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RÉSUMÉ 

Cette thèse étudie les chirurgies cosmétiques exceptionelles le long des noeuds 

hyperboliques dans une 3-variét é orientée. On utilise principalement l'homologie 

de Heegaard Floer , les invariants de Casson, les résultats sur les chirurgies excep­

tionelles puis les variét és de caractères dans P5L 2(C). ous y montrons certaines 

restrictions sur ces types de chirurgies. Pour les noeuds hyperboliques dans 53 on 

mont re que la pente d 'une t elle chirurgie doit être ±1 et que la variété obtenue 

est d 'un type précis. À partir de cela on montre qu 'il ne peut pas y avoir de 

chirurgie cosmétiques exceptionelles le long de certaines familles de noeuds dans 

53 . Pour les noeuds hyperboliques dans une sphère d 'homologie ent ière on donne 

une list e de résultats possibles. On prouve également que la 3-variété orien­

tée obtenue à partir d 'une chirurgie non-t rivial sur un noeud non-trivial dans la 

sphère de Poincaré ne peut pas lui être homéomorphe en préservant l'orientation, 

comme conséquence on donne une réponse au problème du complément orientée 

d 'un noeud dans ~(2, 3, 5). Pour le cas plus générale des sphères d 'homologie 

rationelles, on prouve que sous certaines conditions sur la variété des caractères 

dans P5L2 (C), le nombre de pentes pouvant produire une chirurgie cosmétique 

dont la variété obtenue est une "petite variété de Seifert" est au plus deux. 

Mots-clés: théorie des noeuds, 3-variét és, chirurgies de Dehn, noeuds hyper­

boliques. 



ABSTRACT 

This thesis studies cosmetic surgeries along hyperbolic knots in an oriented 3-

manifold. Restrictions on the type of surgeries obtained are proven. The tools 

used are Heegaard Floer theory, the different Casson invariants, and known re­

sult about exceptional surgeries and PSL2 (C)-character varieties. For hyperbolic 

knots in S 3 we prove that the slope of exceptional truly cosmetic surgeries must 

be ±1 and the manifold obtained is of a certain type. From this we deduce 

that there are no exceptional truly cosmetic surgeries along certain families of 

hyperbolic knots in S3
. For the case of integer homology spheres we give a list 

of possible output of such surgeries. We also prove that the oriented manifold 

obtained by a non-trivial surgery on a non-trivial knot in the Poincaré homology 

sphere cannot be orientation preserving homeomorphic to the Poincaré sphere. 

As a consequence we give an answer to the oriented knot complement problem in 

E(2, 3, 5). For the general case of a rational homology sphere, modulo constraints 

on its PSL2 (C)-character variety, we prove that the number of slopes which could 

produce small Seifert manifolds as cosmetic surgery is at most two. 

Keywords: Dehn surgery, Dehn filling , hyperbolic knots, 3-manifolds. 



INTRODUCTION 

The complement of a tubular neighbourhood of a knot in a closed oriented 3-

manifold is a 3-manifold with torus boundary. Gluing back a solid torus along 

this boundary gives a new oriented 3-manifold. This procedure, called Dehn 

surgery, named after M. Dehn, is a fondamental tool in constructing 3-manifolds. 

It had been introduced in 1910 by Dehn (Dehn, 1910) for knots in 83 and has since 

been generalized to knots and links in closed oriented 3-manifolds. The surgeries 

will be parameterized by slopes, which are isotopy classes of simple closed curves 

on the torus boundary of M. In the early 1960's A. Wallace (Wallace, 1960) and 

W.B.R Lickorish (Lickorish, 1962) have independently shown that every closed 

oriented 3-manifold can be obtained by surgery on some link in 8 3 . 

The goal of this thesis is to understand under which circumstances two distinct 

Dehn surgeries on the same knot in a closed oriented 3-manifold give rise to 

the same oriented 3-manifold. Here, by "the same" we mean the existence of 

an (orientation preserving) homeomorphism between them. Such surgeries are 

called ( truly ) cosmetic surgeries. For the trivial knot, it is known that there 

can be infinitely many distinct surgeries which give the same output. Thus we 

restrict ourselves to the case of non-trivial knots and the case when the knot 

complement is not homeomorphic to D 2 x 8 1 . Gordon and Luecke prove in 

(Gordon and Luecke, 1989) that on a non-t rivial knot in 8 3 , resp. 82 x 81, only 

the trivial surgery can give back 8 3
, resp. 8 2 x 8 1

. From this result follows the 

fact that knots in 83 and 8 2 x 8 1 are determined by their complements. By 

contrast Mathieu, in (Mathieu, 1992) , gives an infinite family of distinct Dehn 
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surgeries on a trefoil knot in 5 3 which give homeomorphic manifolds. Sorne re­

lated results concerning knot complements have also been proved by D. Matignon. 

In particular he shows in (Matignon, ) that the only non-hyperbolic knots in lens 

spaces ( excluding 5 3 and 5 2 x 5 1 ) which are not determined by their complement 

are the axes of L(p, q) when q2 ±1 modulo p. In (Matignon, 2010) he also 

gives an infinite family of pairs (M, K) , where M is a lens space and K c M 

is a hyperbolic knot , which produce a manifold homeomorphic to M by a non­

trivial Dehn surgery. Rong (Rong, 1993) classified knots in irreducible Seifert 

fibred 3-manifods, other than lens spaces, whose complements are Seifert fibred 

and which are not determined by their complements. In (Bleiler et al., 1999) 

Bleiler, Hodgson and Weeks described an oriented hyperbolic 3-manifold with 

toms boundary having two distinct Dehn fillings which give two oppositely ori­

ented copies of the lens space L( 49, 18) . Using a Casson-type invariant , Boyer 

and Lines (Boyer and Lines, 1990) showed that the non-vanishing of the second 

derivative of Alexander polynomial of the knot evaluated at 1 is an obstruction 

for having truly cosmetic surgeries. Recently, with help of Heegaard Floer theory 

and Casson invariant , new criteria for cosmetic surgeries on knots in 53 , and more 

generally knots in L-space homology spheres, have been established. Zhongtao 

Wu proved (Wu, 2011c) that if two rational surgeries on a non-trivial knot in an 

L-space homology sphere give orientation preserving homeomorphic manifolds, 

then the rational numbers must be of opposite sign. Yi Ni and Zhongtao Wu 

(Ni and Wu, 2013) gave a refinement of this result for knots in 5 3 . 

Let M be a compact irreducible 3-manifold with boundary a toms. From the 

work of W. Thurston (Thurston, 1982) we know that Mis either hyperbolic (i.e 

admits a complete fini te volume Riemannian metric in its interior), or contains 

an essential toms, or is atoroidal and Seifert fibred. We are concerned with 

the case where M is a knot complement in a closed oriented 3-manifold. As 
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discussed above, Matignon, Rong and Mathieu have various results related t o 

cosmetic surgeries on non-hyperbolic knots. As opposed to this approach, our 

main interest will be on hyperbolic knots in integer homology spheres and, in 

some cases, rational homology spheres. It is known (Thurston, 1979) that all 

but finitely many surgeries on such knots give hyperbolic manifolds. The finite 

except ions are called exceptional surgeries. Due to their more topological nature 

we will fo cus on these exceptional cosmetic surgeries. Thus our work will be a 

study of cosmetic surgeries among except ional surgeries on hyperbolic knots in 

integer homology spheres. 

Concerning except ional surgeries, work has been clone by various authors: 

(Culler et al. , 1987), (Gordon, 1998), (Gordon and Luecke, 1996) , (Lackenby, 1997) , 

(Boyer and Zhang, 1998), (Boyer and Zhang, 2001), (Boyer et al. , 2001) , (Wu, 1996) , 

(Wu, 2011a) , (Wu, 2011b), (Brittenham and Wu, 2001), (Gordon and Wu, 2008), 

(Ichihara and Masai, 2013). Our work will build on all of these established re­

sult s on the subject. One of the famous results in this area is the cyclic surgery 

t heorem (Culler et al. , 1987): "If M is an irreducible 3-manifold with incompress-

ible torus boundary which is not a Seifert fibred space, t hen there are at most 3 

slopes which can give a 3-manifold with cyclic fondamental group and t he dis­

tance between them is 1". Here t he distance between two slopes is their minimal 

geometric intersection number. A similar result was proven by Boyer and Zhang 

for finite surgeries (Boyer and Zhang, 2001): "Under t he same condit ions, the dis­

tance between two slopes which give a 3-manifold with finite fondamental group 

is at most 3". On the other hand Gordon and Luecke have worked on exceptional 

surgeries which produce toroidal manifold. In part icular pairs of toroidal slopes 

with distance greater or equal to 4 have been completely described by Gordon 

(Gordon, 1998) and Gordon-Wu (Gordon and Wu, 2008). We will be using all of 

t his to narrow clown t he possibility of having cosmetic except ional surgeries. 
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Together with these classical results and techniques we will be using Heegaard 

Floer theory. These are homology theories for 3-manifolds and knots introduced 

by Ozsvath and Szabô ( Ozsvath and Szabô, 2004d; Ozsvath and Szabô, 2004c; 

Ozsvath and Szabô, 2004b; Ozsvath and Szabô, 2006a; Ozsvath and Szabô, 2003a) 

and, independently, by Rasmussen for knots (Rasmussen, 2003). They are con­

structed as Lagrangian Floer theory for some special totally real submanifolds 

in a symplectic manifold which is naturally associated to an oriented 3-manifold 

or to an oriented knot. We will mainly use the correction term, the reduced 

Heegaard fioer homology H Fred and the renormalized Euler characteristic for the 

case of exceptional surgeries on knots. We will then give a very concrete charac­

terisation of truly cosmetic exceptional surgeries on hyperbolic knots in S 3 and a 

list of families of knots which do not admit such surgeries. For the more general 

case of knots in integer homology spheres we will give the list of possible types of 

manifolds obtained after truly cosmetic exceptional surgeries together with some 

restrictions on the slopes used. Using work of Rasmussen on Heegaard Floer 

theory we will also settle the oriented knot complement problem for the Poincaré 

sphere as consequence of a slightly more general result . We also study t he case 

when a surgery on ~(2, 3, 5) gives -~(2, 3, 5). 

Finally our last result will be about exceptional cosmetic surgeries on rational 

homology sphere which yield small Seifert manifolds. This will require a totally 

different approach since in this particular situation we will be using the theory 

of (P)SL2 (C)-character variety. This theory is about counting representation 

n1(M)--+ (P)SL2(C) of a 3-manifold group into (P)SL2(C) . It was pioneered by 

Culler and Shalen (Culler and Shalen, 1983), (Shalen, 2002) and was the source 

of some breakthroughs in t he study of the topology of 3-manifolds. We will study 

cosmetic surgeries via the Culler-Shalen semi-norm. 
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Summary of the main results We begin our exploration of cosmetic surgery with 

the case of hyperbolic knots in S 3
. Ni and Wu's result combined with the progress 

made on exceptional surgeries on S 3 help us to provide a new characterization of 

cosmetic surgeries on hyperbolic knots. 

Theorem A (H. Ravelomanana). Let K be a hyperbolic knot in S 3 , and r, r' E 

Qu {OO} two distinct exceptional slopes on oN ( K). Ifs K ( r) is homeomorphic ta 

Sx(r') as oriented manifolds, then the surgery must be toroidal and non-Seifert 

fibred. Moreover{r, r'} = {+1 , -1} . 

As a consequence of this we establish that certain families of hyperbolic knot in S 3 

do not admit exceptional cosmetic surgery. This is done with support of the work 

done by Némethi (Némethi, 2007) , Ichihara and Masai (Ichihara and Masai, 2013). 

Corollary 5.3.3 (H. Ravelomanana). There are no exceptional truly cosmetic 

surgeries on an alternating hyperbolic knot in S 3 . 

Corollary 5.3.5 (H. Ravelomanana). There are no exceptional truly cosmetic 

surgeries on arborescent knots in S 3 . 

Next we go into the slightly more general world of knots in integer homology 

spheres. In this part we use a combination of results on exceptional surgeries, 

Heegaard Floer theory, PSL2 (C) character varieties, and some elementary topol­

ogy to give a description of what could be an exceptional cosmetic surgery. 

Proposition 6.1.7 (H. Ravelomanana). Let Y be a Z -homology sphere, K c Y 

a hyperbolic knot and M =Y \ N(K). Assume we use a preferred basis {µ, ÀM} 

for 7r1 ( 8M) . Let r = p/ q and r' = p/ q' be exceptional slopes such that 0 < p 

and q < q'. If M(r) is homeomorphic ta M(r') as oriented manifolds, then the 

surgery gives either 
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(a) a reducible manifold in which case p = 1 and q' = q + 1, 

(b) a toroidal Seifert fibred manifold in which case p = 1 and q' = q + 1, 

(c) an atoroidal small Seif ert manifold with infinite fundam ental group in which 

case we have the following possibilities 

• p = 1 and Jq - q'I ::; 8. 

• p = 5, q' = q + 1 and q = 2 [mod 5] . 

• p = 2, and q' = q + 2 or q' = q + 4. 

( d) a toroidal irreducible non-Seifert fibred manifold in which case p = 1 and 

Jq' - qJ ::; 3. 

As spin off of this, we give a part icular attention to the Poincaré homology sphere. 

We obtain that ~(2 , 3, 5) cannot be obtained, as an oriented manifold, by a non­

trivial surgery along a non-trivial knot in ~(2 , 3, 5) . Therefore we can answer t he 

oriented knot complement problem for the Poincaré sphere. 

Theorem 6. 2.1 (H. Ravelomanana). Let K be a non-trivial knot in ~(2, 3, 5) 

and let r E Q . The result of an r -surgery along K is never orientation preserving 

homeomorphic to ~(2, 3, 5). 

T heorem 6. 2.3 (H. Ravelomanana). Non-trivial knots in ~(2 , 3, 5) are deter­

mined by their oriented complements. 

Theorem 6.2.1 generalises to L-space Z-homology spheres. 

Theorem 6 .2.2 (H. Ravelomanana) . Let K be a non-trivial knot in an oriented 

L-space Z -homology sphere Y and let r E Q. The result of an r -surgery along K 

is never orientation-preserving homeomorphic to Y . 
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For the case when a surgery on .E(2, 3, 5) gives -.E(2, 3, 5) we have the following 

result. 

Theorem 6.2.7 (H. Ravelomanana) . Let K be a non-trivial knot in .E(2, 3, 5) . 

If K admits a non-trivial surgery which gives -.E(2, 3, 5) then the surgery slope 

is 1/ 2 and the result of+ 1-surgery along K is an L-space which admits a tight 

contact structure. 

Finally we use the theory of Culler-Shalen seminorms to give a bound on the num­

ber of small Seifert cosmetic surgeries on hyperbolic knots in a rational homology 

sphere Y. This bound is obtained modulo some hypothesis on the PSL2 (C)­

character variety of Y . Here C (a) will denote the set of slopes cosmetic to the 

given slope a . 

Theorem B (H. Ravelomanana). Let Y be a rational homology sphere. Assume 

that 

Hom ( 7r1 (Y), P S L2 ( C)) contains only diagonalisable representations, no side of 

the PSL2(C) -Culler-Shalen ball of M is parallel to ÀM, and a is small-Seifert. 

Then C(a) ::; 2. 

Structure of the t hesis This thesis is organized as follows. 

Chapter 1. We survey exceptional surgeries, cosmetic surgeries and give the 

necessary topological background for the subject. 

Chapter 2. We briefl.y review some known results on toroïdal surgeries and 

prove some useful lemmas in the subject. 

Chapter 3. We review the theory of the Casson invariant and its variants. We 

also prove a result of Boyer and Lines that there are no cosmetic surgeries along 
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a knot whose Alexander polynomial has the property that its second derivative 

evaluated at 1 does not vanish. This is a fact that we will be using later. 

Chapter 4 . We give a survey on Heegaard Floer theory focusing on the defini­

tions and the principal results we will need later. 

Chapter 5. We discuss the case of exceptional cosmetic surgeries on hyperbolic 

knots in S3
. We review some more specialized material and results from Heegaard 

Floer theory. We give a proof of Theorem A together with some corollaries . From 

this we deduce a list of families of knots in S 3 which do not admit exceptional 

t ruly cosmetic surgeries. 

Chapter 6. We study the more general case of exceptional cosmetic surgeries 

on integer homology spheres. We establish a proposition which characterizes 

such surgeries according to the "geometric type" of the output and list all the 

possible slopes. The last section of the chapter is devoted to the oriented knot 

complement problem for E(2, 3, 5) and to the case when a surgery on E(2, 3, 5) 

gives -E(2, 3, 5). 

Chapter 7. Finally in Chapter 7 we use the theory of (P)SL 2 (C)-character 

varieties to study exceptional cosmetic surgeries on a rational homology sphere 

which produce small Seifert fibred manifolds. 
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Figure 0.1 Thesis fiow chart . 



CHAPTER I 

BACKGROUND 0 COSMETIC SURGERIES 

1.1 Dehn surgery 

ln this chapt er we fix some notations and conventions and we briefiy outline the 

necessary background on Dehn surgery1 exceptional surgery and cosmetic surgery. 

We also give a quick survey on the state of the exceptional surgery problem and 

the cosmetic surgery conjecture. At the end we give some preliminary lemmas. 

In what follows, all manifolds will be orientable. We will be precise when a choice 

of orientation matters. If M is an oriented manifold, we will denote by - M t he 

same topological manifold but with the opposite orientation. Let M1 and M2 be 

two oriented manifolds, we will use the following notations: 

M1 ~ M2 means that the two manifolds are homeomorphic , 

M1 ~ + M2 means that t here is an homeomorphism which preserve orientations, 

M1 ~ - M2 means that there is an homeomorphism which reverse orientations. 

Let us begin with some definitions. 

Definition 1.1.1. A slope on 3 1 x S1 is a primitive element of H1(31 x 3 1
; Z) / { ±1} 

representing the isotopy class of a simple closed curve on 3 1 x 3 1 . 
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Let M be a compact , connected, oriented 3-manifold and let Tc 8M be a torus. 

Definition 1.1.2. A Dehn filling of M along T is a manifold M(f , T ) obtained 

by filling T with a solid torus via a diffeomerphism f : f) (51 x D 2 ) ---+ T , 

i.e M(f, T) := (S1 x D2
) Ut M . 

We also refer t o the process of constructing M(f, T ) as doing a Dehn filling on M 

along T . The const ruction of M(J, T ) can be done in two steps. The solid t orus 

5 1 x D2 in M(J, T) is the union of two components, a closed regular neighbour­

hood A of the disk { *} x D2 and the closure 5 1 x D 2 \ A of t he complement of A. 

We first attach A to M via f, this process is a 2-handle attachment along a tubu­

lar neighbourhood off ( { *} x 8D2
). Such an attachment is uniquely determined 

by the isotopy class in T of the attaching 1-sphere that is f ( { *} x 8D 2 ) . The 

second st age is to obtain M(J, T ) by attaching the 3-ball B to A U M along its 

2-sphere boundary. Since any homeomorphism of the 2-sphere extends over t he 3-

ball, the manifold M(J, T) is completely determined by the 2-handle att achment 

AUM. 

Therefore M(J, T ) is uniquely det ermined by the T isotopy classa off ( { *} x 8D2
) , 

that is, by the slope a on T determined by f ( { *} x 8D2 ). The curve 5 1 x 

{O} C 5 1 x D2 C M(J, T) is called t he core of the Dehn filling. We will write 

M(a, T) := M(f, T) and, if the boundary component T is clear from the context, 

we will simply use the notation M(a ) for M(J, T) . 

Given a set of torus boundary components T1 , · · · , Tk C 8M, and slopes a 1, · · · , a k 

on each component Ti, i = 1, · · · , k ; we can do Dehn filling along each ~ to get 

a new manifold M(a 1 , · · · , ak)· 

Let K be a knot in a connected oriented 3-manifold Y. We denote N ( K) a 

regular neighbourhood of K and YK := Y \ N (K ). 
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Definition 1.1.3. A Dehn surgery of slope a on K is the oriented 3-manifold 

YK (a) obtained by do ing a Dehn filling of Yx along 8N (K ) with slope a . 

The manifold YK (a) inherits a preferred orientation from t he orientation of Y. 

Indeed , t he orientation on Y induces an orientation on YK. Choose the orientation 

of the filling solid torus 5 1 x D2 so that t he orientation on f ( 8 ( 5 1 x D2 )) is the 

opposite of the orientation on 8Yx. Then, after gluing, we get an orientation of 

the whole manifold YK(a) = 5 1 x D 2 Ua YK. Therefore a Dehn surgery gives an 

oriented manifold. 

A Dehn surgery along a link L c Y is defined in similar fashion. 

Meridian and longitude. The knot K determines a distinguished slope µ 

called the m eridian of K , up t o orientation. It is the class of an essent ial simple 

closed curve on 8N(K ) which bounds a disk in N (K ). A simple closed curve 

which represents a meridian is called a m eridian curve. The trivial Dehn surgery 

along K is t he Dehn surgery on K with slope µ. 

If 'Y is a slope which can be represented by a simple closed curve which inter­

sects t ransversally a meridian curve once, then the pair {µ ,'Y} forms a basis of 

H 1(8N( K ); Z) and / is called a longitude for K. Such choice of basis gives a 

correspondence: 

{Slopes on fJM} / {± } ~ Ql U { oo} 

a =pµ+q'Y ~ 'f!. 
q 

In this case we can represent a slope a as an integer point in t he ffi.2 plane or an 

element of Ql U { oo} with the convent ion that 1/ 0 = oo represents the meridian. 

This correspondence is not canonical in general because it depends on t he choice 

of longitude. Since two longitudes differ by an integer multiple of the meridian µ , 
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the choice is infinite. However if the knot K is null-homologous, for instance if Y 

is an integer homology 3-sphere, then K bounds a Seifert surface F and the curve 

F n 8N(K) is an essential simple closed curve which intersect a meridian curve 

transversally and exactly once. The isotopy class of this curve does not depend on 

the choice of Seifert surface F. Therefore we have a canonical longitude, denoted 

ÀK , and the correspondence above becomes canonical. 

Rational longitude. Let K be a knot in a rational homology 3-sphere Y . In 

this situation there is also a canonical longit ude ÀM called the rational longitude. 

Indeed the knot K has fini te order in H 1 (Y, Z) so there is an integer n and a 

surface I; c Y such that nK = ar; . The intersection of r; with 8N(K) is n­

parallel copies of a curve ÀM· The isotopy class in 8N(K) of this curve does not 

depend on the choice of the surface I;. We call the slope À M the rational longitude 

of K. In terms of homology, ÀM is the unique slope on 8M with the property 

that the image of ÀM in H1(M; Z) by the morphism induced by the inclusion 

o(Y \ K) ---+ Y \ K is of finite order. For more details on the homological point 

of view see (Watson, 2009) . 

Distance between two slopes. The distance, denoted 6(a, ;3 ), between two 

slopes a and ;3 on T is their minimal geometric intersection number. That is 

6 ( a, ;3) = min { ~C1 n C2 : C1, C2 simple closed curve representing a 

and ;3 respectively } 

The distance has the following straightforward properties: 

• 6 (a, ;3) =la· ;31. 

• 6(a, ;3) = 0 iff a= ;3 . 
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• !J.(a,(3) = 1 iff {a,(3} forma basis of H1(8M;Z). 

• If we fix a basis {µ , À} of H 1 (T; Z), then for a = pµ + qÀ and (3 = p' µ + q' À 

tJ.(a , !3) = lpq' - qp'I· 

When M is a compact, connected orientable 3-manifold with torus boundary 

there is a formula relating the order of the first homology of the filled manifold 

to the distance of the filling slope from the rational longitude. 

Lemma 1.1.4. (Watson, 2009) Let a be a slope on éJM . There is a constant cM 

such that 

If we denote i éJM --t M the natural inclusion then the constant cM is the 

quantity 

where ord(i*ÀM) is the order of i*ÀM in the homology of M. 

Surgery on a link. Assume that Y is an integer homology sphere. Let 

L = K 1 U· · · UKm be a link in Y. Each component of Lhasa canonical longitude, 

therefore every surgery on L can be described by an m-tuple (pi/ q1 , · · · , Pm/ qm) 

of elements in QU { oo }. By a framed link we mean the data of the link L with 

such an m-tuple. The m-tuple itself will be called the framing of the link. A 

framed link will be denoted by calligraphie letter, like L . We will write Y(I,) for 

the result of a Dehn surgery on a framed link L . The framing matrix of a framed 

link [, in Y is the matrix F([,) defined by 
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where lk(, ) denotes the linking number. The framing matrix gives a presentation 

for H1(Y(L) , Z), in particular 

ldet (F(L ))I = IH1(Y(L ); Z)I. 

For the case of a 2-component link, the framing matrix has the form 

For more details we refer to (Saveliev, 2002). 

Lens spaces. We shall fix here the convention for lens spaces. Let p-=!= 0 and 

q be two coprime integers. The "lens space" L(p, q) is the oriented 3-manifold 

obtained by gluing two solid tori Vi and V2 via a homeomorphism f : 8Vi ---+ 8V2 

which takes a meridian m on 8Vi to a torus knot (p, q) on 8V2 . In particular 

L(p, q) is obtained by (p/q)-surgery along the unknot in S3 . A knot in a lens 

space is said to be an "axis", if its complement is homeomorphic to a solid torus. 

For instance the cores of the solid tori Vi and Vi are axes in L(p, q). Indeed, up 

to isotopy there are at most two axes in L(p, q). Recall that L(p, q) ~ +L(p, q' ) 

if and only if q = q1±1 [mod p]. 

Seifert fibred spaces . Let p , q be two coprime integers where p ~ 1, and let 

D2 = {z E C 1 lzl :::; 1} be the unit disk in C. Let e be the rotation e : D2 ---+ D2 

defined by B(z) = e2inq/p z . The "fibred solid torus of type (p , q)'', denoted by 

v (p,q), is the quotient space 

v; _ D 2 x [0 , 1] 
(p,q) - (z, 1) rv (B(z), 0) 

endowed with the (smooth) foliation by circles (called fibres) induced from the 

[ü, 1]-factor in D 2 x [ü, 1] . 
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Topologically each v(p,q) is homeomorphic to the solid torus D2 
X S1 ' however 

different pairs of integers may give distinct circle-fibration structures. ln general 

there is a fibre preserving homeomorphism between V(p ,q) and V(p1,q1) if and only 

if p = p' and q' = ±q [mod p]. The integer pis called the index of V(p,q) · 

Definition 1.1.5. • A Seifert structure or Seifert fibration on an oriented 

3-manifold M is a smooth foliation of M by circles (called fibres) such that 

each each fibre </> has a closed tubular neighbourhood, consisting entirely of 

fibres, which is fibre-preserving homeomorphic to some fibred solid torus 

V(p ,q) . The index p 2:: 1 of this fibred solid torus is called the index of </> . 

• A fibre </> of index p is called an exceptional fibre if p > 1, and a regular 

fibre otherwise. We say that an exceptional fibre is of type (p, q) if it has a 

tubular neighbourhood which is fibre-preserving homeomorphic to V(p ,q) . 

• A 3-manifold M is called Seifert fibred if there exists a Seifert structure on 

M . 

• Two Seifert fibrations on M are said to be equivalent or isomorphic if there 

exists a fibre preserving diffeomorphism between the two. 

In V (p ,q) all fibres are regular except the core fibre </>0 = ( {O} x [O , 1]) / ((0 , 0) = 

(0 , 1)) which has index p. Assume Mis compact , it follows that exceptional fibres 

are isolated and lie in the interior of M. The boundary éJM is foliated by regular 

fibres and so it consists of a collection of tori . 

The orbit space B of a Seifert fibred space M is the space of leaves of the given 

foliation. It can be given the structure of a compact 2-orbifold whose boundary 

consists of the fibres lying on éJM. The cone points of the 2-orbifold B corre­

spond to singular fibres and have index equal to the index of the corresponding 
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fibres in M. The geometry of the 2-orbifold B is determined by its topologi­

cal surface type B and the indices p1 , p2 , · · · , Pn of its cone points. We denote 

B = B(p1 ,P2, · · · ,Pn)· 

The manifold M equipped with a Seifert fibration with base 2-orbifold of genus 

±g (here -g indicates that B is non-orientable of genus g) and b boundary com­

ponents, and with n singular fibres of type (p1, q1), (P2, q2), · · · , (Pn, qn) will be 

denoted by 

M(±g, b; (P1, q1), (P2, q2) , · · · , (Pn, qn)) . 

If Mis closed we just use the notation M(±g; (p1, q1) , (p2, q2), · · · , (Pn , qn)). The 

collection (±g, b; (P1, q1), (P2, q2), · · · , (Pn, qn)) is called the unnormalized Seifert 

invariant. Reversing the orientation of M has the effect of changing the invariant 

( ±g, b; (P1, q1), (p2, q2) , · · · , (Pn , qn)) to ( ±g, b; (P1 , -q1), (p2, -q2) , · · · , (Pn , -qn)) · 

Theorem 1.1.6. (Neumann and Raymond, 1918). Let M and M' be two closed 

Seifert manifolds with associated Seifert invariants M(g; (p1 , q1) , · · · , (p8 , q8 )) and 

M(g'; (p~, qD, · · · , (p~, q~)) respectively. Then M and M' are orientation preserv­

ing homeomorphic by a fibre preserving homeomorphism if and only if, after rein­

dexing the Seifert invariants if necessary, there exists an integer k such that 

• Pi = p~ for i = 1, · · · , k and Pi = pj for i, j > k. 

• qi = q~ [mod Pi] for i = 1,- · · , k. 

According to the theorem, the rational number e(M) := - L:=l qif pi is an in­

variant of the Seifert structure. It is called the Euler number of M. It has the 

property that 

e(-M) = - e(M). 



18 

Using the last theorem, with the appropriate orientation, the Seifert invariant 

of Seifert fibration has the following unique normal form up to permutation of 

indices 

We can also replace (1, q0 ) by the Euler number e(M) to get the invariant 

For most Seifert manifolds the Seifert structure is "unique". Indeed, if M is a com­

pact 3-manifold with infinite fondamental group and is distinct from 5 2 x 5 1 , 5 1 x 

D2 , 5 1 x 5 1 x [O , 1] , and the twisted interval bundle over the Klein bottle, then t he 

Seifert structure on Mis unique up to isotopy, see (Neumann and Raymond, 1978) 

for details. 

In terms of fondamental group, by thinking of a Seifert fibred space M as a 

circle bundle with base space the 2-orbifold B, we have the following short exact 

sequence 

where nr'"b(B) is the orbifold fondamental group of B, (</>) is a cyclic group gen­

erated by a regular fibre. 

Finally, a particular type of Seifert manifold will be of interest to us. It is t he class 

of small Seifert manifolds. They are the Seifert manifolds which are fibred solid 

tori or which admit the structure of a Seifert fibred space whose base 2-orbifold 

is the 2-sphere with at most t hree cone points. They are all irreducible except 

for 5 1 x 5 2
. If not stated otherwise, we will always assume that a given Seifert 

manifold is distinct from 5 1 x 5 2 . 
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When the base 2-orbifold is the 2-sphere with at most 2 cone points, then the 

manifold is topologically the union of two solid tori, so it is either a lens space 

or 5 1 x 5 2
. When a closed small Seifert fibred space Y has base 2-orbifold 5 2 

with exactly three exceptional fibres, then Y contains an essential surface (see 

Definition 1. 2.1 below) if and only if H1 (Y) is infini te. 

1. 2 Exceptional fillings 

A compact, connected orientable 3-manifold M will be called irreducible if every 

properly embedded 2-sphere in M bounds a 3-ball. Otherwise M will be called 

reducible. It will be called boundary irreducible if every simple closed curve on aM 

which bounds a disk in M bounds a disk in aM, and otherwise boundary reducible. 

All embedded surfaces in a 3-manifold we will be considering will be bicollared if 

not stated otherwise. From now on we will use the following definition. 

Definition 1.2.1. A properly embedded non-empty surface F in a compact, ori­

entable 3-manifold M is said to be essential if it is a 2-sphere which does not 

bound a 3-ball or if it has the following three properties: 

1. F has no 2-sphere components, 

2. the inclusion morphism K 1 (Fi) -t 7r1 (M) is injective for every component 

Fi of F , 

3. no component of F is parallel into a M. 1 

Let F C M be a properly embedded surface with boundary and T be a torus 

component of aM. Each component of aF n T is a simple closed curve on T 

1 A component of F is parallel into M if there is an isotopy of this component onto a 

boundary component of M. 
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and they all determine the same slope. A slope r on T is called boundary slope 

if it is the slope of a boundary component of an essential surface in M . If the 

corresponding surface is a punctured torus then the slope will also be called a 

toroidal slope. 

If all the components of éJM are tori or éJM is empty, M is said to be hyperbolic 

if its interior admits a complete finite volume Riemannian metric of constant 

sectional curvature -1. Recall that if M is hyperbolic then it is irreducible, 

boundary irreducible, contains no essential tori or annuli and is not a Seifert fibred 

manifold. Thurston 's hyperbolization theorem implies that the last statement is 

an equivalence. A hyperbolic structure on M is unique up to isometry by the 

Mostow-Prasad rigidity theorem. 

Fix M a hyperbolic 3-manifold with éJM a union of tori. In this section we 

will discuss the notion of Dehn filling of M . Let T be a component of éJM. By 

studying metric completions of incomplete "hyperbolic" 3-manifolds, W. Thurston 

discovered that, except for a finite number of slopes, all the Dehn fillings of M 

along T give hyperbolic manifolds. 

Theorem 1.2.2. (Thurston, 1979) Let M be a compact connected oriented 3-

manifold with boundary a union of tori. Let T be a component of éJM . If int(M) 

admits a complete finite volume hyperbolic structure, for all but finitely many 

slopes a on T , M(a) is hyperbolic and the core of the Dehnfilling is isotopie to 

the unique shortest geodesic in this manifold. 

Let's consider the set E(M, T) of non-hyperbolic slope on T. A slope in E(M, T) 

is called an exceptional slope. By the above theorem it is a finite set, and one 

goal of Dehn filling theory is to understand this set of slopes. One of the main 

"techniques" in t his study is to find a bound on the distance ,ô. ( r, s) between two 

exceptional slopes r and s. 



21 

Theorem 1.2.3. (Lackenby and Meyerhoff, 2013) Let M be a compact orientable 

3-manifold with boundary a torus, and with interior admitting a complete finite­

volume hyperbolic structure. If r and s are exceptional slopes on 8M, then their 

intersection number ~(r, s) is at most 8. 

This bounds is achieved by the figure-8 exterior, indeed 

E(figure-8) = { oo, 0, ±1, ±2, ±3, ±4}. 

It has been conjectured by Gordon that the distance of two exceptional slopes is 

less than 5 for almost all hyperbolic 3-manifold with torus boundary. 

Conjecture 1.2.4. Let M be an hyperbolic 3-manifold with boundary a torus. If 

a and f3 are two exceptional slopes on 8M, then ~(a, /3 ) ::; 5 unless M is one of 

W(l), W(2), W(-5/ 2) , or W( - 5) , see Figure 1.1 . 

Figure 1.1 W(l) , W(2), W(-5/ 2) , W (-5) 

The conjecture is known to be true if the two slopes are both toroïdal. This is 

the work of Gordon in (Gordon, 1998). We will give a survey on toroïdal surgery 

in chapter 2. 

For non-toroïdal exceptional surgeries there are three principal results. 

Theorem 1.2.5 (Cyclic surgery theorem, (Culler et al. , 1987)). Let M be a com­

pact, oriented, irreducible 3-manifold which is not a Seifert fibred space. Assume 
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that 8M is a torus and let r,s be two slopes on 8M. Jf 7r1 (M(r)) and 7r1 (M(s)) 

are cyclic, then fl(r,s)::; 1. 

Theorem 1.2.6 (Finite surgery theorem, (Boyer and Zhang, 2001)) . Let M be 

a compact orientable hyperbolic 3-manifold with torus boundary. If r, s are two 

slopes on 8M such that 7r1(M(r)) and 7r1 (M(s)) are finit e, then fl (r, s) ::; 3. 

Theo rem 1.2. 7. (Gordon and Luecke, 1996) Let M be a compact orientable ir­

reducible 3-manifold with torus boundary. If r, s are two slopes on 8M such that 

M(r) and M(s) are both reducible, then 6 (r,s)::; 1. 

We summarize all the results about the bounds on 6 (r, s) for r, s E E(M) in 

table 1.1. We call a slope r E E(M): 

• reducible, if M(r) is reducible, 

• toroidal, if M ( r) contains an essential torus, 

• cyclic, if 7r1M(r) is cyclic, finit e, if 7r1M(r) is finite but not cyclic, 

• small Seifert, if M(r) is a small seifert manifold. 

reducible cyclic fini t e toroidal small Seifert 

reducible 1 1 1 3 4 

cyclic 1 2 8 8 

fini te 3 8 8 

toroidal 8 8 

small Seifert 8 

Table 1.1 Distance table. 
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1.3 Cosmetic surgeries 

Cosmetic surgery addresses the question: when do two surgeries along the same 

knot , but with distinct slopes, produce the same manifold? Such a situation 

does happen, but observations suggest that for generic knots and 3-manifolds 

this should be very rare. 

Definition 1.3.1. Two Dehn fillings M(a) and M( /3), where a =f=. /3, are called 

cosmetic if there is a homeomorphism h : M (a) --+ M (/3). They are called truly 

cosmetic if h can be chosen to be orientation-preserving. We also call two Dehn 

surgeries cosmetic (resp . truly cosmetic) if the corresponding Dehn fillings are 

cosmetic (resp. truly cosmetic) . 

Example 1.3.2. Here are some examples of cosmetic fillings for two distinct 

slopes. 

• If K is an amphicheiral knot in S3 and M = S 3 \ N(K) , then M(a) is 

orientation reversing homeomorphic to M(-a). 

• It was shown by Mathieu (Mathieu, 1992) that if M is the complement 

of the trefoil knot in S 3 then we have an infinite family of pairs of dis­

tinct slopes which give homeomorphic manifolds. Precisely, for any positive 

integer k, 

M (18k+9) ~ -M (18k+9) . 
3k + 1 3k + 2 

These Dehn filling manifolds are Seifert fibred with normalized Seifert in-

variants 

(O; k - 3/2; (2, 1), (3, 1) , (3, 2)). Such manifolds do not admit orientation­

reversing homeomorphisms. Therefore the fillings are not truly cosmetic. 
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• If M is t he complement of the unknot in 5 3
, M is a solid torus, then the 

Dehn filling manifolds are lens spaces and 

for pairs of relatively prime integers (p, q1) and (p, q2 ). 

For the first and the third examples one can find a homeomorphism of M which 

takes one slope to t he other. In general we define the following equivalence for 

slopes. 

Definition 1.3.3. Let M be a compact connected oriented 3-manifold with torus 

boundary. Two slopes on âM are called equivalent if there exists an orientation­

preserving homeomorphism of M which takes one to the other. 

The following conjecture is Conjecture (A) in problem 1.81 of the Kirby list of 

problems in low-dimensional topology (Kirby, 1997). 

Conjecture 1.3.4 (Cosmetic surgery conjecture). Let M be a compact con­

nected oriented irreducible 3-manifold with torus boundary and which is not a 

solid torus . Let a and f3 be two inequivalent slopes on âM. If M(a) ~ M( /3), 

then the homeomorphism is orientation-reversing. Equivalently, two surgeries on 

inequivalent slopes are never truly cosmetic . 

Gordon and Luecke (Gordon and Luecke, 1989) have proved the first major result 

toward the resolution of the conjecture. 

Theorem 1.3.5. (Gordon and Luecke, 1989) There is no non-trivial surgery on 

a non-trivial knot in 5 3 or 5 2 x 5 1 which gives back 5 3 or 5 2 x 51 . 

For the case where b1 (Y) > 0 and the core of the Dehn filling is homotopically 

trivial in Y the following result was proved by Lackenby. 
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Theorem 1.3 .6 . (Lackenby, 1997) Let Y be a compact oriented 3-manifold with 

H 1 (Y, Q) =J. 0. Let K be a homotopically trivial knot in Y , su ch that M = 

Y \ N(K) is irreducible and atoroidal. Let M(p/q) be the Dehn filling along K 

with slope p/q. Then there is a natural number C(Y, K) which depends only on 

Y and K such that, if lql > C(Y, K) then 

M (p / q) is orientation-preserving homeomorphic to M (p' / q') iff p / q = p' / q'. 

The assumption that K is homotopically trivial can be dropped and replaced 

by K homologically trivial and Y reducible or K having fini te order in 7r1 (Y) 

(Lackenby, 1997). Taut sutured manifold theory is used to construct the bound 

C(Y, K). 

Relatively recent results has been proven by Zhongtao Wu and Yi i, in 2011, 

for the case of S 3 and L-space Z-homology spheres. 

Theorem 1.3.7. (Ni and Wu, 2013) Suppose K is a nontrivial knot in S 3 , r, r' E 

Q U { oo} are two distinct slopes such that S K ( r) is homeomorphic to S K ( r') as 

oriented manifolds. Then r, r' satisfy 

(a) r = -r'; 

(b) supposer = p / q, where p, q are coprime integers, then: q2 -1 [ mod p] ; 

(c) T(K) = 0, where T is the concordance invariant defined by Ozsvath-Szab6 

and Rasmussen. 

Theorem 1.3.8. (Wu, 2011 c) Let r and r' be two distinct rational numbers with 

rr' > 0, let K be a non-trivial knot in an L-space Z-homology sphere Y and let 

M =Y \ N(K). Then M(r) ~ M(r'). 
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Yi Ni has also studied cosmetic surgeries for manifolds Y with b1 (Y) > O. For 

this he used the Thurston norm with Heegaard Floer homology. 

Theorem 1.3.9. (Ni, 2011) Suppose Y is a closed 3- manifold with b1(Y) > O. 

Let K be a null-homologous knot in Y , so that the inclusion map Y - K -+ Y 

induces an isomorphism H2 (Y - K) ~ H 2 (Y) and we can identify H2 (Y) with 

H2 (Y - K). Suppose r E Q U { oo} and let Y K ( r) be the manifold obtained by 

r-surgery on K. Suppose (Y, K) satisfies that 

xy(h) < XY - K(h), for any nonzero element h E H2 (Y). 

where XM is the Thurston norm in M. The conclusion is: if two rational numbers 

r, s satisfy that YK(r) ~ ±YK(s), then r = ±s. 

We can replace the assumption on the Thurston norm with another condition to 

obtain the following. 

Theorem 1.3.10. (Ni, 2011) Suppose Y is a closed 3- manifold with b1(Y) > 

O. Suppose K is a null-homologous knot in Y . Suppose Xy = 0, while the 

restriction of XY-K on H2 (Y) is nonzero . Then we have the same conclusion as 

Theorem 1. 3. 9. then r = ±s. 

We will be mainly interested in truly cosmetic surgeries along hyperbolic knots 

Kin a rational homology sphere Y. By Theorem 1.2.2, YK(r) is hyperbolic for 

all except a finite number of slopes r on 8N(K). Let r and s be such hyperbolic 

slopes. Assume YK(r) is homeomorphic to YK(s). Then by Mostow rigidity 

there is an isometry h between YK(r) and YK(s). This isometry takes the unique 

shortest geodesic in YK(r) to the unique shortest geodesic in YK(s). Apart from 

a finite number of slopes, the shortest geodesic is isotopie to the core of the Dehn 

filling, and if this is true for the slopes r and s we can assume that h takes the core 
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of the Dehn filling in Y K ( r) to t he core of the Dehn filling Y K ( s) . Therefore h takes 

the meridian r to the meridian s. In particular h restricts to a homeomorphism 

of Yx which takes r to s. Moreover a homeomorphism of a one-cusped orientable 

hyperbolic 3-manifold which changes the slope of some peripheral curve has to be 

orientation reversing. Therefore the two slopes r and s are not equivalent. One 

can then deduce the following, see (Bleiler et al., 1999). 

Proposition 1.3.11. (Bleiler et al. , 1999) Let M be a compact connected ori­

ented hyperbolic 3-manifold with boundary a torus. Let r and s be distinct slopes 

on ôM, such that M(r) (resp. M(s)) is hyperbolic and the core of the Dehnfilling 

solid torus is isotopie to the shortest geodesic in M(r) (resp. M(s)), which we 

assume is unique. If M ( r) is homeomorphic to M ( s), then there is an orientation­

reversing homeomorphism of M which takes r to s but no orientation preserving 

one. In particular, apart from a finit e number of slopes, there are no truly cos­

metic fillings of M with two inequivalent slopes. 

For cosmetic fillings on a complete finite volume hyperbolic 3-manifold M, the 

remaining cases are then: 

• One of the Dehn filling manifolds has a hyperbolic structure but the core 

of the Dehn filling is not isotopie to the shortest geodesic. 

• The Dehn filling manifold is not hyperbolic. 

The second possibility is the case of an exceptional filling. We will focus on this 

last situation, that is cosmetic surgeries or fillings which are also exceptional. 

Using Lemma 1.1.4, we can deduce the following two preliminary lemmas on 

cosmetic fillings. Let M be a compact, connected, oriented hyperbolic manifold 
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with boundary a torus and assume b1 ( M) = 1. Fix a canonical basis {µ , >w} for 

H1 ( [) M) , where ÀM is the rational longitude. 

Lemma 1.3.12. Let p/q and p/q' be exceptional slopes such that 0 < p and 

q < q'. If M(p/q) and M(p/q') are homeomorphic then we must be in one of the 

following cases: 

(a) p = 1 and lq - q'I :S 8. 

(b) p E {7, 5} and q' = q + 1. 

(c) pE{4, 3} andq'E{q+l,q+2}. 

( d) p = 2 and q' E { q + 2, q + 4}. 

Proof. We have the bound 6. (p/q,p/q') = lpq' - qpl = plq - q'I :S 8, so p :S 8. If 

p = 1 then lq - q'I :S 8. If p E {8, 7, 6, 5} then lq - q'I :S 1 and q' = q + 1. On the 

other hand p and q (resp. p and q') must be relatively prime, thus since one of q 

and q+ 1 is even and p cannot be 6 or 8. Similarly if p E { 4, 3} then lq-q'I :S 2 and 

q' E { q + 1, q + 2}. If p = 2 then 1 q - q' 1 :S 4 and q' E { q + 1, q + 2, q + 3, q + 4} 

but we must have q = q' [mod 2] so q' E {q + 2, q + 4}. 0 

For t he case of reducible or cyclic fillings we have the following lemma. 

Lemma 1.3.13. Assume the hypotheses of Lemma 1.3. 12. If M(p / q) is cyclic 

or reducible and is homeomorphic ta M (p / q') then p = 1 and q' = q + 1. 

Proof. The distance between two reducible slopes or two cyclic slopes is at most 

one, so 6. (p/q,p/q') = lpq' - qpl = plq' - ql :S 1. It follows that p = 1 and 

q' = q + 1. 0 



CHAPTER II 

SURVEY ON TOROIDAL SURGERIES 

In this chapter we give a very brief survey on some results about toroïdal surg­

eries on hyperbolic manifolds. Our references are (Gordon and Luecke, 1995) , 

(Gordon, 1998), (Gordon and Luecke, 2004) , and (Gordon and Wu, 2008). We 

begin in section 2.1 by giving some basic background on intersection graphs. In 

section 2.2 we give a summary of results about toroïdal Dehn filling and we prove 

some lemmas needed for later on. 

2.1 Intersection graphs 

Litherland was the first to introduce the method of intersection graphs in 1980 

as a combinatorial way of studying Dehn surgeries in the solid torus. It was then 

extensively used by C. McA. Gordon, J. Luecke, M. Scharlemann, and Ying-Qing 

Wu. 

Throughout this chapter, M will be an oriented hyperbolic 3-manifold, with a 

torus Ta as a boundary component. We will use a, b to denote the numbers 1 

or 2, with the convention that if they both appear in a statement then {a , b} = 

{ 1, 2}. We are interested in the transverse intersections of two properly embedded 

surfaces in M with boundaries on Ta. Let F1 and F2 be such surfaces. We assume 

that there exist two distinct slopes r 1 and r 2 on Ta such that each component of 
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âF1 (resp. âF2 ) represents the slope r 1 (resp. r 2). In our particular sit uation we 

assume that the two slopes are also toroidal. 

We denote by Fa the essential torus in M(ra) obtained by capping off âFa with 

meridian disks. Let na be the number of boundary components of Fa on T0 . 

Choose Fa in M(ra) so that na is minimal among all essential tori in M(ra)· 

Minimizing the number of components of F1 n F2 by an isotopy, we may assume 

that F1 n F2 consists of arcs and circles which are essential on both Fa. Denote by 

l a t he attached solid torus in M(ra), and by ui (i = 1, ... ,na) the components of 
~ 

Fan l a, which are all disks, labeled successively when traveling along la· Similarly 
~ 

let vJ be the disk components of Fb n lb· 

D efinition of intersect ion graph We associate to the pair of surfaces { F1 , F2} 

a pair of graphs {f 1, f 2 } where r a is a graph on Fa defined as follows. 

• The vertices of r a are t he ui 's. They are drawn like disks. We associate a 

sign to each vertex of r a as follows: the surface Fa and the curve l a are 

oriented and intersect transversally, so if the orientation on M(ra) is the 

same as the orientation of the couple ( Fa , l a) t hen we say that the vertex 

is positive, otherwise we say that it is negative. 

• The edges of r a are the arc components of F1 n F2 . 

A fa ce of r a is the closure of a connected component of Fa\ r a· A disk fa ce of r a 

is a face which is a disk. The minimality of the number of components in F1 n F2 

and the minimality of na imply that r a has no trivial loops, and that each disk 
~ 

face of r a in Fa has an interior disjoint from Fb· 
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Three-manifolds from intersection graphs From the data of F1 and F2 we 

can construct a sub-manifold X(F1 , F2 ) of M by taking a regular neighbourhood 

N(F1 UF2 UTo) of F1 U F2 UT0 and capping off its 2-sphere boundary components 

with 3-balls. Note that X(F1 , F2 ) may not be unique. 

Now if we start with a pair of graphs {f 1, f 2}. We can still construct a manifold 

X(F1 , F2) by building the abstract "2-complex" F 1 U F2 U T0 thickening it and 

capping off the 2-sphere components of its boundary by 3-balls. Lemma 21.1 of 

(Gordon and Wu, 2008) and Theorem 1.1 of (Gordon, 1998) tell us that if the 

two slopes r 1, r 2 corresponding to F1 and F2 are toroidal then the boundary of 

X(F1 , F2 ) consists of union of tori. 

2.2 Toroidal surgeries 

In this section we summarize the principal results on toroidal surgeries on hy­

perbolic 3-manifolds. The list is not exhaustive as we state only what we need 

for the rest of the thesis. We also prove Lemma 2.2.2, Lemma 2.2.3, and Lemma 

2.2.4 which will be useful for Chapter 6. 

The following theorem is from Gordon and Ying-Qing Wu. 

Theorem 2.2.1. (Gordon and Wu, 2008) There exist fourteen 3-manifolds Mi, 

1 ::; i ::; 14, such that 

(1) Mi is hyperbolic, 1 ::; i ::; 14; 

(2) éJMi consists of two tari T0 , T1 if i E {1 , 2, 3, 14}, and a single torus T0 

otherwise; 

(3) there are slopes ri, si on the boundary component T0 of Mi such that M(ri) and 

M(si) are toroidal, where 6(ri, si) = 4 if i E {1 , 2, 4, 6, 9, 13, 14}, and 6(ri, si) = 

5 if i E {3, 5, 7, 8, 10, 11 , 12}; 
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(4) if M is a hyperbolic 3-manifold with toroidal Dehn fillings M(r) , M(s) where 

6(r, s) = 4 or 51 then (M, r, s) is equivalent either to (Mi, ri, si) for some 1 ::; 

i::; 141 or ta (Mi(t) , ri, si) where i E {1 , 2, 3, 14} and tis a slope on the boundary 

component Ti of Mi. 

Here we de.fine two triples (Ni , ri , si) and (N2 , r 2 , s2 ) ta be equivalent if there is a 

homeomorphismfrom Ni to N2 which sends the boundary slopes (ri , si) to (r2 , s2 ) 

or (s2 , r2)· 

The manifolds Mi , M2, M 3 are the exteriors of the links Li , L2 and L 3 in 5 3 

which are shown in the following figure 

(1) (2) (3) 

Figure 2.1 The links Li , L2 and L 3 . 

M4 , · · · , Mi4 are the manifolds X(Fi, F2) corresponding to the intersection graphs 

given in (Gordon and Wu, 2008) , and ri, si are the boundary slopes of the corre­

sponding surfaces Fi , F2 . We will reproduce here, in Figure 2.2 , Figure 2.3 and 

Figure 2.4, the intersection graphs for M4 , M 5 , and Mi4 as in (Gordon and Wu, 2008). 

The nine manifolds M6 , · · · , Mi4 can be constructed as branched covers of a tan-

gle Qi = (Wi, Ki), for each i = 6, ... , 14, where Wi is a 3-ball for i = 6, ... , 13, and 

an 5 2 x I for i = 14. More precisely Mi is the double branched cover of Wi with 

branch set Ki. For more details we refer to (Gordon and Wu, 2008) section 22. 
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(a) 

(b) 

Figure 2.2 The intersection graph for the manifold M4 (Gordon and Wu, 2008). 

In Figure 2.2 and Figure 2.3 each graph is on the torus Fa which we draw as a 

square. 
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".> 4 1 < 

<i:: -~{C 
...;> ----..,. ___ ..... 

Figure 2.3 The intersection graph for the manifold M 5 (Gordon and Wu, 2008). 
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Figure 2 .4 The intersection graph for the manifold M14 (Gordon and Wu, 2008). 
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Denote by T(a1 , a2 ) a Montesinos tangle which is the sum of two rational 

tangles of slopes 1 /ai and 1 / a2 respectively, where ai, a2 are integers. Denote by 

X (ai, a2) the collection of Seifert fibre spaces with base 2-orbifold a disk with two 

cone points c1 , c2 of index ai and a2 , i.e. the cone angle at ci is 27f /ai· Note that 

the double branched cover of T(ai, a2) is in X (a1 , a2 ). Denote by X(ai , b1 ; a2 , b2 ) 

the collection of graph manifolds which are t he union of two manifolds Xi, X 2 

glued along their boundary, where Xi E X (ai, bi). 

Denote by Kp/q the two bridge knot or link associated to the rational number p/q. 

Denote by C(pi, qi; p2 , q2 ) the link obtained by replacing each component Ki of 

a Hopf link by its (pi, qi) cable KI , where qi is the number of times KI winds 

around Ki. Denote by Y (pi , q1 ;p2 , q2 ) the double branched cover of 5 3 with 

branch set C(pi, q1 ;p2 , q2 ) . Denote by C(C;p, q) the link obtained by replacing 

one component Ki of a Hopf link by a Whitehead knot in the solid toms N(Ki), 

and the other component K2 by a (p, q) cable of K2 . Let Y(C;p, q) be t he double 

branched cover of 5 3 wit h branch set C ( C; p, q). 

We can now state the following lemma of Gordon and Ying-Qing Wu. 

Lemma 2.2.2. (Gordon and Wu, 2008) Each Mi (i = 6, ... , 13) admits a lens 

space surgery Mi(r3 ). For each i, let ri, r 2 be the toroidal slopes ri, si in Theorem 

2.2. 1. Then the manifolds Mi(r1), Mi(r2 ) and Mi(r3 ) are given in the following 

list. 

M6 (0) E X(2, 6;2,3) M6 ( 4) = Y(3, 1; 5, 2) M6 (oo) = L(9, 2) 

M7 (0) E X(2 ,3;3,3) M7 (-5/2) E X(2, 3; 2, 2) M7( OO) = L(20, 9) 

Ms(O) E X (2,2;2,6) M8 (-5/ 4) = Y(3 , 1; 2, 5) M8 (-1) = L(4, 1) 

M9 (0) E X (2,3;2,3) M9 (-4/3) = Y(3 , 1; 2, 4) M9 (-1) = L(8,3) 

M1o(O) E X(2, 3; 2, 3) M10 (-5/ 2) = Y(C; 2, 1) M10(00) = L(14, 3) 

M11 (0) E X (2, 4; 2, 4) M11 (-5/2) = Y(C; 2, 1) M11 (oo) = L(24, 5) 



M12(0) E X(2, 3; 2, 3) 

M13(0) E X(2, 3; 2, 3) 

M12(5) = Y(3, 1; 2, 3) 

Mi3(4) = Z 

M12(00) = L(3 , 1) 

M13(00) = L(4, 1) 
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Above Z is a double branched cover of 5 3 with branch set some 2-string cable of 

the trefoil knot. 

Proof. See Lemma 22.2 (Gordon and Wu, 2008). D 

The next two lemmas can be deduced from the proof of Theorem 22.3 of Gordon 

and Ying-Qing Wu in (Gordon and Wu, 2008). 

Lemma 2.2.3. (Gordon and Wu, 2008) Let t be a slope on the boundary com­

ponent T0 of M14, let Kt be the core of the Dehn filling solid torus in M14 (t). 

Th en 

Proof. Since M 14 = X(F1, F2) which is determined by the intersection graph 

in Figure 2.4, we can determine a presentation of the first homology using this 

picture. Take a regular neighbourhood of u1 U u2 U D on Fa as a base point. 

See Figure 2.4 (a). Then H1(M14 (ra)) is generated by x, y, s1, s2 , where x is the 

element of H 1(Fa) represented by the edge Con Figure 2.4 (a), oriented from the 

label 2 endpoint to the label 1 endpoint, y is represented by B , oriented from u 1 

to u2 , and si by the part of the core of the Dehn filling solid toms running from 

Ui to ui+l with respect to the orientation of oFb. Then the bigons Bu D , c u E 

and the 4-gon bounded by C U D U E U Y on Fb give relations 

2s1 - y = 0, 2x = 0, and y + 2x = O. 

The other faces of rb are parallel to these. Then as an abelian group 
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Now H1(Ka) is generated by s 1 + s2 thus 

D 

Lemma 2.2 .4. Let r 1 , r 2 be two toroidal slopes on Mi, i E { 4, 5} with 6.(r1 , r 2) E 

{ 4, 5}. Then for some b E {1 , 2} , 

Proof. Like in Lemma 2.2.3 Mi = X(F1 , F2 ), i E {4, 5} is determined by the 

intersection graph in Figure 2.2 and Figure 2.3. From this we are going to get a 

presentation of t he first homology. 

• For i = 4, choose a regular neighborhood of v1 U v2 U J in Figure 2.2 (b) as 

a base point. Then H1(M4(rb)) is generated by x,y,s1, s2, where x,y are 

represented by the edges L , C in Figure 2.2 (b), oriented from v1 to v2 , and 

si by t he part of the core of the Dehn filling solid torus from vi to vi+l · The 

faces bounded by L UC, CU K and QU KU MU A give the relations 

y - S1 +X + S2 = 0, S1 - X - S2 = 0, and S2 - S1 +y = O. 

Then as an abelian group 

H1 (M14(rb)) = (x, y, s1, s2 1 y - s1 + x + s2 = 0, 

S1 - X - S2 = 0, S2 - S1 +y = 0) 
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• Similarly for i = 5, H1(M5(rb)) is generated by x, y, s, where x, y are repre­

sented by edges E and C on Figure 2.3 (b) , oriented from label 3 to label 

4, and s is represented by the core of the Dehn filling solid torus. Then the 

bigon AU H and the annulus bounded by AU GU CU Eon Figure 2.3 (a) 

containing J give the relations x + y = 0 and 2x - 2y = O. Thus 

H1(M14(ra)) = (x, y, s 1x+y=0, 2x - 2y = 0) ~ Z EB Z/4Z. 

D 

Let W be the exterior of the Whitehead link and let T0 be a boundary component 

of W. Choosing a standard meridian-longitude basis µ , À for H 1(T0 ) we can iden­

tify slopes T0 with elements of Q U {1 / 0} . The manifolds W(l ), W(2), W(-5), 

W ( -5 / 2) are hyperbolic and they all admits a pair of toroidal slopes r, s with 

~(r, s) > 5. Gordon proved that these examples are the only possibilities for 

hyperbolic manifolds with pair of toroïdal slopes at distance > 5. 

Theorem 2.2.5. (Gordon, 1998) Let M be an irreducible 3-manifold and T a 

torus component of aM. If two slopes r and s on T are toroidal then either 

1. ~(r, s) :::; 5; or 

2. ~(r, s) = 6 and M is homeomorphic to W(2) ; or 

3. ~(r, s) = 7 and Mis homeomorphic to W(-5/2) ; or 

4. ~(r, s) = 8 and M is homeomorphic to W(l) or W(-5). 

For hyperbolic knot in S 3 , results about toroidal surgeries are more refined. In 

particular since there is a canonical Seifert longitude we can identify a slope with 

an element of QU {1 / 0}. One can then obtain bounds on the denominator q of 

an exceptional slope p / q. 
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Theorem 2.2.6. (Gordon and Luecke, 1995) Let K be a hyperbolic knot in S 3 

and suppose that Sk(p/ q) contains an essential torus. Then jqj ::; 2. 

Now for the case where the slope is non-integral we have a complete understanding 

of toroïdal surgeries which is given by the following theorem. 

Theorem 2.2.7. (Gordon and Luecke, 2004) Let K be a hyperbolic knot in S 3 

that admits a non-integral surgery containing an incompressible torus. Then K is 

one of the Eudave-Munoz knots k(l , m , n , p ) and the surgery is the corresponding 

half-integral surgery. 

The list of knots in S3 which admit pair of t oroïdal slopes at dist ance 4 is also 

known by work of Gordon and Ying-Qing Wu. 

Theorem 2.2.8. (Gordon and Wu, 2008) A knot K in S 3 is hyperbolic and 

admits two toroidal surgeries Sk(ri) , S k (r2 ) with 6.(ri , r 2 ) ?:: 4 if and only if 

(K, ri , r 2 ) is equivalent to one of the following, where n is an integer. 

2. K = L2(n) , ri= 2 - 9n, r 2 = -2 - 9n. 

3. K = L3 (n), ri= -9 - 25n, r 2 = - (13/ 2) - 25n . 

4. K is the Figure 8 knot, ri = 4, r 2 = - 4. 

The knots L 1(n) , L 2 (n) and L 3 (n) are the knots obtained from the right com­

ponents of the links Li , L2 , L 3 in Figure 2.1 after 1/ n-surgery on the left com­

ponents. In the particular case where 6. (ri , r 2) = 4, then K = L 1(n) , ri = 0, 

r 2 = 4; or K = L 2 (n ), r 1 = 2 - 9n, r 2 = - 2 - 9n. 



CHAPTER III 

THE CASSON INVARIA T 

In this chapter we give a quick review of two classical 3-manifold invariants: 

the Casson-Walker invariant and the Casson-Gordon invariant. We also prove 

a proposition which will be very useful for us. We follow (Walker, 1992) and 

(Saveliev, 2002) chapter 3 and 4. 

3.1 The Casson-Walker invariant 

The Casson invariant assigns an integer to any oriented integral homology 3-

sphere Y. This can be done by counting conjugacy classes of irreducible rep­

resentations 7r1 (Y) --+ SU(2). This invariant was later extended to homology 

lens spaces by Boyer and Lines (Boyer and Lines, 1990) and then to rational ho­

mology 3-spheres by K. Walker (Walker, 1992). Lescop (Lescop, 1996) showed 

that Walker's invariant also admits a purely combinatorial definition in terms of 

surgery presentations. We refer to (Lescop, 1996) and (Walker, 1992) for more 

details. The existence and uniqueness of this invariant together with basic prop­

erties are given by the first theorem below taken from [(Saveliev, 2002) section 

4.1] and was originally stated in Walker (Walker, 1992) but with a difference of 

a factor of 2 for the invariant. 

Walker give the following definition of the Casson invariant for Q-homology 
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spheres. 

Theorem 3.1.1. (Walker, 1992) There exists a unique invariant À of oriented 

rational homology 3-spheres, which satisfies the following properties: 

1. À coincides with Casson's invariant on integral homology sphere. 

2. À ( - Y) = -À (Y) where - Y stands for Y with opposite orientation. 

4. The number 12 · IH1(Y;Z)I ·,\(Y) is an integer for any rational homology 

homology sphere. 

5. Let K be a knot in an oriented rational homology sphere Y, and let l E âYK 

be a longitude. Then, À satisfies the surgery formula 

for any primitive class a,b E H1(âK;Z) such that (a, l) # 0 and (b, l) # 0 

Here L:::.% stands for the second order derivative of the Alexander polynomial of K 

normalized so that L:::.K(T) = L:::.K(T- 1
) and 6.K (l) = 1. The brackets (,) denote 

the intersection pairing H 1(âYK; Z)@ H 1(âYK ; Z) ---+ Z. Let us fixa longitude 

land choose a basis x, y of H1(8YK ; Z) such that (x, y) = 1 and l = dy for some 

d E Z. Then 

d2 
- 1 (a, b) 

T(a , b; l) := -s( (x, a), (y, a))+ s( (x, b), (y, b)) + 12 · (a, l)(b, l) 

where s(q,p) is the Dedekind sum defined by 

IPl-1 k k 
s ( q, p) : = sign (p) · L ( ( -) ) ( ( _J_ ) ) , 

k=l p p 
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with 

((x)) = {x - [x] - ~ , if x tJ_ 'IL , 

O, if X E 'lL ) 

When K is a null-homologous knot the surgery formula simplifies as follows. 

Proposit ion 3.1.2 ((Saveliev, 2002) Corollary 4.5) . Let K be a null-homologous 

knot in a rational homology three-sphere Y , and let L(p , q) be the lens space 

obtained by (p / q )-surgery on the unknot in S 3
. Then 

>.(YK(p/ q)) =>.(Y)+ >.(L(p, q)) + _g_~~(l) . 
2p 

Proof. See (Saveliev, 2002) for details. D 

Note that by our convention L(p, q) is obtained by (p / q )-surgery on the unknot 

in S3
, soin the formula we add +>.(L(p, q)). If we had taken the convention in 

(Saveliev, 2002) we would have a ->.(L(p, q)) t erm instead. 

Boyer and Lines have computed the Casson invariant of lens space. 

Proposition 3.1.3. (Boyer and Lines, 1990) For a lens space L(p, q) , 

1 
>.(L(p, q)) = - 2s(q,p). 

Proof. See (Boyer and Lines, 1990) or (Saveliev, 2002). D 

An interesting example is the Casson invariant of the Poincaré sphere. Recall that 

the Poincaré sphere, denoted 2:;(2, 3, 5) , is the oriented manifold obtained by (-1)­

surgery on the left handed trefoil in S 3
. Since the Alexander polynomial of the 

trefoil is r-1 -1 +T, by the surgery formula in Proposition 3.1.2, >.(~(2 , 3, 5)) = 

-1. 
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3.2 The Casson-Gordon invariant 

We are going to survey the Casson-Gordon version of Casson invariants. We follow 

their original paper (Casson and Gordon, 1978) section 2. Let Y be a closed 

oriented 3-manifold and </> : H1 (M; Z) --+ Zm an epimorphism. The invariant 

associates to the pair (Y,</>) a collection ofrational numbers <Jr(M, </>), 0 < r <m. 

Here are the construction. 

By standard topology, the map </> induces a canonical m-fold cyclic covering Y --+ 

Y . Now by (Casson and Gordon, 1978) Lemma 2.2 we can find X--+ X an m-fold 

cyclic branched covering of 4-manifolds, branched over some surface F c int(X ), 

such that 8( X --+ X) = (Y --+ Y ). Moreover t he rotation t hrough 2n / m on each 

fibre of the normal bundle of the branched surface P in int (X) corresponds to 

the canonical covering translation of X. 

Recall that t here is an intersection form on H 2 (X; Z). This extends to a non­

singular Hermitian form (,) on H := H 2(X; Z) ® <C. The covering translation of 

X which rotates each fibre of t he normal bundle of P t hrough 2n /m induces an 

automorphism e : H --+ H. The map e is an isometry of (H; (,)) and em = id. 

Let w = e27ri/m, and let Er be the wr-eigenspace of e, 0 :S r < m. We have an 

orthonormal decomposition of (H; (,))as E0 E9 E1 E9 · · · E9 Em-l· We denote by 

Er(X) t he signature of the restriction of (, ) to Er, and by sign(X) the signature 

of X. Then for 0 < r < m , we define <Jr(Y, </>) as 

. - 2[F]2r(m - r) 
<Jr(Y, </>) = s1gn(X) - Er(X) - 2 . 

m 

Using ovikov additivity and t he G-signature t heorem Casson and Gordon proved 

that <Jr(Y, </>) depends only on the rational number rand the cyclic cover Y--+ Y . 

Therefore when Y has H1(Y ; Z) = Zm, we get an invariant of the 3-manifold Y 
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by taking the sum 

m - 1 m-1 [ ]2 ( ) - 2F rm-r L Œr(Y, </>) = L sign(X) - Er(X) -
2 m r=l r=l 

- [F] 2 (m2 
- 1) 

= m sign(X) - sign(X) - . 
3m 

The Casson-Gordon invariant is then defined as follows. 

D efinit ion 3.2 .1. (Casson and Gordon, 1978) The total Casson-Gordon invari­

ant of Y is the rational number 

- [F]2(m2 
- 1) 

T(Y) = m sign(X) - sign(X) - . 
3m 

N ow assume Y is a Z-homology sphere and K is a knot in Y. Let A be a Seifert 

matrix for K and let Ç be a complex number with IÇI = 1. We define for each 

integer m =/=- 0 the number 

m -1 

Œ(K, m) = L ŒK (e2i-rrrfm ), 
r=l 

where ŒK(Ç) is the signature of A. 

Boyer and Lines found a surgery formula for the Casson-Gordon invariant which 

involves Œ(K, m). 

Proposit ion 3.2 .2. (Boyer and Lines, 1990) Let K C Y be a knot in a Z­

homology sphere Y, then 

T(Yp/q(K)) = T(L(p , q)) - Œ(K,p) . 

D 

They also computed the invariant for the lens space L(p, q). 
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Proposition 3.2.3. (Boyer and Lines) 1990) For a lens space L(p, q), 

T(L(p, q)) = -4p · s(q,p). 

Proof. See (Saveliev, 2002) or (Boyer and Lines, 1990). D 

3.3 A preliminary result on the Casson invariant 

The following result was proved by Boyer and Lines (Boyer and Lines, 1990). It 

requires a non-vanishing condition on the second order derivative of the Alexander 

polynomial 6.x of the knot K. We reproduce another proof here for convenience 

of the reader. 

Proposition 3.3.1. Let K be a non-trivial knot in a 3-manifold Y with trivial 

first homology and let M = Y\N(K) . If 6.'f<(l) =1- 0) then there is no orientation 

preserving homeomorphism between M(r) and M(r') if r =1- r'. 

Proof. By simple homological reasoning we must have r = p/ q and r' = p/ q' 

where q and q' are two integers coprime top. The surgery formula for Casson­

Walker invariant, Proposition 3.1.2, gives 

and 

>-(M(r)) =>-(Y)+ >-(L(p, q)) + _2_6.~(1) 
2p 

1 

>-(M(r')) =>-(Y)+ >-(L(p, q')) + i_b.~<(l) 
2p 

Now since Y has trivial first homology we have a well defined Casson-Gordon 

invariant T and a surgery formula from Proposition 3.2.2 

T(M(r)) = T(L(p,q))- CJ(K,p) and T(M(r')) = T(L(p , q')) - CJ(K,p) 

By Proposition 3.1.3 and Proposit ion 3.2.3 the two invariant À and T for the lens 

space L(p, q) are related by the following formula 

T(L(p , q)) = -4p · s(q,p) = -2pÀ(L(p, q)). 
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Now if M(r) ~+ M(r'), then >.(M(r)) = >.(M(r') ) and T(M(r)) = T(M(r')). 

Thus by using the above formula we have the following identities: 

T( L(p , q)) - ü(K, p) = T(L(p, q')) - ü(K, p) 

T(L (p, q)) = T(L(p , q')) and >.(L(p, q)) = >. (L(p, q')) since p # O. 

Therefore we have the equality 

I 

>.(Y)+ >.(L(p, q)) + 2~ 6~(1) =>.(Y)+ >.(L(p, q')) + ip 6~(1) 

which implies 
I 

CJ..611 (1) = g_6" (1) p K p K 

Since 6'f<. (1) # 0 by assumption, we have q = q' and so r = r'. D 

The proof of the proposition shows that we must have >.(L(p, q)) = >.(L(p, q')) if 

p/ q and p/ q' are two cosmetic slopes. On the other hand for a lens space L(p, q) , 

1 
>. (L (p , q)) = - 2s(q,p) . 

We can then deduce the following lemma which will be useful later. 

Lemma 3.3.2. Let K be a non-trivial knot in a 3-manifold Y with trivial first 

homology and let M =Y \ N(K ). If there is an orientation preserving homeo­

morphism between M(p/ q) and M(p/ q') then s(q,p) = s(q' ,p) . D 



CHAPTERIV 

HEEGAARDFLOERHOMOLOGY 

This chapter provides a brief expository account of Heegaard Floer theory with 

emphasis on the necessary tools and results needed for the rest of t he thesis. Hee­

gaard Floer homology was introduced by Peter Ozsvath and Zoltan Szab6 around 

2000. The theory had a rapid development and has contributed to progresses 

on various problems in low dimensional topology. We combine here material 

from various sources, including the lectures notes ( Ozsvath and Szab6, 2006b) 

and ( Ozsvath and Szab6, 2006c) , and the original art icles: for the three-manifold 

version we refer to (Ozsvath and Szab6, 2006a), (Ozsvath and Szab6, 2004d), 

(Ozsvath and Szab6, 2004c) , (Ozsvath and Szab6, 2005) and for the knot version 

we refer to ( Ozsvath and Szab6, 2004b) . We invite the reader to consult at these 

papers for further details on the subj ect. From now on the notation C F 0 (resp. 

H F 0
) will denote collectively the chain complexes CF, CF 00

, CF -, CF + (resp. 

the homologies HF, H F 00
, H p -, H p +) . The latter will be defined in this chap-

ter. 

Through this chapter Y will denote a closed oriented 3-manifold and K will be a 

null-homologous knot in Y . 
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4.1 Three-manifold Heegaard Floer homologies 

4.1.1 Heegaard diagrams, Whitney disks and Spinc structures 

Heegaard Diagrams. A genus g Heegaard splitting of Y is a decomposition 

of Y into the union of two oriented genus g handlebodies glued together along 

their boundaries. It is a known fact that every closed oriented 3-manifold admits 

a Heegaard splitting. To see this , take a self-indexing Morse fonction, l : Y -t IR 

with one index zero and one index three critical points. The level set E9 = 

1-1 (3/ 2) is an oriented closed connected surface with genus g equal to the number 

of index 1 critical points. The decomposition Y = l -1([0 , 3/2]) U l - 1([3/ 2, 3]) 

then gives a Heegaard splitting of Y. Moreover the intersection of E9 with the 

ascending manifolds of the index 1 critical points is a collection of simple closed 

curves a = { a 1 , · · · , a9 } , similarly the intersection of E with the descending 

manifold of the index two critical points is a collection of simple closed curves 

f3 = {(31, · · · , (39 }. One can recover Y by attaching 2-handles to the oriented 

manifold E x [-1 , 1] along these collections of curves and capping off the resulting 

manifold with two 3-handles. Thus the data (E9 , a, (3) completely determines Y 

and its orientation and is called a genus g Heegaard diagram of Y. Sometimes one 

needs to add extra data in the form of one or more marked points to get what 

is called a pointed Heegaard diagram (E9 , a, (3 , z ) or a multi-pointed Heegaard 

diagram (E9, a , (3, z1 , · · · , zk), where z, z1 , · · · , zk are marked points on E- a - (3. 

Depending on the circumstance one can also have a Heegaard diagram with more 

than two set of simple closed curves. If two Heegaard diagrams represent the 

same 3-manifold then they differ by a finite sequence of t he following moves: 

• Isotopy. This moves the attaching circles in a 1-parameter family which 

keeps the a's transverse to t he (J' s and such that the a's (resp. (J's) remain 

disjoint among themselves. 
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• Handleslide. Choose two curves 11 and 12 among the same collection (a or 

(3 ). Replace 11 by a simple closed curve i such that 

o i is disjoint from 1 1, T2, · · · , Tg 

o i, Tl and 12 bound an embedded pair of pants (i.e. a disk with two 

holes) in 

E - 1 1 - 12 - · · · - 19 

• Stabilization. This is a connected sum with a t oms and increases the genus 

of the Heegaard diagram by one. It adds a new a -type curve and a new 

(3-type curve. Destabilization is the inverse process of stabilization. 

Two Heegaard diagrams are called equivalent if they are related by finite se­

quences of these modifications. For more details we refer to (Rolfsen, 2003). 

If we have a Heegaard diagram with one or more base points, then we require 

that the supports of the isotopies do not contain the base points and that during 

handle-slide the base points must be outside t he pair of pants region. We then 

have the notion of pointed isotopy and pointed handle slide. With st abilization 

these new moves also define an equivalence relation on the set of pointed Heegaard 

diagrams. 

We have the following fact , first proved by Singer in (Singer , 1933) . 

Theorem 4.1.1 ((Singer, 1933) Theorem 8) . Two Heegaard diagrams are related 

by a sequence of isotopies, handleslides, and (de)stabilization if and only if they 

represent the sa me manifold up ta diff eomorphism. 

We note also that if (E, a, (3) is a Heegaard diagram for Y then (-E, (3, a) is an 

Heegaard diagram for - Y , here the role of a and (3 has been interchanged. 
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Whitney disks . Fix a pointed Heegaard diagram (E, a, /3, z ) for Y. We 

associat e to it a quadruple denoted by (Sym9 (E), 'II'a, 'II'iJ , V.) where: 

• Sym9 (E) is the g-fold symmetric product of E (g = genus of E), that is the 

quotient z: x g / S9 where the permutation group in g letters, S9 , acts on z: x g 

by permuting the coordinat es. The quotient Sym9 (E) is a smooth manifold 

of real dimension 2g and has non-empty sets of symplectic structures and 

compatible almost-complex structures. In particular a complex structure 

on E induces a complex structure on Sym9 (E) - 6. where 6. c Sym9 (E) 

is the image of the big·diagonal1 in z: x g . This complex structure can be 

perturbed to give a complex structure on all Sym9 (E). 

• 'II'a and 'II'/3 are totally real embedded submanifolds of Sym9 (E) (for some 

choice of almost-complex structure) defined by the attaching circles a 1 , · · · , a 9 

and /31 , · · · , /39 : 

'JI'/3 = /31 X · · · X j39 . 

Since the a , resp. /3, curves are pairwise disjoint , these submanifolds embed 

in Sym9 (E) via the natural projection. We can also assume that 'II'a and 'II'/3 

intersect t ransversally. 

• V. is a codimension 2 submanifold of Sym9 (E) defined by Vz := { z} x 

Sym9-
1 (E) . Since z E E - a - /3 , Vz is disjoint from 'II'a and 'II'iJ . 

Let ]lJ) be the unit disk in the complex plane. Let S+ , S_ be the arcs in t he 

boundary of ]lJ) corresponding to Im[z] ~ 0 and Im[z] ::; O. 

1The big diagonal is t he subset {(x1 , · · · , x9 )l:3i , j E {1 , · · · ,g}, i =j:. j and Xi= Xj } in 

~ xg 
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Definition 4.1.2. Let x, y E 11'0 n11',a . A Whitney disk connecting x to y is a 

continuous map: u : ]IJ) -----+ Sym9 2= which sends -i to x ) i to y ) S+ inside 11'0 

and s_ inside 11',a . 

When g =J. 2 we denote 7r2 (x, y) the set of homotopy classes of Whitney disks 

connecting x to y. For g = 2 we will define this notation later in this subsection. 

The multiplicity of an element </> E 7r2 (x, y) at z is defined to be the integer : 

where u is a smooth representative of </> chosen to be transverse to Vz. Let 

x , y E 11'0 n 11',a and let a : [O , l ] ---+ 11'0 , resp. b : [O , l] ---+ 11',a, be a path from x to 

y in 11'0 resp. in 11',a . The difference a - b gives a loop in Sym9 (2=) . On the other 

hand we have the following isomorphism (Ozsvath and Szab6, 2004d) 

Let E(x,y) E H1(Y; Z) denote the image of a - b under this isomorphism. The 

homology class E(x, y) is independent of the choice of paths a and b. It follows 

that if E(x, y) =J. 0 then 7r2 (x, y) is empty. It is also obvious that E is additive: 

E(x, y) + c(y, z) = c(x, z). 

For g = 1, 2= = Sym9 2= = 5 1 x S1 and it is easy t o visualize Whitney disks since 

they are genuine maps of a disk into the torus. When g > 1 we need to introduce 

the notion of domains. 

Let D1 , · · · , Dk be the closures of the connected components of 2= - a 1 - · · · -

Definition 4.1.3. A domain is a linear combination of the Di 's with integer 

coefficients. 
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Definition 4.1.4. A domain D is said to be positive if all the coefficients are 

2:: O. We then write D 2:: O. 

The set of all domains is then the free Abelian group generated by the set of all 

Di 's. The boundary of a domain is a linear combinat ion of arcs contained in the 

a or f3 curves with integer coefficients. 

Definition 4.1.5. A periodic domain is a domain P whose boundary is a sum 

of a and f3 curves and whose nz(P ) = O. 

Lemma 4.1.6. The set of periodic domains is a subgroup isomorphic to H2 (Y , Z). 

Definition 4.1.7. The domain of a homotopy class </> of Whitney disk connecting 

x to y is the formal linear combination 

k 

V (</> ) := L nz; (<P ) Di 
i= l 

where zi E Di are points in the interior of Di. 

We can now define the notation 7f2 (x, y) for genus 2 Heegaard diagram. When I.; 

has genus 2, 7f2 ( x, y) will stand for the set of homotopy classes of Whitney disks 

connecting x to y modulo the relation </J1 ,....., efJ2 iff V ( efJ1 ) = V ( efJ2). 

Definition 4.1.8. Let X= { X1 , . . . ) Xg } and y= {Y1 , ... ' Yg} be points in 'lI'a n 

'lI'.s . A domain connecting x to y is a domain D such that fJD consists of a or f3 

curves and 2g arcs, g of which connect Xj to Ya(j) for some permutation <J E S9 , 

and g of which connect Yi to Xa' (j ) for some other permutation <J
1 E S9 . We 

denote V (x, y) the set of domains connecting x to y. 

Proposition 4.1.9. (Ozsvath and Szabô, 2004d) When g > 1, the map <P t--t 

V(ef>) gives a bijection between 7r2 (x, y) and V(x, y). For g = 1, the map is an 

injection. 
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Counting elements of 7r2 (x, y) is then equivalent to counting domains which do 

not involve Sym9 (I;) in their definition. 

Let x , y E 1I'a n 11'.e and D = L niDi E 'D (x , y ). Since the sum of the D/s is a 

generator for H2(I;; Z) , the new domain l:: (ni+ l)Di is also a domain connecting x 

to y (we have "added ~,, to D) . In general, for any j E Z the domain l::(ni + j)Di 

also connects x to y. For domains with the extra condition nz(D) = 0 we can no 

longer add a copy of I;, 

When H2 (Y ) = 0, these domains are the only domains connecting x to y. More­

over there is at most a unique domain if we require that nz(D) = O. In general, 

by Lemma 4.1.6, elements of H 2 (Y) correspond to periodic domains. If D is a 

domain connecting x and y and P is a periodic domain, then we can see from the 

definition that D + P is also a domain connecting x to y. Since Y is a closed ori­

ented 3-manifold H 2 (Y ) is trivial or free Abelian. Therefore if H 2 (Y) =!= 0, we have 

infinitely many domains connecting x to y even with the condit ion nz(D) = O. 

Due to this particularity we will discuss separately t he definition of H F 0 (Y) for 

the case b1 (Y) = 0 and b1 (Y) > O. 

For 1> E 7r2 (x,y) we define M (1>) to be the set of (pseudo-)holomorphic repre­

sentatives of 1> with respect to some generically chosen almost complex structure. 

The group of holomorphie automorphisms of the unit disk is PSL (2, JR), so the 

subgroup preserving i and -i is isomorphic to R Therefore IR acts on M ( 1>) 

by re-parameterization of the unit disk. We denote by M ( 1>) the quotient of 

M ( 1>) by this lR action. Ozsvath-Szab6 specify a set of almost-complex structures 

that includes those induced by complex structures on I;, They prove that, for 

a dense subset of these almost complex structures, M ( 1>) is a smooth manifold 

whose dimension, denoted µ( 1>), equals a certain index called the Maslov index 
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of </>, which we will not define here. For more details above Maslov index we 

refer the reader to (Robbin and Salamon, 1993). A result of Gromov says that 

in every homotopy class <P of Maslov index 1 the set M ( <P) is finite (compact 

0-dimensional). We will omit the discussion about the genericity of complex 

structures and Gromov's result. 

Spinc structures. We rev1ew here Spinc structures usmg (Turaev, 1997) , 

( Ozsvath and Szab6, 2006b) and ( Ozsvath and Szab6, 2006c). 

Recall that the group Spinc(n) is the central U(l) extension of SO(n): 

1 -7 U(l) -7 Spinc (n) -7 SO(n) -7 1. 

Given an oriented manifold X equipped with a Riemannian metric, we have an 

SO(n) principal bundle over X which is the bundle of oriented orthonormal frame. 

We can then ask if we can lift this bundle to a principal Spinc bundle. This can 

be clone if and only if its second Stiefel-Whitney class w2 is the mod 2 reduction 

of an integral cohomology class, see (Milnor , 1963). This is the case if X has 

dimension 3 or 4, see (Milnor, 1963). 

Let 90 and 91 be two Riemannian metrics on X which admit two Spinc-principal 

bundle Ç0 and 6 which are lifts of their oriented orthonormal frame bundle. Then 

the two triple (X, 90 , Ç0) and (X, g1, 6) are said to be equivalent if one can find 

a 1-parameter family of metrics (gt)o::;t9 and a continuous 1-parameter family of 

Spinc lift (Çt)o::;t9 of the oriented orthonormal frame bundle of (X, 9t)· 

Definition 4.1.10. A Spinc structure on an oriented manifold X is the equiv­

alence class of a Spinc lift of the oriented orthonormal frame bundle of X with 

respect to some Riemannian metric. 
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Since we are dealing with equivalence classes, a Spinc structure on X does not de­

pend on any particular metric, they are associated to the manifold itself. For the 

special case of a closed oriented 3-manifold Y there is a more practical definition 

of Spinc structure due to Turaev (Turaev, 1997). 

Definition 4.1.11. Two nowhere-vanishing vector fi elds v1 , v2 on Y are homol­

ogous if they are homotopie in the complem ent of a finit e number of three-balls 

in Y. 

Proposition 4.1.12. (Turaev, 1997) The set of Spinc structures on Y is in one 

to one correspondence with the set of homology classes of vector fields on Y. 

Definition 4.1.13. If .s is a Spinc structure on Y represented by a nowhere­

vanishing vector fi eld v, its conjugate Spinc structure .5 is the one represented by 

- v. 

The fact that closed oriented 3-manifolds are parallelizable implies that Y always 

admits a nowhere-vanishing vector field and so a Spinc structure. Moreover after 

a choice of trivialization ç : TY ~ Y x ffi.3 , nowhere-vanishing vector fields on Y 

correspond to maps u : Y -t ffi.3 \ { 0} . Therefore homotopy classes of vector fields 

are in one to one correspondence with homotopy classes of maps u : Y -t 5 2
, since 

ffi.3 
\ { 0} has the homotopy type of 5 2

. The homology class of a vector field in t urn 

is uniquely determined by the induced map u* : H 2 (52 ; Z) -t H 2 (Y; Z). Indeed 

let [w] E H 2 (Y; Z) be a generator, then we have a bijection ôç : Spinc(Y) -t 

H 2 (Y; Z), [v] -t [v*w] where we think of vas a map v: Y -t S2
. 

Proposition 4.1.14. (Ozsvath and Szab6, 2004d) If .s1 ,.s2 E Spinc(Y), then the 

difference ôç(.s1 ) - ôç(.s2) E H 2 (Y ; Z) is independent of the choice of the trivial­

ization ç. 
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From now on we will write 1F(.s1 ) - 8' (.s2) as .s1 - s2 . From this proposition we 

see that H 2 (Y; Z) acts freely and transitively on Spinc(Y). Thus Spinc(Y) is an 

affine space over H 2 (Y; Z). 

Definition 4.1.15. The first Chern class of .s E Spinc(Y) is the element of 

H 2 (Y ; Z) defined by c1 (.s) := .s - :S E H 2 (Y; Z) . 

If .s is represented by a vector field v, then c1 (.s) is the first Chern class of the 

orthogonal complement of v, thought of as an oriented real two-plane (hence 

complex line) bundle over Y. We can see from the definit ion that c1(.s) = - c1 (:S). 

The choice of base point z E 2.:: allows us to define a natural map s z : 11' °' n 11' /3 ~ 

Spinc(Y) as follow. We are going to use Tuarev definition of Spinc structure 

for 3-manifold, Proposition 4.1.12. Let f be a Morse fonction on Y compatible 

with a 1 , · · · , a9 , (31 , · · · , (39 . Each intersection point x E 11'°' n 11'13 determines a 

g-tuple of trajectories for \7 f, connecting the index one critical points to index 

two critical points. The marked point z also determine a trajectory connecting 

the index zero critical point to the index three critical point. When we delete 

tubular neighborhoods of these g + 1 trajectories, we obtain the complement of 

disjoint union of balls in Y. The gradient vector field \7 f does not vanish on this 

complement (we have removed the critical points). Since each trajectory connects 

critical points of different parities, the gradient vector field has index 0 on all the 

boundary spheres. It can then be extended as a nowhere vanishing vector field 

over Y . The homology class of the nowhere vanishing vector field obtained in this 

manner gives a Spinc structure. We denote this element by Sz. 

Lemma 4.1.16. (Ozsvâth and Szab6, 2004d) Let x , y E 1I'a n 11',e. Then we have 

Sz(Y) - Sz (x) = P D[t:(x, y)] (4.1) 

In particular Sz(Y) = Sz(x ) if and only if n2(x, y ) is non-empty. 
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4.1.2 Definition of HF, HF00
, HF- , HF+ and HFred 

We first give the definition for the case of rational homology spheres. 

--Definition of HF. 

Definition 4.1.17. Let Y be a closed oriented three-manifold with b1 (Y) = 

O. Choose a pointed Heegaard diagram (E9 , a, (3, z) for Y. Choose a complex 

structure on E and a suitable perturbation of the induced complex structure on 

Sym9 (E) , we define the chain complex CF(Y; a, (3) to be the free Abelian group 

freely generated by elements of Tan 1I',e and equipped with following differential: 

forx E 1I'a n'II',e 

âx= tt.M (<t>) · y . 
{y E11'an11'13, </>E7r2(x,y) 1 µ, (<f>)=l, n, (<f>)=O} 

The transversal intersection of two compact half-dimensional submanifolds is a 

fini te number of points, so 1I' a n 1I' .B is fini te. On the other hand the hypothesis 

b1 (Y) = 0 ensures that for any two generators x , y E 1I' a n 1I' f3 there exists at most 

one <f> E n2 (x, y) with nz =O. Thus the sum in the definition is finite. 

Theorem 4.1.18. (Ozsvâth and Szabô, 2004d) The differential of CF(Y ; a, (3) 

satis fi es â 2 = 0. 

We define the hat version of the Heegaard Floer homology of Y to be HF(Y) = 

kerâ/ imâ. 

By Lemma 4.1.16 if the Spinc structures Sz(x ) and sz(Y) are distinct then the 

y component of_8x vanishes. Therefore for each .s E Spinc(Y) , CF(Y; a, (3, .s) = 

Z{x E 1I'a n'II',e 1 Sz(x ) = .s} is a sub-complex of CF(Y;a ,(3) with homology 
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denoted by HF(Y, .s). Thus we have the following splitting of CF as a direct sum 

of sub-complexes 

CT(Y; a, (3, s) = E9 CT(Y; a , (3, s). 
sESpinc(Y) 

It follows that t he homology also splits accordingly, 

HF(Y,s) = E9 HF(Y,.s). 
sESpinc(Y) 

Theorem 4.1.19. (Ozsvath and Szab6, 2004d} The chain homotopy type of CF(Y, .s) 
is independent of the choices of Heegaard diagram, complex structure, and Rie-

mannian metric. 

As a consequence of this theorem, the homology HF(Y, .5) is a topological invari­

ant of Y for each Spinc structure .s . 

When b1 (Y) = 0, we can equip each homology HF(Y, .s ) with a relative Z-grading. 

D efinition 4 .1.20. Assume b1 (Y) = 0 and let x , y E ]'°' n ]'i9 with c(x , y ) = O. 

We de.fine 

gr(x, y )= µ( </>) - 2nz(</>) (4.2) 

where </> is any class in 7r2 (x,y). 

From t he discussion after Proposit ion 4. 1.9, gr(x , y) is independent of the choice 

of </> since b1 (Y) = O. The differential â of CF only count disks </> with µ( </>) = 1 

and nz ( </>) = 0, so â lower the relative Z-grading by one. This relative grading 

allows a definition of the Euler characteristic for each group HF(Y,s) (up to an 

overall sign). For the case of integer homology spheres the relative Z-grading 

turn out to be an absolute Z-grading. In particular, for any Heegaard diagram of 

S3 the complex CT(S3 ) is absolutely Z-graded. The hat version of the Heegaard 
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fioer homology of 5 3 is isomorphic to Z and we choose it to be localized in degree 

0, that is HF0 (S3
) ~ Z and HFk(S3

) = 0 for every k -1- O. 

The Euler characteristic of HF(Y) determines the order of the first homology of 

Y as given by the following lemma. 

Lemma 4 .1.21. (Ozsvath and Szabô, 2004d) Let Y be a 3-manifold and lets E 

Spinc(Y), then 

---- { ±1 if H1(Y; Q) = 0 
x(HF(Y, s )) = 

0 otherwise 

Using the convention that [H1 (Y; Z) [ = 0 whenever the manifold has H1 (Y; Q) =J. 

0, we get 

x(HF(Y)) = ±[H1(Y; Z)[. 

As a consequence we always have 

Definition 4.1.22. A rational homology sphere Y is called an L-space if 

rankHF(Y) = [H1(Y;Z)[. 

L-spaces are Heegaard Floer analogues of lens-spaces. In particular every Lens 

space L(p, q) with p -1- 0 is an L-space. They also includes double branched cover 

of non-split alternating links. 

----D efinition of H F00
, H p - and H p+. In the definition of HF by requiring 

nz ( </>) = 0 for each <P appearing in the differential, we ensured that this differential 

is finite. We can also ensure finiteness by introducing new formal generators, this 
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leads to new variants of H F 0
• We count </> with different values of n z ( </>) as 

coefficients of different formal generators in the expression for 8x. 

Definition 4 .1.23. With the hypothesis of definition 4.1 .17, we defin e the chain 

complex C F 00 (Y; a , (3) to be the free Abelian group freely generated by formal 

element of the form [x , il where x E Tan 'TI'.6 and i E Z, and equipped with the 

differential defin ed for each [x, il by 

800 [x , il = UM (</>) · [y,i- nz(</>)l . 

As for HF, 800 o 800 = 0 and we have a splitting along Spinc structure, see 

(Ozsvath and Szab6, 2004d): 

HF00 (Y,s ) = EB H F 00 (Y,s) . 
.sESpin c(Y) 

--Like for HF, we can define a relative Z-grading on H F 00
. 

Definition 4.1.24. Assume b1 (Y) = 0 and let [x ,il and [y, jl be two generators 

for CF00 (Y; a, (3 ) with E(x, y ) =O . We defin e 

gr( [x, il; [y, j]) = gr(x , y) + 2i - 2j ( 4.3) 

where </> is any class in n 2 (x , y) . 

The differential 800 still decreases the degree by one. There is an obvious au­

tomorphism of CF 00
, denoted by U , which sends the generator [x , il to [x , i -

l l. This automorphism decreases the relative homological grading by 2. Thus, 

CF00 (Y;a, (3) is naturally a module over Z[u, u- 11 (where here U is a formal 

variable acting on CF00 (Y; a , (3 ) via the automorphism U). 

Theorem 4. 1.25. (Ozsvath and Szab6, 2004.d) For Y with b1 (Y) = 0 and for 

any Spinc structures on Y , H F 00 (Y, s) ~ Z[U, u-11 as Z[U, u-11-module. 
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Thus the homology of C F 00 do es not distinguish Y. However quotients and 

subcomplexes of CF00 (Y; a , (3 ) will give interesting homologies. 

Definition 4 .1.26. We assume the hypothesis of definition 4.1.17. Lets E 

Spinc(Y) , 

• CF-(Y;a ,(3, .s) is defined ta be the subcomplex ofCF00 (Y;a ,(3, .s) spanned 

by the generators [x , i] with i ::::; O. It is naturally a module over Z[U]. 

• CF+(Y;a, (3, .s) is defined to be the quotient ofCF00 (Y ;a,(3, .s) by the sub­

complex CF-(Y; a, (3 ,.s) . It is naturally a module over Z[U, u- 1]/ U · Z[U] . 

The corresponding homologies of this complexes will be denoted H p - (Y, s) and 

HF+(Y,.s) respectively. Summing over all Spinc structure will give HF- (Y) and 

HF+(Y): 

H p-(Y,.s) = EB H p-(Y,.s) , and HF+(Y,.s) = EB HF+(Y,s) . 
.sESpinc(Y) .sESpinc(Y) 

We use the notation Z[U, u-1 ]/U · Z[U] to emphasize the fact that it has a natural 

action of U. However elements of Z[U, u- 1]/U · Z [U] are also polynomials in u- 1 

so we can write Z [U, u-1]/ U · Z[U] as z[U- 1
] . 

Let i: cF-(Y;a,(3, s)---+ CF00 (Y ;a ,(3, s) denotes the natural inclusion and let 

7r : CF00 (Y ; a , (3, s) ---+ C F+(Y; a , (3, .s) denotes the projection onto the quotient . 

From the definitions, we have a short exact sequence of chain complexes: 

This will induces a long exact sequence in homology which does not depend on 

the choice of Heegaard diagram: 
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Theorem 4 .1. 27. (Ozsvath and Szab6, 2004d) There exists a long exact sequence 

whose isomorphism type depends only on Y and .s. 

There is another exact sequence which connects HF and H p +. First note that 

there is an embedding of complex j : CT(Y,.s) ---+ CF+(Y,.s) defined by j(x) = 

[x, ü] for each x E 11'a n 11',e. Together with the automorphism U this will give a 

short exact sequence of chain complexes: 

--- j u 
0----> CF(Y;a,(3,.s) ______, CF+(Y;a,(3,.s) ~ CF+(Y;a,(3,.s) ------+ 0 

In turn this will induces a second long exact sequence in homology which does 

not depend on the choice of Heegaard diagram: 

Theorem 4 .1.28 . (Ozsvath and Szab6, 2004d) There exists a long exact sequence 

whose isomorphism type depends only on Y and .s. 

Because there are no absolute Z-gradings on the complexes, these two long exact 

sequences are actually exact triangles. In other words , the map on the far right 

of the sequence is the same as the map on the far left, and the sequence keeps 

repeating in this manner. 

From this long exact sequence we have a vanishing criterion for H p+ in term of 

--HF. 
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Proposition 4 .1.29. (Ozsvath and Szab6, 2004d) Let (Y, .s) be a closed oriented 

3-manifold equipped with a Spinc structure. Then H F+ (Y, .s) = 0 if and only if 

HF(Y,.s) = o. 

Proof. From t he long exact sequence in Theorem 4.1.28, if HF+(Y ,s ) = 0 then 

clearly HF(Y, s ) vanishes. Conversely assume HF(Y, .s) = 0 then we have an iso­

morphism U: HF+(Y,.s ) -t HF+(Y,.s ). Let [x , i] E HF+(Y ,.s ), then Ui+1[x , i] = 

0 by definition of U. But since U is an isomorphism on homology, we must have 

[x,i] =O. Thus HF+(Y ,.s ) =O. D 

D efinition of H F red · The homology H F red is a finitely generated &::-module 

variant of the Heegaard Floer homology. It is ext racted from the homology HF+ 

which is infinitely generated over Z. For clarity let us denote the induced actions 

of U on the subcomplex CF - by u- and the induced actions of U on the quotient 

complex CF+ by u+. 

Lemma 4 .1.30. (Ozsvath and Szab6, 2004d) For k sufficiently large, 

D efinit ion 4 .1.31. For k sufficiently large, let 

Proposition 4 .1.32. (Ozsvath and Szab6, 2004d) The boundary homomorphism 

of the long exact sequence induces a U-equivariant isomorphism 

M oreover, bath are fini tely generated &'.: -modules. 
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We will denote H Fred (Y, .5) both H Fr!d (Y, .5) and H Fr~d (Y, .s). Again summing 

other all Spinc structure will give another invariant H Fred (Y) which is called the 

reduced Heegaard Floer homology of Y: 

H Fred (Y) = EB H Fred (Y, .5). 
sESpinc(Y) 

To close the discussion about H Fred, we will state the fact that its vanishing 

characterise L-spaces. 

P roposition 4.1.33 . Let Y be an oriented rational homology sphere. Then Y is 

an L-space if and only if H Fred(Y) = O. 

Proof. Assume Y is an L-space let .s E Spinc(Y). Then HF(Y,.s) ~ Z and the 

exact sequence in Theorem 4.1.28 gives a short exact sequence 

j * u+ 
0 - ---> Z ____, HF+ (Y, .s) -------t HF+ (Y, .s) ------. 0 

hence u + is surjective on homology and for k sufficiently large im(U+)k = 

HF+(Y,.s) and it follows that HFr!d(Y, .s) = HF+(Y ,s)/im(U+)k = O. Con­

versely suppose that HFred(Y,.s) = 0, then from Lemma 4.1.30 we have ker i* = 0 

and im7r* = H F+(Y, .s). Next , the long exact sequence in Theorem 4.1.27 becomes 

On the other hand from Theorem 4.1.25 we know that HYXJ (Y,.s) ~ Z[U, u- 1]. 

Consequently we have a splitting of Z[U] module H F - (Y, .s) EB HF+ (Y, .s) ~ 

Z[U, u-1
] . From this we can deduce that HF-(Y ,.s ) ~ UZ[U] and HF+(Y ,.s) ~ 

Z[u- 1] . It follows that the exact sequence in Theorem 4.1.28 simplifies as 
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--- J* u+ o _ ____, HF(Y,s) ------.. z[U- 1] ---- z[U- 1] -----> o 

Thus HF(Y, s ) ~ Z, and since ISpinc(Y)I = IH1(Y; Z)I we have that rankHF(Y) = 

IH1 (Y; Z)I. 0 

4.1.3 Three-manifolds Y with b1(Y) > 0 

For a 3-manifold Y with b1(Y) > 0, the definition of CF0 does not change, 

however to ensure finiteness of the sum in the definit ion of the boundary map we 

need to restrict to special classes of Heegaard diagrams which are called weakly 

admissible and strongly admissible Heegaard diagrams. Indeed for x , y E 1f an 1f f3 

with E(x,y) = 0, there may be infinitely many </> E 7r2(x,y) with µ(</>) = 1 and 

nz =o. 

From Proposit ion 4.1.9 counting elements of 7r2 (x , y ) is the same as count ing ele­

ments of 'D(x , y). The discussion after this proposition tells us that the require­

ment nz(</>) = 0 determines at most one element of 'D (x , y ) only if H2 (Y; Z) =O. 

In case b1 (Y) > 0, there is an H2 (Y; Z)-degree of freedom in </> coming from the 

addition of periodic domains. It may be the case that infinitely many of t hese 

possible </> have µ( </>) = 1. To avoid this problem, we use the special type of 

Heegaard diagrams defined as follows. 

D efinition 4 .1.34 . Let (E, a, /3 ) be a Heegaard diagram for Y. 

• (E, a, /3) is weakly admissible if all (nonzero) periodic domains have at least 

one positive and at least one negative coefficient. 

• Let s E Spinc(Y) , (E, a , /3) is strongly admissible fors if, for any periodic 

domain D such that (c1 (s ), [D]) = 2n, some coefficient of D is greater than 

n . Here [D] denotes the element of H2 (Y; Z) corresponding to D under 
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the one to one correspondence between H2 (Y; Z) and the set of periodic 

domains . 

Weak admissibility implies that the differential of HF is fini te. Indeed, suppose 

</> E n2 (x, y) has a holomorphie representative. Then im</> is a complex submani­

fold of Sym9 (E) which intersect the complex submanifolds Vw for any w. Since the 

coefficients in the domain D ( </>) were defined to be intersection numbers with Vw 

for various w , they must all be positive. But if all periodic domains P have both 

positive and negative coefficients, then only finitely many domains of the form 

D(</>)+P have all positive coefficients. Therefore among the elements </> E n2 (x , y) 

with nz( </>) = 0 only a finite number can have holomorphie representatives. 

For HF(Y) we only need weak admissibility but for H F 00 (Y, s) and H p - (Y, s ) 

strong admissibility for s is required. 

In this context of b1 (Y) > 0, we only have a relative Z/2Z-grading. Give the a 

and (3 curves some fix orientations, inducing orientations on 1I'a and 11'13 . From 

this choice of orientations one can define an absolute Z/2Z-grading on elements 

of the intersection 11' a n 11' 13 . The resulting relative grading will not depend on the 

choices made. Let x E 11' a n 11' 13 , 

• gr (x ) = 1 if, at x , the oriented basis of Tx8ym9 (E) resulting from the juxta­

position of that of Tx 11' a and Tx 11' /3 match with the orientation of Tx8ym9 (E) 

induced by the orientation on E. 

• gr(x ) = -1 otherwise. 

Changes of orientations on the a and (3 curves affect t he grading of each x E 

1I'a n 11'13, in the same way. The relative Z/2Z-grading is therefore independent 

of these choices. Fixing orientation on the a and (3 curves, we may find gr(x ) 



68 

for x E 'JI'°' n 1I'13 without using the symmetric product Sym9 (E). Indeed, x 

corresponds to g points x 1, · · · , x 9 E E where Xi E ai nf3<r(i) for some permutation 

Œ E 59. Let Ei(x) be +1 if ai intersects f3u(i) positively at xi , and let it be -1 

otherwise. Therefore we get the following formula for t he grading 

g 

gr(x) = sign(Œ) L Ei(x) 
i=l 

This relative Z/2Z-grading is useful since it allows us to still define the Euler 

characteristic of HF(Y, E) for each Spinc structure E even if the manifold has 

b1 = 1. 

4. 1.4 Examples of Heegaard Floer homology 

Lens space L(p, q). The lens space L(p, q) admits a genus one Heegaard 

diagram so we can take E = 5 1 x 5 1
, t hus Sym9E = 5 1 x 5 1 and 1I' °' = a, 1I' /3 = /3 

are genuine simple closed curves on E. Let {À ,µ} be the classical longitude 

meridian basis of H1(S1 x 5 1
; Z), then a and /3 are the curves which represent 

the homology classes [a] =y, and [/3] = pÀ + qµ. It follows that 1I'a n 1I'13 =an /3 

is a collection of p distinct points. Let x , y E an /3, then the curve E(x , y) 

go around the longitude at least once, see Figure 4.1 for the case of L(2, 1) , so 

[E(x , y)] = aÀ + bµ for some a=/= O. 

In the following figure, the red curve represents a, t he green curves represents /3 

and the blue curve represents the class of E(x , y). 
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Figure 4.1 Heegaard diagram for L(2, 1). 

Therefore if we choose a marked point z on E - a - (3, 

Sz(Y) - Sz(x) = P D[E(x, y)] =/= 0, 

in particular each intersection point corresponds to a different Spinc structure. 

Also, by Lemma 4.1.16 7r2 (x, y) is empty if x =/= y . It follows that for each Spinc 

structure s on L(p, q) , 

CF(L(p,q),a,(3,s ) = Z < x >, for some x E a n (3, 

and the boundary map becomes 

âx = 2: M(<P) . y = o. 
0 

Therefore HF(L(p, q), s ) = CF(L(p, q),a,(3, s ) = Z < x >. By t he same argu-

ments we can deduce that for each Spinc structure s , 

HF-(L(p, q),s ) = UZ[U] < x >, 

HF+(L(p , q) ,s ) ~ Z[U, u- 1]/ UZ[U] . 

In particular we can see that L(p, q) is an example of L-space since 

HF (L(p, q)) = EB HF(L(p, q),s ) ~ ZP . 
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The manifold 8 1 x 8 2
. In the case of 8 1 x 8 2 the first Betti number is 1 so in 

order to compute HF(81 x 8 2
) we must use a weakly admissible Heegaard diagram 

for each Spinc structure. It turns out that there is one genus one Heegaard 

diagram which is weakly admissible for all Spinc structures. This is the one 

shown in Figure 4.2. 

Figure 4.2 Heegaard diagram for 8 1 x 5 2
, a curve (red) , f3 curve (green) . 

Therefore there is only one pair of intersection points { x , y} with a pair of non­

homotopic holomorphie disks, both with Maslov index one connecting x to y , we 

refer to (Ozsvâth and Szabô, 2004c) for more details. These disks are shown in 

yellow and blue in Figure 3.2. From the figure we can see t hat E(x.y) bounds a disk 

so Sz(y )-.sz(x) = P D[E(x , y)]= 0 and x, y belong to the same Spinc structure .s0 . 

It turns out that .s0 is the unique torsion Spinc structure of 8 1 x 8 2 , t he one which 

is identified to 0 under the correspondence Spinc(81 X 8 2) ~ H 2(81 X 8 2) ~ z 
(see (Ozsvâth and Szab6, 2004c) again for details) . We can then deduce that 

--- 1 2 CF(8 x 8 , a, /3, .s0 ) = Z < x > EB Z < y >, 

and under the choice of coherent orientation, the differential is defined by 

~ 

ay = o, since there are no disk connecting y to x 

ox =y - y= 0, 
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since t here is a pair of non-homotopie disk connecting x to y and which are 

counted wit h opposite sign. It follows t hat a is t rivial and 

---1 2 ..-...1 2 
H F(S x S , .s0 ) = CF(S x S , a ,(3, .s0 ) = Z < x > EB Z < y >, 

For t he non torsion Spinc-structures it is immediat e from t he Heegaard diagram, 

which is always weakly admissible, that 

iiF(s1 x s2 , .s) = o, if .s =!= .sa. 

By the same arguments we can deduce that 

The Poincaré sphere 2:(2, 3, 5). Inst ead of comput ing Heegaard Floer ho­

mologies via Heegaard diagrams one canuse t he surgery presentation of 2:(2, 3, 5) 

as ( -1 )-surgery along t he left handed trefoil to determine H F 0
• This is do ne in 

(Ozsvâth and Szab6, 2003a) and gives t he following answer. 

Proposition 4.1.35. (Ozsvath and Szab6, 2003a) Seen as a Z -module, 

+ { z H Fk (2:(2 , 3, 5)) = O 
if k is even and k ;::: 2 

otherwise 

Moreover, 

U : H F:+2 (2:(2, 3, 5) ) ---t H F: (2:(2 , 3, 5)) 

is an isomorphism for k ;::: 2. 
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From this proposition we can deduce that H F+(E(2, 3, 5)) ~ Z [U, u-1 ]/UZ[U] 

as Z[U]-module and that H Fred (E(2, 3, 5)) = O. Therefore E(2, 3, 5) is also an 

L-space and in particular HF(L, (2, 3, 5)) ~ HF(S3 ) ~ Z. However t he two 

manifolds can be distinguished by a numerical invariant which cornes from a 

"refinement" of H F 0
• 

A connected sum formula. Connected sum is a natural operation in 3-

manifold theory so it is natural to ask if there is a connected sum formula for H F 0
• 

The answer was given by P. Ozsvath and Z. Szab6 in (Ozsvath and Szab6, 2004c). 

Proposit ion 4. 1.36 . {Ozsvath and Szab6, 2004 c) Let Y1 and Y2 be a pair of ori­

ented three-manifolds, and fix .s1 E Spinc(Y1) and .s2 E Spinc(Y2). Let CT(Y1, .s1) 

and CT(Y2, .s2) denote the corresponding chain complexes for calculating HF. 
Then, 

CT(Y1~Y2 , .5 1~.s2) ~ CT(Y1, .s1) @z CT((Y2,.s2) , and 

iiFk(Y1 ~Y2,.51 ~.s2) ~ (.EB iiFi(Y1 , .s1 ) @z iiFj((Y2,.s2)) 
i+J=k 

EIJ (+~-! Tor(l'ff\(Y1 , s1), HF;((Y,, s2))) . 

4.1.5 Cobordisms and absolute Ql-grading 

In this subsection we will discuss briefiy the fact t hat the homologies H F 0 are 

functorial with respect to cobordisms. We will then define the absolute Ql-grading 

which is a lift of the relative Z-grading. We follow (Ozsvath and Szab6, 2006a) , 

(Ozsvath and Szab6, 2004c) and (Ozsvath and Szab6, 2003a) . 

A Heegaard diagram (E, a, (3) specifies a unique oriented 3-manifold. If we add 

a third set of attaching circles 'Y = {"fi,··· , '°Yg } then we get a triple (E, a, (3, 1) 
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called triple Heegaard diagram. Out of this triple, we can form three Heegaard 

diagrams: (:E, a , (3 ), (E, (3, 1') and (E , a, 1), which in turn determine three oriented 

3-manifolds Ya,,B , Y.e,'Y and Ya,-y- Moreover we can naturally associate a 4-manifold 

X a,,B,-y to it as follow. Let 6 denote the two-simplex, with vertices Va, v.e, V-y 

labelled clockwise, and let ei denote the edge from Vj to vk, where { i , j, k} 

{a, (3, 1'}. We form the identification space 

X = (6 X E) il (ea X Ua) il (e.e X U.e ) il (e'Y X U-y ) 
a,,B ,-y (ea X E) r-v (ea X 8Ua) '(e.e XE) r-v (e.e X 8U.e )' (e'Y X E) r-v (e'Y X oU-y). 

Over the vertices of 6 , this space has corners but they can be smoothed to obtain 

a smooth oriented cobordism between t he three-manifolds Ya,,Bi Y.e,-y, and Ya,-y- In 

fact , if we consider the implicit orientation conventions in the above description, 

Given a Heegaard triple we have three embedded g-dimensional tori in Sym9 (E): 

and 11'-y = 'Yi x · · · x Î'g 

Definition 4.1.37. Let X E 11'a n 11'.e, y E 11'.e n 11'-y, w E 11'a n 11'-y. A Whitney 

triangle connecting x , y , and w is a continuous map u: 6 ----t Sym9 (E) , such 

that u(v-y) = x , u(va) = y , and u(v.e ) = w , and u(ea) C 'll'a, u(e.e ) C 11'.e, 

u(e-y ) C 11'-y. 

There is a naturally defined map 

such that c(x, y , w) = 0 if and only if there is a Whitney triangle connecting 

x , y , and w . We call Two Whitney triangles homotopie if the corresponding 

maps are homotopie through maps which are all Whitney triangles. For fixed 
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x, y, and w , we denote n2 (x, y, w) the space of homotopy classes of Whitney 

triangles connecting x , y , and w. To any two elements of n2 (x, y , w) there is 

a naturally associated difference, which is a periodic domain ( after we subtract 

off a suffi.cient multiple of I;). When g > 1, this gives an affine isomorphism, 

whenever n2 (x, y , w) is non-empty, 

above the first factor is given by the local multiplicity at the marked point z . 

When g = 1, and n2 (x, y , w) =J 0 we also have an isomorphism 

We can use a Whitney triangle to build a singular two-plane field in X whose 

underlying Spinc structure is independent of the choices made in its construction, 

see Section 6 of (Ozsvath and Szab6, 2004c). This gives rise to a map 

where Spin~ (~) restricts to Spin; (x), Spin; (y), and Spin~ (w) at the three bound-

ary components. 

Let (I; , a, /3, "/, z) be a pointed Heegaard triple, and fix a Spinc structure .s over 

Xcx,f3,i· Under suitable admissibility hypotheses (Ozsvath and Szab6, 2006a) , there 

are chain maps: 

where .sç,77 is the restriction of .s to Yç,77 and where C p 5-0 ~ C p- is the chain 

complex generated by pairs [x, j] with j ~ 0, given by the formula: 

f°([x , iJ 0[y, jJ; s) = L: (#M(~)) · [w, i + j - nz (~)], 
w E1I'"'n1I'-y {1/JE7r2 (x,y,w) 1 Spin;('tf;) =.s ,µ ('tf;)=O} 



75 

above M('lf;) denotes the moduli space of pseudo-holomorphie triangles in the 

homotopy class 'lf;, and µ('lf;) denotes its expected dimension. 

For the admissibility hypothesis we need the notion of a new type of domain. A 

triply-periodic domain is a 2-chain Don E whose boundary are sum of a, f3 and 

1 curves or arcs and such that nz(D) = O. The admissibility t hen consists of 

requiring that for each non-trivial triply-periodic domain which can be written 

as a sum of doubly-periodic domains (i.e periodic domains as we have defined for 

Heegaard diagram of 3-manifolds) 

with the property that 

we have some local multiplicity of D which is strictly greater than n. 

Theorem 4 .1.38. (Ozsvâth and Szabô, 2004d) Suppose that (E, a, /3, 1, z ) is an 

admissible Heegaard triple for the Spinc structure .s . Then, the induced maps on 

homology 

is Z[U]-equivariant, is independent of the analytic choices made and is invariant 

under the special moves which define the equivalence between Heegaard triples. 

See (Ozsvath and Szabé, 2004d), and (Ozsvath and Szabé, 2006a) for further de­

tails and pro of. 

The pairing introduced in Theorem 4.1.38 above can be used to associate maps to 

cobordisms. Every cobordism between two connected 3-manifolds Y and Y' can 
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be decomposed into 1-handles, 2-handles and 3-handles (cf. Proposition 4.2.13 

in (Gompf and Stipsicz, 1999)). However we are only interested in cobordisms 

obtained via surgery on knots or links. Such cobordisms corresponds to 2-handle 

attachment to Y x I . Thus we will not discuss 1-handles and 3-handles. 

Let K be a null-homologous knot in Y . Fix a framing À for K which we can 

assume to be a longitude for simplicity (there is no loss of generality if we are 

doing integer surgery) , also fix an admissible Heegaard diagram subordinate to 

K . We can choose the diagram such that (31 = µ is a meridian of t he first torus 

component of E . The framing of K is given, by pushing K off itself onto the 

Heegaard surface. The resulting knot on E is determined by À +n · µ , for a sui table 

n E Z. With this done, we can represent t he surgery by t he Heegaard triple 

diagram (E, a , (3, 'Y) where 'Yi, i ~ 2, are isotopie push-offs of the (3i, perturbed, 

such that 'Yi intersects f3i in a pair of cancelling intersection points. The curve 'Yi 

equals À + n · µ. We now have a Heegaard triple (E , a, {3, 'Y) such t hat Ya,J3 =Y, 

YJ),-y = ~ g-
1(52 x 5 1

) and Ya,-y = YK (À). 

Proposition 4 .1.39 . (Ozsvâth and Szab6, 2003a) The cobordism X aiJ-yUa( #g- l D3 x 

5 1
) is diffeomorphic ta the cobordism W K given by the fram ed surgery along K . 

We are now going to describe the construction of the map induced by a cobordism 

for the case of HF. The H p +, H p -, H F 00 cases are similar. First of all we recall 

from subsection 4.1.4 that HF(52 x 5 1 ;.s0 ) ~ Z EB Z, thus from Proposit ion 4.1.36 

~ 

There is a top dimensional generator 8 JJ'Y for this homology. For more details we 

refer to (Ozsvath and Szab6, 2004d). By evaluating the pairing F 0
(- ® · , .s) on 

this generator we get contracted map 
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We then define the map FwK ,5 : HF(Y;Ea,/3 )---+ HF(YK (>..);Ea ,"f ) induced by the 

cobordism W K to be 

~ 

Theorem 4.1.40. (Ozsvath and Szab6, 2006a} The map Fwf( does not depend 

on the choices made in its definition. 

Given a framed link L = K 1 LJ · · · LJ K m, we can also define a map 

where YL is the obtained by surgery along L in Y , it is similar to what we did 

for a single attachment. The map FL associated to multiple attachments is then 

a composition 
~ ~ 

FL = FKm 0 . . . 0 FK1 

There are similar maps for H F 00
, HF+ and H p -. 

We can now introduce the absolute Q-grading on H F 0
• Let Y be an oriented 

three-manifold, equipped with a torsion Spinc structure (i.e. one for which c1(t) 

is torsion). Let Ql be the homogeneous generating set of CF0
• We have seen that 

H F 0 (Y, t) is a relatively Z-graded Abelian group with relative grading fonction 

gr : Ql X Ql ---+ Z. 

Theorem 4.1.41. (Ozsvath and Szab6, 2003a) Let t be a torsion Spinc structure 

of Y. Then, the homology groups H F 0 (Y, t) can be endowed with an absolute 

grading 

gr Ql ---+ Q 

satisfying the follo wing properties: 
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• The homogeneous elements of least grading in HF+(S3;E0) have absolute 

grading zero. 

• The absolute grading lifts the relative Z-grading, in the sense that if Ç, 'TJ E 2l, 

then 

gr(Ç, 'TJ) = gr(Ç) - gr(rJ) . 

• The natural maps l and 7r in the long exact sequence (Th eorem 4 .1 . 27) 

preserve the absolute grading, while the coboundary map decreases absolute 

degree by one, and the U action decreases it by two. 

• If W is a cobordism from Y1 to Y2 endowed with a Spinc structure whose 

restriction -4 to Yi is torsion for i = 1, 2, then 

-(p, (è)) _ -(c) _ c1(.s) 2 - 2x(W) - 3ü(W) 
gr W ,s<,, grc,, - 4 ' (4.4) 

where -4 = EIYi for i = 1, 2 . 

To define gr, we present Y as a surgery on a link L c S 3 , so that t is the restriction 

of a Spinc structure E over the induced cobordism W(S3 , L) from S3 to Y. Let 

(I;, a, (3, ry, z) be a Heegaard triple subordinate to some bouquet for the link L , so 

that Yci: ,,6 ~ S3
, Y,e,')' ~ #n(S1 X S2 ) , and Ya ,')' ~Y. Fix intersection points Xo E 

11' °' n 11' ,e, x 1 E 11' ,e n 11' 'Y so that x0 , resp. x 1 , are in the same degree as the highest 

non-zero generators of HF(S3
, ta) and HF(#n(S2 x 5 1 ) , ta) respectively. (We say 

that the intersection points x0 and x 1 lie in the canonical degree.) Therefore, by 

fixing the absolute Q-grading on S 3 equation 4.4 determines the grading for y 

using the co bordism W ( S 3 , L). 

4.1.6 The correction term 

From the absolute Q-grading we can derive a new numerical invariant for rational 

homology three-spheres equipped with Spinc structures. 
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Definition 4.1.42. (Ozsvâth and Szab6, 2003a) Let (Y,.s) be a rational homology 

three-sphere equipped with a Spinc structure. The correction term d(Y, .s) is the 

minimal Q-grading of any non-torsion element in the image of H F00 (Y, .s) in 

H p + (Y, .s) , i. e 

d(Y,.s) = min{gr(7r*(x)) 1 x E HF00 (Y ;.s)} 

where 7r * : H F00 (Y; .s) ---+ HF+ (Y; .s) is the map in the exact sequence of Theorem 

4.1.27. 

There is another interpretation of d(Y, .s) using the reduced homology H Fred (Y; .s). 

By definition of H Fred (Y; .s) , we have the isomorphism: 

+ . rv Z[U, u- 1
] . 

HF (Y,.s) = T P?1 rT Tl EB HFred(Y,.s) , 

then d(Y,.s) is the Q-grading of the lowest degree generator of Z[U, u- 1]/UZ[U] . 

For the 3-sphere, the homologies H F 0 (S3 ) are all supported in degree zero so 

d(S3
) =O. 

The correction term satisfies the following properties. 

Proposition 4.1.43. (Ozsvâth and Szab6, 2003a) Let (Y, .s) and (Y' , t) be ratio­

nal homology three-spheres equipped with Spinc structures. Then, we have that 

d(Y,.s) = d(Y,s) (4.5) 

d(Y,.s) = - d( - Y ,.s ) (4.6) 

d(Y#Y' , .s#t) = d(Y,.s) +d(Y' , t) (4.7) 

Proof. The proof can be seen in (Ozsvath and Szab6, 2003a) section 4. D 
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For the case of a 3-manifold Y0 with H 1(Y0 ; Z) ~ Z, there is a unique Spinc 

structure .s0 sut h that c1 (.s0 ) = O. We can then define two correction terms as 

follow. 

Definition 4.1.44. (Ozsvâth and Szab6, 2003a) We define the correction terms 

d+1; 2 (Y0 ) , resp. d_1; 2 (Y0), to be the minimal <Q-grading of any non-torsion ele­

ment in the image of H F 00 (Y0 , .s0 ) in H F +(Y0 , .s0 ) with grading + 1/2 resp. - 1/2 

modulo 2. 

Proposition 4.1.45. (Ozsvâth and Szab6, 2003a) Let H 1(Y0 ; Z) ~ Z. Then, 

di;2(Yo) - 1 ::; d-1;2(Yo). 

d±1;2(Yo,.s) = d±1;2(Yo , :5), 

d±1;2(Yo, .s) = -d'f1/2 (-Yo,.s) . 

Proof. See (Ozsvath and Szab6, 2003a), section 4.2. 

(4.8) 

(4.9) 

(4.10) 

D 

For integral homology spheres there is only one Spinc structure so there is a 

unique correction term. The following proposition relates correction terms for 

integral homology spheres and correction terms for zero-surgeries on knots inside 

them. 

Proposition 4.1.46. (Ozsvâth and Szab6, 2003a) Let K C Y be a knot in an 

integral homology three-sphere and let Y1 be the manifold obtained by + 1 surgery 

on K . Then, 

1 
d(Y) - 2 ::; d-1;2(Yo) , and 

Proof. See (Ozsvath and Szab6, 2003a) section 4.2. D 
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In light of Proposition 4.1.46, for three-manifold with the homology of 5 1 x 5 2 , 

we can use the correction terms to have obstructions for a t hat manifold to be 

the result of a zero-surgery on a knot in 5 3 . More precisely, since d( 5 3 ) = 0, we 

see that if Y0 is obtained as such surgery, then 

Moreover, by refiecting the knot and using Proposition 4.1.43, we also obtain the 

bound 

Proposition 4 .1.47 . (Ozsvath and Szabô, 2003a) Let K c 53 be an oriented 

knot in the three-sphere. Then, 

d(Sl(l)) 

d-1;2(51(0)) 

Proof. This is a direct consequence of the surgery long exact sequence, in view 

of the structure of H F +(53). D 

Ozsvath and Z. Szab6 also proved the following result concerning the correction 

term for 1 / n-surgery. 

Proposition 4 .1.48. (Ozsvath and Szabô, 20'03a) Let K c Y be a knot in a Z­

homology 3-sphere. Then, we have the following inequalities (where here n is any 

positive integer) : 
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Proof. See (Ozsvath and Szab6, 2003a) Corollary 9.14. D 

Let us now give some examples of correction terms for some classical 3-manifolds. 

• From subsection 4.1.4, H F+(E(2, 3, 5)) rv Z[U, u - 1] /UZ[U] as Z[U]-module 

and 

+ { z HFk(E(2, 3,5)) = O 
if k is even and k ~ 2 

otherwise 

Therefore since t he absolute Q-grading is a lift of the Z-grading, which 

is also absolute for integer homology sphere, t he Q-grading of the lowest 

degree generator of Z[u,u-1]/ UZ[U] in HF+(E(2, 3,5)) is 2. Thus 

d(E(2,3 ,5) ) = 2. 

In particular since d(53 ) = 0, I.;(2, 3, 5) and 53 are distinct manifolds. 

• For the lens space L(p, q) , P. Ozsvath and Z. Szab6 gave an inductive 

formula for t he correction terms. Let p and q be a pair of relatively 

prime, positive integers. First we fix and identification of Spinc(L(p, q)) 

with Z/pZ ~ H 1(L(p, q)). We consider the genus one Heegaard diagram 

(I.; , a,,8,z) of-L(p,q) (opposite orientation) such that L:; = 5 1 x51 with a 

prescribed orientation, a= 5 1 x {O}, ,8 is a simple closed curve homologous 

to -qa + pÀ where À = { 0} x 51. Finally the base point z is placed so that 

all the coefficients of t he triply-periodic domains connecting a, À, and ,8 are 

negative, and we order the intersection points of a with 'Y circularly (about 

a), so that the (p - l )st one modulo p is the one adjacent to the base point . 

We can now state the following proposit ion. 

Proposition 4.1.49 . (Ozsvâth and Szab6, 2003a) Fix positive, relatively 

prime integers p > q, and also choose an integer with 0 ::::; i < p + q. Then, 
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with respect to the above ordering of the Spinc structures over - L(p, q) , we 

have the following inductive formula: 

(
pq - (2i + 1 - p - q) 2

) 
d(-L(p , q) , i) = 

4
pq - d( -L(q ,r) , j) , (4. 11) 

where r and j are the reductions modulo q of p and i respectively. 

We end this section with some results relating the torsion of the Alexander poly­

nomial of a knot in an integer homology sphere to + 1-surgery. In what follows, 

Y will be an oriented integer homology sphere. We define 

N(Y) := rankHFrect(Y) 

Definition 4.1.50. Let K be a knot in a rational homology sphere Y and let its 

normalized Alexander polynomial be 

d 

ô.x(T) = ao + L ai (Ti+ y -i ). 
i= l 

We defin e the i-th torsion invariant of the Alexander polynomial to be 

d 

t i = 2= J%1+J · 
j =l 

Theorem 4.1.51. (Ozsvath and Szabô, 2003a) Let Y be an integral homology 

three-sphere and K C Y be a knot. Then there is a bound: 

lto(K)I + 2 t lti (K)I ::; rankH Frect(Y) + d(~) + rankH Frect (Yx (l )) - d(Y~( l )) , 
i=l 

Proof. See (Ozsvath and Szab6, 2003a) Theorem 6.1. D 

4.2 Knot Floer homology 

Knot Heegaard Floer homology or Knot Floer homology is the version of Heegaard 

Floer homology for homologically trivial knots in an oriented closed 3-manifold. It 
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was independently developed by Ozsvath and Szab6 in ( Ozsvath and Szab6, 2004b) 

and by Rasmussen in (Rasmussen, 2003). We will use both references in this sec­

tion. 

4.2.1 Knots and Heegaard diagrams 

We begin with the description of a knot in a closed oriented 3-manifold in the 

sense of P. Ozsvath and Z. Szab6. 

Definition 4.2.1. (Ozsvâth and Szab6, 2004b) In this section, a knot will con­

sist of a pair (Y, K ), where Y is an oriented three-manifold, and K c Y is an 

embedded, oriented, null-homologous circle. 

The requirement that the knot should be homologically trivial is a technical 

assumpt ion which is needed for a refined invariant. 

A knot (Y, K ) has a Heegaard diagram (Li, a, (3°, µ ), where here a is an unordered 

g-tuple of pairwise disjoint attaching circles a = { a 1 , ... , a9 } , (3° is a (g -1)-t uple 

of pairwise disjoint attaching circles {/32 , . .. , (39 } , µ is an embedded, oriented circle 

in Li which is disjoint from the 13°, and, g is the genus of Li. This data is chosen 

so that (Li , a, (3°) specifies the knot-complement Y \ N (K ), i.e. if we attach disks 

along the a and (3°, and then add a three-ball, we obtain the knot-complement. 

Moreover , µ represents the "meridian" for the knot in Y ; thus, (Li , a , {µ} U 13°) is 

a Heegaard diagram for Y. 

Definition 4.2.2. (Ozsvâth and Szab6, 2004b) A marked Heegaard diagram for 

a knot (Y , K ) is a quintuple (Li ,a,(3°, µ ,m) , where herem E µ n(Li-a1 - ... - a9 ) . 

Note t hat here t he marked point is "on the meridian" µ as opposed to t he marked 

point for a pointed Heegaard diagram for 3-manifold. A marked Heegaard di-
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agram for a knot K can also be used to construct a doubly-pointed Heegaard 

diagram for Y: 

Definition 4.2.3. (Ozsvath and Szabô, 2004b) A doubly-pointed Heegaard dia­

gram for a t hree-manifold Y is a tuple (~ ,a, /3, w, z), where (~ , a , /3) is a Heegaard 

diagram for Y , and w and z are a pair of distinct basepoints in ~ which do not 

lie on any of the a or /3 . 

We associate a doubly-pointed Heegaard diagram to Y from a Heegaard diagram 

for (Y, K) as follows. Let (~ ,a., {3°, µ , m) be a marked Heegaard diagram for 

(Y, K). We write /3 = {3° U µ. Fix an arc ô which meets µ t ransversely in a single 

intersection point , which is the basepoint m , and which is disjoint from all the 

a and {3°. Then, let w be the initial point of ô, and z be its final point. The 

orientation of K specifies the ordering of t he two points w and z. Take a longitude 

À for K , which we think of as a curve in the Heegaard surface . The orientation 

on K induces an orientation for À. Now choose z so that if ô is oriented as a 

path from w to z, then we have an equality of algebraic intersection numbers: 

#(ô n µ) = #(>. n µ) (for either orientation ofµ). 

4.2.2 Definition and properties of the knot Floer homology 

The Heegaard Floer homology for knots cornes as the homology of a filtered 

chain complex, so we will begin with a quick remainder about t he subj ect. Fix a 

partially ordered set S. An S-filtered group is a free Abelian group C generated 

freely by a distinguished set of generators 6 which admits a map F : 6 --t S. 

We write elements of C as sums 

where 
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If 

a = L au · CJ and b = L bu · CJ 

uE6 

are elements of S-filtered groups (C, F , 6) and (C' , F' , 6') respectively, then we 

write a ~ b if 

max F(Œ ) ~ min F'(Œ ). 
{uE6 I au;iO} {uE6' I bdü} 

A morphism of S-filtered groups 

</>: ( C, F , 6) ----+ (C' , F' , 6') 

is a group homomorphism with the property t hat 

</>(a) ~ a, for all a E C. 

An S-filtered chain complex is an S-filtered group equipped with a differential 

which is an S-filtered morphism; a morphism of S-filtered chain complexes is a 

chain map which is also an S-filtered morphism. Let Tc S be a subset of S with 

the property that if b E T , then all elements a E S such that a ~ b are contained 

in T. If ( C*, 8, F ) is an S-filtered complex, t hen T gives rise to a subcomplex of 

C* , which transforms naturally under morphisms. 

We are now ready to define the Heegaard Floer knot homology. We equip Z EB Z 

with the part ial order defined by ( i, j) ~ ( i' , j') when i ~ i' and j ~ j' . Let 

(I;, a, (3, w, z) be a doubly-pointed Heegaard diagram. We can associate to it a 

Z EB Z-filtered chain complex 

equipped with the differential 

800 [x;i, j ] = L L # (M(</>) ) [y ;i - nw(</>),j- nz(</>)], 
y E'lran'lf,B {4>En2(x,y ) lµ (4>) =l} 
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-where M(<P) stands for the quotient of the moduli space of pseudo-holomorphie 

disks which represent the homotopy type of <P by the natural action of IR on this 

space, and µ( <P) denotes the formal dimension of M ( <P). The chain complex has 

a filtration given by 

F [x; i , j ] = (i , j). 

We then equip the chain complex with the structure of a Z[U]-module, by defining: 

U · [x ;i , j] = [x;i-1, j- l]. 

The complex CF K 00 naturally splits into a sum of subcomplexes. More precisely, 

two generators [x; i , j] and [y, l, m] are in the same summand when there is a 

homotopy class <P E 7r2 (x, y) with 

nw(<P) = i - /!, and nz(</J ) = j - m. 

In our case the doubly-pointed Heegaard diagram cornes from the marked Hee­

gaard diagram of an oriented, null-homologous knot K. In this situation, we 

can interpret the splitting in terms of Spinc structures over YK(O). Precisely, fix 

a Spin c structure .s over Y and let i E Spin c (Y, K) = Spin c (Y0 ( K)) be a Spin c 

structure which extends it. The complex CFK00 (I', , a ,(3, w,z) has the following 

filtered subcomplex 

CF K 00 (I', , a , /3, w , z; i) = z { [x; i , j] 1 XE 11'a n 11',a, i, j E Z, Ew(x ) = .s , 

here /31 =µand [µ] E H1(YK(O)) is the homology class obtained by thinking of 

µas a closed curve in YK(O) and &m is the map 

defined in similarly as in section 4.1.16. 
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We have a splitting of CF K 00 as direct sum of these subcomplexes: 

As for 3-manifolds, there are variants CF K-, CF K + which are subcomplexes, 

quotient complexes. For our purposes we will be interested in the complex 

CFK(E,a ,/3,w,z, i ) = {[x;O,j] E CFK00 (E,a,/3,w ,z;i)}. 

and the sum over all relative Spinc structure 

-CFK(E,a,/3,w ,z) = E9 -CF K(E , a, /3, w, z; i). 

The diff erential is defined by 

â [x;O,j] = L L # (M( <P) ) [y;O,j], 

yE'f<>n'f~ {</>En2(x,y) lµ( <P)= l , nw(<P)=nz(<P)=O} 

Theorem 4.2.4 ((Ozsvath and Szab6, 2004b) and (Rasmussen, 2003)) . The maps 

â and 800 satisfy â o â = 0 and 800 o 800 = 0. 

We define the knot Floer homology to be 

HFK(Y, K , i) = H* (CFR (E , a,/3,w ,z;i ), â) 

and -HFK(Y, K ) = E9 -HFK(Y, K ,i) . 

Theorem 4.2.5. (Ozsvâth and Szab6, 2004b) Let (Y, K) be an oriented knot, 

and let i E Spinc(Y, K). Then the filtered chain homotopy type of the chain 

complexes CF K 00 (Y, K, i) is a topological invariant of the oriented knot K and 

the Spinc structure i E Spinc(Y, K) ; in particular it is independent of the choice 

of admissible, marked Heegaard diagram (E, a , {3°, µ , m) used in its definition and 

all other analytic choices. 
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An immediate consequences of the theorem is that knot Floer homology is a 

topological invariant. 

Corollary 4.2.6 ((Ozsvâth and Szab6, 2004b) and (Rasmussen, 2003)). The 11knot -Floer homology groups" HF K(Y, K , !:) are topological invariants of the knot K C 

Y and!: E Spinc(Y, K) . 

Since K is homologically trivial we can find a Seifert surface F c Y for K. 

Let F be the surface in YK(O) obtained by capping off F with the core of t he 

attaching 0-framed 2-handle. We have the following one to one correspondence, 

(Ozsvâth and Szab6, 2004b) , 

where .s E Spinc(Y) is uniquely determined by the restriction of t to Y\ N(K) 

and 

j = ~ ( C1 ( t) ' [ F]) . 

Therefore we can define 

- -HFK(Y,K,j) := HFK(Y,K,!:). 

Definition 4.2. 7. The grading j in IfFR(Y, K , j) is called the Alexander grad­

ing. We denote the Alexander filtration level of XE 1I'a n 11'.e by A(x). 

The Alexander filtration is uniquely determined by the following condition, 

( Ozsvâth and Szab6, 2004b): for x, y E 11' a n 11' .a 

A(x) - A(y) = nz(</>) - nw(</>), 

-Like for 3-manifold, the knot Floer homology HF K 00 and HF K also admit 

relative Z-grading which lifts to an absolute Q-grading for torsion .s. We have the 

-following conjugation symmetry for HF K 
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Proposition 4. 2.8 . ( Ozsvath and Szab6, 2004b) Let (Y, s) be a 3-manifold equipped 

a torsion Spinc structure. Then 

- -HF K d(Y , K , m) = HF K d-2m(Y , K , -m) 

where the subscript denote the absolute grading. 

Proof. See (Ozsvath and Szab6, 2004b) section 3. D 

We are now going to give some properties of knot Floer homology. The first one 

is the fact that it categorifies the Alexander polynomial of a knot. 

Theorem 4.2.9. (Rasmussen, 2003) Let K be a knot in an oriented rational 

homology sphere Y . Then 

6.x(T) = L (-l)i rank IfFRi(K , j) T J, 
i,j 

where 6.x(T) is the Alexander polynomial of K normalized so that 6.x (T) 

6.x(T-1
) and 6.x (l) = 1. 

The second property is that it detect the genus of a knot in 53. 

Theorem 4 .2 .10 . (Ozsvath and Szab6, 2004a) Let K be a knot in 5 3 , then the 

genus of K is given by 

g(K) = max{j 1 IfFR(53
, K , j) =!= O} . 

Theorem 4.2 .11. (Ni, 2007) Let K be a null-homologous knot in a closed ori­

ented 3-manifold Y. Assume Y \ K is irreducible, then K is a fibred knot if and -only if HFK(Y , K , g(K)) ~ Z . 



CHAPTER V 

EXCEPTIO AL COSMETIC SURGERIES ON 5 3 

The purpose of t his chapter is to prove the following theorem. 

Theorem A. Let K be a hyperbolic knot in 5 3 , and r, r' E QU { oo} two distinct 

exceptional slopes on âN ( K). If 5 K ( r) is homeomorphic to 5 K ( r') as oriented 

manifolds, then the surgery must be toroidal and non-Seifert fibred, moreover 

{ r, r'} = { + 1, -1}. 

The t heorem tells us that the only slopes which can yield exceptional truly cos­

metic surgeries on 53 are ±1. Moreover, there are no truly cosmetic surgeries on 

hyperbolic knot in 5 3 if the slope is cyclic or finite or reducible or Seifert fibred. 

Theorem A has the following immediate corollaries about the nature of some 

Heegaard Floer invariants. 

Corollary 5.2.3. If a 3-manifold Y is the result of an exceptional truly cosmetic 

surgery on a hyperbolic knot K in 5 3 then: 

n 

lto(K) I + 2 L lti(K)I ::=; rankHFrect(Y), 
i= l 

where the number ti(K) for i E Z is the torsion invariant of the Alexander poly­

nomial 6.K(T) of K and n is the degree of 6.K(T). 
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Corollary 5 .2 .4 . If a hyperbolic knot K C S 3 admits an exceptional truly cos­

metic surgery then the Heegaard Floer correction term of any l /n (n E Z) surgery 

on K vanishes: d(Si<(l / n)) =O. 

The chapter is structured as follow. In Section 5. 1 we review the mapping cone 

construction in Heegaard Floer homology and then state the rank formula for 

HF. We also prove a corollary of the rank formula and other important results. 

In Section 5.2 we give the proof of Theorem A and its two corollaries. Finally in 

Section 5.3 we give examples of families of knots in S 3 which do not admit truly 

exceptional cosmetic surgery. 

5.1 Results from Heegaard Floer theory 

Recall from chapter 4 section 4.2 that knot Floer homology associates to a null­

homologous knot K a 'li, EB 'll,-filtered 'li, [U]-com pl ex CF K 00 (Y, K) , generated over 

'li, by (11' a n11' f3 ) X (ZEBZ) equipped with a fonction F : (11' a n 11' f3 ) X (ZEBZ) ---+ 'll, Efl 'll, 

with thepropertythat F (U · [x ;i, j]) = (i- 1,j -1) and F ([y;i' ,j']) ::; F ([x ;i,j]) 

for all y having nonzero coefficient in 8x. 

For a region S in the plane with the property that (i, j) E S implies (i + 
1, j), or (i, j+l) ES, let Cx{S} be the natural quotient complex of CF K 00 (Y, K) 

generated by [x ;i,j] with (i,j) ES. For an integer s, we define 

Âs(K ) := Cx{max(i,j - s) = O} and Ê(K) := Cx{i = 0}. 

There are two canonical chain maps Vs : Âs ---+ Ê and hs : Â---+ Ê. The map 

iis is projection onto C{i = O} , while hs is projection onto C{j = s}, followed 

by the identification with C{j = O} , followed by the chain homotopy equivalence 

from C{j = O} to C{i = O}. 
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Now fix two coprime integers p, q with q > 0, and consider the two chain com­

plexes 

Â = ffi (t, ÂL~ J ), JIB = ffi (t, Ê) , 
t EZ tEZ 

where lx J is the largest integer not greater than x . An element of A could be 

written as { (t, at)}tEZ with at E ÂL~J. Define a chain map Dp/q : Â ---+ JIB by 

where 

bt = v(at) + h(at-p)· 

Let Xp/q(K) be the mapping cone of Dp/q· 

The new complex Y:,p/q naturally splits into the direction sum of p subcomplexes 

p-1 

xp/q = E9 X.i,p/q, 
i=O 

~ ~ ~ 

where Xi,p/q is the subcomplex of Xp/q containing all At and Et with t i 

(modp). 

The Heegaard Floer homology HF(YK(p/q)) is determined by the mapping cone 

Xp/q: 

Theorem 5.1.1. (Ozsvath and Szab6, 2011) Let K C Y be a nullhomologous 

knot and p, q a pair of coprime integers. Then, for each i E 'll/p'll , there is a 

relatively graded isomorphism of groups 

where .si is the Spinc structure corresponding to i E 'll/p'll . 

Ozsvath and Szab6 ( Ozsvath and Szab6, 2011) used this rational surgery formula 

for the case of 5 3 and, later, Zhongtao Wu (Wu, 2011c) did the same thing for 
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integral homology L-spaces to find a rank formula for HF(YK(p/q). We are now 

going to describe this rank formula. Let Y be an integral homology L-space and 

let K be a knot in Y. 

Definition 5.1.2. Define vy(K) by 

vy(K) = min{s E Z lvs: Âs----+ CF(Y) induces a non-trivial map in homology}. 

Let m(K) C -Y be the mirror image of the knot K c Y; that is m(K) is 

topologically the same as K with its original orientation but now the ambient 

manifold is given the opposite orientation. When Y = S3 , m(K) is the mirror 

image in the usual sense if we apply the refiection in S3 which is orientation 

reversing. Either vy(K) or v_y(m(K)) is non-negative, so since the rank of HF 

does not depend on orientation and YK(p/q) ~ -Ym(K)(-p/q), we can assume 

without loss of generality that vy(K) 2:: O. 

We can now state the rank formula for the Heegaard Floer homology of a rational 

surgery. 

Proposition 5 .1.3. ( Ozsvâth and Szab6, 2011) Let K be a knot in an integral 

homology L-space Y, and fix a pair of relatively prime integers p and q with p =1- 0 

and q > O; and suppose that vy(K) 2:: v_y(m(K)). Then, if vy(K) > 0 or p > 0, 

rank(HF(Yp/q(K)) = p + 2max(O, (2vy(K) - l)q-p) + q(I)rankH*(Âs) -1)); 
s 

if vy(K) = 0, we have that 

s 

Notice that the term As is the complex in the mapping cone formula for rational 

surgery and satisfies rankH*(Âs) 2:: 1 for each s so that 

s 
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This proposition has the following immediate corollary about L-space surgeries 

on Y . 

Corollary 5.1.4. Let K be a knot in an L-space integral homology sphere Y and 

fix a pair of relatively prime integers p and q with p #- 0 and q > O. If Yx(P/ q) 

is an L-space then Y K (p) is also an L-space. 

Proof. Without loss of generality we can assume vy(K) ~ O. 

If vy(K) = 0, and YK(p/q) is an L-space then 

s 

Since q > 0 and L s(rankH*(Âs) - 1) ~ 0, we obtain that 

s 

ow for Yx(P) we have the rank formula 

s 

Assume vy(K) > 0, then vy(K) ~ 1 since it is an integer. Similarly q ~ 1, so 

1 :::; (2vy(K) - 1) :::; (2vy(K) - l )q. 

ow assume that Yx(p/ q) is an L-space and let us consider the case p > 0, we 

obtain 

rank(HF(Yx(p/q)) = p+2max{O, (2vy(K)- l)q-p}+q(L.)rankH*(Â8 )-l)) = p > O. 
s 

Since both p, max{O, (2vy( K) - l )q - p} and (.2:
8
(rankH*(Âs) - 1) are non-

negative we have 

max{O, (2vy( K ) - l )q- p} = l:)rankH*(Âs) - 1) =O. 
s 
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Hence (2vy(K) - 1) :::; (2vy(K) - l)q:::; p, and (2vy(K) - 1) - p:::; O. It follows 

that max{O, (2vy(K) -1) - p} = 0 and the rank formula for Yx(P) gives 

rank(HF(Yx(p)) = p+ 2max{O, (2vy(K)-1) -p} + (L )rankH*(Â8 )- 1)) =p. 
s 

If p < 0 and Yx(p/ q) is an L-space, we can write the rank formula as follow: 

rank(HF(Yx(p/ q)) = -jpj+2max{O, (2vy(K)-l)q+IPl}+q(L(rankH*(Âs)-1)) = IPI· 
s 

Using the fact that 0:::; 1 :::; (2vy(K) - l)q we have 

rank(HF(Yx(p/ q)) = -IPI + 2(2vy(K) - l)q + 2IPI + q(L(rankH*(Âs) - 1)) 
s 

s 

Since both summands in the last line are non-negative we have 

s 

From this we can deduce the rank of HF(Yx(P) 

s 

Therefore in all cases rank(HF(Yx(p)) = IPI and Yx(P) is an L-space. D 

Using the same mapping cone construction as in the rational surgery formula, Ni 

and Zhongtao Wu proved an inequality between the correction terms of the lens 

space L(p, q) and of the manifold obtained after surgery. 

Theorem 5.1.5. (Ni and Wu, 2013) Suppose p, q > 0 are coprime integers and 

r = p/ q. Then 

d(S3x(p/ q) , i) :::; d(L(p, q) , i) 

for all i E Z/pZ, where the Spinc structures on SJ,;(r) has been identified to Z/pZ 

according to the construction of the mapping cone. 
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When K is a knot in an integral homology L-space Y admitting an L-space -surgery, the following characterization of HF K(Y, K) will be useful. It was 

proved in [(Ozsvath and Szab6, 2005) theorem 1.2] for the case of S3 and stated 

in [(Wu, 2011c) Proposition 3.7] for the more general case of L-space homology 

spheres. 

Proposition 5.1.6. Suppose K C Y is a knot in an integral homology L-space. 

If there is a rational number r for which Yr ( K) is an L-space, then there is an 

increasing sequence of integers n _k < .. . < n k with the property that n i = - n -i, - -and HFK(K, j ) = 0 unless j = n i for some i, in which case HFK(K , j ) ~ Z. 

An immediate corollary [(Wu, 2011c) Corollary 3.8] is a simplified expression for 

the Alexander polynomials of such knots. 

Corollary 5.1.7. Let K be a knot that admits an L-space surgery. Then the 

Alexander polynomial of K has the form 

k 

6.K (T) = (-l)k + 2:) - l) k-i(T ni +T-ni ), 
j = l 

for some increasing sequence of positive integers 0 < n 1 < n 2 < ... < nk . 

Next we state a result by Rustamov which gives a relation between Casson­

Walker invariant and the "renormalized Euler characteristic" of the Heegaard 

---Floer homology HF. 

Theorem 5 .1.8 . (Rustamov, 2004) For any rational homology sphere M we have 

IH1(M) I >-.(M) = L ( x(HFred(M,s)) - ~d(M, s)) 
sESpinC( M ) 

where >-.(M) is the Casson- Walker invariant of M and d stands for the correction 

term in Heegaard Floer homology. 
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We can now prove the following proposition, a part of a result by Zhongtao Wu 

and Yi i. We reproduce a proof here for convenience of the reader. This is one 

of the main ingredients for the proof of Theorem A. More precisely, it will imply 

that the cosmetic surgery cannot be Seifert fibred. 

Proposition 5.1.9 . (Ni and Wu, 201 3} Let p, q > 0 be two coprime integers. If 

there is an orientation preserving homeomorphism between SJ.: (p / q) and SJ.: ( - p / q) 

th en 

L x(HFred(Sl(p/ q) ,s)) =O. 
sESpinc(S}(p/ q)) 

Proof. Letting r = p/ q, from Theorem 5.1.8 we have 

IH1(Sl(r))I >-(Sl(r)) = L ( x (HFred(Sl(r) ,s) - ~d(Sl(r),s)) . 
sESpinc(S}(r)) 

On the other hand we have the following surgery formula for Casson-Wlaker 

invariant from Proposit ion 3.1.2, 

However >-(S3
) = 0 and we must have 6.'f<-(1) = 0 by Proposition 3.3.1. Hence 

>- (Sl(p/ q)) = >- (L(p , q)). 

Using again Theorem 5.1.8, the correction terms for lens space L(p , q) satisfies 

P >-(L(p,q)) 

Therefore 

L ( x(HFred(Sl(r), s) - ~d(Sl(r) , s)) 
sESpinc(S}(r)) 

1 L -2d(L(p , q) ,s), 
sESpinc ( L(p,q) ) 
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From Theorem 5.1.5 we have that for each Spinc structure .s 

d(Sk(r) ,.s) :S d(L(p , q) ,.s). 

Thus, 

L x(HFrect(Sl(r),.s)) :S O . 
.sESpinc(sk (r)) 

On the other hand, we can do similar argument for S'k(r') = S'k(-r) to get 

L (x(H Frect(Sf<(- r),.s) - ~d(Sk(-r) , .s )) 
.sESpinc(Sk( - r)) 

1 L -2d(L(p, -q),.s) . 
.sESpinc(L(p,-q)) 

Since we have an orientation preserving homeomorphism between S'i<(r) and 

Si<( -r) and that the total rank of H Fred does not depend on orientation, we 

have 

Recall that for a knot K in S3 we have S'k ( r) = -S!(K) ( -r) w here m ( K) is the 

mirror image of K. Then if S'i<(r) = S'k(-r), using the properties of d, we get 

for all .s 

d(Sk(r) ,.s) = d(Sk(-r) ,.s) = -d(S!(K)(r),.s). 

On the other hand, by exchanging the role of m(K) and K , we also have for all .s 

d(S!(K)(r) , .s) :S d(L(p,q) ,.s). 

From this it follows that 

-d(S!(K)(r) ,.s) ~ d(L(p, -q) ,.s) i. e d(Sl(r) ,.s) ~ d(L(p , -q),.s). 
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Thus, 

L x(HFred(Si(r), s )) 2: o. 
sESpinc(z ) 

This implies 

L x(HFred(Si(r) ,s ) =o. 
sESpinc(Sf<.(r) ) 

D 

The next proposit ion, due to Ozsvath and Szab6, will be essential for excluding 

the possibility of a rational homology 3-sphere Seifert fibred cosmetic surgery. 

Proposition 5. 1.10. (Ozsvâth and Szabô, 2003b) Let Y be a rational homology 

3-sphere Seifert fib red space. Then for one of the orientations of Y , H Fred (Y) is 

supported in even degree. 

Corollary 5.1.1 1. (Ni and Wu, 2013) There are no truly cosmetic surgeries on 

a non-trivial knot in S3 which yield a rational homology sphere Seifert fibred 

space. 

Proof. Let K be a non-t rivial knot in 5 3 . Let us suppose that there is an ori­

entation preserving homeomorphism between S'k ( r) and S'k ( -r) , by Proposit ion 

5. 1.9 

L x(HFrect(Si(r) ,s )) =o. 
s ESpinc(Si(r) ) 

On the ot her hand by Proposition 5.3.1 , we can assume H Frect(S°k(r)) is supported 

in even degree so 

L x(H Frect(Si(r) ,s )) = ± rank H Fred(Si(r)) . 
sESpinc(Sk(r )) 
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Therefore we must have HFred(Sk:(r)) = 0 in which case Sk:(r) is an L-space. In 

particular the knot K adroits an L-space surgery. By Corollary 5.1.4 of the rank 

formula, K adroits an integral L-space surgery and by Corollary 5.1.7 the knot 

Floer homology satisfies: there is an increasing sequence of integers n_k < ... < nk -with the property that ni = -n-i, and HF K (K , j) = 0 unless j = ni for some -i, in which case HF K(K, j) ~ Z. This implies that the Alexander polynomial of 

K has the form 

k 

6.K(T) = (- l)k + 2:)-l )k- J(Tni +T-ni), 
j=i 

for some increasing sequence of positive integers 0 < ni < n2 < ... < nk . 

- -If 6.K(T) = 1, then HF K(K, 0) = Z, and HF K (K , j) = 0 for any other j. Hence 

g(K) = 0 and K is the unknot, which we have excluded. 

Thus 6.K(T) =/. 1 and by a straightforward computation 

k 

6.~(1) = 2 2:)-l )k-jnJ. 
j=i 

Then the fact that 0 < ni < n2 < ... < nk implies 6.~(1) =/.O. Using Proposition 

3.3.1, K does not admit a truly cosmetic surgery. 

D 

5.2 Proof of Theorem A 

Lemma 5.2.1. Let K be a hyperbolic knot in S3, and r, r' E QU { oo} two distinct 

exceptional slopes on 8N(K). If SK(r) is homeomorphic to SK(r') as oriented 

manifolds, then r and r' are in the following table 
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r 2 1 1/2 1/ 3 1/ 4 

r' -2 -1 -1/ 2 -1/3 -1 / 4 

Table 5.1 Slopes of exceptional truly cosrnetic surgeries on S3 . 

Proof. Write r = p/ q and r' = p/ q'. By Ni and Zhongtao Wu (Ni and Wu, 2013) 

r = -r' so q = -q', then ~(r, r') = plq - q'I = 2plql ::; 8 i.e pJqJ ::; 4. Therefore 

p E {1 , 2, 3, 4}. If p = 1 then lql ::; 4 and we have the caser E {1 , 1/ 2, 1/ 3, 1/ 4}. 

If p = 2 then JqJ ::; 2, since q is odd we have JqJ = 1 so r = 2. Now we need to 

exclude the case p E {3, 4}. 

An orientation preserving horneornorphisrn f : M(p/ q) ---+ M(p/q') induces an 

isornorphisrn f* : H1 (M(p/q)) ---+ H1(M(p/q')) . Since H1(M(p/q)) = 'll/p'll is 

generated by the class [µ]q of the rneridian, 

for sorne unit u E ('ll/p'll)*. 

Let 's recall that the linking pairing of M (p / q) is a non-degenerate bilinear forrn 

lkq: Tor(H1 (M(p/ q))) 0 Tor(H1 (M(p/ q)))---+ Q/Z, 

which is defined via sorne intersection count. One can check that 

To see this, let D be a rneridian disk for the surgery torus such that pµ+qÀ = 8D, 

in M(p/ q). Since Y is a 'll-hornology sphere >w = [)L, for sorne surface 'L,. Then 

pµ = 8D - q[)L, = 8 (D - qL,) and by definition 
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where the dot . denotes the intersection number. Now µ can be pushed off of D 

so D . µ = 0, and [}L, = >w Li so Li • µ = 1. Therefore 

The map f induces an isomorphism between the linking pairing of M (p/ q) and 

M (p / q') since it preserves oriented intersection numbers. Therefore 

Thus 

lkq([µ ]q , [µ]q) = lkq(f* [µ] q, f* [µ] q) [mod Z] 

= lkq' ([µ] q' u, [µ] q' u) [mod Z] 

= lkq( [µ] q' , [µ]q,)u2 [mod Z]. 

q - q' 2 
-- = --u [mod Z] , i.e q = q'u2 [mod p] . 

p p 

We apply t his congruence t o the case p E { 4, 3}. For p = 4 (resp. p = 3), 

u E {1 , 3} (resp. u E {1 , 2} ). Therefore u2 = 1 and q = q' [mod 4], but 

q' E {q + 1, q + 2} by Lemma 1.3.12 which is not possible. Thus p tj_ {3 , 4} . 

D 

In these two lemmas it is essent ial t hat int(M) has a complete finite volume 

hyperbolic structure since the bound is on the diameter of E(M). Thus the 

examples given in (Mathieu, 1992) do not fall into this category. 

For a hyperbolic knot K in S3 , if we take into account the type of manifold 

obtained after surgery we have the following lemma. 

Lemma 5.2.2. There are no truly cosmetic surgeries on hyperbolic knot in S 3 

which yield a reducible m anifold. 
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Proof. If K c S3 is a hyperbolic knot and r, r' are two reducible slopes on N(K ) 

then 6.(r, r') :S 1, see table 1.1. However by Lemma 5.2.1, the distance between 

two cosmetic slopes must be at least two. This is not possible. D 

Proof of Theorem A. Let K be a hyperbolic knot in S 3 , and r, r' E Q U { oo} 

two distinct except ional slopes on âN ( K). Assume S K ( r) is homeomorphic t o 

SK(r') as oriented manifolds. By Lemma 5. 2.2 and Corollary 5. 1.11 SK(r ) is 

irreducible and non-Seifert fibred . Therefore since the manifold is not hyperbolic 

it contains an essential torus. On the other hand, by Theorem 2.2.6, if SK(r) is 

toroïdal and r = p / q t hen 1 ql :S 2. Therefore using the distance table 1.1 and 

t able of Lemma 5.2. l we can deduce that: r = 2 and r' = - 2, or r = 1 and 

r' = - 1, or r = 1/ 2 and r' = -1 / 2. 

By Theorem 2.2.7, if t here is a non-integral slope on â(S3 \ N (K )) which gives a 

toroidal manifold t hen K is one of t he Eudave-Munoz knots k(l, m , n ,p) and the 

surgery is t he corresponding half-integral surgery. Therefore t here is at most one 

slope which can give an essential torus. Thus t here is no non-integral cosmetic 

slope which gives a t oroidal manifold. This excludes t he case r = 1/ 2 and r' = 

-1 / 2. 

Now we have eit her r = 1 or r = 2. If r = 2 t hen 6. (2 , -2) = 4 and Theorem 

2.2.8 gives t he complet e list of all hyperbolic knots in S 3 with two toroidal slopes 

r 1 and r 2 at distance 4. Precisely, t here is an integer n and an homeomorphism 

of S3 which send t he triple (K , r 1 , r 2) t o (L1 (n); 0, 4), n =J 0, 1 or (L2 (n ); 2 -

9n, - 2 - 9n), n =J 0, ±1. Where Li(n) , i = 1, 2 denotes the knot obtained from 

the right component of t he link Li, i = 1, 2 (see figure below) after 1/n surgery 

on t he left component 
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The links L 1 and L 2 from left to right 

The manifold obtained after surgery is then S 3 (L 2 (n); 2 - 9n) or S 3 (L2 (n); -2 -

9n) or S3 (L 1(n); 0) or S 3 (L2 (n); 4). Therefore we can check that 

Since n i=- 0, this completes the proof of Theorem A. 0 

Sorne corollaries. Theorem A also induces the following results about the 

reduced Heegaard Floer Homology of Y correction terms. 

Corollary 5.2.3. If a 3-manifold Y is the result of an exceptional truly cosmetic 

surgery on a hyperbolic knot K in S 3 then: 

n 

lto(K)I + 2 L lti (K)I::::; rankH Frect(Y), 
i=l 

where the number ti(K ) for i E Z is the torsion invariant of the Alexander poly­

nomial !::::..K (T) of K and n is the degree of !::::..K (T). 

This lower bound is strictly positive if !::::..K(T) i=- 1 since in this situation not all 

the torsion ti(K) are zero. 

Proof. Let K C S3 be a hyperbolic knot such that there is an orientation preserv­

ing homeomorphism between si ( r) and si ( r') for two distinct rational numbers 
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r and r'. Let Y = S'k ( r), by Theorem A we can assume r = + 1. By Theorem 

4.1.51 we have the inequality: 

n d(S3 ) d(Y) 
Jto(K)j + 2 L Jti(K)j :S rankHFrect(S3

) + -
2

- + rankHFrect(Y) - -
2
-, 

i=l 

where the number ti(K) for i E Z is the torsion invariant of the Alexander 

polynomial .6.K(T) of K and n is the degree of .6.K (T) . On the other hand we 

also have the identity: 

d(Y) 
>.(Y)= x(HFrect(Y)) - -

2
-

from Theorem 5.1.8. We also know that rankH Frect(S3 ) = d(S3
) = O. ow by 

the surgery formula for Casson invariant 

>.(Y)= >.(S3
) + >.(L(l, 1)) + .6.~(1) = .6.~(1) 

and by Proposition 3.3.1 .6.~(1) = 0, thus >.(Y) = O. By Proposition 5.1.9 

x(HFrect(Y)) = 0, hence d(Y) =O. This proves the desired result. D 

Corollary 5.2.4. If a hyperbolic knot K C 53 admits exceptional truly cosmetic 

surgeries then the Heegaard Floer correction term of any l /n (n E Z) surgery on 

K satis.fies 

d(Sk(l / n)) =O. 

Proof. Let K be as in the proof of Corollary 5.2 .3. Let d1; 2(S'J,;(O)) and d_1; 2(S'k(O)) 

be the two correction terms for the 0-surgery along K as defined in Chapter 4. 

Let n be a positive integer, by Proposition 4.1.48, 

d1; 2(S_k(O)) - ~ ::::; d(S_k(l/(n + 1))) ::::; d(Si(l / n)) ::::; d(S3
) = O 

By Proposition 4.1.4 7 we have 

3 1 3 
di;2(SK(O)) - 2 = d(SK(+l)). 

By the proof of Corollary 5.2.3 d(S'i<(+l)) = 0, this completes the proof. D 
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5.3 Cosmetic surgeries on some special classes of knots 

As consequences of Theorem A, let us give some results about cosmetic surgeries 

along algebraic knots, alternating knots and arborescent knots in S 3 . 

5.3.1 Algebraic knots. 

An algebraic knot K c S 3 is the link of an irreducible complex plane curve 

singularity t hat is, K is the transversal intersection 

K = {f = O} n s: 
where f : (<C2 , 0) ---7 (CC, 0) is an irreducible polynomial, and s: = { z E <C2 : 

[ [z[ [ = E} for E > 0 sufficiently small. The natural orientations of S 3 and of the 

regular part of {f = O} induces a natural orientation on K . When {f = O} is 

not smooth at the origin, K is not the unknot. The Heegaard Floer homology of 

the result of a surgery on an algebraic knot has been computed by émethi in 

(Némethi, 2007). 

Proposition 5.3 .1. (Némethi, 2007) Let K c S 3 be an algebraic knot, p, q > 0 

two coprime integers and Y = - S'i<: ( -p / q) . Then H Frect (Y) is supported in even 

degree. 

This leads to the following corollary. 

Corollary 5.3.2. There are no truly cosmetic surgeries on non-trivial algebraic 

knot in S 3 . 

Proof. The proof is similar to the proof of Corollary 5.1.11 since the H Fred of the 

result ing manifold is supported in even degree by Proposit ion 5.3. l. D 
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5.3 .2 Alternating knots. 

Combining Theorem A with work of Ichihara and Masai, we have the following 

result for alternating knot in S3. 

Corollary 5.3 .3 . There are no exceptional truly cosmetic surgeries on an alter­

nating hyperbolic knot in S3
. 

Proof. The corollary is a consequence of the classification of exceptional surgeries 

on alternating knots (Ichihara and Masai, 2013) combined with Theorem A. By 

their classification if an alternating hyperbolic knot in S3 admits an exceptional 

surgery with slope r, then either: 

• K is a twist knot K[2n, ±2] for n -=f. 0 (which includes the figure-8) , 

• K is a two bridge knot K [a,b] with lai , lbl > 2 and r = 0 if both a, b are even 

and r = 2b if a is odd and b is even, 

• K is a pretzel knot P(a , b, c) with a, b, c -=f. 0, ± 1 and r = 0 if a, b, c are 

all odd and r = 2(b + c) if a is even and b, c are odd. Moreover S'f<(r) is 

toroïdal but not Seifert fibred. 

The Alexander polynomial of a twist knot K[2n, ±2] is 6.K(t) = 2n+ l-n(t+t-1 ), 

so 

6.~ ( 1) = -2n -=f. O. Therefore by Proposition 3.3.l we cannot have truly cosmetic 

surgery for the first case. For the last two cases r -=f. ±1, so these exceptional 

slopes cannot be t ruly cosmetic slopes by Theorem A. D 
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5.3.3 Arborescent knots. 

Another class of knots in 5 3 is the class of arborescent knots. Let ( B , t) be the 

pair consisting of the 3-ball B 3 and a pair t of two properly embedded arcs in B. 

The pair (B, t) is called a 2-tangle. It is called a rational tangle if there exists an 

orientation preserving homeomorphism of pairs: 

f: (B, t) --4 (D2 x[O, 1], {x , y} x [O, 1]) 

where x, y E int(D2
). Two examples of rational tangles are the tangle [O] and [oo] 

shown in Figure 5.1. The four endpoints of a 2-tangle lie on the boundary 52 of 

@ @ 
[ü] [oo] 

Figure 5.1 [O] and [oo] tangles. 

B 3
. Any rational tangle can be obtain from [O] or [oo] by doing a finite number 

of twists of the neighbourhood of the end points in 52 . 

Nowa Montesinos tangle is a sum of several rational tangles. Here the sum oper­

ation of two 2-tangles consists of putting them next to each other and connecting 

them with two horizontal arcs as shown in Figure 5.2. 

········0 Rn ......... 

Figure 5.2 A Montesinos tangle. 

In Figure 5.2 we sum n rational tangles R1 , · · · , Rn to get a Montesinos tangle. 
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Now let T and S be two 2-tangles. We can perform three operations with T and 

S: sum, product and inversion. These operations are shown in Figure 5.3. 

sum product inversion 

Figure 5.3 Sum, product and inversion of tangles. 

We can also close a 2-tangle and get a link or a knot. There are two ways of 

doing this: the numerator closure and the denominator closure. The first is done 

by connecting the four endpoints by two horizontal arcs and the last is done by 

joining them with two vertical arcs. These processes are shown in Figure 5.4. 

denominator 
numerator 

Figure 5.4 Numerator and denominator closure of a 2-tangle. 

Finally an arborescent tangle is a 2-tangle obtained by performing a finite number 

of sum, product and inversion operation in any order with Montesinos tangles. 

We can now define what is an arborescent link or knot. 
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D efinition 5.3.4. An arborescent link is a link in S3 obtained by taking the 

numerator or denominator closure of an arborescent tangle. An arborescent knot 

is a one component arborescent link. 

Now Theorem A implies the following result about cosmetic surgeries along ar­

borescent knots. 

Corollary 5 .3 .5. There are no exceptional truly cosmetic surgeries on arbores­

cent knots in S3
. 

Proof. In light of Theorem A we only have to check that ± 1 surgery on an 

arborescent knot do not yield two homeomorphic toroidal manifold. Following 

Ying-Qing Yu, there are three types of arborescent knots: type I, type II and 

type III. By Theorem 3.6 of (Wu, 1996), every non-trivial surgery on a type III 

arborescent knot gives a hyperbolic manifold, therefore we shall focus on type II 

and type I arborescent knots. For type I, they are Montesinos knots with length 

at most 3, which again split as 2-bridge knots and Montesinos knots of length 

3. The 2-bridge knots which admit toroidal surgeries are given in Theorem 1.1 

of (Brittenham and Wu, 2001) and they are among the knots in Corollary 5.3.3, 

hence they do not admit truly cosmetic surgeries. The case of Montesinos knots 

of length 3 is dealt with in (Wu, 2011a), precisely if K is a Montesinos knot of 

length 3 and ô is a slope on aN ( K ), then Si ( ô) is toroïdal if and only if, following 

notation in (Wu, 2011a) , (K, ô) is equivalent to one of 

• K = K(l / q1 , l / q2 , l / q3), qi odd, lqil > 1, ô = O. 

• K = K(l / q1, l / q2, l / q3) , q1 even, q2 , q3 odd, lqil > 1, ô = 2(q2 + q3)· 

• K = K(- 1/2, 1/3, 1/(6 + l /n)), n =/= 0, -1 , ô = 16 if n is odd, and 0 if n 

is even. 
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• K = K(-1 / 3, - 1/ (3+ l / n), 2/ 3), n-/= 0, -1, ô = -12 when n is odd, and 

ô = 4 when n is even. 

• K = K(-1 / 2, 1/ 5, 1/(3 + l / n)) , n even, and n-/= 0, ô = 5 - 2n. 

• K = K(-1/ 2, 1/ 3, 1/(5 + l / n)) , n even, and n-/= 0, ô = 1 - 2n. 

• K = K(-1/(2 + l / n), 1/ 3, 1/ 3), n odd, n-/= -1, ô = 2n. 

• K = K(-1 / 2, 1/ 3, 1/(3 + l / n)) , n even, n-/= 0, ô = 2 - 2n. 

• K = K(-1 / 2, 2/ 5, 1/ 9), ô = 15. 

• K = K(-1/2, 2/ 5, 1/ 7) , ô = 12. 

• K = K(-1/2, 1/ 3, 1/ 7) , ô = 37 / 2. 

• K = K(-2/ 3, 1/ 3, 1/4), ô = 13. 

• K = K(-1/3, 1/ 3, 1/ 7) , ô = 1. 

After checking this list for knots which are listed more than once we notice that 

there are at most three toroidal slopes. A knot K(t1 , t 2 , t3 ) adroits exactly two 

toroidal surgeries if and only if it is equivalent to one of the following 5 knots: 

K(-1 / 2, 1/ 3, 2/ 11), ô = 0 and - 3; 

K(-1 / 3, 1/ 3, 1/ 3) , ô = 0 and 2; 

K(-1 / 3, 1/ 3, 1/ 7), ô = 0 and l ; 

K(-2/ 3, 1/ 3, 1/ 4) , ô = 12 and 13; 

K(-1 / 3, -2/ 5, 2/ 3) , ô = 4 and 6. 

and it adroits exactly three toroidal surgeries if and only if it is the figure-8 or the 

knot K (-1/ 2, 1/3, 1/ 7). No pair of toroidal slopes corresponding to these knots 
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admitting more that one toroïdal slope are ± 1 in the standard Seifert framing so 

this excludes the possibility of truly cosmetic surgery. 

The remaining case is that of type II arborescent knots. There are knots that have 

a Conway sphere cut ting it into two Montesinos tangles of type T (ri, 1/ 2), i = 1, 2 

where ri E Q U {oo} . According to Theorem 1.1 of (Wu, 2011b) , there are 

t hree distinct knots K 1 , K2 , K3 such that an arborescent knot K E S3 admits an 

exceptional slope ô if and only if (K , ô) is isotopie t o (K 1, 3), (K2 , 0), (K3 , -3), 

in which case t he slope is toroïdal. Therefore since there is exactly one slope for 

each knot , there are no truly cosmetic surgeries. 

D 



CHAPTER VI 

EXCEPTIONAL COSMETIC SURGERIES ON Z-HOMOLOGY SPHERES 

In t his chapter we deal with the case of exceptional cosmetic surgeries along knots 

in an integer homology sphere. This is a generalisation of the case of 53 . In what 

follows µ will denote a meridian for a knot and >w its preferred longitude. The 

main result for this slight ly more general case is: 

Proposition 6.1.7. Let Y be a Z-homology sphere, K C Y a hyperbolic knot 

and M =Y \ N(K). Assume we use a preferred basis {µ , >w} for 7r1 (8M) . Let 

r = p / q and r' = p / q' be exceptional slopes such that 0 < p and q < q' . If M ( r) 

is homeomorphic ta M(r' ) as oriented manifolds, then the surgery gives either 

(a) a reducible manifold in which case p = 1 and q' = q + 1, 

(b) a toroidal Seif ert fibred manifold in which case p = 1 and q' = q + 1, 

(c) an atoroidal small Seif ert manifold with infinite fundam ental group in which 

case we have the fo llowing possibilities 

• p = 1 and lq - q' I ::; 8. 

• p = 5, q' = q + 1 and q = 2 [mod 5]. 

• p = 2, and q' = q + 2 or q' = q + 4 . 
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( d} a toroidal irreducible non-Seifert fibred manifold in which case p = 1 and 

lq' - ql ::; 3. 

We give a proof of Proposition 6.1.7 in Section 6.1. In Section 6.2 we deal with 

questions related to the knot complement problem for L.;(2, 3, 5). 

6.1 Cosmetic surgeries on hyperbolic knots in integer homology spheres 

We will prove Proposition 6.1. 7 by using a series of lemmas and preliminary 

results. 

Lem ma 6. 1.1. Let K be a knot in a Z-homology sphere Y , M = Y \ N(K) and 

let >w be the preferred longitude. Consider the basis {µ , >w} for 7r1 ( aM) . Let p/ q 

and p/q' be exceptional slopes such that 0 < p and q < q' . If M(p/q) ~ M(p/q') 

then one of the following holds: 

(a) p = 1 and lq - q'I ::; 8. 

(b) p = 5, q' = q + 1 and q = 2 [mod 5] . 

(c) p = 2, and q' = q + 2 or q' = q + 4. 

Proof. Since Y is a Z-homology sphere, H1(M(p/ q) ) = Z/pZ is generated by the 

class [µ]q of the meridian µ. As argued in the proof of Lemma 5.2.1, an orientation 

preserving homeomorphism f : M(p/ q) ---+ M(p/ q') will induce an isomorphism 

f* : H1 (M(p/ q)) ---+ H 1 (M(p/ q')) such that f* [µ]q = u [µ]q , for some unit u in 

Z/pZ. Moreover , it gives an isomorphism between the linking pairing of M(p/ q) 

and M(p/ q') , and we must have 

q q' -- = --u2 [mod Z], i. e q = q'u2 [mod p]. 
p p 

, 
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From Lemma 1.3.12 we have p E {7, 5, 4, 3, 2, 1 }. We then apply the above 

congruence relation to these cases to obtain the result. For p = 1 it is Lemma 

1.3.12 (a) . 

• Case p = 7. By Lemma 1.3.12 q' = q + 1. The squares modulo 7 are 1, 2 

and 4, they are all units so 

q = q+l [mod 7] or q - 2(q+l) [mod 7] or q = 4(q+l) [mod 7]. 

The first equation is impossible and the last two are equivalent to 

q - 5 [ mod 7] or q = 1 [ mod 7] . 

By a straightforward computation 

-1 
s(5, 7) = 14, -5 

s(6, 7) = 14, 5 
s(11 7) = 

14
, 

1 
s(2, 7) = 

14
. 

Using the fact that s(a,p) = s(b,p) if a - b [mod p], we get 

If q = 5 [ mod 7], 

-1 -5 
s(q, 7) = s(5, 7) = l4 =/: l4 = s(6, 7) = s(q + 1, 7) 

If q = 1 [ mod 7], 

5 1 
s(q, 7) = s(l , 7) = 

14 
=/: 

14 
= s(2, 7) = s(q + 1, 7) 

This contradicts Lemma 3.3.2 which says that we must have s(q,p) 

s(q',p). 

• Case p = 5. By Lemma 1.3.12 q' = q + 1. The squares modulo 5 are 1 and 

4, the only unit among them is 1, therefore 

q - q + 1 [mod 5] or q = 4(q + 1) [mod 5]. 

the first equation has no solut ion and the second is equivalent to 

q = 2 [mod 5]. 
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• Case p = 4. By Lemma 1.3.12 q' E {q + 1, q + 2} . The only square modulo 

4 is 1 therefore 

q = q + 1 [mod 4] or q = q + 2 [mod 4] . 

these equations have no solutions so the case p = 4 is not possible. 

• Case p = 3. By Lemma 1.3.12 q' E {q + 1, q + 2}. The only square modulo 

3 is 1, therefore this case is also impossible. 

• Case p = 2. By Lemma 1.3.12 q' E {q + 2, q + 4}. 

D 

By using result of Gordon on toroidal exceptional slopes at large distance, we can 

get more restrictions on the slopes which gives cosmetic toroidal fillings. 

Lemma 6.1.2 . Let M be a hyperbolic knot manifold in an integral homology 

sphere and let r, s be two slopes on 8M. If M(r) and M(s) are toroidal and if there 

is an orientation preserving homeomorphism between them, then 6.(r, s) :S 3. 

Proof. We will distinguish the cases 6.(r, s) > 5 and 6.(r, s) = 5, or 4. 

Let W be the Whitehead link exterior. By Theorem 2.2.5 if 6.(r, s) > 5 then 

either 

• 6.(r, s) = 6 and Mis homeomorphic to W(2) 

• 6.(r, s) = 7 and Mis homeomorphic to W(-5/ 2) 

• 6. (r, s) = 8 and Mis homeomorphic to W(l) or W(-5) 



Then manifold M(r) is then obtained by surgery on the Whitehead link with 

coefficients {2, aifbi} or { -5/ 2, a2/ b2 } or {1 , a3/ b3 } or { -5, a4/ b4 }. We can then 

compute the order of the first homology using this coefficient , 

2 0 

where K 1, K2 denotes the two components of the Whitehead link and lk(K1 , K2) 

their linking number. Similarly we get for the other possibilities 

-5 0 - 5 0 
or IH1(M(r))I = = - 5a4. 

0 a4 

On the other hand if .6.(r, s) > 5 then M(r) must be a homology sphere by Lemma 

6.1.l. Therefore these three possibilities cannot occur. The remaining case is 

M(r) = W(l) which is the figure-8 complement and t here are no truly cosmetic 

surgery along t he figure-8 knot , as we can check for instance that .6.~gure-s(l) i= 0 

and use Proposition 3.3. l. 

Now we can assume .6. (r,s) E {4,5}. Let's recall Theorem 2.2.1 

There exist fourteen 3-manifolds Mi, 1 ::; i ::; 14, such that 

(1) Mi is hyperbolic, 1 ::; i::; 14; 

(2) 8Mi consists of two tori T0 , T1 if i E {1 , 2, 3, 14} , and a single torus T0 other-

wise; 

(3) there are slopes ri, Si on the boundary component To of Mi such that M(ri) and 

M(si) are toroïdal, where .6. (ri, si) = 4 if i E {1 , 2, 4, 6, 9, 13, 14} , and .6.(ri, si) = 5 

if i E {3, 5, 7, 8, 10, 11 , 12}; 

(4) if Mis a hyperbolic 3-manifold with toroidal Dehn fillings M(r), M(s) where 

.6.(r, s) = 4 or 5, then (M, r, s) is equivalent either to (Mi, ri, si) for some 1 ::; i::; 
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14, or to (Mi(t), ri, si) where i E {1, 2, 3, 14} and t is a slope on the boundary 

corn panent T1 of Mi. 

Here we define two triples (N1 , r 1 , s1 ) and (N2, r2 , s 2) to be equivalent if there 

is a homeomorphism from N1 to N2 which sends the boundary slopes (r1 , s1) to 

(r2, s2) or (s2, r2). 

The manifolds M1 , M2 , M 3 are the exterior of the following links 

(1) (2) (3) 

For i E {1 , 2, 3} we will denote KI and K:' the leftmost and rightmost 

components of the above links. Let t = a/ b be a slope on N(KD written 

in its Seifert framing. If a=/= 1 then H1 (Mi(t)) = Z EB Z/aZ =f Z = H1(M). 

Therefore we must have a = 1. But in this case we have a knot complement 

in S 3 and we know from Theorem A that the surgery must be ±1 surgery 

with respect to the Seifert framing , and therefore 6 ( r, s) = 2 which is not 

the case here. 

• Case M ~ M14 . Let t be a slope on the boundary component T0 of M14 , 

and let Kt be the core of the Dehn filling solid toms in M14 ( t). By Lemma 

2.2.3 

H1 (M14(t)) / H1(Kt) = Z/ 2Z EB Z/ 2Z. 

Therefore H1 (M14 (t)) =f Z = H1(M) . 
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• Case Mis one of M4 and M5 . By Lemma 2.2.4 we have 

H1(M4(r)) = Z, and H1(M5 (r)) = Z EB Z/4Z. 

These situations are not possible since M(r) is a rational homology sphere. 

• Case Mis one of M 6 , M7 , M10 , M11 , M12 , M13. By Lemma 2.2.2 M admits a 

Lens space surgery. With respect to the framing in (Gordon and Wu, 2008) 

these lens space surgeries are 

M5(00) = L(9, 2) 

Mu ( oo) = L(24, 5) 

M7 (oo) = L(20, 9) 

M12(00) = L(3, 1) 

M10 (oo) = L(14, 3) 

M13(00) = L(4, 1) 

From this we can deduce t hat ITor (H1(M)) 1-=!= 1 which is not possible since 

H1 (M) = Z. 

• Case Mis one of Ms and Mg. From Lemma 2.2.2 the manifolds Ms and 

Mg has two toroidal surgeries and one lens space surgery listed as follows 

with respect to t he framing used in (Gordon and Wu, 2008) 

Ms(O) , 

Mg(O), 

Ms(-5/4), 

Mg(-4/ 3) , 

Ms(-1) = L(4, 1) 

Mg(-1) = L(8 ,3) 

For i E {8, 9} let a = ITor (H1(Mi)) 1 and l be t he order of the pre­

ferred rational longitude >wi. We are going to express the framing used 

in (Gordon and Wu, 2008) according to our standard basis {µ , ÀMJ · Let À 

be the framing used in (Gordon and Wu, 2008). Then the -1 slope in this 

framing can be written -µ + (pµ + ÀMJ = (p - 1)µ + ÀMi· Using the fact 

that IH1(L(4, 1)) 1 = 4 and IH1(L(8, 3)) 1=4, with Lemma 1.1.4 we get 

IH1 (Ms(-1))1 =4 = 6. ((p - 1)µ + ÀM8 ; ÀM8 ) la= IP - l lla, 

IH1 (Mg(-1))1=8 = 6. ((p - l )µ + ÀM9 ; ÀM9 ) la= IP - llla. 
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Since M is a knot complement in an integer homology sphere, if M is one 

of Ms or Mg then we must have l =a= 1. Therefore p E {-3, 5} for Ms 

and p E {9, - 7} for Mg. We can t hen deduce 

H1 (Ms(O)) = 'll/5'll or 'll/3'll, 

H1(Mg(O) ) = 'll/9'll or 'll/7'll, 

H1(Ms(-5/4)) = 'll/ 15'/l or 'll/17'/l, 

H1(Mg(-4/ 3)) = 'll/23'/l or 'll/25'/l, 

Therefore Ms(O) and Ms(-5/4) are not homeomorphic and the same is true 

for Mg(O) and Ms(-4/ 3). We can conclude that M cannot be one of Ms or 

Mg. 

0 

The last lemma implies in particular that toroidal truly cosmetic surgeries on 

integer homology sphere must be integer homology spheres. 

The next preliminary result addresses t he case of Seifert fibred toroidal surgeries. 

Before going into it we need a bit of P S L2 ( C)-character variety theory. We refer 

to (Boyer and Zhang, 1998) and Chapter 7 for more details on t he subject. 

Let X(G) denote the PSL2 (C)-character variety of a finitely generated group 

G. When G = 7r1(Z) where Z is a path-connected space, we shall sometimes 

write X(Z) for X(7r1(Z)). Recall that X(G) is a complex algebraic variety and a 

surjective homomorphism G __,, H induces an inj ective morphism X(H) Y X(G) 

by precomposit ion. A curve X 0 c X ( G) is called non-trivial if it contains the 

character of an irreducible representation. Each / E X ( G) determines an element 

f7 of the coordinate ring C[X(G)] where if p : G---+ PSL2(C) is a representation 

and Xp the associated point in X(G) , then f7 (Xp) = trace(p(r)) 2 
- 4. When 

G = 7r1 (M), any slope r on 8M determines an element of 7r1 (M) , well-defined 

up to conjugation and taking inverse. Hence it induces a well-defined element 

f r E C[X(M)]. 



122 

Lemma 6.1. 3. Let Y be a Z -homology sphere, K c Y a hyperbolic knot and 

M =Y \ N(K) . Assume we use a basis {µ ,ÀM} for n 1(8M). Let r = p/q 

and r' = p / q' be exceptional slopes such that 0 < p and q < q'. If M ( r) is 

homeomorphic to M(r') as oriented manifolds and is Seifert fibred and toroidal, 

then p = 1 and q' = q + 1. 

Proof. Let B be the base orbifold for M(r). Since M(r) is toroidal with finite first 

homology B cannot be spherical. Moreover it cannot be a sphere with strictly less 

t han 4 cone points. Thus B must be either hyperbolic or one among: S 2 (2 , 2, 2, 2) , 

'll'2 , IRIP'2 (2, 2) or the Klein bottle. Since we assume that M(r) and M(r' ) are 

toroidal, by lemma 6.1.2 6 (r, r') :::; 3, so p :::; 3. Lemma 6.1.1 then implies t hat 

p = 1 or p = 2. If p = 2 then q' = q + 2 or q' = q + 4 and it follows t hat 

6 (r, r') = 4 or 8, this contradict the fact t hat 6 (r, r' ) :::; 3. Therefore we must 

have p = 1. Furthermore using t he fact that M ( r) is a Seifert fibred manifold , 

we have the following surjection in first homology: H 1(M(r)) - H1(B), thus 

IH 1(M(r))I = p = 1 ~ IH1(B)I. However we know that IH1(S2 (2 , 2, 2, 2))1 = 

IH1(IRIP'2 (2,2))1=8, H 1('ll'2 ) = Z EB Z and H 1(Klein bottle) = Z EB Z/2Z. Thus B 

must be hyperbolic. 

By the same argument as above B cannot be IRIP'2 (a , b) since [ H1 (IRIP'2 (a , b)) [ = 

2ab > 1. 

By work of Thurston (Thurston, 1979), since B =1- IRIP'2 (a, b) the real dimension of 

the Teichmüller space T (B) of Bis at least 2. Moreover T c X(nfrb( B)) where 

nrb(B) is the orbifold fondamental group of B. On t he other hand we have 

which induce a sequence of inclusions 

X(M) ~ X (M(r)) ~ X(nrb(B)) ~ T (B). 
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Therefore the complex dimension of X(M(r)) is at least 1. We want to prove that 

it contains a subvariety of complex dimension at least 2. Assume in the contrary 

that all components of X(M(r)) have complex dimension 1. In this case T (B) 

would be an open set in a non-trivial curve X 0 C X(M(r)). When Xp E T(B), 

p is the holonomy of a hyperbolic structure on B and it is well known that if 

'Y E 7rfb(B) has infinite order, then f 7 (Xp) is a real number. Deforming Xp in 

T(B) shows that f 7 lxo is non-constant and must take some non-real values. This 

contradicts the fact that it is real-valued on the open subset T (B) c X 0 . Thus 

X(M) has a subvariety of complex dimension 2 or larger on which fris constant 

and which contains the character of an irreducible representation. Hence if r' -::/:- r 

is any other slope, we can then construct a non-trivial curve X 0 c X(M) on which 

both fr and fr' are constant. Indeed let X be this two dimensional subvariety, if 

f r' lx is constant then we are done, otherwise we can take a regular value z0 E C 

of fr' 1 x, the preimage fr' 1x1 (z0 ) is a codimension one subvariety of X and we can 

take Xo = fr'lx1(zo). It follows that frlxo is constant for each slope. In particular 

for each ideal point x of X 0 and slope s E âM, fs(x) E C Iow Proposition 4.10 

and Claim (pg. 786) of (Boyer and Zhang, 1998) imply that there is a closed 

essential surface S C M which compresses in M(r) but stays incompressible in 

M ( s) if 6 ( s, r) > 1. 

Suppose we have 6. (r, r') ?: 2, then S must be incompressible in M(r'). Since 

M is hyperbolic it has no incompressible torus. Therefore S must have genus at 

least 2 and is a horizontal surface. 

On the other hand M C Y and Y is a Z-homology sphere so S must separate 

M and also M(r'). Indeed H2 (Y) = 0 so [S] = 0 and S separates. Let M1 and 

M2 be t he two components of M(r') \S. They are both interval semi-bundles 

with base B . It follows that if Ei is the core surface of Mi , then 7r1 (Ei) ~ 7r1(Mi) 
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for i = 1, 2. On the other hand since {)Mi = S is connected, we have a 2 to 1 

connected caver a Mi --+ Ei. Then n 1 (S) is an index two subgroup of n 1 (Ei), in 

particular it is normal. Using Van-Kampen theorem we have 

and n 1(S) is normal in 7r1 (M(r')) since it is normal in both component of the 

amalgam. Hence 

and we have a surj ection n 1(M(r')) ---* Z/2'1!., * Z/2Z. This induces a surj ection 

in first homology H1(M (r')) ---* Z/2'1!., EB Z/2Z, which contradicts the fact that 

H1(M(r')) is cyclic. Therefore .6.(r,r') = plq- q'I:::; 1 which implies p = 1 and 

q' = q+l. D 

Before continuing with the next lemmas, we need the following results of Ras­

mussen, (Rasmussen, 2007) and of Ni (Ni, 2009) . 

Theorem 6.1.4 . (Rasmussen, 2007) If Z is an L-space with H1(Z) = Z/pZ, 

and K c Z is a primitive knot (i .e K generates H 1 ( Z)) with a homology sphere 

non-trivial surgery X. Then X is an L-space if and only if one of the following 

condition holds: 

- -1. H FK(K) ~ 'lU and width HFK(K) < 2p. 

- -2. HF K(K) ~ '1J.,P+2 and width HF K(K) = 2p . 

Here width HFK(K) is the difference Max - Min, where Maxis the maximum -value of j for which HF K(K, j) is nontrivial and Min is the minimum value. 
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On the other hand, Ni gives a formula to compute the genus of the knot K in t he 

situation of Theorem 6.1.4. 

Theorem 6.1.5. (Ni, 2009) Suppose K is a primitive knot in a rational homology 

sphere Z , and that H1 (Z; Z) ~ Z/pZ. Then 

-g ( K) = _( w_id_th_H_F_K_( K_)_-_P_+_l) 
2 . 

The following lemma will be useful for the study of L-space homology sphere 

surgeries in L-space Z-homology spheres and truly cosmetic surgeries in such 

manifolds as the Poincarés sphere. 

Lemma 6.1.6. Let Z be an L-space Z-homology sphere and let K be any non­

trivial knot in Z. If K admits an L-space Z-homo logy sphere non-trivial surgery, 

then !:J.K(T) = r -1 
- 1 + T , !:J.~ ( 1 ) = 2 and K has genus 1. 

Proof. By Theorem 6.1.4 either 

- -1. HF K(K) ~ 'llJ> and width HF K(K) < 2p. 

- -2. HF K(K) ~ v+2 , width HF K(K) = 2p. 

-where width HFK(K) is the difference Max-Min, where Maxis the maximum -value of j for which HF K (K , j) is nontrivial and Minis the minimum value. 

-By Theorem 6.1.5 g(K) = (width HFK (K) - p + 1)/2 . 

In our case p = 1 so all the hypothesis are satisfied and we have either 

- -1. HF K(K) ~ Z and width HF K (K ) < 2. 

- -2. HFK(K ) ~ Z3 , width HFK(K ) = 2. 
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-The first case implies that width HF K(K) = 0, so g(K) = O. Therefore we 

are left with the second case. We can then compute the Euler characteristic -of HF K(K) to obtain the symmetrized Alexander polynomial of K using the 

formula 

i,j 

We obtain 

/\ (T) _ T jo + Tjo+i + Tjo+2 LJ. K - ajo ajo+i ajo+2 , 

for some j 0 . Using the fact that 6.K (T) = 6.K(T-i) we get j 0 = -1. Since width 

- -HFK(K ) = 2 and HFK(K ) ~ Z we have a_i =ai= ± 1, so 

On the other hand, from Corollary 5.1.7 

k 

6.K(T) = (-l )k + L (- l )k-j(Tni +T- ni ), 
j=i 

for some increasing sequence of positive integers 0 < ni < n2 < ... < nk· There­

fore j = 1, k = 1, nj = 1 and 

6.K(T) = r -i - 1 + T . 

Now computing the second derivative gives 6.'f<- (1) = 2. Finally since width - -HFK(K) = 2 and g(K) = max{k 1 HFK*(K, k) =JO}, we must have g(K) = 

1. D 

We can now state and prove the main proposition of this section. 

Proposition 6.1. 7. Let Y be a Z -homology sphere, K c Y a hyperbolic knot 

and M =Y\ N(K). Assume we use a preferred basis {µ, >w} for 7ri(8M). Let 

r = p/q and r' = p/q' be exceptional slopes such that 0 < p and q < q'. If M(r) 

is homeomorphic to M(r') as oriented manifolds, then the surgery gives either 
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(a) a reducible manifold in which case p = 1 and q' = q + 1, 

{b) a toroidal Seifert fibred manifold in which case p = 1 and q' = q + 1, 

{c) an atoroidal small Seifert manifold with infinite fundamental group in which 

case we have the following possibilities 

• p = 1 and lq - q'I :::; 8. 

• p = 5, q' = q + 1 and q = 2 [mod 5]. 

• p = 2, and q' = q + 2 or q' = q + 4. 

( d) a toroidal irreducible non-Seifert fibred manifold in which case p = 1 and 

lq' - ql :::; 3. 

Proof. The manifold M(r) is either reducible, Seifert fibred or toroidal. If it is 

reducible t hen we have (a) which is given by Lemma 1.3.13. If it is toroïdal and 

Seifert fibred then we have (b) which is given by Lemma 6.1.3. The remaining 

possibilities are then (c), (d) and the case 7r1(M(r)) is finite. The proofs of (c) and 

(d) follow from Lemma 6.1.l. We are now left with the last possibility. Assume 

that 71'1 (M(r)) is finite . The distance between two fini te slopes is at most 3, so 

.6.(p/ q,p/q') = plq' - ql ::=; 3. In particular p E {1, 2, 3} , but by Lemma 6.1.1, 

p E {1 ,2,5} thus p = 1 or p = 2. If p = 2 then lq' - ql :'.'.: 2 by Lemma 6.1.1 

and .6. (p / q,p/ q') = 4 > 3. Therefore p = 1. Then M(r) is a homology sphere 

with finite fondamental group which implies M(r) = E (2 , 3, 5) or M(r) = S 3 . 

If M(r) = E (2, 3, 5) or 8 3 then M c E (2 , 3, 5) or 8 3 . Let Z denote either 

E (2, 3, 5) or 8 3 . Then M = Z \ N (K ) where K is a non-trivial knot in Z (since 

Mis hyperbolic) for which there is a non trivial slope which gives E (2, 3, 5). We 

notice that both E (2 , 3, 5) and 8 3 are L-space homology spheres, so by Lemma 

6.1.6 .6.~(1 ) = 2 =/= O. Therefore by Proposition 3.3.l t here is no orientation 
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preserving homeomorphism between M(r) and M(r' ) since r #- r'. Thus there 

cannot be two distinct slopes which give the same L-space homology sphere up 

to orientation preserving homeomorphism. D 

6.2 The knot complement problem for E (2, 3, 5). 

The Poincaré sphere E(2, 3, 5) is the oriented 3-manifold obtained by -1-surgery 

on the left handed t refoil in 8 3 . From the surgery formula for t he Casson invari­

ant we can deduce that .\ (E (2, 3, 5)) = -1. In t his section we do not assume 

that the knot is hyperbolic. A knot K in a 3-manifold Y is determined by its 

complement if the existence of a homeomorphism between Y \ K and Y \ K' for 

some other knot K' , implies the existence of homeomorphism between the pair 

(Y, K ) and (Y, K'). Here we do not expect these homeomorphisms to be orien­

tation preserving. Gordon and Luecke (Gordon and Luecke, 1989) have proved 

t hat all non-trivial knots in 83 and 8 2 x 8 1 are determined by t heir comple­

ments. D. Matignon has proved in (Matignon , 2010) that , if one only considers 

orientation preserving homeomorphisms, t hen non-trivial non-hyperbolic knots 

are determined by t heir complements in closed, atoroidal and irreducible Seifert 

fibred 3-manifolds; except the axes in L(p, q) when q2 = ± 1 [mod p]. In general 

t here are some knots in 3-manifolds which are not determined by their comple­

ment. In (Rong, 1993) Y. Rong classified all Seifert fibered knots which are not 

determined by their complements in closed 3-manifolds other than lens spaces. 

In (Matignon , ) D. Matignon gave examples of hyperbolic knots in lens spaces 

which are not determined by their oriented complements. 

This section will be concerned with the question: Can a non-trivial surgery on 

a non-trivial knot in E(2, 3, 5), oriented in this t ime, yield a manifold homeo­

morphic (orientation preserving or reversing) t o ~ (2 , 3, 5)? The answer when all 

t he homeomorphisms are orientation preserving is given by Theorem 6.2.l. As a 
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related question, we answer the question of whether non-trivial knots in E(2, 3, 5) 

are determined by their oriented complements or not. 

Theorem 6 .2.1. Let K be a non-trivial knot in E(2, 3, 5) and let r E Q. The 

result of an r-surgery along K is never orientation-preserving homeomorphic to 

E(2, 3, 5). 

Proof. Since E(2, 3, 5) is an L-space Z-homology sphere, Lemma 6.1.6 implies 

that 

ll'f<(l) = 2 =Io. 

Therefore by Proposition 3.3.1 the homeomorphism must be orientation reversing. 

D 

This theorem can be stated for the general case of L-space Z-homology spheres. 

Theorem 6.2.2. Let K be a non-trivial knot in an oriented L-space Z-homology 

sphere Y and let r E Q. The result of an r-surgery along K is never orientation­

preserving homeomorphic to Y. 

Proof. Same as for Theorem 6.2. 1 D 

Theorem 6.2.1 has a direct consequence which is the answer to the "oriented knot 

complement problem" in E(2, 3, 5). 

Theorem 6 .2.3. Non-trivial knots in E(2, 3, 5) are determined by their oriented 

complements. 

Proof. Let K and K' be two non-trivial knots in E(2, 3, 5), let us denote V 

and V' their complements with the induced orientations. Suppose there is an 

orientation-preserving homeomorphism f : V --+ V'. Let µK , respectively µK' , 
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be the meridional slope of K, respectively K', and let r = f(µK)· The oriented 

manifold V' ( r) is orientation preserving homeomorphic to E ( 2, 3, 5) and therefore 

by Theorem 6.2.1 r = ±µK'· It follows that we can extend f to an orientation 

preserving homeomorphism between (E(2, 3, 5), K ) and (E(2, 3, 5), K'). D 

We can ask if there is still a non-trivial surgery along a knot Kin E(2, 3, 5) which 

gives - E(2, 3, 5) (the orientation is reversed). The purpose of the rest of the 

section is to study this possibility. In particular we prove the existence of tight 

contact structure on the +1-surgery along K using a result of Motoo Tange. 

Lemma 6.2 .4. Let K c E(2, 3, 5) be a non-trivial knot and let r E Q. If the 

result of an r-surgery along K is homeomorphic to -E(2, 3, 5) then r = 1/2 . 

Proof. Let Y = E(2,3,5). Since H1(Y,Z) = 0 we must haver= l /q. Now by 

the Casson invariant surgery formula 

,\(-Y) = ,\(Y)+ ,\ (L (l ,q)) + ~~'f<(l). 

Since À(-Y) = -À(Y) and À(L(l , q)) = À(S3 ) = 0 we have 

_g:~~ (l) = -2,\ (Y) = 2. 
2 

Now Lemma 6.1.6 implies that .6.'f<-(1) = 2, thus q = 2. D 

Lemma 6.2 .5. Let K C E(2, 3, 5) be a non-trivial knot and let r E Q . If the 

result of an r-surgery along K is homeomorphic to -E(2, 3, 5) then the result of 

+ l-surgery along K is an L-space. 

Proof. From Lemma 6.2.4 r = 1/2 and from Corollary 5.1.4 the the result of 

+ 1-surgery along K is also an L-space. D 
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Before going into the existence of a tight contact structure let us discuss the notion 

of a "reducible" knot. We say that a knot K in a 3-manifold Y is irreducible if 

its complement Y\ K is irreducible. In case Y is the Poincaré sphere with either 

orientation, a non-trivial knot K is irreducible if and only if it does not lie in a 

ball. Indeed if Y \ K was reducible then there are two 3-manifolds M and N such 

that M is distinct from S 3
, K C N and Y = Mtt ( N \ K). However meridional 

surgery on K yields Y again so YK( oo) =Y. Thus 

But y is irreducible and M is distinct from S 3. Therefore NK(oo) ~ S3 and it 

follows that N ~ S3 . Therefore K lies in a ball. Conversely if a non-trivial knot 

K in Y lies in ball, then its the complement is obviously reducible. 

The knot complement problem for a non-trivial knot which lies in a ball is equiv­

alent to the knot complement problem for knots in S 3 . Since it is known that 

non-trivial knots in S3 are determined by their complements, we can assume that 

our knot K does not lie in a ball. That is Y \ K is irreducible. 

Theorem 6.2.6. (Tange, 2011} Let Y be an L-space homology sphere, K a knot 

in Y and p a positive integer. If Y \ K is irreducible and YK(P) is an L-space, 

then Y admits positive tight contact structures. 

Theorem 6.2.7. Let K be a non-trivial knot in .B (2 , 3, 5). If K admits a non­

trivial surgery which gives -.B(2, 3, 5) then the surgery slope is 1/2 and the result 

of+ 1-surgery along K is an L-space which admits a tight contact structure. 

Proof. Since we can assume that Y \ K is irreducible, the theorem follows from 

Lemma 6.2.4 Theorem 6.2.6 and Lemma 6.2.5. D 



CHAPTER VII 

COSMETIC SURGERIES AND CHARACTER VARIETIES 

From what we have seen so far, we can say that cosmetic surgeries are very rare. 

In particular for the case of a hyperbolic knot complement in S3 there are at most 

two exceptional cosmetic slopes that is ±1. For hyperbolic knot complements in 

Z-homology spheres, according to chapter 6 there are limited possibilities for 

exceptional cosmetic surgeries. In this chapter we will focus on small Seifert 

cosmetic surgeries along hyperbolic knots in rational homology spheres. 

Let Y be a rational homology sphere and K be a hyperbolic knot in Y. We 

denote M = YK the corresponding knot exterior. If ais a slope on âM, we define 

the set C(a) to be 

C(a) = {slope ,BI M(a) ~ M( ,B )}. 

The main theorem of this chapter is the following. 

Theorem B. Let Y be a rational homology sphere. Assume that Hom (n1 (Y), PSL2 (C)) 

contains only diagonalisable representations, no side of the P S L 2 ( C)-Culler­

Shalen ball of M is parallel to ÀM, and a is small-Seifert. Then #C(a) ~ 2. 

The bound in the t heorem is sharp. In (Bleiler et al. , 1999) , there is a con­

struction of a one-cusped hyperbolic 3-manifold with a pair of distinct slopes 
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which gives oppositely oriented copies of the lens space L(49/ 18). An infi­

nite family of hyperbolic manifolds which admit pairs (a, (3) of reducible fill­

ing slopes, of which some pairs yield homeomorphic manifolds are presented in 

(Matignon and Hoffman, 2003). The result of Zhongtao Wu in Theorem 1.3.8 

.implies this result for the case of integral homology L-spaces. 

The Dehn filling manifold M (a) we are considering is small Seifert. For the pro of 

of Theorem B we will distinguish the cases b1 ( M (a)) = 1 and b1 ( M (a)) = 0. In 

section 7.1 and section 7.2 we give some background on character varieties. In 

next section 7.3 we give the necessary material which are needed for the proof of 

Theorem B. This proof will be given in section 7.4. 

7 .1 Preliminaries 

Let r be a finitely generated group, for instance r = 7r1 (M) where Mis a compact 

3-manifold. The P S L2 ( C) -representation variety of r is the set of homomorphism 

R (r ) := hom(r , PSL2(C)) 

equipped with the compact-open topology. Given a set of generators g1 , · · · , 9n 

of r , the space R(f) can be embedded in e,4n via 

R(f) ----+ e,4n 

P f-----+ (p(g1), · · · , p(gn)) 

where each p(gi) is a 2 by 2 complex matrix. This will give R (f ) the structure 

of an affine complex algebraic set whose defining polynomials are obtained by 

requiring that successive 4-tuples have determinant ± 1 and that the relators 

equal to the identity matrix. 

Proposition 7 .1.1. ( Culler and Shalen, 1983) The affine complex algebraic va­

riety structure of the PSL2(C) -representation variety R(f) is independent of the 

choices of generators and relators. 
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Note t hat this algebraic set may have many irreducible components. However we 

have the following property from (Culler and Shalen, 1983). 

Proposition 7.1.2. (Culler and Shalen, 1983) Let V be an irreducib le compo­

nent of R(r ). Then any representation equivalent to a representation in V must 

itself belong to V . 

We call a representation p : r --+ P S L2 ( C) reducible if there exists a proper non­

trivial vector sub-space of C2 which is invariant under p. We call p irreducible 

otherwise. 

If a representation p : r--+ PS L2 (C) is reducible then there exists a basis of C2 

on which p has the following form 

( 
a9 b9 ) p(g) = , 
Ü Cg 

g Er . 

The group PS L2(C) acts algebraically on R(r ) by conjugation. Two representa­

t ions are called equivalent if t hey are conjugate to each other. The set of equiv­

alence classes of representations corresponds to the quotient R(r )// PS L2(C ), 

where the quotient is t aken in the algebraic geometric category. In order to 

understand this set , Culler and Shalen introduced the P SL2(C)- character va­

riety of r using t he trace function. For each representation p E R(r ), the 

(PSL2 (C))character of p is the map Xp defined by 

X p : r --+ C, Xp(g ) = trace (p(g ) )2
. 

The set of all charact ers X (r ) = {xP 1 p E R(r )} is also a complex algebraic set 

in a natural way such t hat the following map is regular , in the sense of algebraic 

geometry, 

t: R(r ) ~ X (r ), t (p) = Xp · 
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Moreover its corresponds to the set of equivalence classes of representations under 

the action of PSL2(C) by inner automorphisms. Like R(r) , X(r) may have many 

irreducible components. 

Let Jtrr (r) be the subset of irreducible representations and let ;trr (r) = t ( Jtrr (r)) . 

Culler and Shalen have shown that Jtrr (r) and ;trr (r) are Zariski open subsets 

of Jtrr (r) and ;trr (r) respectively. Moreover r 1 (xrr (r)) = Jtrr (r) . 

Recall that a complex analytic variety is a set locally defined by zeros of holo­

morphie fonctions, which may have singularities. The map t has the following 

nice property. 

Proposit ion 7.1.3. (Culler and Shalen, 1983) The induced morphism t: Jtrr (r) -t 

;trr (r) is a principal analytic fibration with structure group P S L2 (CC). 

7. 2 Twisted cohomology and tangent spaces 

Twisted cohomology is useful for understanding the space X (r) locally and in­

finitesimally near a character Xp · Recall that if we have a r-module 9J1, then we 

can defined the group cohomology H *(r, 9J1) as follow. For each integer n 2: 0 

define the cochain complex cn(r; 9J1) to be 

Cn(r; 9J1) := {map ef>: r X · · · X r -t 9J1} 
"'-,,--' 

n times 

equipped with the differential dn : cn(r; 9J1) -t cn+l (r; 9J1) defined by 

dnef> (91, 92, · · · , 9n+1) = 91 · </> (g2, · · · , 9n+1) + (-1r+1
ef> (g1, 92, · · · , 9n) 

n 

+ 2:)-l)i </> (g1, · · · , 9i- l, 9i9i+l , 9i+2, · · · ' 9n+1) 
i=l 

Let B 0(r, 9J1) = 0, Bk(r , 9J1) = Im(dk_1) for k > 0 and zn(r, 9J1) = ker(dn)· We 
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define the n-th cohomology group of r associated to 9J1 to be 

The module C0 (r; 9.Jî) can be identified with the set of constants 9.Jî. A 0-cochain 

m can be thought of as an element of 9.Jî, so for every 9 E r 

dom(9) = 9 · m - m. 

It follows that 

Z0 (f,9Jî) ={mE9J11 9·m = m, \19E f} . 

Thus H 0(r; 9.Jî) = z 0 (r; 9.Jî) is the set off-invariant elements of 9.Jî. On the other 

hand B 1 (r; 9.Jî) is the set of maps </> : r --+ 9J1 defined by </>(9) = 9 · m - m for 

some m E 9.Jî. 

The module C 1 (f; 9.Jî) is the set of maps </> : r --+ 9.Jî. The differential d1 then 

gives 

di</>(91 , 92) = 91 . </>(92) + </>(91) - </>(9192). 

Thus Z 1 (r; 9.Jî) is the set of maps </> which satisfy 

Going back to character varieties, a representation 75 E R(r) defines a morphism 

Ad o 75 : 7r1 (M) ----+ Aut(sl2 (C)) by post-composing with the adjoint represen­

tation Ad : PSL2 (C) ----+ Aut(sl2 (C)). The Lie-algebra sl2 (C) then becomes 

a f-module. The cohomology H *(f ; Adp) is defined to be the cohomology of r 

associated to this module. 

Let 75 E R(r) and consider a path Pt in R(r) , differentiable with respect to the 

parameter t. Up to first order we can expand Pt as 

Pt(9) = exp(tu(9) + o(t2
)) p(9) 
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for g Er, tin some interval centred at 0 which depends on g, and u: r--+ sl2 (C). 

When we differentiate the homomorphism condition 

at t = 0, we get 

Therefore 

Pt(gh) = Pt(g)pt(h) 

d[pt(~:t(h)] = u(g)p(g)p(h) + p(g)u(h)p(h) , 

d[pt(gh)] 
dt = u(gh)p(gh) = u(gh)p(g)p(h). 

u(gh)p(g)p(h) = u(g)p(g)p(h) + p(g)u(h)p(h). 

Multiplying both side by p(h)-1p(g) - 1 on the right gives 

u(gh) = u(g) + p(g)u(h)p(gt1 = u(g) + Adp(g) · u(h). 

Thus u E Z1 (r ; Ad75 ), and it follows that the Zariski tangent space T-ff ar R(r) 

injects into Z 1(r; Ad75). 

Definition 7.2.1. A representation p E R(r) is called scheme reduced if the 

inclusion of T-ffar R(r) into Z1 (r; Ad;o) is an isomorphism. 

For the character variety R(r) we can also show that T-ffar X(r) injects into 

H 1(r; Ad;o) when pis irreducible. To see this we can think of a tangent vector of 

X (r) at p as an element of T-ff ar R(r) modulo the tangent space of the or bit r ·p. 

To compute the tangent space of the orbit consider a deformation Pt induced by 

a differentiable path 9t E P SL2(C): 

Then if we expand 9t as 9t = exp(tu0 + o(t2
)) where u0 E sl2 (C) and differentiate 

Pt at t = 0 we get 

dpt(g) 
dt lt = O 

dg; 1 dgt 
p(x)go + g01p(x) -d = -uo p(x) + p(x) uo. 

dt lt=O t lt=O 
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Therefore a tangent vector u of the orbit can be written 

u(x) = dp~(g) p-1(x) = p(x) uop(x)- 1 - uo = Adp(x) · Uo - uo. 
t lt=O 

It follows that u is the coboundary du0 E B 1(f; Ad75). This gives an inclusion of 

T-far X(r) into H 1(f; Ad75) = Z1(f; Ad75 )/ B1(f; Ad75). 

D efinition 7.2.2. A character Xp E X(r) is called scheme reduced if the inclu­

sion of T-far X(r) into H 1(f; Ad;o) is an isomorphism. 

7.3 Character varieties and Culler-Shalen norm 

By fixing a base point on 8M we have a morphism n1 (8M)-----+ n1(M). Using the 

Hurewicz isomorphism we get an identification 7r 1 ( é) M) ~ H 1 ( é) M) and therefore 

a morphism H 1 ( 8 M) -----+ 7r 1 ( M). Sin ce int ( M) is assumed to be a one-cusped 

complete finite volume hyperbolic 3-manifold, this morphism is injective. We 

therefore think of a slope as an element of n1 ( 8M), 7r1 ( M) or H 1 ( 8M) interchange­

ably. The main references for this section are (Ben Abdelghani and Boyer, 2001), 

(Shalen, 2002) and (Boyer and Zhang, 1998). 

For simplicity we will denote by R(M) (resp. by X(M)) the PSL2 (C)-representation 

variety R(n1(M)) (resp. the PSL2 (C)-character variety X(n1(M))). We also de­

note H*(M; Ad;o) the corresponding twisted cohomology. 

For each r E n1(M) we have the following fonction 

J'Y : X(M) -----+ C, j 'Y (x) = trace(p('y)) 2 
- 4 = x(1) - 4. 

The fonction J'Y is a regular fonction and the zeros of J'Y are the characters of 

representations 75 for which 75( r) is parabolic or 75( r) = [±Id]. We will use the same 

notation J'Y for the restriction of J'Y to a curve X 0 C X(M). For our purposes, we 

need J'Y to be a non-constant fonction. This is provided by the following lemma 

which is a variation of Corollary 4.5.2 of (Shalen, 2002). 
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Lemma 7.3.1. Let N be a connected orientable one-cusped hyperbolic 3-manifold 

of finite volume. Then there is a 1-dimensional irreducible component X 0 of 

X ( N) , containing the character of a representation associated to the hyperbolic 

structure of N, such that if r is any non-trivial element of K 1(N) carried in the 

boundary of the compact core of N, the fun ction J'Y is non-constant on X 0 . 

Proof. The proof was done in (Shalen, 2002) for the case of S L2 (C) represen­

t ations. Now if X(N) is the SL2 (C) character variety t hen we have a finite­

to-one "algebraic" morphism 7f : X(N) --t X(N) which induces an inclusion 

X (N)// H 1(N, Z/2Z) ~ X (N). Therefore 7f sends one-dimensional components 

of X(N) to one dimensional components of X(N). Since the expression for J'Y is 

the same for SL2 (C) and PSL2 (C) character varieties, the result still holds for 

PSL2(C). 0 

Here by t he core of N one means a compact manifold M with boundary such 

that int(M) ~ N. Let X 0 c X(M) be a non-trivial irreducible component. Here 

non-trivial means that it contains the character of an irreducible representation. 
~ 

Let X 0 be the normalized proj ective completion of X 0 . There is an isomorphism 

between fonction fields 

C(Xo) ~ C(Xo) , fr--+ f. 

We can then define the degree of f to be the degree of f. For x E X we denote by 

Zx(Î,) the multiplicity of x as a zero off,. By convention Zx(Î,) = oo if Î, =O. 

Now we denote A= 7r1 (8M) seen as a subgroup of 7r1 (M). We can also think of 

A as a lattice in H 1 (8M, IR). An element r E A satisfies, see (Shalen, 2002), 

deg(Î,) = L Zx(Î,). 
xEXo 
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~ ~ 

The degree is finite if f 1 is non-constant on X 0 , for instance if X 0 is as in Lemma 

7.3.l. The key property of deg(h) is that for each curve X 0 C X(M) it defines 

a semi-norm 11-1 lxo on H 1 ( 8M, "IR.) which for each 'Y E A satisfies 

_ { 0 if f1 1Xo is constant 
ll"fllxo - ~ 

deg(f1 ) if f1 1Xo =JO. 

See (Boyer and Zhang, 1998) for instance. This semi-norm is called the Culler­

Shalen semi-norm associated to the curve X 0 . There is at least one curve for 

which 11 -1 lxo is a norm. This is given in the following proposition which is a sum­

mary of Property 8.1.10, Property 8.1.11 and Equation (9.2.2) of (Shalen, 2002). 

Proposition 7.3.2. Let X 0 be as in Lemma 7.3.1 . Then the semi-norm 11-llxo 

is a norm. Moreover the unit ball is a compact convex set with boundary a finite 

sided balanced polygon. 

Note that if Br is the ball of radius r centred at the origin, then Br can be view 

as the unit ball for the norm ~ 11 .1 lxo therefore Br has the same properties as the 

unit ball. 

Let X 1 , · · · , Xk be all the non-trivial irreducible curve components in X(M). We 

can define an "absolute" semi-norm 11-11 on H 1(8M ,ffi.) by 

11-11 = ll -llx1+ ···+11 -l lxk· 

Proposition 7.3.2 then implies that this is a norm. We will call this norm the 

absolute Culler-Shalen norm or the absolute norm if there is no risk of confusion. 

Let X 0 C X(M) be a curve. There is a unique 4-dimensional subvariety R0 C 

R(M) for which t(R0 ) = X 0 , see Lemma 4.1 of (Boyer and Zhang, 1998). If 
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p( a) = I for some slope a, then we have an induced representation p' : ?T1 ( M (a)) ---t 

P S L2 ( C) and a cohomology group H 1 ( M (a); Ad7/) . 

Let X 0 be as in Lemma 7.3.1 and li : X 0 := X0 \ {ideal points} ---+ X 0 be 

the map which corresponds to the affine normalization of X 0 . There is an affine 

normalization R0 ---+ R0 , which we still denote by li, such that the following 

diagram commutes. 

X 0 -------1 X o 
li 

The map tv and li are all surjective, see (Culler et al. , 1987). 

Let N c PSL2 (<C) denote the subgroup 

For each 'Y E 7T1 ( M) we are going to consider the following subset of X ( M): 

A("!)= {x:o E X(M) 1 p('Y) = ±I; p is non-abelian and conjugates into N} . 

B(1) = {X:o E X(M) 1 p("f ) = ±I; p is non-abelian and does not 

conjugates into N } . 

Note that elements of A("!) must be irreducible but not necessarily those of B("f ). 

We now state the next theorem needed for the proof of Theorem B in the case of 

small-Seifert filling. It is from (Ben Abdelghani and Boyer, 2001) Theorem 2.1. 
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Theorem 7.3.3. Fix a slope a on 8M and consider a non-trivial, irreducible 

curve X 0 C X(M). Suppose that x E X0 is not an ideal point and corresponds to 

a character Xp for some representation p E Ilo with non-abelian image and which 

satisfies p(a) E {±!} . Assume that H 1(M(a); Adp) = 0 and p(n1(8M)) et{±!}. 

1. If f3 E n 1(8M) and p(/3) # ±I, then 

~ { Zx(Îf3) + 1 if p conjugates into N, 
Zx(Ja) ~ ~ 

Zx(Jf3 ) + 2 otherwise. 

2. If f3 E 1f1(8M) and Zx(Îa) > Zx(Îf3), then ÎalXo # 0, p( f3 ) # ±I and 

~ { Zx(Îf3) + 1 if p conjugates into N , 
Zx(Ja) = ~ 

Zx(Jf3 ) + 2 otherwise. 

The condition p( n1 ( ô M)) et { ±I} may not be satisfied in general. We will need 

the auxiliary assumption that t he manifold Y has only diagonalisable PSL2 (C) 

representations. 

The following proposition is Proposition 1.5.4 of (Culler et al. , 1987). 

Proposition 7.3.4. Let a and (3 be non-zero elements of A. Suppose that x is 

a point of X0 such that ZxUa) > Zx(Jf3 )· Then for every p E R0 with tv(p) = x, 

the representation p = v(p) satisfies p( a) = ±I. 

We end this section by a result about zeros at ideal points. Recall that a slope 

a on ôM is a "boundary slope" if it is the slope of the boundary of an essential 

surface. We say that a is a "strict boundary slope" if it is the slope of the boundary 

of an essential surface which is not a (semi) fibre in any (semi) fibration of M 

over S 1
. A slope a not being a strict boundary slope means that if it is the 
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slope of the boundary of an essential surface, then that surface is a fibre in a 

fibration of M over S1. The following proposition cornes from Proposition 1.6.1 

of ( Culler et al., 1987). 

~ 

Proposition 7.3.5. Let x be an ideal point of Xa. Let a and f3 be non-zero 

elements of A. Suppose that a is primitive and is not a boundary class, and that 

Then there is a closed essential surface in M which is incompressible in M (a). 

7.4 Proof of theorem B 

Before doing the proof we give two preliminary lemmas. 

Lemma 7.4.1. Assume that rank;z ( H 1 ( M)) = 1. Then for each ordinary point 

x E Xa there is a representation 75 E Ra , with non-abelian image, such that 

X75 = v(x). " 
Proof. Let Za · c X(M) (SL2 (tC) -character variety) be an irreducible curve com­

ponent of 7r-1 (Xa) , and Sa a component of r 1 (Za). 

Let X(r) be the SL2 (tC)-character variety of a finitely generated group r. In 

(Boyer, 2002) Proposition 2.8 it is shown that if x is a reducible trivial character 

in a non-trivial curve inside X(f) then b1(r) ~ 2. Here since int(M) is a one­

cusped complete finite volume hyperbolic manifold, b1 (7r1 (M)) = rank;z (H1 (M)). 

Since rank;z (H1 (M)) = 1 by assumption, any character in a non-trivial curve 

inside X(M) is non-trivial, in particular any element of Za is non-trivial. The 

same Proposition 2.8 of (Boyer, 2002) applied to 7r1 (M) implies that if a character 

z E Za is non-trivial then there is a representation p E Sa nr 1 
( z) with non-abelian 

image. Since for each x E Xa, v(x) E Xa we can take z E 7r-1 (v(x)) to get such a 

representation p and then take the corresponding P S L2 ( tC) representation p. D 
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Recall that we have chosen M to be the complement of regular neighbourhood of 

a knot in a rational homology 3-sphere. Therefore M satisfies rank;z ( H1 ( M)) = 1. 

Lemma 7.4.2. If a E A is not a boundary slope then l lal lxo =/. 0 for each curve 

Xo C X(M) for which ll·llx0 '1- O. 

Proof. See the proof of Proposition 5.4 and 5.5 in (Boyer and Zhang, 1998). 

0 

Lemma 7.4.3. Let a and /3 be two slopes on8M such thatn1(M(a)) ~ n 1 (M(/3)) . 

Then there is a one to one correspondence between A(a) and A(/3), and between 

B(a) and B(/3), 

Proof. Let \[! : n1(M(/3)) ---+ n 1(M(a)) be an isomorphism, Po. : n1(M) ---+ 

n1 (M(a)), and Pf3 : n1(M) ---+ n1(M(/3)) be the obvious projections. Let 

x75 E A(a) , we have a representation <I>o.(P) : n1(M(a)) ---+ PSL2(C) obtained 

via the following factorisation of p 

We also have an equivalent representation <I> f3 (p) : M (/3) ---+ P S L2 ( C) for the 

{3-case. Let p' be t.he composition p' := <I>(p) o W o Pf3 



p' 
7r1(M) ----- -> PSL2(<C) 

p~ j l 4\(p) 

7r1(M(f3))-----+ 7r1(M(a)) 
w 
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The maps Pf3,Pa and W are all surj ective so imp = imp' . In particular if p does 

not conjugate into N then neither does p' , and if p is irreducible then so is p'. 

The representation p' satisfies p' (/3) = ±I by construction. N ext we need to check 

that if Xp1 = Xrh t hen Xï5~ = Xp~. 

We first assume t hat Xp
1 

is an irreducible character. Therefore 752 = g p1 -g-1 for 

some 

g E SL2 (C). Then we deduce that 

75; = <I> a (752) 0 \JI o Pf3 

= <I>a (9 751 9- 1
) o \JI o Pf3 

= (g <I>a(/51) g- 1) o \JI o Pf3 

= g (<I>a(/51) o \JI o Pf3 ) g-1 

- -1--1 = g P19 

which implies 75~ = g 75~ -g- 1
. Therefore Xp~ = Xp~ · If / E 7r1 (8M) we denote 

xirr ( 1 ) and xred ( 1 ) the sets 

Xirr(!) = {X;o E X(M) 1 p(I) = ± ! , and 75 is irreducible} 

x red(!) = {x;o E X(M) 1 p(I) = ± ! , and p is reducible} . 

We then have a well defined map 

F: xirr(a) ----+ xirr(/3 ), p i-------t p'. 
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The map F sends A(a) to A(,8) , and B(a) to B(,8). The next step is to extend 

F to the reducible representations. 

Now assume x = x751 = x752 is a reducible character. By analogy with (Boyer , 2002) 

there exists a representation a : 7r1 (M) --t CC* such t - 1 (x) = R~ U R~- 1 

where 

R~ = {ApA- 1IA E PSL2(CC), p Eu: }, 

R~- 1 
= { ApA- 1 [A E PSL2(CC) , p E u:- 1

} 

u: = { representation P = ± ( ~ a~ 1 ) } , 

u:-' = { representation p = ± ( a~ 1 
: ) } 

If p1 and p2 are conjugate, by the same argument as for irreducible characters 

x75~ = x75;. Assume that p1 and p2 are not conjugate. Without loss of generality 

we can suppose that 

P1 = ± (a b ) 
0 a- 1 ( 

a-
1 

b ) 
and p2 =±A O a A-1

, for some A E PSL2(CC). 

Since <I>(pi) and pi, i = 1, 2 have the same image we canuse the same matrices 

to represent <I>(pi), i = 1, 2. Hence 

_, _ ( a o W o P/3 b o W o P/3 ) 
P1 = <I>(p1) 0 W 0 P/3 = ± 

0 a-1 o W o P/3 

and 
bo'lr op13 ) A-1. 
a o W o P/3 



Therefore 

trace(p~) =±[a o Ill o Pf3 + a-1 o Ill o Pf3 ] 

trace(p;) = ± [a-1 o Ill o Pf3 +a o Ill o Pf3 ] 
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It follows that trace(p~) 2 = trace(p;) 2
, that is Xp~ = Xp~ · Thus Fis well defined 

on the set of reducible characters. 

Finally, we show that F is bijective. If p' E X irr ((3) (resp. xred(f3)) , we get 

p E xirr(a) (resp. xred(a)) as follow: we first define <Pa(P) to be <Pa(P) = 

<Pf3(p') o w-1 then p' = <Pa(P) o Pa· This uniquely determine p, therefore the map 

F is bijective. D 

It is a known from (Cooper et al., 1994) 2.4 that X(M) has no 0-dimensional 

component. Let X 1, · · · , Xk be the curve components of X(M). If a E Ais nota 

boundary slope, then Lemma 7.4.2 allows us to write the Xi-norm of a in terms 

of the zeros off alxi for each i E {1 , · · · , k} 

llallxi = L Zx(.fnlxJ 
xEXi 

Let X be the abstract disjoint union of all the "X;, i E { 1, · · · , k}, then we have 

the following formula for the absolute norm 

llall = L Zx(Îa) 
xEX 

where f °' is understood to be the restriction to the appropriate component. Let 
,,... 

x E X, we define the number mx and m 0 to be 

mx = min { Zx (h) 1 'Y E A \ { 0}} , and mo = L mx. 
xEX 



148 

We can then deduce 

lia.li= mo - mo + L Zx(Îa) = mo + L ( Zx(Îa) - mx) . 
xEX xEX 

Let us suppose that x is an ideal point of X 0 C X. If Zx(.fa) - mx > 0 then 

Zx(Îa ) > Zx(h ) for some '"Y E A\ {O} . Since a. is primitive and is not a boundary 

class, Lemma 7.3.5 implies that t here is a closed surface in M which is incompress­

ible in M (a.) . This situation does not occur if we assume M (a.) is small-Seifert 

with b1(M(a.)) = O. Therefore we always have Zx(Îa) - mx = 0 at an ideal point. 

,,... 
Let x E X be an ordinary point , x is contained in some X 0 and by Lemma 7.4. 1 

there is a representation 75 E R0 wit h non-abelian image, such that Xp = v( x). 

Let p = v- 1 (p), we have the following equality 

v (tv(p )) = t (p) = v(x) . 

The normalization map v: X0 ~ X 0 is an "isomorphism" outside singular points, 

so if x is a smooth point t hen tv(p) = x . This smoothness is provided by Theorem 

A of (Boyer , 2002). A direct consequence of this is that for an ordinary point 

x, v(x) is contained in only one irreducible component. Therefore if we consider 
,,... ---

instead of X, the "natural" union X 1 U · · · U Xk , we can write the absolute norm 

of a. as 

llodl = 

Now if we assume that Zx(Îa) > mx then by Lemma 7.3.4 the representation 

p = v (p) satisfies p(a.) = ±!. If we add the extra condit ion that Y have only 

Abelian PSL 2 (C)-representations t hen p(A) </:. {±!} and all the hypothesis of 
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Theorem 7.3.3 are satisfied. In particular if mx = Zx(J$) for some /3 E A\ {O} 

then ÎalXo =/= 0, p(/3) =/= ± I and 

{ 

Zx(Ja) - mx = Zx(Ja) - Zx(Î!J) = 1 

Zx(Îa) - mx = Zx(Îa) - Zx(Î!J) = 2 

Therefore 

if p conjugates into D , 

otherwise. 

llall = mo + A(a) + 2B(a). 

Where 

mo= 

The next lemma is a straightforward consequence of this formula. 

Lemma 7.4.4. Let a be a slope on 8M which is not a boundary slope. Assume 

that M(a) is smalt-Seifert, Y has only diagonalisable PSL2 (C)-representations 

and b1 (M(a)) =O. If /3 is a slope such that M(/3) ~ M(a) , then 11/311 = JJaJJ . 

Proof. This follow from Lemma 7.4.3, ~A(a) = ~A(/3) and ~ B(a) = ~B(/3) . D 

The last step before going into the proof of Theorem B is the following result of 

Culler, Gordon, Luecke and Shalen. 

Theorem 7.4.5 . (Culler et al., 1987) Suppose that H 1(M; Q) is one dimen­

sional. If a is a boundary slope, then either 

(i) M(a) contains a closed essential surface of strictly positive genus. 

(ii) M(a) is the connected sum of two lens spaces. 



150 

(iii) There is a closed essential surface 8 C M which compresses in M ( o:,) but 

which remains incompressible in M ( ô) as long as ..6. ( o:,, ô) > 1. 

(iv) M(o:.) rv 8 1 X 8 2 . 

P roof of Theorem B. Let o:. be an exceptional slope on aM and ,B E C(o:.). 

First we deal with the case b1 (M(o:.)) =/= O. Since M is t he complement of 

regular neighbourhood of a knot in a rational homology 3-sphere , b1(M) = 

rankz (H1(M)) = 1 and sois b1 (M(o:.)). Now let À be the preferred longitude 

of 8 M. Sin ce b1 ( M ( o:.)) = 1, we must have o:. = q À and ,B = q' À for some integer 

q and q' . Then because o:. and fJ are primitive elements, ,B = ±o:.. 

We can now assume that b1 ( M ( o:,)) = 0. Let us su pp ose that o:. is a boundary 

slope. By Theorem 7.4.5 we have the following possibilit ies: 

(i) M (o:.) contains a closed essent ial surface of strictly positive genus. 

(ii) M( o:.) is t he connected sum of two lens spaces. 

(iii) There is a closed essential surface 8 C M which compresses in M(o:.) but 

which remains incompressible in M(ô) as long as ..6. (o:., ô) > 1. 

(iv) M(o:.) ~ 8 1 X 8 2 . 

Since M(o:.) is small-Seifert with b1(M(o:.)) = 0, only (iii) can occur. Then the 

fact that M(o:.) ~ M(,B) implies that 8 also compresses in M(,8) so ..6.(o:. , ,8) ::; 1. 

The condition ..6. ( o:., ,8) ::; 1 implies that there are at most t hree of such slopes. 

Assume ,B E C(o:.) is distinct from o:., then ..6. (o:. , ,8) = 1 and we have either 

C(o:.) = {o:. , ,B, o:. + ,8} , or C(o:.) = {o:.,,8} . 
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Now recall from Lemma 1.1.4 that there is a constant cM independent of et such 

that 

[H1(M(et); Z)[ = cMfl(et , À M ) . 

Therefore since H1(M(et); Z) = H1(M((3); Z) = H1(M(et + (3); Z), we must have 

Thus all t hree elements et, (3, et+ f3 lie on the same line l in JR. 2 which is at fixed 

distance from À M . This is impossible since et and f3 are linearly independent. It 

follows t hat the first case cannot occur and we have: 

C(et) = {et, (3} . 

Now if et is not a boundary slope we can apply Lemma 7.4.4 to obtain 

[[et[[= 11 !3 11· 

Let r = 11 et [ [, then every element of C (et) lies on the boundary of the ball B ( 0, r) of 

the absolute norm. On the other hand they must all have the same µ component 

since they give homeomorphic manifolds after Dehn filling. Hence t hey also lie 

on a line l parallel to À. Since B (O, r) is convex, 8B(O, r) n l has at most two 

points unless l con tains a si de of 8 B ( 0, r). D 



CONCLUSION 

This study has offered new perspectives on cosmetic surgeries. For a hyperbolic 

knot K in S3 , the result that exceptional truly cosmetic surgeries must have slope 

±1 is a new advance on the topic, together with t he finding that t he manifold 

obtained is toroïdal but not Seifert fibred. One consequence of the latter is t he 

existence of an essential separating torus in both Si ( - 1) and Si ( 1). To rule out 

the latter possibility appears to require refinements in Heegaard Floer theory. 

The other ingredient, graph intersection theory, also has its limitations in this 

context sin ce 6 ( + 1, -1) = 2. In fact the main resul ts on the existence of pairs 

{r, s} of toroïdal surgery slopes using this technique require .0. (r , s) ~ 4. Indeed 

the smaller the distance between the slopes the more complicated the graphs 

become. To push the study further we then need to get around t hese problems 

or to devise a new approach to the subject. 

For the case of exceptional truly cosmetic surgeries on integer homology spheres, 

we have a precise list of possibilities which suggest in which directions we should 

look for a more elaborate investigation of the cosmetic surgery conjecture. The 

fact that in most cases the result of the surgery has to be an integer homology 

sphere is notable as well. In particular the slope must be of t he form 1 / q, ex ce pt, 

possibly, for atoroidal small Seifert surgeries. Therefore investigating cosmetic 

l / q surgeries for some integer q will give more insight into the problem. Sorne 

tools from Heegaard Floer theory are available in this sit uation. onetheless we 

have the same challenges as for S3 in terms of the techniques used. 



153 

The examination of small Seifert cosmetic surgeries on rational homology sphere 

done in Chapter 7 is quite particular since it uses character varieties, a totally 

different method. Contrary to Heegaard Floer homology, with this tool we do 

not ·need the knot to be null-homologous when we work in Q-homology spheres. 

Graph intersection methods were also excluded here since we do not look for a 

pair of slopes each giving an essential surface. However some of t he assumptions 

in Theorem B seem too technical. In order to get around this issue we may need 

to go deeper into the theor.x... of the theory of P S L2 ( C)-character varieties of 3-

manifolds. Theorem B is a starting point for the study of cosmetic surgery on 

manifold Y with b1 (Y) = 0 but H1 (Y) -=f. O. We can think of it as a rational 

homology analogue of Theorem 1.3.8 of Zhongtao Wu or part (a) of Theorem 

1.3.7 of Zhongtao Wu arid Yi Ni, modulo suitable hypotheses. 
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