 2.3 , 
2.3 Hz, 36H), 3.60 (d, J= 6.0 Hz, 12H), 3.43 (t, J= 5.9 Hz, 12H), 3.31 (d, J = 8.1 Hz, 
16H), 2.74 (t, J= 6.6 Hz, 12H), 2.59 (t, J= 7.2 Hz, 12H), 2.55 (t, J = 2.3 Hz, 12H), 
2.48 (t, J= 2.4 Hz, 6H), 1.92- 1.70 (rn, 12H). 
13 1 ' C{ H} NMR (75 MHz, CDCb) o 166.7, 151.5, 140.0, 130.2, 107.9, 78.7, 78.1 , 
76.4, 75 .7, 69.6, 60.3, 57.3, 45 .6, 39.2, 31.6, 29.8 , 28.4. 
IR (cm-1) 3290, 3005, 2922,2867 , 2122, 1637, 1581 , 1541 , 1492, 1428, 1365, 1323, 
1275, 1261 , 1207, 1106, 1032, 992, 764, 750, 671. 
HRMS (ESI+) m/z for CI36HI48N6031S6, 1277.4329 (M+2H]2+; found, 1277.4359, 
2576.8406 [M+Nat; found 2575.8346. 

~ ·-~~ I -r,-r "k'i'"''' 8"' 
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fl (ppm) 

Figure S11 . 1H NMR spectrum of compound 5 (300 MHz, CDCb). 
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Figure S12. 13 C{ 1 H} NMR spectrum of compound 5 (75 MHz, CDCb). 

~------------------------------------- - - - - - - -



l 1 

il 0L~L\_~ 

~ "' ( t' 

"' 
. .. 

~ 
M .. 

7 .5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 
f2(ppm) 

Figure S13. COSY spectrum of compound 5. 

lOO ~ • 
,_,-/ \ , ,P..;<·~·-

9':1 ,,.,.... \ 

97 

93 

. 91 

.. 
" .. 

83 

82 _ 

" · 

\ 
\ 

\ 
i 

i 
1! 

W avenumœrs ( an-1) 

Figure S14. IR spectrum of compound 5. 

"' 

2.0 1.5 

200 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 I 
5.0 

5.5 

6.0 

6.5 

7.0 

~ 7.5 



t·IS Zoaned Sjl«:n um 

xlO 4 Cpd 1:: +ESI Scan (0.143·0.336 min. 13 Scans) Frag=100.0V RISHI -B 1-173.d 
6 

5 

2 

1400 1Soo 1600 1700 1800 1900 2000 2 100 2200 2300 2400 2500 
Coun1s vs Mass-lo-Cha,ge (mlz) 

A<OfJ{OA< ~ ·~~A< A<O~OA< A< Œ: 
0 · - · ço "' {R'' 

A ,...N •. N ~~N A 0 N ~~ Ac:. 

~ . - ••• ( A< 

~ 0 H 

A<O~OA< H, H ~'0 o.__}[N)< ~OA< A< 
0 ~-r 0 --

Ac HN Ac 
0Ac z HN Ac 

"\_ <".:~. s ,--1 0 <> ~.t~· ~ ,;-· ( ~ ·~·: ~ 0 0 0 0 _.#"""{"(';;> b 

Y ·"'-· ~0*0~.~ ·Acf .. ,. #N 0 H "'-"'...o .._..N ~ / 

·~~ 0 

0-'Q ~.§ d 1 1 0 ~ A<O AAcO~~c " ~ S ') ;;/~ON; 
,~·· · - .J ~ ~c? ),,, 

( A<O 

A< A< 4: NH ~NH '0 r{z~:: 
N";(""' ~ 1 / 

N' ji o, ~ 
N A ~ 

3 ·-· ·"&; 6 1=\ 
N O_.,c N •.• N OAc 

OAc z.~ AcQ ~--.;: N ~ 
A ill OA< ~A< A<0f0A< 

0 OAc AcO 0 AcO 
AcO Ac ., 
Ac cO Ac 

OA< 

201 

Synthesis of compound 7: Divergent approach: To a solution of compound 5 
(50.0mg, 0.0195mrnol) in THF (3mL) was added azido derivative 6 (26 1 mg, 
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0.702nm1ol) dissolved in THF (2mL), followed by the addition of sodium ascorbate 
{70.0mg, 0.351nunol). An aqueous solution of CuS04·5H20 (88.0 mg, 0.351mmol) 
was then added to the reaction mixture. The final ratio of H20 to THF was kept 1: 1 . 
The reaction mixture was stirred at 40°C for 12 hrs. The progress of the reaction was 
monitored with the help ofTLC. Upon completion, reaction mixture was diluted with 
EtOAc (25mL) and washed with a saturated solution of EDTA (2 x 15mL). Organic 
layer was washed with brine, dried over anhydrous Na2S04, filtered and concentrated 
under reduced pressure. Purification of the crude compound was achieved via flash 
colunm chromatography on silica gel using 2-4% MeOH in DCM as eluent gradient 
to afford desired compound 7 (146.5mg, 0.0158nu11ol) in 81% yield as a white solid. 

1H NMR (300 MHz, CDCb) o 8.16 (s, 6H), 8.09 (s, 12H), 7.19 (s, 12H), 5.94 (d, J = 
9.2 Hz, 18H), 5.68 (t , J= 9.8 Hz, 6H), 5.56 (dd, J= 10.9, 6.9 Hz, 32H), 5.38- 5.12 
(m, 55H), 4.32 (t , J = 6.4 Hz, 18H), 4.27-4.06 (m, 38H), 3.58 (d, J = 5.5 Hz, 12H), 
3.45 (s, 12H), 3.34 (s, 16H), 2.74 (t, J = 6.5 Hz, 121-l), 2.63 (t , J = 6.9 Hz, 12H), 2.20 
(s, 58H), 2.01 (d, J = 8.4 Hz, 118H), 1.77 (d , J = 18.0 Hz, 54H) . 
13CeH} NMR (75 MHz, CDCb) 8 170.3, 170.3 , 170.1 , 170.1 , 169.9, 169.8, 169.6, 
169.0, 168.7, 166.7, 151.9, 144.6, 144.0, 140.1 , 130.3, 123.3, 122.3 , 107.2, 86.1, 
85.7, 73.7, 73.5 , 73.2, 71.0, 70.7, 69.7, 67.9, 67.7- 67.5, 66.8, 66.1 , 62.8 , 61.0, 31.3 , 
29.8, 28.5, 20.5 , 20.1. 
IR (cm-1

): 3628, 2994,2947, 1751 , 1651 , 1583, 1491 , 1428, 1370, 1218, 1093, 1064, 
923 , 732, 667. 
MALDI-TOF: m/z cale. for CJssfu9oN6oOI 93S6. 9297.7 [M+Nat; found, 9296.4. 
GPC (THF): Mn= 9600 g/mol. M,/ Mn= 1.03 
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Figure Sl6 . 11-l NMR spectrum of compound 7 (300 MHz, CDCb). 
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Figure Sl7. 13C{ 1H} NMR spectrum of compound 7 (75 MHz, CDCb). 
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Figure S18. COSY spectrum of compound 7. 
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Figure S21. GPC traces of compound 7. 

Synthesis of compound 8: To a strrrmg solution of compound 7 (1 OOmg, 
0.0107mmol) in MeOH (3mL) was slowly added lM solution ofMeONa in MeOH to 
ad just the pH 9-1 O. Reaction mixture was left for overnight stirring at room 
temperature. The reaction pH was then adjusted with H+ resin to pH 6. Solvent was 
evaporated and the residue was dissolved in 3mL of water and washed with diethyl 
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ether (3 x15mL) to remove impurities. Aqueous layer was fmally lyophilized to yield 
8 (58.8mg, 9.42)lmol) as a white solid with a 88% yie1d. 

1H NMR (600 MHz, D20) o 8.29 (s, 12H), 7.98 (s, 6H) , 7.15 (s, 12H), 5.59 (d, J = 

65.2 Hz, 18H), 5.04-4.79 (m, 112H), 4.29- 3.22 (m, 150H), 2.68 (t , J = 56 .2 Hz, 
24H), 1.97- 1.70 (m, 12H). 
13CCH} NMR (151 MHz, D20) o 168.6, 152.2, 144.0, 143.7, 139.3, 130.6 , 125.2, 
124.5, 107.3, 88.8, 88.6, 78.8 , 73.7, 70.3 , 69.8, 69.2, 65 .8, 62.7, 61.4 , 40.5, 30.1 , 
28.9. 
IR (cm- 1

) 3350, 2879, 1637, 1583 , 1494, 1428, 1327, 1233 , 1095, 1057, 891 , 825, 
760, 703. 
HRMS (ESI+) mlz cale. for C244H346N6oOt 2tS6, 1584.0165 ([M+4Na]4+) ; found , 
1584.0122. 
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fi (ppm) 

Figure S22. 1H NMR spectrum of compound 8 (600 MHz, D20). 
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Figure S23. 13C{ 1 H} NMR spectrum of compound 8 (151 MHz, D20). 
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Figure S24. COSY spectrum of compound 8 (300 MHz, 0 20). 

!31(l28-{11t!ES~Of''6i·h"' · RIIW'II·RH7!1 t78' l2'J HT O!ih-0 i 5 AV <11 M. 1 3 / Eb 
T f" .ûS • p ES! F :.~l ~ f'ZlJ tô-3~ <Xl} 

KQ·; 
" eo-~ J J U~~3C) l<&OO ~151 S 1'52. 2.t '&<l 

~ ~ "IL [·:r· I .:..J.,.,....., .J 0 .., • ' • 

1300 1400 1500 

gU.> ' 

L, 

,., 

1612 ~11\ S , 

j J ---,~ 
HU ~ 

~--~ --,564 7&8?4 

1Sli4 .HH5 
\ S$4 016-'7 

' J 0 

HilDO 

1n1 sr6J7 21~ J~s2~ 

tG91 ~ l"J m • G!loJ5e r»3 

1..,_,_,1_::~7:~---=~~:_j~_,..,_ l. 213~-~~ "~;rs-
1100 \800 1900 2000 :?100 ?_"XX) 

'"" 

,,.., ISI!6 0 

"'-
1.31Et 
ll ;Q2t.OIHf.$1.-f4,neRoy Rt1: r-,• 
RH7fllii1&}-J:xl RT Oti&O 76 
AV ol 1 T fïUS ·• pES!Fvi!T'('$ 

!2J3 4~001 

... 
!Mf.) 

c,..._ !oi,_.O,:t Nc StNa. 
C:- ~"'.aa',O ;t• NwS.ki. 
p(pu. . a/f' .w)~ • 
R ?0000 R- P.~ ~~0~ 

l:0 2 S - 0 liŒS l -ih~ n<"R 0 )' - ~1 4Jh i - R l i.7812t< C-·1:" G KT : t . 66··C . " 6 AV: 4: 
: !'"'fKS • c ESt full res t: .n .4 0- 3!Jü ~ . :>C l 
;, . l '>8 J .. 9C5 3() · 15H1.l 0 48 2 

m/z. !.!"!t.~n:J.l.. t .Y Rclat i v-,e ?<e.soh;;t .. or: ::::h,!\rq e Theo . r-ta ~s De l ta Cv:npo !'ô t : 1 on 

t~ S1. Ql 22 0 3162 53. 4 100. 0 0 l 3G9<0 . 0 Q 4 . 0 0 lSB 4. 0 l 366 

1 ~8 4 ' 01&47 
t58~ . 0186 1 
:~ e 4. 0 l 9l l 

lSS4 .0 1 90~ 

tpprnl ~qu .i v_ 

~- 0 - 91 : CO. 0 C :1~~ H :H t< 0 ll2: t-; '}6 tJd i S ~ 
- 2 . 69 lC O. O C1HH JHO l:; lNfi1Na .;S ô 

- 4 . 0 4 

- 4.4 2 

-1.66 

95 . 5 C2t O H14.9 0!.<1 U 5 !Nô!o~S c. 

'? ti..~ C;>,~H,. "l0.H N &! N~l 3 S t> 

99.5 C 7 <1~ fl ) 4. f\ O ;:n N s~N.a~ S $ 

Figure S25. HRMS (ESI+) spectrum of compound 8. 
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Figure S26. IR spectrum of compound 8. 

Synthesis of compound 10: To a strrnng solution of tripropargyl gallic acid 4 
(562mg, 1.98rnmol) in DMF (3mL) were added EDCHCl (529mg, 2.77mmol) and 
DMAP (290mg, 2.37mmol). The reaction mixture was stirred under nitrogen 
atmosphere for 15 minutes. Amine terminated compound 9 (600mg, 1.98mmol) was 
then added and the reaction mixture was stirred at 50°C for overnight. The 
completion of reaction was monitored by TLC. Upon completion, the reaction 
mixture was diluted with water (50mL) and extracted with ethyl acetate (3 x30mL). 
The combined organic extracts were washed with O.lN HCl (3 x10mL), followed by 
saturated NaHC03 solution and brine. The organic layer was dried over anhydrous 
Na2SO, filtered and evaporated under reduced pressure. The crude mixture was then 
purified by flash colunm chromatography using 2% MeOH in DCM as eluent to 
furnish 10 (905mg, 1.54mmol) in a 78% yield as an off-white solid. 
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1H NMR (300 MHz, CDC\3) 8 7.40- 7.27 (rn, 5H), 7.24- 7.04 (rn, 12H), 6.20 (s, 1H), 
4.72 (dd, J = 2.4, 2.4 Hz, 6H), 3.20 (rn, 2H), 2.46 (t, J = 6.2 Hz, 2H), 2.38 (t, J = 2.4 
Hz, 1H), 2.32 (t, J = 2.3 Hz, 2H). 
13CCH} NMR (75 MHz, CDCh) 8 166.1 , 151.1 , 144.3 , 139.4, 130.0, 129.2, 127.7, 
126.5, 1 07.5 , 78.52, 77.8, 76.2, 75.5, 66.5, 60.0, 56.9, 38.4, 31. 7. 
IR (crn-1

): 3284, 3057, 2937, 2121 , 1750, 1647, 1582, 1537, 1489, 1444, 1427, 1368, 
1323 , 1214, 1106, 1063, 952, 923 , 734, 700. 
HRMS (ESt) mlz cale for C37H31N04S, 608.1866 [M+Nat; found , 608.1863. 

J 1\ ~ ~ 
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~ ;:J :;: ~ ~ ~~~ "' " ti 

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 
fl(ppm) 

Figure S27. 1H NMR spectrum of compound 10 (300 MHz, CDCb) . 
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Figure S28 . 13C{ 1H} NMR spectrum of compound 10 (75 MHz, CDCh). 
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Figure S29. HRMS (ESil spectrurn ofcornpound 10. 
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Figure S30. COSY spectrum of compound 10. 
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Figure S31. IR spectrum of compound 10. 
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Synthesis of compound 11: To a solution of compound 10 (200mg, 0.34 1 mmol) in 

THF (2mL) was added galactosyl azide 6 (442mg, 1.196mmol) dissolved in THF 

(3mL), followed by the addition of sodium ascorbate (67mg, 0.34mmol). An aqueous 

solution ofCuS04·5H20 (85mg, 0.34mmol) was added and the fmal ratio ofl-hO and 
THF was kept 1: l. The reaction mixture was stirred at 40°C for 12 hrs. The progress 

of the reaction was monitored with the help of TLC. Upon completion, reaction 

mixture was diluted with EtOAc (25mL) and washed with saturated so lution of 

EDTA (2 x 15mL). Organic layer was fina lly washed with brine solution, dried with 

anhydrous Na2S04, filtered and concentrated under reduced pressure. Purification of 

the residue was achieved via flash colunm chromatography on silica gel using 2% 

MeOH in DCM as eluent to afford the desired compound 11 ( 488rng, 0.286mmol) in 
a 84% yield as an off-white solid. 

1H NMR (300 MHz, CDCb) o 8.16 (s, 1H), 8.04 (s, 2H), 7.49- 7.38 (rn, 6H), 7.30-

7. 17(m, 15H), 7.09 (s, 2H), 6.47 (s, 1H), 5.90 (m, 3H), 5.69 (t, J= 9.8 Hz, 1 H), 5.63-

5.45 (rn, 5H), 5.39-5.20 (rn, 9H), 4.37-4.10 (rn, 9H), 3.34- 3.13 (rn, 2H), 2.5 1 (t, J = 

6.5 Hz, 2H), 2.22 (s, 9H), 2.08-1.98 (rn, 18H), 1.82 (s, 6H), 1.77 (s, JH). 
13C{1H} NMR (75 MHz, CDC13) o 170.1 , 170.0, 169.9, 169.8, 169.4, 168.8, 168.5 , 
166.2, 151.6, 144.4, 143.8, 140.0, 130.0, 129.2, 127.7, 126.5, 122.9, 121.9, 107.1 , 

85.9, 85.5, 73.5 , 70.8, 70.4, 67.8, 67.6, 66.6, 65.9, 62.7, 60.9, 38.7, 31.7, 20.3 , 19.9. 

IR (cm- 1
) 2980, 1750,1654, 1584, 1535, 1490, 1428, 1369, 1324, 1216, 1100,1047, 

953, 923, 733 , 702. 

HRMS (ESI+) m/z cale for C79HssN1003,S, 1727.5230 [M+Nat ; found , 1727.5256, 
1705 .5410 [M+Ht ; found 1705.5452. 
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Figure S32. 1 H NMR spectrum of compound 11 (300 MHz, CDCi)). 
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Figure S33. 13C{ 1H} NMR spectrum of compound 11 (75 MHz, CDCi]). 
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Synthesis of compound 12: To a stirring so lution of 3% trifluoroacetic ac id in DCM 

( l.SmL), was added a solution of 11 (300rng, 0.176rnrnol) in dichlorornethane 

(1.5rnL). Et3SiH (28J1L, 0.18mmol) was added to the orange solution. A:fter 3 hrs, 

toluene (4mL) was added and the so lvents were evaporated under vacuum. The 

addition oftoluene and evaporation was repeated twice. The product 12 was isolated 

by quick flash chromatography using 3% MeOH in DCM in a 86% yield (22 1 mg, 
0.151mmo1). 

1H NMR (300 MHz, CDCh) 8 8.15 (s, lH) , 8.04 (s, 2H), 7.16 (s, 2H), 6.91 (s, 1H), 

5.91 (rn, 3H), 5.67 (t, J= 9.8 Hz, lH), 5.64- 5.48 (rn, 5H), 5.3 9- 5.17 (rn, 9H), 4.39-

4.06 (rn, 9H), 3.73- 3.46 (rn, 2H), 2.76 (dd, J = 14.9, 6.5 Hz, 2H), 2.22 (d, J = 2.3 Hz, 

9H), 2.14- 1.96 (rn, 18H), 1.81 (d, J = 18.4 Hz, 9H), 1.48 (t , SH, J = 8.5 Hz, 1H). 
13CCH} NMR (75 MHz, CDCh) 8 170.3, 169.9, 169.2, 168.8, 151.9, 144.2, 107.4, 

86.3 , 74.0, 70. 7, 68 .2, 66.8, 62.9, 61. 1' 43 .0, 24.5, 20.6, 20.2. 

IR (cm-1
) 3649,2980,2888, 1754, 1382, 1249, 1153 , 1079,955. 

HRMS (ESI+) mlz cale for C6oH74N ioÜJJS 1463.4315 [M+Ht; found , 1463.43 17. 
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Figure S37. 1H NMR spectrm11 of compound 12 (300 MHz, CDCb). 
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Figure S38. 13 C{'H} NMR spectrum of compound 12 (75 MHz, CDCb). 
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Figure S39. COSY spectrum of compound 12. 
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Figure S40. HRMS (ES!') spectrum of compound 12. 
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Figure S41. I.R spectrum of compound 12 (75 MHz, CDCb) . 

Syntlzesis of galactodendrimer 7 according to a convergent strategy 

Compound 2 (3mg, 6Jlmol) and compound 12 (263mg, 0.180mmol, Seq/alkene) were 

suspended in dioxane (lmL) in a 5 mL glass vial equipped with a small magnetic 

stirring bar. To this was added AlBN (lmg, 0.5Jlmol, O.l5eq/alkene), and the vial was 

tightly sealed with an aluminum/Teflon® crimp top. The mixture was then heated at 

75°C for 5 hrs. After completion of the reaction, the vial was cooled to 25°C before it 

was opened. Dioxane was removed under vacuum. Purification of the crude 

compound was achieved via flash column clu·omatography on silica gel using 2-4% 

MeOH in DCM as eluent gradient to afford desired compound 7 (29.8mg, 3.22Jlmol) 

in 53% yield as a white solid . Spectroscopie data for compound 7 obtained via 

convergent strategy are in full agreement with those of one originatedfrom divergent 

approach. 

AcO OAc 

Aco~o-..../"'0~o-..../"'0~oTs 
OAc 

Synthesis of compound 15: jJ-D-Galactopyranose pentaacetate 13 (300mg, 

0.769nunol) and monotosylated tetra(ethylene)glycol 14 (669mg, 1.92nu110l) were 

mixed in dry DCM (SmL) and stirred for 1 hr with 4Â molecular sieves. The reaction 

mixture was then cooled to Ü°C, followed by the addition of BF3 ·EbO (660JlL, 

5.38mmol). The reaction mixture was stirred for 4 lu·s at room temperature. Upon 
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completion of reaction, the mixture was diluted with DCM (30mL), washed with 

water, saturated NaHC03 so lution followed by brine. Drying over Na2S04 and 

concentration under vacuum afforded crude compound that was purified by column 

chromatography (60% EtOAc in hexanes as eluent) to give 15 (287mg, 0.423mrnol) 

colourless oil in 55% yield. 
1H NMR (300 MHz, CDCi]) 8 7.81 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 

5.39 (d, J = 3.3 Hz, 1H), 5.21 (dd, J = 10.4, 8.0 Hz, 1H), 5.02 (dd , J = 10.5, 3.4 Hz, 

1H), 4.57 (d, J = 7.9 Hz, 1H), 4.15 (dt, J = 15.5, 7.8 Hz, 4H), 4.05 - 3.87 (m, 2H), 

3.82- 3.53 (m, 13H), 2.46 (s, 3H), 2.15 (s, 3H), 2.06 (d, J= 1.9 Hz, 6H), 1.99 (s, 3H). 
13CeH} NMR (75 MHz, CDCh) 8 170.2, 170.1, 169.9, 169.3, 144.6, 132.8, 129.6, 

127.7, 101.1 , 77.2, 70.5, 70.4, 70.4, 70.3, 68.8, 66.9, 61.1 , 21.4, 20.5 , 20.5, 20.4. 

IR (cm-1) 2923 , 1748, 1367, 1221 , 1176, 1075. 

HRMS (ESI+) mlz cale for C29H4201 6S, 701.2086 [M+Nat; found , 701.2073. 
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Figure S42 . 1H NMR spectrum of compound 15 (300 MHz, CDCb). 
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Figure S43. 13 C{ 1H} NMR spectrum of compound 15 (75 MHz, CDCb). 
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Figure S44. HRMS (ESI+) spectrum of compound 15 . 
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Figure S45. COSY spectrum of compound 15. 
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Figure S46. IR spectrum of compound 15 . 
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Synthesis of compound 16: Compound 15 (2.000g, 2.949mmol) and sodium azide 

(958mg, 15.0mmol) in dry DMF (20mL) were stirred at 80°C for 6 h.rs. The solvent 

was evaporated under reduced pressure and crude was diluted with ethyl acetate 

(50mL) , washed with water (2 x30mL) and brine, dried over Na2S04 and 

concenterated in vacuo. Column ch.romatography of the residual crude mixture was 

performed using 60% EtOAc in hexanes as eluent to give 16 (1.329g, 2.410mmol) as 

a yellowish oil in 82% yield . 

1H NMR (600 MHz, CDC13) o 5.42- 5.35 (rn, 1H), 5.24- 5.15 (rn, 1H), 5.00 (ddd, J = 

10.5, 3.4, 1.7 Hz, 1H), 4.56 (dd, J = 8.0, 1.6 Hz, 1H), 4.14 (dddd , .! = 25.6, 11.3, 6.7, 

1.5 Hz, 2H), 4.01 - 3.87 (rn, 2H) , 3.80- 3.70 (m, 1H), 3.72- 3.58 (m, 12H), 3.38 (t, J = 

4.3 Hz, 2H), 2.13 (d, .! = 1.7 Hz, 3H), 2.11 - 2.00 (rn, 6H), 1.97 (d , J = 1.7 Hz, 3H). 
13ceH} NMR (151 MHz, cocb) o 170.4, 110.2, 110.1, 169.5, 101.3 , 70.9, 70.7, 

70.6, 70.3 , 70.0, 69.0, 68.8 , 67 .0, 61.3 , 50.6, 20.7, 20.6 , 20.6, 20.6. 

IR(cm-1)2980, 2881 , 2098, 1749,1369, 1223, 1073. 

HRMS (ESt) m/z cale for C22H3sN3Ü13 , 567.2508 [M+NH4t ; found , 567.2480, 

588.1802 [M+Kt ; 588.1789. 
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Figure S47 . 1HNMR spectrum of compound 16 (600 MHz, CDCb). 
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Figure S48. 13C{ 1H} NMR spectrum of compound 16 (151 MHz, CDCh). 
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Figure S49. HRMS (ESI) spectrum of compound 16. 
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Figure S50. COSY NMR spectrum of compound 16. 
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Figure S51. IR spectrum of compound 16. 
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BzO OBz OBz 
~Q~ ~Q~ N 

BzO~~zo~o~o~o~o~ 3 OBz OBz 

Synthesis of compound 17: To a solution of per-0-acetylated lactose W anomer, 1 

5.00g, 7.40mmol) and tetra(ethylene)glycol monotosylate (synthesized as previously 

described,2 8.10g, 22.1rnmol) in dry DCM (60mL) under a nitrogen atmosphere and 

at 0°C was added dropwise BF 3 · Et20 (2. 7mL, 22.1 mmol) over a 15 minutes period. 

After stirring overnight (12 hrs) at r.t., the solvent was removed and EtOAc was 

added, then the solut ion was washed successively with NaHC03 (40mL), water 

(40mL) and brine (40mL). The organic phase was then dried over MgS0 4 and 

concentrated under reduced pressure. The crude residue was directly re-dissolved in 

DMF (70mL) under a nitrogen atmosphere and sodium azide (962mg, 14.8mmol) 

together with sodium iodide (1 1.1 mg, 0.11 rnmol) were added. After stirring overnight 

( 16 h) at 70°C, the solve nt was removed and EtOAc ( 1 OOmL) was added, th en the 

solution was washed successive! y with water ( 4x40mL) and brine (3 x50mL) . The 

organic phase was then dried over MgS04 and concentrated under reduced pressure. 

After a short flash colunm chromatography on silica (EtOAc/Hexanes 6:4 to 8:2), the 

crude was s.ubjected to de-0-acetylation protocol and dissolved in MeOH (40mL). To 

this solution was slowly added 1 M MeONa/MeOH to ad just the pH 9- 1 O. Reaction 

mixture was left for stirring overnight. The reaction pH was then adjusted with H+ 

resin to adjust pH to 6. Solvent was evaporated and the residue was benzoylated with 

benzoyl chloride (20.8g, 17.2mL, 148mmol) in pyridine (50mL) for overnight stirring 

at room temperature. Upon completion solvents were removed and reaction mixture 

was dissolved in DCM (100mL) and washed with O. l N HCl (3 x50 mL) fo llowed by 

saturated so lution of NaHC03 (3 x75mL) and finally with brine. Organic layer was 

then dried with anhydrous sodium sulphate filtered and evaporated. Crude compound 

was then purified with the help of colunm chromatography using Hexane/Ethyl 

Acetate (1:1) as eluent. Desir·ed compound 17 (5.93g, 4.66mmol) was isolated in a 

63% overall yield as a yellow oïl. 

1 Wolfrom, M. L. , Thompson, A. Methods. Carbohydr. Chem. 1963, 211-215 . 

2 Zhang, L.; Sun, L.; Cui, Z.; Gottlieb, R. L.; Zhang, B. Bioconjugate Chem. 2001 , 
12, 939-948 . 
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1H NMR (300 MHz, CDC13) o 8.12-7.94 (m, 10H), 7.94- 7.87 (m, 2H), 7.77-7.69 

(m, 2H), 7.69- 7.29 (m, 17H), 7.18 (m, 4H), 5.87-5.68 (m, 3H), 5.53- 5.41 (m, 1H), 

5.37 (dd, J = 1 0.3 , 3.4 Hz, 1 H) , 4.86 (dd, J = 1 0.8, 7.9 Hz, 2H), 4.61 (d, J = 11.1 Hz, 

1H), 4.49 (dd, J = 12.1 , 4.0 Hz, lH), 4.26 (t, J = 9.5 Hz, lH), 3.87 (dd, J = 13.3, 8.1 

Hz, 3H), 3.69 (ddd, J = 14.0, 10.4, 5.0 Hz, 5H), 3.62- 3.48 (m, 6H) , 3.47- 3.33 (rn, 

6H). 
13C NMR (75 MHz, CDCb) o 165.8, 165.5, 165.4, 165.2, 165.1 , 164.8, 133.5, 133.4, 

133.2, 133.7, 130.0, 129.8, 129.7, 129.6, 129.6, 129.5, 129.4, 128.8, 128.7, 128.6, 

128.5, 128.5 , 128.31 , 128.20, 101.2, 101.0, 76.0, 72.9, 72.9, 71.8, 70.6, 70.5, 70.5, 

70.3 , 69.9, 69.9, 69.2, 67.5 , 62.4, 61.0, 50.6. 

IR (cm-1) 2980, 2883 , 2104, 1728, 1601 , 1451 , 1314, 1267, 1176, 1094, 1069, 1027, 

709. 

HRMS (ESI+) m/z cale for C69H6sN3021 , 1294.4003 [M+ at; found , 1294.4031 

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2. 5 2.0 1.5 1.0 0.5 0.0 
fi (ppm) 

Figure S52. 1 H NMR spectrum of compound 17 (300 MHz, CDC13). 
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Figure S53. 13C{ 1H} NMR spectrum of compound 17 (300 MHz, CDCb) 
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Figure S54. COSY spectrum of compound 17 (300 MHz, CDCb). 
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Figure S55. IR spectrum of compound 17. 
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MS Zoomed Spectrum 
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Figure S56. HRMS (ESI) spectrum of compound 17. 
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Synthesis of compound 19a: To a solution of azide terminated compound 16 
(lOOmg, 0.181mmol) in THF (4mL), was added propargyl alcohol (0.021ml, 

0.363mmol), followed by sodium ascorbate (36mg, 0.18lmmol). An aqueous so lution 

of CuS04·5H20 (45mg, 0.181mmol) was added and the final ratio of HzO to THF 

was kept 1: 1. The reaction mixture was stirred at 40°C for 12 hrs. Progress of the 

reaction was monitored with the help ofTLC. Upon completion, reaction mixture was 

diluted with EtOAc (25mL) and washed with a saturated solution of EDTA 

(2 x 15mL~. Organic layer was washed with brine solution, dried with anhydrous 

Na2S04, filtered and concentrated under reduced pressure. Purification of the eructe 

was achieved via flash colounm chromatography on silica gel using 2% MeOH in 

DCM as eluent to afford acetylated compound 19a (93 .2mg, 0.154mmol) in a 85% 

yield as a yellowish oil. 

1H NMR (300 MHz, CDCb) o 7.79 (s, IH), 5.38 (d, J = 3.2 Hz, IH), 5.19 (dd, J = 
10.4, 7.9 Hz, 1H), 5.02 (dd, J= 10.5, 3.4 Hz, 1H), 4.79 (d, J= 5.0 Hz, 2H), 4.55 (dd, 

J = 6.3 , 4.9 Hz, 3H), 4.25-4.06 (m, 2H), 4.04- 3.82 (m, 4H), 3.78- 3.51 (m, 11H), 

2.14 (s, 3H), 2.04 (s, 6H), 1.98 (s, 3H). 
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13CCH} NMR (75 MH z, CDCb) 6 170.4, 170.2, 170.2, 169.3, 70.8, 70.7, 70.6, 70.5 , 

70.5, 70.4, 70.2, 69.4, 69.1 , 68.8, 67.0, 61.2, 56.6, 50.2, 20.7, 20.7, 20.6, 20.6. 

IR (cm-1
): 3478 ,2881 , 1744, 1433, 1369, 1219, 1175, 1047, 954. 

HRMS (ESI+) m/z cale for C 25H 39N 30t 4 606.2505 [M+Ht; found , 606.2501 . 

u u u ~ n ~ ~ u ~ u ~ 
fl (ppm) 
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Figure S57. 1H NMR spectrum of compound 19a (3 00 MHz, CDCb). 
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Figure S58. 13C{ 1H} NMR spectrum of compound 19a (75 MHz, CDCb). 
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Figure S59 . HRMS (ESil of compound 19a. 
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Figure S60. COSY spectrum of compound 19a. 
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Figure S61. IR spectrum of compound 19a. 
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Synthesis of compound 19: To a stirring solution of compound 19a (lüümg, 

0.165mmol) in MeOH (3mL) was slowly added lM MeONa/MeOH solution to adjust 

the pH to 9-1 O. Reaction mixture was le ft to stir overnight. The reaction pl-I was then 

adjusted to 6 with H+ resin. The solvent was evaporated and the residue was dissolved 

in 3mL of water, and washed with diethyl ether (3 x l5mL) to remove impurities. 

Aqueous layer was lyophilized to provide 19 (65mg, 0.149mmol) as a white solid in a 

90% yield. 
1H NMR (300 MHz, CD30D) 8 8.11 (br s, lH) , 4.74 (s, 2H), 4.63 (d, J = 4.7 Hz, 

2H), 4.27 (d, J = 7.0 Hz, lH), 4.09- 3.97 (m, lH), 3.93 (t, J = 5.0 Hz, 2H), 3.84 (d, J 

= f.2 Hz, lH), 3.79- 3.57 (m, 13H), 3.57- 3.44 (m, 3H). 
13CCH} NMR (75 MHz, CD30D) 8 105 .0, 76.7, 74.8, 72.5 , 71.4, 70.3 , 70.2, 69.6, 

62.5, 51.8. 

IR (cnf1
) 3358, 2924, 2502, 1643, 1455, 1073 . 

HRMS (ESI+) mlz cale for C 17H31N3010, 438.2082 [M+Ht; found , 438 .2107. 
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Figure S62. 1H NMR spectrum of compound 19 (300 MHz, CD30D). 
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Figure S63. 13C{ 1H} NMR spectrum of compound 19 (75 MHz, CD30D) 
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Figure S64. COSY spectrum of compound 19. 
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Figure S65 . IR spectrum of compound 19. 
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Figure S66. HRMS (ES Il of compound 19. 
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Synthesis of compound 20a: To a so lution of per-0-acetylated galactose (1 OOmg, 

119)-lmol) in a 1:1 mixture of H20/THFanh (5 mL) , were added propargyl alcohol 

(29.1)-lL, 501)-lmol), CuS04 ·5H20 (14.9mg, 59.7)-lmol) and sodium ascorbate 

(11.8mg, 59.7)-lmol). While stirring, the mixture was first heated at 50°C for 3 hrs and 

at room temperature for additional 18 hours. Ethyl acetate (15mL) was added and the 

solution was poured into a separatory funnel containing ethyl acetate (1 OmL), washed 

with saturated aqueous NH4Cl (2 x l OmL), water (1 OmL) and brine (SmL). Organics 

were collected, dried over Na2S04 and concentrated to dryness in vacuo with rotary 

evaporator. Purification by flash chromatography (Si02, DCM/MeOH 100:0 to 92:8) 

afforded desired multivalent compound 20a (86.0mg, 96.6)-lmol) as a white foam in a 

91% yield. 

1H NMR (600 MHz, CDCb, o ppm): 7.75 (s, 1H), 5.29 (dapp, 1H), 5.14 (dd, 314.3 = 

9.4 Hz, 3
1 3_2 = 9.1 Hz, lH), 5.05 (dd, 3

1 2,1 = 10.5 Hz, 3
1 3,2 = 8.0 Hz, lH) , 4.93 (dd, 

312.3 = 10.5 Hz, 3
13 ,4 = 3.4 Hz, 1H), 4.83 (dd, 3

12.1 = 9.4 Hz, 31J,2 = 8.0 Hz, lH), 4.73 

(br S, 2H), 4.53 (d, 311,2 = 9.4 Hz, lH), 4.50 (tapp, 2H), 4.48 (dd, 216a6b = 12.0 Hz, 31s6a 

= 2.1 Hz, lH) , 4.47 (d, 311,2 = 7.9 Hz, lH), 4.12- 4.00 (m, 3H), 3.90-3.52 (m, 17H), 

3.30 (br s, lH), 2.15 (s, 3H), 2.12 (s, 3H), 2.06 (s, 3H), 2.04 (3s, 9H), 1.96 (s, 3H). 
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13
C NMR (150 MHz, CDCb, 8 ppm): 170.3, 170.2, 170.0, 169.9, 169.7, 169.6, 169.0, 

147., 122.9, 100.9, 100.4, 76.6, 72.6, 72.5, 71.5, 70.8 , 70.5 , 70.3 , 70.3 , 70.2, 70.2, 

69.3, 69.0, 68.9, 66.5, 61.8 , 60.7, 56.3, 50.0, 20.8 , 20.8 , 20.7, 20.6, 20.6, 20.6, 20.5. 

HRMS (ESI+) m/z for C37HssN3022, 894.3350 [M+Ht; found 894.3 361 , 916.3169 

[M+Nat; fo und 916.3181. 

8.5 8.0 7.5 7.0 6. 5 6. 0 5.5 5.0 4.5 4.0 3. 5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.! 
fl (ppm) 

Figure S67. 1H NMR spectrum of compound 20a (600 MHz, CDCb). 
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Figure S68. COSY spectrum of compound 20a. 
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Figure S69. 13C{ 1H} NMR spe~trum of compound 20a (151 MHz, CDCb). 
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Figure S70. HRMS (ESil of compound 20a. 
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Synthesis of compound 20: Acetylated compound 20a (86 .0mg, 96.6jlmol) was 

dissolved in dry MeOH (4mL) and a solution of sodium methoxide (lM in MeOH, 

150 11L) was added until pH 9-10. The reaction mixture was stirred at room 

temperature for 24 hrs. The pH was adjusted to 6-7 with addition of ion-exchange 

resin (Amberlite IR 120 H+). After filtration, the solvent was removed under vacuum 

with rotary evaporator, lyophilized to yield the fully deprotected reference 20 as a 

white solid (52 .5mg, 87.6!-lmol) in a 91% yield. 

1H NMR (300 MHz, 0 20 , o ppm): 8.03 (s, 1 H) , 4.73 (s, 2H), 4.64 (t , .! = 5.0 Hz, 2H) , 

4.52 (d, J = 7.9 Hz, 1H), 4.46 (d, J = 7.7 Hz, lH), 4.08-3 .53 (m, 25H), 3.36 (m, 6H) . 
13C NMR (75 MHz, 0 20 , o ppm): 147.5, "125.1, 103.6, 102.7, 79.0, 76.0, 75.4, 75 .0, 

73.5 , 73.2 (, 71.6, 70.3, 70.2, 70.1, 70.1 , 69.4, 69.2, 61.7 , 60.7, 55.3 , 50.7. 

HRMS (ESI+) m/z for C23H41N30J s,600.2610 [M+Ht; found 600 .2618, 622.2430 

[M+Nat ; found 622 .2438 . 

MeoH res . +Hflc 
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Figure S71 . 1H NMR spectrum of compound 20 (300 MHz. 0 20). 
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Figure S72 . 13 C{ 1H} NMR spectrum of compound 20 (75 MHz, CDCh). 
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Figure S73. HRMS (ESI+) of compound 20 . 
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Figure S74. COSY spectrum of compound 20. 
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Synthesis of compound 22: To a so lution of propargylated scaffold 5 (55mg, 
0.022nunol) in THF (5mL) was added galactoside 16 (354mg, 0.645nu11ol) , followed 
by sodium ascorbate (68mg, 0.39mmol). An aqueous solution of CuS0 4 ·5H20 
(96mg, 0.39mmol) was added and the fmal ratio of H20 to THF was kept 1:1. The 
reaction mixture was stined at 40°C for 24 hrs. The progress of the reaction was 
monitored with the help of TLC. Upon completion, the reaction mixtme was diluted 
with EtOAc (25mL) and washed with saturated solution of EDTA (2 x 15mL). 
Organic layer was washed with brine solution, dried with anhydrous Na2S04, filtered 
and concentrated under reduced pressure. Purification of the crude compound was 
achieved via flash co lmnn chromatography on silica gel using 5% MeOH in DCM as 
eluent to afford the desired compound 22 (208mg, 0.0167mmol)in 76% yield. 
1
H NMR (600 MHz, CDCl)) 8 7.92 (s,12H), 7.84 (s, 6H), 7.25-7.230 (m, 12H), 5.40-

5.31 (m, 18H), 5.30- 5.27 (m, 7H), 5.19- 5.07 (rn, 53H), 4.99 (dd, J = 1 0.5, 3.4 Hz, 
19H), 4.52 (dd, J = 22.2, 19.3 Hz, 57H), 4.18-4.04 (m, 36H), 3.97- 3.77 (m, 75H), 
3.70 (ddd, J = 1 0.8, 6.9, 3.9 Hz,19H), 3.63- 3.50 (rn, 176H), 3.45 (br s, 18H), 3.34 (s, 
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18H), 2.75 (br s, 1 2H), 2.63 (br s, 12H), 2. 12 (d, J = 1.4 Hz, 52H), 2.04-1.93 (m, 
164H), 1.83 (s, 12H). 
13CCH} NMR (151 MHz, CDCb) 8 170.2, 170.0, 170.0, 170.0, 169.3, 166.7, 152.0, 
144.0, 143.2, 140.1 , 130.1 , 124.7, 124.4, 107.3, 101.2, 70.8, 70.6, 70.5 , 70.5, 70.4, 
70.4, 70.1 , 69.7 , 69.3 , 69.2, 69.0 , 68.8 , 67. 1, 66.3 , 63.0, 61.2, 50.2, 39.6, 31.4, 29.7, 
28.6 , 
IR(cm-1)2872, 1747, 1491 , 1427, 1368, 1325, 1221,1175, 1104, 1050, 732. 
MALDI-TOF (DHB matrix) m/z cale. for Cs32HmN6o0 26sS6, 12446.5; found , 
12446.0. 
GPC Mn= 12500 g/mol. Mw/Mn= 1.06. 
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Figure S75. 1 H NMR spectrum of compound 22 (600 MHz, CDCb). 
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Figure S76. 13C{ 1H} NMR spectrum of compound 22 (151 MHz, CDCI3). 
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Synthesis of compound 23: To a stirring solution of compound 22 (1 Oümg, 
0.080mmo1) in MeOH (3mL), was slowly added a lM solution ofMeONa/MeOH to 
ad just the pH to 9-1 O. The reaction mixture was left stirring overnight. The reaction 
pH was then adjusted to 6 with H+ resin. Solvent was evaporated and the residue was 
dissolved in 3 mL of water and washed with diethyl ether (3xl5ml) to remove 
impurities. Aqueous layer was fmally lyophilized to yield 23 (68mg, 0.072mmol) as a 
white so lid in 90% yield. 

1H NMR (600 MHz, 0 20) o 8.40- 7.80 (rn, 18H), 7.28 (br s, 12H), 5.30-5.00 (rn 
,30H), 4.62-4.49 (rn ,36H), 4.38 (d, J = 8.0 Hz, 15H), 4.02 (d, J = 11.4 Hz, 18H), 
3.93 (d, J= 13.8 Hz, 39H), 3.88-3.82 (rn, 12H), 3.80-3.71 (rn , 54H), 3.69-3 .61 (m, 
75H), 3.62-3.49 (rn, 165 H), 3.45-3.38 (rn, 16H), 3.37- 3.35 (m, 1 OOH), 3.28- 3.22 
(rn, 9H), 2.86- 2.70 (rn, 12H), 2.68- 2.49 (rn, 12H), 1.85- 1.65 (rn, 12H). 
13CeH} NMR (151 MHz, D20) 8 168.8, 152.7, 140.1 , 130.7, 107.8, 103.9, 76.1 , 
73.7, 73.0, 71.7, 70.7, 70.6, 70.5, 70.5, 69.7, 69.6, 69.5 , 63.5 , 61.9, 61.4, 51.2, 40.5, 
31.7, 29.9, 29.1 (C and CH oftriazole rings not visible). 
IR (cm-1

) 3377,2917, 1653, 1586, 1495, 1239, 1104. 
MS (ESI+) m/z cale for C388H634N6oOI 93 S6, 9420.9 [M+Ht ; found (deconvo1uted), 
9414.0. 
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Figure S81. 1H NMR spectrum of compound 23 (600 MHz, D20). 
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Synthesis of compound 24: To a solution of propargylated scaffold 5 (20mg, 
7.81--lmol) in THF (5mL) was added PEGylated Jactoside 17 (302mg, 0.234mmol), 
followed by sodium ascorbate (28mg, 0.14mmol). An aqueous solution of 
CuS04 · 5Hz0 (35mg, 0.14mmol) was added and the fmal ratio of H20 to THF was 
kept 1: 1. The reaction mixture was stirred at 40°C for 24 hrs. The progress of the 
reaction was monitored by TLC. Upon completion, the reaction mixture was diluted 
with EtOAc (25mL) and washed with sat. solution of EDTA (2 x15mL). Organic 
layer was washed with brine solution, dried with anhydrous Na2S04, filtered and 
concentrated under reduced pressure. Purification of the residue was achieved via 
flash coloumn chromatography on silica gel using 5% MeOH in DCM as eluent to 
afford desired compound 24 (153mg, 6.01--lmol) as an off-white viscous solid in 77% 
yield. 

1H NMR (300 MHz, CDCh) 8 8.06- 7.14 (rn, 666H), 5.83-5 .67 (rn, 54H), 5.49-5.34 
(rn, 36H), 5.11 (s, 32H), 4.88 (d, J = 7.9 Hz, 18H), 4.80 (d, J = 7.8 Hz, 18H), 4.65-
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4.55 (m, 18H), 4.53-4.38 (m, 54H), 4.26 (t, J = 9.4 Hz, 18H), 3.95- 3.20 (m, 368H), 
2.85-2.50 (m, 24H), 1.82 (br s, 12H). 
13CeH} NMR (151 MHz, CDCb) 8 166. 7, 165.8, 165.5, 165.4, 165.2, 165.1 , 164.8, 
152.0, 144.6, 140.0, 133.5, 130.2, 133.4, 133.3, 129.7, 129.6, 129.5, 129.3 , 128.6, 
128.6, 128.5, 128.4, 128.2, 107. 9, 101.2, 101.0, 76.0, 75. 7, 70.5, 69.9, 69.6, 67.5, 
62.4, 61.0, 60.3 , 5 7. 3, 45.6, 39.2, 31 .6, 29.8, 28.4 (Signais corresponding to CONH, 
CarH, CH2 and Cq (in italie) located in Îlmer positions are not visible in this case, even 
after 30000 scans). 
IR(cm-1):2879, 1730, 1601,1584, 1451 , 1369, 1315, 1269, 1250, 1175, 1069, 1026, 
and 708 . 1 

MALDI-TOF mlz cale. for CmsHI 318N6o0 4o9S6, 25478.7 [M+Nat; found , 25602.3. 
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Figure S86. 1 H NMR spectrum of compound 24 (300 MHz, CDCh). 
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Figure S87. 13C{ 1H} NMR spectrumofcompound 24 (151 MHz, CDCb). 



244 

Comtrw•n! 1 SSr.b cal LP d 1nprot 

Commer}f 2 tp58 add 400() 

200 
.'1. 
'!!. 

~ 

"' "' "' "' 150 ~ 
"' N 

~ 

~ N 

~ Ji "' N 0 ~ "' "' 
0 N 

"' "' ~ ;;; .. ;;!; 

lOO 
~ 

~ ~ ;;; 
" g ... t:: "' ::3 "' "' - 1 

50 

12000 14000 16000 16000 20000 22000 24000 26000 28000 

Figure S88. MALDI TOF spectrum of compound 24. 

100.0 

99.5 

9'3 0 

00.5 

98.0 

97 5 

97.0 

~.5 

960 
~ 

1 ~ ;! 
1 ,.; 
1 g 
1 

955 

C.S.O 
~ ! 

~ 1 
~~ 0 

"' ,.; ~ 
"' ,.., N 

94 .0 

93.5 

Wavenurnber!: {OT\-1 ) 

Figure S89. IR spectrum of compound 24. 



245 

Synthesis of compound 25: To a stirring solution of compound 24 (1 OOmg, 

3.93!-!mol) in MeOH (3mL), was slowly added a lM solution of MeONa/MeOH to 

ad just the pH to 9-1 O. The reaction mixture was le ft stirring overnight. The reaction 

pH was adjusted to 6 with H+ resin and the solvent was evaporated. The residue was 

dissolved in 3mL of water and washed with diethyl ether (3 x 15ml) to remove the 

impurities. Aqueous layer was lyophilized to afford 25 (41mg, 3.3!-!mol) as a white 

solid in a 85% yield. 
1H NMR (600 MHz, 0 20) o 8.16- 7.70 (m, 18H), 7.25- 71 (m, 12H), 5.15-4.83 (m, 

18H), 4.56-4.20 (m, 36H), 4.37-4.20 (m, 67H), 3.86-3 .06 (m, 627H), 2.67-2.47 (br 

s,12H), 2.45- 2.30 (br s, 12H), 1.75- 1.45 (br s, 12H). 
13CCH} NMR (151 MHz, 0 20) 8: 168.5, 152.3 , 150.4, 139.7, 130.3, 126.4, 107.4, 

103.6, 102.8, 79.1 , 75.9, 75.3 , 74.9, 73.4, 73.1 , 72.6, 71.5 , 70.2, 70.1, 70.1, 69.2 , 

69.1, 63.0, 61.6, 60.7, 51.0, 45.9, 40.0, 31.3, 29.4, 28.6. 

IR (cm-1
) : 3695,3384,2937, 2843 , 1646, 1429, 1347, 1055, and 1032. 
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MALDI-TOF m/z cale for C496HsJ4N6o0 283S6, 12361.4 [M+Nat ; found, 12368.4, 

12401.9 (Cu adduct) ; found 12403 .5. 
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Figure S90. 1H NMR spectrum of compound 25 (600 MHz, 0 20 ). 
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Figure S93. Top: MALDI TOF spectrum of compound 25, bottom: MALDI-TOF 
spectrum of compound 25 (Positive mode with Cu) 
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4. Surface plasmon resonance (SPR) studies: 

The studies were conducted using a Biacore T200 SPR instrument with a CM5 

sensor chip. A continuous flow ofHEPES buffer (10 mm HEPES and 150 mm NaCl, 

2 mM CaCh, pH 7.4) was maintained over the sensor surface at a flow rate of 10 

).llJmin. The CM5 sensor chip was activated with an injection of a so lut ion containing 

N-ethyl-N' -(3-diethylaminopropyl) carbodiimide (EDC) (0.2M) and N

hydroxysuccinimide (NHS) (0.05M) for 7 minutes. Lactoside 21 (200 ).lg/mL) and 

Et3N (1 mM) in NaOAc buffer (pH 4.5) was injected over the activated flow cell at 

flow rate of 10 ).l.IJmin for 2 minute to achieve a ~230 RU immobilization. The 

immobilization procedure was completed by an injection of ethanolamine 

hydrochloride (lM) (70 ).lL), followed by a flow ofthe buffer (100 ).lL/min.), in arder 

to eliminate physically adsorbed compounds. Ethanol amine alone was used in one of 

the flow-cell as a reference. The so lutions of pre-incubated (1 hr) mixtures of 

glycodendrimers or monomers (with the various concentrations) and a PA-IL lectin 

(1.5 ).lM) in running HEPES buffer are passed over flow cells of the galactoside and 

ethanol amine (Association: 3 min and dissociation: 3 min). The sensor chip was 

regenerated with the seriai injections ofD-lactose (0 .25 M, 3 min) , buffer (3 min), D

lactose (0.25 M, 3 min) and buffer (3 min). For each inhibition assay, PA-IL lectin 

(1.5 ).lM) without inhibitor was injected to observe the full adhesion ofthe lectu1 onto 

the sugar-coated surface (0% inhibition). Response units fi·om the surface of lactoside 

were subtracted from the surface of ethanol amine to eliminate non-specifie 

interactions, as weil as, bulk change in RU due to variation in refi·active index of the 

medium. The primary subtracted sensorgrams were analyzed by 1:1 Langmuir mode! 

fitting, using the BIAevaluation software. For IC50 evaluation, the response units at 

the equilibrium was considered as the amount of lectin bound to the sugar surface in 

the presence of a defined concentration of inhibitor. Inhibition curves were obtained 

by plotting the percentage of inhibition against the inhibitor concentration (on a 



250 

logarithmic scale) by using Origin 7.0 software (OriginLab Corp.) and IC50 values 

were extracted from a sigmoidal fit of the inhibition curve. 

SPR Sensorgram: 
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Figure S95. (a) Sensorgrams obtained by injection of PA-IL (1.5 11M) incubated with 

different concentrations of 18 varying from 10 11M (top curve) to 320 11M (bottom 

curve) on the surface ofimmobilized lactoside 21. (b) The inhibitory curve for the 18. 
IC5o value was extracted from the sigmoidal fit of the inhibition curve. 
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Figure S96. (a) Sensorgrams obtained by injection of PA-IL (1.5 11M) incubated with 

different concentrations of dendrimer 8 varying from 0.062 11M (top curve) to 1 11M 
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(bottom curve) on the surface of immobilized lactoside 21. (b) The inhibitory curve 
for the dendrimer 8. IC50 value was extracted from the sigmoidal fit ofthe irù1ibition 
curve. 
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inhibitory curve for the glycodendrimer 23. IC50 value was extracted from the 

sigmoidal fit of the inhibition curve. 

150 - OmM 
- 18 ~,M 

- 36pM 

"' - 72pM 100 
~ 100 -144 ~LM c: c: :::1 - 288 pM ~ 80 
Cil - 576 pM ii "' c: - 1.15 pM :.ë 
0 E 60 
o. 50 - 2.30mM Ql 

IC~: 958±34 ~M 

"' "' Cil ~ 40 0:: c: 
Ql 

~ 
Ql 

20 Q. 

10 100 1000 

-50 50 100 150 200 Ligand Concentration 

Time (Sec} b) 
a) 
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different concentrations of 20 varying from 18 ~M (top curve) to 4.60 mM (bottom 

curve) on the surface of immobilized lactoside 21. (b) The in.hibitory curve for 20 . 

ICSO value was extracted from the sigmoidal fit ofthe inhibition curve. 
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~M (bottom curve) on the surface of inunobilized lactoside 21. (b) The inhibitory 

curve for the dendrimer 25. ICSO value was extracted from the sigmoidal fit of the 

inhibition curve. 



,-

253 

APPENDIX C 

SUPPORTING INFORMATION-CHAPTER 4: A FAST TRACK STRATEGY 

TOW ARD HIGHL Y FUNCTIONALIZED DENDRIMERS WITH DIFFERENT 

STRUCTURAL LA YERS: "ONION PEEL APPROACH" 

1. Materials and methods: 

Ali reactions in organic medium were performed in standard oven dried 
glassware under an inert atmosphere of nitrogen using freshly distilled solvents. 
CH2Cb and DMF were distilled fi:om CaH2 and ninhydrin respectively, and kept over 
molecular sieves. Solvents and reagents were deoxygenated when necessary by 
purging with nitrogen. All reagents were used as supplied without prior purification 
unless otherwise stated, and obtained fi·om Sigma-Aldrich Chemical Co. Ltd. 
Reactions were monitored by analytical thin-layer chromatography (TLC) using silica 
gel 60 F254 precoated plates (E. Merck) and compounds were visualized by 254 mn 
light, a mixture of iodine/silica gel and/or Illixture of ceric ammonium molybdate 
solution ( 100 ml H2S04, 900 ml H20, 25g (NH4)6Mo7Ü24H20 , 1 Og Ce(S04)2) and 
subsequent development by gentle warming with a heat-gun. Purifications were 
performed by flash column chromatography using silica gel from Silicycle (60 A, 40-
63 11m) with the indicated eluent. 

1H NMR and 13C {1H} NMR spectra were recorded at 300 or 600 MHz and 

75 or 150 MHz, respectively, on a Bruker spectrometer (300 MHz) and Varian 

spectrometer (600 MHz). Ail NMR spectra were measured at 25 °C in indicated 

deuterated solvents. Proton and carbon chemical shifts (8) are reported in ppm and 

coupling constants (J) are reported in Hertz (Hz). The resonance multiplicity in the 1H 

NMR spectra are described as "s" (singlet), "d" (doublet), "t" (triplet), "quint" 

(quintuplet) and "m" (multiplet) and broad resonances are indicated by "br". Residual 

protic solvent of CDCb ( 1H, 8 7.27 ppm; 13C, 8 77.0 ppm (central resonance of the 

triplet)), D20 ( 1H, 84.79 ppm and 30.9 ppm for CH3 of Acetone for 13C spectra, 

MeOD CH, 83.31 ppm and 13C, 8 49 .0 ppm. 2D Homonuclear correlation 1H- 1H 

COSY experiments were used to confirm NMR peak assignments. Gel Permeation 

Chromatography (GPC) was performed using Chloroform and THF as the eluent, at 

40°C with a 1 ml/min flow rate on a Viscotek VE 2001 GPCmax (SEC System) with 

Wyatt DSP/Dawn EOS and refractive index RI/LS system as detectors. 2 PLGel 

mixed B LS (1 0 11111, 300 x7.5 mm) and LS-MALLS detection with performances 

verified with polystyrene 100 kDa and 2000 kDa were used to determine the number

average molecular weight (Mn) and polydispersity index (Mw/Mn). Calculations were 

performed with Zimm Plot (mode!). Fourier transform infrared (FTIR) spectra were 

obtained with Thermq-scientific, Nicolet mode! 6700 equipped with ATR. The 

~--------------------------------- ---- -- - --
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absorptions are given in wave numbers (cm-1
). Accurate mass measurements (HRMS) 

were performed on a LC-MSD-TOF instrument from Agilent Technologies in 

positive electrospray mode. Either protonated molecular ions [M+ni-It+ or adducts 

[M+nXf+ (X= Na, K, NH4) were used for empirical formula confirmation. MALDI

TOF experiments were performed on an Autoflex III from Brucker Smarteam in 

linear positive mode (Mass Spectrometry Laboratory (McGill University)) to afford 

adducts [M+nX]"+ (X= Na, K or Li). DLS experiments were carried out at ambient 

temperature using a Zeta sizer nano S-90 from Malvern instruments equipped with 

4mW He-Ne Laser 633 nm and avalanche photodiode positioned at 90° to the beam. 

The Non-Negatively constrained Least Squares (NNLS) algorithm was used to 

generate raw intensity vs particle size data for a single measurement. A Gaussian 

curve was fitted to estimate the average particle size and coefficient of variation, 

defined as the ratio of standard deviation to mean particle size. Polydispersity is 

calculated from a cumulants analysis of the dynamic light scattering intensity 

autocorrelation function and is a measure of the deviation of the correlation function 

from the initial slope. 

NMR diffusion experiments: NMR diffusion measurements were performed at 25°C 

on a Bruker Avance III HD (Bruker BioSpin Ltd. , Milton, ON, Canada) operating at a 

fi-equency of 599.95 MHz for 1 H using a 5 mm broadband z-gradient temperature

regulated probe. The measurement of the diffusion rate (D) allows calculating the 

solvodynamic diameter of a molecule . ' The application of the Stokes-Einstein 

equation gives an estin1ate of the diameter of the molecule. 

Stokes-Einstein equation: D = K8 T 1 67r11r5 

D: Diffusion rate (m2 ·s- 1
); K8 : Boltzmann 's constant (k8 = 1.38 x 10- 23 

m2 ·kg ·s-2 ·K- 1
) ; T: Temperature (K) (T = 298.15 K) ; rr solvent viscosity in Pas; r5 : 

Solvodynamic radius ofthe species. 

2. Synthetic protocols and characterization: 

A. General procedure for the microwave-assisted copper catalyzed reactions: 

An acetylene terminated dendrimer (1 eq) and azide terminated building block (1.5 
eq per acetylene) were suspended in a 3: 1 mixture of tetrahydrofuran (THF) and 
water (5mllmmol) in a 5 ml glass vial equipped with a small magnetic stirring bar. To 
this was added the copper sulphate (0.5 eq /acetylene) and sodium ascorbate (0.5 eq 
/acetylene), and the vial was tightly sealed with an aluminum/Teflon® crimp top. The 
mixture was then irradiated for 5h at 50°C using an irradiation power of 100 W. After 



255 

completion of the reaction, the vial was cooled to 25°C by gas jet cooling before it 
was opened. The solvent was then removed and dichloromethane (DCM) was added 
to reaction mixture. Organic layer was washed a few times with saturated solution of 
ethylenediaminetetraacetic ac id (EDT A) till the green co lor of copper disappeared 
followed by washing with brine. The organic layer was dried using anhydrous sodium 
sulphate, filtered and finally solvent was evaporated. The crude mixture was purified 
using silica gel colunm chromatography to provide pure desired compounds in good 
yields. 

B. General procedure for the microwave-assisted thiol-ene reactions: 

An alkene terminated dendrimer ( 1 eq) and 1- thioglycero 1 ( 5 eq per alkene) were 
suspended in methanol (0.5ml) in a 5 ml glass vial equipped with a small magnetic 
stirring bar. To this was added AIBN (10 mol% /acetylene) and the vial was tightly 
sealed with an aluminurn!Teflon® crimp top. The 'mixture was then irradiated for 6h 
at 90°C using an irradiation power of 100 W. After completion of the reaction, the 
vial was cooled to 25°C by gas jet cooling before it was opened . Solvent was 
removed and diethyl ether was added to the reaction mixture. The precipitates formed 
were washed few times with diethyl ether to remove excess of 1- thioglycerol and 
disulfide. Crude product was then completely dissolved in minimum volume of 
methanol, diluted with 4 ml water and loaded in the dialysis bag of 1000 eut-off. 
Dialysis was performed for 12 h changing water every 3h interval. 

Note: For dialysis, ali dendrimers were ftrst dissolved completely in mm1mum 
volume of methanol and added to dialysis bag which already contained milli-Q water 
because none of dendrimers was soluble in water. 

Synthesis of compound 13: To a stirred solution of 3-(allyloxy)-2,2-
bis((allyloxy)methyl)propan-1-ol 11 (1000 mg, 3.9 nm1ol) in dry DMF, added 
powdered NaH (60% in oil, 280 mg, 11.7 mmol) in portions at 0°C under N2 

environment. The reaction mixture was stirred for 10-15 minutes fo llowed by the 
slow addition of 2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl 4-
methylbenzenesulfonate 12 (1600 mg, 4.29 mmol) dissolved in minimum volume of 
DMF. The reaction mixture was allowed to come to room temperature. Upon 
completion, reaction was quenched at 0°C with saturated N~Cl solution followed by 
the addition of DCM (100 ml) The organic layer was washed few times with cold 
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water to get rid of DMF. It was dried with anhydrous sodium sulphate, filtered and 
concentrated in vacuo. The purification by column chromatography was performed 
and the desired product 13 was isolated using 25% EtOAc in hexanes as colourless 
oil in 80% yield. 

1H NMR (300 MHz, CDCb) 8 5.89 (ddt, J = 17.2, 10.5, 5.3 Hz, 3H), 5.36 - 5.03 (rn, 
6H), 3.95 (dt, J = 5.3, 1.5 Hz, 6H), 3.74 - 3.55 (rn, 14H), 3.47 (d, J = 8.4 Hz, 8H), 
3.43- 3.36(m, 2H). 

13C CH} NMR (75 MHz, CDCJ3) 8 135.2, 115.97, 72.1 , 70.97, 70.7, 70.6, 70.5, 70.2, 
69.9, 69.2, 50.60, 45.36. 
HRMS (ESI+) m/z cale. For CnH39N30 7, 457.561 0; Found, 458 .2848 [M + Ht, 
475.3112 [M + NH4t, 

I.R.(cm-1
): 2866, 2102, 1478, 1349, 1288, 1091 , 992, 923 .. 

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 o.c 
fi (ppm) 

Figure Sl. 1H NMR spectrum of compound 13 (CDCb, 300 MHz) . 

-· ........................... ".-~,___1.~ . ...__..............., __ 
~·~~~~~~~~~~~~~~~~~~~~~~~~ 

• m w rn ~ ~ ~ ~ m m a ~ w M w ~ ~ w w w 
fl (ppm) 

Figure S2. 13 C{ 1H} NMR of compound 13 (CDCb, 75 MHz). 
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Figure SS. IR spectrum of compound 13 . 

Synthesis of compound 2: A mixture of propargyl terminated dendrimer 1 (30 mg, 
0.0117 mmol, leq), compound 13 (144 mg, 0.315 mmol, 27 eq.), CuS04.5H20 (26 
mg, 0.1053 n1mol, 9 eq.) and sodium ascorbate (21 mg, 0.1053 mmol, 9 eq.) was 
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reacted together following the procedure A and was purified by column 
chromatography (4% MeOH in DCM as eluent) to yield compound 2 as a colourless 
oil in 78% yield. 

1H NMR (600 MHz, CDCb) 8 7.92 (s, 12H), 7.84 (s, 6H), 7.25 (s, 12H), 5.93 - 5.80 
(rn, 54H), 5.26- 5.07 (rn, 152H), 4.51 (dt, J = 34.4, 5.2 Hz, 38H), 3.93 (d, J = 5.3 
Hz, 11 2H), 3.86 (dt, J = 25.9, 5.3 Hz, 38H), 3.63 - 3.53 (rn, 226H), 3.46 (s, 40H), 
3.43 (s, 112H), 3.37 (s, 12H), 2.77 (br s, 12H), 2.65 (t, J = 6.8 Hz, 12H), 1.85 (d, J = 
6.0 Hz, 12H). 
13CeH} NMR (75 MHz, CDCh) 8 166.7, 152.0, 144.0, 143.2, 140.0, 135.2, 134.7, 
130.0, 124.7, 124.5, 116.5, 116.0, 107.1 , 72.3, 72.1 , 72.0, 70.9, 70.5, 70.4, 70.3 , 70.1, 
69.7, 69.3, 69.2, 66.2, 62.9, 50.1 , 49.9, 45.6, 45.3 , 39.6, 31.3 , 29.7, 28.5. 
(MALDI-TOF) m/z: calculated for Cm HssoN6oÜJ s7S6: 10791.1392, found: 
10814.3920 [ M+Nat 

I.R (cm-1
) 3705, 3680, 2981 , 2937, 2922, 2865 , 2844, 1454, 1426, 1346, 1098, 1054, 

1033 , 1012. 
GPC (CHCb) Mn= 10770 g/mol. Mw/Mn= 1.08 

Figure S6. 1H NMR spectrum of compound 2 (CDCh. 600 MHz). 

200 190 180 170 160 ISO 140 130 120 110 lOO 90 80 70 60 SO 40 30 20 10 0 
f1 (ppm) 

Figure S7. 13C { 1H} NMR of compound 2 (CDCb, 75 MHz) 
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Synthesis of compound 3: Alkene terminated dendrimer 2 (65 mg, 0.006 mmol, 
1 eq) , 1-thioglycerol (0.139 ml, 1.62 mmo1, 270 eq.), and AIBN (5.3 mg, 0.0324 
mmo1, 5.4 eq.) were reacted together following the procedure Band was purified by 
dia1ysis to yie1d compound 3 as a colourless oil in 85% yie1d. 
1H NMR (300 MHz, MeOD) o 8.52 (br s, 6H), 8.17 (s, 12H), 7.92 (s, 6H), 7.34 (s, 
12H), 5.16 (d, J= 26.5 Hz, 46H), 4.57 (d, J = 28.4 Hz, 38H), 3.95 - 3.33 (m, 798H), 
2.79 - 2.47 (m, 244H), 1.93- 1.72 (rn, 120H). 
13CeH} NMR (151 MHz, MeOD) o 168.7, 153.5, 145.2, 144.4, 141.4, 131.2, 129.4, 

126.6, 126.5, 108.4, 77.6, 73 .2, 73.1 , 72.8, 72.2, 71.6, 71.5, 71.4, 71.1 , 71.0, 70.9, 

70.5 , 70.3 , 66.9, 66.0, 63 .8, 51.5 , 51.4, 49.8, 46.8, 46.7, 41.2, 36.4, 35.2, 35.1 , 32.1 , 

31.0, 30.7, 30.4, 29.6, 19.1. 

HR1\1S (ESI+) m/z cale. For C694H,mN6o0 26sS6o, 16631.7479; Found: 16631.7480. 

I.R (cm- 1
) 3349, 2920, 2870, 1643, 1425, 1227, 1094, 1032. 

Differentiallight scattering Hydrodynamic diameter : 5.70 mn 
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Figure S12. 1H NMR spectrum of compound 3 (CD30D, 300 MHz) 
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Figure S13. 13C { 1H} NMR of compound 3 (C030D, 151 MHz) 
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Synthesis of compound 15: Dipentaerythritol14 (1.5 g, 5.9 mmol) was suspended in 

DMSO (22 ml) followed by addition of Sodium hydroxide solution (40% in water, 16 
ml) slowly. The mixture was stirred at room temperature for 30 minutes. Allyl 

bromide (5.2 ml, 57.3 nunol) was added drop wise. The reaction mixture was stirred 

at room temperature for 16 h. It was diluted with diethyl ether (1 50 ml), washed with 

water (25 ml) and brine (25 ml), and dried over MgS04. The solvent was evaporated 

and the crude was passed through a colurm1 of silica gel with hexane-ethyl acetate 

mixtures (0-30% ethyl acetate) as eluent to obtain pure pentaallyl dipentaerythritollS 
in 40% yield along with tetraallyl derivative in 49% yield. 

1H NMR (300 MHz, CDCh) 8 5.88 (ddd, J= 22.6, 10.6, 5.4 Hz, 5H), 5.34 - 5.09 (m, 
IOH), 4.03 - 3.89 (m, IOH), 3.71 (d , J = 6.3 Hz, 2H), 3.48 (s, 4H), 3.44 (d, J= 6.2 
Hz, lOH), 3.04 (t, J = 6.3 Hz, lH). 
13CeH} NMR (75 MHz, CDCb) 8 135 .17, 134.90, 116.43, 72.42, 71.11 , 70.69, 
69.63 , 66.18, 45.40, and 45 .10. 
I.R (cnf1

) 3502, 3079, 2979, 2866, 1754, 1646, 1478, 1420, 1350, 1265, 1089, 991, 
922. 
HRMS (ESI+) m/z cale, 454.5968; found , 455.30 [M + H( 
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Figure S18. 1H NMR spectrum of compound 15 (CDC13, 300 MHz). 
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Figure S19. 13 C {1H} NMR of compound 15 (CDCI3, 75 MHz). 
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Synthesis of compound 16: To a solution of 3-(allyloxy)-2-((3 -(ally loxy)-2,2 -

bis((allyloxy) methyl)propoxy)methyl)-2-((allyloxy)methyl)propan-1-ol (15) (800 mg, 

1.76 mmol) in DMF (10ml) at 0°C sodium hydride (60% in ail, 500 mg, 12.5 mmol) 

was added. The mixture was stirred at 0°C for 15 min followed by addition of 2-(2-

(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (12) (8.54 mg, 

2.29 nunol) dissolved in DMF (2ml) . The mixture was stirred at 0°C for 1 h and RT 

for 10 minutes. Reaction was quenched with saturated NH4Cl solution and extracted 

with EtOAc (50 ml) followed with brine wash. The organic layer was separated, dried 

and crude mixture was purified with column chromatography. Desired compound 16 
was obtained using 25% EtOAc: hexane as eluent in 68% yield. 

1H NMR (300 MHz, CDCb) 8 5.96-5.80 (m, SH), 5.19 (ddd, J = 13.8, 11.4, 1.3 Hz, 
10H), 4.02 - 3.88 (m, 1 OH), 3.67 (d, J = 5.4 Hz, 1 OH), 3.64 - 3.53 (m, 4H), 3.47 -
3.37 (m, 18H). 
13CeH} NMR (75 MHz, CDCb) 8 135.1, 115 .9, 72.1, 70.9, 70.5 , 70.2 , 70.1 , 69.9, 

69.3 , 50.5, 45.5, 45.4. 

HRMS (ESI+) m/z cale. For C33Hs7N301 o, 655.8198 ; Pound, 656.4104 [M + Ht, 

673.4368 [M + NH4t. 

I.R (cm- 1
) 2865 , 2102, 1646, 1478, 1452, 1420, 1349, 1288, 1085, 989, 919. 
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Figure 823. 1H NMR spectrum of compound 16 (CDCb, 300 MHz). 
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Figure S24. 13C { 1H} NMR of compound 16 (CDCb, 75 MHz) . 

2.0 

2.5 

3.0 

3.5 

<.0 

<.5 ~ 
" 

5.0 
~ ..::<~; ~ 

,, 
!ff<~ .lit<~ li' 

5.5 

1---1 (&~) Il 6.0 

6.5 

7.0 

7.0 6.5 6.0 5.5 5.0 4.5 1.0 3.5 3.0 2.5 2.0 
f2 (ppm) 

Figure S25. COSY spectrum of compound 16. 
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Figure S26. HRMS (ESt) spectrum of compound 16. 
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Figure S27. IR spectrum of compound 16. 

Synthesis of compound 4: Propargyl terminated dendrimer 1 (30 mg, 0.0117 mmol, 

leq), compound 16 (207 mg, 0.31 mmol, 27 eq.), CuS04.5H20 (26 mg, 0.1053 

mmol, 9 eq.) and sodium ascorbate (21 mg, 0.1053 mmol, 9 eq.) were reacted 
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together following the procedure A and was purified by co1umn chromatography ( 4% 

MeOH in DCM as eluent) to yield compound 4 as a colourless oil in 71% yield. 
1H NMR (300 MHz, CDCb) : 8 7.91 (s, 12H), 7.84 (s, 6H), 7.24 (s, 12H), 5.94 - 5.80 
(rn, 90H), 5.28-5.25 (rn, 45H), 5.22-5 .19 (rn, 40H), 5.15 - 5.09 (rn, 110H), 4.60 -

4.43 (rn, 36H), 3.95 - 3.86 (rn, 220H), 3.64-3 .52 (rn, 244H), 3.45 - 3.34 (rn, 315H), 

2.77 (s, 12H), 2.65 (s, 12H), 2.10 - 1.76 (rn, 24H). 
13C eH} NMR (151 MHz, CDCb): 8166.7, 152, 144, 143 .2, 140.2, 135.2, 130.1, 
124.7, 124.6, 124.4, 116, 107.1 , 72.2, 70.9, 70.9, 70 .5, 70.4, 70.3, 70.02, 70, 69.7, 

1 69.30, 66.2, 62.9, 50.1, 49.9, 45.5 , 45.3 , 39.6, 31.3, 29.7, 28 .5. 

I.R (cm-1) 3800, 3664, 3647, 2980, 2971 , 2929, 1462, 1381 , 1250, 1151 , 1077, 956. 

(MALDI-TOF) m/z: calculated for C73oH i 174N6002ltS6: 14359.7980, found: 
14385.100 [M+Nat 

GPC (CHCh): Mn= 14490 g/mol. Mw/Mn= 1.20 
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Figure 828. 1H NMR spectrum of compound 4 (CDCb, 300 MHz). 
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Figure 829 . 13C{ 1H} NMR of compound 4 (CDCb, 151 MHz). 
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Synthesis of compound 5: Ally! terminated dendrimer 4 (35 mg, 0.0024 nm1ol, 1eq), 

1- thioglycerol (0.093 ml, 1.08 mmol, 450 eq.), and AIBN (7mg, 0.043, 18 eq.) were 

reacted together following the procedure B and was purified by dialysis to yield 
compound as a colourless oil in 82% yield. 
1H NMR (300 MHz, CD30D) ô 8.18 (br s, 12H), 7.92 (br s, 6H), 7.36 (br s, 12H), 
5.18 (d, J = 30.4 Hz, 40H), 4.59 (d, J= 28 .8 Hz, 30H), 3.99 - 3.36 (m, 1068H), 2.75 

- 2.53 (m, 370H), 1.91- 1.76 (m, 180H). 
13C CH} NMR (151 MHz, CD30D) 8168.7, 153.5, 145 .2, 144.4, 141.5, 131.2, 126.5, 

108.4, 77.7, 73.8, 73.2, 72.8, 72.3 , 71.9, 71.7, 71.6, 71.5 , 71.3, 70.9, 70.4, 69.9, 66.0, 

64.4, 63.8, 51.5, 51.4, 47.0, 41.2, 36.3, 35 .2, 35.1 , 33.0, 32.1 , 31.5, 31.0, 30.8, 30.7, 
30.5 , 29.7, 23 .7, 19.3, 14.4. 

I.R (cm-1) 3707, 3680, 3396, 2980, 2966, 2936, 2922,2865, 1101 , 1056, 1032, 1015. 

HRMS (ESI+) m/z cale. for CJOo1Hls98N6oÜ391S96: 24110.1882, found: 24124.9040 

Differentiallight scattering Hydrodynamic diameter: 8.221 (nm) . 
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Figure S34. 1H NMR spectrum of compound 5 (CD30D, 300 MHz). 
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Figure S35 . 13C {1H} NMR of compound 5 (CD30D, 151 MHz). 
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Figure S36. HRMS (ESt) spectrum of compound 5. 
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Figure 837. COSY spectrum of compound S. 

Figure 838. IR spectrum of compound 5. 
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Synthesis of compound 19: Recrystallized hexachlorocyclotriphosphazene . 17 
(200.0 mg, 0.0575 mmol, 2.0 eq.) and Boe protected p-aminophenol 18 (60.2 
mg, 0.0287 mmol, 1.0 eq.) were dissolved in 25 ml of anhydrous THF. Under 
nitrogen atmosphere, cs2co3 (187.4 mg, 0.5750 mmol, 2.0 eq.) was added 
and the mixture was stirred at reflux temperature (66°C) for 6 hours. The 
solution was filtered and washed with DCM. The filtrate was concentrated 
under reduced pressure. Column chromatography on silica (DCM/Hcxanes 
1:9 to 7:3) afforded the desired compound 19 (75.0 mg, 0.0144 mmol, 50%) 
as a colorless oil. 
1H NMR (CDCI), 300 MHz): ô ppm 7.40 (d, 2H, J = 9.0 Hz,), 7.18 (d, 2H, J = 
9.0 Hz,), 6.62 (s, lH,), 1.52 (s, 9H,). 
13C {1H} NMR (CDCb, 75 MHz): ô ppm 152.5, 144.4, 137.0, 121.8, 119.5, 80.9, 
28.3. 
31 P NMR (CDCb, 121.5 MHz): ô ppm 22.4 (d, 2P, 2J (P,P) = 59.3 Hz, PCb), 
12.8 (t, 1P, 2J(P,P) = 59.3 Hz, P-0). 
HRMS (ESt) m/z cale. for CIIH14C1sN403P3 = 540.8614 [M+Na]\ found 
540.8628. 

------------------------------------------------ -~ - - - - - ~~ -
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Figure 40. H NMR spectrum of compound 19 (CDCb, 300 MHz). 
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Figure S41. 13C{ 1H} NMR of compound 19 (CDCb, 75 MHz). 
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Figure S42. 31P NMR spectrum of compound 19 (CDCh, 122 MHz). 
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Synthesis of compound 21: To Boe protected amme monofunctionalized 

cyclotriphosphazene (19) (240 mg, 0.46 mmol, 1 eq) and p-allyloxyphenol 20 (692 .1 

mg, 4.6 mmol, 10 eq)' in THF (40 ml) was added dry cesium carbonate (2 .3 g, 6.9 

mmol, 15 eq). The solution was stirred and refluxed for 16h. Upon completion, 

reaction mixture was diluted with EtOAc (50 ml) and washed with brine and water. 

The mixture was dried with anhydrous Na2S04, filtered and evaporated under 

reduced pressure. Silica gel colurnn clu·omatography was performed (Hexane/ AcOEt 

5% to 25%) to obtain pure desired compound 21 in 88% yield. Rf= 0.57, 
Hex/ Ac0Et65:35 
1H NMR (CDCb, 300 MHz,): 8 7.16 (d, 2H, 3 J c·,b·=8.9 Hz, H-e '), 6.84-6.79 (m, 12H, 

H-b', H-e) , 6.71-6.67 (m, lOH, H-b) , 6.41 (s, lH, NH), 6.11-5.97 (m, 5H, H-f), 5.44-

5.37 (m, 5H, H-g) 5.30-5 .26 (rn, 5H, J=1.3 I--Iz,J=10.5 Hz, H-g), 4.49-4.45 (m, 10H, 

H-e), 1.51(s, 9H, Boe). 
13C CH} NMR (CDCb, 75 MHz): 8 155.6, 152.7, 144.4, 135.2, 133.3 , 133 .2, 121.9, 

121.5, 119.5, 117.8, 115.2, 80.6, 76.7, 69.2, 28.4. 
31 P NMR (CDCb, 75 MHz): 9.89 (t, J = 15.9 Hz, 3P) . 

HRMS (ESI+) mlz cale. for Cs6Hs9N40 13P3, 1089.3364 [M+Ht, found 1089.33 72 . 

U ~ U ~ ~ U ~ U ~ U ~ D U ~ ~ U U U U 
fl (ppm) 

Figure S44. 1H NMR spectrum of compound 21(CDCb, 300 MHz). 
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Figure S45. 13C{ 1H} NMR of compound 21 (CDCh, 75 MHz). 
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Figure S46. 31P NMR spectrum of compound 21 (CDCh , 122 MHz). 
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Figure S47. COSY spectrum of compound 21. 
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Figure S48 . HRMS (ESll spectrum of compound 21. 
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Synthesis of compound 22: To a stirring solution of compound 21 (294 mg, 0.27 

mmol) in 3ml DCM at 0°C was added TF A ( 4ml) and the reaction mixture was 

stirred for 4h at room temperature. Upon completion solvent was removed followed 

by co-evaporation with toluene 3-4 times. Reaction mixture was dried under vacuum. 

To the TFA salt was added DIPEA (, 1.3 mmol, 4.8 eq) and DCM (3 ml) followed by 

addition of chloroacetyl chloride (85 11L, 1.1 nm1ol, 4 eq) slowly. The so lution was 

stirred at room temperature overnight. After 16 h, the reaction mixture was 

evaporated, diluted with EtOAc (50 ml) and washed with HC! (lM) and water. The 

mixture was dried with anhydrous Na2S04, filtered and evaporated under reduced 

pressure. Purification by silica gel column (Hexane/ EtOAc 10% to 40%) afforded 
desired compound 22 (220.8 mg, 76%). 

Rf= 0.32, Hex/Ac0Et65:35 
1H NMR (300 MHz, CDCb): 8 8.19 (s, 1H, NH),7.36 (d, 2H, 3Jc·,b·=8.9 Hz, H-e' ), 

6.92-6.81 (rn, 12H, H-b', H-e) , 6.75-6.70 (m, 10H, H-b), 6.10-5.99 (rn, 5H, H-f), 

5.45-5.39 (dd, 5H,1=1.9 Hz, 1=1 0 Hz, H-g)5.31-5.28 (dd, 1=1.4 Hz, 1=17.2 Hz, SH, 

H-g), 4.49-4.47 (m, 10H, H-e), 4.18 (s, 2H, CfuCl) . 
13C {1H } NMR (CDCb, 75 MHz): 8 =163.7, 155 .7, 147.8, 144.3, 133.3 , 133 .2, 

121.9, 121.6, 121.2, 117.8, 115.3, 115.2, 76.7, 69.2 , 69.2 , 42.9. 
31 P NMR (CDCb, 121.5 MHz): 9.89 (t, J=19.9 Hz, 3P). 

HRMS (ESI+) m/z cale. for Cs3H52ClN401 2P3, 1065.2556 [M+Ht, found 1065 .2561 , 

[M+Nat , 1087.2388 found. 
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Figure S49. 1H NMR spectrum of compound 22 (CDCb, 300 MHz). 
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Figure SSO. 13C {1H} NMR of compound 22 (CDCb, 75 MHz). 
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Figure SSl. 31 P NMR spectrum of compound 22 (CDCb, 122 MHz) . 
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Synthesis of compound 23: To a so lution of compound 22 (220 mg, 0.21 mmol, 1.0 

eq) in DMF (3 ml) under nitrogen atmosphere were added sodium azide ( 40.3 mg, 

0.62 mmol, 3.0 eq) a!ld sodium iodide (6.2 mg, 0.04 mmol, 0.2 eq). The suspension 

was stirred and heated at 50-60 oc overnight. After 12 h, the so lvent was remo ved 

under vacuum. The reaction mixture was diluted with EtOAc (50 ml) and washed 

with water ( 4 x 40 ml) dried and evaporated. Crude mixture was puri fied using silica 

gel column clu·omatography · (hexane/AcOEt 10% to 70%) afforded desired 
compound 23 (109.3 mg, 81%). 

Rf= 0.84, DCM!MeOH96:4 
1H NMR (300 MHz, CDCb): 8 7.97 (s, lH, NH), 7.35 (d, 2H,J=8 .9 Hz, H-e' ), 6.90-

6.79 (rn, 12H, H-b', H-e), 6.74-6.68 (rn, lOH, H-b), 6.09-5.99 (rn, 5H, H-t) , 5.45-5.38 

(rn, 5H,H-g) 5.30-5.26 ( dd, 1=1.1 Hz, J= l 0.3 Hz, 5H, H-g), 4.48-4.46 (rn, 1 OH, H-e), 

4.12 (s, 2H, CfuN3). 
13C eH} NMR (CDCb, 75 MHz): 8 163 .7, 155.7, 147.8, 144.3, 133.3, 133.2, 121.9, 
121.6; 121.2, 117.8, 115.3, 115.2, 76.7,69.2, 69.2, 42.9. 
31 P NMR (CDCb, 121.5 MHz): 9.89 (t, 1=19.9 Hz, 3P). 

HRMS (ESI+) m/z calc. for Cs3Hs2ClN40t2P3, 1072.2960 [M+Ht, found 1072.2971. 
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Figure S54. 1H NMR spectrum of compound 23 (CDCb, 300 MHz). 
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Synthesis of compound 25: 3,6,9,12-tetraoxapentadec-14-yn-1-yl 4-
methylbenzenesulfonate 24 (75 .0 mg, 0.19 nunol, 1.3 eq.) and compound 23 (160.3 

mg, 0.15 mmol, 1.0 eq) were dissolved in a THF/H20 1:1 mixture (3 mL). Sodium , 

ascorbate (88.7 mg, 0.45 mmol, 3.0 eq) and CuS04 5H20 (111.8 mg, 0.45 mmol, 3.0 
eq) were added. The solution was stirred and heated at 55 oc overnight. The reaction 

mixture was diluted with EtOAc (50 ml) and washed twice with saturated aqueous 

ammonium chloride (2 x 75 ml) and water (50 ml). The mixture was dried with 

anhydrous Na2S04, filtered and evaporated under reduced pressure. Crude reaction 

mixture was purified using silica gel colmnn (DCM!MeOH 100:0 to 94:6) which 
afforded desired compound 25 (139.6 mg, 64%). 

Rf= 0.31 , DCM/MeOH 96:4 
1H NMR (300 MHz, CDCh): 8 8.73 (s, lH, NH), 7.81 (s, lH, H-triazole) , 7.73 (d, 

2H,J=8.3 Hz, H-e'), 7.37 (d, 2H,J=8.9 Hz, H-arornTos) 7.26 (d, 2H, 1=8.1 Hz, H

aromTos) , 6.90-6.64 (rn, 22H, H-b', H-e, H-b) , 6.08-5.93 (rn, 5H, H-f), 5.42-5.33 (rn, 

5H,H-g) 5.28-5.18 (m, 7H, H-g, Cfu-triazole) , 4.65 (s,2H, H-i), 4.45-4.42 (rn, 10H, 

H-e), 4.11-4.07 (m, 2H, H-j) , 3.68-3.52 (rn, 14H, OCfuCfuO), 2.38 (s, 3H, CH1) . 
13C eH} NMR (CDCb, 75 MHz,): 8 163.4, 155.7, 155 .6, 147.4, 145.3 , 145.0, 144.3, 

134.3, 133.3, 133.2, 132.8, 130.0, 128.0, 124.9, 121.9, 121.4, 121.1 , 117.7, 115.3, 

115.2, 76.8, 70.7, 70.6, 70.6, 70.5 , 70.5, 69.8, 69.4, 69.2, 68.8, 64.5, 53.2, 21.7. 
31 P NMR (CDCb, 121.5 MHz): 9.76 (t, 1=18.1 Hz, 3P). 

HRMS (ESI+) m/z cale. for C7tHnN70t 9P3S, 1458.4359 [M+Ht, found 1458.4384. 
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Figure S59. 13C { 1H} NMR of compound 25 (CDC13, 75 MHz) . 
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Figure S60. HRMS (EST +) spectrum of compound 25. 
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Synthesis of compound 26: To a solution of compound 25 (139.6 mg, 0.10 mmol, 

1'.0 eq) in DMF (2 ml) under nitrogen atmosphere were added sodium azide (18 . 7 mg, 

0.29 nunol, 3.0 eq) and sodium iodide (1.4 mg, 0.01 nunol, 0.1 eq) . The suspension 
was stirred and heated at 50-60 °C overnight. After 12 h, the so !vent was removed 

under vacuum. The reaction mixture was diluted with EtOAc (50 ml) and washed 

with water (4 x 40 ml). Crude mixture was purified using silica gel colutnn 

(DCM/MeOH 99:1 to 98:2) which afforded desired compound 26 in 86% yield. 

Rf= 0.31 , DCM/MeOH 96:4 
1
H NMR (300 MHz, CDCh) : o 8.91 (s, 1H, NH), 7.75(s, 1H, H-triazole), 7.38 (d, 

2H,J=8.9 Hz, H-e ' ), 6.92-6.65 (rn, 22H, H-b', H-e, H-b) , 6.06-5.93 (rn, SH, H-f), 
5.42-5 .34 (rn, SH,H-g) 5.28-5.25 (m, SH, H-g) 5.17 (s, 2H, Cfu-triazole) , 4.64 (s,2H, 

H-i) , 4.45-4.43 (rn, 10H, H-e), 3.69-3.55 (rn, 14H, OCfuCfuO), 3.29 (t, 2H,J=5.2 
Hz, H-j) . 
13C CH }NMR (75 MHz, CDCh) 8 163.4, 155.7, 155.6, 147.3, 145.2, 144.4, 144.3 , 

134.3, 133.3, 133 .2, 124.9, 121.8, 121.5, 121.1 , 117.8, 115.3, 115.2, 76.8, 70.6, 70.6, 
70.0, 69.9, 69.2, 69.2, 64.5 , 53.1 , 50.6. 
31 P NMR (121.5 MHz, CDCh) 9.75 (t, 1 =18.0 Hz, 3P). 

HRMS (ESI+) mlz cale. for C64H7INJOOI6P3, 1329.4335 [M+Ht, found 1329.4361. 
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Figure S63. 1HNMR spectrum of compound 26 (CDCb, 300 MHz). 
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Figure S64. 13C { 1H} NMR of compound 26 (CDCb, 75 MHz). 

<$' ~ ..?> ~' ... - J! -~ ~ " .'!' .<:, .... 
Figure S65. 31P NMR spectrum of compound 26 (CDCb, 122 MHz). 
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Figure S68. HRMS (ESt) spectrum of compound 26. 

Synthesis of compound 6: Propargyl terminated dendrimer 1 (5 mg, 0.0019 mmo l, 
1 eq), compound 26 ( 94 mg, 0.070 mmol , 36 eq.), CuS04.5H20 (9 mg, 0.0351 mmol, 

l 
1 
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18 eq.) and sodium ascorbate (7 mg, 0.0351 mmol, 18 eq.) were reacted together 

following the procedure A and was purified by colunm chromatography ( 4% MeOH 

in DCM as eluent) to yield compound 6 as a colourless oil in 50% yield. 
1H NMR (300 MHz, CDCh) 8 9.63 (s, 12H), 7.88 (d, J = 29.3 Hz, 18H), 7.73 (s, 
18H), 7.56 - 7.42 (rn, 36H), 7.07 - 6.44 (rn, 396H), 6.10 - 5.88 (rn, 90H), 5.52 - 4.94 

(rn, 244H), 4.67 - 4.13 (rn, 260H), 3.80 - 3.20 (rn, 302H), 2.71 (d, J = 41.5 Hz, 30H), 

1.79 (s, 12H). 
13C eH} NMR (151 MHz, CDCb) 8 167.6, 163.7, 155 .5, 147.1 , 144.6, 144.2, 134.7: 
130.8, 128.7, 125.0, 121.7, 121.2, 120.9, 117.6, 117.5, 115.2, 115.1 , 1 106.9, 71.3 , 

70.3, 69.6, 69.0, 68.1 ' 64.1 , 52.8, 50.2, 38.7, 31.9, 30.3 , 29.6, 28 .9, 23 .7, 22.9, 22.6, 
20.3 , 14.0, 10.9. 
31 P NMR (122 MHz, CDCb) 8 9.70 (s). 

I.R (cm-1
) 3708, 3680, 2980,2922, 2865,2844, 1702, 1552, 1501 , 1455, 1426, 1295, 

1262, 1189, 1170, 1103, 1054, 1032, 1011 ' 953, 884, 834. 
MALDI-TOF m/z: calculated for Cl28sHt426N 1860319Ps4S6: 26481.1320, found : 
26249.7870. 

GPC (TI-IF): Mn= 26350 g/mol. Mw/Mn= 1.03 
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Figure S69. 1H NMR spectrum of compound 6 (CDCh, 300 MHz) . 
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Figure S70. 13C { 1H} NMR of compound 6 (CDCI3, 151 MHz). 
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' 1 Figure S71. J P NMR spectrum of compound 6 (CDCb, 122 MHz). 
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Figure S72. COSY spectrum of compound 6. 
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Figu re S73. MALDI-TOF spectrum of compound 6. 
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Synthesis of compound 7: Alkene terminated dendrimer 6 (20 mg, 0.00075 mmol , 

1eq), 1- thioglycerol (0 .040 ml, 0.4725 mmol, 630 eq.), and AIBN (3.7 mg, 0.0225 , 

30 eq.) were·reacted together following the procedure Band was purified by dialysis 

to yield compound 7 as a colourless oil in 75% yield. 
1H NMR (300 MHz, MeOD): 8 7.94- 7.84 (m, 36H), 7.50 - 7.40 (m, 36H), 6.73 (s, 

396H), 5.25 (d, J = 36.8 Hz, 460H), 4.55 (brs, 233H), 3.9 - 2.6 (m, 793) , 2.07 (s, 

192H). 
13C eH} NMR (151 MHz, MeOD): o 185 .2, 157.4, 145.2, 122.9, 122.6, 122.4, 122.3 , 

120.7, 116.9, 116.2, 81.4, 72.9, 72.8, 72.7, 71.9, 67.8, 65.9, 64.5, 63 .6, 54.1 , 53.8, 

50.5, 50.4, 44.2, 41.7, 39.6, 39.2, 38 .5, 37.3, 37.0, 36.8, 36.2, 35.9, 34.7, 33.6, 33 .5, 

30.6, 30 .5, 30.1 , 28.2, 23.6. 
31 P NMR (243 MHz, MeOD): 8 10.39, 10.34, 10.24, 10.19. 
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MALDI-TOF m/z: calculated for C155sH2146NJ s60 499Ps4S96: 36215.4798, found: 
3 7226.6720. 
Differentiallight scattering Hydrodynamic diameter: 1.955nm 
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Figure S76. 1H NMR spectrum of compound 7 (CD30D, 300 MHz). 
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Figure S77. 13C {1H} NMR of compo und 7 (CD30D, 151 MHz). 
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Figure S80. MALDI-TOF spectrum of compound 7. 
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Synthesis of compound 28: Cellobiose octaacetate 27 (1.5g, 0.0021 moles) was 

dissolved in DCM (20 ml) followed by the addition of 2- bromoethanol (0 .31 ml, 

0.0044 moles) . The reaction mixture was cooled to 0°C and BF3.etherate (0.8 ml, 

0.0064 moles) was added dropwise. The mixture was then stirred at 0°C for 4 h. It 
1 

was allowed to come to room temperature and stirred for additional 2 h. The mixture 

was diluted with DCM (100 ml) and washed with aq . NaHC03 (3X30ml) and brine. 

The organic layer was dried and evaporated. The crude was purified by flash 

chromatography over silica gel ( eluent hexane: DCM: To luene: Ethyl acetate, 

1:1:1:2) to provide 28. (Yield: 43%). 
1H NMR (600 MHz, CDC13) 8 5.22 - 5.10 (m, 2H), 5.06 (t , J = 9.7 Hz, lH), 4.92 (t , 

J = 9Hz 2H), 4.52 (dt, J = 15 .1, 4.5 Hz, 3H), 4.36 (dd, J = 12.4, 4.3 Hz, 1H), 4.12-

4.01 (m, 2H), 4.04 (dd, J = 12.4, 1.4 Hz, 1H), 3.85 - 3.73 (m, 2H), 3.65 (ddd, J = 9.9 , 

3.8, 1.9 Hz, 1H), 3.60 (dd, J = 9.9, 4.9 Hz, 1H), 3.48-3 .39 (m, 2H), 2.14- 1.95 (m, 

21H). 
13C CH} NMR (151 MHz, CDCI3) 8 170.44 (s) , 170.4, 170.2, 170.1 , 169.7, 169.6, 

169.2, 168.9, 100.8, 100.7, 76 .3, 72.8, 72.7, 72.2, 71.9, 71.5, 71.2, 69.7 , 67.6, 61.4, 

29.8, 20.8, 20.7, 20.6, 20.5. 

HRMS (ESI+) m/z cale. For C28H39Br01s, 743.5025 found , 762.1631 [M + NH4( 

I.R (cm-1) 3712, 3705 , 3680, 3667, 2981 , 2972, 2892, 2865 , 2843 , 2825, 1743, 1365, 

1261, 1216, 1052, 1032, 101 7. 
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Figure S81. 1H NMR spectrum of compound 28 (CDCh, 300 MHz). 
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Figure S82. 13C {1H} NMR of compound 28 (CDCh, 151 MHz). 
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Figure S83. COSY spectrum of compound 28. 
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Figure S84. HRMS (ESI) spectrum of compound 28. 
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Figure S85. IR spectrum of compound 28 . 
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Synthesis of compound 29: A mixture of heptaacetyl-1(2-bromoethyl)- cellobiose 

28 (500 mg, 0.67 minol,) and sodium azide (152 mg, 2.33 mmol) in DMF (5ml) was 

kept at 70°C for 4 hrs. The mixture was cooled, diluted with EtOAc, washed with 

H20 (2X 1 Oml) and brine. The organic layer was dried with anhydrous sodium 

sulphate, filtered and evaporated. The crude was recrystallized from DCM: hexane 

mixture and pure azide 29 was obtained in 92% yield. 

1H NMR (600 MHz, CDCb) 8 5.22-5.13 (m, 2H), 5.08 (t, J = 9, lH), 4.98 - 4.90 
(m, 2H), 4.60 - 4.50 (m, 3H), 4.38 (dd , J = 12.5, 3.3 Hz, lH), 4.13 - 4.02 (m, 2H), 
4.03-3.96 (m, 1H), 3.80 (t, J== 9.5 Hz, lH), 3.71 - 3.64 (m, 2H), 3.61 (dd, J = 9.9, 
4.7 Hz, 1H), 3.52-3.44 (m, lH) , 3.27 (dt, J==. 13.4, 3.4 Hz, 1H), 2.17- 1.96 (m, 
21H). 
13C eH} NMR(151 MHz, CDCb)8170.4, 170.24, 169.7, 169.6, 169.2, 169, 100.7, 
100.5, 76.3 , 72.9, 72.7, 72.4, 71.9, 71.5, 71.3 , 68.6, 67.7 , 61.6, 61.5 , 50.4, 20.8, 20.6, 
20 .5. 
HRMS (ESt) mlz cale. For C2&H39N3018, 705.6186; found, 723 .2585 [M + NH4( 
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I.R (cm-1
) 2963 , 2105, 1432, 1366, 1165, 1130, 1035, 906, 731. 
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fl( ppm) 

Figure S86. 1H NMR spectrum of compound 29 (CDCb, 300 MHz). 
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Figure S87. 13C CH} NMR of compound 29 (COCl3, 151 MHz). 
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Figure S88. HRMS (ESI+) spectrum of compound 29. 
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Figure 890 . IR spectrum of compound 29. 

308 

.,, . 

'• 



~--- - - ---~~ 

309 

8ynthesis of compound 30: To a solution of heptaacetyl-1 (2-azidoethyl) cellobioside 

29 (520 mg, 0.74 mmol) in methanol was added lM NaOMe until pH 9-10 was 

reached. It was allowed to stir at room temperature for Sh. Acidic res in (IR -120) was 

added to make pH 5-6 and solution was filtered through cotton bed and evaporated to 

yield 30 in 90% yield. 
1H NMR (300 MHz, D20) 8 4.53 (dd, J = 7.9, 5.9 Hz, 2H), 4.11 - 3.23 (m, 16H). 
13C CH} NMR (75 MHz, D20) 8 11 0.4, 1 03.2, 1 02.8, 79.2, 76.6, 76.1 , 75.4, 74.92, 
73.8, 73.5, 70.1, 69.2, 61.2, 60.6, 51.1. 

HRMS (E8I+) m/z cale. For C,4H25N30 1, , 411 .36 18; found, 434.1396 [M + Nat 
I.R (cm.1

) 3345, 2114, 1639, 1032. 
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f1 (ppm) 

Figure 891. 1H NMR spectrum of compound 30 (D20 , 300 MHz). 
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Figure 892. 13C {1H} NMR of compound 30 (D20, 75 MHz) . 
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Figure S93. COSY spectrum of compound 30 . 
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Figure S94. HRMS (ESI+) spectrum of compound 30. 
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Figure S95. IR spectrum of compound 30. 

31 

Synthesis of compound 31: To a solution of 1-(2-azidoethyl) cellobioside 30 (268 

mg, 0.387 mmol) in DMF (10ml) at 0°C sodium hydride (60% in oil, 500 mg, 12.5 
mmol) was added. The mixture was stirred at Ü°C for 15 min followed by addition of 

ally! bromide ( 1.4 ml , 16.2 mmol) dropwise. The mixture was stirred at 0°C for 1 h 

and at RT for 10 minutes. Reaction was quenched with saturated NH4Cl sol. and 

extracted with EtOAc (50 ml) followed with brine wash. The organic layer was 

separated, dried and evaporated. The crude mixture was purified with colurnn 

chromatography. The desired compound 31 was obtained using 20% EtOAc: hexane 
as eluent in 89% yield. 

1H NMR (300 MHz, CDCb) 8 6.07 - 5.79 (rn, 7H), 5.35 - 5.04 (rn, 14H), 4.49-3.89 
(rn, 17H), 3.85 - 3.58 (rn, 6H), 3.56 - 3.19 (rn, 8H), 3.17 - 3.07 (t, J = 18Hz, 1H). 
13C {1H} NMR (151 MHz, CDCb) 8 136, 135.2, 135.1 , 135, 134.9, 134.8, 134.6, 

116.8, 116.7, 116.6, 116.4, 116.3, 115.7, 84.4, 82.4, 81.8, 81 , 77.3 , 77.2, 75, 74.7, 

74.2, 74, 73.8, 73.7, 73.5, 72.3 , 72.1 , 68.6, 68.1 , 68, 50.9 
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HRM8 (E8I+) m/z cale. For C3sHs3N3011 , 691.8088; found, 709.4022 [M + NH4t , 
730.3342 [M + K( 
I.R (cm-1

) 3680, 3078, 2919, 2866, 2103 , 1646, 1457, 1420, 1346, 1305, 1120, 994, 

918. 

.. 
t • - 1 • • • .,.. ... ~· ~ • 1 - T·---~ ··- l · -- r--• -~-·· • ., ·' ; c 

Figure 896. 1 H NMR spectrum of compound 31 (CDC13, 300 MHz). 
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Figure 898. HRMS (ESt) spectrum of compound 31. 
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Synthesis of compound 8: Propargyl terminated dendrimer 1 (1 0 mg, 0.0039 mmol, 

1eq), compound 31 (72 mg, 0.105 n1mol, 27 eq.), CuS04.5H20 (9 mg, 0.0351 !1ID10l, 

9 eq.) and sodium ascorbate (7 mg, 0.0351 mmol, 9 eq.) were reacted together 

following the procedure A and was purified by column chromatography ( 4% MeOH 

in DCM as eluent) to yield compound 8 as a colourless oïl in 76% yield. 
1H NMR (300 MHz, CDCh) o 8.01 - 7.88 (rn, 18H), 7.30 (br s, 12H), 6.04 - 5.69 
(rn, 126H), 5.32 - 4.98 (rn, 272H), 4.68 - 3.03 (m, 638H), 2.85 (br s, 12H), 2.70 (br s, 
12H), 1.87 (br s, 12H). 
13C eH} NMR (151 MHz, CDCh) o 166.6, 151.8, 144.0, 143.3 , 135.9, 135.2, 134.9, 
134.8, 134.5, 129.9, 124.6, 116.8, 116.7, 116.5, 116.3 , 115 .8, 115.7, 107.1 , 103.0, 
102.7, 84.4, 82.4, 81.8, 80.7, 74.9, 74.7, 74.2, 74.0, 73 .6, 73 .5, 73.4, 72.3, 72.0, 
68 .6, 68.4, 68.0, 67.9, 67.5 , 62.5, 50.2, 45.5 , 39.3, 34.6, 31.5, 29.6, 25 .2, 22.5, 14.0 , 
11.3. 
I.R (cm- 1

) 3648, 3403, 3080, 2980, 2971 , 2918, 1647, 1459, 1379, 1261 , 1072, 925. 
MALDI-TOF m/z: calculated for C766Hti02N6oOmS6: 15007.6007, found : 

15011.0180 

GPC (CHCh): Mn= 15140 g/mol. Mw/Mn= 1.07 
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Figure 8101. 1H NMR spectrum of compound 8 (CDCb, 300 MHz). 
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Figure 8102. 13C {1H} NMR of compound 8 (CDCb, 151 MHz). 
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Figure S104. MALDI-TOF spectrum of compound 8. 
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Figure SlOS. MALDI-TOF expanded spectrum of compound 8. 
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Synthesis of compound 9: Ally! terminated dendrimer 8 (25 mg, 0.0016 mmol, 1 eq), 

1- thioglycerol (0 .096 ml, 1Anu11ol, 882 eq.), and AIBN (4 mg, 0.020, 12.6 eq.) were 

reacted together following the procedure B and was purified by dialysis to yield 

compound 9 as a colourless oil in 85% yield. 
1H NMR (600 MHz, MeOD) 8 8.16 (br s, 12H), 7.92 (br s, 6H), 7.30 (br s, 6H), 5.35 

- 4.95 (rn, 48H), 4.69 - 4.4 7 (m, 40H), 4.43 - 2.17 (rn, 1308H), 2.07 - 1.40 (rn, 

208H), 1.35 - 1.05 (m, 34H). 
13C eH} NMR (151 MHz, MeOD) 8 153.5, 144.3 , 126.4, 104.4, 103 .8, 86.2, 83.9, 

82.8, 79.3 , 77.6, 76.2, 73.2, 72.8, 71.9, 71.0, 70.9, 66.1 ' 65.3 , 49.4, 49.2, 49.0, 48.8 , 

48.7, 48 .5, 43.5 , 36.3, 36.3 , 31.8, 31.5, 31.0, 30.5 , 30.4, 23.7, 21.2 , 19.3, 17.9. 

I.R (cnf1
) 3707, 3694, 3680,3377,2981,2937, 2922, 2866, 2843 , 1050, 1033, 1013. 

(MALDI-TOF) m/z: calculated for C,,46H21lsN6o0 4s lSI32: 28667.7725, found: 
28690.0370. [M+Nat. 

Differentiallight scattering Hydrodynamic diameter : 6.980nm 
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Biological Experiments: 

Cell culture and treatment. The HepG2, U251 N and MCF-7 human cell !ines were 

originally obtained from the American Type Culture Collection. HepG2 cells were 

cultured in Minimum Essential Medium (Invitrogen) ; U251 N and MCF -7 cells were 

cultured in Dulbecco ' s Modified Eagle ' s Medium (lnvitrogen) . All media were 

supplemented with 10% (v/v) fetal bovine serum (Invitrogen), 2 mM L-glutamine, 

100 lU/mL penicillin, 100 J.LglmL streptomycin (lnvitrogen), and 1% non-essential 

amino acids. Cells were maintained at 37°C with 5% C02. 

Confluent HepG2, U251 N and MCF -7 ce Ils cultures were detached using 

0.05% trypsin-EDTA (Invitrogen) , seeded at 20,000 cells per weil in 96-well plates 

(Sarstedt), and cultured for 24h before treatment. Cells were treated with dendrimers 

at increasing concentrations (1 nM, 10 nM, 50 nM, 100 nM, 500 nM, 1 J.LM, 5 J.LM, 

and 10 JlM) for 24h. Dendrimers were dissolved in dimethyl sulfoxide (DMSO; 

Sigma-Aldrich), and in-well DMSO concentrations were kept below 0.3%. Vehicle 

controls were included in each experin1ent. 

MTT assay. After treatment, media was refreshed with serum-deprived media, and 

thiazolyl blue tetrazolium (Sigma-Aldrich) was added for an in-weil concentration of 

0.5 mg/mL. Cells were incubated for 30 minutes at 3 re to allow for the formation of 

formazan crystals, following which the medium was removed and 100 J.LLiwell of 

DMSO was added to dissolve the formazan. Absorbance was measured at 595 nm 

using an Asys UVM 340 rnicroplate reader (Biochrom). 

Cell viability assay. After treatment, media was removed and cells were washed twice 

with phosphate buffered saline (PBS). Cells were fixed using 4% paraformaldehyde 

for 15 minutes, labelled with 10 !lM Hoechst 33342 (Sigma-Aldrich) for 10 minutes , 

then washed and stored in PBS. Imaging of cell nuclei fluorescently labelled with 

Hoechst was performed using an Operetta high-throughput imaging platform (Perkin 

Elmer). Image analysis and cell counting was done in the Columbus Analysis 

p1atform (Perk in Elmer). 

Statistical analysis. Each experiment was performed three times and each treatment 

was included in sixplicate. The student ' s /-test with Bonferroni correction was used to 

find significant differences between treatments ( p values < 0.01 were considered 

significant). 

Reference: 

1. Diaz, M. D.; Berger, S. Carbohydr. Res. 2000, 329, 1- 5. 


