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Abstract

Outlier detection in mixed-attribute space is a challenging problem for which

only few approaches have been proposed. However, such existing methods suf-

fer from the fact that there is a lack of an automatic mechanism to formally

discriminate between outliers and inliers. In fact, a common approach to outlier

identification is to estimate an outlier score for each object and then provide a

ranked list of points, expecting outliers to come first. A major problem of such

an approach is where to stop reading the ranked list? How many points should

be chosen as outliers? Other methods, instead of outlier ranking, implement var-

ious strategies that depend on user-specified thresholds to discriminate outliers

from inliers. Ad hoc threshold values are often used. With such an unprinci-

pled approach it is impossible to be objective or consistent. To alleviate these

problems, we propose a principled approach based on the bivariate beta mixture

model to identify outliers in mixed-attribute data. The proposed approach is

able to automatically discriminate outliers from inliers and it can be applied to

both mixed-type attribute and single-type (numerical or categorical) attribute

data without any feature transformation. Our experimental study demonstrates

the suitability of the proposed approach in comparison to mainstream methods.

Keywords: Data Mining, Outlier detection, Mixed-attribute data, Mixture

model, Bivariate beta.
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1. Introduction1

Outlier detection is the practice of identifying data points which are consider-2

ably different from the remaining data (Aggarwal, 2013; Cao, Si, Zhang, and Jia,3

2010; Kriegel, Kroger, Schubert, and Zimek, 2011; Tan, Steinbach, and Kumar,4

2006). Outlier detection is also known as exception mining or deviation detec-5

tion because outlier points are exceptional in some sense or they have attribute6

values that deviate significantly from the expected or typical attribute values7

(Tan et al., 2006). Identifying outliers has practical applications in different do-8

mains such as intrusion and fraud detection, medical diagnosis, and many others9

(Fustes, Dafonte, Arcay, Manteiga, Smith, Vallenari, and Luri, 2013; Maervoet,10

Vens, Berghe, Blockeel, and Causmaecker, 2012; Alan and Catal, 2011). For11

example, in medical diagnosis, outliers may arise when the patient is afflicted12

with some disease, or suffers side-effects from a drug. Efficient detection of such13

outliers aids in identifying, preventing, and repairing the effects of malicious or14

faulty behavior (Penny and Jolliffe, 2011).15

Approaches to outlier detection can be categorised as supervised, semi-16

supervised, and unsupervised (Angiulli and Fassetti, 2014). In principle, super-17

vised, as well as semi-supervised learning methods, use labeled data to create18

a model which distinguishes outliers from inliers. On the other hand, unsuper-19

vised approaches do not require any labeled objects and detect outliers as points20

that are considerably dissimilar or inconsistent with respect to the remaining21

data using some quantified measures of outlierness (Aggarwal, 2013). To im-22

plement supervised and semi-supervised outlier detection methods, we should23

first label the training data (Wu and Wang, 2013). The problem here is that24

labeled data samples are more difficult, expensive and time consuming to obtain25

than unlabeled ones. This is why unsupervised approaches are more generally26

and widely used, since they do not require labeled information. In this paper27

we focus only on unsupervised outlier detection. For more surveys and details28

on outlier analysis, we refer the reader to Aggarwal (2013). In the following,29

we first describe some background information by providing a brief description30
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of the key idea of some outlier detection approaches which are relevant to this31

work. Next, we discuss a number of elements that motivate this study and32

describe our contributions.33

1.1. Background Information34

Several unsupervised approaches have been proposed to identify outliers in35

numerical data. Such approaches can be broadly classified as statistical-based,36

distance-based, and density-based (Angiulli and Pizzuti, 2005). Statistical-37

based approaches attempt to fit the data set under investigation to a certain kind38

of distribution model (in general, the Gaussian model) (Yamanishi, Takeuchi,39

Williams, and Milne, 2000). Inliers occur in a high probability region of the40

model while outliers deviate strongly from the distribution. Distance-based41

approaches evaluate the outlierness of a point based on the distances to its k-42

nearest neighbors (kNN) (Angiulli and Pizzuti, 2005, 2002). Points with large43

kNN distance are defined as outliers. Finally, density-based approaches use the44

number of points within a specific local region of a data point in order to define45

local density (Breunig, Kriegel, Ng, and Sander, 2000). The local density val-46

ues could be then used to measure how isolated a point is with respect to the47

surrounding objects (Wu and Wang, 2013).48

The aforementioned approaches were specifically designed for numerical data.49

However, in several applications, attributes in real data sets are not numerical,50

but have categorical values. For categorical data sets, distance-based as well51

as density-based techniques must confront the problem of how to choose the52

measurement of distance or density (Wu and Wang, 2013). This poses a sig-53

nificant challenge in terms of generalizing algorithms for numerical data to the54

categorical domain (Aggarwal, 2013). To address this issue, a number of ap-55

proaches have been proposed to deal with categorical data (Koufakou, Secretan,56

and Georgiopoulos, 2011; He, Xu, Huang, and Deng, 2005). Some of these ap-57

proaches use the concept of frequent itemset mining to estimate an outlying58

score for each point. Inliers are those points which contain sets of items that59

co-occur frequently in the data sets, while outliers are likely to be the points60
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Figure 1: Mixed-attribute data set with clustered objects and outliers.

that contain rare itemsets (Koufakou et al., 2011).61

In many cases, categorical and numerical data are found in the same data62

set, as different attributes. This is referred to as mixed-attribute data (Ag-63

garwal, 2013). Outliers are those objects containing attribute values that are64

dissimilar to or inconsistent with the remaining objects in both the numerical65

and the categorical space (Koufakou and Georgiopoulos, 2010; Otey, Ghoting,66

and Parthasarathy, 2006). To illustrate, Fig. 1 shows a small data set composed67

of 18 objects with four numerical attributes (A1, A2, A3, and A4) and four cat-68

egorical attributes (A5, A6, A7, and A8). As can be seen from this figure, data69

objects O1, O2, . . . , O15 are grouped into three clusters, while the remaining70

points, that is, O16, O17, and O18, are outliers which could not be located in71

any cluster. Note that in this figure each cluster is represented by a shade of72

gray and the unclustered background is white. Clusters thus exist in different73

subspaces spanned by different attributes. From Fig. 1, we can see that, in74

contrast to inliers (that is, the clustered objects), outliers contain dissimilar75

attribute values. In fact, compared to points that belong to clusters, outliers76

have non-correlated numerical attribute values along the numerical space and77

infrequent attribute values across the categorical space. On the other hand,78
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from Fig. 1, we can see that objects grouped within clusters contain attribute79

values that are closely related along a specific subset of dimensions. For ex-80

ample, objects O1, O2, O3, O4, and O5, which form cluster 1, contain correlated81

attribute values along the numerical attributes A1, A2, A3, and a large number82

of common categorical attribute values along the categorical attribute A6.83

In practice, when faced with mixed-attribute data, it is common to discretize84

the numerical attributes and treat all the data as categorical so that categorical85

outlier detection algorithms can be applied to the entire data set. However, as86

suggested in Zhang and Jin (2010), discretizing numerical values into several87

bins could introduce noise or information losses. Improper discretizing thus88

would hamper the detection performance. To alleviate this problem, only few89

approaches (Koufakou and Georgiopoulos, 2010; Zhang and Jin, 2010; Otey,90

Ghoting, and Parthasarathy, 2006), have been proposed to handle outliers in91

the mixed-attribute space.92

The approach proposed in Otey et al. (2006) is based on the concept of93

frequent itemsets to deal with categorical attributes, and the covariance for94

continuous attributes. Specifically, the authors in Otey et al. (2006) assign to95

each point an outlier score inversely proportionate to its infrequent itemsets.96

They also maintain a covariance matrix for each itemset to compute anomaly97

scores in the continuous attribute space. A point is likely to be an outlier if it98

contains infrequent categorical sets, or if its continuous values differ from the99

covariance violation threshold. It is worth noting that the work proposed by100

Otey et al. (2006) has the merit of being the first outlier detection algorithm101

for mixed-attribute data.102

Koufakou and Georgiopoulos (2010) proposed an approach named ODMAD103

(Outlier Detection for Mixed Attribute Datasets). This algorithm calculates104

first, for each point in the categorical space, an outlier score which depends on105

the infrequent subsets contained in that point. Data points with score values less106

than a user-entered frequency threshold are isolated since they contain highly107

infrequent categorical values and may thus potentially correspond to outliers.108

This process results in a reduced data set based on which other outlier scores109
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are calculated for the numerical space using the cosine similarity measure. As110

described in Koufakou and Georgiopoulos (2010), since minimum cosine simi-111

larity is 0 and maximum is 1, the data points with similarity close to 0 are more112

likely to be outliers. Experiments in Koufakou and Georgiopoulos (2010), show113

that ODMAD is fast and outperforms Otey’s approach.114

Zhang and Jin (2010) proposed a Pattern based Outlier Detection approach115

(POD). Patterns in Zhang and Jin (2010) are defined to describe the data objects116

as well as to capture interactions among different types of attributes. The more117

an object deviates from these patterns, the higher its outlier score. The authors118

in Zhang and Jin (2010) use logistic regression to learn patterns. These patterns119

are then used to estimate outlier scores for objects with mixed attribute. The120

top n points with the highest score values are declared as outliers. It is important121

to note that POD is not able to handle categorical values directly. To detect the122

target patterns, categorical attributes are first mapped into binary attributes.123

Then, these binary attributes are analyzed together with the original continuous124

attributes to detect outliers in the mixed-attribute space.125

1.2. Motivations and Contributions126

The area of outlier detection in mixed-attribute data offers several oppor-127

tunities for improvement. There are just very few approaches around in the128

literature so far, yet there are a number of problems still to solve. For instance,129

the output of POD (Zhang and Jin, 2010) is a ranked list of points that repre-130

sents the degree of outlierness of each point. The top n points in the list with131

the highest degree values are considered as outliers. This method encounters a132

major concern: at which level should this list be cut? Stated otherwise, starting133

from the first (ranked number one) object, how far should we go in that list? In134

general, no principled way is suggested on how many points should be selected135

from a ranked list. In some situations, the top n points are selected solely on the136

basis of specific knowledge of an application. Unfortunately, prior knowledge137

about the data under investigation is not always available.138

Since a ranked list has a particular disadvantage because there is no clear139
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cut-off point of where to stop consulting the results, thresholding has turned140

out to be important in detecting outliers. For instance, ODMAD (Koufakou141

and Georgiopoulos, 2010) and the approach proposed by Otey et al. (2006)142

implement various strategies that depend on user-specified thresholds to detect143

outliers. In real situations, however, it is rarely possible for users to supply the144

threshold values accurately. Outlier detection accuracy can thus be seriously145

reduced if an incorrect threshold value is used. The experiments conducted in146

Koufakou and Georgiopoulos (2010) on the impact of using various threshold147

values on the outlier detection accuracy corroborate our claim. Finally, it is148

worth noting that ODMAD and Otey’s approach depend also on other input149

parameters such as the minimum support, the maximum length of itemset and150

the size of a window of categorical and numerical scores. Setting appropriate151

values of these parameters is not a straightforward task.152

To alleviate the aforementioned drawbacks of existing approaches for detect-153

ing outliers in the mixed-attribute space, we propose in this paper a principled154

approach which is able to automatically identify outliers. In our approach, we155

first estimate an outlying score, for each object, in the numerical space and156

another score in the categorical space. Next, we associate to each data point a157

two dimensional vector containing the estimated scores: one dimension contains158

the score estimated in the numerical space while the second one contains the159

outlying score calculated in the categorical space. We assume that, in both160

spaces, outliers are characterised by high score values. Finally, we propose a161

statistical framework, based on the bivariate beta mixture, in order to model162

the estimated outlier score vectors. The goal is to cluster the estimated vectors163

into several components such that data points associated to the component with164

the highest score values correspond to outliers.165

We have used the beta mixture mainly because it permits multiple modes166

and asymmetry and can thus approximate a wide variety of shapes (Dean and167

Nugent, 2013; Bouguila and Elguebaly, 2012; Bouguessa, 2012; Ji, Wu, Liu,168

Wang, and Coombes, 2005), while several other distributions are not able to do169

so. For example, the standard Gaussian distribution permits symmetric “bell”170
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shape only. However, in many real life applications, the data under investigation171

is skewed with non-symmetric shapes. In this setting, as observed in Dean and172

Nugent (2013), and in Boutemedjet, Ziou, and Bouguila (2011), the standard173

Gaussian distribution may lead to inaccurate modeling (e.g. over estimation of174

the number of components in the mixture, increase of misclassification errors,175

etc.). In contrast to several distributions, the beta distribution is more flexible176

and powerful since it permits multiple symmetric and asymmetric modes, it177

may be skewed to the right, skewed to left or symmetric (Bouguila, Ziou, and178

Monga, 2006). This great shape flexibility of the beta distribution provides179

a better fitting of the outlier score vectors, which leads, in turn, to accurate180

detection of outliers. Our experimental results corroborate our claim.181

We summarize the significance of our work as follows:182

1. We view the task of identifying outliers from a mixture modeling perspec-183

tive, on which we devise a principled approach which is able to formally184

discriminate between outliers and inliers, while previous works provide185

only a ranked list of objects expecting outliers to come first.186

2. The proposed method automatically identifies outliers, while existing ap-187

proaches require human intervention in order to set a detection threshold188

or to manually define the number of outliers to be identified. Furthermore,189

our method is general, in the sense that it is not limited to mixed-attribute190

data and it can be applied to single-type attribute (numerical or categor-191

ical) data without any feature transformation.192

3. We conducted detailed experiments on several real data sets with mixed-193

attribute as well as with single-type attribute. The results suggest that194

the proposed approach achieves competitive results in comparison to main-195

stream outlier detection algorithms.196

The rest of this paper is organized as follows. Section 2 describes our ap-197

proach in detail. An empirical evaluation of the proposed method is given in198

Section 3. Finally, our conclusion is given in Section 4.199
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Figure 2: Workflow of the proposed approach.

2. Proposed Approach200

We begin by fixing a proper notation to be used throughout the paper. Let201

D = {O1, . . . , ON} be a set of N mixed-attribute data points. Each point con-202

tains An numerical attributes and Ac categorical attributes. The subspace of D203

that contains only numerical attributes is denoted Snum, while Scat refers to the204

subspace of D which contains only categorical attributes. In this paper, we rep-205

resent a data point Oi as Oi = [Oni , O
c
i ], such that Oni = (oni1, . . . , o

n
il, . . . , o

n
iAn

)206

and Oci = (oci1, . . . , o
c
it, . . . , o

c
iAc

), where onil designates the lth numerical attribute207

value and ocit corresponds to the tth categorical attribute value. In what follows,208

we will call onil a numerical 1D point and ocit a categorical 1D point.209

In our approach, we propose first to estimate, for each object Oi, an outlier210

score in the numerical space and another score in the categorical space. Then,211

we associate to each data point a two-dimensional outlier score vector ~Vi con-212

taining the two estimated scores. Finally, based on {~Vi}(i=1,...,N), we devise a213

probabilistic approach that uses the bivariate beta mixture model to automati-214

cally discriminate outliers from inliers in the full-dimensional space. Specifically,215

we first model {~Vi} as a mixture of m bivariate beta components. We then se-216

lect the component that corresponds to vectors with the highest score values.217

Data objects associated with the set of vectors that belong to the selected com-218

ponent correspond to outliers. Fig. 2 provides a simple visual illustration of the219
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proposed approach. More details are given in the follows.220

2.1. Estimating Outlier Score in the Numerical Space221

It is widely accepted that outliers are data points that are considerably222

dissimilar from the remaining data (Aggarwal, 2013; Huang and Yang, 2011;223

Kriegel et al., 2011). In this setting, it is reasonable to assume that, in gen-224

eral, most of the attribute values of outlier objects projected along each of the225

dimensions in Snum tend to be far apart from the remaining attribute values226

(Tan et al., 2006). On the other hand, inliers have attribute values that tend to227

be closely related along several (or all) dimensions in Snum. Our assumption is228

based on the fact that inliers tend to form dense regions across several dimen-229

sions in the numerical space, while outliers are sparsely distributed. With this230

intuition in mind, we define the outlier score ON (Oni ) for an object Oi in the231

numerical attribute space as232

ON (Oni ) =

An∑
l=1

log
(
WN (onil) + 1

)
(1)

with233

WN (onil) =

k∑
j=1

[
dl
(
onil, kNNj(o

n
il)
)]2

(2)

where, for a specific dimension l in Snum, kNNj(o
n
il) denotes the jth nearest (1D234

point) neighborhood of onil and dl denotes the distance between two numerical235

1D points. In our case, this distance simply corresponds to the absolute value236

of the difference between two numerical attribute values of a specific dimension.237

The outlier score defined in (1) is the sum, over all dimensions in the numer-238

ical space Snum, of the log of the weight WN (onil). As described by (2), WN (onil)239

computes the sum of the square of the distance between each 1D point onil and240

its k nearest neighborhoods in dimension l. Intuitively, a large value of WN (onil)241

means that onil falls into a sparse region in which the k nearest neighborhood242

attribute values of onil are loosely related, while a small value indicates that onil243
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Figure 3: The estimated outlier scores in the numerical space for the data objects
depicted by Fig. 1.

belongs to a dense region in which the k nearest neighborhood of onil are closely244

related. Note that we have used the square power in (2) in order to favor the245

weight of the 1D points belonging to a sparse region.246

The weight WN (onil) captures the degree of isolation of an attribute value247

with respect to its neighbors. The higher its weight, the more distant are its248

neighbors along dimension l of Snum. Accordingly, based on (2), we can surmise249

that objects that are sparsely distributed over Snum will receive high ON (Oni )250

values, while related points will receive low score values. This means that out-251

liers will be characterized by high score values in contrast to inliers. As an252

illustration, Fig. 3 shows the estimated outlier scores in the numerical space253

for the data objects depicted by Fig. 1. As can be seen from Fig. 3, outlier254

objects O16, O17, and O18 have high score values in comparison to inliers, that255

is, O1, . . . , O15.256

It is important to note that we have used the logarithm function in (1)257

primarily to squeeze together the large values that characterize outliers and258

stretch out the smallest values, which correspond to inliers. This squeezing and259

stretching contributes to enhancing the contrast between largest and smallest260

values which helps in distinguishing outliers from the rest of the points. Finally,261

note that we have added 1 to WN (onil) in equation (1) to avoid the null value in262

the calculation of the logarithm, since it is possible to have WN (onil) = 0 in the263
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likely case where an attribute has more than k duplicative values.264

It is clear that the calculation of the k nearest neighbors is, in general, an265

expensive task, especially when the number of data points N is very large. How-266

ever, since we are searching for the k nearest neighbors in the one-dimensional267

space, we can perform the task in an efficient way by sorting the values in each268

attribute and limiting the number of distance comparisons to a maximum of269

2k values. The computation of the kNN distance is sensitive to the value of270

k, which is a limitation common to all kNN based approaches. However, we271

believe the problem this limitation creates for our approach does not have a272

major impact. This is because, since we estimate the kNN distances in the273

one-dimensional space only, the choice of the value of k is not as critical as in a274

multi-dimensional case. As suggested in Bouguessa and Wang (2009), to gain a275

clear idea of the sparseness of the neighborhood of a 1D point, we suggest using276

k =
√
N as a default value.277

2.2. Estimating Outlier Score in the Categorical Space278

Virtually, as suggested in previous studies (Koufakou et al., 2011; Koufakou279

and Georgiopoulos, 2010; He et al., 2005), outliers in the categorical space are280

those points that have infrequent attribute categorical values for all dimensions281

compared to normal points. This means that every categorical 1D point of282

outlier objects is infrequent across all dimensions of Scat, while inliers have283

several categorical 1D points which occur with higher frequency along several (or284

all) categorical attributes (Koufakou et al., 2011; Koufakou and Georgiopoulos,285

2010). Based on such a definition, the outlier score OC(Oci ) for an object Oi in286

the categorical attribute space is formulated as287

OC(Oci ) =

Ac∑
t=1

log
(
WC(ocit)

)
(3)

with288

WC(ocit) = f(ocit) (4)
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where f(ocit) denotes the number of times ocit appears in a specific categorical289

dimension t of Scat.290

OC(Oci ) is defined as the sum, across all dimensions in the categorical space291

Scat, of the log of the weight WC(ocit), which, in turn, corresponds to the occur-292

rence frequency of ocit in the categorical attribute t. Here, it is clear that rare293

categorical attribute values projected along dimension t will receive low weight294

values, while larger WC(ocit) values indicate that ocit is shared by several objects295

within dimension t. Accordingly, based on (3), points that share common cate-296

gorical values across Scat will get large OC(Oci ) values, while data objects that297

have infrequent categorical values across Scat will receive low OC(Oci ) values. As298

a result, since outliers are those points whose attribute categorical values occur299

very rarely along each dimension in Scat (Koufakou et al., 2011), it is easy to300

see that small values of OC(Oci ) designate outliers and high scores correspond301

to inliers. Finally, note that, as with the numerical outlier score described by302

(1), we have used a logarithm function in (3) to enhance the contrast between303

larger and smaller weight values.304

In this paper, as mentioned in Section 1, we assume that outliers are char-305

acterized by large score values in contrast to inliers. However, as just discussed,306

large OC(Oci ) scores refer to inliers. To regularize such scores, we need to invert307

them. For this purpose, we simply take the difference between the observed308

score and the maximum possible estimated score OCmax. The inverted score is309

estimated as310

OCinv(Oci ) = OCmax −OC(Oci ) (5)

It easy to show that this linear inversion doesn’t affect the ranking-stability of311

the inverted scores:312

OC(Oc1) ≤ OC(Oc2) ⇐⇒ −OC(Oc1) ≥ −OC(Oc2)

⇐⇒ OCmax −OC(Oc1) ≥ OCmax −OC(Oc2)

⇐⇒ OCinv(Oc1) ≥ OCinv(Oc2).
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Figure 4: The estimated outlier scores in the categorical space for the data
objects depicted by Fig. 1.

Accordingly, based on such a linear inversion, outliers will receive large score313

values while inliers will receive the lowest score values. In the remainder of this314

paper, unless otherwise specified, we use only the inverted categorical outlier315

score values. As an illustration, Fig. 4 shows the estimated outlier scores in the316

categorical space for the data objects depicted by Fig. 1. As can be seen from317

Fig. 4, outlier objects O16, O17, and O18 have high score values in comparison318

to inliers, that is, O1, . . . , O15.319

Finally, as the reader can notice, in our approach we treat numerical and320

categorical attributes independently in order to estimate outlier scores in the321

numerical and the categorical space. In other words, this means we assume the322

independence of both numerical and categorical attributes. Such an assump-323

tion is mainly based on the general definition of outliers, which relies on the fact324

that outlier objects contain attribute values that are dissimilar to or inconsistent325

with the remaining points. Stated otherwise, outliers may contain many atyp-326

ical attribute values across most (or all) attributes of the data in comparison327

to inliers. Accordingly, investigating individual attributes in order to localize328

attribute values that deviate significantly from the expected or typical attribute329

values is appropriate to effectively detect outliers in the whole space.330
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2.3. Modeling Outlier Score Vectors331

Once the outlier scores are estimated in both the numerical and the categor-332

ical spaces, we now focus on how to automatically identify outliers in the mixed-333

attribute space. To this end, we associate to each object Oi a two-dimensional334

vector ~Vi such that the first element of this vector corresponds to the outlier335

score of Oi in the numerical space, while the second element represent the out-336

lier score of Oi in the categorical space. Then, based on the estimated vectors,337

we propose a probabilistic approach that uses the bivariate beta mixture model338

to automatically discriminate outliers from inliers in the full-dimensional space.339

The probabilistic model framework is described in the follows.340

2.3.1. The Bivariate Beta Mixture Model341

Since the beta distribution is defined on the interval [0,1], we should first,342

without loss of generality, normalize the estimated outlier score values between343

0 and 1. Let ~Vi = (Vi1, Vi2)T where Vi1 and Vi2 represent, respectively, the344

normalized outlier scores ON (Oni ) and OCinv(Oci ). Under a mixture of bivariate345

beta distribution,346

~Vi ∼
M∑
m=1

λm Bm(~Vi|~xm, ~ym) (6)

where Bm(~Vi|~xm, ~ym) is the mth bivariate beta distribution; M denotes the347

number of components in the mixture; ~x = {~x1, . . . , ~xM} and ~y = {~y1, . . . , ~yM}.348

~xm and ~ym are the parameters of the mth component with ~xm = (xm1, xm2)T349

and ~ym = (ym1, ym2)T . λ = {λ1, . . . , λM} represents the mixing coefficients350

such that
∑M
m=1 λm = 1 and λm > 0.351

The bivariate beta distribution can be obtained by cascading two beta vari-352

ables together, that is, each element in the two-dimensional vector ~Vi is a scalar353

beta variable. In other words, the bivariate beta is the product of two uni-354

variate beta densities. Accordingly, the probability density function of the mth
355
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bivariate beta component is expressed as356

Bm(~Vi|~xm, ~ym) =

2∏
d=1

B(Vid|xmd, ymd) (7)

B(Vid|xmd, ymd) is the probability density function of the univariate beta distri-357

bution which is given by358

B(Vid|xmd, ymd) =
Γ(xmd + ymd)

Γ(xmd)Γ(ymd)
V xmd−1
id (1− Vid)ymd−1 (8)

where Γ(.) is the gamma function given by Γ(α) =
∫∞

0
βα−1 exp(−β)dβ;β > 0.359

2.3.2. Maximum Likelihood Estimate360

A common approach for estimating the unknown parameters xmd and ymd,361

(m = 1, . . . ,M ; d = 1, 2) is the maximum likelihood estimation technique. The362

likelihood function corresponding to the mth bivariate beta component Bm is363

defined as364

L
(
Bm(~Vi|~xm, ~ym)

)
=

∏
~Vi∈Bm

Bm(~Vi|~xm, ~ym)

=
∏

~Vi∈Bm

2∏
d=1

B(Vid|xmd, ymd) (9)

The logarithm of the likelihood function is given by365

log
[
L
(
Bm(~Vi|~xm, ~ym)

)]
=

Nm∑
i=1

2∑
d=1

log
[
B(Vid|xmd, ymd)

]
(10)

where Nm is the size of the mth component.366

We note that the parameters pair {xmd, ymd} is independent from all other

pairs. The problem of estimating the parameters of the model can thus be

reduced to the estimation of the parameters pair {xmd, ymd} independently over

each dimension of the outlier score vectors belonging to component m. In this
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setting, the value {x̂md, ŷmd} that maximizes the likelihood can be obtained

by taking the derivative of the expectation of the log-likelihood function with

respect to xmd and ymd and setting the gradient equal to zero as


∂E
(

log
[
L(Bm(~Vi|~xm,~ym))

])
∂xmd

∂E
(

log
[
L(Bm(~Vi|~xm,~ym))

])
∂ymd

 = 0 (11)

where367

∂E
(

log
[
L(Bm(~Vi|~xm, ~ym))

])
∂xmd

=

Nm∑
i=1

[ ∂

∂xmd
log
( Γ(xmd + ymd)

Γ(xmd)Γ(ymd)
V xmd−1
id (1− Vid)ymd−1

)]
=

Nm∑
i=1

[Γ′(xmd + ymd)

Γ(xmd + ymd)
− Γ′(xmd)

Γ(xmd)
+ log(Vid)

]
= Nm

Γ′(xmd + ymd)

Γ(xmd + ymd)
−Nm

Γ′(xmd)

Γ(xmd)
+

Nm∑
i=1

log(Vid). (12)

and368

∂E
(

log
[
L(Bm(~Vi|~xm, ~ym))

])
∂ymd

=

Nm∑
i=1

[ ∂

∂ymd
log
( Γ(xmd + ymd)

Γ(xmd)Γ(ymd)
V xmd−1
id (1− Vid)ymd−1

)]
=

Nm∑
i=1

[Γ′(xmd + ymd)

Γ(xmd + ymd)
− Γ′(ymd)

Γ(ymd)
+ log(1− Vid)

]
= Nm

Γ′(xmd + ymd)

Γ(xmd + ymd)
−Nm

Γ′(ymd)

Γ(ymd)
+

Nm∑
i=1

log(1− Vid).

(13)

Equations (11), (12) and (13) yield the following expression369


Nm
[
ψ(xmd + ymd)− ψ(xmd)

]
+
∑Nm

i=1 log(Vid)

Nm
[
ψ(xmd + ymd)− ψ(ymd)

]
+
∑Nm

i=1 log(1− Vid)
]
 = 0 (14)

370

where ψ(.) is the digamma function given by ψ(α) = Γ′(α)
Γ(α) .371
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Since the digamma function is defined though an integration, a closed-372

form solution to (14) does not exist. So the parameters pair {xmd, ymd} can373

be estimated using the Newton-Raphson method (Ypma, 1995). Specifically,374

{xmd, ymd} are estimated iteratively:375


x

(I+1)
md

y
(I+1)
md

 =


x

(I)
md

y
(I)
md

− [~hm]T [Hm]−1 (15)

where I is the iteration index, hm and Hm are respectively the vector of the376

first derivatives and the matrix of the second derivatives of the log likelihood377

function of the mth component.378

The vector ~hm is defined as379

~hm =

 h1
m

h2
m

 =

 ∂E
(

log
[
L(Bm( ~Vi| ~xm, ~ym))

])
∂xmd

∂E
(

log
[
L(Bm( ~Vi| ~xm, ~ym))

])
∂ymd

 (16)

and the matrix Hm is expressed as380

Hm =


∂h1

m

∂xmd

∂h1
m

∂ymd

∂h2
m

∂xmd

∂h2
m

∂ymd

,381

where382

∂h1
m

∂xm
= Nm

[
ψ′(xmd + ymd)− ψ′(xmd)

]
,

∂h1
m

∂ym
=

∂h2
m

∂xmd
= Nm

[
ψ′(xmd + ymd)

]
,

∂h2
m

∂ym
= Nm

[
ψ′(xmd + ymd)− ψ′(βmd)

]
. (17)

ψ′(.) is the trigamma function given by ψ′(α) = Γ′′(α)
Γ(α) − [Γ′(α)

Γ(α) ]2.383

The Newton-Raphson algorithm for the update of equation (15) converges,384

as our estimate of xmd and ymd change by less than a small positive value ε385

with each successive iteration, to x̂md and ŷmd. Note that, we have used in386
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our implementation the method of moments estimators of the beta distribution387

(Bain and Engelhardt, 2000) to define starting values for {x(0)
md, y

(0)
md} in equation388

(15). In this technique, the expected mean of the distribution is equated to the389

sample mean and the expected variance to the sample variance. Specifically,390

the method of moments estimators are391

x̂
(0)
md = µmd

[
µmd(1− µmd)

σ2
md

− 1

]
,

ŷ
(0)
md = (1− µmd)

[
µmd(1− µmd)

σ2
md

− 1

]
. (18)

where µmd and σ2
md denote respectively the sample mean and variance of the392

normalized outlier score vectors belonging to the mth component which are393

projected along dimension d.394

2.3.3. EM Algorithm for the Bivariate Beta Mixture395

Let P = {λ1, . . . , λM , ~x1, . . . , ~xM , ~y1, . . . , ~yM} denote the set of parameters396

of the mixture and V = {~V1, . . . , ~VN} the set of the normalized outlier score397

vectors. The usual choice for obtaining the maximum likelihood of the distribu-398

tion parameters is the EM algorithm (Dempster, Laird, and Rubin, 1977). This399

algorithm is based on the interpretation of V as incomplete data. As mentioned400

in Figueiredo and Jain (2002), for finite mixture, the missing part is a set of N401

label vectors η = {~η1, . . . , ~ηN} associated with the N outlier score vectors, in-402

dicating to which component ~Vi belongs. Specifically, each ~ηi = (ηi1, . . . , ηim)T403

is a binary vector, where ηim = 1 if ~Vi belongs to component m and ηim = 0404

otherwise.405

The complete data is thus defined by the sets η and V. The likelihood of the406

complete data is then:407

L(V, η|P) =

N∏
i=1

M∏
m=1

[
λm Bm(~Vi|~xm, ~ym)

]ηim
(19)
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and the complete log likelihood is:408

log(L(V, η|P)) =

N∑
i=1

M∑
m=1

ηim log
[
λm Bm(~Vi|~xm, ~ym)

]
=

N∑
i=1

M∑
m=1

ηim log
[
λm

2∏
d=1

B(Vid|xmd, ymd)
]

=

N∑
i=1

M∑
m=1

ηim
[

log(λm) +

2∑
d=1

log(B(Vid|xmd, ymd))
]

(20)

The EM algorithm can now be used to estimate P. Specifically, the algo-409

rithm iterates between an Expectation step and an Maximization step in order410

to produce a sequence estimate {P̂}(I), (I = 0, 1, 2, . . . ), where I denotes the411

current iteration step, until the change in the value of the complete log-likelihood412

in (20) is negligible. Details of each step are given below.413

In the Expectation step: each latent variable ηim is replaced by its expecta-414

tion as follows415

η̂
(I)
im = E[ηim|~Vi,P] =

λ̂
(I)
m Bm(~Vi|~̂xm, ~̂ym)∑M
j=1 λ̂

(I)
j Bj(~Vi|~̂xj , ~̂yj)

(21)

In the Maximization step: the mixing coefficients {λm} and the parameters416

{~x1, . . . , ~xM , ~y1, . . . , ~yM} are calculated using the values of η̂im estimated in the417

Expectation step. Specifically, the mixing coefficients are calculated as418

λ̂(I+1)
m =

∑N
i=1 η̂

(I)
im

N
, m = 1, . . . ,M (22)

The parameters {~xm = (xm1, xm2)T }(m=1,...,M) and {~ym = (ym1, ym2)T }(m=1,...,M)419

are estimated using the Newton-Raphson algorithm, based on (15), as described420

in the previous subsection.421

Finally, note that, the EM algorithm requires the initial parameters of each422

component. Since EM is highly dependent on initialization, it will be help-423

ful to perform initialization by means of clustering algorithms (Figueiredo and424

Jain, 2002). For this purpose we implement the k-means algorithm in order to425
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Algorithm 1: EM algorithm for the bivariate beta mixture

Input : {~Vi}(i=1,...,N); M

Output: P̂ = {λ̂1, . . . , λ̂M , ~̂x1, . . . , ~̂xM , ~̂y1, . . . , ~̂yM}
begin1

// Initialization

Apply the k-means algorithm to cluster the set {~Vi} into M components;2

Estimate the initial set of parameters of each component using (18);3

repeat4

// Expectation

Estimate {η̂im}(i=1,...,N ; m=1,...,M) using (21);5

// Maximization

Estimate {λ̂m}(m=1,...,M) using (22);6

Estimate {x̂md, ŷmd}(m=1,...,M ; d=1,2) using (15);7

until the change in (20) is negligible;8

Return P̂;9

end10

partition the set {~Vi}(i=1,...,N), into M components. Then, based on such par-426

tition, we estimate the initial parameters of each component using the method427

of moment estimator of the beta distribution (Bain and Engelhardt, 2000) and428

set them as initial parameters to the EM algorithm. The detailed algorithm is429

summarized in Algorithm 1.430

2.3.4. Estimating the Optimal Number of Components in the Mixture431

The use of mixture of the bivariate beta distribution allows us to give a432

flexible model to describe the outlier score vectors. To form such a model,433

we need to estimate M , the number of components, and the parameters for434

each component. Several model selection approaches have been proposed to435

estimate M (Bouguessa, Wang, and Sun, 2006). In this paper, we implemented436

a deterministic approach that uses the EM algorithm described in Algorithm437

1 in order to obtain a set of candidate models for the range value of M (from438

1 to M max, the maximum number of components in the mixture) which is439

assumed to contain the optimal M (Figueiredo and Jain, 2002). The number of440

components is then selected according to441

M̂ = argmin
M

{
C
(
P̂,M

)}
M=1,...,Mmax

(23)
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Algorithm 2: Estimating the number of components in the mixture

Input : {~Vi}(i=1,...,N), M max

Output: The optimal number of components M̂
begin1

for M = 1 to M max do2

if M==1 then3

Estimate {x̂d, ŷd}d=1,2 using (15);4

Estimate ICL− BIC(P̂,M) using (24);5

else6

Estimate the parameters of the mixture using Algorithm 1;7

Estimate ICL− BIC(P̂,M) using (24);8

end9

end10

Select M̂ , such that M̂ = argmin
M

ICL− BIC(P̂,M);
11

end12

where C
(
P̂,M

)
is some model selection criterion. Ji et al. (2005) found that the

Integrated Classification Likelihood-Bayesian Information Criterion (ICL-BIC)

performs well in selecting the number of components in the beta mixture. ICL-

BIC has been also used in Dean and Nugent (2013) to select the number of beta

mixture components. Accordingly, we use in our method ICL-BIC to identify

the optimal number of components. The ICL-BIC criterion is given by

ICL− BIC(P̂,M) = −2 log(L(V, η̂|P̂)) +QM log(N)− 2

N∑
i=1

M∑
m=1

η̂im log(η̂im)

(24)

where QM denotes the number of parameters of the model with M components442

and log(L(V, η̂|P̂)) corresponds to logarithm of the likelihood at the maximum443

likelihood solution for the investigated mixture model. The number of compo-444

nents that minimize ICL− BIC(P̂,M) is considered to be the optimal value for445

M . The procedure for estimating the number of components in the mixture is446

summarized in Algorithm 2.447

2.3.5. Automatic Identification of Outlier448

Once the optimal number of components has been identified, we focus now449

on detecting the bivariate beta component that corresponds to outliers. To this450
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end, we used the results of the EM algorithm in order to derive a classifica-451

tion decision about which outlier score vector ~Vi belongs to which component452

in the mixture. In fact, the EM algorithm yields the final estimated posterior453

probability η̂im, the value of which represents the posterior probability that ~Vi454

belongs to component m. We assign ~Vi to the component that corresponds to455

the maximum value of η̂im. We thus divide the set of outlier score vectors into456

several components. As discussed earlier, in our approach we assume that out-457

lier points are characterized by high score values. Therefore, we are interested458

by the bivariate beta component which contains vectors with the highest score459

values. To identify such a component, we first compute, for each component460

in the mixture, the average value of the numerical outlier scores and also the461

average value of the categorical outlier scores (that is, we compute the average462

of Vi1 and Vi2 per component). Then, we select the component with the largest463

average values as our target component. This simple strategy for determining464

which component to pick works well in practice since it fits our assumption,465

which is based on the fact that outlier points are characterized by large score466

values in both numerical and categorical space. Finally, once our target compo-467

nent is identified, we focus on the problem of detecting outlier objects. To this468

end, we identify the set of data objects that are associated with the outlier score469

vectors ~Vi that belong to the selected component. The identified objects are out-470

liers. The steps described in Algorithm 3 can be implemented to automatically471

identify outliers.472

Finally, it is worth noting that the proposed methodology could be also473

used to identify outlier objects in single-type (categorical or numerical) at-474

tribute data. In this particular case, we propose to associate to each object475

only one score (ON (Oni ) or OCinv(Oci ), depending on the attribute type of476

the data under investigation). Then, to automatically discriminate between477

outliers and inliers, we can model the estimated scores as a finite mixture dis-478

tribution using the univariate beta which is given by (8). Here, the problem479

is thus reduced from modeling a set of two-dimensional outlier score vectors480

{~Vi}(i=1,...,N) (in the case of mixed-attribute data) to modeling a list of scalar481
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Algorithm 3: Automatic identification of outliers

Input : A data set D
Output: A set of outliers OUT
begin1

Estimate {ON (On
i )}(i=1,...,N) using (1);2

Estimate {OCinv(O
c
i )}(i=1,...,N) using (3) and (5);3

Associate, to each object Oi in D, a vector ~Vi = (Vi1, Vi2)
T where Vi1 and4

Vi2 represent, respectively, the normalized values of ON (On
i ) and

OCinv(O
c
i ) in [0,1] ;

Apply Algorithm 2 to cluster {~Vi}(i=1,...,N) into M bivariate beta5

components;
Use the results of the EM algorithm to decide about the membership of the6

outlier score vectore ~Vi in each component;
Select the bivariate beta component that contains vectors with the highest7

score values;
Identify objects in D associated with the set of ~Vi that belong to the8

selected component and store them in OUT ;
Return OUT ;9

end10

outlier score values ({ON (ONi )}(i=1,...,N) or {OCinv(Oci )}(i=1,...,N)). In this set-482

ting, the parameters of the univariate beta mixture model to be estimated are483

{λm, xm, ym}(m=1,...,M). These parameters and the optimal number of compo-484

nents in the mixture are estimated using the EM algorithm with the Newton-485

Raphson method and ICL-BIC as described in the above subsections. By doing486

so, we divide the outlier scores into several populations so that the larger scores487

can be identified and the associated objects are then declared as outliers.488

3. Experimental Evaluation489

In this section, we devise an empirical study to evaluate the suitability of the490

proposed approach. In the following, we first describe the technique that we have491

adopted to produce data for use in outlier detection and the performance metrics492

used in the evaluation. Next, we illustrate the effectiveness of our approach to493

identify outliers in mixed-attribute data. Finally, we devise further experiments494

to evaluate the performance of the proposed methodology in detecting outliers495

in single-type attribute data.496
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3.1. Data Preparation and Metrics497

We draw the attention of the reader to the fact that, at the time of writing498

this paper, there is a shortage of standard benchmark data that can be used499

to evaluate outlier detection algorithms. Most of the publicly available labeled500

data are primarily designed for classification and machine learning applications.501

If the real data are unlabeled, then the evaluation of outlier detection accuracy502

must be done based on domain knowledge or with the help of a domain expert.503

However, this scenario is not practical for the purpose of evaluation since domain504

knowledge is not always available. All these factors make the evaluation of the505

proposed methodology a challenging task.506

In this paper, we saliently illustrate the performance of our approach in507

handling outliers using real data from the UCI Machine Learning Repository 1.508

Most of these data sets are labeled for classification purposes. Here, we have509

to be aware of the fact that these class labels are not the perfect ground truth510

in the sense that they do not correspond necessarily to potential outliers in511

the data. Keeping these issues in mind, we have adopted a principled way to512

produce real data for use in outlier detection.513

In our experiments, similar to the work in (Das and Schneider, 2007), we514

create simulated outlier objects by randomly selecting attribute values. Specif-515

ically, in the numerical attribute space, we first normalize the attribute values516

of each numerical attribute onto the interval [0, 1] and the then inject outlier517

points whose attribute values are randomly selected from [0, 1]. As a result of518

this process, all the points in our data sets have coordinates in the range [0, 1]519

and are either normal points or outliers. Note that the outliers are distributed520

at random throughout the entire space. On the other hand, to obtain outliers521

in the categorical space, we inject novel objects in the data set in such a way522

that, for each dimension t, the attribute value of the newly generated object is523

randomly selected from the whole set of distinct categorical values that form524

1http://archive.ics.uci.edu/ml/

25



dimension t in the original data. Outliers in the mixed-attribute space are a525

random combination of the newly generated objects in both the numerical and526

the categorical spaces.527

For the purpose of evaluation, we used the following standard metrics: (1)528

Accuracy, which corresponds to the proportion of correctly partitioned objects,529

(2) True Positive Rate (TPR), measuring the proportion of outliers that are530

correctly identified as outliers, (3) False Positive Rate (FPR), corresponding to531

the proportion of inliers incorrectly classified as outliers, and (4) F-measure of532

the outliers class, corresponding to the harmonic mean between precision and533

recall of the outlier objects class.534

3.2. Experiments on Mixed-Attribute Data535

The goal of the experiments conducted in this section are to evaluate the536

suitability of the proposed approach in handling outliers in mixed-attribute data.537

We compare the performance of our approach to that of ODMAD (Koufakou538

and Georgiopoulos, 2010), the most recent approach for detecting outliers in the539

mixed-attribute space. Note that ODMAD requires a number of parameters to540

be set by the user. For fairness in comparison, several values were tried for the541

parameters of ODMAD, following the suggestions in its original paper, and we542

report results for the parameter settings that produced the best results. Note543

that the selection of the best result here refers to the best F-measure value,544

since this metric represents a good trade-off between TPR and FPR.545

We considered mixed-attribute data sets taken from the UCI Machine Learn-546

ing Repository. As mentioned in the previous subsection, to obtain data sets547

for use in outlier detection, we generated outlier objects by randomly flipping548

attribute values. We fixed the number of outliers injected in each set to 10%549

of the original data set size under investigation. Fig. 5 summarizes the main550

characteristics of the data sets used in our experiments. Note that some data551

sets (such as Credit Approval, Automobile and Cylinder Bands) originally con-552

tain a number of objects with missing attribute values. In our experiments, we553

simply ignore such objects.554
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Figure 5: Mixed-attribute data sets characteristics.

(a) Credit Approval (b) Heart (c) AutoUniv (au 6)

Figure 6: Estimated density curve of the outlier score vectors that correspond
to three mixed-attribute data sets.

We used our approach to identify outliers in each of the mixed-attribute555

data sets considered in these experiments. To this end, we set M max to 5 and556

then, as discussed in Section 2, we selected the optimal number of components557

that minimize ICL-BIC. Here, the reader should be aware that the value of558

M max is not limited to 5 and the user can set any other value. Interestingly,559

we found that the estimated outlier score vectors in each of the ten data sets are560

well fitted by three bivariate beta components. For the purpose of illustration561

and in order to not encumber the paper, we show in Fig. 6 the estimated562

probability density function of the outlier score vectors, that corresponds to563

Credit Approval, Heart and AutoUniv (au 6) only. Data points associated with564

the bivariate beta component that contains the score vectors with the highest565

values correspond to outliers. Recall that the identification of the component566

containing the highest score values follows the procedure described in Section567

2.3.5.568
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Figure 7: Performance results on mixed-attribute data sets.

Fig. 7 compares the proposed method with ODMAD. Shaded regions in this569

figure correspond to the best values of the four evaluation metrics considered570

in the experiment. As can be seen from Fig. 7, our approach achieves the571

highest true positive rates and F-measure values across all the data sets under572

investigation and reports low false positive rates with high accuracy values. In573

fact, the proposed method achieves, on average, an accuracy of 96.53%, TPR574

and FPR of 92.45% and 3.01% respectively and finally an F-measure of 0.847, all575

pointing to fairly accurate results. On the other hand, the results provided by576

ODMAD are, on average, reasonable but less competitive than those achieved by577

our approach. As depicted by Fig. 7, ODMAD reports, on average, an accuracy578

of 94.75%, TPR and FPR of 72.22% and 2.93% respectively and finally an F-579

measure of 0.717. Overall, in term of Accuracy, TP rate and F-measure, the580

proposed method performs better than ODMAD while the FPR achieved by581

both approaches are comparable.582

From Fig 7, we observe that our proposed method reports an average 92.45%583

TP rate. This means that 7.55%, on average, of outliers were misclassified as584

inliers by our approach. This not necessarily an error, since data points have585

coordinates in the range [0, 1] and are either inliers or outliers. Outliers were586

randomly placed throughout the entire space. In this setting, it is probable that587

some of the outlier objects will have attribute values related to normal objects588

in the data set under investigation. Under these circumstances, it is possible589

that few outlier objects will have low outlier score values and consequently be590
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considered as inliers.591

To summarize, the results presented in Fig. 7, suggest that the proposed592

method performs well on different data sets. Furthermore, in contrast to ODMAD593

which suffers from its dependency on several input parameters (detection thresh-594

old, minimum support, the maximum length of itemset and the size of a window595

of categorical and numerical scores), our approach is able to accurately iden-596

tify outliers in an automatic fashion. Such a notable feature of our approach597

illustrates its practical usability to effectively identify outliers in real-life appli-598

cations. Another advantage of our approach is that it is able to handle out-599

liers in single-type (numerical or categorical) attribute data without any feature600

transformation, while existing methods are not able to do so. The following601

two subsections investigate this point using real data sets characterized by only602

numerical or categorical attributes.603

3.3. Experiments on Numerical Data604

The experiments described in this section aim to illustrate the capability605

of the proposed methodology in detecting outlier objects in numerical data.606

As discussed at the end of Section 2, when the data contains only numerical607

attributes, we associate to each object the numerical score ON (Oni ) given by608

(1). Then, we model these scores as a mixture of univariate beta mixture.2609

The parameters of the model {λm, xm, ym}(m=1,...,M) and the optimal number610

of components in the mixture are estimated following the reasoning described611

in Section 2. This process results in grouping outlier scores into several beta612

components. Data objects associated with the beta component containing the613

highest score values are declared outliers.614

Fig. 8 summarizes the main characteristics of the UCI numerical data sets615

used in the experiments. Note that, as with the experiments on mixed-attribute616

data, we have adopted the same technique to produce outliers, that is, normal-617

izing the attribute values between 0 and 1 and then injecting outliers in the618

2To fit the beta distribution, the estimated outlier scores should be first normalized in [0,1].
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Figure 8: Numerical data sets characteristics.

(a) Ecoli (b) Wine Quality - Red (c) Breast Cancer

Figure 9: Estimated density curves of the numerical outlier scores that corre-
spond to three numerical data sets.

data by generating objects whose attribute values are randomly selected from619

the interval [0,1]. The number of outliers injected in each data set corresponds620

to 10% of the original data set size. For each numerical data set, we estimated621

ON (Oni ) for each object and then modelled these scores as a mixture of univari-622

ate beta distribution. To this end, we set M max to 5 and selected the optimal623

number of components that minimize ICL-BIC. We found that the number of624

components varies from two to three beta components. For the purpose of il-625

lustration, Fig. 9 shows the density curve of the numerical outlier scores that626

correspond to three UCI data sets: Ecoli, Wine Quality - Red and Wisconsin627

Diagnostic Breast Cancer. The last component in each plot depicted by Fig.628

9 represents the highest score values . Data points associated with the scores629

grouped in this component correspond to outliers.630

To demonstrate the effectiveness of our approach, we compared its perfor-631

mance to that of kNN weighed outlier algorithm (kNNW) (Angiulli and Pizzuti,632

2005, 2002). kNNW assigns a weight to each data point based on the sum of633
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Figure 10: Performance results on numerical data sets.

the distances separating that point from its k nearest neighbors in such a way634

that outliers are characterized by high weights while inliers receive low weight635

values. After ranking data points based on the estimated weights, the top n636

points are identified as outliers. The implementation of this algorithm, and637

many other outlier detection approaches, is available in the ELKI Data Min-638

ing Framework 3 (Achtert, Kriegel, Schubert, and Zimek, 2013). Note that we639

have chosen kNNW for its effectiveness. In fact, in our empirical investigation,640

we have evaluated several other mainstream outlier detection algorithms, such641

as COP (Kriegel, Kroger, Schubert, and Zimek, 2012), LDOF (Zhang, Hutter,642

and Jin, 2009), LOCI (Papadimitriou, Kitagawa, Gibbons, and Faloutsos, 2003)643

and LOF (Breunig et al., 2000), already implemented in ELKI. We found that644

kNNW was the algorithm which performs well.645

Fig. 10 illustrates the results of our approach and those of kNNW on the646

numerical data sets considered in the experiments. Shaded regions correspond647

to the best Accuracy, TPR, FPR and F-measure values. Recall that kNNW648

produces a ranked list of points expecting outliers to come first. Accordingly,649

to distinguish outliers from inliers, the user should specify the target number of650

outliers n. In this setting, and in order to compute the value of the four evalu-651

ation metrics used in the experiments (Accuracy, TPR, FPR and F-measure),652

we have simply set the value of n equal to the real number of outliers in the653

3http://elki.dbs.ifi.lmu.de
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Figure 11: Categorical data sets characteristics.

data set under investigation. Finally note that, as with ODMAD, we have tried654

multiple values of k for kNNW, and we only report the best results, that is,655

those which correspond to the highest F-measure value.656

As can be seen from Fig. 10, our approach achieves, on average, the highest657

Accuracy (97.60%), TPR (91.94%) and F-measure (0.884). On the other hand,658

kNNW reports the lowest average FPR (1.50%) while our approach achieves an659

average FPR of 1.88%. Overall, both competing algorithms show good perfor-660

mances. A significant advantage of our approach is that it is able to automati-661

cally discriminate outliers from inliers while with kNNW the user should specify662

how many points should be selected as outliers.663

3.4. Experiments on Categorical Data664

The aim of this section is to illustrate the suitability of the proposed ap-665

proach for handling outliers in data sets with categorical attributes only. To this666

end, we selected a number of categorical data from the UCI Machine Learning667

Repository. Recall that these data sets are principally labeled for classification668

purposes. Accordingly, as discussed in Section 3.1, to produce data for use in669

outlier detection, we inject novel data points in such a way that each attribute670

value of each newly inserted object is randomly selected from the set of distinct671

categorical values that initially form the corresponding attribute in the original672

data. As with our previous experiments, the number of outliers injected in each673

data set corresponds to 10% of the original data set size. The main characteris-674

tics of the categorical data sets used in the experiments are summarized in Fig.675

11.676
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(a) Audiology (b) Vote (c) Lymphography

Figure 12: Estimated density curves of the categorical outlier scores that corre-
spond to three categorical data sets.

To identify outliers in each of the categorical data sets considered in these677

experiments, we estimated firstOCinv(Oci ) for each object. These scores are then678

normalized in [0,1] and modelled as a mixture of univariate beta distribution.679

To identify the optimal number of components in the mixture, we set M max to680

5 and selected the number of components that minimize ICL-BIC. Interestingly,681

as with the experiment on numeric data, we found that the optimal number of682

components varies from two to three. Fig. 12 illustrates the density curve of the683

outlier scores corresponding to three data sets: Audiology, Congressional Voting684

Records (Vote) and Lymphography. The last component in each plot depicted685

by Fig. 12 represents the highest score values . Data points associated with the686

scores grouped in this component correspond to outliers. The knowledgeable687

reader can also observe in this rendering, and also from the pervious illustration688

of the estimated density curves depicted by Fig. 9 and Fig. 6, the great shape689

flexibility of the beta distribution which leads to accurate partitioning of the690

outlier scores.691

Fig. 13 compares the effectiveness of our approach to that of a recent out-692

lier detection approach for categorical data named Information-Theory Based693

Single-Pass (ITB-SP) (Wu and Wang, 2013). It has been empirically illustrated694

that ITB-SP is an effective approach which outperforms several existing cat-695

egorical outlier detection algorithms. The implementation of this algorithm696

has been kindly provided by its authors. As the name implies, this approach697

harnesses information theory concepts to estimate an outlier score for each ob-698
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Figure 13: Performance results on categorical data sets.

ject. Specifically, the authors in Wu and Wang (2013) propose the concept of699

holoentropy as a new measure for outlier detection. As defined in Wu and Wang700

(2013), holoentropy is a combination between entropy and total correlation with701

attribute weighting, where the entropy measures the global disorder in the data702

and the total correlation measures the attributes relationship. Based on this703

concept, that is holoentropy, the authors formulate a function to estimate an704

outlier score for each object in such a way that outliers are characterized by705

high score values. The top n objects with the highest score values are declared706

as outliers. Note that, since ITB-SP requires the number of outliers in the data707

n to be specified by the user, and in order to compute Accuracy, TPR, FPR708

and F-measure, we have simply set the value of n equal to the real number of709

outliers in the data set under investigation.710

As can be seen from Fig. 13, the average performance results for our ap-711

proach and ITB-SP are quite similar except for the average TPR and FPR. Our712

method reports an average 94.84% of true positives while the average TPR of713

ITB-SP is 88.57%. This means that only 5.16%, on average, of outliers were714

misclassified as inliers by our approach while 11.43%, on average, of outliers were715

misclassified as inliers by ITB-SP. On the other hand, as illustrated by Fig. 13,716

we can see that ITB-SP achieves the lowest FPR, that is 3.40%, while the pro-717

posed method reports an average 4.48% of false positives. Overall, the results718

illustrated in Fig. 13 suggest that both approaches display good performance.719

Our approach has, however, the non-negligible advantage of automatically dis-720

criminating outliers from inliers while ITB-SP requires the number of outliers in721
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the data to be specified by the user. As discussed earlier, in real applications for722

which no prior knowledge about the data is available, it is not always possible723

for the user to set accurately the value of this parameter.724

4. Conclusion725

In this paper, we have highlighted some limitations of existing outlier detec-726

tion approaches for mixed-attribute data, including their dependency on user727

parameters, such as the detection threshold and the target number of outliers to728

be identified, which are difficult to tune and their incapability of formally dis-729

criminating between outliers and inliers. To alleviate these problems, we have730

proposed a principled approach that performs outlier detection in an automatic731

fashion.732

In our approach, we first devised two functions in order to estimate, for each733

object, an outlier score in the numerical space and another score in the cate-734

gorical space. Outliers in both spaces are characterized by high score values.735

Next, we associate to each data point in the data set under investigation a two-736

dimensional vector such that the first element of this vector corresponds to the737

estimated outlier score in the numerical space, while the second element corre-738

sponds to the outlier score estimated in the categorical space. Then, we model739

these vectors as a mixture of bivariate beta. The bivariate beta component740

that corresponds to the highest score values represents outliers. The beta dis-741

tribution has been chosen due to its great shape flexibility which leads, in turn,742

to accurate fitting of the estimated outlier score vectors. We have described a743

statistical framework to illustrate how the bivariate beta mixture model can be744

used to identify outlier objects.745

Finally, we have devised a detailed empirical study to illustrate the suit-746

ability of our approach in detecting outliers using several UCI data sets with747

mixed-attributes. We have compared the performance of the proposed method748

to that of ODMAD, the most recent approach for detecting outliers in the mixed-749

attribute space. The results show that our approach achieves results that are,750

in most cases, better than those of ODMAD. Moreover, we have performed751
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further experiments to demonstrate the capability of our methodology in han-752

dling outliers in single-type attribute data without any feature transformation.753

Tests and comparison with previous ranking approaches on several numerical754

and categorical UCI data sets show that the proposed methodology exhibits755

competitive results.756
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