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RESUME

Cette these étudie les chirurgies cosmétiques exceptionelles le long des noeuds
hyperboliques dans une 3-variété orientée. On utilise principalement 1’homologie
de Heegaard Floer, les invariants de Casson, les résultats sur les chirurgies excep-
tionelles puis les variétés de caractéres dans PSLy(C). Nous y montrons certaines
restrictions sur ces types de chirurgies. Pour les noeuds hyperboliques dans S® on
montre que la pente d’une telle chirurgie doit étre +1 et que la variété obtenue
est d’un type précis. A partir de cela on montre qu’il ne peut pas y avoir de
chirurgie cosmétiques exceptionelles le long de certaines familles de noeuds dans
S®. Pour les noeuds hyperboliques dans une sphére d’homologie entiére on donne
une liste de résultats possibles. On prouve également que la 3-variété orien-
tée obtenue & partir d’une chirurgie non-trivial sur un noeud non-trivial dans la
sphere de Poincaré ne peut pas lui étre homéomorphe en préservant ’orientation,
comme conséquence on donne une réponse au probleme du complément orientée
d’un noeud dans ¥(2,3,5). Pour le cas plus générale des sphéres d’homologie
rationelles, on prouve que sous certaines conditions sur la variété des caracteres
dans PSLy(C), le nombre de pentes pouvant produire une chirurgie cosmétique

dont la variété obtenue est une “petite variété de Seifert” est au plus deux.

Mots-clés: théorie des noeuds, 3-variétés, chirurgies de Dehn, noeuds hyper-

boliques.



ABSTRACT

This thesis studies cosmetic surgeries along hyperbolic knots in an oriented 3-
manifold. Restrictions on the type of surgeries obtained are proven. The tools
used are Heegaard Floer theory, the different Casson invariants, and known re-
sult about exceptional surgeries and P.SLy(C)-character varieties. For hyperbolic
knots in S® we prove that the slope of exceptional truly cosmetic surgeries must
be £1 and the manifold obtained is of a certain type. From this we deduce
that there are no exceptional truly cosmetic surgeries along certain families of
hyperbolic knots in S3. For the case of integer homology spheres we give a list
of possible output of such surgeries. We also prove that the oriented manifold
obtained by a non-trivial surgery on a non-trivial knot in the Poincaré homology
sphere cannot be orientation preserving homeomorphic to the Poincaré sphere.
As a consequence we give an answer to the oriented knot complement problem in
¥(2,3,5). For the general case of a rational homology sphere, modulo constraints
on its PS Ly(C)-character variety, we prove that the number of slopes which could

produce small Seifert manifolds as cosmetic surgery is at most two.

Keywords: Dehn surgery, Dehn filling, hyperbolic knots, 3-manifolds.




INTRODUCTION

The complement of a tubular neighbourhood of a knot in a closed oriented 3-
manifold is a 3-manifold with torus boundary. Gluing back a solid torus along
this boundary gives a new oriented 3-manifold. This procedure, called Dehn
surgery, named after M. Dehn, is a fundamental tool in constructing 3-manifolds.
It had been introduced in 1910 by Dehn (Dehn, 1910) for knots in S and has since
been generalized to knots and links in closed oriented 3-manifolds. The surgeries
will be parameterized by slopes, which are isotopy classes of simple closed curves
on the torus boundary of M. In the early 1960’s A. Wallace (Wallace, 1960) and
W.B.R Lickorish (Lickorish, 1962) have independently shown that every closed

oriented 3-manifold can be obtained by surgery on some link in S3.

The goal of this thesis is to understand under which circumstances two distinct
Dehn surgeries on the same knot in a closed oriented 3-manifold give rise to
the same oriented 3-manifold. Here, by “the same” we mean the existence of
an (orientation preserving) homeomorphism between them. Such surgeries are
called (truly) cosmetic surgeries. For the trivial knot, it is known that there
can be infinitely many distinct surgeries which give the same output. Thus we
restrict ourselves to the case of non-trivial knots and the case when the knot
complement is not homeomorphic to D? x S!. Gordon and Luecke prove in
(Gordon and Luecke, 1989) that on a non-trivial knot in S3, resp. S2 x S!, only
the trivial surgery can give back S3, resp. S? x S'. From this result follows the
fact that knots in S and S? x S! are determined by their complements. By
contrast Mathieu, in (Mathieu, 1992), gives an infinite family of distinct Dehn




surgeries on a trefoil knot in $® which give homeomorphic manifolds. Some re-
lated results concerning knot complements have also been proved by D. Matignon.
In particular he shows in (Matignon, ) that the only non-hyperbolic knots in lens
spaces (excluding S® and S% x S!) which are not determined by their complement
are the axes of L(p,q) when ¢ = +1 modulo p. In (Matignon, 2010) he also
gives an infinite family of pairs (M, K), where M is a lens space and K C M
is a hyperbolic knot, which produce a manifold homeomorphic to M by a non-
trivial Dehn surgery. Rong (Rong, 1993) classified knots in irreducible Seifert
fibred 3-manifods, other than lens spaces, whose complements are Seifert fibred
and which are not determined by their complements. In (Bleiler et al., 1999)
Bleiler, Hodgson and Weeks described an oriented hyperbolic 3-manifold with
torus boundary having two distinct Dehn fillings which give two oppositely ori-
ented copies of the lens space L(49,18). Using a Casson-type invariant, Boyer
and Lines (Boyer and Lines, 1990) showed that the non-vanishing of the second
derivative of Alexander polynomial of the knot evaluated at 1 is an obstruction
for having truly cosmetic surgeries. Recently, with help of Heegaard Floer theory
and Casson invariant, new criteria for cosmetic surgeries on knots in S3, and more
generally knots in L-space homology spheres, have been established. Zhongtao
Wu proved (Wu, 2011c) that if two rational surgeries on a non-trivial knot in an
L-space homology sphere give orientation preserving homeomorphic manifolds,
then the rational numbers must be of opposite sign. Yi Ni and Zhongtao Wu

(Ni and Wu, 2013) gave a refinement of this result for knots in S3.

Let M be a compact irreducible 3-manifold with boundary a torus. From the
work of W. Thurston (Thurston, 1982) we know that M is either hyperbolic (i.e
admits a complete finite volume Riemannian metric in its interior), or contains
an essential torus, or is atoroidal and Seifert fibred. We are concerned with

the case where M is a knot complement in a closed oriented 3-manifold. As




discussed above, Matignon, Rong and Mathieu have various results related to
cosmetic surgeries on non-hyperbolic knots. As opposed to this approach, our
main interest will be on hyperbolic knots in integer homology spheres and, in
some cases, rational homology spheres. It is known (Thurston, 1979) that all
but finitely many surgeries on such knots give hyperbolic manifolds. The finite
exceptions are called exceptional surgeries. Due to their more topological nature
we will focus on these exceptional cosmetic surgeries. Thus our work will be a
study of cosmetic surgeries among exceptional surgeries on hyperbolic knots in

integer homology spheres.

Concerning exceptional surgeries, work has been done by various authors:

(Culler et al., 1987), (Gordon, 1998), (Gordon and Luecke, 1996), (Lackenby, 1997),
(Boyer and Zhang, 1998), (Boyer and Zhang, 2001), (Boyer et al., 2001), (Wu, 1996),
(Wu, 2011a), (Wu, 2011b), (Brittenham and Wu, 2001), (Gordon and Wu, 2008),
(Ichihara and Masai, 2013). Our work will build on all of these established re-
sults on the subject. One of the famous results in this area is the cyclic surgery
theorem (Culler et al., 1987): “If M is an irreducible 3-manifold with incompress-
ible torus boundary which is not a Seifert fibred space, then there are at most 3
slopes which can give a 3-manifold with cyclic fundamental group and the dis-
tance between them is 1”7. Here the distance between two slopes is their minimal
geometric intersection number. A similar result was proven by Boyer and Zhang
for finite surgeries (Boyer and Zhang, 2001): “Under the same conditions, the dis-
tance between two slopes which give a 3-manifold with finite fundamental group

is at most 3”. On the other hand Gordon and Luecke have worked on exceptional
surgeries which produce toroidal manifold. In particular pairs of toroidal slopes
with distance greater or equal to 4 have been completely described by Gordon
(Gordon, 1998) and Gordon-Wu (Gordon and Wu, 2008). We will be using all of

this to narrow down the possibility of having cosmetic exceptional surgeries.




Together with these classical results and techniques we will be using Heegaard
Floer theory. These are homology theories for 3-manifolds and knots introduced
by Ozsvath and Szabé (Ozsvath and Szabd, 2004d; Ozsvath and Szabd, 2004c;
Ozsvéth and Szabd, 2004b; Ozsvéth and Szabd, 2006a; Ozsvath and Szabd, 2003a)
and, independently, by Rasmussen for knots (Rasmussen, 2003). They are con-
structed as Lagrangian Floer theory for some special totally real submanifolds
in a symplectic manifold which is naturally associated to an oriented 3-manifold
or to an oriented knot. We will mainly use the correction term, the reduced
Heegaard floer homology H Fieq and the renormalized Euler characteristic for the
case of exceptional surgeries on knots. We will then give a very concrete charac-
terisation of truly cosmetic exceptional surgeries on hyperbolic knots in S® and a
list of families of knots which do not admit such surgeries. For the more general
case of knots in integer homology spheres we will give the list of possible types of
manifolds obtained after truly cosmetic exceptional surgeries together with some
restrictions on the slopes used. Using work of Rasmussen on Heegaard Floer
theory we will also settle the oriented knot complement problem for the Poincaré
sphere as consequence of a slightly more general result. We also study the case

when a surgery on ¥(2, 3, 5) gives —%(2, 3, 5).

Finally our last result will be about exceptional cosmetic surgeries on rational
homology sphere which yield small Seifert manifolds. This will require a totally
different approach since in this particular situation we will be using the theory
of (P)SLy(C)-character variety. This theory is about counting representation
m (M) — (P)SLy(C) of a 3-manifold group into (P)SLy(C). It was pioneered by
Culler and Shalen (Culler and Shalen, 1983), (Shalen, 2002) and was the source
of some breakthroughs in the study of the topology of 3-manifolds. We will study

cosmetic surgeries via the Culler-Shalen semi-norm.




Summary of the main results We begin our exploration of cosmetic surgery with
the case of hyperbolic knots in S®. Ni and Wu's result combined with the progress
made on exceptional surgeries on S° help us to provide a new characterization of

cosmetic surgeries on hyperbolic knots.

Theorem A (H. Ravelomanana). Let K be a hyperbolic knot in S3, and r,r' €
QU {oo} two distinct exceptional slopes on ON(K). If Sk(r) is homeomorphic to
Sk(r') as oriented manifolds, then the surgery must be toroidal and non-Seifert

fibred. Moreover {r,r'} = {+1,—1}.

As a consequence of this we establish that certain families of hyperbolic knot in S3

do not admit exceptional cosmetic surgery. This is done with support of the work

done by Némethi (Némethi, 2007), Ichihara and Masai (Ichihara and Masai, 2013).

Corollary 5.3.3 (H. Ravelomanana). There are no ezceptional truly cosmetic

surgeries on an alternating hyperbolic knot in S3.

Corollary 5.3.5 (H. Ravelomanana). There are no exceptional truly cosmetic

surgeries on arborescent knots in S°.

Next we go into the slightly more general world of knots in integer homology
spheres. In this part we use a combination of results on exceptional surgeries,
Heegaard Floer theory, PSLy(C) character varieties, and some elementary topol-

ogy to give a description of what could be an exceptional cosmetic surgery.

Proposition 6.1.7 (H. Ravelomanana). Let Y be a Z-homology sphere, K C'Y
a hyperbolic knot and M =Y \ N(K). Assume we use a preferred basis {u, Ay}
for m(OM). Letr = p/q and ' = p/q' be exceptional slopes such that 0 < p
and ¢ < ¢'. If M(r) is homeomorphic to M(r') as oriented manifolds, then the

surgery gives either



(a) a reducible manifold in which casep=1and ¢ =q+1,
(b) a toroidal Seifert fibred manifold in which case p=1 and ¢ = q+1,

(¢) an atoroidal small Seifert manifold with infinite fundamental group in which

case we have the following possibilities
ep=1andl|qg—q| <8
ep=>5 ¢ =qg+1 and g =2[mod 5.
ep=2 andqd =q+2o0rq¢d =q+4.

(d) a toroidal irreducible non-Seifert fibred manifold in which case p = 1 and

l¢ —q| < 3.

As spin off of this, we give a particular attention to the Poincaré homology sphere.
We obtain that ¥(2,3,5) cannot be obtained, as an oriented manifold, by a non-
trivial surgery along a non-trivial knot in (2, 3, 5). Therefore we can answer the

oriented knot complement problem for the Poincaré sphere.

Theorem 6.2.1 (H. Ravelomanana). Let K be a non-trivial knot in ©(2,3,5)
and let r € Q. The result of an r-surgery along K 1is never orientation preserving

homeomorphic to £(2,3,5).

Theorem 6.2.3 (H. Ravelomanana). Non-trivial knots in ©(2,3,5) are deter-
mined by their oriented complements.

Theorem 6.2.1 generalises to L-space Z-homology spheres.

Theorem 6.2.2 (H. Ravelomanana). Let K be a non-trivial knot in an oriented
L-space Z-homology sphere Y and let r € Q. The result of an r-surgery along K

15 never orientation-preserving homeomorphic to Y .



For the case when a surgery on (2, 3,5) gives —%(2, 3,5) we have the following

result.

Theorem 6.2.7 (H. Ravelomanana). Let K be a non-trivial knot in ¥(2,3,5).
If K admits a non-trivial surgery which gives —%(2,3,5) then the surgery slope
is 1/2 and the result of +1-surgery along K is an L-space which admits a tight

contact structure.

Finally we use the theory of Culler-Shalen seminorms to give a bound on the num-
ber of small Seifert cosmetic surgeries on hyperbolic knots in a rational homology
sphere Y. This bound is obtained modulo some hypothesis on the PSLy(C)-
character variety of Y. Here C(a) will denote the set of slopes cosmetic to the

given slope a.

Theorem B (H. Ravelomanana). Let Y be a rational homology sphere. Assume
that

Hom (n1(Y), PSLy(C)) contains only diagonalisable representations, no side of
the PSLy(C

)-Culler-Shalen ball of M is parallel to Ay, and o is small-Seifert.
Then C(a) < 2

Structure of the thesis This thesis is organized as follows.

Chapter 1. We survey exceptional surgeries, cosmetic surgeries and give the

necessary topological background for the subject.

Chapter 2. We briefly review some known results on toroidal surgeries and

prove some useful lemmas in the subject.

Chapter 3. We review the theory of the Casson invariant and its variants. We

also prove a result of Boyer and Lines that there are no cosmetic surgeries along



a knot whose Alexander polynomial has the property that its second derivative

evaluated at 1 does not vanish. This is a fact that we will be using later.

Chapter 4. We give a survey on Heegaard Floer theory focusing on the defini-

tions and the principal results we will need later.

Chapter 5. We discuss the case of exceptional cosmetic surgeries on hyperbolic
knots in S®. We review some more specialized material and results from Heegaard
Floer theory. We give a proof of Theorem A together with some corollaries. From
this we deduce a list of families of knots in S* which do not admit exceptional

truly cosmetic surgeries.

Chapter 6. We study the more general case of exceptional cosmetic surgeries
on integer homology spheres. We establish a proposition which characterizes
such surgeries according to the “geometric type” of the output and list all the
possible slopes. The last section of the chapter is devoted to the oriented knot
complement problem for ¥(2,3,5) and to the case when a surgery on %(2,3,5)
gives —3(2,3,5).

Chapter 7. Finally in Chapter 7 we use the theory of (P)SLy(C)-character
varieties to study exceptional cosmetic surgeries on a rational homology sphere

which produce small Seifert fibred manifolds.



Chapter 7

Chapter 5

Chapter 6

Figure 0.1 Thesis flow chart.




CHAPTER 1

BACKGROUND ON COSMETIC SURGERIES

1.1 Dehn surgery

In this chapter we fix some notations and conventions and we briefly outline the
necessary background on Dehn surgery, exceptional surgery and cosmetic surgery.
We also give a quick survey on the state of the exceptional surgery problem and

the cosmetic surgery conjecture. At the end we give some preliminary lemmas.

In what follows, all manifolds will be orientable. We will be precise when a choice
of orientation matters. If M is an oriented manifold, we will denote by —M the
same topological manifold but with the opposite orientation. Let M; and M, be

two oriented manifolds, we will use the following notations:
M; &£ M, means that the two manifolds are homeomorphic,
M; = +M; means that there is an homeomorphism which preserve orientations,

M, &£ —M, means that there is an homeomorphism which reverse orientations.

Let us begin with some definitions.

Definition 1.1.1. A slope on S' xS is a primitive element of H;(S'xSY; Z)/{*1}

representing the isotopy class of a simple closed curve on S* x S!.
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Let M be a compact, connected, oriented 3-manifold and let T' C M be a torus.

Definition 1.1.2. A Dehn filling of M along T is a manifold M(f,T) obtained
by filling T with a solid torus via a diffeomerphism f : 8(S' x D?) - T,

ie M(f,T):=(S"x D?) U; M.

We also refer to the process of constructing M(f, T') as doing a Dehn filling on M
along T. The construction of M(f,T) can be done in two steps. The solid torus
S x D? in M(f,T) is the union of two components, a closed regular neighbour-
hood A of the disk {*} x D? and the closure S* x D2\ A of the complement of A.
We first attach A to M via f, this process is a 2-handle attachment along a tubu-
lar neighbourhood of f ({*} x 8D?). Such an attachment is uniquely determined
by the isotopy class in T' of the attaching 1-sphere that is f ({*} x D?). The
second stage is to obtain M(f,T) by attaching the 3-ball B to AU M along its
2-sphere boundary. Since any homeomorphism of the 2-sphere extends over the 3-
ball, the manifold M(f,T) is completely determined by the 2-handle attachment
AUM.

Therefore M(f, T) is uniquely determined by the T isotopy class aof f ({x} x 8D?),

that is, by the slope a on T determined by f ({*} x 8D?). The curve S! x
{0} € S' x D? C M(f,T) is called the core of the Dehn filling. We will write
M(a,T) := M(f,T) and, if the boundary component T is clear from the context,
we will simply use the notation M(«a) for M(f,T).

Given a set of torus boundary components T3, - - - , Ty C OM, and slopes a1, - - - , o
on each component T;, ¢ = 1,--- , k; we can do Dehn filling along each T; to get
a new manifold M(ay,-- -, o).

Let K be a knot in a connected oriented 3-manifold Y. We denote N(K) a

regular neighbourhood of K and Yy :=Y \ N(K).
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Definition 1.1.3. A Dehn surgery of slope o on K is the oriented 3-manifold
Y« (o) obtained by doing a Dehn filling of Yx along ON (K) with slope a.

The manifold Yx(c) inherits a preferred orientation from the orientation of Y.
Indeed, the orientation on Y induces an orientation on Yx. Choose the orientation
of the filling solid torus S! x D? so that the orientation on f(8(S* x D?)) is the
opposite of the orientation on 0Yx. Then, after gluing, we get an orientation of
the whole manifold Yx (o) = S* x D? U, Yx. Therefore a Dehn surgery gives an

oriented manifold.

A Dehn surgery along a link L C Y is defined in similar fashion.

Meridian and longitude.  The knot K determines a distinguished slope u
called the meridian of K, up to orientation. It is the class of an essential simple
closed curve on AN (K) which bounds a disk in N (K). A simple closed curve
which represents a meridian is called a meridian curve. The trivial Dehn surgery

along K is the Dehn surgery on K with slope p.

If ~ is a slope which can be represented by a simple closed curve which inter-
sects transversally a meridian curve once, then the pair {u,~} forms a basis of
H (BN (K);Z) and +~ is called a longitude for K. Such choice of basis gives a
correspondence:
{Slopes on oM}/ {£} «+— QU {0}
a=pp+qy— §

In this case we can represent a slope a as an integer point in the R? plane or an
element of Q U {oo} with the convention that 1/0 = co represents the meridian.
This correspondence is not canonical in general because it depends on the choice

of longitude. Since two longitudes differ by an integer multiple of the meridian u,
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the choice is infinite. However if the knot K is null-homologous, for instance if Y’
is an integer homology 3-sphere, then K bounds a Seifert surface F' and the curve
FNAN(K) is an essential simple closed curve which intersect a meridian curve
transversally and exactly once. The isotopy class of this curve does not depend on
the choice of Seifert surface F'. Therefore we have a canonical longitude, denoted

Ak, and the correspondence above becomes canonical.

Rational longitude. Let K be a knot in a rational homology 3-sphere Y. In
this situation there is also a canonical longitude Ay called the rational longitude.
Indeed the knot K has finite order in H;(Y,Z) so there is an integer n and a
surface ¥ C Y such that nK = 0%. The intersection of ¥ with ON(K) is n-
parallel copies of a curve Ap. The isotopy class in AN(K) of this curve does not
depend on the choice of the surface ¥. We call the slope Ay, the rational longitude
of K. In terms of homology, Ajs is the unique slope on M with the property
that the image of Ay in H;(M;Z) by the morphism induced by the inclusion
O(Y \ K) =» Y \ K is of finite order. For more details on the homological point
of view see (Watson, 2009).

Distance between two slopes. The distance, denoted A(e, §), between two

slopes o and B on T is their minimal geometric intersection number. That is

A, f) =min {§Ci NCy : C;,C, simple closed curve representing «

and B respectively }

The distance has the following straightforward properties:

o Ala,f) = |a- B

o Ala,f)=0if a= 8.
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o A(a,B) =11iff {a, B} form a basis of H;(0M;Z).
o If we fix a basis {u, A} of H;(T';Z), then for @ = pu+gh and 8 =p'u+¢'A

Aa, B) = |pd’ — qp'|.

When M is a compact, connected orientable 3-manifold with torus boundary
there is a formula relating the order of the first homology of the filled manifold
to the distance of the filling slope from the rational longitude.

Lemma 1.1.4. (Watson, 2009) Let o be a slope on OM. There is a constant cy
such that
|Hy(M(0); Z)| = e Ao, Ang)-

If we denote 1 : OM — M the natural inclusion then the constant cps is the
quantity
ey = |Tor(H (M;Z))| ord(iAar),

where ord(i,Ays) is the order of 7,Ays in the homology of M.

Surgery on a link. Assume that Y is an integer homology sphere. Let
L=K,U---UK,, bealink in Y. Each component of L has a canonical longitude,
therefore every surgery on L can be described by an m-tuple (p1/q1,- - , Pm/m)
of elements in QU {oo}. By a framed link we mean the data of the link L with
such an m-tuple. The m-tuple itself will be called the framing of the link. A
framed link will be denoted by calligraphic letter, like £. We will write Y(L) for
the result of a Dehn surgery on a framed link £. The framing matriz of a framed

link £ in Y is the matrix F'(L) defined by

k(K K;) if i
F(/J)ij={ K .( . ]). = Sl
pi if i=j
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where 1k(, ) denotes the linking number. The framing matrix gives a presentation

for Hi(Y(L),Z), in particular
|det (F(£))] = [Hi(Y(£); Z)] -

For the case of a 2-component link, the framing matrix has the form

D1 ¢ Ik(Ky, K>)

F(L) =
q1 k(K> K)) D2

For more details we refer to (Saveliev, 2002).

Lens spaces. We shall fix here the convention for lens spaces. Let p # 0 and
g be two coprime integers. The “lens space” L(p, q) is the oriented 3-manifold
obtained by gluing two solid tori V; and V; via a homeomorphism f : 0V;, — 9V,
which takes a meridian m on 0V to a torus knot (p,q) on 0V,. In particular
L(p,q) is obtained by (p/g)-surgery along the unknot in S3. A knot in a lens
space is said to be an “azis”, if its complement is homeomorphic to a solid torus.
For instance the cores of the solid tori V; and V; are axes in L(p, q). Indeed, up
to isotopy there are at most two axes in L(p,q). Recall that L(p,q) = +L(p, ')

/£1 [

if and only if ¢ = ¢’=! [mod p].

Seifert fibred spaces. Let p, ¢ be two coprime integers where p > 1, and let

"D?={2€C | |2| <1} be the unit disk in C. Let 6 be the rotation § : D> — D?
defined by 6(z) = e%4/P . The “fibred solid torus of type (p,q)”, denoted by
Vip,g)» 18 the quotient space

_ D*x|[0,1]
Yoo = G 1~ (6(2),0)

endowed with the (smooth) foliation by circles (called fibres) induced from the
[0, 1]-factor in D% x [0, 1].
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Topologically each V(4 is homeomorphic to the solid torus D? x S!, however
different pairs of integers may give distinct circle-fibration structures. In general
there is a fibre preserving homeomorphism between V{, 5y and Vi o) if and only

if p=p' and ¢’ = £¢ [mod p|. The integer p is called the indezx of Vi, q.

Definition 1.1.5. o A Seifert structure or Seifert fibration on an oriented
3-manifold M is a smooth foliation of M by circles (called fibres) such that
each each fibre ¢ has a closed tubular neighbourhood, consisting entirely of
fibres, which is fibre-preserving homeomorphic to some fibred solid torus

Vip,g)- The index p > 1 of this fibred solid torus is called the indez of ¢.

o A fibre ¢ of index p is called an exceptional fibre if p > 1, and a regular
fibre otherwise. We say that an exceptional fibre is of type (p,q) if it has a

tubular neighbourhood which is fibre-preserving homeomorphic to Vi, q).

o A 3-manifold M is called Seifert fibred if there exists a Seifert structure on
M.

o Two Seifert fibrations on M are said to be equivalent or isomorphic if there

exists a fibre preserving diffeomorphism between the two.

In Vi, q) all fibres are regular except the core fibre ¢o = ({0} x [0,1])/((0,0) =
(0,1)) which has index p. Assume M is compact, it follows that exceptional fibres
are isolated and lie in the interior of M. The boundary 0 M is foliated by regular

fibres and so it consists of a collection of tori.

The orbit space B of a Seifert fibred space M is the space of leaves of the given
foliation. It can be given the structure of a compact 2-orbifold whose boundary
consists of the fibres lying on M. The cone points of the 2-orbifold B corre-

spond to singular fibres and have index equal to the index of the corresponding
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fibres in M. The geometry of the 2-orbifold B is determined by its topologi-
cal surface type B and the indices p;,ps, -, pn of its cone points. We denote

B= B(plap% ot apn)'

The manifold M equipped with a Seifert fibration with base 2-orbifold of genus
+g (here —g indicates that B is non-orientable of genus g) and b boundary com-
ponents, and with n singular fibres of type (p1,q1), (P2, @2)," " , (Pn, qn) Will be
denoted by

M(£g,b; (p1,q1), (P2, 42)s -+ - (P Gn)-

If M is closed we just use the notation M(+g; (p1,q1), (P2,g2),"* , (Pny@n))- The
collection (%g,b; (p1,91), (P2, @2), ** * » (Pn, @n)) is called the unnormalized Seifert

wnvariant. Reversing the orientation of M has the effect of changing the invariant

(:I:g, b; (pla ql)a (p27 q2)a S (pna q‘n)) to (:tg? ba (pla _ql)’ (p2a _qZ)’ "ty ( (X _q’n))

Theorem 1.1.6. (Neumann and Raymond, 1978). Let M and M’ be two closed
Seifert manifolds with associated Seifert invariants M(g; (p1,q1), -+ , (ps, gs)) and
M(d; Py, q1), -, (D}, b)) respectively. Then M and M' are orientation preserv-
ing homeomorphic by a fibre preserving homeomorphism if and only if, after rein-

dexing the Seifert invariants if necessary, there exists an integer k such that

o pi=p; fori=1,---,k and p; = pj fori,j > k.

® g Eq‘: [modpz] fOTi . 17' o ak'

o Sia/p=Yi, dfv.
According to the theorem, the rational number e(M) := — 3" _ ¢;/p; is an in-
variant of the Seifert structure. It is called the Fuler number of M. It has the

property that
e(—M) = —e(M).
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Using the last theorem, with the appropriate orientation, the Seifert invariant
of Seifert fibration has the following unique normal form up to permutation of

indices
(g7 (17q0)7 (pl,QI), (pZ,q2)a Stk ,(pn,Qn)), 0< g < p; for i = 1)' N

We can also replace (1, o) by the Euler number e(M) to get the invariant

(g;e(M); (P1,q1), (P2, @2), - -+, (Pmy @)

For most Seifert manifolds the Seifert structure is “unique”. Indeed, if M is a com-
pact 3-manifold with infinite fundamental group and is distinct from S§%x S, S!x

D?, S1x81%0,1], and the twisted interval bundle over the Klein bottle, then the
Seifert structure on M is unique up to isotopy, see (Neumann and Raymond, 1978)

for details.

In terms of fundamental group, by thinking of a Seifert fibred space M as a
circle bundle with base space the 2-orbifold B, we have the following short exact

sequence

1—— (¢) — m(M) — 7(B) — 1

where 7™°(B) is the orbifold fundamental group of B, (¢) is a cyclic group gen-
erated by a regular fibre.

Finally, a particular type of Seifert manifold will be of interest to us. It is the class
of small Seifert manifolds. They are the Seifert manifolds which are fibred solid
tori or which admit the structure of a Seifert fibred space whose base 2-orbifold
is the 2-sphere with at most three cone points. They are all irreducible except
for S x S2. If not stated otherwise, we will always assume that a given Seifert

manifold is distinct from St x S2.
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When the base 2-orbifold is the 2-sphere with at most 2 cone points, then the
manifold is topologically the union of two solid tori, so it is either a lens space
or S! x S%2. When a closed small Seifert fibred space Y has base 2-orbifold S2
with exactly three exceptional fibres, then Y contains an essential surface (see

Definition 1.2.1 below) if and only if H;(Y) is infinite.

1.2 Exceptional fillings

A compact, connected orientable 3-manifold M will be called irreducible if every
properly embedded 2-sphere in M bounds a 3-ball. Otherwise M will be called
reducible. It will be called boundary irreducible if every simple closed curve on dM
which bounds a disk in M bounds a disk in M, and otherwise boundary reducible.
All embedded surfaces in a 3-manifold we will be considering will be bicollared if

not stated otherwise. From now on we will use the following definition.

Definition 1.2.1. A properly embedded non-empty surface F' in a compact, ori-
entable 3-manifold M is said to be essential if it is a 2-sphere which does not

bound a 3-ball or if it has the following three properties:

1. F has no 2-sphere components,

2. the inclusion morphism 7 (F;) — m (M) is injective for every component

F; of F,

3. no component of F is parallel into OM .

Let F' C M be a properly embedded surface with boundary and T be a torus

component of M. Each component of dF NT is a simple closed curve on T

1A component of F is parallel into M if there is an isotopy of this component onto a

boundary component of M.
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and they all determine the same slope. A slope r on T is called boundary slope
if it is the slope of a boundary component of an essential surface in M. If the
corresponding surface is a punctured torus then the slope will also be called a

toroidal slope.

If all the components of OM are tori or M is empty, M is said to be hyperbolic
if its interior admits a complete finite volume Riemannian metric of constant
sectional curvature —1. Recall that if M is hyperbolic then it is irreducible,
boundary irreducible, contains no essential tori or annuli and is not a Seifert fibred
manifold. Thurston’s hyperbolization theorem implies that the last statement is
an equivalence. A hyperbolic structure on M is unique up to isometry by the

Mostow-Prasad rigidity theorem.

Fix M a hyperbolic 3-manifold with M a union of tori. In this section we
will discuss the notion of Dehn filling of M. Let T be a component of M. By
studying metric completions of incomplete “hyperbolic” 3-manifolds, W. Thurston
discovered that, except for a finite number of slopes, all the Dehn fillings of M
along T give hyperbolic manifolds.

Theorem 1.2.2. (Thurston, 1979) Let M be a compact connected oriented 3-
manifold with boundary a union of tori. Let T' be a component of OM. If int(M)
admits a complete finite volume hyperbolic structure, for all but finitely many
slopes a on T, M(c) is hyperbolic and the core of the Dehn filling is isotopic to

the unique shortest geodesic in this manifold.

Let’s consider the set E(M,T) of non-hyperbolic slope on T'. A slope in E(M,T)
is called an ezceptional slope. By the above theorem it is a finite set, and one
goal of Dehn filling theory is to understand this set of slopes. One of the main
“techniques” in this study is to find a bound on the distance A(r, s) between two

exceptional slopes r and s.
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Theorem 1.2.3. (Lackenby and Meyerhoff, 2018) Let M be a compact orientable
3-manifold with boundary a torus, and with interior admitting a complete finite-
volume hyperbolic structure. If r and s are exceptional slopes on OM, then their

intersection number A(r,s) is at most 8.

This bounds is achieved by the figure-8 exterior, indeed

E(figure-8) = {00,0, £1, £2, +3, £4}.

It has been conjectured by Gordon that the distance of two exceptional slopes is

less than 5 for almost all hyperbolic 3-manifold with torus boundary.

Conjecture 1.2.4. Let M be an hyperbolic 3-manifold with boundary a torus. If
a and B are two exceptional slopes on OM, then A(a, B) < 5 unless M is one of

W(1),W(2),W(-5/2), or W(-5), see Figure 1.1.

Figure 1.1 W(1),W(2),W(-5/2), W(-5)

The conjecture is known to be true if the two slopes are both toroidal. This is
the work of Gordon in (Gordon, 1998). We will give a survey on toroidal surgery

in chapter 2.

For non-toroidal exceptional surgeries there are three principal results.

Theorem 1.2.5 (Cyclic surgery theorem, (Culler et al., 1987)). Let M be a com-

pact, oriented, irreducible 3-manifold which is not a Seifert fibred space. Assume
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that OM is a torus and let v, s be two slopes on OM. If m(M(r)) and m (M(s))
are cyclic, then A(r,s) < 1.

Theorem 1.2.6 (Finite surgery theorem, (Boyer and Zhang, 2001)). Let M be

a compact orientable hyperbolic 3-manifold with torus boundary. If r,s are two

slopes on OM such that m(M(r)) and m (M (s)) are finite, then A(r,s) < 3.

Theorem 1.2.7. (Gordon and Luecke, 1996) Let M be a compact orientable ir-
reducible 8-manifold with torus boundary. If r,s are two slopes on OM such that

M(r) and M(s) are both reducible, then A(r,s) < 1.

We summarize all the results about the bounds on A(r,s) for r,s € E(M) in

table 1.1. We call a slope r € E(M):

e reducible, if M(r) is reducible,
e toroidal, if M(r) contains an essential torus,
e cyclic, if 1 M(r) is cyclic, finite, if m M (r) is finite but not cyclic,

e small Seifert, if M(r) is a small seifert manifold.

reducible | cyclic | finite | toroidal | small Seifert i
reducible 1 1 1 3 4
cyclic 1 2 8 8
finite 3 8 8
toroidal 8 8
small Seifert 8

Table 1.1 Distance table.
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1.3 Cosmetic surgeries

Cosmetic surgery addresses the question: when do two surgeries along the same
knot, but with distinct slopes, produce the same manifold? Such a situation
does happen, but observations suggest that for generic knots and 3-manifolds

this should be very rare.

Definition 1.3.1. Two Dehn fillings M(c) and M (), where a # B, are called
cosmetic if there is a homeomorphism h : M(a) = M(B). They are called truly
cosmetic if h can be chosen to be orientation-preserving. We also call two Dehn
surgeries cosmetic (resp. truly cosmetic) if the corresponding Dehn fillings are

cosmetic (resp. truly cosmetic).

Example 1.3.2. Here are some examples of cosmetic fillings for two distinct

slopes.
e If K is an amphicheiral knot in S® and M = S3 \ N(K), then M(a) is
orientation reversing homeomorphic to M{—a).

o It was shown by Mathieu (Mathieu, 1992) that if M is the complement
of the trefoil knot in S® then we have an infinite family of pairs of dis-

tinct slopes which give homeomorphic manifolds. Precisely, for any positive

18k +9 18k + 9
M & .
(3k+1) (3k+2)

These Dehn filling manifolds are Seifert fibred with normalized Seifert in-

integer k,

variants
(0;k —3/2;(2,1),(3,1),(3,2)). Such manifolds do not admit orientation-

reversing homeomorphisms. Therefore the fillings are not truly cosmetic.
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e If M is the complement of the unknot in S3, M is a solid torus, then the

Dehn filling manifolds are lens spaces and

M (p/q1) & +M (p/g2) iff o =g [mod]p,

for pairs of relatively prime integers (p,q;) and (p, g2).

For the first and the third examples one can find a homeomorphism of M which
takes one slope to the other. In general we define the following equivalence for

slopes.

Definition 1.3.3. Let M be a compact connected oriented 3-manifold with torus
boundary. Two slopes on OM are called equivalent if there exists an orientation-

preserving homeomorphism of M which takes one to the other.

The following conjecture is Conjecture (A) in problem 1.81 of the Kirby list of
problems in low-dimensional topology (Kirby, 1997).

Conjecture 1.3.4 (Cosmetic surgery conjecture). Let M be a compact con-
nected oriented irreducible 3-manifold with torus boundary and which is not a
solid torus. Let o and B be two inequivalent slopes on OM. If M(a) & M(B),
then the homeomorphism is orientation-reversing. Equivalently, two surgeries on

inequivalent slopes are never truly cosmetic.

Gordon and Luecke (Gordon and Luecke, 1989) have proved the first major result

toward the resolution of the conjecture.

Theorem 1.3.5. (Gordon and Luecke, 1989) There is no non-trivial surgery on

a non-trivial knot in S® or §? x S* which gives back S or S% x S1.

For the case where b;(Y) > 0 and the core of the Dehn filling is homotopically

trivial in Y the following result was proved by Lackenby.
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Theorem 1.3.6. (Lackenby, 1997) Let Y be a compact oriented 3-manifold with
H,(Y,Q) # 0. Let K be a homotopically trivial knot in Y, such that M =
Y \ N(K) is irreducible and atoroidal. Let M(p/q) be the Dehn filling along K
with slope p/q. Then there is a natural number C(Y, K) which depends only on
Y and K such that, if |g| > C(Y, K) then

M(p/q) 1is orientation-preserving homeomorphic to M(p'/d") iff p/q=1p'/¢ .

The assumption that K is homotopically trivial can be dropped and replaced
by K homologically trivial and Y reducible or K having finite order in m(Y)
(Lackenby, 1997). Taut sutured manifold theory is used to construct the bound
TR P

Relatively recent results has been proven by Zhongtao Wu and Yi Ni, in 2011,
for the case of S3 and L-space Z-homology spheres. -

Theorem 1.3.7. (Ni and Wu, 2013) Suppose K is a nontrivial knot in S3, r,r' €
QU {oo} are two distinct slopes such that Sk (r) is homeomorphic to Sk(r') as

oriented manifolds. Then r,r’ satisfy

(@) = —r';
(b) supposer = p/q, wherep, q are coprime integers, then: ¢*>= -1 [mod p];

(¢) T(K) = 0, where T is the concordance invariant defined by Ozsvdth-Szabé

and Rasmussen.

Theorem 1.3.8. (Wu, 2011c) Let r and r’ be two distinct rational numbers with
rr’ > 0, let K be a non-trivial knot in an L-space Z-homology sphere Y and let

M =Y \N(K). Then M(r) 2 M(r').
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Yi Ni has also studied cosmetic surgeries for manifolds Y with b,(Y) > 0. For

this he used the Thurston norm with Heegaard Floer homology.

Theorem 1.3.9. (Ni, 2011) Suppose Y is a closed 3—manifold with b (Y) > 0.
Let K be a null-homologous knot in Y, so that the inclusion map Y — K =Y
induces an isomorphism Hy(Y — K) = Hy(Y) and we can identify Ho(Y) with
Hy(Y — K). Suppose r € QU {oo} and let Yi(r) be the manifold obtained by
r—surgery on K. Suppose (Y, K) satisfies that

zy(h) < zy_g(h), for any nonzero element h € Hy(Y).

where x5 s the Thurston norm in M. The conclusion is: if two rational numbers

T, s satisfy that Y (r) & £Yx(s), then r = *s.

We can replace the assumption on the Thurston norm with another condition to

obtain the following.

Theorem 1.3.10. (Ni, 2011) Suppose Y is a closed 3—manifold with b;(Y) >
0. Suppose K is a null-homologous knot in Y. Suppose ry = 0, while the
restriction of Ty_x on Hy(Y') is nonzero. Then we have the same conclusion as

Theorem 1.8.9. then r = £s.

We will be mainly interested in truly cosmetic surgeries along hyperbolic knots
K in a rational homology sphere Y. By Theorem 1.2.2, Yx(r) is hyperbolic for
all except a finite number of slopes r on ON(K). Let r and s be such hyperbolic
slopes. Assume Yx(r) is homeomorphic to Yx(s). Then by Mostow rigidity
there is an isometry A between Yx(r) and Yx(s). This isometry takes the unique
shortest geodesic in Yx(r) to the unique shortest geodesic in Yx(s). Apart from
a finite number of slopes, the shortest geodesic is isotopic to the core of the Dehn

filling, and if this is true for the slopes r and s we can assume that h takes the core
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of the Dehn filling in Y (r) to the core of the Dehn filling Y (s). Therefore h takes
the meridian r to the meridian s. In particular A restricts to a homeomorphism
of Yx which takes r to s. Moreover a homeomorphism of a one-cusped orientable
hyperbolic 3-manifold which changes the slope of some peripheral curve has to be
orientation reversing. Therefore the two slopes r and s are not equivalent. One

can then deduce the following, see (Bleiler et al., 1999).

Proposition 1.3.11. (Bleiler et al., 1999) Let M be a compact connected ori-
ented hyperbolic 3-manifold with boundary a torus. Let r and s be distinct slopes
on OM, such that M(r) (resp. M(s)) is hyperbolic and the core of the Dehn filling
solid torus is isotopic to the shortest geodesic in M(r) (resp. M(s)), which we
assume is unique. If M(r) is homeomorphic to M(s), then there is an orientation-
reversing homeomorphism of M which takes r to s but no orientation preserving
one. In particular, apart from a finite number of slopes, there are no truly cos-

metic fillings of M with two inequivalent slopes.

For cosmetic fillings on a complete finite volume hyperbolic 3-manifold M, the

remaining cases are then:
e One of the Dehn filling manifolds has a hyperbolic structure but the core
of the Dehn filling is not isotopic to the shortest geodesic.
e The Dehn filling manifold is not hyperbolic.
The second possibility is the case of an exceptional filling. We will focus on this
last situation, that is cosmetic surgeries or fillings which are also exceptional.

Using Lemma 1.1.4, we can deduce the following two preliminary lemmas on

cosmetic fillings. Let M be a compact, connected, oriented hyperbolic manifold
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with boundary a torus and assume b;(M) = 1. Fix a canonical basis {u, Ay} for

H1(0M), where Ay is the rational longitude.

Lemma 1.3.12. Let p/q and p/q be exceptional slopes such that 0 < p and
g<d. If M(p/q) and M(p/q’) are homeomorphic then we must be in one of the

following cases:
(a) p=1and|q—q¢|<8. (c) pe{4,3} andq € {g+1,q+2}.

(b) pe{7,5} and ¢’ =q+1. (d) p=2and ¢’ € {g+2,q9+4}.

Proof. We have the bound A(p/q,p/q¢') = |pd’ — qp| =plg— ¢| <8,s0p < 8. If
p=1then |g—¢'| <8 Ifpe {8,7,6,5} then |¢g—¢'| < 1and ¢ = ¢+ 1. On the
other hand p and ¢ (resp. p and ¢’') must be relatively prime, thus since one of ¢
and g+1 is even and p cannot be 6 or 8. Similarly if p € {4, 3} then |g—¢'| < 2 and
¢ €{qg+1,g+2}. fp=2then|¢g—¢|<4andq € {q+1,q+2,q+3,q+4}
but we must have ¢ = ¢’ [mod 2] so ¢’ € {qg+2,q9 +4}. O

For the case of reducible or cyclic fillings we have the following lemma.
Lemma 1.3.13. Assume the hypotheses of Lemma 1.3.12. If M(p/q) is cyclic

or reducible and is homeomorphic to M(p/q’) thenp=1 and ¢ =g+ 1.

Proof. The distance between two reducible slopes or two cyclic slopes is at most
one, so A(p/q,p/d) = |pd — qp| = p|¢’ — ¢q| < 1. It follows that p = 1 and
qd=q+1. O




CHAPTER II

SURVEY ON TOROIDAL SURGERIES

In this chapter we give a very brief survey on some results about toroidal surg-
eries on hyperbolic manifolds. Our references are (Gordon and Luecke, 1995),
(Gordon, 1998), (Gordon and Luecke, 2004), and (Gordon and Wu, 2008). We
begin in section 2.1 by giving some basic background on intersection graphs. In
section 2.2 we give a summary of results about toroidal Dehn filling and we prove

some lemmas needed for later on.

2.1 Intersection graphs

Litherland was the first to introduce the method of intersection graphs in 1980
as a combinatorial way of studying Dehn surgeries in the solid torus. It was then
extensively used by C. McA. Gordon, J. Luecke, M. Scharlemann, and Ying-Qing
Wu.

Throughout this chapter, M will be an oriented hyperbolic 3-manifold, with a
torus Ty as a boundary component. We will use a,b to denote the numbers 1
or 2, with the convention that if they both appear in a statement then {a,b} =
{1,2}. We are interested in the transverse intersections of two properly embedded
surfaces in M with boundaries on Tj. Let F; and F; be such surfaces. We assume

that there exist two distinct slopes r; and 3 on Ty such that each component of
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OF) (resp. OF; ) represents the slope r; (resp. 73). In our particular situation we

assume that the two slopes are also toroidal.

We denote by F, the essential torus in M (r,) obtained by capping off OF, with
meridian disks. Let n, be the number of boundary components of F, on Tj.
Choose F, in M(r,) so that n, is minimal among all essential tori in M(r,).
Minimizing the number of components of F; N F; by an isotopy, we may assume
that F; N F;, consists of arcs and circles which are essential on both F,. Denote by
J,, the attached solid torus in M(r,), and by u; (i = 1, ..., n,) the components of
ﬁaﬂJa, which are all disks, labeled successively when traveling along J,. Similarly

let v; be the disk components of I?’b M T

Definition of intersection graph  We associate to the pair of surfaces { F1, Fp}

a pair of graphs {I'1, 'y} where I, is a graph on F, defined as follows.

e The vertices of I', are the u;’s. They are drawn like disks. We associate a
sign to each vertex of T', as follows: the surface ﬁa and the curve J, are
oriented and intersect transversally, so if the orientation on M(r,) is the
same as the orientation of the couple (ﬁa, Ja) then we say that the vertex

is positive, otherwise we say that it is negative.

e The edges of I, are the arc components of F; N F5.

A face of T, is the closure of a connected component of F,\Ty. A disk face of T',
is a face which is a disk. The minimality of the number of components in F; N F;
and the minimality of n, imply that I'; has no trivial loops, and that each disk

face of T’y in ﬁa has an interior disjoint from Fj,.
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Three-manifolds from intersection graphs From the data of F} and F}, we
can construct a sub-manifold X (F, F3) of M by taking a regular neighbourhood
N(FLUF,UTy) of F;UF,UT, and capping off its 2-sphere boundary components
with 3-balls. Note that X (F), F>) may not be unique.

Now if we start with a pair of graphs {I';,I's}. We can still construct a manifold
X (F1, F2) by building the abstract “2-complex” F U F, U Ty thickening it and
capping off the 2-sphere components of its boundary by 3-balls. Lemma 21.1 of
(Gordon and Wu, 2008) and Theorem 1.1 of (Gordon, 1998) tell us that if the
two slopes 7,y corresponding to F; and Fy are toroidal then the boundary of

X (Fy, F») consists of union of tori.

22 Toroidal surgeries

In this section we summarize the principal results on toroidal surgeries on hy-
perbolic 3-manifolds. The list is not exhaustive as we state only what we need
for the rest of the thesis. We also prove Lemma 2.2.2, Lemma 2.2.3, and Lemma

2.2.4 which will be useful for Chapter 6.

The following theorem is from Gordon and Ying-Qing Wu.
Theorem 2.2.1. (Gordon and Wu, 2008) There ezist fourteen 3-manifolds M;,
1 <i <14, such that

(1) M; is hyperbolic, 1 <i < 14;

(2) OM; consists of two tori To, Ty if i € {1,2,3,14}, and a single torus Ty

otherwise;

(8) there are slopes r;, s; on the boundary component Ty of M; such that M(r;) and
M(s;) are toroidal, where A(r;, 8;) = 4 if i € {1,2,4,6,9,13,14}, and A(r;, 8;) =
51ifie{3,5,7,8,10,11,12};




32

(4) if M is a hyperbolic 3-manifold with toroidal Dehn fillings M(r), M(s) where
A(r,s) = 4 or 5, then (M,r,s) is equivalent either to (M, r;,s;) for some 1 <
i < 14, or to (M;(t), i, s:) wherei € {1,2,3,14} and t is a slope on the boundary
component Ty of M;.

Here we define two triples (N1, 71,81) and (Na, 72, 82) to be equivalent if there is a

homeomorphism from Ny to Ny which sends the boundary slopes (1, s1) to (rq, 82)

or (82,79)-

The manifolds M, Ma, M3 are the exteriors of the links L;, L, and Ls; in S®

which are shown in the following figure

) ) ©)

Figure 2.1 The links L;, Ly and L.

My, - -+, M4 are the manifolds X (F}, F3) corresponding to the intersection graphs
given in (Gordon and Wu, 2008), and r;, s; are the boundary slopes of the corre-

sponding surfaces Fj, Fo. We will reproduce here, in Figure 2.2, Figure 2.3 and

Figure 2.4, the intersection graphs for My, Ms, and M4 as in (Gordon and Wu, 2008).

The nine manifolds Mg, - - - , M4 can be constructed as branched covers of a tan-
gle Q; = (W}, K;), for each i = 6,..., 14, where W, is a 3-ball for i = 6, ..., 13, and
an S? x I for i = 14. More precisely M; is the double branched cover of W; with
branch set K;. For more details we refer to (Gordon and Wu, 2008) section 22.
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Figure 2.2 The intersection graph for the manifold My (Gordon and Wu, 2008).

In Figure 2.2 and Figure 2.3 each graph is on the torus Z’*”\a which we draw as a

square.
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Figure 2.3 The intersection graph for the manifold M5 (Gordon and Wu, 2008).
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Figure 2.4 The intersection graph for the manifold M;4 (Gordon and Wu, 2008).
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Denote by T'(ai,as) a Montesinos tangle which is the sum of two rational
tangles of slopes 1/a; and 1/as respectively, where a1, as are integers. Denote by
X (a1, az) the collection of Seifert fibre spaces with base 2-orbifold a disk with two
cone points ¢y, ¢s of index a; and ay, i.e. the cone angle at ¢; is 27/a;. Note that
the double branched cover of T'(a, az) is in X(a1, az). Denote by X(ay, by; ag, ba)
the collection of graph manifolds which are the union of two manifolds X;, X,

glued along their boundary, where X; € X'(a;, b;).

Denote by K/, the two bridge knot or link associated to the rational number p/gq.
Denote by C(p1, q1; 2, g2) the link obtained by replacing each component K; of
a Hopf link by its (p;,q;) cable K], where ¢; is the number of times K] winds
around K;. Denote by Y (p1,q1;p2,q2) the double branched cover of S® with
branch set C(p1, q1;p2, ¢2).- Denote by C(C;p,q) the link obtained by replacing
one component K; of a Hopf link by a Whitehead knot in the solid torus N(K}),
and the other component K> by a (p, ¢) cable of K,. Let Y(C;p, q) be the double
branched cover of S with branch set C(C;p, q).

We can now state the following lemma of Gordon and Ying-Qing Wu.

Lemma 2.2.2. (Gordon and Wu, 2008) Each M; (i = 6,...,13) admits a lens
space surgery M;(rs). For each i, let r1,79 be the toroidal slopes r;, s; in Theorem
2.2.1. Then the manifolds M;(r1), M;(rq) and M;(r3) are given in the following
list.

Ms(0) € X(2,6;2,3)  Ms(4) =Y(3,1;5,2) Mg(o0) = L(9, 2)

M,(0) € X(2,3;3,3)  My(=5/2) € X(2,3;2,2)  My(o0) = L(20,9)
Mg(0) € X(2,2;2,6)  Mg(~5/4) =Y (3,1;2,5)  My(~1) = L(4,1)
Mo(0) € X(2,3:2,3)  My(—4/3) =Y (3,1;2,4)  My(—1) = L(8,3)

)

)

Mio(0) € X(2,3;2,3)  Mio(=5/2) =Y (C;2,1)  Mig(co) = L(14,3)
Mu(0) € X(2,42,4) Mu(-5/2)=Y(C;2,1)  Mu(co) =
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Mlz(O) c X(Z, 3, 2, 3) M12(5) = Y(3, 1, 2, 3) M12(OO) = L(3, 1)
Mi3(0) € X(2,3;2,3) Ms(4)=2 Mi3(00) = L(4,1)
Above Z is a double branched cover of S® with branch set some 2-string cable of

the trefoil knot.
Proof. See Lemma 22.2 (Gordon and Wu, 2008). O

The next two lemmas can be deduced from the proof of Theorem 22.3 of Gordon

and Ying-Qing Wu in (Gordon and Wu, 2008).

Lemma 2.2.3. (Gordon and Wu, 2008) Let t be a slope on the boundary com-
ponent Ty of My, let K, be the core of the Dehn filling solid torus in My4(t).
Then

Hy (Mw(t)) /Hi(Ke) = Z/2Z & Z/2Z.

Proof. Since My = X(Fy, F>) which is determined by the intersection graph
in Figure 2.4, we can determine a presentation of the first homology using this
picture. Take a regular neighbourhood of u; Uuy U D on F, as a base point,.
See Figure 2.4 (a). Then H,(M4(r,)) is generated by z,y, $1, S2, where z is the
element of H 1(ﬁ’a) represented by the edge C on Figure 2.4 (a), oriented from the
label 2 endpoint to the label 1 endpoint, y is represented by B, oriented from u;
to ug, and s; by the part of the core of the Dehn filling solid torus running from
u; to u;41 with respect to the orientation of 0F;. Then the bigons BUD,CUE
and the 4-gon bounded by CU DU EUY on F, give relations

251 —y=0,2x =0, and y+2x=0.
The other faces of I'y are parallel to these. Then as an abelian group

Hl(MM(ra)) = (iﬂ,y, 81, 82 I 231 == Oa 2z = 07 'y+2iL' = 0> g
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Now H,(K,) is generated by s; + s, thus
Hl(MM(Ta,))/Hl(Ka) = <maya S1, 82 l 231 =Y = O) 2z = 07 Y ¥* 2r = Oa S1 + S2 =

Therefore Hl(M14(’l‘a))/H1 (Ka) = Z/QZ D Z/QZ O

Lemma 2.2.4. Let 1,75 be two toroidal slopes on M;, i € {4,5} with A(ry,73) €
{4,5}. Then for some b € {1,2},

Hl(M4(7'b)) = Z, and H1 (M5(7'b)) =7Z® Z/4Z

Proof. Like in Lemma 2.2.3 M; = X(F, F;), i € {4,5} is determined by the
intersection graph in Figure 2.2 and Figure 2.3. From this we are going to get a

presentation of the first homology.

e For i = 4, choose a regular neighborhood of v; Uwvs U J in Figure 2.2 (b) as
a base point. Then H;(My(ry)) is generated by z,y, 81, 82, where z,y are
represented by the edges L, C in Figure 2.2 (b), oriented from v; to v, and
s; by the part of the core of the Dehn filling solid torus from v; to v;; 1. The
faces bounded by LUC, C U K and Q U K U M U A give the relations

y—81+x+8=0,8s—x—53=0, and sp—s1+y=0.
Then as an abelian group

H1(M14(7”b)) = (93,?!,81,82 | y—s1+zx+s=0,
§1— & — 89 =0, 82—81+y=0>

= Z.

0).
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e Similarly for ¢ = 5, H1(Ms(ry)) is generated by z, vy, s, where z,y are repre-
sented by edges E and C on Figure 2.3 (b), oriented from label 3 to label
4, and s is represented by the core of the Dehn filling solid torus. Then the
bigon AU H and the annulus bounded by AUG UC U E on Figure 2.3 (a)
containing J give the relations x + y = 0 and 2z — 2y = 0. Thus

Hi(M(ra)) = {z,y,s |2 +y =0, 22 -2y =0) 2 Z O Z/4Z.
i

Let W be the exterior of the Whitehead link and let T; be a boundary component
of W. Choosing a standard meridian-longitude basis u, A for H;(T},) we can iden-
tify slopes Ty with elements of Q U {1/0}. The manifolds W (1), W(2), W (-5),
W (—5/2) are hyperbolic and they all admits a pair of toroidal slopes r, s with
A(r,s) > 5. Gordon proved that these examples are the only possibilities for

hyperbolic manifolds with pair of toroidal slopes at distance > 5.

Theorem 2.2.5. (Gordon, 1998) Let M be an irreducible 8-manifold and T a

torus component of OM. If two slopes r and s on T are toroidal then either

1. A(r,8) < 5; or

2. A(r,s) =6 and M is homeomorphic to W(2); or

3. A(r,s) =7 and M is homeomorphic to W(—5/2); or

4. A(r,s) =8 and M is homeomorphic to W(1) or W(-5).
For hyperbolic knot in 3, results about toroidal surgeries are more refined. In
particular since there is a canonical Seifert longitude we can identify a slope with

an element of QU {1/0}. One can then obtain bounds on the denominator ¢ of

an exceptional slope p/q.
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Theorem 2.2.6. (Gordon and Luecke, 1995) Let K be a hyperbolic knot in S3

and suppose that Si(p/q) contains an essential torus. Then |q| < 2.

Now for the case where the slope is non-integral we have a complete understanding

of toroidal surgeries which is given by the following theorem.

Theorem 2.2.7. (Gordon and Luecke, 2004) Let K be a hyperbolic knot in S®
that admits a non-integral surgery containing an incompressible torus. Then K s
one of the Eudave-Mutioz knots k(I,m,n,p) and the surgery is the corresponding

half-integral surgery.
The list of knots in S® which admit pair of toroidal slopes at distance 4 is also
known by work of Gordon and Ying-Qing Wu.

Theorem 2.2.8. (Gordon and Wu, 2008) A knot K in S® is hyperbolic and
admits two toroidal surgeries Sy (r1), S¥(ry) with A(ry,m3) > 4 if and only if
(K, 11, 79) is equivalent to one of the following, where n is an integer.

1. K = Ll(n), T = 0, o = 4.

2. K=1Ly(n), 1 =2-9n,r=-2—-9n.

3. K = L3(n), r, = =9 — 25n, ro = —(13/2) — 25n.

4. K is the Figure 8 knot, vy =4, r9 = —4,
The knots Ly(n), Lo(n) and Ls(n) are the knots obtained from the right com-
ponents of the links L, Ls, L3 in Figure 2.1 after 1/n-surgery on the left com-

ponents. In the particular case where A(ry,7;) = 4, then K = Ly(n), r; = 0,

ro=4;0r K=Ls(n), r1 =2-9n,r9=-2-9n.



CHAPTER III

THE CASSON INVARIANT

In this chapter we give a quick review of two classical 3-manifold invariants:
the Casson-Walker invariant and the Casson-Gordon invariant. We also prove
a proposition which will be very useful for us. We follow (Walker, 1992) and
(Saveliev, 2002) chapter 3 and 4.

3.1 The Casson-Walker invariant

The Casson invariant assigns an integer to any oriented integral homology 3-
sphere Y. This can be done by counting conjugacy classes of irreducible rep-
resentations m(Y) — SU(2). This invariant was later extended to homology
lens spaces by Boyer and Lines (Boyer and Lines, 1990) and then to rational ho-
mology 3-spheres by K. Walker (Walker, 1992). Lescop (Lescop, 1996) showed
that Walker’s invariant also admits a purely combinatorial definition in terms of
surgery presentations. We refer to (Lescop, 1996) and (Walker, 1992) for more
details. The existence and uniqueness of this invariant together with basic prop-
erties are given by the first theorem below taken from [(Saveliev, 2002) section
4.1] and was originally stated in Walker (Walker, 1992) but with a difference of

a factor of 2 for the invariant.

Walker give the following definition of the Casson invariant for Q-homology
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spheres.

Theorem 3.1.1. (Walker, 1992) There exists a unique invariant A of oriented

rational homology 3-spheres, which satisfies the following properties:

1. X coincides with Casson’s invariant on integral homology sphere.
2. M(=Y) = =X(Y) where =Y stands for Y with opposite orientation.
3. \1#Y2) = AY1) + A(Y2) for two rational homology spheres Y and Y.

4. The number 12 - |H(Y;Z)| - X(Y) is an integer for any rational homology
homology sphere.

5. Let K be a knot in an oriented rational homology sphere Y, and let | € 8Yk
be a longitude. Then, A satisfies the surgery formula

by 4

MYk (a)) = MYk (b)) + 7(a, b;1) + @hBD ZAIII{( )

for any primitive class a,b € H(0K;Z) such that {(a,l) # 0 and (b,1) # 0

Here Aj stands for the second order derivative of the Alexander polynomial of K
normalized so that Ax(T) = Ax(T™*) and Ag(1) = 1. The brackets {,) denote
the intersection pairing H1(0Yk;Z) ® H1(0Yx;Z) — Z. Let us fix a longitude
[ and choose a basis z,y of H;(0Yk;Z) such that (z,y) = 1 and | = dy for some
d € Z. Then

-1 ({a,b)
12 {a, (b, 1)

T(aa b; l) = —S((:I), a)) <ya 0’)) i 5((:17, b>7 <ya b)) v
where s(g,p) is the Dedekind sum defined by

[p|-1
s(a,p) = sign(y) - Y- (N

=1 P p

))7
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with
r—[z]-%, ifzé¢Z,
((z)) = ’
0, teed,

When K is a null-homologous knot the surgery formula simplifies as follows.

Proposition 3.1.2 ((Saveliev, 2002) Corollary 4.5). Let K be a null-homologous
knot in a rational homology three-sphere Y, and let L(p,q) be the lens space

obtained by (p/q)-surgery on the unknot in S3. Then

MYk(p/9)) = A(Y) + ML(p, ) + 5’5&;{(1»

Proof. See (Saveliev, 2002) for details. O

Note that by our convention L(p,q) is obtained by (p/q)-surgery on the unknot
in S3, so in the formula we add +A(L(p,q)). If we had taken the convention in
(Saveliev, 2002) we would have a —A(L(p, q)) term instead.

Boyer and Lines have computed the Casson invariant of lens space.

Proposition 3.1.3. (Boyer and Lines, 1990) For a lens space L(p,q),

NL(r,)) = ~55(a,p).

Proof. See (Boyer and Lines, 1990) or (Saveliev, 2002). O

An interesting example is the Casson invariant of the Poincaré sphere. Recall that
the Poincaré sphere, denoted (2, 3, 5), is the oriented manifold obtained by (—1)-
surgery on the left handed trefoil in S®. Since the Alexander polynomial of the
trefoil is 71 — 1+ T, by the surgery formula in Proposition 3.1.2, A(3(2, 3,5)) =
-1
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3.2 The Casson-Gordon invariant

We are going to survey the Casson-Gordon version of Casson invariants. We follow
their original paper (Casson and Gordon, 1978) section 2. Let Y be a closed
oriented 3-manifold and ¢ : H;(M;Z) — Z,, an epimorphism. The invariant
associates to the pair (Y, @) a collection of rational numbers o,.(M, ¢), 0 < r < m.

Here are the construction.

By standard topology, the map ¢ induces a canonical m-fold cyclic covering ¥ —
Y. Now by (Casson and Gordon, 1978) Lemma 2.2 we can find X — X an m-fold
cyclic branched covering of 4-manifolds, branched over some surface F' C int(X),
such that (X — X) = (Y = Y). Moreover the rotation through 27 /m on each
fibre of the normal bundle of the branched surface F in int(X) corresponds to

the canonical covering translation of X.

Recall that there is an intersection form on Hg(f{ ;Z). This extends to a non-
singular Hermitian form (,) on H := Hy(X;Z) ® C. The covering translation of
X which rotates each fibre of the normal bundle of F' through 27/m induces an
automorphism 6 : H — H. The map 0 is an isometry of (H;(,)) and ™ = id.
Let w = €*™/™ and let E, be the w™-eigenspace of §, 0 < r < m. We have an
orthonormal decomposition of (H;(,)) as Eo @ E, @ - -+ @ Ep—;. We denote by
e-(X) the signature of the restriction of (,) to E,, and by sign(X) the signature
of X. Then for 0 < r < m, we define 0,(Y, ¢) as

2[F)?r(m —r)

Ur(Ya ¢) = sign(X) o er(X) - m?2

Using Novikov additivity and the G-signature theorem Casson and Gordon proved
that o, (Y, ) depends only on the rational number r and the cyclic cover ¥ — Y.

Therefore when Y has H,(Y;Z) = Z,,, we get an invariant of the 3-manifold Y
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by taking the sum

m?2

mior(Y ¢) = Z sign(X) — e, () — AL m 1)

[FPm? — 1)

= msign(X) — sign(X) — v

The Casson-Gordon invariant is then defined as follows.

Definition 3.2.1. (Casson and Gordon, 1978) The total Casson-Gordon invari-

ant of Y is the rational number

(P2~ 1)

7(Y) = m sign(X) — sign(X) — v

Now assume Y is a Z-homology sphere and K is a knot in Y. Let A be a Seifert
matrix for K and let £ be a complex number with || = 1. We define for each

integer m # 0 the number

§ : oK 2¢7r'r/m

where ok (€) is the signature of A.

Boyer and Lines found a surgery formula for the Casson-Gordon invariant which

involves o (K, m).

Proposition 3.2.2. (Boyer and Lines, 1990) Let K C Y be a knot in a Z-
homology sphere Y, then

7(Yp/q(K)) = 7(L(p, 9)) — (K, p)-

O

They also computed the invariant for the lens space L(p, q).
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Proposition 3.2.3. (Boyer and Lines, 1990) For a lens space L(p,q),

m(L(p,q)) = —4p - s(q, p).

Proof. See (Saveliev, 2002) or (Boyer and Lines, 1990). O

3.3 A preliminary result on the Casson invariant

The following result was proved by Boyer and Lines (Boyer and Lines, 1990). It
requires a non-vanishing condition on the second order derivative of the Alexander
polynomial Ag of the knot K. We reproduce another proof here for convenience

of the reader.

Proposition 3.3.1. Let K be a non-trivial knot in a 8-manifold Y with trivial
first homology and let M = Y \N(K). If A} (1) # 0, then there is no orientation

preserving homeomorphism between M(r) and M(r') if r # r'.

Proof. By simple homological reasoning we must have r = p/q and 7’ = p/q
where ¢ and ¢’ are two integers coprime to p. The surgery formula for Casson-

Walker invariant, Proposition 3.1.2, gives

MM(r)) = AY) + A(L(p, @) + %A';{(n

!
and  A(M()) = A(Y) + A(L(p,¢)) + 5 A1)
Now since Y has trivial first homology we have a well defined Casson-Gordon

invariant 7 and a surgery formula from Proposition 3.2.2

T(M(r)) = 7(L(p,q)) —o(K,p) and 7(M(r")) =7(L(p,q")) — o(K,p)

By Proposition 3.1.3 and Proposition 3.2.3 the two invariant A and 7 for the lens

space L(p,q) are related by the following formula

7(L(p,q)) = —4p - s(¢,p) = —2pA\(L(p, q)).
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Now if M(r) =, M(r'), then A(M(r)) = MM(r')) and T(M(r)) = 7(M(r")).

Thus by using the above formula we have the following identities:
7(L(p,9)) — o(K,p) =7(L(p,q)) — o(K, p)

7(L(p,q)) = 7(L(p,q')) and  A(L(p,q)) = AM(L(p,q')) since p # 0.

Therefore we have the equality

AY)+ LD, 0) + A1) = AMT) + ML) + %A}'{m

which implies
I = Lo ()
p P
Since A% (1) # 0 by assumption, we have ¢ = ¢’ and so r = r'. O

The proof of the proposition shows that we must have A(L(p, q)) = AML(p, ¢")) if
p/q and p/q’ are two cosmetic slopes. On the other hand for a lens space L(p, q),

NL(p,9) = ~55(a,p).

We can then deduce the following lemma which will be useful later.

Lemma 3.3.2. Let K be a non-trivial knot in a 3-manifold Y with trivial first
homology and let M =Y \ N(K). If there is an orientation preserving homeo-
morphism between M(p/q) and M(p/q') then s(q,p) = s(¢',p). O




CHAPTER IV

HEEGAARD FLOER HOMOLOGY

This chapter provides a brief expository account of Heegaard Floer theory with
emphasis on the necessary tools and results needed for the rest of the thesis. Hee-
gaard Floer homology was introduced by Peter Ozsvath and Zoltan Szab6 around
2000. The theory had a rapid development and has contributed to progresses
on various problems in low dimensional topology. We combine here material
from various sources, including the lectures notes (Ozsvéth and Szabéd, 2006b)
and (Ozsvéth and Szabd, 2006¢), and the original articles: for the three-manifold
version we refer to (Ozsvath and Szabé, 2006a), (Ozsvath and Szabé, 20044d),

(Ozsvéth and Szabé, 2004c), (Ozsvath and Szabd, 2005) and for the knot version
we refer to (Ozsvéth and Szabd, 2004b). We invite the reader to consult at these
papers for further details on the subject. From now on the notation CF*° (resp.
HF®) will denote collectively the chain complexes CF (AP O, Y e
the homologies ﬁ‘, HF*,HF~,HFT). The latter will be defined in this chap-

ter.

Through this chapter Y will denote a closed oriented 3-manifold and K will be a

null-homologous knot in Y.
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4.1 Three-manifold Heegaard Floer homologies

4.1.1 Heegaard diagrams, Whitney disks and Spin® structures

Heegaard Diagrams. A genus g Heegaard splitting of Y is a decomposition
of Y into the union of two oriented genus g handlebodies glued together along
their boundaries. It is a known fact that every closed oriented 3-manifold admits
a Heegaard splitting. To see this, take a self-indexing Morse function, f : Y — R
with one index zero and one index three critical points. The level set X, =
f~1(3/2) is an oriented closed connected surface with genus g equal to the number
of index 1 critical points. The decomposition ¥ = f~1([0,3/2]) U f~([3/2, 3])
then gives a Heegaard splitting of Y. Moreover the intersection of 3, with the
ascending manifolds of the index 1 critical points is a collection of simple closed
curves & = {ay,- -, 0y}, similarly the intersection of X with the descending
manifold of the index two critical points is a collection of simple closed curves
B = {B1, - ,By}. One can recover Y by attaching 2-handles to the oriented
manifold ¥ x [—1, 1] along these collections of curves and capping off the resulting
manifold with two 3-handles. Thus the data (X4, @, 8) completely determines ¥
and its orientation and is called a genus g Heegaard diagram of Y. Sometimes one
needs to add extra data in the form of one or more marked points to get what
is called a pointed Heegaard diagram (Z4, o, B,2) or a multi-pointed Heegaard
diagram (X,, @, B, 21, - , 2), where 2, 21, - - - , 2, are marked points on ¥ —a— .
Depending on the circumstance one can also have a Heegaard diagram with more
than two set of simple closed curves. If two Heegaard diagrams represent the

same 3-manifold then they differ by a finite sequence of the following moves:

e Isotopy. This moves the attaching circles in a 1-parameter family which
keeps the o’s transverse to the §’s and such that the o’s (resp. §’s) remain

disjoint among themselves.
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e Handleslide. Choose two curves y; and -y, among the same collection (« or

B). Replace 1 by a simple closed curve 4 such that

¢ 4 is disjoint from 71, vz, , g

o 4, 71 and 7y, bound an embedded pair of pants (i.e. a disk with two

holes) in

El=g ~l b saea il

e Stabilization. This is a connected sum with a torus and increases the genus
of the Heegaard diagram by one. It adds a new oa-type curve and a new

B-type curve. Destabilization is the inverse process of stabilization.

Two Heegaard diagrams are called equivalent if they are related by finite se-

quences of these modifications. For more details we refer to (Rolfsen, 2003).

If we have a Heegaard diagram with one or more base points, then we require
that the supports of the isotopies do not contain the base points and that during
handle-slide the base points must be outside the pair of pants region. We then
have the notion of pointed isotopy and pointed handle slide. With stabilization
these new moves also define an equivalence relation on the set of pointed Heegaard

diagrams.
We have the following fact, first proved by Singer in (Singer, 1933).

Theorem 4.1.1 ((Singer, 1933) Theorem 8). Two Heegaard diagrams are related
by a sequence of isotopies, handleslides, and (de)stabilization if and only if they

represent the same manifold up to diffeomorphism.

We note also that if (X, o, B) is a Heegaard diagram for Y then (-, 8, ) is an

Heegaard diagram for —Y, here the role of o and § has been interchanged.
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Whitney disks. Fix a pointed Heegaard diagram (X,q,f,2) for Y. We
associate to it a quadruple denoted by (Sym?(X), T,, Ts, V,) where:

e Sym?(X) is the g-fold symmetric product of £ (g = genus of X), that is the
quotient ¥*9/S, where the permutation group in g letters, S, , acts on X9
by permuting the coordinates. The quotient Sym?(X) is a smooth manifold
of real dimension 2¢g and has non-empty sets of symplectic structures and
compatible almost-complex structures. In particular a complex structure
on ¥ induces a complex structure on Sym9(¥) — A where A C Sym?(%)
is the image of the big-diagonal' in ¥*9. This complex structure can be

perturbed to give a complex structure on all Sym?(%).

e T, and Ty are totally real embedded submanifolds of Sym?(X) (for some

choice of almost-complex structure) defined by the attaching circles oy, - - - , g

a'ndﬁb"'aﬁg:
To =01 X -+ X ay, Tg=pB1 %+ x B,

Since the a, resp. 3, curves are pairwise disjoint, these submanifolds embed
in Sym? () via the natural projection. We can also assume that T, and Tp

intersect transversally.
e V, is a codimension 2 submanifold of Sym?(¥) defined by V, := {2} x

Sym?~!(Z). Since z € £ — a — B, V; is disjoint from T, and Tg.

Let D be the unit disk in the complex plane. Let S, S_ be the arcs in the
boundary of D corresponding to Im[z] > 0 and Im[2] < 0.

1The big diagonal is the subset {(z1,-+- ,%4)|F,j € {1,-- ,g},i#j and z; =z;}in
nxeg
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Definition 4.1.2. Let x,y € T, NTg. A Whitney disk connecting X toy is a
continuous map: u : D — Sym?E which sends —i to x, i to 'y, S, inside T,

and S_ inside Tg.

When g # 2 we denote 7y (X,y) the set of homotopy classes of Whitney disks
connecting x to y. For g = 2 we will define this notation later in this subsection.

The multiplicity of an element ¢ € m (x,y) at 2 is defined to be the integer :
n; (¢) = fu™ (DNV;)

where u is a smooth representative of ¢ chosen to be transverse to V,. Let
X,y € ToNTp and let a : [0,1] — T,, resp. b: [0,1] = T, be a path from x to
y in T, resp. in Tg. The difference a — b gives a loop in Sym?(%). On the other
hand we have the following isomorphism (Ozsvath and Szabd, 2004d)

Hy(Sym*(£);Z) Hi(;Z) N .
H (T Z) ® Hy(Tg;Z) (o, 5 o), Bilr > Bal) H\(Y;Z).

Let €(x,y) € Hi(Y;Z) denote the image of a — b under this isomorphism. The

homology class €(x,y) is independent of the choice of paths a and b. It follows
that if €(x,y) # 0 then m; (X,y) is empty. It is also obvious that € is additive:
e(x,y) + ey, z) = e(x, z).

For g=1, L = Sym?%E = S! x 8! and it is easy to visualize Whitney disks since
they are genuine maps of a disk into the torus. When g > 1 we need to introduce

the notion of domains.

Let Dy, --- , Dy be the closures of the connected components of ¥ —a; — -+ —

= ==,

Definition 4.1.3. A domain is a linear combination of the D;’s with integer

coefficients.




93

Definition 4.1.4. A domain D is said to be positive if all the coefficients are

> 0. We then write D > 0.

The set of all domains is then the free Abelian group generated by the set of all
D;’s. The boundary of a domain is a linear combination of arcs contained in the

o or (3 curves with integer coefficients.

Definition 4.1.5. A periodic domain is a domain P whose boundary is a sum

of a and B curves and whose n,(P) = 0.
Lemma 4.1.6. The set of periodic domains is a subgroup isomorphic to Hy (Y, Z).

Definition 4.1.7. The domain of a homotopy class ¢ of Whitney disk connecting

x to 'y is the formal linear combination

D(g)=2) n(4) D

i=1

where z; € D; are points in the interior of D;.

We can now define the notation m; (z,y) for genus 2 Heegaard diagram. When %
has genus 2, m (z,y) will stand for the set of homotopy classes of Whitney disks
connecting x to y modulo the relation ¢ ~ ¢s iff D (¢1) = D ().

Definition 4.1.8. Let x = {zy, -+, %} andy = {y1,- -+ , Yy} be points in To N
Tg. A domain connecting x to 'y is a domain D such that 0D consists of a or
curves and 2g arcs, g of which connect x; to yo(;y for some permutation o € S,
and g of which connect y; to zo(; for some other permutation o' € S;. We

denote D(x,y) the set of domains connecting x to'y.

Proposition 4.1.9. (Ozsvdth and Szabd, 2004d) When g > 1, the map ¢ —
D(4) gives a bijection between me(x,y) and D(x,y). For g = 1, the map is an

ingection.
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Counting elements of m2(x,y) is then equivalent to counting domains which do

not involve Sym?(X) in their definition.

Let x,y € T,NTpg and D = ) n;D; € D(x,y). Since the sum of the D;’s is a
generator for Hy(3; Z), the new domain > (n;+1)D; is also a domain connecting x
toy (we have “added ¥” to D). In general, for any j € Z the domain > (n;+7)D;
also connects x to y. For domains with the extra condition n,(D) = 0 we can no

longer add a copy of X.

When Hy(Y) = 0, these domains are the only domains connecting x to y. More-
over there is at most a unique domain if we require that n,(D) = 0. In general,
by Lemma 4.1.6, elements of Hy(Y') correspond to periodic domains. If D is a
domain connecting x and y and P is a periodic domain, then we can see from the
definition that D + P is also a domain connecting x to y. Since Y is a closed ori-
ented 3-manifold Hy(Y') is trivial or free Abelian. Therefore if Hy(Y') # 0, we have
infinitely many domains connecting x to y even with the condition n,(D) = 0.
Due to this particularity we will discuss separately the definition of HF°(Y") for
the case b;(Y) = 0 and b,(Y) > 0.

For ¢ € my(x,y) we define M (@) to be the set of (pseudo-)holomorphic repre-

sentatives of ¢ with respect to some generically chosen almost complex structure.

The group of holomorphic automorphisms of the unit disk is PSL (2, R), so the
subgroup preserving ¢ and —i is isomorphic to R. Therefore R acts on M (¢)
by re-parameterization of the unit disk. We denote by M (¢) the quotient of
M (¢) by this R action. Ozsvath-Szabé specify a set of almost-complex structures
that includes those induced by complex structures on ¥. They prove that, for
a dense subset of these almost complex structures, M (¢) is a smooth manifold

whose dimension, denoted p(¢), equals a certain index called the Maslov index



59

of ¢, which we will not define here. For more details above Maslov index we
refer the reader to (Robbin and Salamon, 1993). A result of Gromov says that
in every homotopy class ¢ of Maslov index 1 the set M (¢) is finite (compact
0-dimensional). We will omit the discussion about the genericity of complex

structures and Gromov’s result.

Spin® structures. We review here Spin® structures using (Turaev, 1997),

(Ozsvéth and Szabd, 2006b) and (Ozsvéth and Szabd, 2006c¢).

Recall that the group Spin®(n) is the central U(1) extension of SO(n):

1 — U(1) — Spin®(n) — SO(n) — 1.

Given an oriented manifold X equipped with a Riemannian metric, we have an
SO(n) principal bundle over X which is the bundle of oriented orthonormal frame.
We can then ask if we can lift this bundle to a principal Spin® bundle. This can
be done if and only if its second Stiefel-Whitney class w; is the mod 2 reduction
of an integral cohomology class, see (Milnor, 1963). This is the case if X has
dimension 3 or 4, see (Milnor, 1963).

Let go and g; be two Riemannian metrics on X which admit two Spin®-principal
bundle &, and &; which are lifts of their oriented orthonormal frame bundle. Then
the two triple (X, go, &) and (X, g1,&1) are said to be equivalent if one can find
a 1-parameter family of metrics (g¢)o<t<1 and a continuous 1-parameter family of

SpinC lift (£;)o<e<1 of the oriented orthonormal frame bundle of (X, g;).

Definition 4.1.10. A Spin® structure on an oriented manifold X is the equiv-
alence class of a Spin® lift of the oriented orthonormal frame bundle of X with

respect to some Riemannian metric.
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Since we are dealing with equivalence classes, a Spin® structure on X does not de-
pend on any particular metric, they are associated to the manifold itself. For the
special case of a closed oriented 3-manifold Y there is a more practical definition

of Spin® structure due to Turaev (Turaev, 1997).

Definition 4.1.11. Two nowhere-vanishing vector fields vy,v, on'Y are homol-
ogous if they are homotopic in the complement of a finite number of three-balls

mY.

Proposition 4.1.12. (Turaev, 1997) The set of Spin°® structures on'Y is in one

to one correspondence with the set of homology classes of vector fields on'Y.

Definition 4.1.13. If s is a Spin® structure on Y represented by a nowhere-
vanishing vector field v, its conjugate Spin® structure 5 is the one represented by

—Us

The fact that closed oriented 3-manifolds are parallelizable implies that Y always
admits a nowhere-vanishing vector field and so a Spin® structure. Moreover after
a choice of trivialization ¢ : TY = Y x R3, nowhere-vanishing vector fields on Y’
correspond to maps u : Y — R3\ {0}. Therefore homotopy classes of vector fields
are in one to one correspondence with homotopy classes of maps u : Y — S2, since
R3\ {0} has the homotopy type of S2. The homology class of a vector field in turn
is uniquely determined by the induced map u* : H2(S?%Z) — H%*(Y;Z). Indeed
let [w] € H%(Y;Z) be a generator, then we have a bijection & : Spin®(Y) —

H%*(Y;Z), [v] = [v*w] where we think of v as a map v :Y — S2

Proposition 4.1.14. (Ozsvdth and Szabd, 2004d) If 51,5, € Spin®(Y), then the
difference 6°(s1) — 6°(s2) € H?(Y;Z) is independent of the choice of the trivial-

ization <.
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From now on we will write §°(s;) — 6°(s3) as 51 — s2. From this proposition we
see that H?(Y;Z) acts freely and transitively on Spin®(Y). Thus Spin(Y) is an
affine space over H(Y'; Z).

Definition 4.1.15. The first Chern class of s € Spin®(Y) is the element of
H*(Y;Z) defined by c1(s) =5 —5 € HX(Y; Z).

If 5 is represented by a vector field v, then c¢;(s) is the first Chern class of the
orthogonal complement of v, thought of as an oriented real two-plane (hence

complex line) bundle over Y. We can see from the definition that ¢;(s) = —c¢;(5).

The choice of base point z € ¥ allows us to define a natural map s, : T, N Tg —
Spin®(Y) as follow. We are going to use Tuarev definition of Spin® structure
for 3-manifold, Proposition 4.1.12. Let f be a Morse function on Y compatible
with ay,--+ ,a4,B1, -+, B;. Each intersection point x € T, N Tp determines a
g-tuple of trajectories for V f, connecting the index one critical points to index
two critical points. The marked point z also determine a trajectory connecting
the index zero critical point to the index three critical point. When we delete
tubular neighborhoods of these g + 1 trajectories, we obtain the complement of
disjoint union of balls in Y. The gradient vector field V f does not vanish on this
complement (we have removed the critical points). Since each trajectory connects
critical points of different parities, the gradient vector field has index 0 on all the
boundary spheres. It can then be extended as a nowhere vanishing vector field
over Y. The homology class of the nowhere vanishing vector field obtained in this

manner gives a Spin® structure. We denote this element by s,.

Lemma 4.1.16. (Ozsvdth and Szabd, 2004d) Let x,y € To NTg. Then we have

s2(y) — s2(x) = PD[e(x, y)] (4.1)

In particular s,(y) = s,(x) if and only if m2(x,y) is non-empty.
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412  Definition of HF, HF*®, HF~, HF*+ and HF.eq

We first give the definition for the case of rational homology spheres.

Definition of ﬁ‘

Definition 4.1.17. Let Y be a closed oriented three-manifold with b,(Y) =
0. Choose a pointed Heegaard diagram (X4, o, B,2) for Y. Choose a complex
structure on ¥ and a suitable perturbation of the induced complex structure on
Sym?(X), we define the chain complex E’F(Y;a, B) to be the free Abelian group
freely generated by elements of T, N Tg and equipped with following differential:
JorxeT,NTs

Ox = ¥ M) - y.

{yeTanTﬂ’ ¢€1r2(x,y) I ﬂ((ﬁ):lv nl(¢)=0}

The transversal intersection of two compact half-dimensional submanifolds is a
finite number of points, so T, N Ty is finite. On the other hand the hypothesis
b1(Y) = 0 ensures that for any two generators x,y € T, NTp there exists at most

one ¢ € my(x,y) with n, = 0. Thus the sum in the definition is finite.

Theorem 4.1.18. (Ozsvdth and Szabo, 2004d) The differential of ﬁ(Y; a, B)
satisfies 9 2 = 0.

We define the hat version of the Heegaard Floer homology of Y to be EF‘(Y) =
ker 5/ imd.

By Lemma 4.1.16 if the Spin® structures s,(x) and s,(y) are distinct then the
y component of Ox vanishes. Therefore for each s € Spin®(Y), ﬁ(Y; o, B,8) =
Z{x € T, NTp | s,(x) = s} is a sub-complex of @(Y;a, B) with homology
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denoted by ﬁ‘(Y, 5). Thus we have the following splitting of CF as a direct sum
of sub-complexes
@(Y; a,f,s) = @ ﬁ(Y; a,f3,s).
s€Spin®(Y)

It follows that the homology also splits accordingly,

5€Spin¢(Y)

Theorem 4.1.19. (Ozsvdth and Szabd, 2004d) The chain homotopy type of ﬁ(Y, 5)
is independent of the choices of Heegaard diagram, complezx structure, and Rie-

mannian metric.

As a consequence of this theorem, the homology ﬁ’(Y, s) is a topological invari-

ant of Y for each Spin® structure s.

|
|
|
HF(Y,s)= @ HF(Y,s).
When b;(Y') = 0, we can equip each homology HF (Y, s) with a relative Z-grading.

Definition 4.1.20. Assume b1(Y) = 0 and let x,y € T, N Tp with e(x,y) = 0.
We define

gr(x,y) = u(4) — 2n,(4) (4.2)

where ¢ is any class in my(x,y).

From the discussion after Proposition 4.1.9, gr(x, y) is independent of the choice
of ¢ since by (Y) = 0. The differential 8 of CF only count disks ¢ with pu(d) =1
and n,(¢) = 0, so  lower the relative Z-grading by one. This relative grading
allows a definition of the Euler characteristic for each group ﬁ’(Y, 5) (up to an
overall sign). For the case of integer homology spheres the relative Z-grading
turn out to be an absolute Z-grading. In particular, for any Heegaard diagram of

S® the complex CF(S?) is absolutely Z-graded. The hat version of the Heegaard
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floer homology of S3 is isomorphic to Z and we choose it to be localized in degree

0, that is HFo(S%) & Z and HF(S%) = 0 for every k # 0.

The Euler characteristic of ]TIT‘(Y) determines the order of the first homology of

Y as given by the following lemma.

Lemma 4.1.21. (Ozsvdth and Szabd, 2004d) Let Y be a 8-manifold and let s €
Spin®(Y), then

Xx(HF(Y,s)) =
0 otherwise

Using the convention that |H,(Y'; Z)| = 0 whenever the manifold has H,(Y; Q) #
0, we get
X(HF(Y)) = £|H(Y;Z)].

As a consequence we always have
rankHF(Y) > |Hy(Y; Z)|.
Definition 4.1.22. A rational homology sphere Y is called an L-space if

rankHF(Y) = |H,(Y;Z)|.

L-spaces are Heegaard Floer analogues of lens-spaces. In particular every Lens
space L(p,q) with p # 0 is an L-space. They also includes double branched cover

of non-split alternating links.

Definition of HF*®, HF~ and HF*. In the definition of HF by requiring
n,(¢) = 0 for each ¢ appearing in the differential, we ensured that this differential

is finite. We can also ensure finiteness by introducing new formal generators, this
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leads to new variants of HF°. We count ¢ with different values of n,(¢) as

coefficients of different formal generators in the expression for 9x.

Definition 4.1.23. With the hypothesis of definition 4.1.17, we define the chain
complex CF*®(Y;a,5) to be the free Abelian group freely generated by formal
element of the form [x,i] where x € T, NTg and i € Z, and equipped with the
differential defined for each [x,1] by

0, = >, bM(@) - [y,i— na(9)].

{y€TaNTp, dcm2(xy) | p(é)=1}

As for I/{Z\T, 0% o0 0 = 0 and we have a splitting along Spin® structure, see

(Ozsvath and Szabd, 2004d):
HF*(Y,s)= P HF>(Y,s).
s€Spin®(Y)

Like for ﬁ’, we can define a relative Z-grading on HF'°,

Definition 4.1.24. Assume b1(Y) = 0 and let [x,17] and [y, j] be two generators
for CF>(Y; o, B) with e(x,y) = 0. We define

gr([x,]; [y, j]) = gr(x,y) + 2 — 2 (4.3)

where ¢ is any class in mo(z,y).

The differential 0° still decreases the degree by one. There is an obvious au-
tomorphism of CF, denoted by U , which sends the generator [x,i] to [x,7 —
1]. This automorphism decreases the relative homological grading by 2. Thus,
CF*(Y;a,pf) is naturally a module over Z[U,U™"] (where here U is a formal
variable acting on CF*(Y; @, 8) via the automorphism U).

Theorem 4.1.25. (Ozsvdth and Szabs, 2004d) For Y with b,(Y) = 0 and for
any Spin® structure s on'Y, HF®(Y,s) 2 Z[U, U] as Z[U, U~!]-module.
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Thus the homology of CF* does not distinguish Y. However quotients and

subcomplexes of CF®(Y; o, §) will give interesting homologies.

Definition 4.1.26. We assume the hypothesis of definition 4.1.17. Let s €
Spin“(Y),

o CF~(Y;a,pB,s) is defined to be the subcomplex of CF>(Y; a, 8,5) spanned

by the generators [x,4] with ¢ < 0. It is naturally a module over Z[U].

e CF*(Y;a,pB,s) is defined to be the quotient of CF>(Y; o, B,5) by the sub-
complez CF~(Y; o, B,8). It is naturally a module over Z[U, U] /U - Z[U].

The corresponding homologies of this complexes will be denoted HF~(Y,s) and
HF™*(Y,s) respectively. Summing over all Spin® structure will give HF~(Y’) and
HEY):

HF~(Y,5)= @ HF (V,s), and  HF'(Y,s)= P HF(Y,s).

5€8pin®(Y) 5€Spin®(Y)

We use the notation Z[U, U™*]/U -Z|U] to emphasize the fact that it has a natural
action of U. However elements of Z[U, U~1]|/U - Z[U] are also polynomials in U~*
so we can write Z[U, U~']/U - Z[U] as Z[U™].

Let i : CF~(Y;a,B,5) » CF*(Y;q,B,s) denotes the natural inclusion and let
7: CF*(Y;q,pB,5) = CF*(Y;a,B,s) denotes the projection onto the quotient.

From the definitions, we have a short exact sequence of chain complexes:

0 —— CF~(Y;a, B,5) —— CF®(Y;a, B,5) —— CF*(Y;a,8,5) — 0

This will induces a long exact sequence in homology which does not depend on

the choice of Heegaard diagram:
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Theorem 4.1.27. (Ozsvdth and Szabd, 2004d) There exists a long exact sequence

HF(Y,5) — HF®(Y,s) — HF*(Y,s)

whose isomorphism type depends only on'Y and s.

There is another exact sequence which connects HF and HF*. First note that
there is an embedding of complex j : CF(Y,s) = CF+(Y,s) defined by j(x) =
[x, 0] for each x € T, N Tp. Together with the automorphism U this will give a

short exact sequence of chain complexes:

0

GF(Y; 0, B,5) —— CF*(Y;0, B,8) —2 CFH(Y; 0, B,5) — 0

In turn this will induces a second long exact sequence in homology which does

not depend on the choice of Heegaard diagram:

Theorem 4.1.28. (Ozsvdth and Szabd, 2004d) There exists a long ezact sequence

HF(Y,s) 2 HF¥(Y,s) — HF*(Y,5)

whose isomorphism type depends only on'Y and s.

Because there are no absolute Z-gradings on the complexes, these two long exact
sequences are actually exact triangles. In other words, the map on the far right
of the sequence is the same as the map on the far left, and the sequence keeps

repeating in this manner.

From this long exact sequence we have a vanishing criterion for HF* in term of

—

HE,




64

Proposition 4.1.29. (Ozsvdth and Szabd, 2004d) Let (Y,s) be a closed oriented
3-manifold equipped with a Spin® structure. Then HF*(Y,s) = 0 if and only if
HF(Y,s) =0.

Proof. From the long exact sequence in Theorem 4.1.28, if HF*(Y,s) = 0 then
clearly HF(Y,s) vanishes. Conversely assume HF (Y, s) = 0 then we have an iso-
morphism U : HF*(Y,s) - HF*(Y,s). Let [z,i| € HF*(Y,s), then U*![z,i] =
0 by definition of U. But since U is an isomorphism on homology, we must have

[z,%] = 0. Thus HF*(Y,s) = 0. O

Definition of HF,q. The homology H F, is a finitely generated Z-module
variant of the Heegaard Floer homology. It is extracted from the homology HF™*
which is infinitely genérated over Z. For clarity let us denote the induced actions
of U on the subcomplex CF~ by U~ and the induced actions of U on the quotient
complex CF* by U™,

Lemma 4.1.30. (Ozsvdth and Szabd, 2004d) For k sufficiently large,
im(UM)* =im(r,), and ker(U')* = keri,.

Definition 4.1.31. For k sufficiently large, let

HF},(Y,s) = HF*(Y,s)/im(U%)*, and HF_(Y,s) =