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RESUME

La métabolomique est une science d’omique récente visant & ¢tudier les changements
quantitatifs de métabolites causés par la maladie, les changements environnementaux,
etc. Aux flux de travail non ciblées, l'acquisition d'une vue globale de tous les
métabolites d’un échantillon biologique est souhaitée. En raison de la grande
complexité des échantillons biologiques, des données brutes doivent étre traitées
soigneusement pour arriver aux résultats significatifs. La premiere étape de l'analyse
non ciblée de données métabolomique est de générer des pics de premieres données
LC-MS. Du a I'application des plusieurs algorithmes avec les différents flux de travail
pour la sélection de pic, les résultats peuvent varier largement les uns des autres.
L'autre défi est également & filtrer les pics redondants tels que ">C isotopes, les
produits d'addition et des fragments de source provenant de métabolites lors de
l'analyse MS. Et malheureusement la plupart logiciels automatisé pour ramasser les
pics sont incapables de détecter ces pics redondants. En ce travail, nous avons étudié
systématiquement l'effet d’employer les différents flux de travail des pics pour les
mémes ensembles de données brutes. Un mélange standard (84) et composés de deux
échantillons biologiques (biliaires et urine) ont été analysés par HPLC-MS-QqTOF
aux deux modes positif et négatif. Les données brutes LC-MS ont été traitées avec
quatre flux de travail différents pour gérer le pic, y compris Peakview®, Markerview
™ MetabolitePilot™ et XCMS Online. Ensuite, les chevauchements entre les
résultats des flux de travail pour gérer le pic ont été obtenus pour chaque ensemble de
données en appliquant un code basé sur MATLAB. Enfin, les métabolites potentiels
identifiables ont été étudiés en utilisant la base de données en ligne METLIN. Dans
un autre effort pour améliorer la performance de 'analyse des données non ciblée de
la métabolomique, un flux de travail de réduction de données basé sur MATLAB a
été développé pour identifier et supprimer les isotopes 13C, ions radicaux, adduits et
et-source-fragments. D’un autre projet, une approche métabolomique ciblée a été
développée pour quantifier la modification introduite au contenu caroténoide des
échantillons d'algues par le stress.

Mots-clés: métabolomique, la spectrométric de masse, LC-MS, cueillette Peak,
caroténoides




ABSTRACT

Metabolomics is a recent omics science aiming to study quantitative changes in
metabolites caused by disease, environmental change, efc. In untargeted workflows,
acquiring a global view of all metabolites present in a biological sample is desired.
Due to the high complexity of biological samples, raw data should be processed
carefully to yield meaningful results. The first step in untargeted metabolomics data
analysis is to generate peaks from raw LC-MS data. Due to the use of various
algorithms by different peak picking workflows, results can differ widely from each
other. The other challenge is also to filter out redundant peaks such as °C isotopes,
adducts and in-source fragments originating from metabolites during MS analysis and
unfortunately, most automated peak picking software are unable to combine all
signals belonging to a single metabolite. In this work, we systematically investigated
the effect of employing different peak picking workflows for the same raw data sets.
A standard mixture (84 compounds) and two biological samples (bile and urine) were
analyzed by HPLC-QqTOF-MS in both positive and negative modes. Raw LC-MS
data were processed with four different peak generating workflows including
Peakview®, Markerview™, MetabolitePilot™ and XCMS Online. Then the overlaps
between the results of peak generating workflows for each data set were obtained
using a custom-built MATLAB-based code. Finally, the potential identifiable
metabolites were investigated using the online METLIN database. In another effort
for enhancing the performance of untargeted metabolomics data analysis, a
MATLAB-based data reduction workflow was developed to identify and remove *C
isotopes, radical ions, adducts and in-source-fragments. In a separate project, a
targeted metabolomics approach was developed to quantify the change introduced to
carotenoid content of algal samples by stress.

Keywords: Metabolomics, Mass Spectrometry, LC-MS, Peak picking, Carotenoids



CHAPTER 1
INTRODUCTION TO METABOLOMICS

1.1 Metabolomics definitions

Analysis of biological samples for identification and quantification of small
molecules has been done for many years, e.g. measurement of glucose for diabetes
(Group 1979) and plasma homocysteine for vascular disease (Elevated et al. 1997).
These studies were initially limited to small number of target compounds and far
from what we currently define as metabolomics. The fact that individual molecules
in biological samples are part of a large network of metabolic pathways magnified
the need for a more comprehensive and global approach toward analysis of

biological specimens (Ryan and Robards 2006).

Metabolomics is defined as the quantitative characterization of small molecules
(metabolites) present in a biological sample (Lindon et al. 2011). This kind of
terminology arises from other “omic” sciences such as genomics, transcriptomics
and proteomics, in which genome, transcriptome and proteome content of living
organisms are studied, respectively (Figure 1.1). Accordingly, metabolomics refers
to the study of metabolome, the word first suggested at 1998 by Stephen Oliver
(University of Manchester, UK; http://www.man.ac.uk/), assigned to the set of all
low-molecular-mass compounds synthesized by an organism (Oliver et al. 1998).
Soon afterward, a detailed proposal review on this subject was presented to
scientific community by Oliver Fiehn (Max Plank Institute, Golm, Germany;
http://www.mpg.de) (Fiehn 2002). It should be mentioned that one of the first
metabolite profiling experiments had been performed long before by Linus Pauling
and colleagues in 1971 in which metabolite content of human urine vapor and

breath of subjects were analyzed by gas chromatography (Pauling et al. 1971),




though the more serious effort for growing this branch of omic sciences was

observed only in the last decade.

Genomics Transcriptomics Proteomics Metabolomics

—> —
¢

Genome Transcriptome Proteome Metabolome

(DNA) (RNA) (protein) (metabolite)

Figure 1.1 Genomics, transcriptomics, proteomics and metabolomics study genome (DNA),
transcriptome (RNA), proteome (proteins) and metabolome (metabolite) content of
biological samples

Another term used along with metabolomics that creates confusion in the
corresponding literature, is metabonomics. Initially, metabolomics referred to the
measurement of the pool of cell metabolites (Nicholson et al. 1999), while
metabonomics was defined as the quantitative measurement of the dynamic
multiparametric metabolic response of living systems to pathophysiological stimuli
or genetic modification (Nicholson et al. 1999; Beger et al. 2010). These two terms
are often used interchangeably, however both procedure and bulk of literature
support metabolomics as more comprehensive study of the metabolome (Ryan and

Robards 2006).

Metabolomics investigations are used in different research areas such as drug

discovery (Wishart 2008), medical diagnosis and therapeutic monitoring (Gowda et



al. 2008), toxicology (Ramirez et al. 2013) as well as food science (Wishart 2008),
agriculture (Dixon ef al. 2006) and environmental studies (Ramirez et al. 2013).

1.1.1 Metabolome

The metabolome is defined as the set of small molecular mass organic compounds,
metabolites, found in a given biological sample. Small peptides are considered as
metabolites while polymerized structures such as proteins and DNA are beyond the
accepted definition for metabolites. Considering the important biochemical roles of
metabolites as intermediates of biochemical reactions, their quantitative level
(concentration) in living cells can be affected by different processes such as
regulation of transcription and translation or protein-protein interactions. Hence,
studying metabolite levels has great potential to inform us about cellular function

and its response to various genetic or environmental changes (Roux et al. 2011).

Metabolites are generally divided into two groups, based on their origin being either
exogenous or endogenous (Roux et al. 2011). Endogenous metabolites are either
primary, which are common organic molecules found in broad category of living
cells, or secondary metabolites, referred to the species-specific compounds. The
first group has a direct contribution to essential life processes such as growth and
maintenance, e.g. molecules such as amino acids or glycolysis intermediates. On the
other hand, secondary metabolites have limited distribution among living organisms
and metabolites belonging to this group have more specific biological functions,

e.g. hormones in mammalians and alkaloids in plants (Herbert 1989).

Exogenous metabolites are the product of biotransformation of exogenous
compounds caused by phase I or phase II metabolism. In phase I, the original

exogenous molecule is modified by introducing small polar functional group(s),




while phase II represents the formation of a conjugation product (Shargel et al.
2005).

The complexity of metabolomics analysis is due to the diverse chemical properties
as well as wide concentration range, estimated to be 7-9 orders of magnitude (pmol
- mmol) (Dunn and Ellis 2005). Most importantly, the large number of metabolites
makes an analytical approach much more complicated. For instance, estimates
include >1000 metabolites present in Escherichia coli (Feist et al. 2007) , >4000 for
human serum (Psychogios ef al. 2011), and between 5000 and 25000 for higher
plants (Trethewey 2004).

1.1.2 Metabolomics and other omics

Although the metabolome is a complex system, it is still smaller than the proteome
and genome of living cells (Watkins and German 2002). In addition, the change and
variation in metabolome is more associated with altered phenotype which affects
growth, development and health; while the change in proteome and genome does
not always result in biochemical change. Thus, it is believed that metabolomics has
the potential to provide the most functional information of all omic science (Sumner

et al. 2003).

On the other hand, in genomics and proteomics, complete or near complete
assessment of related biological content (genome and proteome) is normally
achieved, while metabolomics is still far behind them from this aspect (Bouatra et
al. 2013). For instance, publications on human metabolomics studies by liquid
chromatography coupled to tandem mass spectrometry (LC-MS/MS) instruments,
often contains identification of fewer than 100 metabolites (Metz et al. 2007; Rousu
et al. 2009; Lim et al. 2010; Zhang et al. 2010) representing a tiny fraction (less

than 1%) of the human metabolome (Wishart ef al. 2012). In order to cover a larger




portion of the metabolome, several systematic efforts were made for detailed
analysis of human biofluids, such as cerebrospinal (Wishart et al. 2008; Mandal et
al. 2012), saliva (Takeda et al. 2009), serum (Psychogios et al. 2011), plasma
(Lawton et al. 2008) and urine (Bouatra et al. 2013).

1.2 Different types of metabolomics approaches

Metabolomics investigations are divided to three broad categories, including
targeted, fingerprinting and profiling approaches (Ryan and Robards 2006). The last

two are also referred to as untargeted metabolomics.

In targeted metabolomics, a pre-defined list of compounds is quantified in samples.
For instance, quantification of selected carotenoid compounds in algal samples is a
targeted metabolomics approach to study changes as a result of a specific stress
condition (Chu et al. 2011).

In a fingerprinting approach, a global view of all spectral features is obtained for
samples with different biological conditions, (e.g. samples from healthy and
diseased individuals), followed by applying statistical methods to identify
metabolites with significant differences in concentration levels among studied
samples. Identifying the biomarker molecules for early detection of breast cancer is

defined in this category (Nam ef al. 2009).

Another type of metabolomics investigation is metabolite profiling, which involves
the identification and quantification of predefined set of metabolites of known or
unknown identity, related to a metabolomic pathway or a class of compounds
(Dettmer and Hammock 2004; Dunn and Ellis 2005), for instance, identification
and quantification of all amino acids. Although this approach is the oldest and the

most established type of metabolomics (Ryan and Robards 2006), it suffers from




the disadvantage of not being universal or a “real” omic science (Dettmer and

Hammock 2004).

Thus, the major difference between targeted and untargeted approaches, is in the
stage which identification of metabolites is performed. In a targeted approach, the
investigation is on pre-defined metabolites whose identity is known, while only
metabolites with significant differences are identified in the final steps of data

analysis in an untargeted workflow.

It seems that no common agreement is made in the literature regarding the
classification of metabolomics studies yet. Some reviewers exclude metabolomics
profiling due to not being universal and or a “real” omic science (Griffiths ez al.
2010; Preet et al. 2012; Varghese et al. 2012) and some others ignore targeted
approach in metabolomics classifications (Dettmer and Hammock 2004) and refer

to it as multi-analyte methods instead (Theodoridis ez al. 2012).

Based on sample types investigated in metabolomics, footprinting metabolomics is
also defined which by definition is "the measurement of metabolites secreted from
the intracellular complement of an organism (or biological system) into its
extracellular medium or matrix." (Tugizimana et al. 2013). This approach is
commonly used in microbiology (Mapelli ef al. 2008), tissue engineering (Seagle et
al. 2008) and stem cell studies (Turner et al. 2008).

1.3 Metabolomics platforms

Since the metabolome consists of a wide variety of metabolites with different
physicochemical properties, it is impossible to use one single technique to analyze
the entire metabolome content. Several analytical techniques have been used,

including three main platforms, proton nuclear magnetic resonance (1H NMR),




mass spectrometry (MS) and fourier transform infrared (FT-IR) spectroscopy. In
addition, chromatographic techniques, such as gas chromatography (GC) and liquid
chromatography (LC), are often coupled to mass spectrometry for further separation

of compounds present in a complex sample (Varghese et al. 2012).

1.3.1 NMR spectroscopy

Nuclear magnetic resonance (NMR) is one of the major analytical tools used in
metabolomics studies since 1990 (Lindon ez al. 2003). The non-destructive and
non-discriminative nature of this method, as well as fast and robust analytical
performance (Roux et al. 2011) make it a suitable platform for metabolomics
investigation. Another advantage of NMR is that minimal sample preparation is
needed, hence, there is less chance for metabolites to be changed or lost during
sample preparation. However, NMR suffers from low sensitivity and only medium
to high abundance metabolites will be detected by this technique. In addition,
identification of individual metabolites is very challenging in complex mixtures
since signals from different metabolites could overlap (Dettmer ez al. 2007; Lawton
et al. 2008), however, some efforts were done for developing mathematical
platforms for quantification of metabolites using NMR spectroscopy (Weljie et al.
2006). Moreover, the sensitivity of NMR to chemical environment (pH, ionic
strength, temperature, etc.) and differential sensitivity of molecules to such changes

is considered as a major downfall for this technique (Weljie ez al. 2006).

1.3.2 FT-IR spectroscopy

Fourier transform-infrared spectroscopy (FT-IR) is also used for analyzing
biological samples for metabolomics, nevertheless the number of publications on
this subject is much less than NMR and MS-based metabolomics. It offers

advantages such as low cost, simplicity of sample preparation and low sample




volume needed (Harrigan et al. 2004), however, this method suffers from lack of
reproducibility, as sample preparation could cause changes in the continuous
intensity data (Roscini et al. 2010). Another disadvantage of this method is that
signal interference due to a strong absorbance band of water, makes analysis of
aqueous solutions problematic. Although, attenuated total reflectance sampling
tools and short path-length transmission cells are employed for analysis of water-
based samples, these methods only minimize water signal interference without
completely alleviating the problem, therefore this could still cause serious errors in

the detection of some metabolites (Botros et al. 2008).

1.3.3 Mass spectrometry

Mass spectrometry-based methods are widely used for metabolomics studies, and
are often coupled to gas chromatography or liquid chromatography. High
sensitivity, accuracy and coverage has made this technique a promising tool for
metabolomics investigations (Varghese ef al. 2012). Analysis of the metabolome
with MS-based techniques provides the possibility of identification of individual
metabolites (Want et al. 2007), the task which is much more complicated in other
type of instruments, such as NMR and FT-IR. In addition, the number of MS
facilities worldwide in comparison to high field NMR instruments is higher, partly
because of it being less expensive instrumentation. Furthermore, many more experts
are working in this area compared to specialists operating state-of-the-art NMR
facilities (Theodoridis et al. 2012).

Gas chromatography was the first chromatographic method to be coupled to MS
detection and has been used as far back as 1960's for metabolomics applications
(Brooks et al. 1968). GC-MS provides high resolution separations and reproducible
EI spectra, which facilitates identification of metabolites by database searching of

known compound spectra. Meanwhile, this technique is only applicable to




molecules which are volatile and thermostable, or need to be derivatized (Roux et
al. 2011). The major challenge in the hyphenation of liquid chromatography to
mass spectrometery due to the large difference in operating pressures was resolved
by the introduction of atmospheric pressure-based ionization methods (API), such
as electrospray ionization (ESI) (Plumb er al 2004) and atmospheric pressure
chemical ionization (APCI) (Huang et al. 1990). In LC-MS, lower temperature is
needed in comparison to GC-MS and metabolites don't need to be volatile, hence
less sample preparation is usually necessary. In addition to the high dynamic range
and sensitivity which are considered as main advantages of LC-MS systems (Roux
et al. 2011), soft ionization techniques provide information on the intact molecular
mass of metabolites (Roux et al. 2011), compared to mostly fragment ions seen in

EI spectra from most GC-MS systems.

1.4 HPLC-MS based metabolomics workflow

A typical HPLC-MS based metabolomics pipeline typically consist of four steps,
sample preparation, HPLC-MS analysis, data processing and metabolite

identification. Each step is explained in detail below.

1.4.1 Sample preparation

For metabolomics studies by LC-MS, minimum sample preparation is typically
performed in order to prevent unwanted change or removal of metabolites. For most
non-pharmaceutical experiments such as plant, microbial or mammalian biomarker
research, intracellular extraction and/or protein precipitation is performed followed
by dilution in a suitable solvent (Dunn and Ellis 2005). Additional sample
preparation could be employed, including solid phase extraction (SPE), liquid-
liquid extraction (LLE) or supercritical fluid extraction, and have been used in

pharmaceutical applications (Rossi and Sinz 2001; Bakhtiar ez al. 2002; Bamba et
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al. 2008). Unlike GC-MS studies, which require derivatization for adding suitable
functional groups to molecules to make them more volatile, derivatization is not
necessary in LC-MS-based studies, however, it could be used in certain cases to

enhance sensitivity and chromatographic resolution (Leavens et al. 2002).

1.4.2 HPLC-MS analysis

1.4.2.1 HPLC

High performance liquid chromatography (HPLC) is one of the leading methods
used for separation of different compounds present in solution. This method works
based on the interaction between a liquid (mobile phase) and a solid or fixed gel
(stationary phase). Firstly, a small volume of the sample containing the analytes, is
introduced into the mobile phase. Then, the mobile phase is pumped through a
chromatographic column filled with small sorbent particles. Based on the type of
HPLC method used, different affinities of the compounds being analyzed with
mobile and stationary phase cause their separation. For example, for reversed phase
chromatography, a polar solvent and non-polar stationary phase are used, resulting
in differentiation between different class of molecules present in sample based on
their polarity (or hydrophobicity). In this case, more polar compounds elute first,
while non-polar compounds are retained more within the stationary phase and will
elute later. Mobile phase normally consists of a mixture of solvents, and elution is
either isocratic (constant ratio of solvents) or gradient (changing composition over
time) for improving separation efficiency. A simple diagram of a HPLC system is
presented in Figure 1.2. Various detection methods could be used for identification
of separated analytes eluting from the chromatographic column, one of the most

sensitive detectors being a mass spectrometer.
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Figure 1.2 A simple schematic of HPLC components

For metabolomics studies, chromatographic separation is typically carried out using
columns between in 2-4.6 mm internal diameter (i.d.), with lengths ranging from 5
to 25 cm, and packed with particles from 3-5 um i.d. (Lindon ef al. 2011), though
smaller particles are being used more and more for increased efficiencies (with
corresponding increase in operating pressures). Reversed-phase chromatography is
a popular method for metabolomics investigation, however, in order to cover the
large diversity of metabolites present in biological samples, other types of
chromatography can be used with different stationary phases e.g. hydrophilic
interaction chromatography (HILIC). Due to the complementary nature of HILIC
and reversed phase chromatography, they could be combined in two dimensional
applications (Huang et al. 1990). It should be mentioned no standard LC-MS
method is currently recommended for profiling the complete metabolome due to the

chemical diversity of metabolites (Theodoridis e al. 2008).

1.4.1.2 Mass spectrometry

Mass spectrometry is a powerful analytical technique widely used for biochemical
applications. The main steps of it are ionizing compounds present in a sample,
separating the resulting ions based on their mass-to-charge ratio and finally

detecting and reporting their abundance. These steps performed by an ionization
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source, mass analyzer and detector, respectively. A simple diagram of the mass

spectrometer's components is given in Figure 1.3.
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Figure 1.3 A simple diagram representing the main parts of mass spectrometer (the source
is not under vacuum for LC-MS systems, since these use atmospheric pressure ionization
techniques)

In the ion source, molecules of analytes undergo ionization to produce gas phase
ions. Although different ionization sources are available, electrospray ionization
(ESI) is the most frequently used method for LC-MS based metabolomics. In this
method, the chromatographic eluent passes through a capillary nebulizer tube that is
connected to a strong electric field. This field causes charge accumulation at the
surface of liquid placed at the end of tube, transferring electrical charge to droplets
leaving this tube. Charged droplets then lose the remaining solvent by evaporation
using heat and inert gas flow. The desorption of ions from the surface of droplets
will occur when the solvent is evaporated and electrical charge is large enough at
the surface of tiny droplets, to produce a Coulombic explosion into individual gas-
phase ions. Produced ions are then guided, by differential potentials, toward the
mass analyzer (Hoffmann and Stroobant 2007). A simple representation of an ESI

source is shown in Figure 1.4.
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Figure 1.4 Schematic representation of an electrospray ionization (ESI) source. Reprinted
from (Hoffmann and Stroobant 2007) with permission

In order to cover a greater portion of metabolites by mass spectrometry, analysis is
usually performed in both positive and negative ionization modes. Some
metabolites are detected in only one ionization mode (Dunn and Ellis 2005) while
some metabolites could be detected in both ionization modes. Ions are created by
protonation (M+H)" (in positive mode) or deprotonation, (M—H)~ (in negative
mode) and also possibly adduct ions are formed, as well as in-source fragment ions.
Fragmentation is referred to as the dissociation of molecules to smaller parts, and
fragments (or product ions) will be detected afterwards. Adducts are the result of
the addition of sodium, potassium, ammonium, chloride, acetate or other ionic
species to the molecule. There is also the possibility for multiply charged species to
be formed as well as clusters (dimers, trimers, efc.), all of which can have the effect

of adding complexity to the mass spectra.

Produced gas phase ions need to be separated based on mass-to-charge ratio (m/z).
A wide variety of analyzers can be used for LC-MS based metabolomics including
time-of-flight (TOF), Orbitrap, Fourier transform-ion cyclotron resonance (FT-
ICR), ion trap (IT), and triple quadrupole (QqQ) analyzers. In the first three, high

resolution and accurate mass measurements are possible. In addition, hybrid
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analyzers such as quadrupole-time of flight (QqTOF) systems, provide high
resolution measurements as well as the potential for tandem mass spectrometry
(MS/MS). Accurate mass measurement and MS/MS analysis help in the structural
elucidation of metabolites (Roux ef al. 2011). Since the MS used in this thesis is a

QqTOF system, its main operating concepts will be explained in more detail.

QqTOF systems are in fact similar to triple quadrupole, in which a time-of-flight
(TOF) analyzer replaces the “third” quadrupole. In QqTOF analyzers, two
quadrupoles are operated in series, namely Q1, g2 followed by a time of flight tube.
A g0 quadrupole (or multipole) is often added before the Q1 ion filter to provide
collisional cooling and focusing of the ions (Chernushevich er al. 2001).. A

schematic representation of a typical QqTOF is shown in Figure 1.5

Two main types of experiments can be done with QqTOF analyzers, TOF-MS or
MS/MS analysis. In TOF-MS mode, the Q1 works in rf-only mode, meaning that it
transmits all ions to the high resolution TOF analyzer to be separated. In the TOF,
entering ions are separated based on their velocity, since all ions enter with the
same Kinetic energy, giving information regarding their m/z. On the other hand, in
MS/MS analysis, Q1 will act as an ion filter, only passing a specific precursor ion to
the collision cell (q2), where it is fragmented by collisional-induced dissociation
(CID). The product (or fragment) ions are then sent to the TOF to obtain product

ion separation (Chernushevich er al. 2001).
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Figure 1.5 Schematic of a QqQTOF hybrid instrument. Reprinted from (Hoffmann and
Stroobant 2007) with permission

1.4.3 Data processing

Data treatment workflows for MS-based metabolomics consist of several stages of
processing including: noise filtering, peak detection, ion annotation, alignment and

normalization, and statistical analysis, followed by metabolite identification

(Castillo et al. 2011).

Noise filtering is used primarily to eliminate the background signals and
instrumental interferences from true biologically-related signals (Castillo et al.
2011). Peak detection is referred to as the representation of ion signals as “features”
with specific m/z, retention time and peak area information (Varghese et al. 2012).
De-isotoping and ion annotation is used afterward to cluster peaks related to the

same metabolites such as isotopes, adducts, and in-source-fragment ions (Varghese
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et al. 2012). For quantification purposes (or comparing peak intensities between
different samples), normalization of signals is also required to prevent errors caused
by instrumental or sample preparation-related variations (Katajamaa and Oresi¢
2007). Statistical analysis is then performed to select signals representing
significant differences among sample groups, e.g. for biomarker discovery.
Identification of compounds is the next step, which is usually challenging and time-
consuming (Scalbert et al. 2009; Hall 2011; Zhou et al. 2012). This pipeline
represents the usual workflow of data processing in fingerprinting and profiling
metabolomics. Depending on the specific type of study, whether it is targeted,
fingerprinting or profiling, some steps would not be necessary or could be modified.
For example, for metabolomics fingerprinting, statistical analysis to find
discriminative signa;ls is followed by identification of corresponding metabolites
(Roux et al. 2011). Each of these steps will be explained in more detail in the

following sections.

1.4.3.1 Noise filtering

The very first step in the treatment of LC-MS data, whether it is used for
metabolomics or proteomics, is to filter the noise and baseline correct the data. This
step has the potential to improve the quality of peak detection by reducing detection
of false positive features (Castillo et al. 2011), since raw LC-MS data suffers from
both chemical and random noise (Katajamaa and Ores$i¢ 2007). Chemical noise is
normally very evident at the beginning and end of the elution gradient and often
originates from molecules of solvents and buffers used for sample preparation or
chromatographic separation, as well as column bleed (Hilario ef al. 2006). Random

noise is generally caused by imperfect detector function (Zhang ef al. 2009).

Several different methods are used for this purpose including Savitzky-Golay type
of local polynomial fitting (Wang et al. 2003) and wavelet transformation (Li et al.
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2005) which are both applied in m/z direction or filtering with moving averages in

chromatographic trend (Radulovic et al. 2004).

Baseline correction is usually performed by finding the baseline shape and
subtracting it from LC-MS raw data (Katajamaa and Ore$i¢ 2007). Several
approaches have been done namely low-order polynomial Savitzky-Golay filter
(Wang et al. 2003), linear regression for lowest point of smoothed spectrum (Haimi
et al. 2006) or iterative asymmetric least-squares estimation (Eilers and Boelens

2005), which are one-dimensional background estimations.

The filtering and baseline removal is implemented in some peak detection software
such as XCMS (Smith ez al. 2006), MAVEN [21] and apLCMS [18], while some
other software such as OpenMS (Sturm et al. 2008) offer several filters for the user

to choose from.

1.4.3.2 Peak detection

Peak detection, also known as feature detection or peak picking, is the process of
extracting signals of MS peaks (m/z) and chromatographic signal (retention time) as
well as peak area or intensity measurement of all detected peaks (Figure 1.6)

(Varghese et al. 2012).

From a signal processing perspective, peak detection is carried out based on one or
more of the following parameters: signal-to-noise ratio (SNR), intensity threshold,
slopes of peaks, local maximum, shape ratio, ridge lines, model-based criterion and
peak width (Yang et al. 2009). Typically, a combination of methods is used in order
to increase the quality of peak detection and lower the chance for identification of
false positive peaks. For instance, the basic version of XCMS [33] bins the data to

0.1 m/z windows, then by considering the maximum intensity at each RT, it
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identifies the signal in each slice. A second filtering criteria based on peak shape is
used followed by the final selection of peaks using signal-to-noise ratio cut-off.
Detailed information about peak detection algorithms is beyond the scope of this
chapter. For more informatics content, you can refer to the comprehensive review

article by Zhang et al. (Zhang et al. 2009).
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Figure 1.6 Peak detection process used to extract bounded information of mass signal (m/z),
retention time (RT) and intensity of detected ions

Two general types of software and workflows are available for this purpose,
including commercial and freely-available software. Commercial software are
usually provided by MS instrumentation vendors, such as MarkerView (AB Sciex),
PeakView (AB Sciex), MarkerLynx (Waters), SIEVE (Thermo), MassProfiler
Professional (Agilent), or ProfileAnalysis (Bruker). The underlying operating
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algorithms for these software is often not clear due to the commercial
considerations. In addition, there are some free and/or open access software such as
MetaboAnalyst (Xia ef al. 2009; Xia et al. 2012), MZmine (Katajamaa et al. 2006),
XCMS (Smith et al. 2006; Tautenhahn et al. 2008) and MetAlign (Lommen 2009).
In the case of some open sources such as for XCMS (Smith ef al. 2006; Tautenhahn
et al. 2008) and MZmine (Katajamaa ef al. 2006), the operating algorithm is
accessible and could be modified by the user. Katajamaa et al. provided the lists of
commercial and freely-available software used for metabolomics applications
(Katajamaa and Oresi¢ 2007). Furthermore, a list of freely available software and
the codes used for different LC-MS data processing is provided at the address of
(http://www.ms-utils.org/). These codes commonly work in computer programming

environment such as Java, Matlab, C or R.

Although there is no limitation on the number of software and workflows available
for feature detection, there are some challenges in this area. For instance, the final
results of different platforms could differ widely due to different algorithms used.
Hence, the decision for choosing the right platform becomes critical in
metabolomics data analysis. Usability, documentation and easy visualization of the
results are the main factors for selection of appropriate workflow used by common
users, especially, those unfamiliar with programming languages. The ability of
algorithm to distinguish between low intensity peaks and noise is also important
factor to be considered. Another main criteria is the coverage of software on
different aspects of the data processing workflow, starting from noise filtering and
baseline correction to be done automatically along with feature detection (Castillo

etal 2011).
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1.4.3.3 Ion annotation

LC-MS-based metabolomics experiments can result in a huge number of peaks,
only a portion of which are related to true biological metabolites. The fact that each
single metabolite can also give rise to several ions, namely adducts, in-source
fragments and isotopes, makes data processing challenging. Therefore, if only
mass-based search is carried out for peak detection, false identification of peaks is
normal (Varghese et al. 2012). Ion annotation is the method used for assigning all
redundant peaks corresponding to ions arising from the same species and grouping

them together to reduce the complexity of data for further biological interpretation.

Since most of the elements exist in more than one naturally-occurring isotopic form,
molecules containing different isotopes have different masses, detected as their
isotopic pattern in the mass spectra (Jaitly et al. 2009). In-source fragment ions
result from dissociation of the intact ionized molecules before they enter the mass
analyzer, and although ESI is considered as soft ionization source, this phenomenon
still can occur for certain compounds. Losses of water, ammonia and/or CO, are
common in-source fragments in metabolomics data. The third type of derivative
peaks comes from adduct ions. An adduct ion is, by definition, "an ion formed by
the interaction of two species, usually an ion and a molecule, and often within the
ion source, to form an ion containing all the constituent atoms of one species as
well as an additional atom or atoms” (McNaught and Wilkinson 2000). Sodium and
potassium adducts are common species observed in MS of small molecules. For
lists of common adducts seen in MS experiment, you can refer to articles by Haung

et al. and Keller et al. (Huang et al. 1999; Keller et al. 2008).

The ion annotation émploys two clues for assigning redundant peaks: 1) the mass

difference between two peaks should match with related isotopes, adducts or
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fragment ions, 2) the similarity between the extracted ion chromatogram of two
peaks as they have the same elution profile (Varghese et al. 2012).

Numerous efforts have been made for developing of either an independent ion
annotation workflow (working on the results of feature detection) or implemented
algorithms within feature selection software. For example, CAMERA imports the
results of R-based XCMS and annotates peaks in two steps. First, peaks are grouped
based on retention time and similarity between peaks, and then the difference
between their m/z values is compared with a list of normally occurring adducts and
in-source fragments for any possible relationship (Kuhl er al. 2011). Another
workflow uses pre-defined m/z differences, chromatographic elution and intensity
correlation (for isotopic peaks) to assign redundant peaks, resulting in 50% data
reduction (Brown et al. 2009). In addition, there are some commercial software
such as ACD/IntelliXtract (a part of the ACD/MS workbook suite) which works
based on the given rule table (ACD/IntelliXtract 2007). PUTMEDID-LCMS is a
public tool which imports raw LC-MS data and group peaks originating from the
same metabolites by mass difference, retention time and peak area matching
(Brown et al. 2011). Peak area correlation is employed for confirmation criteria of
the isotopic peaks. IDEOM, free implementation for Microsoft Excel assigns ESI
redundant peaks as well as FT or ringing signals by employing RT, peak shape and

intensities and difference in m/z values (Creek et al. 2012).

1.4.3.4 Alignment, normalization and statistical analysis

Alignment is a crucial step for metabolomics analysis on more than one sample or
more than one run, since small variations are often seen in retention time and m/z
values of the same metabolite across different samples (Podwojski ez al. 2009).
Alignment algorithms either work based on raw LC-MS data or features found

previously by peak picking tools. Moreover, some peak picking packages such as
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XCMS (Smith et al. 2006) or MarkerView software incorporate the alignment
method as well. The fact that elution differences among samples may be non-linear
and multiple pairs of feature may be found as matching peaks, makes alignment a
challenging process and thus needs to be performed with caution (Castillo et al.
2011). Podwojski et al. studied three different algorithms including linear
regression, loss regression and local vectors and their results showed the importance
of considering non-linear deviation in proteomics data (Podwojski et al. 2009). A
detailed review on available alignment algorithms used for LC-MS is provided by
Vandenbogaert et al. (Vandenbogaert ef al. 2008).

Normalization of peak intensities may be performed specially for quantitative
measurement, or when metabolite fingerprinting is performed. The unwanted
systematic bias in LC-MS data, resulting from several sources such as experimental
difference, could overshadow the real biological difference in concentration of
metabolites. Hence, peak intensities should be corrected before doing statistical

analysis between samples.

Two approaches are dominant for normalization including statistical and standard
addition method. The first one is based on whole dataset for instance, normalization
by unit norm of intensities (Scholz et al. 2004), the maximum likelihood method
(Oresi€ et al. 2004) or median of intensities (Wang et al. 2003). However, this
method is unable to assign absolute concentration of metabolites (Katajamaa et al.
2006). The second method is to use one or more standard compounds as a reference
for normalization and absolute quantitation. Due to the large number of metabolites
studied in metabolomics investigations, the selection of proper standard compounds
for normalization is ambiguous when more than one standard is used. Similarity
between elution behavior of analyte and standard compound is used for selection of

appropriate standard compound for each analyte.
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Statistical analysis is generally used for two purposes. It can be used for sample
classification when limited information about samples is available (e.g.
identification of silent mutation phenotypes in offspring). In this case, unsupervised
statistical methods are employed such as hierarchical clustering analysis (HCA),
principal component analysis (PCA), or independent component analysis (ICA). In
addition, statistical analysis is used to find metabolites with great differences in
intensities among different classes of samples, related to the studied condition, such
as health, diet or exposure to toxins. Using supervised mathematical methods like
partial least squares (PLS) or soft-independent method of class analogy (SIMCA)
can be used for this purpose (Dettmer et al. 2007).

1.4.4 Metabolite identification

Identification of metabolites is the last step in the metabolomics pipeline before any
biological information could be interpreted regarding biochemical pathways or
biomarker discovery. It is performed in all metabolomics studies, no matter what
the type of the investigation. For untargeted metabolomics, it is performed for all
peaks detected as monoisotopic ions, while the effort for fingerprinting studies is to
identify peaks with significant differences in different samples. For targeted
metabolomics, identification is most likely done prior to LC-MS analysis, and

absolute quantitation is instead the last step.

Two main strategies are used widely for identification of compounds by mass
spectrometry. Accurate mass measurement of selected ions acquired by high
resolution MS systems (HRMS) could yield elemental formulae for the chemical
characterization of metabolites. In addition, tandem mass spectrometry results,
yielding the fragmentation pattern, could be used for structural elucidation of
metabolites. For the final confirmation of metabolites, standard solutions of

compounds should be analyzed with the same instrument using the same method, if



24

available, to ensure chromatographic elution and mass spectral similarity (Bueschl

etal. 2013).

Database searching is one of the most time consuming parts of a metabolomics
workflow, and can also have some difficulties. For instance, the collision energy in
which MS/MS spectra for standard compounds is acquired could be different from
that of the experiment, resulting to differences in fragment ion patterns. In addition,
lack of MS/MS spectra for many compounds in metabolomics databases makes the

identification of metabolites a highly labor-intensive task (Bueschl et al. 2013).

In addition to relying on the high efficiency of MS instruments, more classical
chemical methods can be used in metabolomics workflows. For example, chemical
derivatization can help identify the functional groups and differential labeling can
aid in the relative quantitation of metabolites by observing a specific mass shift and
intensity ratio (Dettmer et al. 2007). Hydrogen/deuterium exchange methods also
provide information on the number of exchangeable protons for identification of
some functional groups like alcohols, amines, carboxylic acids, efc. (Dettmer et al.

2007).

1.4.4.1 Databases

The number of metabolomics databases and their metabolite content is still limited
in comparison with genomics and proteomics databases due to being relatively
newer, and less straightforward. PubChem (Wang ef al. 2009), METLIN (Smith et
al. 2005) and KEGG (Kanehisa ef al. 2004) provide simple mass-based searches
while HMDB (http://www.hmdb.ca) provides clinical and molecular biology data as

well.
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Other useful metabolomics databases are Manchester metabolomics database
(MMD) (Brown et al. 2009) that is created from other sources like genome scale
metabolic models (Herrgard et al. 2008), Human Metabolome Database (HMDB)
(Wishart et al. 2007), Lipid Maps (Sud ef al. 2007), BioCyc (Karp et al. 2005) and
DrugBank (Wishart 2008).

1.5 Research objectives

LC-MS based metabolomics experiments produce a large amount of data which
needs special care for data processing. As it was shown in previous section, data
processing has several steps, where peak picking and ion annotation have great
importance. As different peak picking software use various algorithms, the final
results provided by these software may be different and directly affect
metabolomics results. Hence, two objectives were defined for this research as

follows:

1. To compare four different peak picking software for untargeted metabolomics
applications with the aid of MATLAB programming. The studied peak detection
workflows include three commercial packages, PeakView®, Markerview™,
MetabolitePilot™, (all provided by AB Sciex), and freely available, XCMS online

workflow.

2. To develop MATLAB-based code for ion annotation of peak picking results.

These two approaches were designed to help the improvement of LC-MS based
metabolomics as relatively new science to provide better performance in addressing
biologically-important questions. In addition, in a separate project, a targeted
metabolomics assay was improved by presenting the modifications on sample

preparation procedure which covers the third main objective of the MSc thesis.
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3. Quantitation of four carotenoid compounds in algal samples using HPLC-HRMS
system. The aim of this work was to present a simple and fast extraction method for
analyzing the carotenoid content of algal solutions in response to introduced stress

conditions.

1.6 Thesis outline

This thesis has been organized as follows:

Chapter 1 introduces metabolomics concepts, different branches of this new omic
science, as well as an overview of the experiment pipeline. This chapter also

presents the research objectives and layout of the thesis.

Chapter 2 describes the research on comparison of peak picking workflows for
metabolomics profiling research on two biological samples. Four different peak
detection software were compared including three commercial software from AB
Sciex (Peakview®, Markerview™, MetabolitePilot™) and XCMS Online (open-
source web-based software). Raw LC-MS data from two biological sample types
(bile and urine) as well as a standard mixture of 84 compounds were processed with
same criteria. Then, the overlaps between the results were investigated by a
MATLARB script developed for this purpose. Finally, the resulting lists of potential
metabolites from each workflow were investigated using the METLIN database
based on accurate precursor ion mass and MS/MS spectral matching. The
performance of these four peak picking workflows was also evaluated with a
custom standard mixture of 84 biologically-relevant small molecules. Work
presented in this chapter is the subject of a published peer-reviewed article in Rapid

Communications in Mass Spectrometry (Rafiei and Sleno 2015).
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Chapter 3 presents the MATLAB-based ion annotation workflow developed to filter
out redundant peaks from peak picking results. This code was designed to import
data from any peak generating workflow in excel format, perform different stages
of filtering and results in more condensed peak lists by removing redundant peaks.
After evaluation of the performance of this filtering method, the performance of
four peak picking workflows, namely Peakview®, Markerview™,
MetabolitePilot™ and XCMS online, were evaluated in terms of number of peaks

found as redundant peaks by our newly developed “DataReduction” workflow.

In chapter 4, a targeted metabolomics approach was developed for the absolute
quantification of the changes in carotenoid content of three algal samples under
stress conditions. Three different algae species are Haematococcus, Qocystis, and
Muriellopsis. Carotenoid separation and subsequent analysis were done on a
UHPLC instrument coupled to a hybrid quadrupole time-of-flight mass
spectrometer. An online UV detector was also used for further confirmation of the
studied compounds. Based on exact mass measurements, four carotenoids were

quantified in control and stressed-algal samples.




CHAPTER I

COMPARISON OF PEAK PICKING WORKFLOWS FOR UNTARGETED
LC-HRMS METABOLOMICS DATA ANALYSIS

This work has been published in a journal paper of Rapid communication in mass

spectrometry with my contribution as first author (Rafiei and Sleno 2015).

2.1 Abstract

Data analysis is a key step in mass spectrometry-based untargeted metabolomics,
starting with the generation of generic peak lists from raw LC-MS data. Due to the
use of various algorithms by different workflows, the results of different peak
picking strategies often differ widely. Raw LC-HRMS data from two types of
biological samples (bile and urine) as well as a standard mixture of 84 compounds,
were processed with four peak picking softwares: Peakview®, Markerview™,
MetabolitePilot™ and XCMS Online. The overlaps between the results of each
peak generating method were then investigated. To gauge the relevance of peak
lists, a database search using METLIN online database was performed to determine
which features had accurate masses matching known metabolites as well as a
secondary filtering based on MS/MS spectral matching. In this study, only a small
proportion of all peaks (less than 10%) were common to all four software programs.
Comparison of database searching results showed peaks found uniquely by one
workflow have less chance of being found in the METLIN metabolomics database
and even less likely to be confirmed by MS/MS. It was shown that the performance
of peak generating workflows has a direct impact on untargeted metabolomics
results. As it was demonstrated that the peaks found in more than one peak
detection workflow have higher potential to be identified by accurate mass as well
as MS/MS spectrum matching, it is suggested to use the overlap of different peak
picking workflows as preliminary peak lists for more rugged statistical analysis in

global metabolomics investigations.
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2.2 Introduction

Although there is debate on the terminology related to metabolomics (Villas-Boas
et al. 2005), it can be defined as the quantitative characterization of small molecules
(metabolites) present in a biological sample (Lindon ef al. 2011). It is a relatively
new “omic” science, with potential applications in many research areas, such as
drug discovery (Wishart 2008), oncology (Spratlin e al. 2009), medical diagnosis
and therapeutic monitoring (Gowda ef al. 2008) as well as food science (Wishart
2008) and agriculture (Dixon et al. 2006). Metabolomics studies are divided into
two main categories: targeted and untargeted. While in a targeted workflow, a pre-
defined list of metabolites is surveyed, untargeted metabolomics aims to obtain a
global overview of as many metabolites as possible in the sample and to monitor

changes caused by disease, drug treatment, etc.

Biological samples studied in metabolomics are often very complex. For instance,
estimates include >1000 metabolites present in Escherichia coli (Feist et al. 2007) ,
>4000 for human serum (Psychogios et al. 2011), and between 5000 and 25000 for
higher plants (Trethewey 2004). Working with this large number of compounds in
untargeted studies requires special consideration when processing high resolution

mass spectrometry (HRMS) data.

Employing peak-picking workflows to filter raw LC-MS data is the first step in
MS-based untargeted metabolomics data analysis. There are a wide variety of
software packages available for this purpose. Some software are provided by
commercial MS instrument vendors, such as MarkerView (AB Sciex), PeakView
(AB Sciex), MarkerLynx (Waters), MassProfiler Professional (Agilent), SIEVE
(Thermo) or ProfileAnalysis (Bruker). There are also freely available open or close
source workflows, e.g. MZmine (Katajamaa and Oresi¢ 2005), XCMS (Smith ef al.
2006), and MetAlign (Lommen 2009). Although there is no shortage of software

available, various algorithms are used by different peak picking workflows, hence
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final processed results can differ widely from each other. Peak picking workflows
filter results based on one or more of the following parameters: signal-to-noise ratio
(SNR), intensity threshold, slopes of peaks, local maximum, shape ratio, ridge lines,
model-based criterion and peak width (Yang ef al. 2009). Zhang et al. have
reviewed this subject in detail (Zhang ef al. 2009).

The effect of employing different peak picking algorithms on the same LC-MS data
was investigated by Bauer et al. for proteomics applications (Bauer ef al. 2011).
Three peak detection algorithms including signal-to-noise ratio (SNR), template-
based peak detection and Continuous Wavelet Transform (CWT) were evaluated
for protein analysis. By employing a defined set of reference peaks, sensitivity and
specificity of peak picking algorithms were compared. Their results show that
performance of SNR algorithms depends highly on data quality, while template-
based peak detection algorithms may ignore asymmetrical peaks. However, the
latter showed robust performance for lower noise levels. The CWT method showed
good performance for even relatively high noise but tuning the algorithm is difficult
due to the high number of parameters involved. By employing both simulation data
as well as real data, CWT method showed the best performance. In another study,
three peak detection packages were tested including mslnspect, MZmine, as well as
an algorithm described in VIPER software and the effect of various peak-picking
criteria was evaluated for each package (Zhang et al. 2009). The challenge is not
exclusive to GC- and LC-MS based data. MALDI MS data was also subjected to
the investigation on different peak detection algorithms including Cromwell, CWT,
LMS, LIMPIC and PROcess (Yang et al. 2009).

In this work, different peak picking software were compared rather than peak
detection algorithms for two reasons. First, some workflows might use more than
one algorithm for differentiating between peaks and noise, hence pure comparison

of algorithms would be less useful. Secondly, peak picking algorithms used by
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software may remain unknown by end-users using these commercial packages. .
Therefore, a practical approach of evaluating and comparing peak picking
workflows for metabolomics applications is presented. Studied workflows include
the use of three commercial software from AB Sciex (Peakview®, Markerview™,
MetabolitePilot™) as well as XCMS Online (an open-source web-based software).
Raw LC-MS data from two biological sample types (bile and urine) were processed
with the four different workflows. In order to show differences between the
performance of each software, the overlaps between the results were then
investigated (using a “VennPro” MATLAB script). Finally, the resulting lists of
potential metabolites from each workflow were investigated using the METLIN
database based on accurate precursor ion mass and MS/MS spectral matching. The
performance of these four peak picking workflows was also evaluated with a

custom standard mixture of 84 biologically-relevant small molecules.

2.3 Experimental

2.3.1 Materials

Cholic acid, deoxycholic acid, tryptophan methyl ester, sodium diclofenac,
ibuprofen, S-benzyl-cysteine, 17a-ethylestadiol, canthaxanthin, 3-
hydroxyanthranilic acid, kynurenine, kynurenic acid, formic acid and HPLC grade
methanol were obtained from Sigma-Aldrich (Oakville, ON, Canada). Atrazine and
anthranilic acid were from Fluka (Oakville, ON, Canada) and acetonitrile was
obtained from Caledon (Georgetown, Ontario, Canada). Sodium hydroxide was
purchased from Anachem (Lachine, QC, Canada). Ultrapure water was supplied by
a Synergy UV purification system from Millipore (Billerica, MA, USA). PM1 to 5
MicroPlates™ were bought from Biolog (Hayward, CA, USA) as a source for many
standard compounds. Urine and bile samples from individual healthy untreated dog

(Beagle) were obtained from CiToxLAB (Laval, QC, Canada).
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2.3.2 Sample preparation

2.3.2.1 Standard mixture

Initially, 84 stock solutions of known compounds with different physicochemical
properties and molecular weight ranging ffom 88 to 564 g/mol were prepared. The
detailed information of the sample preparation and list of metabolites (Table S1)
used in this compound mixture is presented at the end of this chapter
(supplementary data for chapter 2). Each of the 84 compounds was directly injected
into the mass spectrometer in both positive and negative mode, without
chromatographic separation. From these direct (loop) injections, protonated ions
(MH") were observed for 78 metabolites and deprotonated ions (MH) were
observed for 73 metabolites. The mixture of 84 compounds was prepared by mixing
each standard solution with a final concentration ranging from 1-500 uM for all

molecules.

2.3.2.2 Biological samples

Urine and bile samples from untreated dog were subjected to molecular weight cut-
off MWCO) filtering to reduce metabolite loss from the biological samples.
Samples (undiluted urine and 5-fold diluted bile) were filtered using 0.45 pm
regenerated cellulose spin filters (Canadian Life Sciences, Peterborough,
ON, Canada) at 1250 rpm for 2 minutes, to remove any insoluble material, and then
by 5 kDa MWCO regenerated cellulose spin filters (Amicon, Oakville,
ON, Canada) for 20 minutes at 14,000 rpm, thus removing any large molecules (e.g.
proteins) from samples prior to analysis. Resulting samples were then diluted 10-
fold prior to HPLC-MS/MS analysis. The same procedure was performed with
ultrapure water as a control (blank) to filter out any contaminant peaks resulting

from filters, tubes or LC-MS system.
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2.3.3 HPLC-MS analysis

Samples (10 pl) were injected three times each onto a BetaBasic C18 column
(2.1x150 mm), with 3 pm particles (Thermo Scientific, Canada) using a Nexera®
UHPLC system (Shimadzu, Columbia, MD). Liquid chromatographic separation
was performed with mobile phases of 0.1% formic acid in water (A) and 0.1%
formic acid in MeOH (B), with an initial hold at 3% for 2 min, followed by a
gradient of 3-50% B in 15 min, to 90% B at 20 min, held until 25 min, with a flow
rate of 300 ul/min at 40 °C.

All MS spectra were acquired on a high-resolution hybrid quadrupole-time-of-flight
(QqTOF) TripleTOF® 5600 mass spectrometer (AB Sciex, Concord, ON, Canada)
equipped with a DuolonSpray source, in positive and negative electrospray mode.
The instrument performed a survey TOF-MS acquisition from m/z 80-800 with an
accumulation time of 300 ms, followed by MS/MS on the four most intense
ions from m/z 80-800 using information-dependent acquisition (IDA) with dynamic
background subtraction (DBS). Each MS/MS had an accumulation time of 150 ms
and collision-offset voltage of 30 + 10 V. TOF-MS and MS/MS were automatically
calibrated every four injections with an in-house standard mix (m/z 119-966 in

negative mode and m/z 121-922 in positive mode).

2.3.4 Data Processing

Data processing was performed in three steps: peak picking, MATLAB processing
followed by searching for potential metabolites in METLIN database using accurate
mass and MS/MS spectral matching. The LC-MS data from bile, urine and a
standard mixture in both positive and negative ionization modes were processed
with PeakView, MetabolitePilot™, MarkerView and XCMS online by employing
identical parameters (£5 ppm mass accuracy, 500 cps threshold and minimum peak
width of 5s).
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2.3.4.1 Peak Picking

Raw LC-MS data was processed with four peak picking software:
MetabolitePilot™ 1.4, MarkerView™ 1.2, PeakView® 2.0 (AB SCIEX), as well as
XCMS online (https://xcmsonline.scripps.edw/). The criteria used by each are given

below.

MetabolitePilot Minimum peak width: 5s, minimum chromatographic intensity:
500 cps, smoothing before peak finding, sample/control ratio greater than 5. MS m/z
tolerance: 10 ppm, minimum MS peak intensity: 500 cps, maximum number of
metabolites: 1000. MetabolitePilot has a limit of 1000 peak/run for generic peaks,
therefore mass range windows were set as narrow as necessary to have peak
numbers not exceeding this limitation. Generated peaks were then visually
inspected and peaks resulting from background noise were removed directly in

software.

MarkerView A feature peak list was created directly from raw data (.wiff) files
with subtraction offset of 10 scans, minimum spectral peak width: 10 ppm,
minimum RT peak width: 5 scans, signal-to-noise threshold of 5. Then LC-MS
peak lists (*.peaks) from multiple samples were imported into MarkerView using
the following criteria: retention time tolerance: 0.33 min, mass tolerance: 10 ppm,
intensity threshold: 500. A #-test was then performed to compare samples (three
replicates) with controls (three replicates) peaks with <5 fold increase compared to

blank samples were then removed from peak list.

PeakView Extracted ion chromatograms were visualized with a width of 0.02 Da,
an intensity threshold of 500 cps and peak detection sensitivity at medium.
Generated extracted ion chromatograms (XICs) were visually inspected and

irregular peaks were removed. Sample XIC lists were then investigated in blank
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samples and peaks with <5 fold signal intensity compared to blank were removed

by employing a simple MATLAB script.

XCMS online Raw LC-MS data (.wiff) files were first converted to mzXML using
ProteoWizard 3.0.3548 (Chambers et al. 2012). After uploading mzXML data to the
XCMS website, a CentWave method was used for peak picking with the following
parameters.: maximal m/z tolerance of 10 ppm, and peak widths from 5 to 30 s,
mzwid: 0.015, minfrac: 0.5, bandwidth: 5. The resulting text file was exported into

excel and all peaks with less than 5x for sample/control ratio were removed.

2.3.4.2 MATLAB processing

MATLAB R2012a (MathWorks, 2012) was used for processing peak picking
results. A "VennPro" MATLAB-based workflow was developed to find overlaps
between the results of the four tested workflows. It imports peak lists (in excel), and
finds all possible overlaps between different groups. It can be used to find similar
peaks across samples or across the results of different peak finding algorithms. It
used a 10 ppm m/z window and 0.15 min difference in retention time to identify
similar peaks. The results of this MATLAB script were used to draw venn-

diagrams for overlaps between peak picking results.

2.3.4.3 METLIN database search

METLIN web-based metabolomics database (http://metlin.scripps.edu/index.php)
was used for tentative identification of metabolites. Database matching was
performed in two steps, including accurate mass and MS/MS spectral matching. For
accurate mass filtering, 5 ppm mass tolerance was used for MH' or MH' ions in

positive and negative modes, respectively. The results were saved in .CSV format
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and, employing a MATLAB script, the total number of m/z with at least one hit in

the database was calculated as well as the number of metabolites with at least one

available MS/MS spectrum in METLIN. For MS/MS matching, the information-

dependent acquisition (IDA) spectra having a quality score > 60 were used. After

initial visual inspection, the most probable matches were evaluated by the "MS/MS

spectrum match" option of METLIN by importing the 30 most intense peaks of

each MS/MS spectrum into METLIN, using 10 ppm tolerance for precursor ion and

0.05 Da for MS/MS. The results with match score > 60 were reported as matched.

Raw LC-MS data

$

Peak finding workflow

Ed

PeakView® MarkerView™ MetabolitePilot ™ XCMS online

“Vennpro" MATLAB script
L

Find overlaps between results  MPy
of differentworkflows §

?‘;:,m I METLIN metabolomics database

Exactmass matching

Metabolite
identification MS/MS spectrum matching

Figure 2.1 Method used in this study to compare four peak picking workflows. Raw LC-
MS data were processed with one of the following software: MetabolitePilot, MarkerView,
PeakView and XCMS online. The overlaps between results were then found using an in-
house “Venn-pro” MATLAB script followed by METLIN online metabolomics database

searching
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2.4 Results and discussion

The LC-MS data from standard mixtue, bile and urine in both positive and negative
ionization modes were processed with four peak detection workflows including
PeakView, MetabolitePilot, MarkerView and XCMS online by employing similar
criteria (5 ppm mass accuracy, 500 cps threshold and minimum peak width of 5 s).
The workflow employed in this study is illustrated in Figure 2.1. For instance,
MarkerView and XCMS represent the isotopic peaks among the results while
PeakView and MetabolitePilot didn't indicate the isotopic peaks and may exclude
them initially. In this work, all two dimensional results obtained directly from peak
detection workflows Various definition have been used for the definition of "peak"
in different software packages. MarkerView and XCMS represent the isotopic
peaks while PeakView and MetabolitePilot did not indicate the isotopic peaks. In
this work, all two dimensional results obtained directly from peak detection

workflows are referred as "peak”.

2.4.1 Standard mixture

A standard mixture of 84 known compounds was used in order to evaluate the
performance of the different peak picking workflows compared in this study and
also in order to compare the results of untargeted and targeted approaches. First,
LC-MS data in positive and negative modes were processed with PeakView,
MarkerView, MetabolitePilot and XCMS online. Then the overlaps between the
results were found using “Venn-Pro” MATLAB script. METLIN search results for
all peaks were investigated, using the molecular formula of known compounds.
This resulted in 24 and 28 metabolites in positive and negative mode, respectively,
found by at least one peak picking workflow and having a MS/MS spectrum
available in the METLIN database. A second LC-MS/MS analysis was performed

to acquire MS/MS spectra of these metabolites based on their accurate precursor ion
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masses of protonated and deprotonated molecules using an inclusion list as MS/MS
triggering (IDA) criteria. Figure 2.2 represents the Venn diagram for the results of
MS/MS matched standard compounds. It was observed that a) none of the peak
picking strategies resulted in 100% recovery of standard metabolites, with only 24
metabolites being found in positive mode and 13 in negative mode, b) the capability
for detecting standard metabolites varied widely between workflows. For instance,
MarkerView found the highest number of mc;,tabolites with a recovery ratio of 23/24
in positive mode. PeakView showed good performance (20/24), especially
considering its much shorter preliminary peak list. MetabolitePilot and XCMS
online gave similar results both with a recovery ratio of 18/24. In negative mode,
metabolites were identified based on the results of MarkerView and XCMS, while
this number was 10 for PeakView and 11 for MetabolitePilot. It also shows the
complementary nature of different peak generating algorithms. For instance, from
24 detectable metabolites in positive mode, only 13 metabolites are present in all
four workflows. The lists of compounds from each region of the Venn-diagrams are

presented in supplementary data (Tables S2 and S3).

Stdmix

Figure 2.2 The overlaps between detected standard metabolites (confirmed by MS/MS
spectral matching) using four peak picking workflows (MetabolitePilot (MP), MarkerView
(MV), PeakView (PV) and XCMS online) for a standard mixture of 84 compounds in
positive and negative ionization modes
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A targeted metabolomics analysis was also performed using PeakView for the
standard mixture in two steps: accurate mass matching and MSMS spectrum
matching. In first step, extracted ion chromatogram survey (5 ppm mass accuracy)
was done for protonated and deprotonated ions for positive and negative ionization
modes, respectively. Manual analysis confirmed the presence of 40 compounds in
positive mode, while 30 compounds were detected in negative ionization mode. At
the consequent step, IDA results were compared with the MS/MS spectrum results
of database. In this step 36 and 22 metabolites were completely matched to the
METLIN data base results in positive and negative modes. The comparison of
targeted analysis with the total number of peaks detected by four peak detection
workflows in untargeted manner shows that all untargeted results are covered with
manual analysis. There are 12 and 9 metabolites in targeted analysis results that are

not found by any of used peak detection workflows (Table S4 and S5).

Several reasons may cause incomplete coverage of all 84 metabolites either by
anual analysis or automatic peak detection software: a) The experimental setup (e.g.
chromatographic column and elution gradient) limits to observe a number of
metabolites, b) Incomplete coverage of METLIN data base, 3/4 of metabolites had
MSMS spectrum in each ionization modes, and ¢) Unavailable IDA experimental
results prevents to confirm MS/MS matching for a number of metabolites. d) Not

all of the compounds are observable in both ionization modes.

2.4.2 Biological samples (bile and urine)

Bile and urine represent complex biological samples with very different metabolic
profiles. In Figure 2.3, TICs for both sample types in positive and negative modes
are displayed and exhibit the contrast in polarity of the majority of metabolites
present which can be detected by LC-MS. Also, bile interestingly shows much
higher intensity in negative mode, presumably due to the presence of hydrophobic

bile acids in this biofluid. As shown in Figure 2.4, the total number of peaks found
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by each software varied greatly, e.g. MetabolitePilot found 9879 peaks for the urine
data set in negative mode, Markerview and XCMS found 11553 and 11708 peaks,
respectively, while PeakView found only 2015 peaks. PeakView, with the lowest
number of generated peaks, showed a weak performance from this point of view in
comparison with other workflows. Although XCMS found the largest peak lists for
bile and the standard compound mixture in both positive and negative modes, the
total number of peaks found by MarkerView was larger in the urine sample. These
results indicate the importance of selecting an appropriate peak-picking step in
untargeted metabolomics studies, since this procedure could impact directly on the
final results of study. Nevertheless, it is not always the workflow yielding the
highest number of peaks, which should be automatically deemed the best. This, of
course, will depend on the quality of the resulting peak lists, for defining the
metabolome without too many extraneous features being monitored, which could
undoubtedly misguide the outcome of statistical analysis when different sample

groups are to be compared in metabolomics fingerprinting studies.
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Figure 2.3 Total ion chromatogram (TIC) for bile in positive and negative modes (A and B
respectively) and urine in positive and negative modes (C and D respectively). For added
clarity, TICs from bile samples were scaled down 3-fold from 18-22 minutes in the above
chromatograms
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Regarding the total number of peaks found, the results of different peak picking
algorithms differ widely from each other. In order to find overlapping peaks, peak
lists from each of the four peak generating workflows were imported into a custom-
built “VennPro” MATLAB script (using 5 ppm mass and 0.15 min retention time
tolerance, for assigning similar peaks). The average percent of peaks found in each
overlap is represented in Figure 2.5. Results of this MATLAB processing, from
each sample type in positive and negative modes illustrated separately, are also
presented in supplementary data (Figure S1). It was found that an average of 41.1%
of total features are detected only by XCMS online without any overlap with other
software. This weak overlap of XCMS with other software could actually be
introducing more “noise” into the statistical analysis. Another criteria assessed was
based on which software yielded the most “repeatability” with found peaks from
other workflows. MarkerView showed the best results in this comparison being
involved in the highest 2-way (9.9%) and 3-way (10.6%) overlaps. The higher
performance of MarkerView is coherent with previous results (Figure 2.2) of
detecting higher number of metabolites in standard mixtures. All four workflows
yielded an overlap of 7.7% of all found peaks. This comparison led to the most

certainty in peaks found by MarkerView.
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Figure 2.4 Number of peaks found by different software: PeakView (PV), MarkerView
(MV), MetabolitePilot (MP) and XCMS online for each sample type (bile, urine and
standard mixture) in both positive and negative modes

Figure 2.5 Venn diagram representation of the average percent of overlaps between the
results of four peak picking workflows; MetabolitePilot (MP), MarkerView (MV),
PeakView (PV) and XCMS online
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Precursor ion m/z values (MH' or MH) of all peaks were searched using the
METLIN online metabolomics database (features with at least one hit in database
(within 5 ppm) labeled as “metabolites” and at least one MS/MS spectra in Metlin
labeled as “MSMS metabolites”. The average percent of “metabolites” and “MSMS
metabolites” are presented in Figure 2.6. Features found only by XCMS online, had
the lowest percentage of metabolites in METLIN, with an average of 33% while
peaks found only by PeakView and MetabolitePilot both had 53% with at least one
corresponding metabolite (within 5 ppm) in the database. Although it was expected
that the percent of metabolites and MSMS metabolites increase by the number of
overlaps (between two, three or four workflows), no evident relationship was found
for accurate mass matching. It is probable that not all metabolites detected in these
samples are present in the METLIN database. It was observed that the overlap
between MetabolitePilot and PeakView had the highest percentage of found
metabolites and “MSMS metabolites”. This could indicate that their implemented

algorithms for peak finding are the most similar.
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Figure 2.6 Average % of peaks with at least one hit in METLIN database (metabolites) or
at least one hit with MSMS spectra (MSMS metabolites) for peaks in each region of Venn
diagrams (average includes data from bile and urine in both positive and negative modes).
Acronyms shown indicate MetabolitePilot (MP), MarkerView (MV), PeakView(PV) and
XCMS online (XC)

The percentages of tentatively identified metabolites for different samples from
each workflow are shown as supplementary data (Figure S2). It is demonstrated that
PV yielded the highest % database matching (but with the shortest peak list). It also
shows that a higher proportion of peaks are found as metabolites and MSMS
metabolites in positive mode, potentially as a function of more data being
accumulated in positive mode and therefore more chance of these metabolites being
present in metabolomics databases, such as METLIN. It is also seen that the urine

sample contains more identifiable metabolites, compared to the bile sample.

In a subsequent step, MS/MS spectral matching was performed from the results of
information-dependent acquisition (IDA) triggered precursor ions. Confirmed
metabolites having MS/MS spectral matching METLIN score > 60 are shown in
supplementary data (Figure S3). It was observed that almost all tentatively
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identified metabolites are found either by MetabolitePilot or MarkerView (with or
without overlap with others). These results also indicated a higher probability of
MS/MS matching for peaks present in the 4-way overlap of Venn diagrams. The
results of MS/MS spectral matching correlates with accurate mass matching results
in terms of higher number of identified metabolites in urine versus bile, and in
positive mode versus negative mode. It must be noted that the generic IDA criteria
used for triggering MS/MS resulted in a low % of peaks found to have high quality
MS/MS spectra associated to them. A higher proportion of fragmentation spectra
would be possible if inclusion lists were used for subsequent analysis based on m/z
values found following peak picking workflows. This would however necessitate an
extra LC-MS injection to acquire this data. Tentatively identified metabolites from
biological samples (urine and bile) have also been compiled into Supplemental

Tables S6-S9.

In a separate analysis the results of peak picking workflows for both biological
samples and standard mixture were evaluated to investigate the possible effect of
retention time in peak detection efficiency. The number of peaks found by different
peak detection workflows was calculated for five equal portions of chromatogram
(0-5 min, 5-10 min, etc.). Although the percentage of the peaks detected in different
parts of chromatogram was sample dependent, no significant difference among peak
detection workflow was observed for the percentage of peaks found in any parts of
chromatogram. In a parallel analysis, the peaks located in different portions of venn
diagrams was evaluated in terms of any special trend in their retention time
information. It was observed that the peaks found in the 20-25 minutes retention
time windows have slightly higher probability to be found by only one workflow
(Figure S4). It could be due to the column bleeding which occurs more in this

region of the chromatogram.
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To have a better comparison between the tested workflows, the practical advantages
and disadvantages of each were also considered. MarkerView and XCMS online
yield results in the fastest time. PeakView and MetabolitePilot allow visual
inspection of extracted ion chromatograms for all detected peaks. XCMS online
also provide visual inspection of peaks, however, it is very time consuming, as each
XIC graphics is stored in separate files. MarkerView and XCMS online are able to
identify isotopes and remove them easily. XCMS online has the great advantage of
being free and open source, however, this does leave the user at the mercy of proper
updating and maintenance of the system. MetabolitePilot had a limitation of 1000
peaks for each peak generating run and can therefore be very time-consuming,
especially when dealing with complex biological samples. This is likely a function
of the fact that MetabolitePilot was developed mainly for investigating metabolism
of drugs or other xenobiotics where criteria can be added for filtering metabolites of
interest based on structural similarities to the parent compound and also controls
can be used to easily remove “interfering” endogenous metabolites from the
resulting lists in drug metabolism workflows. MarkerView, MetabolitePilot and
XCMS have the ability to directly filter the resulting peak lists compared to controls
in terms of fold change and statistical significance in a streamlined manner while
manual comparison between sample and control is necessary in PeakView. An
ideal workflow would integrate the ability to filter out peaks based on possible in-
source adducts and fragment ions, neither of which was possible easily with the

tested software.

In this study, main processing parameters including m/z tolerance, retention time
window and intensity threshold were selected identical to fairly perform the
comparison. Each peak detection workflows also have its own parameters
(depending on the processing algorithm) which were selected as defaults values.

Hence, the performance of peak detection workflows may be slightly higher that
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what is shown in this study as processing parameters used may differ from

optimized values.

The challenge for selection of appropriate peak detection could be approached in
different ways. For instance, an ideal situation would be to use peak detection
workflow with highest performance however the comparison of all peak detection
workflows is not readily available and not all peak picking workflows offer similar
processing options needed for researcher. In addition, compatibility of the data
format and peak detection workflow, availability (in case of commercial software)
as well as the need for special knowledge (for example, programming skills in R
based XCMS), and friendly graphic interface may affect the workflow selected by
researcher. Another approach would be to combine peak detection data from
multiple tools and assign peaks with statistical scores based on the number of tools
detect them. The results of our study shows that the peaks detected by more than
one workflow have higher potential to be identified by accurate mass as well as
MS/MS spectrum matching. On the other hand, peaks that are detected by only one
peak detection workflow still may contain important biological information

although with lower chance.

Among the studied peak picking workflows, MarkerView showed a better recovery
ratio for standard compounds as well as having larger overlaps with other peak
generating workflows for complex biological samples. MarkerView’s performance
could be due to employing three replicate samples to perform t-test, (to be similar
with other software compared in this paper). This result is in agreement with the
importance of alignment process which found matching peaks through multiple

samples in metabolomics studies.
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2.5 Conclusions

Four peak generating software were evaluated for untargeted peak picking in a
metabolomics workflow. The performance of peak picking workflows was shown
to have a direct impact on the final results. Vast differences in resulting peak lists
were observed when different peak picking strategies on identical LC-HRMS data
from complex urine and bile samples as well as a standard metabolite mix was used.
Among the studied peak picking workflows, MarkerView showed a better recovery
ratio for standard compounds as well as having larger overlaps with other peak
generating workflows for complex biological samples. In addition, a targeted
approach was performed on the standard mixture and it was shown that there were a

number of metabolites undetectable by all used peak detection workflows.




Table S1 Compounds used in standard mixture for evaluating the four peak picking

Supplementary data for chapter 2
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workflows
Exact Exact
# Compound Formula mass # Compound  Formula  mass
(Da) (Da)
: ; Methionine CsH||NO;
1 Pyruvic acid C;H,0, 88.0160 43 sulfimide S 165.0460
2 Putrescine C;H;N, 88.1000 44 Phenylalanine CoH;1NO, 165.0790
3 Alanine C;H;NO, 89.0477 45 Cysteic acid C;H,NOsS  169.0045
Lactic Acid C;HO5 90.0317 46 Pyridoxine CgH;|NO;  169.0739
[ a-Glycerol-
5  Acetoacetic acid C4Hq04 102.0317 47 phosphate C3HOsP  172.0137
6 Serine C3;H;NO; 105.0426 48 Arginine CeHiuN,O, 1741117
7 Cytosine C4HsN>0 111.0433 49 Citrulline C¢H3N;05  175.0957
8 Histamine CsHoN; 111.0796 50 Inositol C¢H,,04 180.0634
9 Uracil C4H4N,0, 112.0273 51 Tyrosine CoH;NO; 181.0739
10 Proline CsHgNO, 115.0633 52 Phosphoserine C3;HgNOGP  185.0089
11 Valine CsH,NO, 117.0790 53 Kynurenic acid CioH;NO;  189.0426
12 SuccinicAcid  CHO,  118.0266 | 54 Glycy;;‘"i‘;pam" CeHigN,05  190.0590
13 Threonine C4HoNO; 119.0582 55 Quinic acid C;H,,04 192.0634
14 Phenethylamine CgHy N 121.0891 56  Phosphothreonine C“H'l;’NOG 199.0246
15 Nicotinamide CgHeN,O 122.0480 57 Spermine CioHyNs  202.2157
16  Nicotinic acid ~ C¢NHsO,  123.0320 | 58 Tryptophan CiHiN0 504 0899
9!
17 Thymine CsHgN,0O, 126.0429 59 Ibuprofen Ci3Hi30,  206.1307
18 PYOBMAMC cpNO, 1200426 | 60 Kymurenine MO 208 08ag
3
19  Agmatine CHWN, 1301218 | 61  Phosphocreatine 9 °O% 2110358
. - CioH3NO,
20  Hydroxyproline  CsHgNO, 131.0582 62  S-Benzyl-cysteine S 211.0667
21 Leucine CgH;3NO, 131.0946 63 Atrazine CgH4CINs  215.0938
2 e CHO, 1320423 | 64  Taurocholicacid C#H4NO7 5152917
succinate S
. C,HiuN,O
23 Asparagine C,HgN,O3  132.0535 65 Trp methyl ester 218.1055

2
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24 Ornithine C5H12N202 132.0899 66 . C8H15NO6 221.0899
mannosamine

25  AspaticAcid  C,H,NO, 133.0375 | 67  Cystathionine C7H‘§N204 222.0674

26 Adenine CsH;sN; 135.0545 | 68 Thymidine CiotiaN20 949 0903
5

27 Anthranilicacid CH,NO,  137.0477 | 69 Cytidine CoHsN:Os  243.0855

28 Tyramine CH,NO  137.0841 | 70 Utidiie CoHN,Op  244.0695

29 Glutamine  CiHigNO; 146.0691 | 71  Deoxyadenosine CoHNsO 259 1018
3

30 Lysine CsH14N,0,  146.1055 | 72 Adenosine CioHisNsO 67 0968
4

31 Glutamicacid  CsH,NO,  147.0532 | 73 Inosine CioHiNaO 562 0808
5

P C5H11N02

32 Methionine S 149.0511 74 N-Phthaloyl-Glu  Cy3H;;NOg 277.0586

33 Guiarifne CHNO  151.0494 | 75 Guaribsing ~ CWHBNSO  5en nopy
=)

. 170~
34 Xanthine CsH;N,O, 152.0334 76 Ethynylestradiol CyoH20;  296.1776
piH C1Hy, Cl
35  phenylacetic CsH;0; 152.0473 | 77 Diclofenac ‘}\K‘)‘ 2 295.0167
acid 2

g5 o Z‘c‘fgramhc C.H,NO,  153.0426 | 78 CMP C"H‘l‘;ND‘OS 323.0519

37 Octopamine  CgH,NO, 153.0790 | 79 UMP C°H'l3,N209 324.0359

38 Histidine C¢HoN,O,  155.0695 | 80 AMP C‘°H‘I‘,‘N50 347.0631
7

39 Oroficacid  CHNO, 1560171 | 81 GMP C'°H‘};‘N50 363.0580
8

o-amino- : =

40 caprylic acid CgH7NO, 159.1259 82  Deoxycholicacid  CyHypO4  392.2927

41 Carnitine C;H,5sNO; 161.1052 83 Cholic acid CyyHygOs  408.2876

42 Ethionine CeHiNOz 45 0667 | 84 Canthaxanthin CyHs0,  564.3967

S
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Urine (pos Urine (ne
MV (pos) PV MV (neg) PV

XCMS
(11708)

Figure S1 Venn diagram representation of the overlaps between the results from four peak
picking software (MetabolitePilot (MP), MarkerView (MV), PeakView (PV), XCMS
online) used to filter LC-MS data from bile and urine in positive and negative modes
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Figure S2 Percentage of metabolome database matching for the results of four peak picking
workflows (MetabolitePilot (MP), MarkerView (MV), PeakView (PV), XCMS online
(XC)) from bile and urine sample in positive and negative modes, peaks with at least one
hit in METLIN database are shown as metabolites and those with at least one MSMS
spectra (to be inspected in Metlin) are presented as MS/MS met
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spectrum match (METLIN score>60) from four peak picking software MetabolitePilot
(MP), MarkerView (MV), PeakView (PV), XCMS online on raw LC-MS data from bile

|
Figure S3 Venn diagram representation of the overlaps between the results of MS/MS
and urine in positive and negative modes



Table S2 Metabolites found by each peak picking workflow from standard mixture in
positive ionization mode (confirmed with MS/MS match from METLIN database)

Metabolite ol Found by
(min) |[MP MV PV XC

Histidine 1.6 = v = -
Cytidine 2.6 - - B v
UMP 1.9 v v 2 <
Cytosine 1.6 - v = v
Tyramine 2.7 v v v 2
Uridine 2.4 v v v 3
Leucine 2.8 v v v _
Uracil 1.9 v v v =
Proline 1.6 - v v v
Phenylanine 5.0 - v v v
Kynurenine 4.5 - v v v
Tryptophan TS v v v v
Tyrosine 2.4 v v v v
Adenine 39 v v v v
Guanine 3.7 v v v v
Guanosine 37 v v v v
Thymidine 5.8 v v v v
AMP 2.3 v v v v
Pyridoxine 22 v v v v
Anthranilic acid 94 v v v v
Kynurenic acid 9.0 v v v v
Thymine 32 v v v v
Xanthine 2.5 v v v v
GMP 2.4 v v v v




Table S3 Metabolites found by each peak picking workflow from standard mixture in
negative ionization mode (confirmed with MS/MS match from METLIN database)

Metabolites (ll:ll:ll‘l) Howmt by

MP MV PV XC
Inositol 1.6 - v - v
Quinic acid 1.6 - - v v
17a_Ethynylestradiol 19.4 v v v .
Cytidine 1.8 v v 5 v
Pyridoxine 22 v v = v
Deoxycholic acid 21.8 v v v v
Cholic acid 21:1 v v v v
Tyrosine 2.7 v v v v
Diclofenac 20.5 v v v v
Uridine 2.5 v v v v
Kynurenine 4.5 v v v v
Thymidine 5.8 v v v v
Guanosine 3.8 v v v v




Table S4 Metabolites identified by targeted approach in standard mixture (pos) with
METLIN MS/MS matching which had not been detected by any of the automated peak
detection workflows

Metabolites RT (min)
Glutamic acid 1.6
Carnitine 1.6
Octopamine 147
Valine 1.8
CMP 1.8
Methionine 2.0
Nicotinic acid 2.0
Adenosine 3.6
2-deoxyadenosine 3.9
3-OH anthranilic acid 5.6
Phenylethylamin 55
Atrazine 17.9

Table S5 Metabolites identified by targeted approach in standard mixture (neg) with
METLIN MS/MS matching which had not been detected by any of the automated peak
detection workflows

Metabolites RT (min)
Orotic acid 1.7
CMP 1.8
AMP 2.4
GMP 2.8
Adenosine 34
Tryptophan 7.5
Kynurenic acid Tl
N-phthaloyl-Glu 11.7
Ibuprofen 20.7
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Table S6 Identified metabolites in urine (pos) with METLIN MS/MS matching score of
higher than 60 (each individual peak might results in several possible metabolites, all of
which are presented here). Metabolites found in standard mixture with matching retention
times are assigned with a star

RT : RT ’

m/z it metabolite m/z (anind metabolite
95.0161 1.8 Dimethyl sulfone 165.0542 59 p-Coumaric acid
100.0756 3.8 8-Valerolactam 165.0543 2.6 p-Coumaric acid
100.1124 42 Cyclohexylammonium 166.0719 2.8 Methylguanine
113.0595 43 Sorbic acid 166.0857 5.1 Phenylalanine*
1150752 9.9  3-Methyl-d-pentenoic acid | 167.0703  10.1 3‘(2'0H'p}:’c'i‘§1)f’r°p‘°"'°
115.0752 9.9 4-Hydroxy hexenal 167.0703 10.1 Isopenol
115.0752 9.9 y-Caprolactone 168.1012 4.1 O-Methyldopamine
1150752 9.9 8-Hexalactone 171.0647 7.9 3’4'D’h§yr§(’)‘f’phe“yl
1160703 2.0 Sigeyclobnian 175.0861 5.6 Indole-3-acetamide

carboxylic acid
122.0265 9.2 Cysteine 175.0963 12.6 Suberic acid
127.0389 32 Larixinic acid 06 75 2 Selu-) SRR
naphthoic acid
1270389 32 AHOUOTEmEhylpyEn- | yg00516 29 Isoxanthopterin
127.0497 1.7 Thymine 181.0606 7.5 Nicotinuric acid
1300498 79  >ryroldoneScabolic | 1g80700 155  3-Amino-2-naphthoic acid
130.0498 79 Pyroglutamic acid 188.0700 15.5 Indoleacrylic acid
130.0500 3.7 Z‘Py"°l‘d°zsi'g'°arb°"yh° 188.0700  15.5 Genkwanin
130.0500 3 Pyroglutamic acid 188.0700 15.5 Wogonin
130.0500 4.9 Z'Pm°l‘d°gzi'§'°arb°"yh° 188.0700  15.5 Glycitein
130.0500 49 Pyroglutamic acid 188.0700 15.5 Biochanin A
oy % =
Boadis « gs - Cooone UsosNeanllo: | ey - 95 Indoleacrylic acid
leucine)
1370452 22 Hypoxanthine 89,1255 63  SWlaW 1(1}"1;;” LS
137.0452 2.2 Allopurinol 189.1231 1.9 N-(g or a)-Acetyl-lysine
137.0452 6.2 Hypoxanthine 190.071 24 N-Acetyl-glutamic acid
137.0452 6.2 Allopurinol 190.1178 1.7 N6-Carbamoyl-Lysine
138.0547 1.6 p-Aminobenzoic acid 191.1022 3.0  2,6-Diaminoheptanedioate
1380547 16 3-Pysidylacetic seid 1920655  10.6 S'Hydr°";’é;‘(f°lea°e“"
139.0387 59 3,4- 193.0495 10.9 5,7-Dihydroxy-4-
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Dihydroxybenzaldehyde methylcoumarin
146.0594 6.3 Isoquinoline N-oxide 195.0651 11.1 Erbstatin analog
146.0597 10.6 Isoquinoline N-oxide 195.0651 11.1 Scytalone
146.0598 8.2 Isoquinoline N-oxide 195.0761 5.8 Aminohippuric acid
147.0439 7.6 Coumarin 206.0448 8.5 Xanthurenic acid
147.0442 104 Coumarin 209.0805 10.3 Dimethylcaffeic acid
149.0593 5.1 trans-Cinnamic acid 209.0916 4.5 Kynurenine*
149.0594 9.0 trans-Cinnamic acid 211.1330 11.0 Jasmonic acid
149.0958 113 Cuminaldehyde 2151272 152 (3d?;§d°£gt’ie:;‘(‘f
151.0747 143 m-Tolylacetic acid 215.1385 4.7 Pro Val
151.0747 143  3,4-Dimethylbenzoic acid 218.1382 3.1 Propionyl-carnitine
151.0747 143 2-Phenylpropionic acid 224.0914 8.0 Acetyl-tyrosine
151.0749  13.8  3,4-Dimethylbenzoic acid | 231.1586 15.1 Dodecanedioic acid
151.075 13.1  3,4-Dimethylbenzoic acid | 233.1133 8.3 Asp Val
153.0403 5.1 Xanthine 247.1083 12.3 N-Acetyl-tryptophan
1530908 113  4-Hydroxy nonenal alkyne | 247.1289 7.0 Le“/ni Qj{’lg’r -
154.0492 35 Aminosalicylic Acid 252.1082 3.7 Deoxyadenosine
154.0496 4.7 Aminosalicylic Acid 259.0919 1.7 5-Methyluridine
154.0496 4.7 3-Hydroxyanthranilic acid | 268.1034 34 Adenosine
154.0498 6.9 Aminosalicylic Acid 268.1034 34 Vidarabine
154.0498 6.9 3-Hydroxyanthranilic acid | 271.0600 17.4 Galangin
154.0971 1.8 Nam-Acetylhistamine 285.0757 16.5 Prunetin
155.0697  11.5 zrfeg:)};};dtlcﬁl)gnz 285.0757 165 Acacetin
1550607 115 - rDiydosyphendl | appiaag 4 Asp Gly Val

ethanol

1550701 79 zrfeggﬁfjﬁzn: 205129 95  GluPhe (or Phe Glu)
156.0766 6.5 Histidine 297.1075 5.1 Asp Tyr
157.1217 17.0 4-Hydroxy nonenal 298.1145 5.6 2-Methylguanosine
158.0965  10.1 s oy 2981145 5.6 Nelarabine
160.0750  12.0 1-Acetylindole 299.1853 183 13’1;‘;3;’3;‘:r§'é]5)'2ket°'
160.0750  12.0 Indoleacetaldehyde 299.1853 183 13’1‘t‘;frﬁly()fgég'2ket°'
161.0803 99 3-Methyladipicacid | 338.1334 g5  APOly gﬂz)(Gly £8p
161.0803 99 Pimelic acid 3541280 53 Ggl‘;éf/’g%()“
161.0803 9.9 3,3-Dimethylglutaric acid | 447.0910  10.8 Baicalin
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Table S7 Identified metabolites in urine (neg) with METLIN MS/MS matching score of
higher than 60 (each individual peak might results in several possible metabolites which are
all presented here). Metabolites found in standard mixture with matching retention times
are assigned with a star

m/z (ll;;l;l) Metabolite m/z (ll;:l) metabolite
131.0352 55  Dimethylmalonicacid | 172.9913 5.9 4'Hyd’°"yt;i'i‘§e“es‘“f°“ic
131.0352 5:5 Methylsuccinic acid 173.0824 12.8 Suberic acid
131.0352 5:5 Glutaric acid 175.0611 8.9 2-Isopropylmalic acid
137.0250 7.0 Salicylic acid 181.0505 7.6 3-Methylorsellinic acid
il &l e 6)-Hy2:1c:ri(()ixypw0hmc LOR . B Dihydroxypl?éfl;/lpropanoate
144.0460 83 Isoquinoline N-oxide 181.0507 6.0 Flopropione
145.0506 T2 3-Methylglutaric acid 187.0978 17.9 Nonic acid
145.0506 72 Adipic acid 191.0202 2.1 Citric acid
145.0506 7.2 2,2-Dimethyl Succinic acid | 193.0617 5.9 Aminohippuric acid
151.0265 2.5 Oxypurinol 194.0459 6.3 Salicyluric acid
151.0265 2.5 Xanthine 194.0467 10.5 Salicyluric acid
151.0402 6.6 me?ﬂly{lﬁrn(;?iici o | 1950659 117 Homoveratric acid
151.0402 6.6 Hydroxyphenylacetic acid | 195.0666 9.2 Homoveratric acid
151.0402 6.6 p-Anisic acid 197.0453 6.8 Syringic acid
151.0402 6.6 3-Cresotinic acid 197.0453 6.8 dimﬁ;ﬁ{(‘?@;‘g;i’j“aci ’
151.0402 6.6 Mandelic acid 201.1135 179 Sebacic acid
155.0098 24 Orotic acid 203.0824 7.6 Tryptophan
157.0368 1.6 Allantoin 204.0662  13.1 Cinnamoylglycine
159.0668  10.0 Pimelic acid 204.0671  12.1 3-Indolelactic acid
159.0668  10.0 3-Methyladipic acid 212.0028 7.1 Indoxylsulfuric acid
164.0357 124  N-Formylanthranilic acid | 213.1130 17.6 > 'M"'C(yﬁciggg’éa;fial’l'd'yl
164.0579 2.3 Methylguanine 223.0611 9.3 Sinapic acid
164.0718 552 Phenylalanine 229.1442 175 Dodecanedioic acid
165.0559 9.7 Tropic acid 243.0616 1.9 Uridine*
165.0559 9.7 Dihydro-3-coumaric acid | 243.1598 20.0  Undecanedicarboxylic acid
165.0559 9.7 Atrolactic acid 245.0935 125 N-Acetyl-tryptophan
165.0ss9 97  >Otphemyhpropionic | 5530503 162 Daidzein
167.0215 2.1 Uric acid 255.0663  15.1 Isoliquiritigenin
167.0349 6.8 Homogentisic acid 257.1757  20.5 Tetradecanedioic acid
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167.0350 4.8 Dlhydr""ﬁf:’i}(‘f“ylace“" 263.0227 27  OHphenylethylene glycol
sulfate

167.0350 4.8 Homogentisic acid 296.0996 5.7 Methylguanosine

172.0981 114 Acetyl-Leucine 308.0984 1.6 N-Acetylneuraminic Acid

Table S8 Identified metabolites in bile (pos) with METLIN MS/MS matching score of
higher than 60 (each individual peak might results in several possible metabolites which are
all presented here). Matched metabolite with standard mixture is assigned with a star

m/z RT metabolite m/z (r}:i];) metabolite
93.0547 1.6 Glycerol 227.1139 9.3 Carnosine
oSy -t - SO il | opning - 93 His Ala
130.0500 1.9 Pyroglutamic acid 255.0660 13.5 Daidzein
136.0617 3.5 Adenine* 255.0660 13.5 3,7-Dihydroxyflavone
137.0459 3.7 Hypoxanthine 258.1083 2.3 5-Methylcytidine
137.0459 8./ Allopurinol 269.0886 3.7 Inosine
149.0594 9.3 trans-Cinnamic acid 271.0602 14.8 Galangin
151.0750 16.5 m-Cresyl acetate 273.0754 11.1 Naringenin
151.0750 16.5 3,4-Dimethylbenzoic acid 285.0760 13.8 Prunetin
156.0761 93 Histidine 285.0760 13.8 Acacetin
166.0718 2.3 Methylguanine 285.0760 13.8 Genkwanin
180.0516 3.0 Isoxanthopterin 285.0760 13.8 Wogonin
180.0652 8.4 Hippuric acid 285.0760 13.8 Glycitein
183.0515 6.1 1-Methyluric acid 285.0760 13.8 Biochanin A
188.0701 125 3-amino-2-naphthoicacid | 2892160 164 dr(:;i‘ésr'os n—
188.0701 12.5 Indoleacrylic acid 298.1145 5.6 Methylguanosine
194.0805 9.4 Phenylacetylglycine 298.1145 5.6 Nelarabine
194.0805 9.4 Methylhippuric acid 417.1176 11.7 Daidzin
198.0864 1.7 N-Acetyl-L-Histidine 447.0933 13.0 Baicalin
2060452 8.6 Xanthurenic acid 4491077 99 el
220.1181 6.4 Pantothenic Acid 466.3146 204 Glycocholic Acid
2251958 191  NN'-Dicyclohexylurea | 5003033  21.9 S&;f:;fh“y‘i;‘fn%‘g
227.1139 9.3 Ala His 516.2992 19.5 Taurocholic acid
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Table S9 Identified metabolites in bile (neg) with METLIN MS/MS matching score of
higher than 60 (each individual peak might results in several possible metabolites which are

all presented here)

RT

RT

m/sz il metabolite m/z (min) metabolite
137.0252 6 Salicylic acid 266.0894 3.5 Vidarabine
164.0581 2.3 Methylguanine 266.0894 355 Deoxyguanosine
167.0216 2.1 Uric acid 267.0729 3.8 Inosine
167.0353 7.0 5-Methoxysalicylic acid 283.0611 13.9 Physcion
172.0979 11.4 Acexamic acid 283.0611 13.9 Prunetin
172.0979 114 Acetyl-leucine 283.0611 13.9 Glycitein
178.0372 3.0 xanthopterin 283.0611 13.9 Wogonin
191.0199 2.2 Citric acid 283.0611 13.9 Acacetin
204.0301 8.7 Xanthurenic acid 283.0611 13.9 Biochanin A
212.0023 73 Indoxylsulfuric acid 296.1000 5.7 Methylguanosine
2250992 7.7 Camosine 3460551 2.5 rrﬁii’;‘;f;‘s‘gfate
263.0222 2.8 s

OHphenylethyleneglycolsulfate
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CHAPTER III

ENHANCING UNTARGETED METABOLOMIC DATA ANALYSIS BY A
NOVEL DATA REDUCTION WORKFLOW

3.1 Abstract

Data analysis is a crucial step in many bioanalytical workflows, including
untargeted mass spectrometry-based metabolomics. This branch of metabolomics
deals with tens of hundreds (or thousands) of features from raw data with the
eventual goal of detecting molecules involved in important biological pathways
and/or biomarkers of disease. In untargeted metabolomics research, the data
processing usually consists of two general steps, peak list generation and metabolite
identification. Most peak-generating workflows are incapable of distinguishing
protonated intact molecules from adducts, for example, making feature
identification complicated and time-consuming. A MATLAB-based workflow
designed to remove isotopes, radical ions, adducts and in-source fragments from a
raw feature list in order to have a higher proportion of intact protonated ions in the
resulting filtered list is presented. It imports data (in excel-compatible format) from
any peak generating workflow (in both positive and negative ionization modes),
applies different processing steps and results in a more condensed and reliable
feature list. Four peak picking workflows, using namely PeakView®,
Markerview™, MetabolitePilot and XCMS online, were evaluated in terms of
number of peaks which could be filtered out, and thus be deemed as “redundant”

features, using the developed DataReduction workflow.

3.2 Introduction

MS-based untargeted metabolomics data analysis begins by treating raw data with

peak-picking algorithms (also known as peak or feature detection). There are two
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main challenges for this step. The first is to select the appropriate approach, since a
wide variety of software packages are available for this purpose. A comparison was
done of four peak picking workflows and the results were presented in Chapter 2 of

this thesis.

Due to the fact that each neutral molecule has the potential of being observed at
several m/z values in MS-based metabolomics, the second challenge is to identify
and remove redundant peaks from peak picking results, namely non-mono-isotopic
ions, in-source fragments, multiply charged species, adduct and cluster ions
(Katajamaa and Oresi¢ 2007) (Kuhl ef al. 2011). Thus, it should be considered that
not all observed m/z values detected correspond to unique metabolites. Considering
the fact that most software packages are unable to identify these types of redundant
peaks, a non-filtered mass-based search from initial peak picking results can cause
false identification of metabolites (Varghese ef al. 2012). Depending on the sample
type and ionization mode, the number of molecules forming multiple ion species is
different. It was demonstrated by Brown ef al., that depending on sample type and
mass spectrometry method used, between 14% and 33% of metabolites could be
observed at more than one m/z. For placental footprints, 1 in 3 or 33% metabolites

were detected as multiple ions in one analytical run (Brown ef al. 2009).

Several attempts have been made to develop workflows for ion annotation. For
instance, CAMERA, a freely-available R-based package, performs ion-annotation
on peak picking results from R-based XCMS. It uses retention time and similarity
between peak shapes to group correlated peaks. It then calculates the difference
between m/z values for each peak pair within the groups and compares it to certain
m/z relationships often seen during ionization (Kuhl et al. 2011). Pre-set m/z
differences, retention time and intensity correlation were used in another study to
identify redundant peaks and resulted in 50% data reduction. In this approach, R-

based XCMS was used for deconvolution of raw data in combination with esi
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program to write peak output files to an annotated version (Brown et al. 2009).
There are also some commercially-available software for this, such as
ACD/IntelliXtract (a part of ACD/MS work suite) based on a given rule table to
annotate ion species (ACD/IntelliXtract 2007). Publicly-available software
PUTMEDID-LCMS, a tool operating in Taverna environment, generates pair-wise
peak correlations, annotates features to group different ion types of the same
metabolite based on mass differences, similar retention times and correlation
coefficient between peak responses. For this workflow, Raw data were converted to
the NETCDF format and R-based XCMS was used for deconvolution of data
(Brown et al. 2011). IDEOM is a freely-available package for Microsoft Excel for
peak annotation of ESI redundant peaks as well as FT or ringing signals. It uses

retention time, peak shape and correlation of peak intensities (Creek et al. 2012).

Although, there are a number of workflows for peak annotation, they are usually
compatible only with special peak generating workflows (e.g. CAMERA with
XCMS), or they use raw LC-MS data and perform peak picking and ion annotation
in series. Hence, it would be of interest to develop a post-peak picking workflow to

process peak lists from any workflow, identify redundant peaks and remove them.

In this work, we developed a MATLAB-based workflow to filter out redundant
peaks from peak picking results. It imports data from any peak generating
workflow, performs different filters and results in more condensed peak list by
removing redundant peaks. After evaluating the performance of this filtering
method, the performance of four peak picking workflows, namely PeakView®,
Markerview™, MetabolitePilot™ and XCMS online were assessed in terms of the

number of redundant peaks found by our developed DataReduction workflow.
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3.3 Material and Methods

Two types of biological samples (bile and urine) as well as a standard mixture of 84
compounds were used for this study. Samples were analyzed with liquid
chromatography coupled to high-resolution mass spectrometry employing a QqTOF
system. Raw LC-MS data were then processed with four peak picking workflows
including MarkerView, PeakView, MetabolitePilot and XCMS online followed by
employing the DataReduction workflow for filtering of redundant peaks. Since the
same datasets from Chapter 2 were used here, detailed information on materials,
sample preparation, HPLC-MS analysis and peak picking criteria have been

presented previously.

3.3.1 MATLAB processing

"DataReduction" MATLAB code was written precisely to find and remove peaks
corresponding to *C isotopes, radical ions as well as some frequent adducts and in-
source fragments present in peak lists. "DataReduction" used 5 ppm mass tolerance
and 0.1 min difference in retention time for annotating related peaks. The whole
MATLAB script is presented at the end of this chapter (supplementary data for
chapter 3).

From an initial peak list (generated by peak picking workflows) exported into an
excel-compatible format, the script finds C isotopic peaks with 5 ppm mass
accuracy and 0.1 min RT difference, with additional criteria that *C isotope peaks
should have lower intensity (for small molecules). Assuming that the majority of
observed m/z values are protonated in positive mode and deprotonated in negative
mode, radical ions were identified in a subsequent filtering step. After association
of peaks to PC isotopes and radical ions, they were eliminated from original peak

list.
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A list containing information of the most frequent adducts and in-source fragments
was imported into MATLAB. The following adducts were included in this study;
NH,4", Na*, K, as well as doubly charged (M+2H)** (positive mode) and HCO,
(negative mode) in addition to in-source fragments such as loss of water, formic
acid (H,CO,) and ammonia (NH3) (in positive mode) and carbon dioxide (CO;) (in
negative mode). This excel sheet contains the exact mass difference and charge
associated to each adduct and fragment and additional cases can be added manually.
This MATLAB script was used to remove redundant peaks and results in a more

concise peak list with higher proportion of protonated or deprotonated molecules

Raw LC-MS
data
!

Peak finding workflow

Initial peak list(.xlsx) Lm

“Data reduction” MATTLAB script

(intact metabolites).

Find and remove:
13C isotopes, radical ions,
adducts and in-source fragments

!

Final peak list (.xIsx) M

Figure 3.1 "DataReduction" MATLAB script was used in this study to identify and remove
isotope peaks, radical ions, adducts and in-source fragments
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3.4 Results and discussion

The "DataReduction" MATLAB script was designed for processing peak picking
results from raw data and also for its compatibility with any peak generating
workflow, as long as peak list information (m/z, RT and intensity or peak area) is
exportable into an excel-compatible format. The initial peak lists obtained from
peak generating workflows from two biological sample types (urine and bile) and a
standard mixture of 84 compounds were investigated with the custom-built
"DataReduction” MATLAB script, where 0 isotopes, radical ions, as well as

some adducts and in-source fragments were detected (Figure 3.2).

Even though this MATLAB script does not use correlation between peak shapes for
peak annotation, narrow mass and retention time difference windows (5 ppm mass
tolerance and 0.1 min retention time difference) were employed to ensure that the
filtering step was efficient at removing redundant peaks with little chance of
removing intact (protonated or deprotonated) metabolite peaks. In order to evaluate
the "DataReduction” MATLAB script, a comparison was made between the peak
lists found by the custom script and the isotopic peak detection option built into the
MarkerView software (Table 3.1 and Figure 3.6). The results show that for the bile
data set in negative mode, "DataReduction" MATLAB script and MarkerView™
found 1848 and 1806 isotopic peaks, respectively, while 1616 peaks were common
between these two methods. On average, almost 85% of total isotope peaks found
by MarkerView and DataReduction workflow were common to both. This indicates
the good efficiency of the "DataReduction" MATLAB script for peak annotation
using the chosen criteria, since Marker View™ isotope peak assignment uses elution
profile information (during peak generation step) and not simply ART and Am/z of
the apex of each chromatographic peak.

After confirming the performance of the DataReduction MATLAB script, the four

peak picking workflows used in this study were evaluated in terms of number of
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redundant peaks found by this filtering method (Figures 3.3 to 3.5). Although
PeakView had the lowest number of peaks initially found, it has the greatest
proportion of "non-redundant peaks" (those remaining after removing redundant
pesk) with an average of 90% of the original list being conserved after filtering.
MetabolitePilot and PeakView represented the lowest number of >C isotopes
among their results, likely due to a built-in algorithm for excluding these isotopes.
Meanwhile, XCMS and MarkerView had assigned isotopic peaks for further
manual removal by the user. No evident difference between different peak
generating workflows was observed regarding the % peaks corresponding to radical
ions, adducts and in-source fragments, indicating there would be no pre-filtering for
these in any of the automated workflows tested. It would obviously be useful to
have software able to generate peak lists and filter for such redundant peaks in the
same step, which is possible in certain commercial software such as Agilent's

Qualitative Analysis and Waters’ Progenesis software.

16000
14000 - % Adducts
12000 - ® Radical ion
= TR0 S ® Isotopes
3 8000 2
- = =Real peaks
£ 6000 = .
g = g
:: 4000 - § = B g %
0/ EESEESEEEEESESEEEE - =2 S EE
)] >tn.
= 0=
Q
X
Bile (neg) | Bile (pos) | Urine (neg) | Urine (pos) [Stdmix (neg)Stdmix (pos)

Figure 3.2 Number of peaks found by MATLAB data reduction script for different
workflows: PeakView (PV), MarkerView (MV), MetabolitePilot (MP) and XCMS online
for each sample type (bile, urine and compound mixture) in both positive and negative
modes




Table 3.1 Comparison of the total number of "*C isotope peaks and the overlap between
two filtering algorithms: ("DataReduction" and MarkerView) in bile and urine sample in

both positive and negative modes

Sample (mode) | MarkerView | DataReduction | Common
Urine (neg) 3498 3667 3085
Urine (pos) 1770 1998 1534
Bile (neg) 1806 1848 1616
Bile (pos) 805 813 714
Bile (pos) Bile (neg)
MV DR MV DR
Urine (pos) Urine (neg)
MV DR MV DR

Figure 3.3 Venn diagram representation of the results of comparison between "*C isotope
peaks found by MarkerView (MV) and developed DataReduction (DR) MATLAB script.
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Figure 3.4 Pie chart representation of the percentage of redundant peaks found by
DataReduction MATLAB script for the results of four peak picking workflows
(MetabolitePilot (MP), MarkerView (MV), PeakView (PV), XCMS online (XC)) from bile
sample in positive and negative modes
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Figure 3.5 Pie chart representation of the percentage of redundant peaks found by
DataReduction MATLAB script for the results of four peak picking workflows
(MetabolitePilot (MP), MarkerView (MV), PeakView (PV), XCMS online (XC)) from

urine sample in positive and negative modes
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Figure 3.6 Pie chart representation of the percentage of redundant peaks found by
DataReduction MATLAB script for the results of four peak picking workflows
(MetabolitePilot (MP), MarkerView (MV), PeakView (PV), XCMS online (XCMS)) from
the standard mixture (Std mix) sample in positive and negative modes
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3.5 Conclusion

The "DataReduction" MATLAB script was developed for processing initial peak
picking results. It is compatible with any peak generating workflow, as long as peak
list information (m/z, RT and intensity or peak area) is exportable into excel format.
It uses small m/z and RT windows for identification of redundant peaks related to
isotopes, radical ions, adducts and in-source fragments. Although it doesn't employ
peak shape similarity as criteria to find redundant peaks, it shows good performance
and it found 85% of the isotope related peaks that were also found by MarkerView,
a peak picking software able to assign isotopic peaks based on peak detection
profiles.

By employing this Data Reduction method, four peak picking workflows were
compared to each other. It was found that an isotopic detection algorithm is used in
PeakView and MetabolitePilot, which resulted in the detection of almost no peaks
as isotopes by our custom-built script. On the other hand, MarkerView and XCMS
online show all found peaks, including isotopes, in their generated peak lists with

the possibility of removing isotope peaks by the user in a subsequent step.

In this chapter, Data Reduction MATLAB script was presented, further
investigation on its performance for identification of the redundant peaks will be

performed in future works.
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Supplementary data for chapter 3
DataReduction Matlab script

Datareduction MATLAB script was developed in order to find redundant peaks and

remove them from original data. The whole manuscript is presented in following:

Clc

Clear all

Number=6

format long

%---> Read Sample files
sample=xIsread('F:\Bile_neg MV");
filename="F:\MATLAB_Bile neg MV";
%---> Define ionization state (positive or negative)
chargestate=2; %pos=—1, neg==2

if chargestate=—1

adduct=xlsread (‘final_adductslist1.xIsx",6);
end

if chargestate=—2

adduct=xlsread (‘final_adductslist1.xIsx',7);
end

%---> Define parameters

cl=2;

c2=2;

pl=2;

zerol 1cell=[0,0,0,0,0,0,0,0,0,0,01;
Cl13whole=zerol1cell;
C13_arearatio=zerol1cell;
Proto_whole=zerol 1cell;
Protominuscommon=zerol1cell;
Proto_Cl13common=zerol 1 cell;

al=2;

a2=2;

a3=2;

a4=2;

a5=2;

p2=2;

p3=2;

ssrt=1;

zero4dcell=[0,0,0,0];
wholeminusc13=zero4cell;
wholeminusc13M=zero4cell;
adductinfo=zerol1cell;



addadd=zero4cell;
realadd=zero4cell;
realpeaks=zero4cell;
adducts=zero4cell;
c13_proto_title=zerollcell;
whole S8cell_title=zerollcell; -
whole4cell title=zero4cell;
adductinfotitle=zerol1cell;
%
%---> Remove rt<1.6 ifrom sample
for s1=1:size(sample,1)
rtsinitial=sample(s1,3);
if rtsinitial>1.6
isinitial=sample(s1,1);
mzsinitial=sample(s1,2);
intsinitial=sample(s1,4);
samplert(ssrt, 1 :4)=[isinitial,mzsinitial rtsinitial,intsinitial];
ssrt=ssrt+1;
end
end
%
%---> Find C13 isotopes
for i=1:size(samplert,1);
numi=samplert(i,1);
mhzi=samplert(i,2);
Protoadd=mhzi+1.00335;
for j=1:size(samplert,1);
numj=samplert(j,1);
mhzj=samplert(j,2);
ppm=abs((mhzj-Protoadd)/(mhzj* 10e-6));
if ppm<5;
rtmzi=samplert(i,3);
rtmzj=samplert(j,3);
delrt=abs(rtmzi-rtmz;);
areai=samplert(i,4);
areaj=samplert(j,4);
arearatio=(areai/areaj);
if delrt<0.1
if arearatio>1
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C13_arearatio(c2,1:11)=[numi,mhzi,rtmzi,areai,numj,mhzj,rtmzj areaj,delrt,ppm,arearatio];

c2=c2+1;
end

end

end

end
end
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%
%--—> Find Radical ions
for i=1:size(samplert,1);
numi=samplert(i,1);
mhzi=samplert(i,2);
Protoadd=mhzi+1.007825;
for j=1:size(samplert,1);
numj=samplert(j,1);
mhzj=samplert(j,2);
ppm=abs((mhzj-Protoadd)/(mhzj*10e-6));
if ppm<5;
rtmzi=samplert(i,3);
rtmzj=samplert(j,3);
delrt=abs(rtmzi-rtmz;);
areai=samplert(i,4);
areaj=samplert(j,4);
arearatio=(areai/areaj);
if delrt<0.1

Proto_whole(p1,1:11)=[numi,mhzi,rtmzi,areai,numj,mhzj,rtmzj,areaj,delrt,ppm,arearatio];
pl=pl+1;
end
end
end
end
%
% %---> Remove C13 isotopes from radical ions for positive mode (chargestate==1) since
we should erase lower mass in protonated relation while removing higher mass in ¢13
relation
if chargestate==1
for g=1:size(Proto_whole,1)
numi=Proto_whole(q,1);
t=1;
for w=1:size(C13_arearatio,l)
c13=C13_arearatio(w,1);
delwi=abs(c13-numi);
if delwi==0
t=t+1;
end
end
if =1
mhzi=Proto_whole(q,2);
rtmzi=Proto_whole(q,3);
areai=Proto_whole(q,4);
numJ=Proto_whole(q,5);
mhzj=Proto_whole(q,6);
rtmzj=Proto_whole(q,7);
areaj=Proto_whole(q,8);




delrt=Proto_whole(q,9);
ppm=Proto_whole(q,10);
arearatio=Proto_whole(q,11);
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Protominuscommon(p2,1:11)=[numi,mhzi,rtmzi,areai,numJ,mhzj,rtmzj,areaj,delrt,ppm,area
ratio];

p2=p2+1;

end

ift>1
mhzi=Proto_whole(q,2);
rtmzi=Proto_whole(q,3);
areai=Proto_whole(q,4);
numJ=Proto_whole(q,5);
mhzj=Proto_whole(q,6);
rtmzj=Proto_whole(q,7);
areaj=Proto_whole(q,8);
delrt=Proto_whole(q,9);
ppm=Proto_whole(q,10);
arearatio=Proto_whole(q,11);

Proto_C13common(p3,1:11)=[numi,mhzi,rtmzi,areai,numJ,mhzj,rtmzj,areaj,delrt,ppm,area

ratio];
p3=p3+1;
end

end

end

%

%-—> Remove assigned C13 isotopes from original peak list

for i=1:size(samplert, 1);
iorigin=samplert(i,1);
k=1;

end
%

for v=1:size(C13_arearatio, 1);
numc13=C13_arearatio(v,5);
vi=abs(iorigin-numc13);

if vi==0

k=k+1;

end

end

if k=1

mhz=samplert(i,2);
rt=samplert(i,3);
int=samplert(i,4);
wholeminusc13(al,1:4)=[iorigin,mhz,rt,int];
al=al+1;

end

% ---> Remove assigned radicals from peak list




for i=1:size(wholeminusc13,1);
iorigin=wholeminusc13(i,1);
k=1;
if chargestate=—=1
for v=1:size(Protominuscommon,1);
numradical=Protominuscommon(v,1);
vi=abs(iorigin-numradical);
if vi=0
k=k+1;
end
end
end
if chargestate=—2
for v=1:size(Proto_whole,1);
numradical=Proto_whole(v,5);
vi=abs(iorigin-numradical);
if vi=0
k=k+1;
end
end
end
if k=1
mhz=wholeminusc13(i,2);
rt=wholeminusc13(i,3);
int=wholeminusc13(i,4);
wholeminusc13M(a2,1:4)=[iorigin,mhz,rt,int];
=a2+1;
end
end
%
%---> Find adducts and in-source fragments
for h=1:size (adduct,1);
ionmass=adduct(h,1);
charge=adduct(h,2);
for i=1:size(wholeminusc13M,1);
il=wholeminusc13M(,1);
mzi=wholeminusc13M(i,2);
adductmass=(mzi+ionmass)/(charge);
for j=1:size(wholeminusc13M,1);
j1=wholeminusc13M(j,1);
mhzj=wholeminusc13M(j,2);
ppm=abs((mhzj-adductmass)/(adductmass*10e-6));
if ppm<5;
rtmzi=wholeminusc13M(1,3);
rtmzj=wholeminusc13M(j,3);
delrt=abs(rtmzi-rtmz;j);
if delrt<0.1
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adductinfo(a3,1:11)=[il,mzi,rtmzi,j1,mhzj,rtmzj,ionmass,charge,adductmass,delrt,ppm];

a3=a3+l;
end
end
end
end
end
%

%---> Remove assigned adducts of adducts from list of adducts (Due to complexity of
sample, some adducts represented to have adducts)
bl=1;
b2=2;
for i=1:size (adductinfo,1);
msnuml=adductinfo(i,1);
k=1;
for j=1:size (adductinfo,1);
msnum2=adductinfo(j,4);
diff=abs(msnum1-msnum?2);
if diff==0
k=k+1;
end
end
ifk>1
addofaddnum=adductinfo(i,4);
mzaddadd=adductinfo(i,5);
rtaddadd=adductinfo(i,6);
addadd(b1,1:4)=[addofaddnum, mzaddadd, rtaddadd k];
bl=bl+1;
end
if k==1
realaddnum=adductinfo(i,4);
mzadd=adductinfo(i,5);
rtadd=adductinfo(i,6);
realadd(b2,1:3)=[realaddnum,mzadd,rtadd];
b2=b2+1;
end
end
%
%---> Remove adducts from peaks list

for i=2:size(wholeminusc13M,1);
numl=wholeminusc13M(i,1);
nl=l;
%peaks who are adducts
for j=1:size(realadd,1);
num?2=realadd(j,1);
delij=abs(numI-num?2);




if delij==0
nl=nl+1;
end
end
% its not an adduct
ifnl==1
mhz=wholeminusc13M(i,2);
rt=wholeminusc13M(i,3);
int=wholeminusc13M(i,4);
realpeaks(a4,1:4)=[num1,mhz,rt,int];
ad=ad+1];
end
%its an adduct
ifnl>1
mhz=wholeminusc13M(i,2);
rt=wholeminusc13M(i,3);
int=wholeminusc13M(i,4);
adducts(a5,1:4)=[num1,mhz,rt,int];
aS=asS+l;
end
end
%
%---> Assign title for excel sheets
sheetO='whole file";
sheet3='C13ratio';
sheet4="Allprotonated";
sheet6='MinusC13';
sheet7='MinusC13M";
sheet8='AdductsInfo";
sheet9='RealPeaks';
sheet10="Adducts";
sheet12='sizeinfo";
sheet13="adductofadd";
sheetl4="realadd";
sheet]="proto_minusc13ratio";
sheetl1="proto_c13common’,
%
% ---> Write down all produced data into excel sheets
xlswrite(filename,samplert,sheet0);
xlswrite(filename,C13_arearatio,sheet3);
xlswrite(filename,Proto_whole,sheet4);
xlswrite(filename,Protominuscommon,sheet1);
xlswrite(filename,Proto_C13common,sheetl1);
xlswrite(filename,wholeminusc13,sheet6);
xIswrite(filename,wholeminusc13M,sheet7);
xIswrite(filename,adductinfo,s