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RÉSUMÉ 

Les écologistes du comportement se sont sati sfaits de l'approche évolutive pour 
prédire et expliquer le comportement animal. Lorsqu 'on étudie les comportements 
fl ex ibles l'approche évolutive en générale, et l' approche des jeux évoluti fs en 
parti culi er, supposent que le mécani sme psychologique comp01t emental sous-jacent 
e.g. l' apprenti ssage, n' empêche pas l'express ion de comportements adaptés; une 
suppos ition connue sous !' intitulée du «pari comportemental». Ce pari , cependant, 
pourrait être inva lide, surtout si le mécani sme en questi on est soumis aux press ions 
découlant des conséquences de diffé rents systèmes comportementaux. Des études 
récentes prétendent que l'étude des mécani smes psychologiques peut générer de 
meilleures compréhensions et prédictions que celles des modèles évolutifs . Je cro is en 
conséquence que dans certaines circonstances l' apprenti ssage peut être autant, voire 
plus puissant, que l'évolution pour prédire le comportement animal. J' ai adopté troi s 
mesures pour tester cette hypothèse: 1) je propose un modèle d'apprenti ssage pour un 
jeu producteur chapardeur, un jeu d' approv isionnement soc ial qui a été bien étudié en 
éco logie comportementale. Les résultats de ce modèle recoupent presque tous les 
résultats empiriques et les prédictions théoriques qui ont été publiés pour le jeu 
producteur chapardeur à ce jour de sorte qu ' il fournit un outil prédi cti f plus général 
qu 'aucun des modèles évolutifs ex istant pour des conditions de fréquence 
dépendance . De plus, le modèle d'apprentissage génère une prédicti on inédite à 
l'effet que la fréquence de chapardeur devrait s'accroitre avec la variance dans la 
qualité des parcell es . 2) J' ai testé cette nouvelle prédi ction avec des groupes capti fs 
de diamants mandarins (Taeniopygia guttata) avec des conditions de parcelles de 
qualité fi xe ou variable. J'ai trouvé qu 'à mesure que les individus accumulent de 
l'expérience dans la condition vari able, la fréquence de chapardeur augmente. Ce 
résultat appui le modèle. 3) J' ai exploré les conditions sous lesquelles on s' attend à ce 
que l'apprenti ssage évolue dans un contexte fréquence dépendant afin de permettre 
aux écologistes du comportement de comprendre les situations où ! ' apprenti ssage 
sera présent. En fa isant ce la j ' ai pu étudier les propriétés évo lutives des règles 
d'apprenti ssage tout en palliant à deux limitations d'études précédentes : en 
confrontant les règles d'apprenti ssages à des stratégies fixes et en évaluant les effets 
de variations environnementales intra et intergénérationnell es. J'ai trouvé que malgré 
les bénéfi ces marginaux de l'apprenti ssage comparé aux stratégies fi xes, 
l' apprenti ssage n' arri ve pas à se répandre à l' ensemble de la population dans des 
environnements dynamiques. Ma thèse démontre donc que lorsqu 'on s' intéresse au 
comportement au niveau de la population dans un environnement statique, les 



XX 

écologistes du comportement peuvent continuer faire le pari comportemental et 
supposer que le mécanisme psychologique qui sous-tend le comportement produira le 
même résultat que celui attendu par le processus évolutif. Cependant, si on s' intéresse 
au comportement individuel et qu ' il s ' agit d ' un environnement fluctuant, alors le pari 
peut être risqué et il serait mieux de tenir compte du mécanisme d ' apprentissage. 

Mots-clés: écologie comportementale, pari comportemental , prise de décision, théorie 
des jeux évolutive, sélection fréquence-dépendante, règle d ' apprentissage, opérateur 
linéaire, stratégie mixte, polymorphisme, producteur-chapardeur, stratégie pure, 
sensibilité au risque, approvisionnement social , diamants mandarins (Taeniopygia 
guttata). 



ABSTRACT 

Behav ioral ecologists have been comfortable predicting and explaining animal 
behav ior fro m an evo lutionary approach. When studying fl ex ible behav iors, 
evolutionary approaches in general and evolutionary game theory in part icular 
implicitly assume that the underl ying psychological mechanism, e.g. learn ing, does 
not constrain the expression of the adaptive behav ior: an assum pti on known as the 
behav ioral gambit. The gambit, however, may not be va lid, espec ially if the 
mechanism is under selection pressure fro m the outcomes of multiple behav ior 
systems. Recent studies claim that focusing instead on the psychological mechani sm 
can prov ide new insights and predictions that could not have been made from 
evo lutionary models. 1 thus believe that in some contexts learning is as powerful as, 
or perhaps even more powerful than, evolution in predi cting animal behav ior. I have 
taken three steps to explore thi s hypothes is: 1) 1 proposed a learning based model fo r 
producer-scrounger game, a soc ial forag ing game that has been extensive ly studied in 
behav ioral eco logy. The results replicate almost every producer-scrounger prediction 
and experimental result published to date such that it provides a more general too l 
than any single game-theoretic model to predict behav ior under frequency-dependent 
conditions. This model, furthermore, prov ided a novel prediction: an increase in 
scrounging behav ior when patch quality varies. 2) 1 tested thi s new predi ction using 
captive fo raging fl ocks of male zebra finches (Taeniopygia guttata) with variable and 
nonvariable patch quality. 1 fo und that as individuals gain experience in the variable 
environment, they increase their scrounging behav ior. Thi s supports the model. 3) 1 
explored the conditions under which learning is expected to evol ve in a frequency
dependent context to guide behav ioral eco logists as to where one should expect 
learning. ln doing so, 1 studied the evo lutionary properties of learning rules and 
addressed both limitations of earlier studies by pitting fi xed against learning agents 
while exploring the effects within and between-generation fluctuations. 1 found that 
despite the marginal benefits of learning over fi xed strategies in dynamic 
envi ronments, learning never goes to fixat ion. The thesis shows that when the 
research in terest is in the population level behav ior in a stati c environment, 
behav ioral ecologist can continue using the behavioral gambit and assume that the 
mechani sm in a frequency-dependent situations will produce outcomes that are the 
same as those from an evolutionary process. However, if the interest is in individual 
level behav ior or invo lves environmental fluctuations, the gambit may be incomplete 
and learning should be considered. 
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INTRODUCTION 

0. 1 Behav ioral ecology 

You see a pigeon, in the middle of a fl ock on the ground, standing and watching other 

birds while they are walking and looking at the ground to find food. Why does the 

animal do thi s? Tinbergen (1963) suggested fo ur types of answers to thi s questi on: 

immediate causation, development ( ontogeny), adaptive value (survival fonction), 

and evo lutionary history. Immediate causation explains the behav ior based on the 

underlying phys iological mechanisms that are invo lved in perfo rming the behav ior. 

Development explains the behavior in relati on to earl y experiences in the animal ' s 

li fe. Adaptive value, however, explains the behav ior based on the utility of the 

behav ior in re lat ion to the animal' s natural surroundings. Finally, evo lutionary history 

explains the behav ior of thi s animal based on the behav iors of its ancestors. Focusing 

on the adaptive value of a behav ior, behav ioral eco logy has emerged from ethology to 

study the evolutionary basis fo r animal behav ior due to past eco logical pressures 

(Danchin, Giraldeau, & Cézilly, 2008) 

Evo lution has trad itionally been the fondamenta l theory in behaviora l eco logy 

(Da vies, Krebs, & West, 201 2). When behav ioral eco logists want to explain or 

predict an animal' s behav ior, they usually corne up with a model that shows that 

animal does X (and not Y) because X maximizes its fitn ess, overall survival and 

reproduction. By considering costs and benefits assoc iated with alternati ve options, 

we have been able fo r the past 30-40 years to make detailed predictions of animal 

behavior of which many have been supported empirically (Danchin et al. , 2008 ; 

Dav ies et al. , 20 12; Stephens & Krebs, 1986) . 
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0.1.1 Phenotypic gambit 

Applying an economical view to animal behavior problems requires two implicit 

assumptions. First, the genetic architecture of an organism does not constrain which 

phenotype can evolve, known as the phenotypic gambit (Fawcett, Hamblin , & 

Giraldeau, 2013 ; Grafen, 1984). For example, if a clutch size of six eggs is optimal 

then we should expect to see a similar clutch size in nature, regardless of what the 

evolutionary pathway to reaching this optimal solution has been. ln behavioral 

ecology, we do not often question the phenotypic gambit and when the prediction of 

the mode! faits , the first thing we verify are the details of the mode! to see if its 

predictions could be improved, for example by adding a factor to make it more 

realistic. 

Accepting the phenotypic gambit has proven to be a good way to simplify problems 

and corne up with powerful models and predictions, especially about fixed behaviors, 

such as clutch size. Adaptation , however, occurs not only through genetic evolution 

but also through changes that take place within an individual's lifetime via 

psychological mechanisms such as learning (Shettleworth, 2010). There is th us an 

extension of the phenotypic gambit for flexible behaviors. 

0.1 .2 Behavioral gambit 

The second implicit assumption resulting from applying an economical v1ew to 

animal behavior problems is that for flexible behaviors, i.e. where the behavior can be 

adjusted in response to the behavior of others (Fawcett et al. , 2013), the psychological 

mechanism does not constrain the expression of the adaptive behavior, known as 

behavioral gambit (Giraldeau & Dubois, 2008). Whatever the optimal outcome 

expected from an evolutionary perspective, we can thus assume the animal will 

express it, even for behaviors generated by adaptive decision making. The behavioral 

gambit simplifies the problem by neglecting the mechanism and focusing on the 

fonction. 
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However, we can think of at least two reasons that behavioral ecologists should be 

cautious with the behavioral gambit. First, the behavioral gambit may fail; that is the 

mechanism may constrain the optimal behavior. For example, if three different 

behaviors, such as foraging, mate choice, and nest building, operate according to a 

corn mon underlying mechanism such as learning, the overall outcome of these three 

behaviors applies selection pressure on the mechanism. The mechanism, however, 

may not maximize each behavior independently because different behaviors may 

require different or conflicting optimization mechanisms. For example, foraging 

behavior may favor an exploratory trait while such a trait may not be optimal for mate 

choice. Natural selection thus favors a mechanism that finds an optimal compromise 

for these behaviors and maximizes the overall outcome. ln this case, an evolutionary 

mode! that accepts the behavioral gambit may be handicapped in predicting or 

explaining the optimality of the animal's foraging behavior. 

Second, by focusing on the psychological mechanism, we can obtain new insights 

about the behavior and we can corne with predictions that we could not have made 

had we not focused on the mechanism. The first part of this study demonstrates a 

mode! based on learning that is shown to be more effective than evolutionary models 

in predicting the social foraging behaviors of ground feeding birds (Chapter I) . 

Considering these two reasons it is thus important to examine the extent and 

ecological conditions that allow the behavioral gambit to be accepted, that is to 

continue ignoring the underlying mechanism for the flexible adaptive behavior. 

0.1 .3 Evolution and learning 

Based on the speed of adaptation, different types of adaptation can be generally 

categorized into physiological adaptation , learning, and evolution. Unlike the 

functional raie of a physiological adaptation, its underlying mechanisms, such as 

chemical and hormonal reactions, are of no particular interest to behavioral ecology. 
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Learning that happens during the lifetime of an individual, however, has a complex 

relation with evolution. 

Learning can be broadly defined as "a change in state due to experience. [ ... ] The 

changes in state referred to as learning seem to involve a change in cognitive state, 

not just behavioral potential" (Shettleworth, 2010). There is much debate about the 

relationship between evolution and learning, and their roles in animais adaptation 

(Baldwin, 1896; Bateson, 2004; Carroll , Hendry, Reznick, & Fox, 2007; Duckworth, 

2008; Hinton & Nowlan, 1987; Kawecki , 2009; Levey et al. , 2009; Luniak, 2004; 

Nolfi & Floreano, 1999; Suzuki & Arita, 2004). Learning can inhibit the selection 

pressure and hence evolution by allowing an animal to adopt an adaptive response to 

a completely nove! situation that had never been encountered in the evolutionary 

history of the species. Learning is thus thought to generally slow down the rate of 

evolutionary change because behavioral plasticity can shield organisms from strong 

directional selection (Duckworth, 2008). 

On the other hand, learning is also argued to accelerate evolution because it allows 

individuals to survive and hence maintains genetic diversity within the population. 

The increased diversity increases the likelihood of evolution if a new adaptive 

unlearned phenotype occurs. This mutant with unlearned behavior will spread in the 

population, replacing the learning phenotype by virtue of the saved costs that are 

required of learning: a process known as genetic assimilation (Bateson, 2004). 

Selection of the best learners, therefore, would eventually result in the appearance of 

fixed behavior occurring entirely in the absence of learning (Price, Qvarnstrom, & 

Irwin, 2003; Shimada, Ishii , & Shibao, 201 O; Tebbich, Sterelny, & Teschke, 2010). 

Learning can thus enhance the path of evolution (Suzuki & Arita, 2004). 

0.2 Learning can be as powerful as evolution to predict some animal behavior 

Despite the complex relation between learning and evolution , the mechanism has 

remained neglected in behavioral ecology. Moreover, behavioral ecologists do not 
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commonly di stinguish between evolutionary and behav ioral decisions. Mechani sms 

of dec ision, hence, remain ill exp lored, except perhaps for the occas ional attention 

devoted to learning rules: a mathematical express ion fo r behav ioral decisions (Aoki 

& Feldman, 2014; Arbil ly, Motro, Feldman, & Lotem, 20 11 ; Dridi & Lehmann , 

201 4; Dubois, Morand-Ferron, & Giraldeau, 201 O; Fawcett et al., 20 14; Grof3 et al., 

2008; Hamblin & Giraldeau, 2009; Katsnelson, Motro, Feldman, & Lotem, 20 12; 

Kolodny, Edelman, & Lotem, 2014; Lotem & Bi ran-Yoeli , 2014; Rende!! et al., 

201 O; Trimmer, McNamara, Houston,. & Marshall , 201 2). Learning ru les are often 

composed of info rmation updating and dec ision making components and fo r several 

decades each has been studied separately and sometimes even misinterpreted. 

Moreover, little attention has been devoted to exploring the eco logical condi tions 

under which dec ision should be based on learning. 

1 however believe that in some context learning is as powerful as, perhaps even more 

powerful , than evolution in predicting animal behav ior. To explore thi s hypothes is, 1 

have taken three steps that 1 will explain in more details in the fo llowing chapters: 

1. 1 proposed a learning-based mode! fo r producer-scrounger game, a social 

foraging behav ior that has been extensively studied in behav ioral eco logy. 1 

then compared the results of the mode! with prev iously published models, 

experiments, and observation. This mode!, furthermore, provided nove! 

prediction concerning an increase in scrounging behav ior when patch quality 

van es. 

2. 1 tested this new prediction using captive fo raging fl ocks of male zebra 

finches (Taeniopygia guttata) in two conditions with variable and non

variable patch quality. The results show that as individuals gain experience in 
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the variable environment, they increase their scrounging behaviour. This 

support of the mode! emphasizes the power of the learning ru le approach in 

studying animal behavior. 

3. To identify situations where one should look for learning, 1 explored the 

conditions under which learning is expected to evolve in a frequency-

dependent context like a producer-scrounger-game. ln doing so, l studied the 

evolutionary properties of learning ru les and addressed both limitations of 

earlier studies by pitting fixed against learning agents white exploring the 

effects of a no fluctuations , within or between-generation fluctuations. 

ln the remaining of this chapter, l review earlier studies in behavioral ecology 

concerning learning and decision rule. 

0.3 State of knowledge 

0.3. l Frequency-dependency, tactic and strategy 

One circumstance in which learning could play a rote as important as evolution, is 

when individuals adjust in a frequency-dependent context, where the payoff of a 

tactic depends on the combined frequency of ail tactics used in the group 

simultaneously (Maynard Smith, 1982). Tactics are known as the behavioral 

components of a strategy (Krebs & Davies, 1993), e.g. wander vs. defend, or the 

alternative phenotypes generated by a strategy or decision rule (Gross, 1996; 

Tomkins & Hazel , 2007), such as fight with probability 0.3 and sneak with 

probability 0.7. The word "strategy" has been used differently over time . For 

example, Krebs & Davies (1993) defined strategy as what animais do when 

competing for a scarce resource (Krebs & Davies, 1993), e.g. if young, wander; if 

old, defend a territory. Houston & McNamara (2005), however, defined strategy as a 
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rule for choosing a tactic as a fonction of state and possibly time. Strategy sometimes 

has been defined as a genetically based decision rule that results in the allocation of 

the somatic and reproductive effort of an organism, such as energy and development, 

among alternative phenotypes (Gross, 1996; Tomkins & Hazel , 2007) , e.g. fight if 

larger than X and sneak if smaller than X, or fight with prob. 0.3 and sneak with prob. 

0.7. Throughout this document, tactic and action refer to the same concept. l use the 

definition by Krebs & Davies (1993) for tactic and Houston & McNamara's (2005) 

definition for strategy: 

• Tactic (Action): The behavioral components of a strategy (e.g. search, join, 

eat) 

• Strategy: A ru le for choosing a tactic as a fonction of state and possibly time 

(e.g. join early in the morning and search other times, search ail the time) 

What becomes a tactic or a strategy can depend on how and at which level we are 

asking a question about the behavior. If one asks, for instance, how does a ground 

feeding birdfindfood, then either "search" for a new patch or "join" a patch already 

found by others become possible tactics. In this case, possible strategies can be "use 

only one tactic (pure)" or "join with probability of 0.7 (mixed)". If, however, the 

question is: how should an individual forage in a dynamic environment, then the 

tactics can be either pure or mixed. ln such a situation the strategies can become 

"A lways use mixed" or "use mixed on/y if patch richness varies". Hence, depending 

on the question, the exact definition of expressions such as pure or mixed can be 

either tactic or strategy. 

0.3.2 Evolutionary game theory 

When different tactics are not simultaneously compatible in a single individual, but 

are simultaneously compatible in a population, there will be a stable equilibrium 
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number of individuals playing each tactic. Maynard Smith (1982) says this 

equilibrium can be reached through pure strategies or mixed strategies. ln a pure 

strategy, individuals choose one action because, as a result of small size, lack of 

experience, etc. , they cannot effectively perform any other. ln a mixed strategy, the 

payoffs of actions depend on the frequencies with which they are performed (Table 

0.1 a). He also introduces .the concept of Evolutionarily Stable Strategy (ESS) which 

is a strategy (or a combination of tactics) which, once fixed in a population, cannot be 

invaded by any other strategy (or combination of tactics ). 

Krebs & Davies ( 1993) redefined the pure strategy (as a polymorphism), mixed 

strategy, and also add behavioral assessment as the third type of solution (Table 

0.1 b). In a polymorphism, different individuals play different strategies and the 

frequencies of the morphs will be fixed by frequency dependent selection. A 

polymorphism may arise because of genetic differences or environmental differences. 

In a mixed ESS, individuals play a combination of different strategies in a proportion 

that satisfies the ESS. In behavioral assessment, instead of having a fixed population

wide ru le, every individual is flexible and bases its decision on an assessment of what 

others in the population are doing. Examples of having ESS in a popu1ation are 

shown in Table 0.2. 

Gross ( 1996) considered differences in individual state, e.g. energy level, and 

proposed a new "conditional strategy" that switches tactics depending on individual 

state (Table O. 1 c ). In this classification, alternative and mixed strategies are very 

similar to the pure and mixed strategies in Krebs & Da vies ( 1993). In the conditional 

strategy an individual changes its behavior in response to changes in its internai state, 

which can be frequency dependent or independent. Here, the tactic related to each 

state is genetically determined. Throughout this document, 1 will not consider 

differences in individual state and will use the terminology of Krebs & Davies 

(1993). 
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For both pure strategies (polymorphism) and mixed strategies, selecti on pressure is 

on the decision, i.e. the equilibrium or switching point is determined by natura l 

selection. The strategy thus remains the same during an individual's li fetime. In 

behav ioral assessment, however, an individual changes its behav ior fl exi bly during its 

li fetime by using a dec ision rule, and selection pressure acts on the dec ision rule. 
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Table 0.1 Different ways of having ESS in a population proposed by: a) 

Maynard smith (1982), b) Krebs & Davies (1993), c) Gross (1996) 

(a) 

Pure strategy 

- Fixed behavior 
- Genetie polymorphism 
seleets one taetie beeause 
others are not possible 

Polymorphism 

- Fixed behavior 
- Frequeney dependent 
seleetion 
- Two or more strategies with 
unequal payoffs beeause of 
genetie differenees or 
environmental differenees 

Alternative strategies 

- Genetie polymorphism 
- Frequeney dependent 
seleetion 

- Two or more strategies with 
equal average fitness 
- Evolutionarily Stable State 
Frequeney 

Mixed strategy 

- Fixed behavior 
- Frequeney dependent 
seleetion aets to equalize the 
payoffs for different taeties 

(b) 
Mixed strategy 

- Fixed behavior 
- Frequeney dependent 
seleetion 
- One strategy: different taeties 
in a proportion that satisfies the 
mixed ESS with equal payoffs 

(e) 
Mixed strategy 

(with alternative tactics) 

- Genetie monomorphism 
- Frequeney dependent 
seleetion 

- One strategy: taeties with 
equal average fitness 
- Evolutionarily Stable 
Strategy Frequeney 

Behavioral assessment 

- Flexible behavior 
- Frequeney dependent 
seleetion 
- Two or more strategies with 
equal payoffs 

Conditional strategy 
(with alternative tactics) 

- Genetie monomorphism 
- Status dependent seleetion 
(with/out frequeney dependent 
selëetion) 
- One strategy: taeties with 
unequal average fitness 
- Evolutionarily Stable 
Strategy Switeh point 



Table 0.2 Examples of having an ESS in a population 

Strategy equilibrium by 

Polymorphism 
(Pure strategies /Alternatives) 

Mixed strategy 

Behavioral assessment 

Example 

Sex: male vs. female 
Male Coho salmon: jack vs. hooknose 
Male fig wasp: fight vs. disperse 
Male stickleback throat: bright red vs. dull 

Reproduction in hermaphrodite organisms 
Female digger wasp: dig vs. enter 

Finch & pigeon: producer vs. scrounger 
Male bullfrog: calier vs. satellite 

11 
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0.3 .3 Learning rule 

Decision rules assign the probability of displaying different tactics. If the probability 

of playing a tactic is based on previous experience, it is called a learning ru le (Harley, 

1981 ; Kacelnik & Krebs, 1985 ; Stephens, 1991). Learning rules typically have two 

components, one that forms an estimate of the value of alternative tactics from 

experience, and another that decides on a tactic based on these estimates. The 

approach can be traced to Estes ( 1950) who proposed the first statistical theory of 

learning. ln a series of papers, Bush and Mosteller developed the linear operator 

model for learning that is based on previous experiences (Bush & Mosteller, 1951 a, 

1951 b, 1953 , 1955 ; Mosteller, 1958). ln these primary models, only the occurrence of 

an event, i.e . experiencing a reward or a punishment, is important and the size of the 

reward or punishment is not considered. This means that reçeiving a big reward is not 

different from receiving a small reward. 

The linear operator model has been modified (Table 0.3) and attention has 

specifically been directed to the decision component (Killeen, 1984; Krebs , Kacelnik, 

& Taylor, 1978; Lea & Dow, 1984; Lester, 1984; McNamara & Houston , 1985 ; 

Myerson & Miezin, 1980; Ollason, 1980; Pulliam & Dunford, 1980) in an effort to 

reconcile learning rules with phenomena such as ideal free distribution (Krebs & 

Davies, 1993), matching ratio (Herrnstein, 1961 , 1970; Herrnstein & Heyman, 1979), 

evolutionarily stable strategy (ESS), evolutionarily stable (ES) learning rule , and rule 

. for ESS (Hines & Bishop, 1983; Maynard Smith, 1982). Looking for the ES learning 

ru le, Harley (1981) modified the linear operator by adding residuals to the estimation 

component (Table 0.3 ). These residual s simulate innate values for different options 

that provide an absolute floor below which the estimates of alternatives cannot go. 

The residuals according to him insure that ail options get sampled at least periodically 

and he claimed that the deci sion component should be based on the matching ratio, 

i.e. allocating responses to alternative in proportion to their relative estimated 

payoffs. He claimed that this rule, called the relative payoff sum, is an evolutionary 
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stable learning rule. This incited a debate between Harley and Houston (Harley, 1983, 

1987; Houston, 1983; Houston & Sumida, 1987) on the opti mality of relative payoff 

sum, and more specificall y the optimality of the matching ratio, when compared to 

other learning rules such as linear operator and perfect memory (Table 0.3). 
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Table 0.3 Selected important learning rules in behavioral ecology. Here, only 

the updating part is mentioned. Depending on the experiment, either matching 

or maximizing was used for decision making. T;(t) is the estimated value of tactic 

i at time t. P;(t) is the observed payoff for tactic i at time t. xis the memory factor 

(1- xis the learning rate) used to adjust the estimation with new experience. 

Learning rule 

Pulliam & Dunford's 
linear operator 
(Pulliam & Dunford, 
1980) 
Relative Payoff Sum 
(Harley, 1981 ) 

Lester's linear operator 
(Lester, 1984) 
Dual process 
(Kacelnik & Krebs, 
1985) 

Perfect memory 
(Houston & Sumida, 
1987) 

For.muta 

T;(t) = x.T;(t-1) + (1-x).P;(t) 

Ti(t) = x.Ti(t-1) + (1-x).n + Pi(t) 

Ti(t) = P;(t).T;(t-1) 

Ti(t) = x.T;(t-1) + (1-x).n + P;(t) 
C;(t) = C;(t-1).(l-T;(t-1))'1 
A;(t) = T;(t).C;(t) 

a+ LP;(t) 
T (t) = ----'-1--

; /J+N;(t) 

Description 

r; is the res idual value for 
tactic i representing the innate 
value for that tactic. 

n is the time passed since the 
last time tactic i gave payoff. 
C;(t) is a mechanism to 
decrease preference to tactic i 
if it does not pay back for a 
wh ile. 
A,(t) is the total estimated 
value for tactic i at time t used 
in deci sion making. 

a and fJ are the parameter of 
learning rules and same values 
are used for different tactics. 
N;(t) is the number oftimes 
tactic i is used until time t. 
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Regelmann ( 1984) used the relative payoff sum in simulations of the ideal free 

distribution and ideal despotic distribution , where some animais are good competitors 

while the others are poor in competition and good in defending a food source. He 

extended relative payoff sum with and without travelling cost between food patches 

and used equal values for ai l residuals. The distribution of individuals among 

different patches was very close to that predicted by the matching ratio . Experiments 

by Milinski ( 1984) show that stickleback behavior in a foraging context is consistent 

with the predictions of Harley's and Regelmann ' s relative payoff sum . Based on the 

experiment and the reported results , however, linear operator, which was not 

considered by Milinski , could also explain the results. 

Lester (1984) proposed a simplified version of linear operator (Table 0.3) based on 

the matching ratio where the pro babil ity of displaying each behavior is proportional 

to its relative profitability, i.e. prey/time. Kacelnik & Krebs (1985) compared 

Harley's relative payoff sum, Lester's linear operator, and a proposed dual-process 

decision ru le similar to linear operator (Table 0.3) in three series of experiments with 

sticklebacks, goldfish , and starlings ail in foraging contexts. They claim that the 

relative payoff sum and Lester's linear operator are not good when there is rapid patch 

depletion, and that models based on simple averages of the past and present 

experience are insufficient to describe some important features of the way changes in 

food availabi li ty are detected by experimental animais. This paper was followed by a 

survey of learning rules (Kacelnik, Krebs, & Ens, 1987) comparing Pulliam & 

Dunford (1980) ' s linear operator (Table 0.3), Harley' s relative payoff sum, Lester ' s 

linear operator, the dual-process decision ru le, and Ki lleen ( l 984)'s incentive theory 

where memory factor is also updated by linear operator. They compared the results of 

simulations with the results from experiments with three adult starlings in random 

ratio and fixed ratio feeders. In both conditions, the feeder that gave the higher rate of 

food dropped rapidly to zero and the starlings decided to forage on the other one. The 

trend of switching to other feeder is cal led the drop to zero phenomena which, of the 
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models tested, only the dual-process mode! predicted it well. Results seem to be as 

expected from a partial reinforcement extinction effect that is the situation where an 

animal stops responding sooner to a less variable option than a more variable option, 

when both stop providing a reward. They did not however consider Bayesian 

approach either in the models or in the analysis. But they claimed that under some 

constraints Bayesian approaches may be more powerful than linear operator to 

describe the results. The Bayesian statistical approach is known as a competitor to 

linear operator based learning rules. To study the distinction between linear operator 

and statistical approaches, McNamara & Houston (1987) show how linear operator 

cornes from a statistical approach by choosing memory factor properly as a fonction 

of variance and mean in reward . 

Because information has a central role in learning, Stephens ( 1989) used an analytical 

approach to approximate the value of information. His results suggest that two factors 

are important in determining its value: first, the optimal behavior that would be 

chosen if the decision maker knew which subtype of the resource it faced; second, the 

cost of small deviations from the optimal behavior. He shows that the value of 

information is approximately equal to the product of the mean cost of smal 1 

deviations from the subtype optima and the variance of a modified distribution of the 

optimal behaviors . It is interesting to note that in this paper Stephens shows that a 

linear operator offers a greedy approach: maximization of immediate reward 

(Cormen, 2001 ). However, greedy algorithms are not necessarily optimal such that 

the linear operator could be suboptimal under some ecological conditions(Sutton & 

Barto, 1998). Linear operator, also known as the Rescorla-Wagner rule, was shown to 

be favored by natural selection in a simulation study (Trimmer et al. , 2012) and 

provides the basic structure for many more complicated forms of reinforcement 

learning rules (Sutton & Barto, 1998). 
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0.3.4 On the extent of matching 

It has long been claimed that an optimal decision maker must adopt alternative 

actions in proportion to their observed or estimated payoffs , cal led the matching ratio 

(matching law, law of effect) (Herrnstein , 1961 , 1970; Herrnstein & Heyman, 1979). 

Matching allows an individual to sample ail of the options, whit e sti ll exploiting the 

best option most often. This is in contrast to maximizing, where an individual 

exploits on ly the best option. Matching vs. maximizing have been frequently tested 

with both models (Lea & Dow, 1984; Lester, 1984; McNamara & Houston, 1985; 

Myerson & M iezin , 1980; Staddon, 1977; Tracy & Seaman, 1995) and experiments 

(Krebs et al. , 1978; Milinski , 1979; Plowright & Plowright, 1987). Severa! 

experiments and models have shown that in some condition matching is not an 

optimal behavior (Staddon, Hinson, & Kram, 1981) and an imais behave differently 

from matching (Herrnstein & Heyman, 1979). Houston (Harley, 1983 , 1987; 

Houston , 1983 ; Houston & Sumida, 1987) therefore was highly critical of the use of 

matching in Harley' s relative payoff sum. 

lnstead of pure matching or pure maximizing, other methods of balancing sampling 

and exploitation were also proposed. In the e-greedy strategy (Sutton & Barto, 1998), 

the decision maker samples ail options equally with probability e, and exploits the 

best known option with probability 1-e. When it enters a new envi ronment, it can 

have large e during the early trials allowing it to decay gradually. So, the decision

maker samples more at the beginning of trials to gather a coarse estimation of the 

payoffs. Then as e moves closer to zero, it gradually fine tunes its knowledge. ln the 

failure strategy (Thuij sman, Peleg, Amitai , & Shmida, 1995), an an imal leaves option 

A after PA failed trials, and leave B after PB fa il ed trials. lt updates PA and PB with 

new experiences. When it selects a new option, it se lects each option relative to its p. 

Thuijsman et al. (1995) compared e-greedy and failure strategies along with linear 

operator in simulations of an ideal free distribution problem and the matching law in 

bees. They find that the optimal balance between sampling ( exploration)-exploitation 
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is sensitive to time horizon. The results show that bees in groups have a matching 

behavior that is optimal and successfully converge to the ideal free distribution. 

Matching behavior is however not optimal when they forage solitarily. 

0.4 Thesis overview 

The following chapters explore the hypothesis that in some contexts learning is as 

powerful as evolutionary models in predicting animal behavior: 

Chapter 1. A unified modelling approach for producer-scrounger games m 

complex ecological conditions 

Chapter li. Zebra finches scrounge more when patches vary m quality: 

Experimental support of the linear operator learning rule 

Chapter III. The evolution of learning and non-learning rules m dynamic 

environments: A test of the behavioural gambit 

Chapter rv. General discussion and future directions 

In chapter l, 1 propose an agent-based mode! using a linear operator learning rule as 

the decision mechanism for producer-scrounger game, a social foraging behavior that 

has been extensively studied in behavioral ecology. The mode! provides a unified 

framework from which to predict the effects on the expected equilibrium of producers 

and scroungers of group size, metabolic requirement, finder ' s advantage, food intake 

rate , cost of searching, cost of joining, patch encounter probability, and patch 

richness. 1 then compared the results of the mode! with previously published models, 

experiments, and observation. The simulation results replicate almost every producer

scrounger prediction and experimental result published to date such that it provides a 

more general tool than any single game-theoretic model to predict behaviour under 

frequency-dependent conditions. The mode! furthermore allows us to develop a nove! 
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prediction about the behavior m a more rea li stic environment of vari able patch 

richness . 

In chapter II , 1 test Chapter I's navel prediction that increased patch quali ty variances 

calls fo r high equilibrium frequency of scrounging. In doing so, we used captive 

forag ing fl ocks of male zebra finches in two conditions with variable and non

variable patch quality. The results show that as individuals ga in experience in the 

variable environment, they increase their scrounging behav ior. Thi s supports the 

prediction of the linear operator model, emphas izing the power of the learning ru le 

approach in studying animal behav ior. 

ln chapter lll , 1 explored the conditions under which a linear operator type of learning 

is expected to evolve in a frequency-dependent context like a producer-scrounger 

game. ln doing so, 1 addressed both limitations of earlier studies by putting fi xed 

against learning agents while exploring the effects of no fluctuations, as we ll as 

within or between-generation fluctuations. The results show that at least within the 

context of a producer-scrounger game, we can accept the behavioral gambit if we are 

only interested in the populati on level equilibrium in static enviro nment, because 

learning generates a combination of strategy use that corresponds exactl y to what 

would be expected fro m evolutionary model based on selection acting on geneti c 

alternat ives. The results however emphas ize that we need to consider learning if there 

is environmental changes or if we want to predict the behavior at ind ividual-level. 

Finally, chapter IV prov ides a general discuss ion of the earli er chapters and their 

relation to my original hypothesis. 1 identifi ed the key contributions of this thesis and 

di scussed the directions fo r future research. 
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CHAPTERI 

A UNIFIED MODELLING APPROACH FOR PRODUCER-SCROUNGER 
GAMES IN COMPLEX ECOLOGICAL CONDITIONS 

Afshar, M., & Giraldeau, L.-A . (2014). A unified modelling approach for producer

scrounger games in complex ecological conditions. Animal Behaviour, 96, 167- 176. 

doi : l 0.1016/j.anbehav.2014.07.022 

1.1 Abstract 

Animal decision making in frequency-dependent situations, where the payoff of an 

action depends on the actions of others, has gained prominence in behavioural 

ecology and in social foraging in particular. One such situation involves cases where 

an animal can search for a new resource (produce) or join what others have already 

found (scrounge). A number of game-theoretic models have been proposed to predict 

the equilibrium combination of producer and scrounger strategists based on the 

evolutionarily stable strategy. However, each game mode! can only handle a few 

environmental parameters at a time and none address the flexible use of tactics that 

allows individuals to respond quickly and adaptively to changes in payoffs. ln this 

study we propose an agent-based mode! using a linear operator learning rule as the 

decision mechanism. The mode! provides a unified framework from which to predict 

the effects on the expected equilibrium of producers and scroungers of group size, 

metabolic requirement, finder 's advantage, food intake rate, cost of searching, cost of 

joining, patch encounter probability and patch richness . The simulation results 

replicate almost every producer- scrounger prediction and experimental result 
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published to date such that the simulation provides a more general tool than any 

single game-theoretic mode! to predict behaviour under frequency-dependent 

conditions. The mode! furthermore allows us to develop a nove! prediction about 

foraging behaviour in a more realistic environment of variable patch richness. By 

modelling the operation of a plausible decision ru le, we can explore the validity of the 

behavioural gambit, the assumption that the unspecifted decision mechanisms of 

game-theoretic models faithfully reproduce outcomes expected of natural selection 

operating over generations on fixed alternatives. We suggest that this simulation 

mode! can provide a tool for others to explore and predict the effect of more complex 

and hence realistic foraging conditions on individual levels of producer and scrounger 

use. 

Keywords: decision making, evolutionary game theory, frequency-dependent 

selection, learning rule, producer- scrounger, risk sensitivity, social foraging 

1.2 Introduction 

Animais of the same spec1es sometimes use different tactics when engaged in 

foraging or mate choice (Da vies et al. , 2012). The choice of tactic is generally made 

as a fonction of state and or time, and the ru le that governs this choice is referred to as 

a strategy ( e.g. for the tactics of wander or defend, the strategy might be ' if young, 

wander; if old, defend '; Gross, 1996; Houston & McNamara, 2005; Tomkins & 

Hazel , 2007). Behavioural ecologists are interested in why different tactics coexist in 

the same population under the same ecological conditions. One possible explanation 

is that none of the tactics can reach fixation because their fitnesses are negatively 

correlated with their frequencies in the population : a negative frequency dependence 

that predicts stable mixtures of tactics (Barnard & Sibly, 1981 ; Beauchamp, Bélisle, 

& Giraldeau, 1997; Coolen, Giraldeau, & La voie, 2001 ; Giraldeau & Livoreil , 2000; 

Giraldeau, Soos, & Beauchamp, 1994; Maynard Smith, 1982; Morand-Ferron, 

Giraldeau, & Lefebvre, 2007; Mottley & Giraldeau, 2000; Wu & Giraldeau, 2005). 
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For more than three decades, evol utionary game theory has been the main too l used in 

frequency dependent situations to predict an equilibrium mixture of tactics based on 

evolutionarily stable strategy (ESS) theory. ESS theory assumes that strategies (and 

so the equilibrium mixture of tactics) are determined by natura l selection acting on 

genetic alte rn atives (Maynard Smith , 1982). lt can predict the equilibrium when there 

are either pure or mixed strategies in the population. A pure strategy is when each 

individual al ways uses either one tactic or the other, and so does not alternate 

between them (Gross, 1996). It can ari se because of geneti c diffe rences between 

individuals or environmental diffe rences (Da vies et al. , 20 12) or when the frequency 

of each strategy is set over generations by frequency-dependent se lecti on and the 

population then appears dimorphic (Bergstrom & Godfrey-Smith , 1998). A mixed 

strategy is when each individual plays a fi xed combination of diffe rent tactics so that 

the ESS is sati sfi ed by the overall combination of the population (G ross, 1996; 

Tomkins & Hazel, 2007). 

ESS theory only predi cts the distributions of tact ics. lt however remains si lent about 

the ways in which these di stributions are realized and makes no explicit prediction as 

to the di stribution of tactics in an infinite population accommodating anything from 

monomorphi sm, everyone uses the same mixture of tactics, to extreme 

polymorphi sm, where each individual adopts a unique combination of tactics 

(Bergstrom & Godfrey-Smith, 1998). Thi s leaves some important questi ons about 

how complex ity and di versity are rea lized within individuals and across a population. 

These questi ons have been addressed in Bergstrom and Godfrey-Smith (1998), 

Maynard Smith (1988) and Yickery (1987, 1988). ln a finite populati on, only pure 

strategies are expected from purely deterministic dynamics and no mixed strategy can 

be an ESS (Vickery, 1987, 1988). However, if the frequency of one pure strategist is 

low at ESS, stochastic environmental fluctuations may cause its extinction. ln thi s 

case, mixed strategies are favoured and can in vade the population (Bergstrom & 
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Godfrey-Smith, 1998; Maynard Smith, 1988; Orzack & Hines, 2005). Deterministic 

and stochastic methods can thus have different opposing predictions. 

ESS theory also accommodates situations where the fixed combination of each tactic 

is acquired by learning. ln this case it assumes that an evolutionary stable (ES) 

learning rule exists whose characteristics lead the population within a generation to 

the same equilibrium combination as would frequency-dependent selection over 

generations (Maynard Smith, 1982). lt is unclear whether a learned equilibrium 

should generate a monomorphic,·dimorphic or polymorphie population . Whatever the 

type of strategy expected at the ESS, be it pure, mixed or learned, the ESS theory 

approach in the context of animal behaviour suffers three important limitations that 

we consider in turn. 

The first is that, if selection is acting on genetic alternatives, individual behaviour 

must be genetically fixed. Yet, in many frequency dependent tasks, such as the 

producer-scrounger (PS) game, prisoner' s dilemma and ideal free distribution, 

behaviour does not appear genetically fixed but rather a learned ESS (Belmaker, 

Motro, Feldman , & Lotem, 2012; Lendvai , Barta, & Liker, 2004; Morand-Ferron & 

Giraldeau, 201 O; Morand-Ferron, Varennes, & Giraldeau, 2011 ; Morand-Ferron, Wu, 

& Giraldeau, 2011 ). Furthermore, man y behavioural games are probably played 

several times and under different conditions within a generation (Stephens & 

Clements, 1998). The optimality of any tactic thus changes during an individual's 

lifetime. Here, any genetically fixed mechanism may be handicapped to respond to 

the changes in the structure of the games. Therefore, it seems unlikely that the 

optimality of such a game would be fixed in merely a genetic mechanism during 

evolutionary timescale. The expectation that a learned ESS will always generate a 

combination of strategy use that corresponds to that expected from selection acting on 

genetic alternatives remains an untested assumption (Harley, 1981 ; Harley & 

Maynard Smith, 1983 ; Hines & Bishop, 1983 ; Maynard Smith, 1982; Tracy & 
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Seaman, 1995), and its acceptance, what Giraldeau and Dubois (2008) described as 

accepting the ' behavioural gambit ', may be incorrect (Fawcett et al., 2013; 

McNamara & Houston, 2009). 

The second limitation of the ESS approach is its inability to deal effective ly with 

complicated situations (Fawcett et al. , 2014). For example, the possibility that 

ecological conditions (the frequency-dependent nature of man y games and the 

specificities of the decision mechanism) may constrain the equilibrium that a 

population can be expected to reach is also largely ignored (Fawcett et al., 2013; 

Grodzinski , Dor, & Lotem, 2011 ; McNamara & Houston, 2009). Because of the 

analytical complexity of solving ESS models in more reali stic situations, most of 

these models consider conditions in which the organism is omniscient and the 

environment is oversimplified and often static. The predictions from these models 

then encourage experimentalists to test their predictions in equally simplistic and 

hence unrealistic conditions. This oversimplification of conditions in which 

frequency dependence is considered has been justly criticized for being too far 

removed from the world in which organisms have evolved (Fawcett et al. , 2014). 

Finally, behaviourists who wish to predict how individuals behave in a population 

cannot rely on ESS theory. This is because ESS theory only predicts the average 

stable mixtures of strategies across populations, not the tactic combination for each 

individual within a population. ESS theory remains silent concerning whether ail 

individuals should adopt the same proportion of each tactic (monomorphism), or 

whether some individuals should use higher proportions of one tactic white others use 

lower proportions (dimorphism). If we are to predict individual behaviour it would be 

important, therefore, to develop a way of predicting it in situations of frequency 

dependence that rely on learning. Such an approach should allow us to predict 

individual behaviour and explore the effects of more realistic environmental 

conditions not only on individual tactic use, but on its expected variation among 
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individuals within populations. A behavioural mechanism based on learning not only 

responds to a repeated game with changing conditions during an individual ' s lifetime 

(Stephens & Clements, L998), it can furthermore be used in multiple games affecting 

different equilibriums simultaneously. 

To this end, in this study we address the first and the second limitations of ESS 

theory by proposing a simulation mode! that predicts the same population equilibrium 

as an ESS. This mode! incorporates a commonly used learning rule as the 

individual ' s cognitive decision mechanism (Arbilly & Laland, 2014; Beauchamp et 

al., 1997; Beauchamp, 2000; Dridi & Lehmann, 2014; Dubois, Morand-Ferron, & 

Giraldeau, 201 O; Hamblin & Giraldeau, 2009; Katsnelson , Motro, Feldman, & 

Lotem, 2012; Kurvers, Hamblin, & Giraldeau, 2012). We then tackle the second 

limitation by adding complexity to the environment beyond what has been possible 

with game-theoretic PS models and the experimental studies they generated. We use 

the mode! to bring a novel prediction about the expected effect of patch quality 

variance on the equilibrium use of search and join tactics . 

ln our simulation we assume that agents use their experience of payoffs to decide on 

the tactic they adopt: we assume learning. We acknowledge that the evolution and use 

of learning in the context of such frequency-dependent games is not straightforward. 

For instance, Dubois et al. (2010) showed that although learning individuals 

experience an initial advantage in a producer-scrounger game, they never evolve to 

fixation. The population is th us made up of a mixture of fixed and flexible (learning) 

players. Moreover, by explicitly modelling learning in a producer-scrounger game, 

Katsnelson et al. (2012) showed that learning can evolve to fixation but only when 

there is sufficient environmental fluctuations or when there is asymmetry in 

individual's phenotype. Notwithstanding these difficulties concerning the origins of 

learning in groups, we choose to assume that our agents used learning rules to decide 

on tactic use, an assumption that is supported by a number of empirical studies. 
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Learning rul es, for instance, have been used in psychology, ethology and behav ioural 

eco logy fo r many years to mode! animal behav iour individually or in gro ups (Arbilly 

& Laland, 2014 ; Bush & Mosteller, 195 1a; Dridi & Lehmann, 20 14; Estes, 1950; 

Hamblin & Giraldeau, 2009; Harley, 1981 ; Herrnste in, 196 1; Krebs et al. , 1978 ; 

McNamara & Houston, 1985 ; Stephens, 1989). Moreover, in a seri es of producer

scrounger experiments with nutmeg mannikins, Lonchura punctulata, Morand- Ferron 

and Giraldeau (2010) fo und that the group-l evel proporti on of the join tacti c adjusts 

to different environmental conditions by learning the payoffs associated with each 

tacti c. Birds trained in a low-scrounging condition joined less than those tra ined in a 

high-scrounging condition and continued to do so even when subsequently tested in 

the same co nditions. Similarly, by direct manipulation of the success rate experienced 

by adult ho use sparrows, Passer domesticus, Belmaker et al. (201 2) cou Id change the 

birds' subsequent strategy choice. Birds more frequentl y used the strategy with which 

they we re more successful , and the differences in tacti c use were correlated with 

diffe rences in success rate. 

The learning rule approach, coupled with an agent-based simulation, could specify 

more clearl y the sensitivity and the attributes of the equilibri a to the animal decision 

making mechani sm. ln thi s case, the populati on equilibrium cornes from the 

interactions of individuals with each other and with the environment at an ecological 

timescale rather than from the action of natural se lecti on over generations. 

Furthermore, it is now poss ible to study the behaviour of each animal individually, 

and ask, for instance, how the parameters of the learning rule ( e.g. its memory 

window, sampling frequency) and the decision rule (matching versus max imizing) 

influence not onl y the equilibrium but the extent of individual variation in strategy 

use at equil ibrium. 

We use an agent-based simulation mode! operating in a PS game context fo r which 

there already exists a number of published models and empirical results. This allows 
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us to test the validity of our simulation by companng its results against the 

predictions of several publi shed PS models as well as the results reported from a 

number of experimental studies. Our simulation model uses a linear operator (LO) 

learning rule, the most commonly used learning rule in behavioural ecology. The LO 

is simple and has fewer parameters compared with alternative learning rules (e .g. 

relative payoff sum: Harley, 1981 ; perfect memory: Houston & Sumida, 1987). 

Linear operator, also known as the Rescorla-Wagner rule, was shown to be favoured 

by natural selection in a simulation study (Trimmer et al. , 2012) and provides the 

basic structure for many more complicated forms of reinforcement learning rules 

(Sutton & Barto, 1998). LO has been previously used in the PS game in competition 

with other learning rules (Beauchamp, 2000a; Hamblin & Giraldeau, 2009), alone 

(Arbilly, Motro, Feldman, & Lotem, 2010) and with nonlearning strategies (Arbilly 

& Laland, 2014; Katsnelson et al. , 2012). The interest of these earlier studies on 

learning rules resided in the evolution of the learning rule itself and in determining 

the performance of the rules in reaching an equilibrium, namely their evolutionary 

stability. Here, instead, we simply assume the LO is the stable learning rule and use it 

to explore the expected effects of a number of different ecological parameters on the 

equilibrium of expressed tactics in a PS game. 

1.3 Producer-scrounger game 

When foraging in a group, an individual can obtain food by searching for a new food 

patch or by joining patches already found by others (Barnard & Sibly, 1981 ). In some 

cases, such as some ground-feeding birds, the two alternatives are temporally 

incompatible because the animal cannot look at the ground to search for food (head 

down) and watch others in the group to join them when they find food (head up) 

simultaneously (Cool en et al. , 2001 ). Individuals may adopt pure strategies, a 

situation where they use only one tactic: either search only (pure producer) or join 

only (pure scrounger). They can have different combinations of search and join 

tactics. Thus, to be more accurate, we define a 'producer' more broadly as an 
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individual that searches more . than it joins, and a ' scrounger' as an individual that 

joins more than it searches. This means there is variation in the search- join 

combination within this broadly defined producer, so a ' producer ' does not represent 

a single strategy but a continuum of unique strategies with different proportions of 

join tactic. The same ho Ids for the ' scrounger' . ESS theory predicts a specific 

evolutionary stable frequency of join where the payoffs of both search and join tactics 

are equal (Giraldeau & Beauchamp, 1999). The general question in a producer

scrounger game is to find this equilibrium and explain how changes in environmental 

parameters affect it. 

1.4 Linear operator mode! 

In this mode! of social foraging, a given group of individuals forages in a virtual 

environment, represented by a matrix. Each individual is a separate learner and tries 

to maximize the amount of food gained: its payoff. It uses a linear operator learning 

rule to estimate the value of each tactic (search or join) by the following equation: 

Vi(t) = Vi(t - 1) + x (Pi(t) - Vi(t - 1)), Vi(O) = unif(o,1) where Vi(t) and Pi(t) are the 

estimated value and the observed payoff, respectively, for tactic i at time t. x is the 

learning rate (1 - x is the memory factor). The first term, Vi(t - 1), is the previous 

estimation, and the second term, Pi(t) - Vi(t - 1), is the difference between the 

observed payoff and the previous estimated value. This process updates the estimated 

value of the most recent tactic. For the ôther tactic that has not been sampled at time 

t , the estimated value remains unchanged (Vi(t) = Vi(t - 1)). Vi(o) is the initial 

condition, which is chosen at random from a uniform distribution between zero and 

one. This causes the average initial preference of the population to be 50% for the 

search tactic and 50% for the join tactic. 

So, in the linear operator, with each new expenence, the estimated value moves 

towards the recent observed payoff by a rate of x. At each time step, the learner 

decides which of the two tactics to express by adopting alternative tactics in 
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proportion to their estimated values, called matching ratio. This choice mechanism 

allows the individual to sample both tactics, while still exploiting the best one 

proportionally more often. 

ln the simulation model , time is divided into discrete steps. Each time step can be 

interpreted as one sampling event in the real world. ln each time step, an individual 

adopts a tactic. If it searches, then whether it encounters a patch or not depends on the 

patch encounter probability. Simultaneous discoveries by different individuals are 

possible when they concurrently use the search tactic. lndividuals that join, see the 

location of ail discovered patches and they join the nearest patch. The patch may be 

depleted just before the individual arrives because of other individuals already present 

at the patch. 

Upon encountering a food patch, the finder receives a fraction of the food in the 

patch: the finder's advantage. This represents the amount of food the finder would be 

able to eat before the joiners arrive. ln subsequent time steps, ail individuals at the 

patch, the finder and those that have joined, receive food at the same food intake rate. 

Normally, due to competition, the rate of food intake is affected by the number of 

scroungers at the patch, but for simplicity, we kept intake rate fixed . The individuals 

at the patch continue eating until the patch is depleted , at which point each individual 

chooses a tactic using the LO. We assume that in each time step individuals require a 

minimum amount of energy to survive, a parameter we termed metabolic 

requirement. If an individual does not meet its metabolic requirement, it survives but 

gets a negative payoff to ensure that there is value in exploiting the better tactic more 

often. ln the literature, terms such as energy reserve or energy requirement (Koops & 

Giraldeau, 1996; Lendvai et al. , 2004; Wu & Giraldeau, 2005) have also been used 

for the same concept. We however use metabolic requirement as it is well defined and 

easier to understand. lndividuals must also pay a cost of searching or joining. These 
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costs are abso lute values and are incurred in each time step, depending on the tactic 

played. 

Each simulati on invo lves 500 time steps. Because of the learning mechani sm and the 

random initial condition, the proportion of individuals using the join tacti c changes 

rapidly at the beginning of each simulati on, then graduall y converges to a stable 

point. To determine the predicted combination of tactics, we consider onl y the second 

half of the simulation , when values have stabilized. 

The general parameter settings fo r ail simulations are shown in Table 1.1. We chose 

parameter va lues to be as similar as poss ible to empirical simulation and modelling 

studies to which they will be related. The range of parameters was chosen to allow 

max imum exploration of their effect white keeping the simulation computationall y 

poss ible. To study the effect of an ecological parameter on the expected PS 

equilibrium, we conducted a set of 30 simulations fo r each va lue of that parameter, 

while ail the other general parameters remained unchanged. Thus, the results are 

averaged over the 30 simulations. Ali simulations were conducted in MatLab 

(R20 l 3a) for Windows (Mathworks, Nati ck, MA, U.S.A.). 
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Table 1.1 Parameter settings for the linear operator model in the producer-

scrounger game. 

Parameter Symbol Value 

Grid size G )5 X 15 

Maximum simulation time step Tmax 500 

Group size N 8 

Metabolic requirement CMR 0.1 25 

Finder's advantage a 2.5 

Food intake rate b 

Cost of searching Csearch 0.1 25 

Cost of joining Cjoin 0.125 

Patch encounter probability p 0.2 

Patch richness (mean) µp 20 

Learning rate x 0.3 

Range 

5-50 

0-2 

1-20 

0.5-2 .5 

0-2 

0-2 

0.1-1 

5-35 

To see the effect of each parameter, we kept ail parameters equal to their values and changed 

only one parameter at a time based on the mentioned range. 



33 

To test the simulation results with published predictions and observati ons, we 

co llected predi ctions fro m publ ished models and empi rica l resul ts for PS games by 

conducting a literature search using the Scopus bibliographie database. We searched 

fo r ' producer scrounger' , without quotation marks and as two separate words, in the 

article titl e, abstract and keyword fi elds for papers published in and befo re 201 3. We 

located 121 publicati ons, of which we exc luded three because they were not Engli sh 

and two because they were dupli cate entries. Another 29 papers were excluded 

because they used the concept of ' producer scrounger' in other domai ns, such as 

group search optimizers in computer sc ience, and did not prov ide resul ts in the area 

of fo raging behav iour. We expanded our search by fo llowing up the reference 

sections of these papers, which prov ided an additional 11 publicati ons that had not 

appeared in our ori ginal Scopus search. ln the end , we used the models or 

experimental results reported in 98 publications. 

We chose to explore the effect of the fo ll owing eight eco logical parameters on the 

expected equilibrium mixture of tacti cs: group size, metaboli c requirement, finder's 

advantage (the amount of food fro m a patch that goes to the exc lusive use of the 

find er), food intake rate, cost of searchin g, cost of joining, patch encounter 

probabili ty and patch richness. 

1.4. 1 Results 

Our resul ts show that an individual's proportion of join tactic (its strategy) changes 

over time and so responds to its experi ence of the environment (F igure 1.1 ). Although 

each indi vidual changes its use of joining tacti c, it seems to respond idiosyncratica ll y 

to its own experience. If one considers onl y the last half of the simulat ion, when the 

use of tactics by the group is most likely to have reached an equilibrium, we can 

observe that an individual' s final strategy is often not pure; individuals obta in their 

food fro m a combination of both finding and joining. This means that the expected 
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equilibrium state of the population is highly polymorphie, with each individual 

adopting a distinct combination of finding and joining. Furthermore, the result shows 

that the average of the population does converge towards an unchanging value, 

consistent with an equilibrium. However, individuals that try to maximize their own 

payoff by choosing the better tactic based on their experience do not converge to this 

mean and continue to change their strategy over time. Instead, the population is 

strongly polymorphie in its use of the alternative foraging tactics. 

The simulation predicts that the equilibrium level of joining changes in response to 

each of the eight parameters we explored (Figure 1.2). lt is noteworthy that the 

weakest effects are expected for group size, metabolic requirement and food intake 

rate. The parameters that exert the strongest effects are patch encounter probability, 

patch richness and the finder ' s advantage. 

These simulation results match the predictions of published game-theoretic models as 

well as ail but two published empirical results (Table 1.2). One of the mismatches 

concerns the effect of energy reserves or metabolic requirement. ln this case, the 

empirical results reported by Lendvai et al. (2004) are opposite to those expected by 

our simulation. The other mismatch concerns the observation by Koops and 

Giraldeau ( 1996) that joining declines with declining likelihood of patch encounter, a 

result that also contradicts the results of Beauchamp and Giraldeau's ( 1996) 

simulation model. 
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0 100 200 300 400 500 

Time step 

Figure 1.1 Evidence of temporal adjustment of the producer-scrounger 

strategy for a sample group of eight individuals engaged in choosing tactics 

using a linear operator learning rule. Each line shows the proportion of join 

tactic choices for one individual. The thick dashed line shows the average for the 

group. This shows, that by the end of the simulation, individuals do not 

necessarily adopt a pure strategy (ail find, or ail search), which means that, in 

terms of expressed tactics, the population ends in a strong polymorphism of 

tactics. 
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Figure 1.2 Proportion of join tactic at equilibrium as a fonction of changes in 

eight ecological parameters (group size, metabolic requirement, finder's advantage, 
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food intake rate, cost of searching, cost of joining, patch encounter probability and 

patch richness) for group of eight individuals while foraging in a producer-scrounger 

game and choosing tactics based on a Iinear operator learning rule. Means ± SD are 

shown (N=30). The general parameter settings for ail simulations are shown in Table 

1.1. 
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Table 1.2 Comparison of the predictions made by the Linear Operator 

agent-based simulation model with predictions of previous models and results 

obtained from experiments. Only studies that provided predictions or results 

concerning the parameters that we investigated were considered. 

Parameter 
Reference (M: model, E: experiment): Effect 

Group size 

Caraco & Giraldeau (1991; M) : Larger group size, more scroungers 

Vickery et al. (1991; M): Larger group size, more scroungers 

Beauchamp & Giraldeau (1996; M) : Larger group size, more scroungers 

Coolen (2002; E) : Larger group size, more scroungers 

Metabolic requirement 

Koops & Giraldeau (1996; E): Higher energy requirement (lower energy reserve), 
no significant effect on scrounging 
Lendvai et al. (2004; E) : Higher energy requirement (lower energy reserve), more 
scroungers 
Wu & Giraldeau (2005; E) : Higher energy requirement (lower energy reserve), 
smal 1 non-significant effect of fewer scrounging 
Finder's advantage 

Caraco & Giraldeau (1991; M) : Larger finder's share, fewer scroungers 

Vickery et al. (1991; M) : Larger finder 's share, fewer scroungers 

Giraldeau & Livoreil (2000; E): Larger finder's share, fewer scroungers 

Hamilton (2002; M) : Larger ownership advantage, fewer scroungers 

Food intake rate 

Caraco & Giraldeau (1991; M) : Higher food intake, less scroungers (ifprobability 
offinding food by producing is high. Otherwise no change in scroungers) 
Cost of searching (cost of tinding food by producing) 

Giraldeau et al. (1994; E) : Higher cost of producing, more scroungers 

Kameda & Nakanishi (2002; M+E): Lower cost of searching, fewer scroungers 

Morand-Ferron et al. (2007; E) : Higher cost of producing, more scroungers 

Cost of joining (cost offinding food by scrounging) 

Caraco & Giraldeau (1991; M) : Higher cost ofscrounging, fewer scroungers 

Morand-Ferron et al. (2007; E): Higher cost of scrounging, fewer scroungers 

Patch encounter probability (probability of finding food by producing) 

Koops & Giraldeau (1996; E) : Lower probability offinding food by producing, 

Predicted 
qualitatively by 

simulation 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 



fewer scroungers 
Beauchamp & Giraldeau (1996; M) : Higher probability of patch encounter, fewer 
scroungers 
Hamilton (2002; M): Higher rate offinding food, fewer scroungers 

Barrette & Giraldeau (2006, E) : Cryptic food (more di ffic ult to find ), more 
scroungers 
Beauchamp (2008, M) : Lower probability offinding food by producing, more 
scroun ers 
Patch richness (average number of seeds in each patch) 

Vickery et al. ( 1991; M) : Larger patch richness, more scroungers 

Beauchamp & Giraldeau (1996; M): Larger patch ri chness, more scroungers 

Beauchamp (2008, M) : Larger patch richness, more scroungers 

"" 
"" 

"" 
"" 
"" 
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1.5 The effect of variable patch quality onjoining 

None of the models that have been generated so far consider the potential effect of 

variance in patch quality on the use of PS alternatives. Ali published accounts of PS 

games, whether simulations or experimental tests, have involved collections of 

identical food patches. This is surprising given that, in the field , foragers probably 

encounter foraging patches of various richness. Our simulation mode! however 

allows us to address whether adding variance in patch richness has repercussions on 

the equilibrium proportion of joining. 

To analyse the effect of patch richness variance on the expected frequency of the join 

tactic, we extended the LO mode! by adding variance to the patch richness. This 

allowed the patches to contain different quantities of food. We used the same 

parameter settings as the value in Table 1.1 with the exception of patch richness mean 

( µF) and patch richness standard deviation (crF). We studied the effect of crF for three 

habitats with different mean patch richness, µF = 5, 10 and 15. For each µF , we 

varied patch quality variance by altering the standard deviations of patch qualities and 

changing crF from 0 to µF. A set of 30 simulations was conducted for each 

combination of crF and µF , and the results averaged over the 30 simulations. 

1.5.1 Results 

The simulated individuals rapidly changed their use of the join tactic at the beginning 

of each simulation because of the learning mechanism and the random initial 

condition (Figure 1.3). The level of joining then gradually converged to a stable 

point. To determine the predicted combination of tactics, we used only the second 

half of the simulation, when the values had stabilized. 

Similar to previous models (Beauchamp, 2008 ; Beauchamp & Giraldeau, 1996; 

Yickery et al. , 1991 ), the results of our simulation (Figure 1.4) showed that a higher 

mean patch richness (µF) predicts a higher proportion of joining. However, our mode! 



41 

goes fu rther because fo r each µF , increasing the vari ance of patch richness a F also 

increases the proportion of joining within the populati on. Thi s is an enti re ly new 

predicti on that no earlier model or empirical study has yet explored . Moreover, as 

° F / µF increases, the average proportion of the join tact ic fo r diffe rent µF values 

converge. This means that the effect of patch richness vari ance shoul d decrease as the 

mean patch ri chness of a habitat increases. 

The proportion of joining was hi gher when the variance of patch ri chness was higher 

(F igure 1.3). Because the ini tial condi tion (Vi(O)) was set randoml y, both conditions 

started at a 50% joining proportion (F igure 1.3). The difference in the proportion of 

joining between conditions was therefore small initially and then increased with more 

experi ence until it stabilized and remained so unt il the end of the simulations (time 

step = 500). Both conditions caused individuals to decrease their use of joining below 

the initial 50%, but the decline was more pronounced when the variance of patch 

richness was lower (F igure 1.3). 
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Effect of patch richness (mean and variance) on the proportion of join 

tactic. Means ± SD are shown (N = 30). To compare the results for different µF, we show 

the results based on the patch richness coefficient variance (O'F / µF). 
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1 .6 Discussion 

The agent-based simulation we provide here represents a realistic and effective tool to 

predict producer- scrounger behaviour under a number of different foraging 

situations. The model is trustworthy to the extent that it has succeeded in duplicating, 

at least qualitatively, almost every prediction made by different published producer

scrounger models. lt is worth noting that no single game-theoretic PS model 

published to date is capable of making ail of our model's predictions. So, this 

simulation model predicts PS behaviour under a greater range of situations than any 

single game-theoretic PS model. 

We noted two instances where predictions of our simulation model did not match 

published observations. One of these refers to the effect of energy requirement on the 

observed level of joining. The effect of metabolic requirement on a PS game has been 

studied in laboratory flocks of European starlings, Sturnus vulgaris (Koops & 

Giraldeau, 1996), nutmeg mannikins (Wu & Giraldeau, 2005) and house sparrows 

(Lendvai et al ., 2004). Lendvai et al. (2004) reported that lower energy reserves 

increased the use of joining during the first feed of the day. Koops and Giraldeau 

( 1996) and Wu and Giraldeau (2005) however found small (nonsignificant) effects on 

the proportion of join tactic, which were similar to the nonsignificant effects (SD 

intervals overlaps for ail values of metabolic requirement in Figure 1.2) that we 

observed from the LO model. The significant effect observed in Lendvai et al. (2004) 

might be because it was limited only to the first feed of the day and the birds were not 

allowed to adapt to food deprivation. 

The other instance where our simulation model diverged from observation concerned 

Koops and Giraldeau's (1996) report that the expected level of joining declines when 

the probability of finding food declines. Our simulation instead predicted (Figure 1.2) 

that the proportion of join tactic should increase when the probability of finding food 

declines. This prediction is compatible with the predictions of Beauchamp and 



45 

Giraldeau ( 1996), Hamilton (2002), Beauchamp (2008), and an empirical study with 

nutmeg mannikins reported by Barrette and Giraldeau (2006) . Koops & Giraldeau 

argued that, based on variance-sensitive game-theoretic models (Caraco & Giraldeau, 

1991), when the probability of encountering a patch by search increases, the intake 

for ail foragers will increase in a given foraging period. Consequently, individuals 

that are variance averse should reduce their use of the variance-prone search tactic 

and increase their use of variance-averse join tactic. This interpretation, however, 

depends on the costs of searching and joining. If the cost of joining is high relative to 

the cost of searching, say because animais must appropriate the resource aggressively, 

then the search tactic is less variance prone when the probability of patch encounter is 

higher. An extreme example of this would be if patch encounter probability was 1, 

such that individuals find instantaneously upon choosing to search, making joining a 

totally unnecessary and hence irrational option, especially if joining is more costly 

than searching. Defendable, indivisible and very poor food patches are ail examples 

where increasing patch encounter probability increases the payoff for the search tactic 

but not for the join tactic. 

Unlike game-theoretic models, our simulation predicts explicitly that foragers are 

unlikely to specialize in only searching or joining and hence that populations should 

appear polymorphie in terms of tactic use. Most published accounts of individual use 

of tactics are compatible with our model 's expectation (Barnard & Sibly, 1981; 

Beauchamp, 2001 ; Bicca-Marques & Garber, 2005 ; Coolen, 2002; Coolen et al. , 

2001 ; Giraldeau, Hogan, & Clinchy, 1990; Ha & Ha, 2003 ; llan , Katsnelson, Motro, 

Feldman, & Lotem, 2013; Koops & Giraldeau, 1996; Mathot & Giraldeau, 2008; 

M6nus & Barta, 2008; Morand-Ferron, Varennes, et al. , 2011; Morand-Ferron, Wu, 

et al. , 2011 ). ln a series of experiments with house sparrows, Barnard and Sibly 

(1981) reported that producers obtained 19.8- 38.3% oftheir food by joining and that 

scroungers obtained 38.5-48.8% of their food by searching. As Barnard and Sibly 

( 1981) emphasized, the flexible use of tactics allows individuals to respond quickly 
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and adaptively to changes in payoffs . The only published instance of pure tactic use 

was from a study that placed animais in situations that constrained them to specialize 

(Mottley & Giraldeau, 2000). 

ln the context of the producer- scrounger game, producing is a more uncertain 

foraging strategy than scrounging (Wu & Giraldeau, 2005). Producers rely on their 

own effort and the patch richness variance directly affects their performance (Rita & 

Ranta, 1998). However, as has been shown in Koops and Giraldeau (1996) and 

Lendvai et al. (2004) , scrounging is a variance-averse strategy. By exploiting the 

effort of multiple individuals, scrounging is more resistant to changes in patch 

richness variance and, therefore, is only affected by the average patch richness (Flynn 

& Giraldeau, 2001 ). The stable solution in a more uncertain environment is therefore 

to scrounge more (Lendvai et al ., 2004; Rita & Ranta, 1998). However, this is true 

only if the average patch richness is large enough to provide the minimum amount of 

energy required by each individual. Based on the shortfall minimizing mode! of 

variance-sensitive foraging theory, if average food intake is less than the minimum 

survival requirement, individuals might favour the variance-prone strategy since it 

offers at least a chance of survival (McNamara & Houston, 1992; Stephens & Krebs, 

1986). 

1.7 Future directions 

An important limitation of analytical evolutionary approaches (including ESS theory) 

is the excessive simplification of individuals and the environment in order to 

determine an expected stable outcome (Fawcett et al ., 2014). This is notas true for 

agent-based simulations, making it a particularly powerful means of exploring the 

expected outcomes for more complex and hence realistic conditions. Our results 

demonstrate that the simulation approach is entirely capable of replicating results 

obtained from highly simplified conditions. This is reassuring and suggests that it can 

provide a valuable basis for generating predictions in more complex situations. We 
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used the model to predict foraging behaviour when patches were of variable quality. 

Here, we explore some of the more likely situations where the simulation should be 

used to generate testable predictions for future enquiry. 

Based on previous studies (Belmaker et al. , 2012 ; Morand-Ferron & Giraldeau, 201 O; 

Stephens, 1991 ), we assumed that learning can evolve and fix in the population. For 

simplicity, we used the model to predict foraging behaviour when patches were of 

variable richness but the environment was not changing and individuals were 

identical. Katsnelson et al. (2012), however, showed that learning is more likely to 

evolve when there is asymmetry in phenotype and environmental fluctuation. lt will 

th us be important to verify the mode! and reanalyse the effect of these parameters on 

PS behaviour when phenotypic asymmetry or environmental fluctuations exist. Real

life individuals are rarely identical. For instance, Mathot et al. (2009) reported that 

individuals differ in their basal metabolic rates (BMR) and that their preferences for 

the search or join tactic depends on their BMR; high BMR individuals join more. 

Severa( other studies also investigated the effect of individual differences in PS 

games (Barta & Giraldeau, 1998; Hamilton, 2002; Jolies, Ostojié, & Clayton, 2013 ; 

Marchetti & Drent, 2000; Mathot & Giraldeau, 201 O; McCormack, Jablonski , & 

Brown, 2007; Morand-Ferron, Varennes, et al. , 2011 ; Morand-Ferron, Wu, et al. , 

2011 ; Rita, Ran ta, & Peuhkuri , 1997). For instance, individuals within groups occupy 

different spatial positions, and simulation and experimental studies have 

demonstrated that spatial position affects an individual ' s preferred tactic (Barta, 

Flynn, & Giraldeau, 1997; Flynn & Giraldeau, 2001 ; King, Isaac, & · Cowlishaw, 

2009; M6nus & Barta, 2008). A number of recent studies have shown considerable 

individual differences in the speed of learning or in the propensity to learn 

(Katsnelson et al. , 2012), but we have little idea concerning how variation in learning 

affects tactic use and the extent of tactic polymorphism within a group. Furthermore, 

individuals show differences in their impulsiveness or exploratory tendencies as well 

as a whole slew of other behaviours that have been considered under the theme of 
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animal personalities (Réale & Dingemanse, 2012). What consequences might 

individual differences have on PS outcomes (Dubois, Giraldeau, & Réale, 2012)? 

These are ail examples where the agent-based linear operator model , unlike 

evolutionary game-theoretic models , can be used to explore the consequences for 

social foraging. In addition to explore the effect of individual differences, we suggest 

that the agent-based simulation cou Id be used to explore the effects of more complex 

environments. Examples include, but are not limited to, predation risk, patch defense 

and group size. One could also address the effect of PS behaviour on expected group 

s1ze. 

The simulation predicted that the equilibrium level of joining varied in response to 

each of the eight parameters we explored (Figure 1 .2). For example, group size, 

metabolic requirement and food intake rate had the weakest effects, while patch 

encounter probability, patch richness and the finder 's advantage exerted the strongest 

effects. An additional step, not yet taken , would be a detailed experimental 

examination of such differences. Knowing why some parameters have stronger 

effects may lead to a better understanding of animal behaviour and decision making 

in frequency-dependent tasks. We cannot however relate the slope of increase from 

our simulation results to real life experiments as we cannot relate the time steps in the 

simulation to seconds, minutes or trials in the real world. We thus need to verify and 

measure the effects experimentally. Then, we can compare the effects of different 

parameters and study why some effects are stronger than others. 

ln conclusion, we argue that learning rule models like the one we present here are 

more effective tools, in term of generality, to study and predict behaviour under 

frequency-dependent conditions. We mode! the decision rule as a mechanism to 

determine foraging behaviour directly and explicitly as suggested by Arbilly et al. 

(2010) and Grodzinski et al. (2011). The approach allows us to explore behaviour 

without indulging in a behavioural gambit, but the correspondence between 
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predictions from our model and those of game-theoretic models prov ide some 

reassurance that the gambit may be acceptable. Ultimately, however, the va lidity of 

the gambit needs to be established experimentally. Our laboratory is already engaged 

in exploring some of these effects, particularly the effect of patch variance on the use 

of the joining tact ic. We encourage other researchers to use our approach to extend 

PS games to a greater range of diverse, complex and hence more reali stic fo raging 

situations. 
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CHAPTER II 

ZEBRA FINCHES SCROUNGE MORE WHEN PATCHES VARY IN QUALITY: 
EXPERIM ENTAL SUPPORT OF THE LIN EAR OPERATOR LEA RNING RULE 

Afshar, M., Caro lyn L. Hall , & Giraldeau, L.-A. (20 14 ). Zebra finches scrounge more 

when patches vary in quality: Experimental support of linear operator learning rule. 

Animal Behaviour, 105, 2015 , 181-186. doi: I0 .101 6/j.anbehav .201 5.04.01 6 

2. 1 Abstract 

The use of evolutionary game theory and the concept of the evo lutionarily stable 

strategy (ESS) have corne under crit ic ism lately because game-theoretic models are 

often constra ined to overly simpl ist ic situati ons. Furthermore, game-theoretic models 

commit the behav ioural gambit, that is, they assume that individuals have some 

unspecified decision mechanism that dupli cates the outcomes that would be expected 

from natural se lection acting on genetic alternati ves. The producer- scrounger game is 

an ideal illustrat ion of the critic isms aimed at the game-theoretic approach; it has 

generated a number of game-theoretic models that make specific predictions fo r 

highly simplified fo raging conditions. Simulation rnodels of the producer-scrounger 

game that incorporate the linear operator learning rul e, however, have been more 

successful in replicating the empirical resul ts. In these models, groups of animais 

fo rage fo r patches of food using a linear operator learning rul e. The linear operator 

model furthermore prov ides a new prediction about the effect of variation in patch 

quality within a producer-scro unger game. Current models based on evo lutionarily 

stable strategies and empirical invest igations have always assumed or used patches of 
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uniform quality. Yet patches vary in quality and some environments are potentially 

more variable than others . The linear operator mode! predicts an increase in 

scrounging behaviour when patch quality varies. We tested this prediction using 

captive foraging flocks of male zebra finches, Taeniopygia guttata, in two treatments 

with variable and nonvariable patch quality. The results show that as individuals have 

more experience in the variable environment, they increase their scrounging 

behaviour. Linear operator models may therefore provide a general and empirically 

valid means of exploring the outcome of animal decisions in social foraging 

situations too complex to be addressed by evolutionary game models. 

Keywords: decision making, evolutionary game theory, frequency-dependent 

selection, learning rule, linear operator, producer- scrounger, risk sensitivity, social 

foraging, zebra finches (Taeniopygia guttata) 

2.2 Introduction 

Situations where the outcome of an individual 's behaviour depends on the behaviour 

used by others commonly cal! for evolutionary game theory as an analytical tool 

(Giraldeau & Caraco, 2000; Maynard Smith, 1982). The use of evolutionary game 

theory and the concept of the evolutionarily stable strategy (ESS), however, have 

corne under criticism because game-theoretic models are often constrained to overly 

simplistic situations that bear little resemblance to actual conditions under which the 

behavioural decision has evolved (Afshar & Giraldeau, 2014; Fawcett et al. , 2014; 

Grodzinski et al. , 2011). As a result, tests of these models ' predictions are often 

conducted under equally unrealistic and oversimplified situations. 

Another critique of evolutionary game theory, and of optimality in general, has been 

that it assumes the operation within individuals of some unspecified decision 

mechanism that duplicates the outcomes that would be expected from natural 

selection acting on genetic alternatives. lt therefore commits the behavioural gambit 

by assuming that psychological mechanisms do not constrain the behavioural 



53 

phenotypes that can evolve (Fawcett et al., 2013; Giraldeau & Dubois, 2008; 

McNamara & Houston, 2009). Severa( authors have thus argued that it would be 

more useful to explore the outcomes of decision mechanisms in game situations 

directly, rather than assume their operation and outcome (Arbilly et al. , 2011; Fawcett 

et al. , 2013; Katsnelson et al., 2012). 

In a recent study, Afshar and Giraldeau (2014) developed a simulation model that 

explored the outcomes of groups of individuals using an explicit learning rule in a 

producer-scrounger (PS) game (Barnard & Sibly, 1981 ). ln a PS game, individuals 

can obtain food by searching for a new food patch (producing) or by joining patches 

already found by others (scrounging). The game assumes that these two foraging 

alternatives are temporally incompatible, as is the case for animais like ground

feeding birds (Cool en et al., 2001 ). When the scrounger strategy is rare, it receives a 

higher payoff than the producer tactic. lncreas ing the frequency of scrounging, 

however, decreases everyone's payoffs. The payoff for both alternatives is therefore 

affected by the frequency of the scrounger strategy. ESS game-theoretic models 

predict a specific evolutionarily stable frequency of scrounging where the payoffs of 

both alternatives are equal (Giraldeau & Beauchamp, 1999). The principal question, 

therefore, in PS research has been to explore how environmental and individual state 

parameters affect this equilibrium. The PS game is an ideal illustration of the 

criticisms aimed at the game-theoretic approach; it has generated a number of game

theoretic models that make specific predictions for highly simplified foraging 

conditions (Afshar & Giraldeau, 2014). ln Afshar and Giraldeau (2014), the 

individual chooses which tactic to express based on the matching ratio , adopting the 

tactics in proportion to their estimated values, at each time step. This agent-based 

simulation was remarkably successful in replicating almost every published 

prediction and experimental result concerning PS games (Afshar & Giraldeau, 2014). 

Given the success of their simulation, they argued that the explicit decision model 

was a more effective means of predicting the effect of environmental factors on PS 
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behaviour than ESS models. They backed this claim by generating an entirely nove! 

prediction for a situation that was too complex for the outcome to be anticipated 

using a conventional ESS approach. Every previous ESS mode! and test of PS 

behaviour had considered only environments of homogeneous patch quality; ignoring 

the effect that a mixture of patch qualities would have on PS behaviour. The Afshar 

and Giraldeau (2014) simulation mode! showed, however, that the variance in patch 

quality should affect the expected level of scrounging, and it predicted that increasing 

variance should lead to increased scrounging. Furthermore, the simulation mode! 

showed that, because individuals use learning and hence their experience to adjust 

their behaviour, any changes in the amount of scrounging is expected to happen 

gradually as individuals gain experience and the population slowly converges to a 

stable level of scrounging after sufficient time. 

In this study we provide the first experimental test of the new expected level of 

scrounging to test whether this linear operator learning model represents an 

empirically valid way to predict the outcomes of individual decisions in complex 

frequency-dependent foraging conditions. We test this navel prediction using captive 

flocks of zebra finches , Taeniopygia guttata. Specifically, we ask whether increasing 

the degree of variance in patch quality, while keeping its mean constant, will affect 

the frequency of scrounging in flocks of foraging captive zebra finches . 

2.3 Methods 

2.3.1 Study subjects 

We used zebra finches purchased from a local supplier, L'oisellerie de l' Estrie, QC, 

Canada. These social granivorous birds have been widely used to test predictions of 

PS games (Beauchamp, 2000b, 2001 , 2006; Biondolillo, Stamp, Woods, & Smith, 

1997; David, Cézilly, & Giraldeau, 2011 ; David & Giraldeau, 2012; Giraldeau et al ., 

1990; Mathot & Giraldeau, 2008, 201 O; Mathot et al ., 2009). We randomly selected 

20 males from our colony of 32 males. 
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Before the experiments, the birds were kept in groups of three to fo ur individuals in 

small home cages (29 x 52 x 38 cm) with ad libitum access to water, a mixture of 

vitamin-supplemented seeds, and regular access to vegetables and egg mi xture. Room 

temperature was maintained at 24 ± 1 °C on a 12: 12 h li ght:dark cyc le. For 

identificati on, each individual had a co loured leg ring. Ali the birds had previous 

experi ence with the PS game, but none had been used in an experiment fo r at least 1 

year. We randomly assigned the birds to fo ur fl ocks of five birds. 

During the experiments, each bird was temporaril y marked with a dab of nontoxic 

acrylic paint on top of the head. The co lour was randoml y chosen fro m orange, 

yellow, green, blue and purple with the constra int that no two birds in the same fl ock 

had the same co lour. The experiment lasted 15 days fo r each fl ock, and two fl ocks 

were tested concurrently in neighbouring av iari es . The experiments were conducted 

from 9 Jul y to 4 August 201 3 within the animal care fac ility at the Uni versity du 

Quebec à Montreal. Ali experimental procedures complied with the guidelines from 

Canadian Council fo r Animal Care and were approved under protocol 0313-Cl-71 2-

0314 by the UQAM committee for animal care. 

During the experiment, each fl ock was kept in a large indoor av iary (1.5 x 3.8 x 2.3 m 

high) with a 12: 12 h light:dark cyc le (0700- 1900 hours) . Birds had ad libitum access 

to water at ail times and access to a bath 1 day per week. A 1.1 x 1.15 m piece of 

plywood grid in which 1 OO we ll s (1.3 cm diameter and 1 cm depth) had been drilled 

in a grid pattern ( 10 x 10 cm with 10 cm centra l di stance) was placed on the fl oor of 

each av iary. A video camera hung from the ce iling 1.9 m from fl oor, directl y above 

the center of the grid so that the image captured the whole grid surface . 

2.3.2 Experimental Procedure 

The fl ock was allowed two consecutive days within the av1ary to famili arize 

themselves with their surroundings. During thi s time, two feeders fill ed with millet 

seeds were placed on the grid. Ali food was removed from the av iaries at 1'800 hours 
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on day 2. The next morning five trials were conducted for one flock at 30 mm 

intervals starting at 0800 hours and ending at 1000 hours. Trials for the second flock 

were started with a 15 min delay at 0815 hours, using the same procedure. 

At the beginning of a trial , the experimenter (M.A.) entered the aviary, turned on the 

camera, and filled six randomly chosen patches with white millet seeds. To prevent 

the birds from recognizing or remembering the location of the full patches on the 

grid, the experimenter filled six experimental patches and mimed the addition of 

seeds at six empty patches, visiting the 12 patches in random order. He then covered 

the grid with a sheet of opaque white corrugated plastic (Coroplast) before exiting the 

aviary. From outside the aviary, the experimenter pulled a string to slide the opaque 

covering off the grid. The birds then landed and searched for food on the grid. Each 

trial continued for 9 min, after which the experimenter entered the aviary, cleaned the 

grid of ail food and turned off the camera. 

After the last trial of the day the birds were provided with ad libitum access to food 

until 1800 hours, when ail food was removed. This procedure was repeated from day 

3 to day 8 and then again from day 10 to day 15. During day 9, the birds had no trials 

and were provided with ad libitum food, water and bath. Days 3 and 10, the first day 

of each treatment, were considered training days and no data were collected. At the 

end of the l 5th day we returned the birds to their holding colony. 

Each flock was tested in two treatments, variable and nonvariable patch richness. ln 

the nonvariable treatment, ail six patches in each trial contained exactly l 0 seeds. In 

the variable treatment, there were two patches for each of three richness values: 5, l 0 

and 15 seeds. This changed the patch richness variance from zero (in the nonvariable 

treatment) to 20 (standard deviation of 4.47). Two flocks were randomly selected to 

experience the nonvariable treatment first and then the variable; the other two flocks 

experienced the reverse order. 
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In each trial , one bird was random ly se lected as the focal bird, with the constraint that 

each bird had to be observed once per day (exc luding the tra ining day) and once in 

each time slot over the course of the week. After the experiment was completed fo r 

ail flocks, the videos were viewed in random order by the experimenter, who was 

blind to the treatment type. 

Behavioural observations started when the first bird landed on the grid and continued 

fo r 2 min. We counted find and join events. We defined a ' find event ' when the foca l 

bird pecked seeds from a patch that was unoccupied at the time the bird arri ved at the 

patch. A 'join event ' was noted when the foca l bird pecked seeds fro m a patch where 

at least one other bird was feeding. If the foca l bird ' re-found ' an abandoned patch or 

' re-joined' a prev iously joined patch, we also counted the new event. We then 

calculated the proportion of patches joined by the focal bird in each trial as the 

number of its join events divided by the sum of its join and find events. Similar to 

prev ious studies studies (Beauchamp, Giraldeau, & Ennis, 1997; Coo len, 2002; 

_Mathot et al. , 2009; Morand-Ferron & Gira ldeau, 201 O; Morand- Ferron, Varennes, & 

Gi ra ldeau, 2011 ; Wu & Giraldeau, 2005), we used the proportion of patches fo und by 

joining as an index of the leve l of scrounging fo r the focal individual. We used the 

proportion of patches found by joining rather than the proportion of seeds found by 

joining because it was difficult to obtain a reliable count of the number of seeds from 

the videos, and because Barrette and Giraldeau (2006) have shown that the two give 

similar resul ts. Ali video analys is was conducted using JWatcher (Blumstein & 

Daniel, 2007). The data were then transferred to R (R Deve lopment Core Team, 

2008) fo r statisti cal analys is (Field, Miles, & Field, 201 2; Zuur, Ieno, Walker, 

Saveliev, & Smith , 2009). 

2.3.3 Statistical Analysis 

As the dependent vari able was the proportion of patches di scovered by joining, we 

used a generalized linear mi xed-effect model with binomial distribution (Bolker et al. , 
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2009; Mc Donald, 2009; Nakagawa & Schielzeth, 2010). For the model construction 

and selection, we followed the protocol in Zuur et al. (2009). First, we started with a 

mode! that contained ail of our fixed effects: patch richness variance (nonvariable = 

0, variable = 1 ), day of the week, and their interaction as the initial fixed effects. 

Rather than testing the effect of patch richness variance using an intercept of a 

nonexistent ' day O', we were interested in testing the effect on day 5, once the birds 

had time to learn about the treatment. We thus transfonned the day of the week to 

vary from -4 to 0, rather than from 1 to 5, so that the intercept of the mode! 

(transformed value of 0) was on the fifth day of the experiment. We then tested the 

random effects by comparing different random-effect structures, keeping a stable 

fixed-effect structure. We included week ( order of the nonvariable and variable 

treatment), flock identity and bird identity as possible random effects. As the fixed

effects structure did not change at this step, we selected the mode! with the highest 

conditional variance (R2
GLMM(c)) (Bolker et al. , 2009; Nakagawa & Schielzeth, 2013; 

Schielzeth & Nakagawa, 2013). We then kept the selected random structure, and 

tested for the optimal fixed-effect structure using maximum likelihood estimation by 

Akaike's information criterion (AIC). 

2.4 Results 

One subject became il! during day 3 of the second series and was removed . To keep 

flock size constant we replaced it with a bird from the flocks that were used in the 

first series the previous week. This bird was not used as a focal bird, though, and its 

behaviour was not recorded for the experiment this time. We thus ended up with 19 

data series from 19 focal birds. Each of the 19 birds was used as a focal bird in 10 

trials. ln only one trial (on day 1 ), the focal bird did not land on the grid during the 2 

min in the nonvariable treatment. We thus had a total of 189 trials with val id data. 

Of the random effects, bird identity explained by far the largest amount of variance 

(Table 2.1) and was the only random effect retained in the model. The best model to 
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explain the proportion of patches fo und by joining included treatment, day and their 

interaction. The pro portion of patches fo und thro ugh joining was significantl y higher 

in the variable treatment than in the nonvariable treatment (Table 2.2) . The proportion 

of patches found th rough joining decreased sli ghtly but nonsignificantly overa ll with 

day (Table 2.2). There was also a signifi cant interacti on between patch richness 

variance and day (Table 2.2), such that the proportion of patches that the birds fo und 

by joining increased over time in the variable treatment and decreased over time in 

the nonvariab le treatment (F igure 2. 1 ). lndividuals were consistent in their strategy 

use across both treatments; those that scrounged more in the variable patch treatment 

also scrounged more in the nonvari able patch (Pearson corre lation coeffic ient: r = 

0.83, P < 0.00 1; Figure 2.2) . 
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Table 2.1 Variance explained by different random-effect structures of the 

GLMM on strategy use, using the proportion of patches found by joining as the 

dependent variable 

Random effect(s) in the model R2
G LMM(m) R2

GLMM(c) AIC 

Week• 1.31% 1.31% 714.2 

Flock identity 1.40% 2.5 0% 7 11.9 

Bird identity 2. 14% 42.25% 509.2 

Week* flock identity* bird identity 2.05% 42.9 1% 5 12.1 

Oifferent random-effect structures were compared using the conditi onal vari ance (R2
GLMM(cJ) . 

Marginal variance explained (R2
GLMM(mJ) and Akaike ' s information criterion (AlC) are also 

shown. Only bird identity was retained as a random effect in the final mode!. 

"Order of the non vari able and vari able treatment. 
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Table 2.2 Fixed effects of the GLMM on strategy use, using the proportion 

of patches found by joining as the dependent variable 

Estima te SE Z score p 

(Intercept) 0.017 0.429 0.039 0.969 

Treatment a 0.831 0.309 2.688 0.007 

Day b -0.171 0.089 -1.932 0.054 

Treatment*day 0.465 0.127 3.647 <0.001 

Significant effects are shown in bold . 
• Nonvariable patch richness = O; variable patch richness = 1. 
b Days 1 to 5 were transformed to -4 to 0 (see text for explanation). 
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Mean± SE proportion of patches found by joining in four flocks of 

live zebra finches, Taeniopygia guttata, foraging in nonvariable and variable patch 

richness treatments on day 1 (N = 19) and days 2-5 (N = 20). The curves show the 

predicted proportion of patches by join for each treatment from the GLMM model 

shown in Table 2.1 and 2.2 
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Strategy consistency across the two treatments (nonva riable and 

variable patch richness). A scatter plot of the average proportion of patches found by 

joining in the variable treatment and the nonvariable treatment for individuals in four 

flocks offive zebra finches, Taeniopygia guttata. 



64 

2.5 Discussion 

Our experimental results show that the linear operator learning model (Afshar & 

Giraldeau, 2014) represents an empirically valid means to predict the outcomes of 

individual decisions in complex social foraging situations with frequency dependence 

that cannot be analysed using conventional evolutionary game theory. We conclude 

this because our results confirm a totally nove) prediction of the simulation mode! to 

the effect that scrounging increases with the variance in patch quality. This prediction 

has not previously been made by any of the game-theoretic models of social foraging. 

We discuss the implications for both social foraging and the prediction of behaviour 

in complex social conditions. 

The significant effect of patch richness variance and its significant interaction with 

day (Table 2.2), supports the linear operator model. As predicted, the birds graduall y 

increased their level of scrounging over time in the variab le treatment and decreased 

it over time in the non variable treatment (Figure 2.1 ). As a consequence, on the last 

day of each treatment, the birds scrounged significantly more in the variable 

treatment than they did in the nonvariable treatment. In fact, this graduai change over 

time is exactly what we would expect if the birds were using a learning rule to adjust 

their scrounging behaviour, and is similar to what we see in the simulation results of 

Afshar and Giraldeau (2014). Consequently, had the birds been given more time, the 

difference between the proportion of patches scrounged in the variable and 

nonvariable patch treatments wou ld likely have become even more prominent. 

This increase in scrounger use with increasing variance in patch quality may be 

consistent with risk-sensitive foraging behaviour (Giraldeau & Caraco, 2000). Wu 

and Giraldeau (2005) argued that producing was a more uncertain foraging strategy 

than scrounging because producers rely on their own effort and have a more variable 

payoff than scroungers (Rita & Ranta, 1998). Scrounging, therefore, is thought to be 

a variance-averse strategy (Koops & Giraldeau, 1996; Lendvai et al. , 2004) because 
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scroungers can exploit the effort of several individuals and are thus less sensitive to 

changes in patch quality variance than they are to the average patch richness (F lynn 

& Gira ldeau, 200 1 ). Scrounging more under increased patch variance may therefore 

offer a stable so lution to a less certain environment (Afshar & Gira ldeau, 20 14; 

Lendvai et al., 2004; Rita & Ranta, 1998). This is even more li kely when the average 

patch richness is large enough to consistentl y prov ide the minimum amount of energy 

fo r survival, as was the case in our experiment. 

We fo und that individuals were consistent in their strategy use across both treatments 

(F ig. 2). Similar consistent individual diffe rences in strategy use during the PS game 

have been reported when patch quality is constant within treatments but diffe rs 

between treatments (Morand-Ferron, Varennes, & Gira ldeau, 20 11 ; Morand-Ferron, 

Wu, & Giraldeau, 2011 ). Thi s suggests that individuals are not identical in their 

strategy use. lndividual diffe rences, such as di ffe rences in the speed of learning, may 

affect the way that individuals learn. When individuals in a population have different 

speeds of learning, fast individuals respond more quickly to spatiotemporal 

fluctuat ions. For example, when the payoff of a strategy drops temporaril y, fast 

individuals will sample alternative options and stop express ing that strategy more 

quickly. ln a frequency-dependent situati on, thi s quick response can recover the 

payoff of the strategy. It thus removes the need fo r other individuals to sample 

alternative behav iours. ln our experiment, fo r example, when individuals were 

introduced to an environment that favo ured a hi gher leve l of scrounging, quick 

increases in the level of scrounging by some individuals would have reduced the need 

fo r others to change their strategies. Thi s might explain why some indi viduals were 

so consistent in their strategy use regardless of the treatment, while others were more 

fl exible (Figure 2.2). 

lncorporating nonidentical individuals would allow us to explore questions about 

which type of individuals produce more and why. We thus argue that integrating 
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individual differences into the model would be an important next step towards 

increasing the realism of situations for which we need behavioural predictions. 

Kurvers, Hamblin, and Giraldeau (2012), for example, modelled a PS game where 

individuals had different levels of exploratory behaviour. They found that 

environments with a high patch density favoured fast-exploring individuals. Another 

way to integrate individual differences would be to use our linear operator learning 

simulation and allow for individuals to be endowed with different learning rates or 

different levels of prior experience with the environment. 

Afshar and Giraldeau (2014) have already demonstrated that the linear operator 

model regenerates the vast majority of results and predictions from previous 

producer- scrounger studies and does so in a single united framework. lt also made a 

new prediction that was experimentally supported by the results of the experiment 

presented here. This prediction would have been rather difficult to make using 

conventional game-theoretic models and in fact no model had yet addressed the 

question of the effect of patch variance in a PS game. As Fawcett et al. (2014) 

argued, studies on decision making and behaviour generally suffer from 

oversimpliftcation, white trying to study the behaviour in a complex heterogeneous 

environment. We therefore argue that learning rule models are better tools, in terms 

of both simplicity of the models and their capability to handle more complex 

situations, to study and predict animal behaviour in frequency-dependent systems 

than is the ESS approach. 

We acknowledge that an optimal learning rule is both a consequence and an outcome 

of an evolutionary process and so is not divorced from it. Such a learning rule, be it 

linear operator or any other, may be what Maynard Smith called evolutionary stable 

learning rule, a learning rule whose characteristics lead the population within a 

generation to the same equilibrium combination as would frequency-dependent 

selection over generations (Maynard Smith, 1982). lt is however important to 
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emphas ize the diffe rence between the two approaches, evo lutionary game theory 

versus learning (Afshar & Giraldeau, 20 14). ln addi tion to dealing with experimental 

realism, the learning approach is part icul arl y powerfu l in pred ict ing the individual 

behav iour fo r which evolutionary game models remain entirely sil ent. More 

importantly, evo lutionary game theory models cannot dea l we ll with multiple 

ecological parameters that match more rea li stic environments. Agent-based models 

using learning rules therefore prov ide a convenient alternati ve to study the outcome 

of individual dec isions in complex soc ial situations. Recent growing interest in the 

behav iour of individuals within behav ioural eco logy (Réale & Dingemanse, 20 12) 

raises the importance of hav ing more powerful predicti ve too ls capable of generating 

expectations at the individual level. The linear operator learn ing sim ul ation approach 

(Afshar & Gira ldeau, 201 4) therefore appears to be an empiri ca ll y va l id means to 

generate the expected outcomes within gro ups of individuals engaged in complex 

games with freq uency-dependent payoffs. 
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CHAPTER Ill 

THE EVOLUTION OF LEARN rN G AN D NON-LEARNrNG RULES IN 
DYNAM IC ENV IRONMENTS : A TEST OF THE BEHAV IOU RA L GAMBIT 

Afshar, M., & Giraldeau, L.-A. (20 14). The evo lution of learning and non-learning 

ru les in dynamic environments: A test of the behav ioural gambi t. For submission to 

Proceedings of the Royal Society B: Biological Sciences. 

3.1 Abstract 

Learning, a way to adapt to environmental changes, has been studied for decades by 

behav ioural eco logists using models based on learn ing rules perfo rming within a 

soc ial forag ing context. Most of these studies, however, had two important 

shortcomings: learning rules were rarely vetted against non-learning ru les and the 

environmental variance required for learning was rarely present within an 

individual's li fetime. Furthermore, we still do not understand the conditions 

necessary fo r learning to evo lve initially. ln this study, we explore the conditi ons 

under which a linear operator type of learning is expected to evolve in a frequency

dependent context like a producer-scrounger (PS) game, where producer search fo r 

food and scrounger obtain foo d by joining others. ln doing so, we address both 

limitations of earli er studies by allowing fi xed strategies to compete against learning 

strategies in environments that are stable, vary, within generations or vary between 

generations. We fo und that ail populations with similar group size converged to a 

similar proportion of join tactic, regardless of whether ind iv iduals used a pure 

strategy, mi xed strategy, or linear operator learning strategy. Our results show that the 
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pure strategy is superior to both the mixed strategy and the linear operator learning 

strategy across a majority of the environmental conditions. Depending on the type 

and magnitude of environmental fluctuations , learning may either be dominated by 

fixed rules or it can coexist with pure strategies. This result suggests that, at least 

within the context of producer-scrounger game, learning generates a combination of 

strategy use that corresponds to that expected from selection acting on genetic 

alternatives and we can therefore accept the behavioural gambit when studying 

population level equilibrium. 

Keywords: producer-scrounger, learning rule, decision making, frequency-dependent 

selection, Evolutionary game theory, social foraging, pure strategy, mixed strategy, 

polymorphism, linear operator, behavioural gambit 

3.2 Introduction 

Learning can be broadly defined as "a change in state due to experience. [ .. . ] The 

changes in state referred to as learning seem to involve a change in cognitive state, 

not just behavioral potential" (Shettleworth, 2010, pp. 98-99). The underlying 

mechanism for learning has been studied for decades by psychologists (Shettleworth, 

2010) and more recently by behavioural ecologists (Dugatkin & Reeve, 2000; Dunlap 

& Stephens, 2009; Harley, 1981; Henly et al. , 2008; Kacelnik & Krebs, 1985 ; 

McNamara & Houston, 1985 ; Niv, Joel , Meilijson, & Ru pp in, 2002; Stephens, 1991 ). 

ln behavioural ecology, a popular tradition has been to model the process as a 

" learning rule", a mathematical expression that combines previous experiences and 

then uses this information to assigna probability to each possible behaviour of being 

expressed at a given time (Aoki & Feldman, 2014; Arbilly et al. , 2011 ; Dridi & 

Lehmann, 2014; Dubois et al ., 2010; Fawcett et al. , 2014; GroB et al ., 2008; Hamblin 

& Giraldeau, 2009; Katsnelson et al. , 2012; Kolodny et al., 2014; Lotem & Biran

Yoeli , 2014; Rendell et al. , 2010; Trimmer et al. , 2012). Severa( studies have 

observed learning rules performing within a social foraging context, especially for the 
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producer-scroun ger game (Afshar & Giraldeau, 20 14; Arbill y et al., 201 0, 20 11 ; 

Beauchamp, 2000a; Dridi & Lehmann, 20 14; Hamblin & Gira ldeau, 2009 ; 

Katsnelson et al. , 20 12), but most of these studies have been plagued with two 

important shortcomings: learning rul es are rare ly vetted aga inst non-learning ru les 

and the enviro nmental variance requi red fo r learning to be of any va lue is rare ly 

present within an individual's li fetime. Furthermore, we do not know what conditions 

are necessary fo r learning to evo lve in the first place, and accepting that it will always 

generate a combination of strategies that corresponds to that expected fro m selection 

acting on geneti c alternatives (what Gira ldeau and Dubois 2008 describe as accepting 

the Behavioural Gambit) may be incorrect (Fawcett et al. , 20 13; McNamara & 

Houston, 2009). 

Severa! studies invest igated the des ign of an optimal learning ru le (Dridi & Lehmann, 

201 4; Fawcett et al. , 20 14; Harley, 198 1; Houston & Sumida, 1987; Kacelnik & 

Krebs, 1985 ; Kace lni k et al. , 1987; Lea & Dow, 1984; March, 1996; Trimmer et al., 

201 2). Beauchamp (2000) was one of the first studies to compare the optimali ty of 

different learning rules by letting them compete against each other in a sim ulated 

forag ing game. He compared three rules: linear operator, perfect memory, and 

relative payoff sum within the context of two social forag ing games: producer

scrounger and ideal free distribution. The linear operator rul e yielded consistently 

higher payoffs than other learni ng rules across various contexts, while the re lat ive 

payoff sum rule performed poorly, especially in the idea l free distribution. 

Beauchamp (2000), however, se lected the parameters of the learning ru les arbitrarily. 

We therefore cannot be sure whether the success of the linear operator over the others 

was due to the parameters chosen or to the form of the ru le itself. Furthermore, the 

study never pi tted learning rules against fi xed players and so it is not clear whether 

learning was actually the best so lution in these games. 
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Hamblin and Giraldeau (2009) addressed the issue of arbitrary parameter choice by 

using genetic algorithm simulations to first find the best parameter combinations for 

each rule in a producer-scounger game. Once the optimal parameter values for each 

rule were established, each rule played against the others in a round-robin tournament 

seeking the rule that would evolve to fixation. The relative payoff sum performed 

better than either the linear operator or perfect memory rules, but as in Beauchamp 

(2000) these ru les were never tested against fixed players. 

By omitting non-learning fixed players, both the studies of Beauchamp (2000) and 

Hamblin and Giraldeau (2009) implicitly assumed that learning was superior to fixed 

behaviour in social foraging games. This is surprising given that several studies have 

shown that learning only outperforms fixed individuals when there are environmental 

fluctuations (Dubois et al., 201 O; Dunlap & Stephens, 2009; Grol3 et al. , 2008; 

Katsnelson et al. , 2012 ; Stephens, 1991 ). If the environ ment is stable, as was the case 

in Hamblin and Giraldeau (2009) , the fixed individuals may very well have 

outperformed the learning individuals. ln fact, the optimal parameters of the best 

relative payoff sum in the Hamblin and Giraldeau (2009) study paradoxically 

generated almost fixed behaviour in its players. 

Sorne studies, however, have investigated the value of learning over fixed non

learning strategies. For instance, Dubois, Morand-Ferron, and Giraldeau (2010) found 

that flexible learning individuals can invade population of inflexible individuals in a 

producer-scrounger game, but learning individuals can never evolve to fixation. 

Compared to fixed pure producers or pure scroungers, learners can outperform one 

but not both fixed strategies. However, the study simply assumes that learners are 

omniscient and know at no cost the payoff of both search and join tactic 

instantaneously and so does not consider alternative learning rules . Katsnelson et al. 

(2012) compared the linear operator ru le with pure and mixed strategies while 

explicitly modeling the learning rule. They found that the linear operator rule can 
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invade a population of non-learners and even evolve to fixation if there is either 

sufficient environmental fluctuations or phenotypic asymmetries among individuals. 

Although they compared the linear operator rule with either pure or mixed strategies, 

they never pitted ail three together. Furthermore, Katsnelson et al. (2012), as well as 

Hamblin and Giraldeau (2009), Arbilly et al. (2010), and Arbilly et al. (2011) , only 

consider between-generation environmental fluctuations , ignoring within-generation 

fluctuations. This is surprising, given that learning can evolve when there is within 

generation changes, although very highly variable environment can discourage 

learning (Stephens, 1991 ). 

Previous studies (Arbilly et al. , 2010, 2011; Dubois et al. , 201 O; Hamblin & 

Giraldeau, 2009; Katsnelson et al. , 2012; Trimmer et al. , 2012) were interested in 

determining which strategy becomes fixed in the population. However, the main 

question in our opinion should be when to expect the stable coexistence of different 

strategies in the same population. lt is therefore also necessary to determine the 

conditions under which no strategy is expected to reach fixation , and to monitor the 

average frequency of each strategy in the population . 

In this study, we explore the conditions under which a linear operator type of learning 

rule could evolve in a frequency-dependent context like a producer-scrounger game. 

In doing so, we address the limitations of earlier studies by pitting fixed strategies 

against learning strategies in environments that are stable, vary within-generation or 

vary between-generations. We also measure the frequency of each strategy during the 

process rather than look only for fixation so that we can investigate when multiple 

strategies are expected to coexist simultaneously. 

3.3 Simulation model 

We chose the linear operator as the base structure for the learning rule in this study 

because it was found to be favoured by natural selection in a simulation study 

(Trimmer et al. , 2012) and a recent agent-based simulation based on a linear operator 
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learning strategy was remarkably successful in replicating almost every published 

prediction and empirical result from the producer-scrounger game (Afshar & 

Giraldeau, 2014). The linear operator is simple and has fewer parameters than 

alternative learning rules (e.g. relative payoff sum; Harley 1981 ; perfect memory; 

Houston & Sumida 1987). It also provides the basic structure for many more 

complicated forms of reinforcement learning ru les (Sutton & Barto, 1998). Moreover, 

it has been used previously in producer-scrounger game in competition with other 

learning rules (Beauchamp, 2000a; Hamblin & Giraldeau, 2009) , with non-learning 

strategies (Arbilly & Laland, 2014; Katsnelson et al. , 2012) , and alone (Arbilly et al. , 

2010). 

The simulation starts with a generation of individuals initialized using the parameters 

of Table 3 .1. An individual can have one of the three strategies, pure, m ixed, or linear 

operator. The type of the strategy is determined by L1 . For a pure strategy (L1 = 1), 

the individual 's genes fix the tactic and depending on the pure strategy genotype (L 2) , 

the individual either always joins or always searches throughout its lifetime. For a 

mixed strategy (L1 = 2), an individual demonstrates both tactics with a fixed 

probability throughout its life. The probability of join tactic (1 - probability of search 

tactic) is fixed by the individual's genes (L3 ) and does not change during its lifetime. 

For a linear operator strategy (L1 = 3), the individual has flexible behaviour. lt uses 

the linear operator learning rule to learn the current payoffs to each tactic, and so can 

respond to environmental changes that affect these payoffs (Afshar & Giraldeau, 

2014). The individual adjusts its behaviour to try to maximize the amount of food 

gained, deciding whether to search or join by using the following linear operator rule : 

Vi(t) = Vi(t - 1) + x (Pi(t) - Vi(t - 1)), Vi(o) = unij(o,1), O<X<l where Vi(t) and 

Pi(t) are the estimated value and observed payoff for tactic i at time t respectively. x 

is the learning rate and is determined by L4 (1 - x is the memory factor). The previous 

estimation was Vi(t - 1), and Pi(t) - Vi(t - 1) is therefore the difference between the 

observed payoff and the previous estimated value. The update is conducted only for 
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the estimated value of the most recently used tactic. The estimated value remains 

unchanged, Vi(t) = Vi(t - 1), for the tactic that has not been sampled at time t. The 

individual then decides between the two tactics using either maximizing or matching 

ratio , depending on L5 . When maximizing, the individual chooses the tactic with the 

highest estimated payoff. When matching, the individual performs the tactics in 

proportion to their relative estimated payoff. 
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Table 3.1 Genetie algorithm chromosome description and initial values 

Locus Parameter Range Mutation bound 

Li Strategy: Pure (1), Mixed (2), Linear operator (3) 1,2,3 1, 2, 3 

Lz Pure strategy gene: Search tactic ( 1 ), Join tactic (2) 1, 2 1, 2 

L3 Mixed strategy gene: Probabi lity ofusingjoin tactic [O, l] ±0.l 

L4 Linear operator memory factor [O, 1] ±0.1 

Ls Linear operator decision rule: Maximizing (0), Matching 0, 1 0, 1 
(1) 
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In the simu lation model, a group of individuals forage in a G*G grid, representing a 

virtual environment. Ti me is divided into discrete steps, each of which can be thought 

of as one sampling event in the real world. An individual who searches, encounters 

patches accord ing to the patch encounter probability. Simultaneous discoveries by 

different individuals are possible when they concurrently use the search tactic. An 

individual who joins, sees the location of ail discovered patches and joins the nearest 

patch by moving one grid cell per time step. The patch may be depleted before the 

individual arrives because of other individuals are already present at the patch. 

Upon encountering a food patch the finder receives a fraction of the food in the patch 

called the finder's advantage. Thi s represents the amount of food the finder would be 

able to eat before the joiners arrive. ln the subsequent time steps ail individuals at the 

patch, the finder and those that have joined, receive food at the same food intake rate. 

Competition wou ld normally cause the rate of food intake to be affected by the 

number of scroungers at the patch, but for simplicity we kept intake rate fixed. The 

rate of depletion is th us based on the intake rate and the number of individuals. 

The individuals at the patch continue eating until the patch is depleted, at which point 

each individual either joins or searches again, depending on its strategy. We assume 

that at each time step individuals require a minimum amount of energy to survive, a 

parameter we termed metabolic requirement. If an individual does not meet its 

metabolic requirement, it survives but gets a negative payoff to ensure that there is 

value in exploiting the better tactic more often. This is similar to the concepts of 

energy reserve or energy requirement (Koops & Giraldeau, 1996; Lendvai et al. , 

2004; Wu & Giraldeau, 2005). Individuals must also paya cost of searching or a cost 

of joining. These costs have absolute values and are incurred in each time step, 

depending on the tactic they are playing. After the initialization, the population plays 

producer-scrounger game for 500 time steps. The general parameter settings for the 

game are shown in Table 3.2. 
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Table 3.2 General parameter settings for the producer-scrounger (PS) game 

simulations 

Parameter 

Grid size 

Maximum simulation time step 

Group size 

Metabolic requirement 

Finder's advantage 

Food intake rate 

Cost of searching 

Cost of joining 

Patch encounter probability 

Patch richness (mean) 

Within-generation change 

Between-generation change 

Symbol 

G 

N 

b 

Csearch 

Cj oin 

p 

µ F,static 

Value(s) 

20 X 20 

500 

10, 40, 90 

0.1 25 

0.125 

0.125 

0.1 

20 

Oo/o,25o/o, 50o/o, 75o/o 

Oo/o, 25°/o, 50o/o, 75o/o 
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At the end of the producer-scrounger game we use a process similar to Hamblin and 

Gi raldeau (2009) to generate the next generation of foragers. We rank individuals 

based on their fitness, measured as the lifetime cumulati ve amount of food gained. 

lndividuals with the lowest 10% fitness die. These individuals are then replaced with 

other individuals in the population in proport ion to their fitness. Jndividuals who have 

higher fitness thus have a higher chance of replacing dead individuals. The resul ting 

population will have the same number of individuals and will be the parents of the 

subsequent generation. Parents randoml y pair with a unifo rm di stri bution. Each of the 

fi ve loci (Table 3 .1) may then be exchanged between paired parents with 50% 

probabili ty, as a crossover operation. Finall y, each locus of each gene may mutate 

with the probability of 0.002. The mutation happens by changing the locus by an 

amount within the bounds shown in Table 3.1 . The resulting genes make up the 

individuals of the next generation. Thi s process is repeated fo r 500 generati ons. We 

measured the frequency of each strategy during the last 1 OO generations. 

We used static as well as dynarnic environrnents where diffe rent leve ls of within

generation and between-generation changes were present. For each configuration, a 

set of 20 genetic algorithm simulations was conducted in Matlab (R20 l 3a) fo r 

Windows (Mathworks, Natick, MA, U.S.A.) . Ali the results are thus averaged over 

the 20 simulat ions. 

We replicated ail simulations with three different group sizes ( 10, 40, and 90). 

Severa! studies have shown that the evo lutionaril y stable proporti on of join tactic 

changes with group size (Afshar & Giraldeau, 20 14; Beauchamp & Gira ldeau, 1996; 

Caraco & Giraldeau, 199 1; Coolen, 2002; Vickery et al. , 199 1 ). Us ing diffe rent group 

sizes thus ensured that the equilibriurn proportion of join tacti c changed and that our 

results were not affected by the value of the equilibriurn . 
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3.3.1 Static environment 

We first tested the mode) in a static environment, where each patch had a fixed value 

of 20 energy units (Table 3.2), with five different strategy configurations, pure 

strategy only (L1 = 1), mixed strategy only (L1 = 2), pure and mixed strategies 

(L1 E {1,2}) , linear operator only (L1 = 3), and ail three strategies together (L1 E 

{1,2,3}). For each strategy configuration we tested three different group sizes ( 10, 40, 

and 90). 

3.3.2 Dynamic environment 

We studied both types of environmental fluctuation: within-generation change and 

between-generation change. To simulate within-generation change, individuals 

experienced three different conditions during their li fetime, an intermediate condition 

similar to the static environment, µF = µF ,statici a condition with smaller patch 

richness, µF * (1 - Llµ,w) , and a condition with larger patch richness, µF * 

( 1 + Llµ,w ), compared to the intermediate condition. The patch richness in the 

intermediate condition (µF ,static) was 20 units. We tested four different values of 

Llµ,w, 0%, 25%, 50%, and 75% to see the effect of the amount of within-generation 

change. Within each condition, though, ail patches had the same value. 

ln each simulation, ail individuals first encountered the condition with low patch 

richness for one third of the simulation. Severa! models predict that animais should 

join less when patch richness is lower (Afshar & Giraldeau, 2014; Beauchamp & 

Giraldeau, 1996; Ruxton & Beauchamp, 2008 ; Vickery et al. , 1991 ). We therefore 

expected to see the highest amount of searching in this environment. Individuals then 

encountered the intermediate patch richness condition for a third of the time, and then 

the higher patch richness condition for the last third of the time. 

With between-generation change, the patch richness changes from generation to 

generation. During each generation, the group encountered one of the three 
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environments with different patch richness (µF ,statici µF ,static * (1 - L1µ ,a),µF ,static * 

(1 + L1µ ,8 )) chosen at random, with a unifo rm distribution. We used fo ur amounts of 

between-generation changes, L1µ ,B = 0%, 25%, 50%, and 75%. 

In our study we had different combinations of within-generation change and between

generation change. Considering the four levels of each one, we ended up with 16 

different configurations. The case where both L1µ ,w and L1µ ,B are 0% is equal to a 

static environment. The case with L1µ ,w > 0% and L1 µ, 8 = 0% represents an environment 

with only within-generati on change. The case with L1µ ,w= 0% and L1µ ,8 > 0% 

represents an environment with only between-generation change. For each 

configuration, we tested three different group sizes ( 10, 40, and 90) with ail th ree 

strategies competing against each other. 

3.4 Results 

3.4.1 Static environment 

We found that regardless of the strategy configuration , the populations converged to 

similar stable proportions of join tactic fo r each group size of 40 or 90 (Table 3.3). 

For small groups of 10 individuals, however, the effect of geneti c drift was strong and 

the groups ended at different proportions of join tacti c. 

For all strategy configurations, we fo und higher proportions of join tactic fo r larger 

group sizes, with the exception of group size 10 with mixed strategy, likely due to 

genetic drift (Table 3.3). The increase in the proportion of join tactic for larger group 

sizes is consistent with previous models and empirical studies (Afshar & Giraldeau, 

2014; Beauchamp & Giraldeau, 1996; Caraco & Giraldeau, 199 1; Vickery et al. , 

199 1). 

Individuals' lifetime average payoff of each tacti c vs . individual's li fetime proportion 

of join tactic shows that when the individual used a higher proportion of join , the 
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payoff of both tactics decreased (Figure 3 .1) as expected in a producer-scrounger 

game. Although the payoff of join was higher for lower proportions of join tactic, it 

decreased as the proportion of join increased and eventually fell below the payoff of 

the search tactic. We found that for ail configurations, the populations evolved to a 

combination of search and join where both tactics had equal payoffs (Figure 3.2). The 

variance in the payoff for the join tactic, however, was larger than that for the search 

tactic. 
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Table 3.3 Final proportion of join tactic (Means ± SE) for groups of 

individuals playing a producer-scrounger game using different types of 

strategies in a static environment, Llµ ,W = 0% and Llµ ,8 = 0%, after 500 

generations. The final proportion was calculated by averaging over the last 100 

generations (N = 20) 

Group size 
Possible strategies 

90 JO 40 

Pure strategy only 0.15±0.06 0.39±0.05 0.58± 0.03 

Mixed strategy only 0.49±0.34 0.41±0.05 0.60±0.03 

Pure and mixed strategies 0.15±0.07 0.40±0.05 0.59±0.03 

Linear operator 0.33±0.22 0.44±0.06 0.60±0.03 

Pure, mixed, and linear operator strategies 0.14±0.07 0.40±0.05 0.59±0.03 
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o.6 
· Search 

· Join 

0 

0 0.2 o.6 o.8 1 

Proportion ofjoin tactic 

Figure 3.1 Evolutionarily Stable Strategy plot for producer-scrounger 

game for groups of 90 individuals engaged in choosing tactics using pure 

strategy, mixed strategy, or linear operator learning rule in a static 

environment, Llµ,W = 0% and Llµ,8 = 0%. Each point shows the lifetime average 

payoff of each tactic (per time step) for one individual vs. its lifetime proportion 

of join tactic. The general parameter settings for ail simulations are shown in 

Table 3.1 and Table 3.2. 
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--- Join - Search 

0.25 

0.2 

0 100 200 300 400 500 

Generation 

Figure 3.2 Payoff of search and join tactics in producer- scrounger game 

for groups of 90 individuals engaged in choosing tactics using pure strategy, 

mixed strategy, or linear operator learning rule in a static environment during 

500 generations. Means ±SE are shown (N=20). The general parameter settings 

for ail simulations are shown in Table 3.1 and Table 3.2. To keep the graph 

readable, only the results for every five generations is shown. 
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When both pure strategies and mixed strategies compete with each other in the same 

population in a static environment, the final combination is close to fixation with 

majority of the population using pure strategies (Table 3.4). Even the small 

proportion of mixed strategies behaved like a pure strategy, by having genotypes 

close to one (being similar to pure joiners) or close to zero (being similar to pure 

searchers). Similarly, when ail individuals used a mixed strategy, the final frequency 

distribution of mixed strategy genotypes is made up of genotypes that are close to 

either one or zero , and therefore similar to pure strategies (Figure 3.3). Even when we 

added the linear operator, the pure strategy was still dominant (Table 3.4 and Figure 

3.4). The frequency of individuals with the linear operator learning rule strategy 

increased with group size, but remained insignificant compared to pure and mixed 

strategies. 
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Table 3.4 Final frequency of different strategies (Means ± SE) when 

competing with each other in producer-scrounger game in a static environment 

during 500 generations. The final frequency was calculated by averaging over 

the last 100 generations (N = 20). 

Possible strategies 

Pure strategy and mixed 
strategy 

Ali three strategies 

Pure strategy 

I Mixed strategy 

Pure strategy 

Mix ed strategy 

Liner operator 

10 

99%± 1% 

1%±1% 

98%± 1% 

l o/o± l o/o 

1%±0% 

Croup size 

40 90 

97%± 1% 83%±3% 

3o/o±l % l 7o/o±3% 

96%± 1% 89o/o±2% 

2%± 1% 7o/o± l % 

2%± 1% 3o/o± I% 
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50% 

t' = Q,) J = C" 
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1 "" ~ 
25% 
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0 0.1 0 .2 0 .3 0-4 0 .5 o.6 0 .7 o.8 0 .9 1 

Mixed strategy genotype 

Figure 3.3 The histogram of frequency of different mixed strategy 

genotypes for individuals that play producer-scrounger game using only mixed 

strategy in a static environment during 500 generations. Mixed strategy 

genotype is the threshold to randomly choose between search or join tactic. 

Despite the initially uniform distribution, the mixed strategy genotype finally 

converged to either close to one (only join) or close to zero (only search). We can 

therefore say that even populations of mixed strategists evolved to behave 

similar to pure strategists. Frequencies are shown for the last 100 generations 

when the populations have become stable. The general parameter settings for ail 

simulations are shown m Table 3.1 and Table 3.2. 20 simulations were 

performed and each colour represents the result of one of the 20 simulations. 
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50 100 150 200 250 300 350 
~neration 

400 450 500 

The evolution of different strategies in a producer-scrounger 

game for groups of 90 individuals engaged in choosing tactics using pure 

strategy, mixed strategy, or a linear operator learning rule in a static 

environment during 500 generations (N = 20). After initial changes in the 

distribution of strategies, the pure strategy remains dominant in the populations 

for the remainder of the simulation. The linear operator learning strategy thus 

has no advantage over inflexible strategies, either pure or mixed strategies. The 

general parameter settings for ail simulations are shown in Table 3.1 and Table 

3.2. 
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3.4.2 Dynamic environment 

We found that both within-generation change (Llµ,w) and between-generation change 

(Llµ,8 ) can increase the percentage of the linear operator strategy in the population 

(Table 3.5, Figure 3.5a, and Appendix A). As the amount of environmental change, 

either Llµ,w or Llµ,8 , increases, this effect becomes stronger. The population, however, 

remains dominated by pure strategy. 

Between-generation change had stronger effects than within-generation change and 

the proportion of the linear operator strategy was often larger than for within

generation change (Table 3.5 , Figure 3.5a, and Appendix A). Out of the 16 

configurations, individuals with linear operator represented the majority of the 

population in only five cases, four of which was when the between-generation change 

was 75% (Table 3.5). We, however, did not find any situation where the linear 

operator reached fixation. 
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3.5 Discuss ion 

We fo und that, depend ing on the type and the intensity of environmenta l variabili ty, 

learning may either be completely di splaced by fi xed rules or, at best, it can coexist 

with pure strategies. We discuss the conditions under which each of these situat ions 

apply and then relate thi s to the validity of accepting the behav ioural gambi t. 

For ail configurations of the simulat ion, the payoffs obtained from each strategy 

behaved as assumed by a producer-scrounger Game. Consequently the populations 

evolved to an equili brium where search and join tactics obta ined equal payoffs 

(F igure 3.2). Furthermore, when an ind iv idual joined less than thi s equilibrium, the 

join tactic received a higher payoff than the search tacti c, which should cause them to 

join more if they use linear operator strategy, but when an individual joined more 

than the equilibrium the join tacti c had a lower payoff than the search tacti c, which 

should cause them to join less if they use 1 inear operator strategy (F igure 3 .1 ). We can 

therefore argue that the populations had converged to the evolutionaril y stable 

strategy (ESS) equilibrium which, once reached, cannot be invaded by alternative 

combinati ons of search and join tacti cs. lt is worth noting that our simulation 

provides the first numerical demonstration of the evolutionaril y stable strategy payoff 

plot based on the outcome of an actual agent-based producer-scrounger game mode! 

(Figure 3.1 ). The functi ons obtained appear to match those measured in empirical 

tests of the producer-scrounger game with house sparrows (Passer domesticus, 

Barnard and Sibly 198 1) and with nutmeg mannikins (Lonchura punctulata, Mottl ey 

and Giraldeau 2000). 

Katsnelson et al. (201 2) report that a mixed strategy can in vade a population of pure 

strategies and evolve to fi xation. Our results contradict thi s because in the stati c 

environments the pure strategy dominated the mixed strategy (Table 3.4). Moreover, 

the small propo1tion of individuals that use a mixed strategy acted like pure 

strategists by hav ing mixed strategy genotypes close to one or zero (Figure 3.3). Thi s 
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difference in conclusion between our study and Katsnelson et al. (2012) is likely 

attributable to two distinguishing features. Katsnelson et al. (2012) set the producer

scrounger game parameters such that the optimal solution is an equal proportion of 

join and search tactics . The mixed strategy individuals, therefore, already had the 

optimal behaviour even before the evolutionary process began and so enjoyed an 

unfair advantage in competition with the other fixed strategies. This was not so in our 

study. In addition in Katsnelson et al. (2012) the mixed strategies were constrained to 

always use the join tactic 50% of the time. No change was therefore possible within 

the mixed strategy. In our study, however, the proportion of join tactic used by the 

mixed strategy genotype (L3 ) could evolve along with other alleles, including the 

strategy itself (L1). We argue that in a genetic algorithm study in order to draw robust 

conclusions it is important to allow the parameters of ail strategies to change and 

adapt without placing strong constraints on any one of them. 

Our finding that the pure strategy completely dominates the mixed strategy in a static 

environment (Table 3.4) supports the predictions of earlier game models (Vickery 

1987, 1988) that in a finite population only pure strategies should be expected from 

purely deterministic dynamics and that no mixed strategy can be an ESS . On the 

other hand, our result contradicts arguments based on stochastic dynamics that when 

the frequency of one pure strategist is low at the ESS, stochastic environmental 

fluctuations may cause its extinction and hence lead to the fixation of mixed 

strategies (Bergstrom & Godfrey-Smith, 1998; Maynard Smith, 1988; Orzack & 

Hines, 2005). These contradictory predictions highlight the importance of the 

deterministic or stochastic nature of the dynamics and our results suggest that the 

producer-scrounger game may favour the deterministic assumptions of Vickery 

( 1987, 1988) rather than the stochastic assumptions. This result appears robust given 

that we included random between-generation fluctuations and random initial values in 

our simulated producer-scrounger game. 
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We found that in a static environment the pure strategy dominates both the linear 

operator and the mixed strategies (Table 3.4 and Figure 3.4). This is not surprising 

because many models have already predicted that learning is of no use when there is 

no environmental change (Dubois et al. , 20 1 O; Dunlap & Stephens, 2009; Grof3 et al. , 

2008; Katsnelson et al. , 2012; Stephens, 1991 ). ln this case, innate behaviour can 

outperform flexible behaviours based on learning (Stephens, 1991 ). ln the absence of 

between-generation change, the frequency of the learning strategy remains low even 

when we introduced within-generation environmental changes, with the exception of 

extreme environmental changes (Llµ,w= 75 %) with the large group size (Table 3.5 and 

Figure 3.5c). ln our model , the fitness of an individual is measured based on the 

lifetime food intake. Lifetime food intake includes ail three periods of different 

environmental conditions (µF,µF * (1- Llµ,w),µF * (1 + Llµw)). When the 

environment changes during an individual ' s lifetime but the same amount of changes 

repeats for several generations, innate behaviour can outperform learning. This is 

especially true, when a smalt portion of population uses the learning strategy (Table 

3.5 and Figure 3.5c). This portion of the population can act as a buffer and 

compensate for individuals that consistently show a higher or lower level proportion 

of join tactic (Dubois et al. , 2010). lt therefore buffers the inflexible strategies from 

the force of natural selection. 

Between-generation change had stronger effects on strategy type than within

generation change and the proportion of the linear operator strategy was often higher 

than for within-generation change (Table 3.5 and Figure 3.5a). We found the highest 

proportion of linear operator strategies when there was highest amount of between

generation changes and highest amount of within-generation change (Table 3.5 and 

Figure 3.5c). ln this case, innate behaviour that is optimal for one generation might 

not be useful for the following generation. It is therefore important to adapt and find 

the optimal proportion of join tactic in each generation. This can be done only with a 

flexible strategy su ch as the 1 inear operator. However, the intrinsic frequency-
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dependency property of the producer-scrounger game implies that when one 

individual changes its behaviour it also affects the performance of other individuals in 

the population creating, once again, a buffer effect by adjusting their behaviour until 

the payoffs of both tactics are equal. When this happens there is no advantage to 

flexibility for the remaining fixed individuals and so, as was the case in Dubois et al. 

(2010) the linear operator cannot evolve to fixation in the population (Table 3.5 and 

Figure 3.5c). Although Katsnelson et al. (2012) also found that the frequency of 

learning individuals in the population increases with the magnitude of the between

generation environmental change they observe the learning strategy evolving to 

fixation . There are several possible reasons for the difference between our results and 

those of Katsnelson et al. (2012). One has already been addressed and concerns the 

constrained parameters of the mixed strategy. But they also kept a fixed memory 

factor for the linear operator strategy at one of three values: 0.5, 0.85, and 0.95. 

lnstead we allowed the memory factor (L5) to evolve freely. Moreover, Katsnelson et 

al. (2012) studied the linear operator a long with either the pure strategy or the mixed 

strategy but there was no situation where ail three competed together. As Katsnelson 

et al. (2012) suggested, the benefit of the linear operator may corne in part by 

demonstrating a mixed combination of both tactics , similar to a mixed strategy. This 

may give it an advantage when competing with a pure strategy. However, when ail 

three strategies play together, as in our study, the linear operator strategy may be Jess 

likely to evolve to fixation. We can think of the game involving the strategies as a 

Rock-Scissor-Paper game, where each strategy is better than one other strategy, but 

none is better than ail. Our results underscore the importance of playing ail strategies 

together in order to obtain robust conclusions. 

We found that, regardless of the possible strategies, ail populations with similar group 

size converged to a comparable proportion of join tactics (Table 3.3), suggesting that 

the ESS is independent of the mechanisms that governs the decision-making of 

individuals. This fact provides us with two important results. First, regardless of 
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whether the populati on uses pure, mi xed, or learning strategies, we can expect the 

effects of environmental parameters on the population proportion of join tacti c to be 

similar to those predicted by Afshar and Giraldeau (2014) where ail individuals in the 

population used linear operator to choose between search and join tactics . 

Second , when the research interest is in the population level behav ior in a static 

environment, behavioral ecologists can continue using the behaviora l gambit and 

assume that the mechani sm in a frequency-dependent situati ons will produce 

outcomes that are the same as those from an evolutionary process . However, if the 

interest is in individual level behav ior or invo lves enviro nmental fluctuati ons, the 

gambit may be wrong and learning should be considered. 

3.6 Acknowledgements 

This research and M.A. were supported by a Natural Science and Engineering 

Research Council of Canada Discovery Grant (num ber 303 11 2) to L.-A .G. ln 

addition M. A. was financially supported th rough a Fund Access ibility and Academic 

Success (FARE) Scholarship and a fo reign fee remission fro m Uni versity of Québec 

in Montréal and a doctoral Scholarship from Group For Research ln Dec ision 

Anal ys is (GERAD). 



[Cette page a été laissée intentionnellement blanche] 



CHAPTERIV 

GENERAL DISCUSS ION AN D FUTURE DI RECTION S 

My primary goal in thi s thes is was to explore the hypothes is that learning can be as 

powerful as, or in some contexts perhaps even more powerful than, evolution fo r 

predicting animal behav ior. To do thi s 1 proposed a learning based mode! fo r a 

producer-scrounger game and compared it with prev ious published studies , conducted 

an experiment to test the nove! prediction of my mode! using captive fo raging fl ocks 

of male zebra finches (Taeniopygia guttata) , and developed second simulation mode! 

to explore the conditions under which learning is expected to evolve in a frequency

dependent context, each of which were explained in detail in the prev ious chapters. ln 

thi s chapte r, I di scuss my contributions to the fi eld of behav iora l eco logy and the 

implications of my findings for the study of animal behav ior. 

My results demonstrate that adopting a learning approach when studying a frequency

dependent behav iour is more effective than adopting an evolutionary game-theoretic 

approach. The learning approach was particularl y powerful in two situations: i) when 

more complex, and hence more reali stic, models are requi red and ii ) when ind iv idual 

behav iour needs to be predicted. Evolutionary game moqels cannot easily deal with 

the complexity required of reali stic soc ial fo raging situations. As such , the 

evolutionary game theory models used by behav ioral eco logists fo r the past 30-40 

years have required an oversimplificati on of conditions that has recentl y been 

criticised. More importantly, evo lutionary game theory models cannot deal well with 

multiple eco logical parameters that likely correspond to more realistic environments. 
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Agent-based models using learning rules, simi lar to those 1 used in this thesis, 

provide a convenient alternative to study complex behaviors based on simple 

individual level models . Furthermore, when we need to dig deeper than the 

population level behavior and predict individual level behavior the learning approach 

is again more successfu l than evolutionary game models. Individual behaviour is of 

particular interest to behavioural eco logists who have now discovered the importance 

of persistent individual differences often referred to as "personality" (Réale & 

Dingemanse, 2012). 1 have shown that different populations with simi lar population 

level behavior can indeed have individuals with different behaviours. Sorne of the 

individuals can have fixed behaviours whi le others have flexible behaviours. If one 

studies individual differences, it is important to consider flexible behaviour in 

general, and learning in particular, as a potential source of variation . Neglecting the 

mechanism, i.e. learning, thus means neglecting the behaviour of what can be a 

sign ificant portion of the population when there are high levels of environmental 

fluctuations. Moreover, this means that models developed for studying behaviour in 

static environments may not be appropriate for dynamic environments. 

We can thus argue that two of the early questions a cautious behavioural eco logist 

should ask are first , whether the environment is static and, second, whether he or she 

is interested in behaviour on ly at the population level. If the answer to either of these 

questions is "no", then he or she needs to consider learning as a potential part of the 

mode!. We should thus be careful when using the results of previous or future studies 

that failed to take this into account and, for example, used a mode! entirely based on 

fixed behaviours in a changing environment. 

4.1 Future directions 

The majority of the models on learning in behavioural ecology are based on the 

assumption that either individuals are identical or their individual differences does not 

affect the outcome of the learning process. Researchers later verify these predictions 
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assumption in their experiments. That thi s assumption is so often made is surprising, 

given that indi vidual differences are we ll documented in the literature (Réale & 

Dingemanse, 20 12). For example, in Chapter Il 1 showed that individuals varied 

consistently in their use of tactics across both non-variable and variable patch 

condi tions (F igure 2.2). Furthermore, the simulations 1 present in Chapter 1, show that 

individual differences can arise because of different early experi ences (F igure 1.1 ), 

even when individuals use similar learning mechani sms. lt is therefore important to 

be cautious about accepting thi s assumption, and to investigate the contexts under 

which it may or may not hold using both models and experiments. 

In a non-frequency dependent task, the optimal so lution is equi valent fo r all identica l 

individuals. We therefore might expect identical individuals to express similar 

behav iour even if they have different learning rules . 1 can think of only one case 

where we might expect persistent individual differences in a non-frequency 

dependent task. Severa! studies have shown that learning is costly. Animais may need 

to spend time sampling less profitable choices, fo r example. ln extreme cases, 

individuals may choose not to sample all choices and may thus end up with an 

inaccurate estimate of the diffe rent options. ln such an environment, individuals may 

express di ffe rent behav iour, with some individuals making what appear to be 

suboptimal choices. Based on Stephens ( 1989), we can expect these diffe rences to 

persist if the cost of dev iation from the optimal behav iour is smal Ier than the cost of 

obtaining the info rmation necessary to make the optimal choice. 

In a frequency-dependent task, on the other hand, each individual may experience a 

different environment due to the behav iour of other individuals. The optimal 

behaviour fo r each individual may therefore al so differ, and we can expect to observe 

individual differences . My simulations show that when individuals use same learning 

rule in a frequency-dependent task, diffe rent early experiences lead to temporal , and 

not persistent, individual differences over time (Figure 1.1 ). The next step would be 
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to see what happens when individuals differ intrinsically, hav ing either different 

learning ru les or the same learning ru le with diffe rent parameters. 
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APPENDIX A 

FINAL PROPORTION OF PURE, MIXED, AND LTNEAR OPERATOR 
STRA TEGlES WHEN COMPETTNG WITH EACH OTHER fN PRODUCER

SCROUNGER GAME IN DYNAMIC ENYIRONM ENTS 
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