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RÉSUMÉ 

La métabolomique est une science d'omique récente visant à étudier les changements 
quantitatifs de métabolites causés par la maladie, les changements environnementaux, 
etc. Aux flux de travail non ciblées, l'acquisition d'une vue globale de tous les 
métabolites d'un échantillon biologique est souhaitée. En raison de la grande 
complexité des échantillons biologiques, des données brutes doivent être traitées 
soigneusement pour arriver aux résultats significatifs. La première étape de l'analyse 
non ciblée de données métabolomique est de générer des pics de premières données 
LC-MS. Dû à l'application des plusieurs algorithmes avec les différents flux de travail 
pour la sélection de pic, les résultats peuvent varier largement les uns des autres. 
L'autre défi est également à filtrer les pics redondants tels que 13C isotopes, les 
produits d'addition et des fragments de source provenant de métabolites lors de 
l'analyse MS. Et malheureusement la plupart logiciels automatisé pour ramasser les 
pics sont incapables de détecter ces pics redondants. En ce travail, nous avons étudié 
systématiquement l'effet d'employer les différents flux de travail des pics pour les 
mêmes ensembles de données brutes. Un mélange standard (84) et composés de deux 
échantillons biologiques (biliaires et urine) ont été analysés par HPLC-MS-QqTOF 
aux deux modes positif et négatif. Les données brutes LC-MS ont été traitées avec 
quatre flux de travail différents pour gérer le pic, y compris Peakview®, Markerview 
TM, MetabolitePilotTM et XCMS Online. Ensuite, les chevauchements entre les 
résultats des flux de travail pour gérer le pic ont été obtenus pour chaque ensemble de 
données en appliquant un code basé sur MA TLAB. Enfin, les métabolites potentiels 
identifiables ont été étudiés en utilisant la base de données en ligne METLIN. Dans 
un autre effort pour améliorer la performance de l'analyse des données non ciblée de 
la métabolomique, un flux de travail de réduction de données basé sur MA TLAB a 
été développé pour identifier et supprimer les isotopes 13C, ions radicaux, adduits et 
et-source-fragments. D'un autre projet, une approche métabolomique ciblée a été 
développée pour quantifier la modification introduite au contenu caroténoïde des 
échantillons d'algues par le stress. 

Mots-clés: métabolomique, la spectrométrie de masse, LC-MS, cueillette Peak, 
caroténoïdes 



ABSTRACT 

Metabolomics is a recent omics science aimmg to study quantitative changes in 
metabolites caused by disease, environmental change, etc. In untargeted workflows, 
acquiring a global view of all metabolites present in a biological sample is desired. 
Due to the high complexity of biological samples, raw data should be processed 
carefully to yield meaningful results . The first step in untargeted metabolomics data 
analysis is to generate peaks from raw LC-MS data. Due to the use of various 
algorithms by different peak picking workflows, results can differ widely from each 
other. The other challenge is also to filter out redundant peaks such as 13C isotopes, 
adducts and in-source fragments originating from metabolites during MS analysis and 
unfortunately, most automated peak picking software are unable to combine all 
signals belonging to a single metabolite. In this work, we systematically investigated 
the effect of employing different peak picking workflows for the same raw data sets . 
A standard mixture (84 compounds) and two biological samples (bile and urine) were 
analyzed by HPLC-QqTOF-MS in both positive and negative modes. Raw LC-MS 
data were processed with four different peak generating workflows including 
Peakview®, Markerview™, MetabolitePilot™ and XCMS Online. Then the overlaps 
between the results of peak generating workflows for each data set were obtained 
using a custom-built MATLAB-based code. Finally, the potential identifiable 
metabolites were investigated using the online METLIN database. In another effort 
for enhancing the performance of untargeted metabolomics data analysis, a 
MATLAB-based data reduction workflow was developed to identify and remove 13C 
isotopes, radical ions , adducts and in-source-fragments. In a separate project, a 
targeted metabolomics approach was developed to quantify the change introduced to 
carotenoid content of al gal samples by stress. 

Keywords: Metabolomics, Mass Spectrometry, LC-MS, Peak picking, Carotenoids 



CHAPTERI 

INTRODUCTION TO METABOLOMICS 

1.1 Metabolornics definitions 

Analysis of biological samples for identification and quantification of small 

molecules bas been done for many years, e.g. measurement of glucose for diabetes 

(Group 1979) and plasma homocysteine for vascular disease (Elevated et al. 1997). 

These studies were initially limited to srnall number of target compounds and far 

from what we currently define as metabolomics. The fact that individual molecules 

in biological samples are part of a large network of metabolic pathways magnified 

the need for a more comprehensive and global approach toward analysis of 

biological specimens (Ryan and Robards 2006). 

Metabolomics is defined as the quantitative characterization of small molecules 

(metabolites) present in a biological sample (Lindon et al. 2011). This kind of 

terminology arises from other "omic" sciences such as genomics, transcriptomics 

and proteomics, in which genome, transcriptome and proteome content of living 

organisms are studied, respectively (Figure 1.1 ). Accordingly, metabolomics refers 

to the study of metabolome, the word first suggested at 1998 by Stephen Oliver 

(University of Manchester, UK; http://www.man.ac.uk/), assigned to the set of al! 

low-molecular-mass compounds synthesized by an organism (Oliver et al. 1998). 

Soon afterward, a detailed proposai review on this subject was presented to 

scientific community by Oliver Fiehn (Max Plank Institute, Golm, Germany; 

http://www.mpg.de) (Fiehn 2002). It should be mentioned that one of the first 

metabolite profiling experiments had been performed long before by Linus Pauling 

and colleagues in 1971 in which metabolite content of human urine vapor and 

breath of subjects were analyzed by gas chromatography (Pauling et al. 1971 ), 
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though the more senous effort for growmg this branch of omic sciences was 

observed only in the last decade. 

Genomics 

Genome 
(DNA) 

Transcriptomics 

Transcriptome 
(RNA) 

Proteomics 

Proteome 
(protein) 

Metabolomics 

Meta bol orne 
(metabolite) 

Figure 1.1 Genomics, transcriptomics, proteomics and metabolomics study genome (DNA), 

transcriptome (RNA), proteome (proteins) and metabolome (metabolite) content of 

biological samples 

Another term used along with metabolomics that creates confusion in the 

corresponding literature, is metabonomics. Initially, metabolomics referred to the 

measurement of the pool of cell metabolites (Nicholson et al. 1999), while 

metabonomics was defined as the quantitative measurement of the dynamic 

multiparametric metabolic response of living systems to pathophysiological stimuli 

or genetic modification (Nicholson et al. 1999; Beger et al. 2010). These two tenns 

are often used interchangeably, however bath procedure and bulk of literature 

support metabolomics as more comprehensive study of the metabolome (Ryan and 

Robards 2006). 

Metabolomics investigations are used in different research areas such as drug 

discovery (Wishart 2008), medical diagnosis and therapeutic monitoring (Gowda et 
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al. 2008), toxicology (Ramirez et al. 2013) as well as food science (Wishart 2008), 

agriculture (Dixon et al. 2006) and environmental studies (Ramirez et al. 2013). 

1.1.1 Metabolome 

The metabolome is defined as the set of small molecular mass organic compounds, 

metabolites, found in a given biological sample. Small peptides are considered as 

metabolites while polymerized structures such as proteins and DNA are beyond the 

accepted definition for metabolites. Considering the important biochemical roles of 

metabolites as intermediates of biochemical reactions, their quantitative level 

(concentration) in living cells can be affected by different processes such as 

regulation of transcription and translation or protein-protein interactions. Hence, 

studying metabolite levels has great potential to inform us about cellular function 

and its response to various genetic or environmental changes (Roux et al. 2011 ). 

Metabolites are generally divided into two groups, based on their origin being either 

exogenous or endogenous (Roux et al. 2011 ). Endogenous metabolites are either 

primary, which are common organic molecules found in broad category of living 

cells, or secondary metabolites, referred to the species-specific compounds. The 

first group has a direct contribution to essential life processes such as growth and 

maintenance, e.g. molecules such as amino acids or glycolysis intennediates. On the 

other hand, secondary metabolites have limited distribution among living organisms 

and metabolites belonging to this group have more specific biological functions, 

e.g. hormones in mammalians and alkaloids in plants (Herbert 1989). 

Exogenous metabolites are the product of biotransformation of exogenous 

compounds caused by phase I or phase II metabolism. In phase I, the original 

exogenous molecule is modified by introducing small polar functional group(s), 
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while phase II represents the formation of a conjugation product (Shargel et al. 

2005). 

The complexity of metabolomics analysis is due to the diverse chemical properties 

as well as wide concentration range, estimated to be 7-9 orders of magnitude (pmol 

- mmol) (Dunn and Ellis 2005). Most importantly, the large number of metabolites 

makes an analytical approach much more complicated. For instance, estimates 

include > 1000 metabolites present in Escherichia coli (Feist et al. 2007) , >4000 for 

human serum (Psychogios et al. 2011), and between 5000 and 25000 for higher 

plants (Trethewey 2004). 

1.1.2 Metabolomics and other omics 

Although the metabolome is a complex system, it is still smaller than the proteome 

and genome ofliving cells (Watkins and German 2002). In addition, the change and 

variation in metabolome is more associated with altered phenotype which affects 

growth, development and health; while the change in proteome and genome does 

not always result in biochemical change. Thus, it is believed that metabolomics bas 

the potential to provide the most functional infonnation of all omic science (Sumner 

et al. 2003). 

On the other hand, in genom1cs and proteomics, complete or near complete 

assessment of related biological content (genome and proteome) is normally 

achieved, while metabolomics is still far behind them from this aspect (Bouatra et 

al. 2013). For instance, publications on human metabolomics studies by liquid 

chromatography coupled to tandem mass spectrometry (LC-MS/MS) instruments, 

often con tains identification of fewer than 1 OO metabolites (Metz et al. 2007; Rou su 

et al. 2009; Lim et al. 2010; Zhang et al. 2010) representing a tiny fraction (less 

than 1 % ) of the human metabolome (Wishart et al. 2012). In order to cover a larger 
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portion of the metabolome, several systematic efforts were made for detailed 

analysis of human biofluids, such as cerebrospinal (Wishart et al. 2008; Mandal et 

al. 2012), saliva (Takeda et al. 2009), serum (Psychogios et al. 2011 ), plasma 

(Lawton et al. 2008) and urine (Bouatra et al. 2013). 

1.2 Different types of metabolomics approaches 

Metabolomics investigations are divided to three broad categories, including 

targeted, fingerprinting and profiling approaches (Ryan and Robards 2006). The last 

two are also refeJTed to as untargeted metabolomics. 

In targeted metabolomics, a pre-defined list of compounds is quantified in samples. 

For instance, quantification of selected carotenoid compounds in algal samples is a 

targeted metabolomics approach to study changes as a result of a specific stress 

condition (Chu et al. 2011 ). 

In a fingerprinting approach, a global view of all spectral features is obtained for 

samples with different biological conditions, (e.g. samples from healthy and 

diseased individuals), followed by applying statistical methods to identify 

metabolites with significant differences in concentration levels among studied 

samples. Identifying the biomarker molecules for early detection of breast cancer is 

defined in this category (Nam et al. 2009). 

Another type of metabolomics investigation is metabolite profiling, which involves 

the identification and quantification of predefined set of metabolites of known or 

unknown identity, related to a metabolomic pathway or a class of compounds 

(Dettmer and Hammock 2004; Dunn and Ellis 2005), for instance, identification 

and quantification of all amino acids. Although this approach is the oldest and the 

most established type of metabolomics (Ryan and Robards 2006), it suffers from 
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the disadvantage of not being universal or a "real" omic science (Dettmer and 

Hammock 2004). 

Thus, the major difference between targeted and untargeted approaches, is in the 

stage which identification of metabolites is performed. In a targeted approach, the 

investigation is on pre-defined metabolites whose identity is known, while only 

metabolites with significant differences are identified in the final steps of data 

analysis in an untargeted workflow. 

It seems that no common agreement is made in the literature regarding the 

classification of metabolomics studies yet. Sorne reviewers exclude metabolomics 

profiling due to not being universal and or a "real" omic science (Griffiths et al. 

2010; Preet et al. 2012; Varghese et al. 2012) and some others ignore targeted 

approach in metabolomics classifications (Dettmer and Hammock 2004) and refer 

to it as multi-analyte methods instead (Theodoridis et al. 2012). 

Based on sample types investigated in metabolomics, footprinting metabolomics is 

also defined which by definition is "the measurement of metabolites secreted from 

the intracellular complement of an organism (or biological system) into its 

extracellular medium or matrix." (Tugizimana et al. 2013). This approach is 

commonly used in microbiology (Mapelli et al. 2008), tissue engineering (Seagle et 

al. 2008) and stem cell studies (Turner et al. 2008). 

1.3 Metabolomics platforms 

Since the metabolome consists of a wide variety of metabolites with different 

physicochemical properties, it is impossible to use one single technique to analyze 

the entire metabolome content. Severa! analytical techniques have been used, 

including three main platforms, proton nuclear magnetic resonance (lH NMR), 
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mass spectrometry (MS) and fourier transform infrared (FT-IR) spectroscopy. In 

addition, chromatographie techniques, such as gas chromatography (GC) and liquid 

chromatography (LC), are often coupled to mass spectrometry for further separation 

of compounds present in a complex sample (Varghese et al. 2012). 

1.3.1 NMR spectroscopy 

Nuclear magnetic resonance (NMR) is one of the major analytical tools used in 

metabolomics studies since 1990 (Lindon et al. 2003). The non-destructive and 

non-discriminative nature of this method, as well as fast and robust analytical 

performance (Roux et al. 2011) make it a suitable platform for metabolomics 

investigation. Another advantage of NMR is that minimal sample preparation is 

needed, hence, there is less chance for metabolites to be changed or lost during 

sample preparation . However, NMR suffers from low sensitivity and only medium 

to high abundance metabolites will be detected by this technique. In addition, 

identification of individual metabolites is very challenging in complex mixtures 

since signais from different metabolites could overlap (Dettmer et al. 2007; Lawton 

et al. 2008), however, some efforts were done for developing mathematical 

platforms for quantification of metabolites using NMR spectroscopy (Weljie et al. 

2006). Moreover, the sensitivity of NMR to chemical environment (pH, ionic 

strength, temperature, etc.) and differential sensitivity of molecules to such changes 

is considered as a major downfall for this technique (Weljie et al. 2006). 

1.3.2 FT-IR spectroscopy 

Fourier transform-infrared spectroscopy (FT-IR) is also used for analyzing 

biological samples for metabolomics, nevertheless the number of publications on 

this subject is much Jess than NMR and MS-based metabolomics. It offers 

advantages such as low cost, simplicity of sample preparation and low sample 
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volume needed (Harrigan et al. 2004), however, this method suffers from lack of 

reproducibility, as sample preparation could cause changes in the continuous 

intensity data (Roscini et al. 2010). Another disadvantage of this method is that 

signal interference due to a strong absorbance band of water, makes analysis of 

aqueous solutions problematic. Although, attenuated total reflectance sampling 

tools and short path-length transmission cells are employed for analysis of water­

based samples, these methods only minimize water signal interference without 

completely alleviating the problem, therefore this could still cause serious errors in 

the detection of some metabolites (Botros et al. 2008). 

1.3.3 Mass spectrometry 

Mass spectrometry-based methods are widely used for metabolomics studies, and 

are often coupled to gas chromatography or liquid chromatography. High 

sensitivity, accuracy and coverage has made this technique a promising tool for 

metabolomics investigations (Varghese et al. 2012). Analysis of the metabolome 

with MS-based techniques provides the possibility of identification of individual 

metabolites (Want et al. 2007), the task which is much more complicated in other 

type of instruments, such as NMR and FT-IR. In addition, the number of MS 

facilities worldwide in comparison to high field NMR instruments is higher, partly 

because of it being less expensive instrumentation. Furthermore, man y more experts 

are working in this area compared to specialists operating state-of-the-art NMR 

facilities (Theodoridis et al. 2012). 

Gas chromatography was the first chromatographie method to be coupled to MS 

detection and has been used as far back as l 960's for metabolomics applications 

(Brooks et al. 1968). GC-MS provides high resolution separations and reproducible 

El spectra, which facilitates identification of metabolites by database searching of 

known compound spectra. Meanwhile, this technique is only applicable to 
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molecules which are volatile and thermostable, or need to be derivatized (Roux et 

al. 2011). The major challenge in the hyphenation of liquid chromatography to 

mass spectrometery due to the large difference in operating pressures was resolved 

by the introduction of atmospheric pressure-based ionization methods (API), such 

as electrospray ionization (ESI) (Plumb et al. 2004) and atmospheric pressure 

chemical ionization (APCI) (Huang et al. 1990). In LC-MS, lower temperature is 

needed in comparison to GC-MS and metabolites don't need to be volatile, hence 

less sample preparation is usually necessary. In addition to the high dynamic range 

and sensitivity which are considered as main advantages of LC-MS systems (Roux 

et al. 2011 ), soft ionization techniques provide information on the intact molecular 

mass of metabolites (Roux et al. 2011 ), compared to mostly fragment ions seen in 

El spectra from most GC-MS systems. 

1.4 HPLC-MS based metabolomics workflow 

A typical HPLC-MS based metabolomics pipeline typically consist of four steps, 

sample preparation, HPLC-MS analysis, data processing and metabolite 

identification. Bach step is explained in detail below. 

1.4.1 Sample preparation 

For metabolomics studies by LC-MS, minimum sample preparation is typically 

performed in order to prevent unwanted change or removal of metabolites. For most 

non-pharmaceutical experiments such as plant, microbial or mammalian biomarker 

research, intracellular extraction and/or protein precipitation is performed followed 

by dilution in a suitable solvent (Dunn and Ellis 2005). Additional sample 

preparation could be employed, including solid phase extraction (SPE), liquid­

liquid extraction (LLE) or supercritical fluid extraction, and have been used in 

pharmaceutical applications (Rossi and Sinz 2001; Bakhtiar et al. 2002; Bamba et 
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al. 2008). Unlike GC-MS studies, which require derivatization for adding suitable 

functional groups to molecules to make them more volatile, derivatization is not 

necessary in LC-MS-based studies, however, it could be used in certain cases to 

enhance sensitivity and chromatographie resolution (Leavens et al. 2002). 

1.4.2 HPLC-MS analysis 

1.4.2.1 HPLC 

High performance liquid chromatography (HPLC) is one of the leading methods 

used for separation of different compounds present in solution. This method works 

based on the interaction between a liquid (mobile phase) and a solid or fixed gel 

(stationary phase). Firstly, a small volume of the sample containing the analytes, is 

introduced into the mobile phase. Then, the mobile phase is pumped through a 

chromatographie column filled with small sorbent particles. Based on the type of 

HPLC method used, different affinities of the compounds being analyzed with 

mobile and stationary phase cause their separation. For example, for reversed phase 

chromatography, a polar solvent and non-polar stationary phase are used, resulting 

in differentiation between different class of molecules present in sample based on 

their polarity (or hydrophobicity) . In this case, more polar compounds elute first, 

while non-polar compounds are retained more within the stationary phase and will 

elute later. Mobile phase normally consists of a mixture of solvents, and elution is 

either isocratic (constant ratio of sol vents) or gradient ( changing composition over 

time) for improving separation efficiency. A simple diagram of a HPLC system is 

presented in Figure 1.2. Various detection methods could be used for identification 

of separated analytes eluting from the chromatographie column, one of the most 

sensitive detectors being a mass spectrometer. 
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Figure 1.2 A simple schematic of HPLC components 

For metabolomics studies, chromatographie separation is typically carried out using 

columns between in 2-4.6 mm internai diameter (i.d,), with lengths ranging from 5 

to 25 cm, and packed with particles from 3- 5 µm i.d, (Lindon et a/, 2011), though 

smaller particles are being used more and more for increased efficiencies (with 

corresponding increase in operating pressures). Reversed-phase chromatography is 

a popular method for metabolomics investigation, however, in order to cover the 

large diversity of metabolites present in biological samples, other types of 

chromatography can be used with different stationary phases e,g. hydrophilic 

interaction chromatography (HILIC). Due to the complementary nature of HILIC 

and reversed phase chromatography, they could be combined in two dimensional 

applications (Huang et al. 1990). It should be mentioned no standard LC-MS 

method is currently recommended for profiling the complete metabolome due to the 

chemical diversity of metabolites (Theodoridis et al. 2008). 

1.4.1.2 Mass spectrometry 

Mass spectrometry is a powerful analytical technique widely used for biochemical 

applications. The main steps of it are ionizing compounds present in a sample, 

separating the resulting ions based on their mass-to-charge ratio and finally 

detecting and reporting their abundance. These steps performed by an ionization 
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source, mass analyzer and detector, respectively. A simple diagram of the mass 

spectrometer's components is given in Figure 1.3. 

Sam pie lonization 
(from GC, Lc--...i 

or direct source 
injection) 

Vacuum 

M ass 

ana lyzer 

Mass spectrum 

Detector WiliJ 
0 

(! 12'0\ 
Computer processing 

Figure 1.3 A simple diagram representing the main parts of mass spectrometer (the source 

is not under vacuum for LC-MS systems, since these use atmospheric pressure ionization 

techniques) 

In the ion source, molecules of analytes undergo ionization to produce gas phase 

ions. Although different ionization sources are available, electrospray ionization 

(ESI) is the most frequently used method for LC-MS based metabolomics. In this 

method, the chromatographie eluent passes through a capillary nebulizer tube that is 

connected to a strong electric field. This field causes charge accumulation at the 

surface of liquid placed at the end of tube, transfen-ing electrical charge to drop lets 

leaving this tube. Charged droplets then lose the remaining solvent by evaporation 

using heat and inert gas flow. The desorption of ions from the surface of droplets 

will occur when the solvent is evaporated and electrical charge is large enough at 

the surface of tiny droplets, to produce a Coulombic explosion into individual gas­

phase ions. Produced ions are then guided, by differential potentials, toward the 

mass analyzer (Hoffmann and Stroobant 2007). A simple representation of an ESI 

source is shown in Figure 1.4. 
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Figure 1.4 Schematic representation of an electrospray ionization (ESI) source. Reprinted 

from (Hoffmann and Stroobant 2007) with permission 
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In order to cover a greater portion of metabolites by mass spectrometry, analysis is 

usually performed in both positive and negative ionization modes. Sorne 

metabolites are detected in only one ionization mode (Dunn and Ellis 2005) while 

some metabolites could be detected in both ionization modes. Ions are created by 

protonation (M+Ht (in positive mode) or deprotonation, (M- Hf (in negative 

mode) and also possibly adductions are formed, as well as in-source fragment ions. 

Fragmentation is referred to as the dissociation of molecules to smaller parts, and 

fragments (or product ions) will be detected afterwards. Adducts are the result of 

the addition of sodium, potassium, ammonium, chloride, acetate or other ionic 

species to the molecule. There is also the possibility for multiply charged species to 

be formed as well as clusters ( dimers, trimers, etc.) , ail of which can have the effect 

of adding complexity to the mass spectra. 

Produced gas phase ions need to be separated based on mass-to-charge ratio (m/z). 

A wide variety of analyzers can be used for LC-MS based metabolomics including 

time-of-flight (TOF), Orbitrap, Fourier transform-ion cyclotron resonance (FT­

ICR), ion trap (IT), and triple quadrupole (QqQ) analyzers. In the first three, high 

resolution and accurate mass measurements are possible. In addition, hybrid 
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analyzers such as quadrupole-time of flight (QqTOF) systems, provide high 

resolution measurements as well as the potential for tandem mass spectrometry 

(MS/MS). Accurate mass measurement and MS/MS analysis help in the structural 

elucidation of metabolites (Roux et al. 2011 ). Since the MS used in this thesis is a 

QqTOF system, its main operating concepts will be explained in more detail. 

QqTOF systems are in fact similar to triple quadrupole, in which a time-of-flight 

(TOF) analyzer replaces the "third" quadrupole. In QqTOF analyzers, two 

quadrupoles are operated in series, namely Q 1, q2 followed by a time of flight tube. 

A qO quadrupole (or multipole) is often added before the Ql ion filter to provide 

collisional cooling and focusing of the ions (Chemushevich et al. 2001 ).. A 

schematic representation of a typical QqTOF is shown in Figure 1.5 

Two main types of experiments can be done with QqTOF analyzers, TOF-MS or 

MS/MS analysis. In TOF-MS mode, the Ql works in rf-only mode, meaning that it 

transmits all ions to the high resolution TOF analyzer to be separated. In the TOF, 

entering ions are separated based on their velocity, since ail ions enter with the 

same kinetic energy, giving information regarding their m/z. On the other band, in 

MS/MS analysis, Ql will actas an ion filter, only passing a specific precursor ion to 

the collision cell ( q2), where it is fragmented by collisional-induced dissociation 

(CID). The product (or fragment) ions are then sent to the TOF to obtain product 

ion separation (Chemushevich et al. 2001). 
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Figure 1.5 Schematic of a QqTOF hybrid instrument. Reprinted from (Hoffmann and 

Stroobant 2007) with permission 

1 A.3 Data processing 
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Data treatment workflows for MS-based metabolomics consist of several stages of 

processing including: noise filtering, peak detection, ion annotation, alignment and 

normalization, and statistical analysis, followed by metabolite identification 

(Castillo et al. 2011). 

Noise filtering is used primarily to eliminate the background signais and 

instrumental interferences from true biologically-related signais (Castillo et al. 

2011 ). Peak detection is referred to as the representation of ion signais as "features" 

with specific mlz, retention time and peak area information (Varghese et al. 2012). 

De-isotoping and ion annotation is used afterward to cluster peaks related to the 

same metabolites such as isotopes, adducts, and in-source-fragment ions (Varghese 

"" 
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et al. 2012). For quantification purposes (or comparing peak intensities between 

different samples ), normalization of signals is also required to prevent errors caused 

by instrumental or sample preparation-related variations (Katajamaa and Oresic 

2007). Statistical analysis is then performed to select signals representing 

significant differences among sample groups, e.g. for biomarker discovery. 

Identification of compounds is the next step, which is usually challenging and time­

consuming (Scalbert et al. 2009; Hall 2011 ; Zhou et al. 2012). This pipeline 

represents the usual workflow of data processing in fingerprinting and profiling 

metabolomics. Depending on the specific type of study, whether it is targeted, 

fingerprinting or profiling, some steps would not be necessary or could be modified. 

For example, for metabolomics fingerprinting, statistical analysis to find 

discriminative signals is followed by identification of corresponding metabolites 

(Roux et al. 2011). Each of these steps will be explained in more detail in the 

following sections. 

1.4.3.l Noise filtering 

The very first step in the treatment of LC-MS data, whether it is used for 

metabolomics or proteomics, is to filter the noise and baseline correct the data. This 

step has the potential to improve the quality of peak detection by reducing detection 

of false positive features (Castillo et al. 2011 ), since raw LC-MS data suffers from 

both chemical and random noise (Katajamaa and Oresic 2007). Chemical noise is 

normally very evident at the beginning and end of the elution gradient and often 

originates from molecules of solvents and buffers used for sample preparation or 

chromatographie separation, as well as column bleed (Hilario et al. 2006). Random 

noise is generally caused by imperfect detector function (Zhang et al. 2009). 

Several different methods are used for this purpose including Savitzky-Golay type 

of local polynomial fitting (Wang et al. 2003) and wavelet transformation (Li et al. 
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2005) which are both applied in m/z direction or filtering with moving averages in 

chromatographie trend (Radulovic et al. 2004). 

Baseline correction 1s usually performed by finding the baseline shape and 

subtracting it from LC-MS raw data (Katajamaa and Oresic 2007). Several 

approaches have been done namely low-order polynomial Savitzky-Golay filter 

(Wang et al. 2003), linear regression for lowest point of smoothed spectrum (Haimi 

et al. 2006) or iterative asymmetric least-squares estimation (Eilers and Boelens 

2005), which are one-dimensional background estimations. 

The filtering and baseline removal is implemented in some peak detection software 

such as XCMS (Smith et al. 2006), MAYEN [21] and apLCMS [18], while some 

other software such as OpenMS (Sturm et al. 2008) offer several filters for the user 

to choose from. 

1.4.3 .2 Peak detection 

Peak detection, also known as feature detection or peak picking, is the process of 

extracting signais of MS peaks (m/z) and chromatographie signal (retention time) as 

well as peak area or intensity measurement of all detected peaks (Figure 1.6) 

(Varghese et al. 2012). 

From a signal processing perspective, peak detection is carried out based on one or 

more of the following parameters: signal-to-noise ratio (SNR), intensity threshold, 

slopes of peaks, local maximum, shape ratio, ridge lines, model-based criterion and 

peak width (Yang et al. 2009). Typically, a combination of methods is used in order 

to increase the quality of peak detection and lower the chance for identification of 

false positive peaks. For instance, the basic version of XCMS [33] bins the data to 

0.1 m/z windows, then by considering the maximum intensity at each RT, it 
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identifies the signal in each slice. A second filtering criteria based on peak shape is 

used followed by the final selection of peaks using signal-to-noise ratio eut-off 

Detailed information about peak detection algorithms is beyond the scope of this 

chapter. For more informatics content, you can refer to the comprehensive review 

article by Zhang et al. (Zhang et al. 2009). 
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Figure 1.6 Peak detection process used to ex tract bounded information of mass signal (m/z), 
retention time (RT) and intensity of detected ions 

Two general types of software and workflows are available for this purpose, 

including commercial and freely-available software. Commercial software are 

usually provided by MS instrumentation vendors, such as MarkerView (AB Sciex), 

PeakView (AB Sciex), MarkerLynx (Waters), SIEVE (Thermo), MassProfiler 

Professional (Agilent), or ProfileAnalysis (Bruker). The underlying operating 
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algorithms for these software is often not clear due to the commercial 

considerations. In addition, there are some free and/or open access software such as 

MetaboAnalyst (Xia et al. 2009; Xia et al. 2012), MZmine (Katajamaa et al. 2006), 

XCMS (Smith et al. 2006; Tautenhahn et al. 2008) and MetAlign (Lommen 2009). 

In the case of some open sources such as for XCMS (Smith et al. 2006; Tautenhahn 

et al. 2008) and MZmine (Katajamaa et al. 2006), the operating algorithm is 

accessible and could be modified by the user. Katajamaa et al. provided the lists of 

commercial and freely-available software used for metabolomics applications 

(Katajamaa and Oresic 2007). Furthermore, a list of freely available software and 

the codes used for different LC-MS data processing is provided at the address of 

(http: //www.ms-utils.org/). These codes commonly work in computer programming 

environment such as Java, Matlab, C or R. 

Although there is no limitation on the number of software and workflows available 

for feature detection, there are some challenges in this area. For instance, the final 

results of different platforrns could differ widely due to different algorithms used. 

Hence, the decision for choosing the right platform becomes critical in 

metabolomics data analysis. Usability, documentation and easy visualization of the 

results are the main factors for selection of appropriate workflow used by common 

users, especially, those unfamiliar with programming languages. The ability of 

algorithm to distinguish between low intensity peaks and noise is also important 

factor to be considered. Another main criteria is the coverage of software on 

different aspects of the data processing workflow, starting from noise filtering and 

baseline correction to be done automatically along with feature detection (Castillo 

et al. 2011 ). 
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1.4.3.3 Ion annotation 

LC-MS-based metabolomics experiments can result in a huge number of peaks, 

only a portion of which are related to true biological metabolites. The fact that each 

single metabolite can also give rise to several ions, namely adducts, in-source 

fragments and isotopes, makes data processing challenging. Therefore, if only 

mass-based search is carried out for peak detection, false identification of peaks is 

normal (Varghese et al. 2012). Ion annotation is the method used for assigning all 

redundant peaks corresponding to ions arising from the same species and grouping 

them together to reduce the complexity of data for further biological interpretation. 

Since most of the elements exist in more than one naturally-occurring isotopie form, 

molecules containing different isotopes have different masses, detected as their 

isotopie pattern in the mass spectra (Jaitly et al. 2009). In-source fragment ions 

result from dissociation of the intact ionized molecules before they enter the mass 

analyzer, and although ESI is considered as soft ionization source, this phenomenon 

still can occur for certain compounds. Losses of water, ammonia and/or C02 are 

common in-source fragments in metabolomics data. The third type of derivative 

peaks cornes from adduct ions. An adduct ion is, by definition, "an ion formed by 

the interaction of two species, usually an ion and a molecule, and often within the 

ion source, to form an ion containing ail the constituent atoms of one species as 

well as an additional atom or atoms" (McNaught and Wilkinson 2000). Sodium and 

potassium adducts are common species observed in MS of small molecules. For 

lists of common adducts seen in MS experiment, you can refer to articles by Haung 

et al. and Keller et al. (Huang et al. 1999; Keller et al. 2008). 

The ion annotation employs two clues for assigning redundant peaks: 1) the mass 

difference between two peaks should match with related isotopes, adducts or 
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fragment ions, 2) the similarity between the extracted ion chromatogram of two 

peaks as they have the same elution profile (Varghese et al. 2012). 

Numerous efforts have been made for developing of either an independent ion 

annotation workflow (working on the results of feature detection) or implemented 

algorithms within feature selection software. For example, CAMERA imports the 

results of R-based XCMS and annotates peaks in two steps. First, peaks are grouped 

based on retention time and similarity between peaks, and then the difference 

between their m/z values is compared with a list of normally occurring adducts and 

in-source fragments for any possible relationship (Kuhl et al. 2011 ). Another 

workflow uses pre-defined m/z differences, chromatographie elution and intensity 

correlation (for isotopie peaks) to assign redundant peaks, resulting in 50% data 

reduction (Brown et al. 2009). In addition, there are some commercial software 

such as ACD/IntelliXtract (a part of the ACD/MS workbook suite) which works 

based on the given rule table (ACD/IntelliXtract 2007). PUTMEDID-LCMS is a 

public tool which imports raw LC-MS data and group peaks originating from the 

same metabolites by mass difference, retention time and peak area matching 

(Brown et al. 2011). Peak area correlation is employed for confirmation criteria of 

the isotopie peaks. IDEOM, free implementation for Microsoft Excel assigns ESI 

redundant peaks as well as FT or ringing signals by employing RT, peak shape and 

intensities and difference in m/z values (Creek et al. 2012). 

1.4.3 .4 Alignment, normalization and statistical analysis 

Alignment is a crucial step for metabolomics analysis on more than one sample or 

more than one run, since small variations are often seen in retention time and m/z 

values of the same metabolite across different samples (Podwojski et al. 2009). 

Alignment algorithms either work based on raw LC-MS data or features found 

previously by peak picking tools. Moreover, some peak picking packages such as 
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XCMS (Smith et al. 2006) or MarkerView software incorporate the alignment 

method as well. The fact that elution differences among samples may be non-linear 

and multiple pairs of feature may be found as matching peaks, makes alignment a 

challenging process and thus needs to be performed with caution (Castillo et al. 

2011 ). Podwojski et al. studied three different algorithms including linear 

regression, loss regression and local vectors and their results showed the importance 

of considering non-linear deviation in proteomics data (Podwojski et al. 2009). A 

detailed review on available alignment algorithms used for LC-MS is provided by 

Vandenbogaert et al. (Vandenbogaert et al. 2008). 

Normalization of peak intensities may be performed specially for quantitative 

measurement, or when metabolite fingerprinting is performed. The unwanted 

systematic bias in LC-MS data, resulting from several sources such as experimental 

difference, could overshadow the real biological difference in concentration of 

metabolites. Hence, peak intensities should be corrected before doing statistical 

analysis between samples. 

Two approaches are dominant for normalization including statistical and standard 

addition method. The first one is based on whole dataset for instance, normalization 

by unit norm of intensities (Scholz et al. 2004), the maximum likelihood method 

(Oresic et al. 2004) or median of intensities (Wang et al. 2003). However, this 

method is unable to assign absolute concentration of metabolites (Katajamaa et al. 

2006). The second method is to use one or more standard compounds as a reference 

for normalization and absolute quantitation. Due to the large number of metabolites 

studied in metabolomics investigations, the selection of proper standard compounds 

for normalization is ambiguous when more than one standard is used. Similarity 

between elution behavior of analyte and standard compound is used for selection of 

appropriate standard compound for each analyte. 
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Statistical analysis is generally used for two purposes. It can be used for sample 

classification when limited information about samples is available ( e.g. 

identification of silent mutation phenotypes in offspring). In this case, unsupervised 

statistical methods are employed such as hierarchical clustering analysis (HCA), 

principal component analysis (PCA), or independent component analysis (ICA). In 

addition, statistical analysis is used to find metabolites with great differences in 

intensities arnong different classes of sarnples, related to the studied condition, such 

as health, diet or exposure to toxins. Using supervised rnathernatical rnethods like 

partial least squares (PLS) or soft-independent method of class analogy (SIMCA) 

can be used for this purpose (Dettrner et al. 2007). 

1.4.4 Metabolite identification 

Identification of rnetabolites is the last step in the metabolomics pipeline before any 

biological information could be interpreted regarding biochernical pathways or 

biomarker discovery. It is performed in all rnetabolomics studies, no matter what 

the type of the investigation. For untargeted rnetabolomics, it is performed for all 

peaks detected as monoisotopic ions, while the effort for fingerprinting studies is to 

identify peaks with significant differences in different samples. For targeted 

metabolomics, identification is most likely done prior to LC-MS analysis, and 

absolute quantitation is instead the last step. 

Two mam strategies are used widely for identification of compounds by mass 

spectrornetry. Accurate mass measurernent of selected ions acquired by high 

resolution MS systems (HRMS) could yield elemental formulae for the chemical 

characterization of rnetabolites. In addition, tandem mass spectrometry results, 

yielding the fragmentation pattern, could be used for structural elucidation of 

metabolites. For the final confirmation of metabolites, standard solutions of 

compounds should be analyzed with the same instrument using the same method, if 
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available, to ensure chromatographie elution and mass spectral similarity (Bueschl 

et al. 2013). 

Database searching is one of the most time consuming parts of a metabolomics 

workflow, and can also have some difficulties. For instance, the collision energy in 

which MS/MS spectra for standard compounds is acquired could be different from 

that of the experiment, resulting to differences in fragment ion patterns. In addition, 

lack of MS/MS spectra for many compounds in metabolomics databases makes the 

identification of metabolites a highly labor-intensive task (Bueschl et al. 2013). 

In addition to relying on the high efficiency of MS instruments, more classical 

chemical methods can be used in metabolomics workflows. For example, chemical 

derivatization can help identify the functional groups and differential labeling can 

aid in the relative quantitation of metabolites by observing a specific mass shift and 

intensity ratio (Dettmer et al. 2007). Hydrogen/deuterium exchange methods also 

provide information on the number of exchangeable protons for identification of 

some functional groups like alcohols, amines, carboxylic acids, etc. (Dettmer et al. 

2007). 

1.4 .4 .1 Databases 

The number of metabolomics databases and their metabolite content is still limited 

in comparison with genomics and proteomics databases due to being relatively 

newer, and less straightforward. PubChem (Wang et al. 2009), METLIN (Smith et 

al. 2005) and KEGG (Kanehisa et al. 2004) provide simple mass-based searches 

while HMDB (http://www.hmdb.ca) provides clinical and molecular biology data as 

well. 
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Other useful metabolomics databases are Manchester metabolomics database 

(MMD) (Brown et al. 2009) that is created from other sources like genome scale 

metabolic models (Herrgârd et al. 2008), Human Metabolome Database (HMDB) 

(Wishart et al. 2007), Lipid Maps (Sud et al. 2007), BioCyc (Karp et al. 2005) and 

DrugBank (Wishart 2008). 

1.5 Research objectives 

LC-MS based metabolomics experiments produce a large amount of data which 

needs special care for data processing. As it was shown in previous section, data 

processing has several steps, where peak picking and ion annotation have great 

importance. As different peak picking software use various algorithms, the final 

results provided by these software may be different and directly affect 

metabolomics results. Hence, two objectives were defined for this research as 

follows: 

1. To compare four different peak picking software for untargeted metabolomics 

applications with the aid of MA TLAB programming. The studied peak detection 

workflows include three commercial packages, PeakView®, Markerview™, 

MetabolitePilot™, (all provided by AB Sciex), and freely available, XCMS online 

workflow. 

2. To develop MA TLAB-based code for ion annotation of peak picking results. 

These two approaches were designed to help the improvement of LC-MS based 

metabolomics as relatively new science to provide better performance in addressing 

biologically-important questions. In addition, in a separate project, a targeted 

metabolomics assay was improved by presenting the modifications on sample 

preparation procedure which covers the third main objective of the MSc thesis. 
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3. Quantitation of four carotenoid compounds in algal samples using HPLC-HRMS 

system. The aim of this work was to present a simple and fast extraction method for 

analyzing the carotenoid content of algal solutions in response to introduced stress 

conditions. 

1.6 Thesis outline 

This thesis has been organized as follows: 

Chapter 1 introduces metabolomics concepts, different branches of this new amie 

science, as well as an overview of the experiment pipeline. This chapter also 

presents the research objectives and layout of the thesis. 

Chapter 2 describes the research on comparison of peak picking workflows for 

metabolomics profiling research on two biological samples. Four different peak 

detection software were compared including three commercial software from AB 

Sciex (Peakview®, Markerview™, MetabolitePilot™) and XCMS Online (open­

source web-based software). Raw LC-MS data from two biological sample types 

(bile and urine) as well as a standard mixture of 84 compounds were processed with 

same criteria. Then, the overlaps between the results were investigated by a 

MA TLAB script developed for this purpose. Finally, the resulting lists of potential 

metabolites from each workflow were investigated using the METLIN database 

based on accurate precursor ion mass and MS/MS spectral matching. The 

performance of these four peak picking workflows was also evaluated with a 

custom standard mixture of 84 biologically-relevant small molecules. Work 

presented in this chapter is the subject of a published peer-reviewed article in Rapid 

Communications in Mass Spectrometry (Rafiei and Sleno 2015). 
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Chapter 3 presents the MA TLAB-based ion annotation workflow developed to fil ter 

out redundant peaks from peak picking results. This code was designed to import 

data from any peak generating workflow in excel format, perform different stages 

of filtering and results in more condensed peak lists by removing redundant peaks. 

After evaluation of the performance of this filtering method, the performance of 

four peak picking workflows, namely Peakview®, Markerview™, 

MetabolitePilot™ and XCMS online, were evaluated in terms of number of peaks 

found as redundant peaks by our newly developed "DataReduction" workflow. 

In chapter 4, a targeted metabolomics approach was developed for the absolute 

quantification of the changes in carotenoid content of three algal samples under 

stress conditions. Three different algae species are Haematococcus , Oocystis, and 

Muriellopsis. Carotenoid separation and subsequent analysis were done on a 

UHPLC instrument coupled to a hybrid quadrupole time-of-flight mass 

spectrometer. An online UV detector was also used for further confirmation of the 

studied compounds. Based on exact mass measurements, four carotenoids were 

quantified in control and stressed-algal samples. 



CHAPTERII 

COMPARISON OF PEAK PICKING WORKFLOWS FOR UNTARGETED 

LC-HRMS METABOLOMICS DATA ANAL YSIS 

This work has been published in a journal paper of Rapid communication in mass 

spectrometry with my contribution as first author (Rafiei and Sleno 2015). 

2.1 Abstract 

Data analysis is a key step in mass spectrometry-based untargeted metabolomics, 

starting with the generation of generic peak lists from raw LC-MS data. Due to the 

use of various algorithms by different workflows, the results of different peak 

picking strategies often differ widely. Raw LC-HRMS data from two types of 

biological samples (bile and urine) as well as a standard mixture of 84 compounds, 

were processed with four peak picking softwares: Peakview®, Markerview™, 

MetabolitePilot™ and XCMS Online. The overlaps between the results of each 

peak generating method were then investigated. To gauge the relevance of peak 

lists, a database search using METLIN online database was performed to determine 

which features had accurate masses matching known metabolites as well as a 

secondary filtering based on MS/MS spectral matching. In this study, only a small 

proportion of all peaks (Jess than 10%) were common to ail four software programs. 

Comparison of database searching results showed peaks found uniquely by one 

workflow have less chance of being found in the METLIN metabolomics database 

and even less likely to be confirmed by MS/MS. lt was shown that the performance 

of peak generating workflows has a direct impact on untargeted metabolomics 

results. As it was demonstrated that the peaks found in more than one peak 

detection workflow have higher potential to be identified by accurate mass as well 

as MS/MS spectrum matching, it is suggested to use the overlap of different peak 

picking workflows as prelimiD:ary peak lists for more rugged statistical analysis in 

global metabolomics investigations. 
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2.2 Introduction 

Although there is debate on the tenninology related to metabolomics (Villas-Bôas 

et al. 2005), it can be defined as the quantitative characterization of small molecules 

(metabolites) present in a biological sample (Lindon et al. 2011 ). It is a relatively 

new "omic" science, with potential applications in many research areas, such as 

drug discovery (Wishart 2008), oncology (Spratlin et al. 2009), medical diagnosis 

and therapeutic monitoring (Gowda et al. 2008) as well as food science (Wishart 

2008) and agriculture (Dixon et al. 2006). Metabolomics studies are divided into 

two main categories: targeted and untargeted. While in a targeted workflow, a pre­

defined list of metabolites is surveyed, untargeted metabolomics aims to obtain a 

global overview of as many metabolites as possible in the sample and to monitor 

changes caused by disease, drug treatment, etc. 

Biological samples studied in metabolomics are often very complex. For instance, 

estimates include > 1000 metabolites present in Escherichia coli (Feist et al. 2007) , 

>4000 for human serum (Psychogios et al. 2011), and between 5000 and 25000 for 

higher plants (Trethewey 2004). Working with this large number of compounds in 

untargeted studies requires special consideration when processing high resolution 

mass spectrometry (HRMS) data. 

Employing peak-picking workflows to filter raw LC-MS data is the first step in 

MS-based untargeted metabolomics data analysis. There are a wide variety of 

software packages available for this purpose. Sorne software are provided by 

commercial MS instrument vendors, such as MarkerView (AB Sciex), PeakView 

(AB Sciex), MarkerLynx (Waters), MassProfiler Professional (Agilent), SIEVE 

(Therrno) or ProfileAnalysis (Bruker). There are also freely available open or close 

source workflows, e.g. MZmine (Katajamaa and Oresic 2005), XCMS (Smith et al. 

2006), and MetAlign (Lommen 2009). Although there is no shortage of software 

available, various algorithms are used by different peak picking workflows, hence 
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final processed results can differ widely from each other. Peak picking workflows 

filter results based on one or more of the following parameters: signal-ta-noise ratio 

(SNR), intensity threshold, slopes of peaks, local maximum, shape ratio, ridge lines, 

model-based criterion and peak width (Yang et al. 2009). Zhang et al. have 

reviewed this subject in detail (Zhang et al. 2009). 

The effect of employing different peak picking algorithms on the same LC-MS data 

was investigated by Bauer et al. for proteomics applications (Bauer et al. 2011 ). 

Three peak detection algorithms including signal-to-noise ratio (SNR), template­

based peak detection and Continuous Wavelet Transform (CWT) were evaluated 

for protein analysis. By employing a defined set of reference peaks, sensitivity and 

specificity of peak picking algorithms were compared. Their results show that 

performance of SNR algorithms depends highly on data quality, while template­

based peak detection algorithms may ignore asymmetrical peaks. However, the 

latter showed robust performance for lower noise levels. The CWT method showed 

good performance for even relatively high noise but tuning the algorithm is difficult 

due to the high number of parameters involved. By employing both simulation data 

as well as real data, CWT method showed the best perfonnance. In another study, 

three peak detection packages were tested including mslnspect, MZmine, as well as 

an algorithm described in VIPER software and the effect of various peak-picking 

criteria was evaluated for each package (Zhang et al. 2009). The challenge is not 

exclusive to GC- and LC-MS based data. MALDI MS data was also subjected to 

the investigation on different peak detection algorithms including Cromwell, CWT, 

LMS, LIMPIC and PROcess (Yang et al. 2009). 

In this work, different peak picking software were compared rather than peak 

detection algorithms for two reasons. First, some workflows might use more than 

one algorithm for differentiating between peaks and noise, hence pure comparison 

of algorithms would be less useful. Secondly, peak picking algorithms used by 
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software may remain unknown by end-users using these commercial packages. 

Therefore, a practical approach of evaluating and comparing peak picking 

workflows for metabolomics applications is presented. Studied workflows include 

the use of three commercial software from AB Sciex (Peakview®, Markerview™, 

MetabolitePilot™) as well as XCMS Online (an open-source web-based software). 

Raw LC-MS data from two biological sample types (bile and urine) were processed 

with the four different workflows. In order to show differences between the 

performance of each software, the overlaps between the results were then 

investigated (using a "VennPro" MATLAB script). Finally, the resulting lists of 

potential metabolites from each workflow were investigated using the METLIN 

database based on accurate precursor ion mass and MS/MS spectral matching. The 

performance of these four peak picking workflows was also evaluated with a 

custom standard mixture of 84 biologically-relevant small molecules. 

2.3 Experimental 

2.3.1 Materials 

Cholic acid, deoxycholic acid, tryptophan methyl ester, sodium diclofenac, 

ibuprofen, S-benzyl-cysteine, l 7a-ethylestadiol, canthaxanthin, 3-

hydroxyanthranilic acid, kynurenine, kynurenic acid, formic acid and HPLC grade 

methanol were obtained from Sigma-Aldrich (Oakville, ON, Canada). Atrazine and 

anthranilic acid were from Fluka (Oakville, ON, Canada) and acetonitrile was 

obtained from Caledon (Georgetown, Ontario, Canada). Sodium hydroxide was 

purchased from Anachem (Lachine, QC, Canada). Ultrapure water was supplied by 

a Synergy UV purification system from Millipore (Billerica, MA, USA). PMl to 5 

MicroPlates™ were bought from Biolog (Hayward, CA, USA) as a source for many 

standard compounds. Urine and bile samples from individual healthy untreated dog 

(Beagle) were obtained from CiToxLAB (Laval, QC, Canada). 
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2.3.2 Sample preparation 

2.3.2.1 Standard mixture 

Initially, 84 stock solutions of known compounds with different physicochemical 

properties and molecular weight ranging from 88 to 564 g/mol were prepared. The 

detailed information of the sample preparation and list of metabolites (Table S 1) 

used in this compound mixture is presented at the end of this chapter 

(supplementary data for chapter 2). Each of the 84 compounds was directly injected 

into the mass spectrometer in both positive and negative mode, without 

chromatographie separation. From these direct (loop) injections, protonated ions 

(MH+) were observed for 78 metabolites and deprotonated ions (Mff) were 

observed for 73 metabolites. The mixture of 84 compounds was prepared by mixing 

each standard solution with a final concentration ranging from 1-500 µM for all 

molecules. 

2.3.2.2 Biological samples 

Urine and bile samples from untreated dog were subjected to molecular weight cut­

off (MWCO) filtering to reduce metabolite loss from the biological samples. 

Samples (undiluted urine and 5-fold diluted bile) were filtered using 0.45 µm 

regenerated cellulose spin filters (Canadian Life Sciences, Peterborough, 

ON, Canada) at 1250 rpm for 2 minutes, to remove any insoluble material, and then 

by 5 k:Da MWCO regenerated cellulose spin filters (Amicon, Oakville, 

ON, Canada) for 20 minutes at 14,000 rpm, thus removing any large molecules (e.g. 

proteins) from samples prior to analysis. Resulting samples were then diluted 10-

fold prior to HPLC-MS/MS analysis. The same procedure was performed with 

ultrapure water as a control (blank) to filter out any contaminant peaks resulting 

from filters, tubes or LC-MS system. 
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2.3.3 HPLC-MS analysis 

Samples (10 µl) were injected three times each onto a BetaBasic Cl8 column 

(2.1 x150 mm), with 3 µm particles (Thermo Scientific, Canada) using a Nexera® 

UHPLC system (Shimadzu, Columbia, MD). Liquid chromatographie separation 

was performed with mobile phases of 0.1 % formic acid in water (A) and 0.1 % 

formic acid in MeOH (B), with an initial hold at 3% for 2 min, followed by a 

gradient of 3- 50% B in 15 min, to 90% B at 20 min, held until 25 min, with a flow 

rate of 300 µl/rnin at 40 °C. 

Ali MS spectra were acquired on a high-resolution hybrid quadrupole-time-of-flight 

(QqTOF) TripleTOF® 5600 mass spectrometer (AB Sciex, Concord, ON, Canada) 

equipped with a DuolonSpray source, in positive and negative electrospray mode. 

The instrument perforrned a survey TOF-MS acquisition from m/z 80-800 with an 

accumulation time of 300 ms, followed by MS/MS on the four most intense 

ions frorn m/z 80-800 using information-dependent acquisition (IDA) with dynamic 

background subtraction (DBS). Each MS/MS had an accumulation time of 150 ms 

and collision-offset voltage of 30 ± 10 V. TOF-MS and MS/MS were automatically 

calibrated every four injections with an in-bouse standard mix (m/z 119-966 in 

negative mode and m/z 121-922 in positive mode) . 

2.3.4 Data Processing 

Data processing was performed in three steps: peak picking, MA TLAB processing 

followed by searching for potential metabolites in METLIN database using accurate 

mass and MS/MS spectral rnatching. The LC-MS data from bile, urine and a 

standard mixture in both positive and negative ionization modes were processed 

with PeakView, MetabolitePilot™, MarkerView and XCMS online by employing 

identical pararneters (±5 ppm mass accuracy, 500 cps threshold and minimum peak 

width of 5s). 



34 

2.3.4.1 Peak Picking 

Raw LC-MS data was processed with four peak picking software: 

MetabolitePilot™ 1.4, MarkerView TM 1.2, PeakView® 2.0 (AB SCIEX), as well as 

XCMS online (https://xcmsonline.scripps.edu/). The criteria used by each are given 

below. 

MetabolitePilot Minimum peak width: 5s, minimum chromatographie intensity: 

500 cps, smoothing before peak finding, sample/control ratio greater than 5. MS m/z 

tolerance: 10 ppm, minimum MS peak intensity: 500 cps, maximum number of 

metabolites : 1000. MetabolitePilot has a limit of 1000 peak/run for generic peaks, 

therefore mass range windows were set as narrow as necessary to have peak 

numbers not exceeding this limitation. Generated peaks were then visually 

inspected and peaks resulting from background noise were removed directly in 

software. 

MarkerView A feature peak list was created directly from raw data (.wiff) files 

with subtraction offset of 10 scans, minimum spectral peak width: 10 ppm, 

minimum RT peak width: 5 scans, signal-to-noise threshold of 5. Then LC-MS 

peak lists (*.peaks) from multiple samples were imported into MarkerView using 

the following criteria: retention time tolerance: 0.33 min, mass tolerance: 10 ppm, 

intensity threshold: 500. A t-test was then performed to compare samples (three 

replicates) with controls (three replicates) peaks with <5 fold increase compared to 

blank samples were then removed from peak list. 

PeakView Extracted ion chromatograms were visualized with a width of 0.02 Da, 

an intensity threshold of 500 cps and peak detection sensitivity at medium. 

Generated extracted ion chromatograms (XICs) were visually inspected and 

irregular peaks were removed. Sample XIC lists were then investigated in blank 
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samples and peaks with <5 fold signal intensity compared to blank were removed 

by employing a simple MA TLAB script. 

XCMS online Raw LC-MS data (.wiff) files were first converted to mzXML using 

ProteoWizard 3.0.3548 (Chambers et al. 2012). After uploading mzXML data to the 

XCMS website, a CentWave method was used for peak picking with the following 

parameters.: maximal m/z tolerance of 10 ppm, and peak widths from 5 to 30 s, 

mzwid: 0.015, minfrac: 0.5, bandwidth: 5. The resulting text file was exported into 

excel and all peaks with less than 5x for sample/control ratio were removed. 

2.3.4.2 MATLAB processing 

MATLAB R2012a (MathWorks, 2012) was used for processmg peak picking 

results. A "VennPro" MA TLAB-based workflow was developed to find overlaps 

between the results of the four tested workflows. It imports peak lists (in excel), and 

finds all possible overlaps between different groups. It can be used to find similar 

peaks across samples or across the results of different peak finding algorithms. It 

used a 10 ppm m/z window and 0.15 min difference in retention time to identify 

similar peaks. The results of this MATLAB script were used to draw venn­

diagrams for overlaps between peak picking results. 

2.3.4.3 METLIN database search 

METLIN web-based metabolomics database (http ://metlin.scripps.edu/index.php) 

was used for tentative identification of metabolites . Database matching was 

performed in two steps, including accurate mass and MS/MS spectral matching. For 

accurate mass filtering, 5 ppm mass tolerance was used for MH+ or Mff ions in 

positive and negative modes, respectively. The results were saved in .CSV format 
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and, employing a MATLAB script, the total number of m/z with at least one hit in 

the database was calculated as well as the number of metabolites with at least one 

available MS/MS spectrum in METLIN. For MS/MS matching, the information­

dependent acquisition (IDA) spectra having a quality score > 60 were used. After 

initial visual inspection, the most probable matches were evaluated by the "MS/MS 

spectrum match" option of METLIN by importing the 30 most intense peaks of 

each MS/MS spectrum into METLIN, using 10 ppm tolerance for precursor ion and 

0.05 Da for MS/MS. The results with match score > 60 were rep01ied as matched. 

Raw LC-MS data 

Peak finding workflow 

PeakView ® MarkerView™ MetabolitePilot™ XCMSonline 

---------.. ~ / ------
~ • "VennPro" MATLAB script 

Find overlaps between results 
of different workflows 

• ~~llN [ METLIN metabolomics database 

{ 

Exact mass matching 
Metabolite 

identification MS/MS spectrum match ing 

Figure 2.1 Method used in this study to compare four peak picking workflows. Raw LC­

MS data were processed with one of the following software: MetabolitePilot, MarkerView, 

PeakView and XCMS online. The overlaps between results were then found using an in­

house "Venn-pro" MATLAB script followed by METLIN online metabolomics database 

searching 
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2.4 Results and discussion 

The LC-MS data from standard mixtue, bile and urine in both positive and negative 

ionization modes were processed with four peak detection workflows including 

PeakView, MetabolitePilot, MarkerView and XCMS online by employing sirnilar 

criteria (5 ppm mass accuracy, 500 cps threshold and minimum peak width of 5 s). 

The workflow employed in this study is illustrated in Figure 2.1. For instance, 

MarkerView and XCMS represent the isotopie peaks among the results while 

PeakView and MetabolitePilot didn't indicate the isotopie peaks and may exclude 

them initially. In this work, all two dimensional results obtained directly from peak 

detection workflows Various definition have been used for the definition of "peak" 

in different software packages. MarkerView and XCMS represent the isotopie 

peaks while PeakView and MetabolitePilot did not indicate the isotopie peaks. In 

this work, all two dimensional results obtained directly from peak detection 

workflows are referred as "peak". 

2.4.1 Standard mixture 

A standard mixture of 84 known compounds was used in order to evaluate the 

performance of the different peak picking workflows compared in this study and 

also in order to compare the results of untargeted and targeted approaches . First, 

LC-MS data in positive and negative modes were processed with PeakView, 

MarkerView, MetabolitePilot and XCMS online. Then the overlaps between the 

results were found using "Venn-Pro" MATLAB script. METLIN search results for 

all peaks were investigated, using the molecular formula of known compounds. 

This resulted in 24 and 28 metabolites in positive and negative mode, respectively, 

found by at least one peak picking workflow and having a MS/MS spectrum 

available in the METLIN database. A second LC-MS/MS analysis was performed 

to acquire MS/MS spectra of these metabolites based on their accurate precursor ion 
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masses of protonated and deprotonated molecules using an inclusion list as MS/MS 

triggering (IDA) criteria. Figure 2.2 represents the Venn diagram for the results of 

MS/MS matched standard compounds. It was observed that a) none of the peak 

picking strategies resulted in 100% recovery of standard metabolites, with only 24 

metabolites being found in positive mode and 13 in negative mode, b) the capability 

for detecting standard metabolites varied widely between workflows. For instance, 

MarkerView found the highest number of metabolites with a recovery ratio of 23/24 

in positive mode. PeakView showed good performance (20/24), especially 

considering its much shorter preliminary peak list. MetabolitePilot and XCMS 

online gave similar results bath with a recovery ratio of 18/24. In negative mode, 

metabolites were identified based on the results of MarkerView and XCMS, while 

this number was 10 for PeakView and 11 for MetabolitePilot. lt also shows the 

complementary nature of different peak generating algorithms. For instance, from 

24 detectable metabolites in positive mode, only 13 metabolites are present in all 

four workflows. The lists of compounds from each region of the Venn-diagrams are 

presented in supplementary data (Tables S2 and S3). 

(18) 

Stdmix 
pos 

(18) (11) 

Stdmix 
neg 

PV 
(10) 

(12) 

Figure 2.2 The overlaps between detected standard metabolites (confinned by MS/MS 
spectral matching) using four peak picking workflows (MetabolitePilot (MP), MarkerView 
(MV), PeakView (PV) and XCMS online) for a standard mixture of 84 compounds in 
positive and negative ionization modes 
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A targeted metabolomics analysis was also performed using PeakView for the 

standard mixture in two steps: accurate mass matching and MSMS spectrum 

matching. In first step, extracted ion chromatogram survey (5 ppm mass accuracy) 

was done for protonated and deprotonated ions for positive and negative ionization 

modes, respectively. Manual analysis confirmed the presence of 40 compounds in 

positive mode, while 30 compounds were detected in negative ionization mode. At 

the consequent step, IDA results were compared with the MS/MS spectrum results 

of database. In this step 36 and 22 metabolites were completely matched to the 

METLIN data base results in positive and negative modes . The comparison of 

targeted analysis with the total number of peaks detected by four peak detection 

workflows in untargeted manner shows that al! untargeted results are covered with 

manual analysis. There are 12 and 9 metabolites in targeted analysis results that are 

not found by any of used peak detection workflows (Table S4 and SS). 

Severa! reasons may cause incomplete coverage of ail 84 metabolites either by 

anual analysis or automatic peak detection software: a) The experimental setup (e.g. 

chromatographie column and elution gradient) limits to observe a number of 

metabolites, b) Incomplete coverage of METLIN data base, 3/4 of metabolites had 

MSMS spectrum in each ionization modes, and c) Unavailable IDA experimental 

results prevents to confirm MS/MS matching for a number of metabolites. d) Not 

all of the compounds are observable in both ionization modes. 

2.4.2 Biological samples (bile and urine) 

Bile and urine represent complex biological samples with very different metabolic 

profiles. In Figure 2.3, TICs for both sample types in positive and negative modes 

are displayed and exhibit the contrast in polarity of the majority of metabolites 

present which can be detected by LC-MS. Also, bile interestingly shows much 

higher intensity in negative mode, presumably due to the presence of hydrophobie 

bile acids in this biofluid. As shown in Figure 2.4, the total number of peaks found 
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by each software varied greatly, e.g. MetabolitePilot found 9879 peaks for the urine 

data set in negative mode, Markerview and XCMS found 11553 and 11708 peaks, 

respectively, while PeakView found only 2015 peaks. PeakView, with the lowest 

number of generated peaks, showed a weak performance from this point of view in 

comparison with other workflows. Although XCMS found the largest peak lists for 

bile and the standard compound mixture in both positive and negative modes, the 

total number of peaks found by MarkerView was larger in the urine sample. These 

results indicate the importance of selecting an appropriate peak-picking step in 

untargeted metabolomics studies, since this procedure could impact directly on the 

final results of study. Nevertheless, it is not always the workflow yielding the 

highest number of peaks, which should be automatically deemed the best. This, of 

course, will depend on the quality of the resulting peak lists, for defining the 

metabolome without too many extraneous features being monitored, which could 

undoubtedly misguide the outcome of statistical analysis when different sample 

groups are to be compared in metabolomics fingerprinting studies. 

9.0E+6 -----------~ 

8 .0E+6 

7.0E+6 

> 6.0E+6 

-~ S.OE+6 

] 4.0E+6 

3.0E+6 

2.0[+6 

1.0[+6 

O.OE+O 

0 2 4 6 8 10 12 14 16 18 20 22 

RT(min) 

3.0E+7 ··~----------~ 

2.SE+7 
C) 

~ 2 .0E+7 · 

j l.SE+7 · 

l .OE+7 

5.0E+6 

0 2 4 6 8 10 12 14 16 18 20 22 

RT(min) 

4.SE+7 ~----------~ 

• .OEo7 B) 
3.sen 

> 3.0EO 

-~ 2.SE+7 

-~ 2.0E+7 

l.SE+7 · 

l .OE+7 

5.0E+6 

O.OE+O · 

0 2 4 6 8 10 12 14 16 18 20 22 

RT(min) 

3.SE+7 -----------~ 

1.ot•1 D) 

2.SE+7 

> 
·~ 2.0E+7 · 

] l .Sf+7 · 

LOf.+7 · 

5.0E+6 . 

0 2 4 6 8 10 12 14 16 18 20 22 

RT(min) 

Figure 2.3 Total ion chromatogram (TIC) for bile in positive and negative modes (A and B 

respectively) and urine in positive and negative modes (C and D respectively) . For added 

clarity, TICs from bile samples were scaled down 3-fold from 18-22 minutes in the above 

chromatograms 
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Regarding the total number of peaks found, the results of different peak picking 

algorithms differ widely from each other. In order to find overlapping peaks, peak 

lists from each of the four peak generating workflows were imported into a custom­

built "VennPro" MATLAB script (using 5 ppm mass and 0.15 min retention time 

tolerance, for assigning similar peaks). The average percent of peaks found in each 

overlap is represented in Figure 2.5. Results of this MATLAB processing, from 

each sample type in positive and negative modes illustrated separately, are also 

presented in supplementary data (Figure S 1 ). It was found that an average of 41 .1 % 

of total features are detected only by XCMS online without any overlap with other 

software. This weak overlap of XCMS with other software could actually be 

introducing more "noise" into the statistical analysis. Another criteria assessed was 

based on which software yielded the most "repeatability" with found peaks from 

other workflows. MarkerView showed the best results in this comparison being 

involved in the highest 2-way (9.9%) and 3-way (10.6%) overlaps. The higher 

performance of MarkerView is coherent with previous results (Figure 2.2) of 

detecting higher number of metabolites in standard mixtures. Ali four workflows 

yielded an overlap of 7.7% of all found peaks. This comparison led to the most 

certainty in peaks found by MarkerView. 
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Figure 2.4 Number of peaks found by different software: PeakView (PV), MarkerView 
(MV), MetabolitePilot (MP) and XCMS online for each sample type (bile, urine and 
standard mixture) in both positive and negative modes 
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Figure 2.5 Venn diagram representation of the average percent of overlaps between the 
results of four peak picking workflows; MetabolitePilot (MP), MarkerView (MV), 
PeakView (PV) and XCMS online 
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Precursor ion m/z values (MH+ or Mff) of all peaks were searched using the 

METLIN online metabolomics database (features with at least one hit in database 

(within 5 ppm) labeled as "metabolites" and at least one MS/MS spectra in Metlin 

labeled as "MSMS metabolites". The average percent of "metabolites" and "MSMS 

metabolites" are presented in Figure 2.6. Features found only by XCMS online, had 

the lowest percentage of metabolites in METLIN, with an average of 33% while 

peaks found only by PeakView and MetabolitePilot both had 53% with at Jeast one 

corresponding metabolite (within 5 ppm) in the database. Although it was expected 

that the percent of metabolites and MSMS metabolites increase by the number of 

overlaps (between two, three or four workflows), no evident relationship was found 

for accurate mass matching. It is probable that not all metabolites detected in these 

samples are present in the METLIN database. It was observed that the overlap 

between MetabolitePilot and PeakView had the highest percentage of found 

metabolites and "MSMS metabolites". This could indicate that their implemented 

algorithms for peak finding are the most similar. 
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Figure 2 .6 Average% of peaks witb at least one bit in METLIN database (metabolites) or 

at least one bit witb MSMS spectra (MSMS metabolites) for peaks in each region of Venn 

diagrams (average includes data from bile and urine in both positive and negative modes) . 

Acronyms shown indicate MetabolitePilot (MP), MarkerView (MY), PeakView(PV) and 

XCMS online (XC) 

The percentages of tentatively identified metabolites for different samples from 

each workflow are shown as supplementary data (Figure S2). It is demonstrated that 

PV yielded the highest % database matching (but with the shortest peak list) . It also 

shows that a higher proportion of peaks are found as metabolites and MSMS 

metabolites in positive mode, potentially as a function of more data being 

accumulated in positive mode and therefore more chance of these metaboli tes being 

present in metabolomics databases, such as METLIN. It is also seen that the urine 

sample contains more identifiable metabolites, compared to the bile sample. 

In a subsequent step, MS/MS spectral matching was performed from the results of 

information-dependent acquisition (IDA) triggered precursor ions. Confim1ed 

metabolites having MS/MS spectral matching METLIN score > 60 are shown in 

supplementary data (Figure S3). It was observed that almost all tentatively 
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identified metabolites are found either by MetabolitePilot or MarkerView (with or 

without overlap with others). These results also indicated a higher probability of 

MS/MS matching for peaks present in the 4-way overlap of Venn diagrams. The 

results of MS/MS spectral matching correlates with accurate mass matching results 

in terms of higher number of identified metabolites in urine versus bile, and in 

positive mode versus negative mode. It must be noted that the generic IDA criteria 

used for triggering MS/MS resulted in a low % of peaks found to have high quality 

MS/MS spectra associated to them. A higher proportion of fragmentation spectra 

would be possible if inclusion lists were used for subsequent analysis based on mlz 

values found following peak picking workflows. This would however necessitate an 

extra LC-MS injection to acquire this data. Tentatively identified metabolites from 

biological samples (urine and bile) have also been compiled into Supplemental 

Tables S6-S9. 

In a separate analysis the results of peak picking workflows for both biological 

samples and standard mixture were evaluated to investigate the possible effect of 

retention time in peak detection efficiency. The number of peaks found by different 

peak detection workflows was calculated for five equal portions of chromatogram 

(0-5 min, 5-10 min, etc.). Although the percentage of the peaks detected in different 

parts of chromatogram was sample dependent, no significant difference among peak 

detection workflow was observed for the percentage of peaks found in any parts of 

chromatogram. In a parallel analysis, the peaks located in different portions of venn 

diagrams was evaluated in terms of any special trend in their retention time 

information. It was observed that the peaks found in the 20-25 minutes retention 

time windows have slightly higher probability to be found by only one workflow 

(Figure S4). It could be due to the column bleeding which occurs more in this 

region of the chromatogram. 
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To have a better comparison between the tested workflows, the practical advantages 

and disadvantages of each were also considered. MarkerView and XCMS online 

yield results in the fastest time. PeakView and MetabolitePilot allow visual 

inspection of extracted ion chromatograms for all detected peaks. XCMS online 

also provide visual inspection of peaks, however, it is very time consuming, as each 

XIC graphies is stored in separate files. MarkerView and XCMS online are able to 

identify isotopes and remove them easily. XCMS online has the great advantage of 

being free and open source, however, this does leave the user at the mercy of proper 

updating and maintenance of the system. MetabolitePilot had a limitation of 1000 

peaks for each peak generating run and can therefore be very time-consuming, 

especially when dealing with complex biological samples. This is likely a function 

of the fact that MetabolitePilot was developed mainly for investigating metabolism 

of drugs or other xenobiotics where criteria can be added for filtering metabolites of 

interest based on structural similarities to the parent compound and also contrais 

can be used to easily remove "interfering" endogenous metabolites from the 

resulting lists in drug metabolism workflows. MarkerView, MetabolitePilot and 

XCMS have the ability to directly filter the resulting peak lists compared to controls 

in terms of fold change and statistical significance in a streamlined manner while 

manual comparison between sample and control is necessary in PeakView. An 

ideal workflow would integrate the ability to filter out peaks based on possible in­

source adducts and fragment ions, neither of which was possible easily with the 

tested software. 

In this study, main processing parameters including m/z tolerance, retention tüne 

window and intensity threshold were selected identical to fairly perform the 

comparison. Each peak detection workflows also have its own parameters 

( depending on the processing algorithm) which were selected as defaults values. 

Hence, the performance of peak detection workflows may be slightly higher that 
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what is shown in this study as processmg parameters used may differ from 

optimized values. 

The challenge for selection of appropriate peak detection could be approached in 

different ways. For instance, an ideal situation would be to use peak detection 

workflow with highest performance however the comparison of all peak detection 

workflows is not readily available and not all peak picking workflows offer similar 

processing options needed for researcher. In addition, compatibility of the data 

format and peak detection workflow, availability (in case of commercial software) 

as well as the need for special knowledge (for example, programming skills in R 

based XCMS), and friendly graphie interface may affect the workflow selected by 

researcher. Another approach would be to combine peak detection data from 

multiple tools and assign peaks with statistical scores based on the number of tools 

detect them. The results of our study shows that the peaks detected by more than 

one workflow have higher potential to be identified by accurate mass as well as 

MS/MS spectrum matching. On the other hand, peaks that are detected by only one 

peak detection workflow still may contain important biological information 

although with lower chance. 

Among the studied peak picking workflows, MarkerView showed a better recovery 

ratio for standard compounds as well as having larger overlaps with other peak 

generating workflows for complex biological samples. MarkerView's perfonnance 

could be due to employing three replicate samples to perform t-test, (to be similar 

with other software compared in this paper). This result is in agreement with the 

importance of alignment process which found matching peaks through multiple 

samples in metabolomics studies. 
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2.5 Conclusions 

Four peak generating software were evaluated for untargeted peak picking in a 

metabolomics workflow. The performance of peak picking workflows was shown 

to have a direct impact on the final results. Vast differences in resulting peak lists 

were observed when different peak picking strategies on identical LC-HRMS data 

from complex urine and bile samples as well as a standard metabolite mix was used. 

Among the studied peak picking workflows, MarkerView showed a better recovery 

ratio for standard compounds as well as having larger overlaps with other peak 

generating workflows for complex biological samples. In addition, a targeted 

approach was performed on the standard mixture and it was shown that there were a 

number of metabolites undetectable by ail used peak detection workflows. 



Supplementary data for chapter 2 

Table S 1 Compounds used in standard mixture for evaluating the four peak picking 

workflows 

Exact 
# Compound Formula mass # Compound Formula 

(Da) 

1 Pyruvic acid C3H4Ü3 88 .0160 43 
Methionine CsH11NÜ3 
sulfoxide s 

2 Putrescine C4H1 2N2 88. 1000 44 Phenylalanine C9H11N02 

3 Alanine C3H7N02 89.0477 45 Cysteic acid C3H7NOsS 

4 Lactic Acid C3H60 3 90.03 17 46 Pyridoxine CsH11 N03 

5 Acetoacetic acid C4H60 3 102.0317 47 
a-Glycero l-

C3H90 6P phosphate 

6 Serine C3H7N03 105.0426 48 Arginine C6H1 4N402 

7 Cytosine C4HsN30 111 .0433 49 Citrulline C6H13N3Ü3 

8 Histamine C5H9N3 111 .0796 50 lnositol C6H1 2Ü6 

9 Uraci l C4H4N202 112.0273 51 Tyrosine C9H11 N03 

JO Pro li ne C5H9N02 115.0633 52 Phosphoserine C3HsN06P 

11 Valine CsH11N02 11 7.0790 53 Kynurenic acid C10H1NÜ3 

12 Succinic Acid C4H604 118.0266 54 
Glycyl-aspartic 

C6H10N20 s ac id 

13 Threonine C4H9NÜ3 11 9.0582 55 Quinic acid C1H1 2Ü6 

14 Phenethylamine CsH11N 121.089 1 56 Phosphothreonine C4H10N06 
p 

15 Nicotinamide C6H6N20 122.0480 57 Spermine C10H26N4 

16 Nicotinic acid C6NHs0 2 123 .0320 58 Tryptophan C11H1 2N20 
2 

17 Thymine CsH6N20 2 126.0429 59 lbuprofen C13H1 s0 2 

18 
Pyroglutamic 

C5H7N03 129.0426 60 Kynurenine C10H1 2N20 
ac id 3 

19 Agmatine CsH1 4N4 130.12 18 61 Phosphocreatine C4H10NPs 
p 

20 Hydroxyproline CsH9NÜ3 131.0582 62 S-Benzyl-cysteine C10H 13N02 
s 

21 Leucine C6H13N02 131.0946 63 Atrazine CsH14CINs 

22 
Methyl 

C5Hs04 132.0423 64 Taurocholic acid C26H4sN01 
succinate s 

23 Asparagine C4HsN2Ü3 132.0535 65 Trp methyl ester C1 2H1 4N20 
2 
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Exact 
mass 
(Da) 

165.0460 

165.0790 

169.0045 

169.0739 

172.0137 

174.1117 

175.0957 

180.0634 

181 .0739 

185.0089 

189.0426 

190.0590 

192.0634 

199.0246 

202.2157 

204.0899 

206.1307 

208.0848 

2 11.0358 

211.0667 

215 .0938 

515 .2917 

2 18.1055 
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24 Ornithine CsH1 2N20 2 132.0899 66 
N-Acetyl-

C8H15N06 221.0899 
mannosamine 

25 Aspartic Acid C4H7N04 133 .0375 67 Cystathionine C7H1 4N204 222.0674 s 
26 Adenine C5H5N5 135 .0545 68 Thymidine C10 H1 4N20 242.0903 

5 

27 Anthranilic acid C7H7N02 137.0477 69 Cytidine C9H13N30 5 243.0855 

28 Tyramine CsH11 NO 137.0841 70 Uridine C9H12N20 6 244.0695 

29 Glutamine CsH10N20 3 146.0691 71 Deoxyadenosine C1oHnN50 251.1018 
3 

30 Lysine C6H1 4Ni02 146.1055 72 Adenosine 
C10H13N50 

267.0968 
4 

31 Glutamic acid CsH9NÜ4 147.0532 73 Inosine C1 0H1 2N40 268.0808 
5 

32 Methionine CsH11N02 149.0511 74 N-Phthaloyl-Glu Cn H1 1N06 277.0586 s 
33 Guanine C5H5N50 151 .0494 75 Guanosine 

C10H13N50 
283.0917 

5 

34 Xanthine CsH4N402 152.0334 76 
17a-

C20H24Ü2 296.1776 
Ethynylestradiol 

p-OH 
C1 4H11Cl2 35 phenylacetic C8H80 3 152.0473 77 Diclofenac 

N02 
295.0167 

ac id 

36 
3-0H anthranilic 

C7H7NÜ3 153 .0426 78 CMP C9H1 4N3Üs 323.0519 
ac id p 

37 Octopamine CsH11N02 153.0790 79 UMP C9H13N20 9 
324.0359 p 

38 Histidine C6H9N30 2 155 .0695 80 AMP C10H1 4NsO 347.0631 
7P 

39 Orotic acid CsH4N2Ü4 156.ül71 81 GMP C10H14NsO 363.0580 
sP 

40 
a-ami no-

CsH17N02 159.1259 82 Deoxycholic acid C24H40Ü4 392.2927 caprylic acid 

41 Carnitine C7H15N03 161.1052 83 Cholic acid C24H40Üs 408.2876 

42 Ethionine 
C6H13N02 163.0667 84 Canthaxanthin C40Hs2Ü2 564.3967 s 
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Figure S 1 Venn diagram representation of the overlaps between the results from four peak 

picking software (MetabolitePilot (MP), MarkerView (MV), PeakView (PV), XCMS 

online) used to filter LC-MS data from bile and urine in positive and negative modes 
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Figure S2 Percentage of metabolome database matching for the results of four peak picking 

workflows (MetabolitePilot (MP), MarkerView (MY), PeakView (PV), XCMS online 

(XC)) from bile and urine sample in positive and negative modes, peaks with at least one 

bit in METLIN database are shown as metabolites and those with at least one MSMS 

spectra (to be inspected in Metlin) are presented as MS/MS met 
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Figure S3 Venn diagram representation of the overlaps between the results of MS/MS 

spectrum match (METLIN score>60) from four peak picking software MetabolitePilot 
(MP), MarkerView (MV), PeakView (PV), XCMS online on raw LC-MS data from bile 
and urine in positive and negative modes 
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Table S2 Metabolites found by each peak picking workflow from standard mixture in 
positive ionization mode (confirmed with MS/MS match from METLIN database) 

RT Found bv 
Metabolite 

(min) MP MV PV XC 
Histidine 1.6 - ./ - -

Cytidine 2.6 - - - ./ 

UMP 1.9 ./ ./ - -

Cytosine 1.6 - ./ - ./ 

Tyramine 2.7 ./ ./ ./ -

Uridine 2.4 ./ ./ ./ -

Leucine 2.8 ./ ./ ./ -

Uracil 1.9 ./ ./ ./ -

Pro li ne 1.6 - ./ ./ ./ 

Phenylanine 5.0 - ./ ./ ./ 

Kynurenine 4.5 - ./ ./ ./ 

Tryptophan 7.5 ./ ./ ./ ./ 

Tyrosine 2.4 ./ ./ ./ ./ 

Adenine 3.9 ./ ./ ./ ./ 

Guanine 3.7 ./ ./ ./ ./ 

Guanosine 3.7 ./ ./ ./ ./ 

Thymidine 5.8 ./ ./ ./ ./ 

AMP 2.3 ./ ./ ./ ./ 

Pyridoxine 2.2 ./ ./ ./ ./ 

Anthranili c acid 9.4 ./ ./ ./ ./ 

Kynurenic acid 9.0 ./ ./ ./ ./ 

Thymine 3.2 ./ ./ ./ ./ 

Xanthine 2.5 ./ ./ ./ ./ 

GMP 2.4 ./ ./ ./ ./ 
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Table S3 Metabolites found by each peak picking workflow from standard mixture in 
negative ionization mode (confirmed with MS/MS match from METLIN database) 

Metabolites 
RT Found by 

(min) 
MP MY PV XC 

Inositol 1.6 - ./ - ./ 

Quinic acid 1.6 - - ./ ./ 

l 7a_Ethynylestradiol 19.4 ./ ./ ./ -

Cytidine 1.8 ./ ./ - ./ 

Pyridoxine 2.2 ./ ./ - ./ 

Deoxycholic acid 21.8 ./ ./ ./ ./ 

Cholic acid 21.1 ./ ./ ./ ./ 

Tyrosine 2.7 ./ ./ ./ ./ 

Diclofenac 20.5 ./ ./ ./ ./ 

Uridine 2.5 ./ ./ ./ ./ 

Kynurenine 4.5 ./ ./ ./ ./ 

Thymidine 5.8 ./ ./ ./ ./ 

Guanosine 3.8 ./ ./ ./ ./ 
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Table S4 Metabolites identified by targeted approach in standard mixture (pos) with 

METLIN MS/MS matching which had not been detected by any of the automated peak 

detection workflows 

Metabolites RT (min) 

Glutamic acid 1.6 
Camitine 1.6 
Octopamine 1.7 
Valine 1.8 
CMP 1.8 
Methionine 2.0 

Nicotinic acid 2.0 

Adenosine 3.6 
2-deoxyadenosine 3.9 
3-0H anthranilic acid 5.6 
Phenylethylamin 5.9 

Atrazine 17.9 

Table SS Metabolites identified by targeted approach in standard mixture (neg) with 

METLIN MS/MS matching which had not been detected by any of the automated peak 
detection workflows 

Metabolites RT(min) 

Orotic acid 1.7 

CMP 1.8 

AMP 2.4 

GMP 2.8 

Adenosi ne 3.4 

Trypt ophan 7. 5 

Kynu renic acid 9.1 

N-phthaloyl-Glu 11.7 

lbuprofen 20.7 
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Table S6 Identified metabolites in urine (pos) with METLIN MS/MS matching score of 

higher than 60 ( each individual peak might results in several possible metabolites, ail of 

which are presented here). Metabolites found in standard mixture with matching retention 

times are assigned with a star 

m/z 
RT 

metabolite m/z 
RT 

metabo lite 
(min) (min) 

95.01 61 1.8 Dimethyl sulfone 165.0542 5.9 p-Coumaric acid 

100.0756 3.8 8-Valerolactam 165.0543 2.6 p-Coumaric acid 

100.11 24 4.2 Cyclohexylammonium 166.07 19 2.8 Meth ylguanine 

113.0595 4.3 Sorbic acid 166.0857 5.1 Phenylalanine* 

11 5.0752 9.9 3-Methyl-4-pentenoic ac id 167 .0703 10.1 
3-(2-0 H-phenyl)propion ic 

ac id 

115 .0752 9.9 4-Hydroxy hexenal 167 .0703 10.1 lsopenol 

11 5.0752 9.9 y-Caprolactone 168 .10 12 4.1 0 -Methyldopamine 

11 5.0752 9.9 8-Hexalactone 17 1.0647 7.9 
3,4-Dihydroxyphenyl 

glyco l 

116.0703 2.0 
Aminocyclobutane 

175.086 1 5.6 lndole-3-acetamide 
carboxylic acid 

122.0265 9.2 Cysteine 175.0963 12.6 Suberic ac id 

127.0389 3.2 Larixinic acid 177.0906 17.3 
5,6,7 ,8-Tetrahydro-2-

naphthoic acid 

127.0389 3.2 
4-Hydroxy-6-methylpyran-

180.05 16 2.9 lsoxanthopterin 
2-one 

127.0497 1.7 Thymine 181.0606 7.5 Nicotinuri c acid 

130.0498 7.9 
2-Pyrrolidone-5-carboxylic 

188.0700 15.5 3-Amino-2-naphthoic acid 
ac id 

130.0498 7.9 Pyroglutamic acid 188 .0700 15 .5 lndoleacrylic ac id 

130.0500 3.7 
2-Pyrrolidone-5-carboxylic 

188 .0700 15 .5 Genkwanin 
ac id 

130.0500 3.7 Pyroglutamic acid 188.0700 15.5 Wogonin 

130.0500 4.9 
2-Pyrro lidone-5-carboxylic 

188.0700 15.5 Glyc itein 
ac id 

130.0500 4.9 Pyroglutamic acid 188 .0700 15.5 Biochanin A 

132.101 5 2.8 
Leucine* (Iso-, Nor-, Allo-

188 .0707 7.5 lndoleacrylic acid 
leucine) 

137.0452 2.2 Hypoxanthine 189. 1225 6.3 
Gly Leu/Ile (or Leu/Ile 

Gly) 

137.0452 2.2 Allopurinol 189. 123 1 1.9 N-(E or a)-Acetyl-lysine 

137.0452 6.2 Hypoxanthine 190.07 1 2.4 N-Acetyl-glutamic acid 

137 .0452 6.2 Allopurinol 190.11 78 1.7 N6-Carbamoyl-Lysine 

138 .0547 1.6 p-Aminobenzoic ac id 191.1022 3.0 2,6-Diaminoheptanedioate 

138.0547 1.6 2-Pyridylacetic acid 192 .0655 10.6 
5-Hydroxyindoleacetic 

ac id 

139.0387 5.9 3,4- 193 .0495 10.9 5,7-Dihydroxy-4-
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Dihydroxybenzaldehyde methylcoumarin 

146.0594 6.3 lsoquinoline N-oxide 195 .0651 11.1 Erbstatin analog 

146.0597 10.6 lsoquinoline N-oxide 195 .0651 11.1 Scyta lone 

146.0598 8.2 lsoquinoline N-oxide 195.0761 5.8 Aminohippuric acid 

147.0439 7.6 Cou marin 206.0448 8.5 Xanthurenic acid 

147.0442 10.4 Coumarin 209.0805 10.3 Dimethylcaffeic acid 

149.0593 5.1 trans-Cinnamic ac id 209.09 16 4.5 Kynurenine* 

149.0594 9.0 trans-Cinnamic ac id 211.1 330 11.0 Jasmonic acid 

149.0958 11.3 Cuminaldehyde 215 .1272 15 .2 
(3-Me-cyclohexane-

diyl)diacetic ac id 

151.0747 14.3 m-Tolylacetic acid 215 .1385 4.7 Pro Va l 

151.0747 14.3 3,4-Dimethylbenzo ic acid 218. 1382 3.1 Propionyl-carni tine 

151 .0747 14.3 2-Phenylpropionic acid 224.09 14 8.0 Acetyl-tyrosine 

151.0749 13.8 3,4-Dimethylbenzoic acid 23 1.1586 15 .1 Dodecanedioic acid 

151.075 13.1 3,4-Dimethylbenzo ic acid 23 3. 11 33 3.3 Asp Val 

153.0403 5.1 Xanthine 247. 1083 12.3 N-Acetyl-tryptophan 

153.0908 11.3 4-Hydroxy nonenal alkyne 247. 1289 7.0 
Leu/Il e Asp (or Asp 

Leu/Ile) 

154.0492 3.5 Aminosalicylic Acid 252. 1082 3.7 Deoxyadenosine 

154.0496 4.7 Aminosalicylic Acid 259.09 19 1.7 5-Methyluridine 

154.0496 4.7 3-Hydroxyanthranilic acid 268 .1034 3.4 Adenosine 

154.0498 6.9 Aminosalicylic Acid 268. 1034 3.4 Vidarabine 

154.0498 6.9 3-Hydroxyanthranilic acid 27 1.0600 17.4 Galangin 

154.0971 1.8 Nffi-Acetylhistamine 285.0757 16.5 Prunetin 

155.0697 11 .5 
2,6-Dihydroxy-4-

285.0757 16.5 Acacetin 
methoxytoluene 

155.0697 11.5 
3,4-Dihydroxyphenyl 

290.1349 4.1 Asp Gly Val 
ethanol 

155.0701 7.9 
2,6-Dihydroxy-4-

295 .1 29 9.5 Glu Phe (or Phe Glu) 
methoxytoluene 

156.0766 6.5 Histidine 297.1075 5.1 Asp Tyr 

157.121 7 17.0 4-Hydroxy nonenal 298.1145 5.6 2-Methylguanos ine 

158.0965 10.1 
8-lsoquinoline 

298.1145 5.6 Nelarabine 
methanamine 

160.0750 12.0 1-Acetylindole 299 .1853 18.3 
13, l 4-dihydro- 15-keto-

tetranor PGD2 

160.0750 12. 0 lndoleacetaldehyde 299.1853 18.3 
13, l 4-dihydro- 15-keto-

tetranor PGE2 

161.0803 9.9 3-Methyladipic acid 338. 1334 8.5 
Asp Gly Phe (Gly Asp 

Phe) 

161.0803 9.9 Pimelic acid 354.1 280 5.3 
Gly Asp Tyr (or 

YDG/DYG) 

16 1.0803 9.9 3,3-Dimethylglutaric acid 447.0910 10.8 Baicalin 
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Table S7 ldentified metabolites in urine (neg) with METLIN MS/MS matching score of 
higher than 60 (each individual peak might results in several possible metabolites which are 

ail presented here). Metabolites found in standard mixture with matching retention times 
are assigned with a star 

m/z 
RT 

Metabolite m/z 
RT 

metabolite (min) (min) 

131.0352 5.5 Dimethylmalonic acid 172.9913 5.9 
4-Hydroxybenzenesulfonic 

ac id 

131.0352 5.5 Methylsuccinic acid 173 .0824 12.8 Suberic acid 

131.0352 5.5 Glutaric acid 175.0611 8.9 2-lsopropylrnalic acid 

137.0250 7.0 Salicylic acid 181.0505 7.6 3-Methylorsellinic acid 

138.0201 2.8 
3 (or 6)-Hydroxypicolinic 

181.0507 6.0 
3,4-

ac id Dihydroxyphenylpropanoate 

144.0460 8.3 Isoquinoline N-oxide 181.0507 6.0 Flopropione 

145.0506 7.2 3-Methylglutaric acid 187.0978 17.9 Nonic acid 

145.0506 7.2 Adipic acid 191.0202 2. 1 Citric acid 

145.0506 7.2 2,2-Dimethyl Succinic acid 193.0617 5.9 Arninohippuric acid 

151.0265 2.5 Oxypurinol 194.0459 6.3 Salicyluric acid 

151 .0265 2.5 Xanthine 194.0467 10.5 Salicyluric acid 

151.0402 6.6 
4-Hydroxy-3-

195.0659 11.7 Homoveratric acid 
methylbenzoic acid 

151.0402 6.6 Hydroxyphenylacetic acid 195 .0666 9.2 Homoveratric acid 

151.0402 6.6 p-Anisic acid 197.0453 6.8 Syringic acid 

151.0402 6.6 3-Cresotinic acid 197.0453 6.8 
2-Hydroxy-3 ,4-

dirnethoxybenzoic acid 
151.0402 6.6 Mandelic acid 201.1135 17.9 Sebacic acid 

155.0098 2.4 Orotic acid 203.0824 7.6 Tryptophan 

157.0368 1.6 Allantoin 204.0662 13.1 Cinnarnoylglycine 

159.0668 10.0 Pimelic acid 204.0671 12. 1 3-Indolelactic acid 

159.0668 10.0 3-Methyladipic acid 212.0028 7.1 lndoxylsulfuric acid 

164.0357 12.4 N-Formylanthranilic acid 213 .1130 17.6 
3-Me-cyclohexane- I , 1-diyl 

diacetic acid 

164.0579 2.3 Methylguanine 223 .0611 9.3 Sinapic acid 

164.0718 5.2 Phenylalanine 229.1442 17.5 Dodecanedioic acid 

165.0559 9.7 Tropic acid 243.0616 1.9 Uridine* 

165.0559 9.7 Dihydro-3-coumaric acid 243.1598 20.0 Undecanedicarboxylic acid 

165.0559 9.7 Atrolactic acid 245.0935 12.5 N-Acetyl-tryptophan 

165.0559 9.7 
3-(2-0Hphenyl)propionic 

253.0503 16.2 Daidzein 
ac id 

167.0215 2.1 Urie acid 255.0663 15 . l Isoliquiritigenin 

167.0349 6.8 Homogentisic acid 257.1757 20.5 Tetradecanedioic acid 
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Dihydroxyphenylacetic 
3-0Me-4-

167.0350 4.8 263.0227 2.7 OHphenylethylene glyco l 
ac id 

sulfate 

167.0350 4.8 Homogentisic acid 296.0996 5.7 Methylguanosine 

172.0981 11.4 Acetyl-Leucine 308.0984 1.6 N-Acety lneuraminic Acid 

Table S8 Identified metabolites in bile (pos) with METLIN MS/MS matching score of 

higher than 60 ( each individual peak might results in several possible metabolites which are 

ail presented here). Matched metabolite with standard mixture is assigned with a star 

m/z RT metabolite m/z 
RT 

metabolite 
(min) 

93.0547 1.6 Glycerol 227 .1139 9.3 Carnosine 

130.0500 1.9 
2-Pyrrolidone-5-carboxylic 

227.1139 9.3 His Ala 
ac id 

130.0500 1.9 Pyroglutamic acid 255 .0660 13.5 Daidzein 

136.06 17 3.5 Adenine* 255.0660 13 .5 3, 7-Dihydroxyflavone 

137.0459 3.7 Hypoxanthine 258. 1083 2.3 5-Methylcytidine 

137.0459 3.7 Allopurinol 269.0886 3.7 lnosine 

149.0594 9.3 trans-Cinnamic acid 271.0602 14.8 Galangin 

151.0750 16.5 m-Cresyl acetate 273.0754 1!. 1 Naringenin 

15 1.0750 16.5 3,4-Dimethylbenzoic acid 285 .0760 13.8 Prune tin 

156.076 1 9.3 Histidine 285 .0760 13 .8 Acacetin 

166.0718 2.3 Methylguanine 285 .0760 13.8 Genkwanin 

180.05 16 3.0 Isoxanthopterin 285 .0760 13.8 Wogonin 

180.0652 8.4 Hippuric acid 285.0760 13.8 Glycitein 

183 .0515 6.1 1 -Methyluric acid 285.0760 13.8 Biochanin A 

188.0701 12.5 3-amino-2-naphthoic acid 289.2160 16.4 
trans-

Dehydroandrosterone 

188.0701 12.5 Indoleacrylic acid 298.1145 5.6 Methylguanosine 

194.0805 9.4 Phenylacetylglycine 298.1145 5.6 Nelarabine 

194.0805 9.4 Methylhippuric acid 4 17.1176 11.7 Daidzin 

198 .0864 1.7 N-Acetyl-L-Histidine 447 .0933 13 .0 Baicalin 

206.0452 8.6 Xanthurenic acid 449.1077 9.9 
Naringen in-0-P-

Glucuronide 

220. 1181 6.4 Pantothenic Acid 466.3 146 20.4 Glycocholic Acid 

225.1958 19.1 N,N'-Dicyclohexylurea 500.3033 21.9 
Cholanic acid diol 
sulphoethylamide 

227.1139 9.3 AlaHis 516.2992 19.5 Taurocholic acid 
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Table S9 Identified metabolites in bile (neg) with METLIN MS/MS matching score of 

higher than 60 ( each individual peak might results in several possible metabolites which are 

ail presented here) 

m/z 
RT 

metabolite m/z 
RT 

metabolite (min) (min) 

137.0252 6 Salicylic acid 266.0894 3.5 Yidarabine 

164.0581 2.3 Methylguanine 266.0894 3.5 Deoxyguanosine 

167.0216 2.1 Urie acid 267.0729 3.8 lnosine 

167.0353 7.0 5-Methoxysalicylic acid 283.06 11 13.9 Physc ion 

172.0979 11.4 Acexamic acid 283 .0611 13.9 Prunetin 

172.0979 11.4 Acetyl-leucine 283 .0611 13.9 Glycitein 

178.0372 3.0 xanthopterin 283.06 11 13.9 Wogonin 

191.0199 2.2 Citric acid 283.0611 13.9 Acacetin 

204.0301 8.7 Xanthurenic acid 283.06 11 13.9 Biochanin A 

2 12.0023 7.3 Indoxylsulfuri c acid 296.1000 5.7 Methylguanosine 

225.0992 7.7 Carnosine 346.0551 2.5 
Adenosine 3'-

monophosphate 

263 .0222 2.8 
3-0Me4-

OHphenylethyleneglycolsulfate 
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CHAPTER III 

ENHANCING UNT ARGETED METABOLOMIC DATA ANAL YSIS BY A 

NOVEL DATA REDUCTION WORKFLOW 

3.1 Abstract 

Data analysis is a crucial step in many bioanalytical workflows, including 

untargeted mass spectrometry-based metabolomics. This branch of metabolomics 

deals with tens of hundreds (or thousands) of features from raw data with the 

eventual goal of detecting molecules involved in important biological pathways 

and/or biomarkers of disease. In untargeted metabolomics research, the data 

processing usually consists of two general steps, peak list generation and metabolite 

identification. Most peak-generating workflows are incapable of distinguishing 

protonated intact molecules from adducts, for example, making feature 

identification complicated and time-consuming. A MA TLAB-based workflow 

designed to remove isotopes, radical ions, adducts and in-source fragments from a 

raw feature list in order to have a higher proportion of intact protonated ions in the 

resulting filtered list is presented. It imports data (in excel-compatible format) from 

any peak generating workflow (in bath positive and negative ionization modes), 

applies different processing steps and results in a more condensed and reliable 

feature list. Four peak picking workflows, using namely PeakView®, 

Markerview™, MetabolitePilot and XCMS online, were evaluated in terrns of 

number of peaks which could be filtered out, and thus be deemed as "redundant" 

features , using the developed DataReduction workflow. 

3 .2 Introduction 

MS-based untargeted metabolomics data analysis begins by treating raw data with 

peak-picking algorithrns (also known as peak or feature detection). There are two 
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main challenges for this step. The first is to select the appropriate approach, since a 

wide variety of software packages are available for this purpose. A comparison was 

done of four peak picking workflows and the results were presented in Chapter 2 of 

this thesis. 

Due to the fact that each neutral molecule has the potential of being observed at 

several m/z values in MS-based metabolomics, the second challenge is to identify 

and remove redundant peaks from peak picking results, namely non-mono-isotopie 

ions, in-source fragments , multiply charged species, adduct and cluster ions 

(Katajamaa and Oresic 2007) (Kuhl et al. 2011). Thus, it should be considered that 

not all observed m/z values detected correspond to unique metabolites. Considering 

the fact that most software packages are unable to identify these types of redundant 

peaks, a non-filtered mass-based search from initial peak picking results can cause 

false identification of metabolites (Varghese et al. 2012). Depending on the sample 

type and ionization mode, the number of molecules forming multiple ion species is 

different. It was demonstrated by Brown et al., that depending on sample type and 

mass spectrometry method used, between 14% and 33% of metabolites could be 

observed at more than one m/z. For placenta) footprints, 1 in 3 or 33% metabolites 

were detected as multiple ions in one analytical run (Brown et al. 2009). 

Several attempts have been made to develop workflows for ion annotation. For 

instance, CAMERA, a freely-available R-based package, performs ion-annotation 

on peak picking results from R-based XCMS. lt uses retention time and similarity 

between peak shapes to group correlated peaks. It then calculates the difference 

between mlz values for each peak pair within the groups and compares it to certain 

m/z relationships often seen during ionization (Kuhl et al. 2011 ). Pre-set m/z 

differences, retention time and intensity correlation were used in another study to 

identify redundant peaks and resulted in 50% data reduction. In this approach, R­

based XCMS was used for deconvolution of raw data in combination with esi 
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program to write peak output files to an annotated version (Brown et al. 2009). 

There are also some comrnercially-available software for this, such as 

ACD/IntelliXtract (a part of ACD/MS work suite) based on a given rule table to 

annotate ion species (ACD/IntelliXtract 2007). Publicly-available software 

PUTMEDID-LCMS, a tool operating in Taverna environment, generates pair-wise 

peak correlations, am10tates features to group different ion types of the same 

metabolite based on mass differences, similar retention times and correlation 

coefficient between peak responses. For this workflow, Raw data were converted to 

the NETCDF format and R-based XCMS was used for deconvolution of data 

(Brown et al. 2011 ). IDEOM is a freely-available package for Microsoft Excel for 

peak annotation of ESI redundant peaks as well as FT or ringing signais. It uses 

retention time, peak shape and correlation of peak intensities (Creek et al. 2012). 

Although, there are a number of workflows for peak am10tation, they are usually 

compatible only with special peak generating workflows (e.g. CAMERA with 

XCMS), or they use raw LC-MS data and perform peak picking and ion annotation 

in series. Hence, it would be of interest to develop a post-peak picking workflow to 

process peak lists from any workflow, identify redundant peaks and remove them. 

In this work, we developed a MATLAB-based workflow to filter out redundant 

peaks from peak picking results. It imports data from any peak generating 

workflow, performs different filters and results in more condensed peak list by 

removing redundant peaks. After evaluating the performance of this filtering 

method, the performance of four peak picking workflows, namely PeakView®, 

Markerview™, MetabolitePilot™ and XCMS online were assessed in terms of the 

number ofredundant peaks found by our developed DataReduction workflow. 
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3.3 Material and Methods 

Two types of biological samples (bile and urine) as well as a standard mixture of 84 

compounds were used for this study. Samples were analyzed with liquid 

chromatography coupled to high-resolution mass spectrometry employing a QqTOF 

system. Raw LC-MS data were then processed with four peak picking workflows 

including MarkerView, PeakView, MetabolitePilot and XCMS online followed by 

employing the DataReduction workflow for filtering of redundant peaks. Since the 

same datasets from Chapter 2 were used here, detailed information on materials, 

sample preparation, HPLC-MS analysis and peak picking criteria have been 

presented previously. 

3.3 .1 MATLAB processing 

"DataReduction" MATLAB code was written precisely to find and remove peaks 

corresponding to 13C isotopes, radical ions as well as some frequent adducts and in­

source fragments present in peak lists. "DataReduction" used 5 ppm mass tolerance 

and 0.1 min difference in retention time for annotating related peaks. The whole 

MATLAB script is presented at the end of this chapter (supplementary data for 

chapter 3). 

From an initial peak list (generated by peak picking workflows) exported into an 

excel-compatible format, the script finds 13C isotopie peaks with 5 ppm mass 

accuracy and 0.1 min RT difference, with additional criteria that 13C isotope peaks 

should have lower intensity (for small molecules). Assuming that the majority of 

observed m/z values are protonated in positive mode and deprotonated in negative 

mode, radical ions were identified in a subsequent filtering step. After association 

of peaks to 13C isotopes and radical ions, they were eliminated from original peak 

list. 
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A list containing information of the most frequent adducts and in-source fragments 

was imported into MA TLAB. The following adducts were included in this study; 

NH/, Na+, K+, as well as doubly charged (M+2H)2+ (positive mode) and HC02-

(negative mode) in addition to in-source fragments such as Joss of water, formic 

acid (H2C02) and ammonia (NH3) (in positive mode) and carbon dioxide (C02) (in 

negative mode). This excel sheet contains the exact mass difference and charge 

associated to each adduct and fragment and additional cases can be added manually. 

This MATLAB script was used to remove redundant peaks and results in a more 

concise peak list with higher proportion of protonated or deprotonated molecules 

(intact metabolites ). 

Raw LC-MS 
data 

Peak finding workflow 

Initial peak list(.xlsx) 

"Data reduction" MATTLAB script 

Find and remove : 
13C isotopes, radical ions, 

adducts and in-source fragments 

Final peak list (.xlsx) 

Figure 3.1 "DataReduction" MATLAB script was used in this study to identify and remove 

isotope peaks, radical ions, adducts and in-source fragments 
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3.4 Results and discussion 

The "DataReduction" MA TLAB script was designed for processing peak picking 

results from raw data and also for its compatibility with any peak generating 

workflow, as long as peak list information (m/z, RT and intensity or peak area) is 

exportable into an excel-compatible format. The initial peak lists obtained from 

peak generating workflows from two biological sample types (urine and bile) and a 

standard mixture of 84 compounds were investigated with the custom-built 

"DataReduction" MATLAB script, where 13C isotopes, radical ions, as well as 

some adducts and in-source fragments were detected (Figure 3.2). 

Even though this MA TLAB script does not use conelation between peak shapes for 

peak annotation, narrow mass and retention time difference windows (5 ppm mass 

tolerance and 0.1 min retention time difference) were employed to ensure that the 

filtering step was efficient at removing redundant peaks with little chance of 

removing intact (protonated or deprotonated) metabolite peaks. In order to evaluate 

the "DataReduction" MA TLAB script, a comparison was made between the peak 

lists found by the custom script and the isotopie peak detection option built into the 

MarkerView software (Table 3.1 and Figure 3.6). The results show that for the bile 

data set in negative mode, "DataReduction" MA TLAB script and MarkerView™ 

found 1848 and 1806 isotopie peaks, respectively, while 1616 peaks were common 

between these two methods. On average, almost 85% of total isotope peaks found 

by MarkerView and DataReduction workflow were common to both . This indicates 

the good efficiency of the "DataReduction" MA TLAB script for peak annotation 

using the chosen criteria, since MarkerView™ isotope peak assignment uses elution 

profile information (during peak generation step) and not simply .6.RT and L'lm/z of 

the apex of each chromatographie peak. 

After confirming the performance of the DataReduction MATLAB script, the four 

peak picking workflows used in this study were evaluated in terms of number of 
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redundant peaks found by this filtering method (Figures 3.3 to 3.5). Although 

PeakView had the lowest number of peaks initially found, it has the greatest 

proportion of "non-redundant peaks" (those remaining after removing redundant 

pesk) with an average of 90% of the original list being conserved after filtering. 

MetabolitePilot and PeakView represented the lowest number of 13C isotopes 

among their results, likely due to a built-in algorithm for excluding these isotopes. 

Meanwhile, XCMS and MarkerView had assigned isotopie peaks for fmther 

manual removal by the user. No evident difference between different peak 

generating workflows was observed regarding the % peaks corresponding to radical 

ions, adducts and in-source fragments, indicating there would be no pre-filtering for 

these in any of the automated workflows tested. It would obviously be useful to 

have software able to generate peak lists and filter for such redundant peaks in the 

same step, which is possible in certain commercial software such as Agilent's 

Qualitative Analysis and Waters' Progenesis software. 
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Figure 3 .2 Number of peaks found by MA TLAB data reduction script for different 

workflows: PeakView (PV), MarkerView (MV), MetabolitePilot (MP) and XCMS online 

for each sample type (bile, urine and compound mixture) in both positive and negative 

modes 



Table 3.1 Comparison of the total number of 13C isotope peaks and the overlap between 

two filtering algorithms: ("DataReduction" and MarkerView) in bile and urine sample in 

both positive and negative modes 

Sample (mode) MarkerView DataReduction Co mm on 

Urine (neg) 3498 3667 3085 

Urine (pos) 1770 1998 1534 

Bile (neg) 1806 1848 1616 

Bile (pos) 805 813 714 

Bile (pos) Bile (neg) 

MV DR MV DR 

91 714 99 190 1616 232 

Urine (pos) Urine (neg) 

MV DR MV DR 

236 1534 464 413 582 
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Figure 3.3 Venn diagram representation of the results of comparison between 13C isotope 

peaks found by MarkerView (MV) and developed DataReduction (DR) MATLAB script. 
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Figure 3 .4 Pie chart representation of the percentage of redundant peaks found by 

DataReduction MATLAB script for the results of four peak picking workflows 

(MetabolitePilot (MP), MarkerView (MV), PeakView (PV), XCMS online (XC)) from bile 
sample in positive and negative modes 
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the standard mixture (Std mix) sample in positive and negative modes 
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3 .5 Conclusion 

The "DataReduction" MA TLAB script was developed for processing initial peak 

picking results. It is compatible with any peak generating workflow, as long as peak 

list information (m/z, RT and intensity or peak area) is exportable into excel format. 

It uses small m/z and RT windows for identification of redundant peaks related to 

isotopes, radical ions, adducts and in-source fragments. Although it doesn't employ 

peak shape similarity as criteria to find redundant peaks, it shows good performance 

and it found 85% of the isotope related peaks that were also found by MarkerView, 

a peak picking software able to assign isotopie peaks based on peak detection 

profiles. 

By employing this Data Reduction method, four peak picking workflows were 

compared to each other. It was found that an isotopie detection algorithm is used in 

PeakView and MetabolitePilot, which resulted in the detection of almost no peaks 

as isotopes by our custom-built script. On the other band, MarkerView and XCMS 

online show all found peaks, including isotopes, in their generated peak lists with 

the possibility of removing isotope peaks by the user in a subsequent step. 

In this chapter, Data Reduction MATLAB script was presented, further 

investigation on its performance for identification of the redundant peaks will be 

performed in future works. 
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Supplementary data for chapter 3 

DataReduction Matlab script 

Datareduction MA TLAB script was developed in order to find redundant peaks and 

remove them from original data. The whole manuscript is presented in following: 

Cie 
Clear all 
Number=6 
format long 
%---> Read Sample files 
sample=xlsread('F:\Bile _ neg_ MV'); 
filename='F:\MA TLAB _Bile_ neg_ MV'; 
%---> Define ionization state (positive or negative) 
chargestate=2; %pos= 1, neg==2 
if chargestate==l 
adduct=xlsread ('final_adductslistl .xlsx',6); 
end 
if chargestate==2 
adduct=xlsread ('final_ adductslistl .xlsx', 7); 
end 
%---> Define parameters 
cl=2; 
c2=2; 
pl=2; 
zero 11 cell=[O,O,O,O,O,O,O,O,O,O,O]; 
Cl3whole=zerol lcell; 
C 13_arearatio=zero11 cell; 
Proto_ whole=zerol lcell; 
Protominuscommon=zero 11 cell; 
Proto_ Cl3comrnon=zerol lcell; 
al=2; 
a2=2; 
a3=2; 
a4=2; 
a5=2; 
p2=2; 
p3=2; 
ssrt= l ; 
zero4cell=[O,O,O,O]; 
wholeminusc l 3=zero4cell; 
wholeminusc l 3M=zero4cell; 
adductinfo=zero 11 cell; 



addadd=zero4cell; 
realadd=zero4cell ; 
realpeaks=zero4cell; 
adducts=zero4cel 1; 
c 13 _proto _ title=zero 11 cell; 
whole_8cell_title=zero l lcell; 
whole4cell _title=zero4cell; 
adductinfotitle=zero 11 cell; 
% 
~~~~~~~~~~~~~~ 

%---> Remove rt< l.6 ifrom sample 
fors 1= 1:size(sample,1) 
rtsinitial=sample( s 1,3); 
if rtsinitial> 1.6 

isinitial=sample(s 1, l ); 
mzsinitial=sample(s 1,2); 
intsinitial=sample(sl ,4); 
samplert( ssrt, 1 : 4 )=[isini tial,rnzsinitial ,rtsinitial ,intsinitial] ; 
ssrt=ssrt+ 1; 

end 
end 
% 
~~~~~~~~~-

%---> Find C 13 isotopes 
for i=l:size(samplert, l); 

numi=samplert(i , 1 ); 
mhzi=samplert(i ,2); 
Protoadd=mhzi+ 1.00335; 
for j= 1 :size( samplert, 1 ); 

numj=samplert(j, 1 ); 
mhzj=samplert(j ,2); 
ppm=abs((mhzj-Protoadd)/(mhzj * 1 Oe-6)); 
ifppm<5; 
rtrnzi=samplert(i,3); 
rtrnzj=samplert(j ,3); 
delrt=abs( rtmzi-rtmzj); 
areai=samplert(i ,4); 
areaj=samplert(j ,4 ); 
arearati o=( are ai/ area j) ; 
if delrt<0.1 

if arearatio> 1 
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C 13 _ arearatio( c2, 1: 11 )=[numi,mhzi,rtrnzi ,areai ,numj ,rnhzj ,rtrnzj ,areaj ,delrt,ppm,arearatio ]; 
c2=c2+ 1; 
end 

end 
end 

end 
end 



%~~~~~~~~~~ 
%---> Find Radical ions 
for i= l :size(samplert, l); 

numi=samplert(i , 1 ); 
mhzi=samplert(i ,2); 
Protoadd=mhzi+ 1.007825; 

for j= 1:size(sampleit,1 ); 
numj=samplert(j , l); 
mhzj=samplert(j ,2); 
ppm=abs((mhzj-Protoadd)/(mhzj * 1 Oe-6)); 

ifppm<5; 
rtrnzi=samplert(i ,3); 
rtrnzj=samplert(j ,3); 
delrt=abs( rtmzi-rtmzj) ; 
areai=samplert(i,4); 
areaj=samplert(j ,4); 
arearati o=( are ai/ area j); 
if delrt<O. l 
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Proto_ whole(p 1,1: 11 )=[numi,mhzi,rtmzi ,areai ,numj ,mhzj,rtmzj ,areaj,delrt,ppm,arearatio]; 
pl=pl + l; 
end 

end 
end 

end 
% 
~~~~~~~~~~~~~~ 

% %---> Remove Cl3 isotopes from radical ions for positive mode (chargestate= l) since 
we should erase lower mass in protonated relation while removing higher mass in c13 
relation 
if chargestate== 1 
for q= 1 :size(Proto _ whole, 1) 

numi=Proto _ whole( q, 1 ); 
t= l; 

for w= 1:size(C13_arearatio,1) 
cl3=C 13_arearatio(w,1 ); 
delwi=abs( c 13-numi); 

if delwi==O 
t=t+l; 
end 

end 
ift= l 
mhzi=Proto _ whole( q,2); 
rtmzi=Proto_whole(q,3); 
areai=Proto _ whole( q,4 ); 
numJ=Proto _ whole( q,5); 
mhzj=Proto _ whole( q,6); 
rtmzj =Proto _ whole( q, 7); 
areaj=Proto _ whole( q,8); 



delrt=Proto _ whole( q,9); 
ppm=Proto _ whole( q, 1 O); 
arearatio=Proto _ whole( q, 11 ); 
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Protominuscommon(p2, 1: 11 )=[ numi,rnhzi,rtmzi ,areai ,numJ ,mhzj ,rtmzj ,areaj ,deht,ppm,area 
ratio]; 

p2=p2+1; 
end 
ift>l 
mhzi=Proto _ whole( q,2); 
rtmzi=Proto _ whole(q,3); 
areai=Proto _ whole(q,4); 
numJ=Proto _ whole( q,5); 
mhzj =Proto _ whole( q,6); 
rtmzj=Proto _ whole( q, 7); 
areaj=Proto _ whole( q,8); 
delrt=Proto _ whole( q,9); 
ppm= Proto_ whole( q, 1 O); 
arearatio=Proto whole( q, 11 ); 

Proto_ C 13common(p3, 1: 11 )=[ numi,rnhzi ,rtmzi,areai,numJ,mhzj ,rtmzj ,areaj ,deht,ppm,area 
ratio]; 

end 
end 
% 

p3=p3+1; 
end 

~~~~~~~~~~~~~~~~~~~~~~~~~ 

%---> Remove assigned C13 isotopes from original peak list 
for i= l :size(samplert, l); 

iorigin=samplert(i, 1 ); 
k= l; 

end 
% 

for v= l :size(C13_arearatio,1); 
numc 13=C 13 _ arearatio( v,5); 
vi=abs(iorigin-numc 13); 
ifvi==O 
k=k+l; 
end 
end 
ifk= l 
rnhz=samplert(i ,2); 
rt=samplert(i,3); 
int=samplert(i,4); 
wholeminusc 13( a 1, 1 :4 )=[iorigin,rnhz,rt,int ]; 
al=al+ 1; 
end 

~~~~~~~~~~~~~~~~~~~-

% ---> Remove assigned radicals from peak list 



for i=l:size(wholeminuscl3 ,l); 
iorigin=wholeminusc l 3(i, 1 ); 
k= l ; 

end 
% 

if chargestate== 1 
for v= 1:size(Protominuscommon,1 ); 
numradical= Protominuscommon( v, 1); 
vi=abs(iorigin-numradical); 
ifvi= O 
k=k+ l ; 
end 
end 
end 
if chargestate= 2 
for v= 1 :size(Proto _ whole, 1 ); 
numradical=Proto _ whole(v,5); 
vi=abs(iorigin-numradical); 
ifvi= O 
k=k+ l ; 

end 
end 
end 

ifk== l 
mhz=wholeminusc l 3(i,2); 
rt=wholeminusc l 3(i,3); 
int=wholeminusc l 3(i,4 ); 
wholeminusc l 3M( a2, 1 :4 )=[iorigin,mhz,rt,int] ; 
a2=a2+1; 
end 

~~~~~~~~~~~~~~~~ 

%---> Find adducts and in-source fragments 
for h=l:size (adduct,l); 

ionmass=adduct(h, 1 ); 
charge=adduct(h,2); 

for i= l:size(wholeminuscl3M,l); 
i 1=wholeminuscl3M(i,l) ; 
mzi=wholeminusc l 3M(i,2); 
adductmass=(mzi+ionmass )/(charge); 

for j= 1 :size( wholeminusc l 3M, 1 ); 
j 1 =wholeminuscl3M(j, l ); 
mhzj=wholeminusc l 3M(j,2); 
ppm=abs( ( mhzj-adductmass )/( adductmass * 1 Oe-6) ); 

ifppm<5; 
rtmzi=wholeminusc l 3M(i,3); 
rtmzj=wholeminusc l 3M(j,3); 
delrt=abs( 1trnzi-rtmzj); 
if delrt<O. l 
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adductinfo( a3 , 1: 11 )=[il ,mzi,rtmzi ,j l ,mhzj ,rtmzj ,ionmass,charge,adductmass,delrt,ppm] ; 
a3=a3+ l ; 

end 
end 
% 

end 
end 

end 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

%---> Remove assigned adducts of adducts from list of adducts (Due to complexity of 
sample, some adducts represented to have adducts) 
bl= l ; 
b2=2; 
for i= 1: size ( adductinfo, 1 ); 
msnum 1=adductinfo(i,1 ); 
k=l; 

for j= l :size (adductinfo,l); 
msnum2=adductinfo(j ,4 ); 
diff=abs(msnum l -msnum2); 
if diff 0 
k=k+ l; 
end 

end 

end 
% 

ifk> l 
addofaddnum=adductinfo(i,4) ; 

mzaddadd=adductinfo(i,5); 
rtaddadd=adductinfo(i ,6); 
addadd(b 1, 1 :4 )=[ addofaddnum,mzaddadd,rtaddadd,k]; 
bl =bl + 1; 

end 
if k== l 

realaddnum=adductinfo(i,4); 
mzadd=adductinfo(i ,5); 

rtadd=adductinfo(i,6); 
realadd(b2, 1 :3 )=[realaddnum,mzadd,rtadd]; 
b2=b2+1; 

end 

~~~~~~~~~~~~~~ 

%---> Remove adducts from peaks list 

for i=2: size( who le min use 13M,1 ); 
numl =wholeminusc l 3M(i, 1 ); 
nl = l ; 
%peaks who are adducts 
for j= 1:size(realadd,1 ); 
num2=realadd(j , 1 ); 
delij=abs(numl-num2); 
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if delij= O 
nl =nl + l ; 
end 

end 

end 
% 

% its not an adduct 
ifnl= l 
mhz=wholeminusc 13M(i,2); 
rt=wholeminusc 13M(i,3); 
int=wholeminusc13M(i,4); 
realpeaks(a4, 1 :4)=[numl ,mhz,rt,int] ; 
a4=a4+1; 
end 

%its an adduct 
ifnl> l 
mhz=wholeminusc 13M(i,2); 
rt=wholeminusc l 3M(i,3); 
int=wholeminusc 13M(i,4 ); 
adducts( a5 , 1 : 4 )=[ num l ,mhz,rt,int] ; 
a5=a5+ 1; 
end 

~~~~~~~~~~~~~~~ 

%---> Assign title for excel sheets 
sheetü='whole _file' ; 
sheet3='C13ratio'; 
sheet4='Allprotonated'; 
sheet6='MinusC 13 '; 
sheet7='MinusC 13M'; 
sheet8='Adductslnfo'; 
sheet9='Rea!Peaks'; 
sheet 1 O='Adducts'; 
sheet l 2='sizeinfo'; 
sheetl 3='adductofadd'; 
sheet 14='realadd'; 
sheetl ='proto _ minusc l 3ratio'; 
sheetl l ='proto_c13common'; 
% 
~~~~~~~~~-

% ---> Write down ail produced data into excel sheets 
xlswrite(filename,samplert,sheetü); 
xlswrite(filename,Cl3 _ arearatio,sheet3 ); 
xlswrite( filename,Proto whole,sheet4 ); 
xlswrite(filename,Protominuscommon,sheetl ); 
xlswrite(filename,Proto _Cl 3common,sheetl 1 ); 
xlswrite(filename, wholeminusc 13 ,sheet6); 
xlswrite(filename,wholeminuscl3M,sheet7); 
xlswrite(filename,adductinfo,sheet8); 
xlswri te( filename,addadd,sheet 13 ); 
xlswrite(filename,realadd,sheetl 4 ); 
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xlswrite(filename,realpeaks,sheet9); 
xlswrite(filename,adducts,sheetl O); 
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c 13 _proto _title=[ {'i'}, {'mhzi'}, {'rtmzi'} , {'inti'},{]'} , {'mzj'}, {'rtmzj'}, {'intj'}, {'delrt'} , {'ppm' 
}, {'arearatio'}]; 
whole4cell_title=[ {'iorigin'}, {'rnhz'}, {'rt'}, {'area/intensity'} ]; 
adductinfotitle=[ {'i' }, {'mzi'}, {'rtmzi'}, {]'}, {'mzj '}, {'rtmzj '}, {'ionmass'}, {'charge'}, {'adduct 
mass'}, {'delrt'}, {'ppm'}]; 
xlswrite(filename,c 13 _proto _ title,sheet3); 
xlswrite(filename,c 13 _proto _ title,sheet4 ); 
x lswrite(filename, whole4cel l_ title,sheet6); 
xlswrite(filename,whole4cell_title,sheet7); 
xlswrite( filename, whole4cell _ title,sheet9); 
xlswrite(filename,adductinfotitle,sheet8); 
xlswrite(filename,whole4cell_title,sheetl O); 
xlswrite(filename,c 13 _proto _ title,sheet 1 ); 
xlswrite(filename,c 13 _proto _ title,sheet 11 ); 
xlswrite(filename,whole4cell_title,sheetl3); 
xlswrite(filename,whole4cell_title,sheetl4); 
originalsize=size( samplert, 1 ); 
c2=c2-l ; 
pl =pl-2; 
p2=p2-2; 
p3=p3-2; 
a 1 =a l-2; 
a2=a2-2; 
a3=a3-2; 
a4=a4-2; 
a5=a5-2; 
bl =bl-2; 
b2=b2-2; 
sizeinfo(2, 1: 12)=[ originalsize,c2,p 1,p2,p3,al ,a2,a3,a5,b l ,b2,a4] ; 
xlswri te( filename,sizeinfo,sheet 12); 
sizeinfoTitle=[ {'original size'}, {'Cl 3ratio> l '}, {'Allprotonated'} , {'Protonated Minus 
Cl3ratio'}, {'Protonated_ Cl 3ratio common'}, {'Allpeaks minus 
Cl 3ratio'} , {'AllMinusC l 3protonated'} , {'adducts 
pair'}, {'Adducts'}, {'addadd'}, {'realadd'}, {'non-redundant peaks'} ]; 
xlswrite( fil ename,sizeinfo Ti tle,sheet 12); 
% End of the DataReduction manuscript 
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CHAPTERIV 

CAROTENOID QUANTITATION IN ALGAL SAMPLES BY LIQUID 

CHROMATOGRAPHY-HIGH RESOLUTION MASS SPECTROMETRY 

4.1 Abstract 

Carotenoids are orgamc pigments found in plants, algae and some other 

microorganisms with antioxidant properties and vitamin A activity. Stress 

conditions, including reduced nitrogen source and long culturing time can induce 

up-regulation of some carotenoids in microalgae. In this work, we used a new liquid 

chromatography-mass spectrometry (LC-MS) quantitation assay to determine 

changes in carotenoid content in three different algae species of Haematococcus, 

Oocystis and Muriellopsis under stress conditions. Carotenoid separation and 

subsequent analysis were carried out by HPLC coupled to a hybrid quadrupole 

time-of-flight mass spectrometer. Based on accurate mass measurements, four 

carotenoids including astaxanthin, canthaxanthin, ~-carotene and lutein were 

quantified in control and stressed algal samples. Results show that the astaxanthin 

and canthaxanthin content was up-regulated by stress conditions while a decrease in 

lutein and ~-carotene was revealed in Haematococcus and Muriellopsis. Decrease 

of all four studied carotenoids were observed in Oocystis. 

4.2 Introduction 

Carotenoids are a family of compounds consisting of approximately 700 known 

species. They are divided into two categories, 1) carotenes, consisting of eight 

isoprenoid units joined to form conjugated hydrocarbons ( e.g. alpha-carotene, beta­

carotene, lycopene) and their hydroxylated derivatives, and 2) xanthophylls, which 

are oxygenated derivatives of carotenes (including lutein, zeaxanthin, and beta­

cryptoxanthin) (Granado et al. 2001; Oliveira and Watson 2001). This class of 
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pigments is responsible for the red color of tomato and orange color of carrots as 

well contributing to fall season colors after leaf chlorophyll is destroyed (Krinsky 

and Johnson 2005). 

In addition to the aesthetic role of carotenoids in nature, they have a great 

biochemical role in health. Since they are exclusively synthesized in plants, algae 

and some fungal and bacterial species, they should be supplied in the diet of 

animals (Davies 1985). They have important biological roles for vitamin A 

biosynthesis (important for vision) as well as antioxidant activity, 

immunostimulant, yolk nourishment to embryos, photo-protection, limiting age­

related macular degeneration of the eye (Johnson 2002) and can also be useful as 

therapeutic agents for treating cardiovascular disease and prostatic cancer (Fassett 

and Coombes 2011 ). The effect of dietary carotenoids on health are reviewed by 

several groups (Cooper et al. 1999; Hughes 2001 ; Young and Lowe 2001) . 

Green algae can produce ail xanthophylls generated by higher plants (Jin et al. 

2003) as well as some other xanthophylls which is specific to green algae such as 

loroxanthin (Baroli and Niyogi 2000), astaxanthin (Grünewald et al. 2001) and 

canthaxanthin (Grünewald et al. 2001). Although synthetic carotenoids could be 

used, the natural pigment is preferred for two reasons. First, suspected role of 

synthetic food additives as promoters of carcinogenesis, besides claims of liver and 

renal toxicities (El-Baky et al. 2003) and secondly, natural carotenoids is a mixture 

of trans and cis (favorable) isomers which is very hard to obtain through chemical 

synthesis (Demmig-Adams and Adams 2002). 

Interestingly, the carotenoid production rate is up-regulated in microalgae by 

unfavorable environmental conditions namely exposure to intense light, nitrogen 

starvation, excess acetate addition, salt stress, and the addition of specific cell 

division inhibitors (Ben-Amotz et al. 1989; Borowitzka 1992; Margalith 1999). 
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This method has been used in industry by several companies to produce astaxanthin 

from H. pluvilis algae (Olaizola 2000). 

Liquid chromatography is the most frequently used technique for the separation of 

carotenoids in biological samples (Oliveira and Watson 2001), while various 

detection techniques have been used, including electrochemical detection (Finckh et 

al. 1995; Ferruzzi et al. 1998; van het Hof et al. 2000), fluorescence detection (Yap 

et al. 1999), UV detection (van het Hof et al. 2000) and mass spectrometry-based 

detection (van Breemen et al. 1998; Chu et al. 2011; Fu et al. 2012). High 

sensitivity and low detection limit of mass spectrometry provide high accuracy to 

measure low concentration of carotenoids in complex biological samples. By 

employing metabolomic analysis (targeted or untargeted), simultaneous 

identification and quantification of large number of compounds is feasible. 

Different ionization sources have been used for this purpose, including ESI, APCI 

(van Breemen et al. 1998; Taylor et al. 2006; Matsumoto et al. 2007) and matrix­

assisted laser desorption ionization (MALDI)-TOF-MS for metabolite profiling of 

plant carotenoids in a high-throughput manner (Fraser et al. 2007). 
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Figure 4.1 Four carotenoid compounds studied in this work 

In this work, we used a mass spectrometry-based quantification assay to determine 

changes in carotenoid content under stress conditions in three different algae 

species, Haematococcus, Oocystis , and Muriellopsis. Carotenoid separation and 

subsequent analysis were done using a UHPLC instrument coupled to a hybrid 

quadrupole time-of-fiight (QqTOF) mass spectrometer. An on-line UV detector was 

also used for further confirmation of studied compounds. Based on exact mass 

measurements, four carotenoids (Figure 4.1) were quantified in control and stressed 

algal samples. 
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4.3 Experimental 

4.3.1 Materials 

Methyl tert-butyl ether (MTBE, HPLC grade) was purchased from Caledon 

Laboratory Chemicals (Georgetown, ON, Canada). HPLC grade methanol, formic 

acid, menaquinone (vitamin K2) and ultrapure ammonium acetate as well as ~­

carotene, ~-apo-8 '-carotenal, canthaxanthin, lutein and alpha-tocopherol (vitamin 

E) were obtained from Sigma-Aldrich (Oakville, ON, Canada). Ultrapure water was 

supplied by a Millipore Synergy UV purification system from Fisher Scientific 

(Mississauga, ON, Canada). Astaxanthin was purchased from Chromadex (Irvine, 

CA, USA). Filters (0.45 um, 25 mm nylon) were obtained from Millipore and glass 

beads (0.5 mm) purchased from Bertin Technologies (Montigny, France). Carotenol 

and carotenal compounds were synthesized in the laboratory of Prof René Roy by 

Tze Chieh Shiao. 

4.3.2 Algal samples 

Algae were cultured at 23°C in 250 mL erlenmeyer flasks under continuous 50 

µmol photons m-2.s-1 illumination. To induce secondary carotenoid accumulation 

(orange/red algae), cultures were prepared with BBM medium without nitrate. 

Cultures in Bold ' s Basal Medium (BBM, a highly enriched culturing medium 

including several minerais and vitamins such as KH2P04, H3B03 etc.) (Stein 1980) 

were used as control (green algae). Algal cultures were exposed for 1-3 months to 

this treatment. The cellular density in all cultures was determined by optical 

microscope counting. Ail cultures were grown in triplicate. 
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4.3.3 Carotenoid extraction and sample preparation 

Each algal culture (0.1-1 ml) with known cell density was filtered using a 2.5 cm 

nylon filter, and then transferred to 2 ml screw-cap tubes for carotenoid extraction. 

Glass beads (0.5 mm, 200 mg) were added along with 500 µl extraction solvent 

(33%MTBE, 66% MeOH) and 100 µl vitamin K2 (menaquinone) solution (2 µg/ml 

in MeOH) as internai standard. Carotenoid extraction was carried out using a 

Minilys bead beater (Bertin Technologies, Montigny-le-Bretonneux, France) at 

medium speed (4,000 rpm) for 1 min. After centrifuging at 14,000 rpm for 4 min, 

350 µl supematant was transferred to a clean tube and bead beating was repeated 

once more with another 500 µl of fresh extraction sol vent. Combined supematants 

(700µ1) were then evaporated (Thermo Electron, SpeedVac Concentrator). Dried 

samples were reconstituted in 200 µl MeOH and 20 µl of extract was injected for 

LC-MS/MS analysis. The choices of internai standard and timing for the addition of 

IS to compounds are presented in the method development section of this chapter. 

The summary of the sample preparation procedure used in this study is presented in 

Figure 4.2. 

4.3.4 Standard mixture 

Standard mixtures consisting of four carotenoids; astaxanthin, canthaxanthin, lutein 

and ~-carotene were made by serial dilution of stock standard solution. Final 

component concentrations were 0.00, 0.01 , 0.02, 0.05, 0.1 , 0.2, 0.5 , 1.0, 2.0, 5.0, 

10.0, and 20.0 µg/ml. Sample preparation was performed for standard mixtures by 

mimicking the procedure of sample preparation for algal samples starting with bead 

beating extraction. Menaquinone was added to standard solutions as internai 

standard in extraction solution. Evaluation of the effect of sample preparation on 

carotenoid quantitation is presented as method development section. 
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Figure 4.2 Sample preparation used for carotenoid quantification in algal samples. lt starts 

with filtration of the al gal culture followed by bead beating extraction of carotenoids. Less 

sol vent consumption and faster sample preparation was achieved with this optimized 
extraction method 

4.3.5 HPLC-UV~MS analysis 

Extracted algal samples and standard solutions were injected into a Shimadzu 

Nexera HPLC system equipped with an online Shimadzu UV/Vis-detector (t,=450 

nm). The LC-MS criteria used in this study was previously optimized in our group 

by colleagues (unpublished data). Separation was performed on a Phenomenex 

Gemini-NX reversed phase C18 column (150 x 2 mm, 3 µm) at 40°C. Mobile 

phases A (90% MeOH/10% H20/0.1 % FA) and B 

(85% MTBE/15% MeOH/0.1 % FA) were used in a gradient elution (Figure 4.3) at 

0.2 mL/min. LC was coupled to an AB Sciex Triple-TOF 5600 with positive 

electrospray ionization on a DuoSpray Ion Source. Source parameters were set as 

follows: TEM 400 °C, CUR 30 psi, source voltage 5 kV and GSl/2 50 psi . An in­

house standard mix (m/z 119-966 in negative mode and m/z 121-922 in positive 

mode) was used for internai mass calibration. Peak assignments were based on high 

resolution m/z data and verified by coincident UV signal (with appropriate retention 

time shift frorn delay volume between UV and MS) . These results were in 
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agreement with prev1ous work in our group which carotenoid structure was 

confirmed with MS/MS matching (unpublished data). 
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Figure 4.3 Gradient elution used for HPLC-UV-MS analysis. Mobile phase A was 
(90% MeOH/10% H20 /0.1 % FA) and B was (85% MTBE/15% MeOH/0.1% FA) 

4.3.6 Data Processing 

Raw LC-HRMS data was processed by PeakView® 1.2 software (AB SCIEX) for 

peak extraction and visualization of chromatograms. Multiquant 2.1 was used for 

quantitation purposes based on peak area integration for carotenoid compounds and 

internai standard. Calibration curves were produced using peak area ratio of 

compounds and internai standard versus their concentration ratio. 
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4.4 Method development 

In this work, quantitation of changes in carotenoid content of algal samples grown 

under stress conditions was investigated by HPLC-UV-MS method. As any other 

quantitative analytical experiment, an intemal standard is a crucial step that needs to 

be considered for method development. 

In an intemal calibration method, the relative intensity of instrument's response of 

an analyte of interest to the intemal standard's signal is used for comparison 

calibrating standards. This relative comparison eliminates the effect of errors in 

sample preparation, introduction of the sample into mass spectrometer as well as 

possible fluctuation in ion source conditions and instability of the mass scale 

(Hoffmann and Stroobant 2007). 

An appropriate internai standard should exhibit similar chemical and physical 

properties to the analytes of interest in order to give the optimal results with the 

analytical method. It must have three important qualities, including being pure, inert 

toward sample's mixture and be absent from the sample (Hoffmann and Stroobant 

2007). 

In previously published work on the analysis of carotenoids in algal samples (Chu 

et al. 2011) from our group, ~-apo-8 ' -carotenal served as internai standard. 

However, due to the aldehyde reactive site of this molecule, a methylated form of 

this compound was also observed in the extracted ion chromatogram (Figure 4.4) . 

Hence, the stability of this molecule was in doubt, leading us to change the intemal 

standard for more accurate quantitation. 
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Figure 4.4 UV trace at 450 nm (top) and extracted ion chromatograms (bottom) of 

standards used in this study: 1) echinenone, 2) astaxanthin, 3) lutein, 4) canthaxanthin, 5) ~­

apo-8 ' -carotenal (IS), 5 ') methylated ~-apo-W-carotenal , 6) echinenone, 7) ~-carotene 

(Meier 2012, unpublished data) 

Three candidates were selected to be tested with the HPLC-MS method in order to 

replace previous intemal standard (B-apo-W-carotenal) (Figure 4.5). These were of 

vitamin E ( alpha-tocopherol), vitamin K2 (Menaquinone) and ~-apo-8 ' -carotenol. 

Selection criteria for IS candidates was based on having similarity with carotenoid 

molecular structure, and chromatographie elution profile by HPLC-MS. 
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Figure 4.5 Candidate internai standard compounds tested for this study including a­

Tocopherol (vitamin E), Menaquinone (vitamin K2) and ~-apo-8'-carotenol. ~-apo-8 ' ­

carotenal was the internai standard previously used for quantification of carotenoids in 
algal samples 

94 

The standard solutions of three candidates were injected onto the LC-UV-MS 

system and data acquisition was performed with the same method previously 

developed for quantitation of carotenoids (Chu et al. 2011). The HPLC-MS data 

(Figures 4.6 to 4.8) was investigated based on two criteria: purity of compounds and 

co-elution of observed ions . 

The observation of only one peak in the total ion chromatogram (TIC) of vitamins 

K2 and E exhibit high purity of both tested compounds, while detecting two peaks 

for custom-synthesized carotenol is due to the impurity from starting material (5-P-
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apo-8 ' -carotenal) in the solution that implicates incomplete reaction of producing 

carotenol from carotenal. 

As it is shown in Figure 4.8, the LC-MS trace of vitamin K2 shows high purity and 

good shape as well as no in-source fragment hence, this compound was selected as 

internai standard for the quantitative study of carotenoids. 
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Figure 4.6 Evaluation ofpurity and coelution of ~-apo-8' -carotenol (50 µg/ml) to be used 
as internai standard. A) Total ion chromatogram (TIC), B) Mass spectrum (from 8.3 to 8.6 
min), C) Mass spectrum (from 9.2 to 9.3 min) 
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Figure 4.8 Evaluation of purity and coelution of vitamin K2 (50 µg/ml) to be used as 

internai standard. A) Total ion chromatogram (TIC), B) Mass spectrum (from 10.2 to 10.4 

min), C) Extracted ion chromatograms (XICs) which shows perfect co-elution oftwo 

observed ions (protonated molecule and ammonium adduct) 

Due to the impact of the sample preparation procedure on quantitation, the timing 

for the addition of intemal standard to the algal sample was further investigated. 

Sample preparation for this study includes four steps: filtration, extraction, 

evaporation of solvent and reconstitution. Three sets of samples were prepared with 

the addition of the internal standard at different steps of preparation method. In one 

set of samples, menaquinone solution (IS) was added prior to filtration, while IS 

was added after the filtration but prior to extraction step for the second set of 

samples. IS was added to samples immediately before the injection for a third group 
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of samples. The result for three set of samples (Figure 4.9) shows different average 

peak areas for internal standard between experiments. It is demonstrated that peak 

areas corresponding to the addition of IS in filtration were smaller than those for the 

extraction. Furthermore, peak areas corresponding to the addition of lS before 

injection (without extraction) are even higher than two other ones. Loss of 

menaquinone and higher standard deviation for the average peak area were 

observed when IS was added prior to filtration, since it is soluble at this step 

compared to algal cells containing the carotenoid compounds. The addition of 

internai standard prior to extraction has the advantage of considering possible errors 

of extraction in comparison with the results from the addition of IS before injection 

(without extraction). Hence, addition of internai standard prior to the extraction step 

was chosen for quantitation of carotenoids in algal samples. 
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Figure 4.9 Peak areas detected for internai standard when it was added (to the sample in 

different stages of sample preparation, during filtration, during extraction and right before 
the injection to HPLC-HRMS system (n=9) 

To consider the effects of sample preparation on the amount of quantified analytes 

(rather than internai standard), sample preparation was also performed for the 
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standard mixture. To determine the best scenario for sample treatment of standard 

mixture, an experiment was performed for comparing two sets of MS data from 

samples prepared differently. One set of samples were prepared like algal samples 

(filtration, extraction, reconstitution) while the second set of samples were prepared 

without filtration (extraction, reconstitution). Although the results of this 

experiment show loss of standard compounds for both data sets (Figure 4.10), the 

loss of compounds during the filtration step is much more significant than the real 

algal samples since algal samples used in this project are intact ce1ls ( containing 

carotenoids). Considering the size of algal cells to the pore size of filter , the 

filtration process has little influence on the biological content of algal medium, 

meanwhile a much greater effect is seen for chemical solutions such as standards. 

Hence, loss of compounds in standard solution is much greater than in algal cell. 

Extraction of carotenoid compounds seems to be the most important cause of 

possible errors during analytical sample preparation. Therefore, for the preparation 

of the calibration curve, bead-beating was also done for standard solutions with the 

same procedure used for algal samples (while filtration was omitted for standards). 

These results show the importance of applying a similar procedure of sample 

preparation for biological samples on standard mixtures. 
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Figure 4.10 Evaluating the influence of sample preparation on peak area for four standard 

compounds, A) astaxanthin, B) lutein, C) ~-Carotene, D) canthaxanthin . Three different 

sets of standard mixtures were prepared starting with i) filtration ii) extraction or iii) serial 

dilution of stock solution of compounds to obtain desired concentration (without filtration 

and extraction). 

4.5 Results 

The aun of this study was to quantify the changes in carotenoid content of three 

algal species Haematococcus , Oocystis and Muriellopsis exposed to a specific 

stress. A long culturing time course of 4 and 6 month (reduced nutrients) was 

respectively applied to Haematococcus and Oocystis species which results in 

reduced nutrients . Muriellopsis was cultured in a high salt medium to induce stress. 

Carotenoid standards, astaxanthin, canthaxanthin, lutein and ~ -carotene were 

baseline separated on a reverse phase C 18 column (Figure 4.11 ). Peak assignments 

were made based on high-resolution accurate mass data and the verification of 

retention time was done by correlating with UV signal. This result was m 
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agreement with prev1ous work from our group, where carotenoid structure was 

confirmed with MS/MS matching (unpublished data). 
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Figure 4.11 Extracted ion chromatograms of standards used in this study: 1-astaxanthin, 2-

lutein, 3-canthaxanthin, 4-Vitamin K2 (IS), 5-~-carotene. Extracted m/z are also presented 
for each peak. 

Accurate masses and retention times of carotenoids observed in algae extracts by 

HPLC-UV-ESI-MS/MS are presented in Table 4.1. All compounds were observed 

as protonated ions ([M+H]+), except for lutein and P-carotene which were detected 

as the in-source water loss fragment of the protonated molecule [M+H-H20t and 

radical molecular ion [M+·] , respectively. As it is shown, all extracted m/z has Jess 

than 5 ppm error relative to their corresponding theoretical exact masses. 
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Table 4.1 Accurate masses and retention times of carotenoids observed in algae extracts by 

HPLC-UV-ESI-MS/MS 

Component name Formula Neutra! Mass Ion species Ext raction mass Error 
(Da) (m/z) (ppm) 

Astaxanthin C40H s20 4 596.38656 M+H• 597.39384 1 

Lutein C40Hs50 2 568.42803 M-(H 20)+W 551.42474 0.4 

Canthaxanthin C40Hs202 564.39673 M+H• 565 .40401 3.5 

13-carotene C40H s5 536.43820 M+l'1l 536.43820 1.9 

Menaquinone (IS) C31H4002 444.30283 M+W 445.31011 3.3 

Quantitation of four carotenoids of interest was performed by using a calibration 

curve for each standard compound with data normalization of data using the 

menaquione peak (IS). It was observed that although the protonated ion is more 

intense for ~-carotene, the calibration curve bas much better linearity and dynamic 

range when the molecular ion is quantified. Thus, the molecular ion was used for 

quantification of ~-carotene, while the protonated molecule was utilized for 

astaxanthin and canthaxanthin. As it was described earlier, water loss in-source 

fragment [M+H-H20t oflutein was used as the ion of interest for quantitation. The 

calibration curve obtained for each compound is presented at the end of this chapter 

(Figures 4.16 to 4.19). 

Induced stress on algal samples results in a change in their color; Green algae were 

converted into orange (Murrielopsis and Oocystis) or into red (Haematococcus) and 

this change is a result of change in the carotenoid content of the cells. The results of 

quantitation followed by t-test calculation show that lutein and ~-carotene were 

down-regulated in Haematocucus and Murrielopsis, while astaxanthin and 

cantaxanthin were up-regulated in these samples (p-value <0.05) (Figures 4.12 and 

4.13). On the other band, the concentration of the four quantified carotenoid 
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compounds were decreased in Oocystis algae in response to the stress (p­

value<0 .05) (figure 4.14). However, considering the orange color of these stressed 

cultures, other carotenoid compounds may be up-regulated (Figure 4 .15). 
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Figure 4.12 The change in carotenoid concentration in Haematococcus algae induced by 
stress condition ( culturing time ). The quantity of beta-carotene and lutein exist in 
Haematococcus green are higher than the limit of detection of our method for these 
compounds. The cellular density in ail cultures was initially determined by optical 
microscope counting and analytical calculation was performed accordingly. Average 
concentration (µg/cell) and standard deviation are also shown in the figure (n=3) 
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Figure 4.13 Change in carotenoid concentration in Muriellopsis algae induced by stress 

condition (culturing titne) . The quantity of cantaxanthin exist in Muriellopsis orange and 

also ~-carotene exist in Mureillopsis green are higher than the limit of detection The 
cellular density in ail cultures was initially determined by optical microscope counting and 

analytical calculation was performed accordingly. Average concentration (µg/cell) and 
standard deviation are also shown in the figure (n=3) 
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Figure 4.14 The change in carotenoid concentration in Oocystis algae induced by stress 

condition (culturing time). The quantity of ~-carotene , cantaxanthin and lutein in Oocystis 

orange, and also ~-carotene and lutein in Oocystis green is higher than the li mit of detection 

The cellular density in all cultures was initially detennined by optica l microscope counting 

and analytical calculation was performed accordingly. Average concentration (µg/cell) and 

standard deviation are also shown in the figure (n=3) 

Table 4.2 Summarized changes in carotenoid content from control sample to stressed algae 

samples. Based on our experimental results (fold change and t-test) Muriellopsis and 

Haematococcus showed an up-regulation (Up) of astaxanthin and canthaxanthin while ~­

carotene and lutein were down-regulated (Down). Ali four studied carotenoids were down­

regulated in Oocystis (fold changes are shown in the table and p-values were all below 

0.05) 

Algae Astaxanthin 
Fald 

Canthaxanthin 
Fald 

13-Caratene 
Fald 

Lutein 
Fald 

change change change change 

Muriellapsis Up 7.3 Up 61 .9 Dawn 3.6 Dawn 1.2 

Haematacaccus Up 33.7 Up 27.3 Dawn 3.9 Dawn 2.1 

Oacvstis Dawn 3.0 Dawn 2.0 Dawn 18.2 Dawn 7.3 
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Figure 4.15 Carotenogenesis pathway. lt was observed that in Haematococcus and 

Muriellopsis algae species, astaxanthin and cantaxanthin were up-regulated (tick up arrows) 

and decreases of lutein and ~-carotene levels were revealed under stress treatment (tick 

down arrows) (adapted representation based on (Alvarez et al. 2006)) 
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Figure 4.16 Calibration curve obtained for Astaxanthin using linear least squares 

regression analysis. It covers 0.2 to 10 µg/ml of Astaxanthin in standard solutions (IS 

concentration was 1 µg/ml) 
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Figure 4.17 Calibration curve obtained for B-Carotene using linear least squares regression 

analysis . lt covers 0.02 to 0.2 µg/ml of B-Carotene in standard solutions (IS concentration 
of lµg/ml) 
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Figure 4.18 Calibration curve obtained for Canthaxanthin using linear least squares 

regression analysis. lt covers 0.05 to 2 µg/ml of Canthaxanthin in standard solutions (IS 

concentration was 1 µg/ml) 
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Figure 4.19 Calibration curve obtained for Lutein using linear least squares regression 

analysis . lt covers 0.2 to 10 µg/ml of Lutein in standard solutions (IS concentration was 
lµg/ml) 
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In this study, a filtration based sample preparation method was developed for 

quantitation of carotenoids in algal samples. Method development was performed in 

three steps including a) choice of internai standard, b) timing point for addition of 

intemal standard to the mixtures and c) the sample preparation procedure used for 

the standard mixtures. From three tested compounds, vitamin k2 was selected as IS 

due to high purity, good peak shape and having no in-source fragment in 

corresponding MS spectra Also, our results showed addition of internai standard 

prior to the extraction step was more appropriate for quantitation of carotenoids in 

algal samples due to considering possible errors of extraction. Furthermore, for the 

preparation of the calibration curve, bead-beating was also done for standard 

solutions with the same procedure used for algal samples (while filtration was 

omitted for standards). 
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Employing the sample preparation developed in this study and a previously 

developed LC-UV-MS method, four carotenoid compounds were successfully 

quantified in three algal samples in normal and stress-induced conditions. Based on 

t-test results, down-regulation of lutein and j3-carotene biosynthesis as well as up­

regulation of astaxanthin and canthaxanthin were revealed in response to stress 

conditions in Haematococcus and Muriellopsis species. Nitrogen deficiency stress 

induced orange color in Oocystis algae although all four surveyed carotenoids were 

down-regulated. The carotenoid source responsible for this orange colour will be 

investigated in future experiments using the sample preparation procedure 

developed in this study. 



CHAPTER V 

CONCLUSION 

Data analysis is an important step in metabolomics studies, starting with peak 

detection on raw LC-MS data. As there are different peak picking software and 

algorithms available, the effect of employing different workflows was investigated 

(Chapter 2). Four peak picking workflows studied in this research include: 

MarkerView, MetabolitePilot, PeakView and XCMS online. The data analysis was 

performed on two types of biological samples (bile and urine) as well as a standard 

mixture of 84 compounds. A custom-made MATLAB code ("VennPro") was used 

to find the overlaps between the results of peak picking workflows. Interestingly, 

only a small fraction of detected peaks (7.7 % in average) were found by all 

workflows. It was shown that none of the studied workflows are perfect and each 

has advantages and disadvantages. However, MarkerView showed better 

performance in having bigger overlaps with other workflows. The results obtained 

in this study exemplify the importance of selecting appropriate peak picking 

workflows for metabolomics data analysis. 

In a parallel research, a simple ion annotation method was developed to identify 

peaks correspond to isotopie peaks, radical ions, adducts and in-source-fragments 

and remove them. This MATLAB-based "DataReduction" workflow imports data 

from peak detection workflows (in excel format, sample sheet in supplementary 

data at the end of this chapter), performs several filtering steps and removes peaks 

corresponding to isotopie peaks, radical ions, adducts and in-source fragments. The 

performance of this MA TLAB code was evaluated by comparison of its results to 

the isotopie peak filtering option of MarkerView and there was 85% agreement 

between them. Furthermore, four peak picking workflows mentioned previously 

were also evaluated in terms of automated ion annotation. It was observed that 

isotopie peaks are removed automatically in PeakView and MarkerView although it 
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was not included in processing options. On the other hand, MarkerView and XCMS 

can assign isotopie peaks for further removal by the user. The results of this project 

demonstrate the importance of data processing for LC-MS metabolomics as it deals 

with huge amounts of data. lt seems the informatics tools for metabolomics are still 

in the developing stages since this area of research is relatively new. 

In the fourth chapter of this dissertation, a targeted metabolomics approach was 

presented for quantifying the change in carotenoid content of algal samples 

introduced by stress conditions. An extraction-based method was developed 

followed by absolute quantification of four carotenoid compounds in three algal 

species, Haematococcus, Oocystis and Muriellopsis. lt was observed that lutein and 

~-carotene were down-regulated in Haematococcus and Muriellopsis while 

astaxanthin and canthaxanthin were increased in this species in response to stress 

conditions. Nitrogen deficiency induced an orange color in Oocystis algae although 

all four surveyed carotenoids were found to be down-regulated. In future research, a 

more comprehensive study on the biochemical pathway goveming carotenoid 

changes will be useful to declare the mechanism of biochemical response to stress 

conditions. 
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