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RÉSUMÉ 

Les peuplements mixtes de la région de 1 'Abitibi-Témiscamingue sont souvent caractérisés par w1e 
dominance d'espèces intolérantes à l'ombre, comme le peuplier faux-tremble (Populus tremuloides 
Michx.), avec une forte composante de conifères plus tolérants, conune le sapin bawnier (Abies 

balsamea (L.) Mill.) et l'épinette blanche (Picea glauca (Moench.) Voss) situés davantage dans les 
strates inférieures de la canopée. Les espèces feui llues intolérantes et résineuses tolérantes sont 
généralement récoltées en même temps en uti lisant les CPRS (coupes avec protection de la 
régénération et des sols), la principale méthode de récolte utilisée au Québec. En raison des différences 
en tetmes de dynamiques de croissance entre le peuplier faux-tremble et les arbres résineux, les 
conifères se situent encore principalement dans la strate de gaules ou des petites classes conu11erciales 
quand le peuplier a atteint sa croissance maximale et est atTivé au stade de récolte. Cela a développé un 
intérêt pour la diversification des traitements sylvicoles mieux adaptés à la structme et la dynatnique 
des peuplements mixtes. Dans certaines conditions, les coupes partielles ont été promues conm1e une 
méthode altemative aux CPRS et comme w1 outil à l'échelle du peuplement, à appliquer dans Je 
contexte de l'at11énagement écosystémique tout en maintenant les objectifs de la production forestière. 
Suite à une coupe pattielle, les at·bres résiduels montrent w1 taux de croissance radiale et en volw11e 
supériem car ils répondent positivement à w1e atnélioration des conditions environnementales. En 
principe, pour atteindre une productivité maximale dans les peuplements mixtes de tremble-épinette
sapin, les tiges dominantes de tremble doivent être récoltées en premier afin de favoriser la 
régénération et la croissance des conifères résiduels, particulièrement l'épinette blanche. Une des 
principales diffict.ùtés dat1s ce contexte est de détenniner la prop01tion de peuplier faux -tremble à 
enlever pom libérer les épinettes blanches de la compétition mais aussi à lùTriter le drageom1ement de 
tremble et tninüniser Je stress physiologique qui atTive avec des changements de conditions 
envù·otmementales extrêmes. 

L'objectif ptincipal de cette étude est d'évaluer la réaction de la croissance radiale et en volun1e des 
épinettes blanches dans les peuplements sow11is à des coupes pattielles. Nous avons testé quatre 
traitements de coupe partielle appliqués dans les at1nées 2001-2002 dat1s des peuplements mixtes 
tremble-épù1ette blanche, selon quatre intensités de prélèvement de tremble (0, 50, 65 et 100% de la 
sutface tetTière (ST)). Dix ans après les coupes, 72 épinettes représentant trois classes sociales 
(domü1ante, co-domü1at1te et supprùnée) ont été abattues et des disques récoltés pom fins d'analyses 
de tiges. La croissance a été at1alysée en fonction des factems suivants: ù1tensité du traitement, temps 
depuis le traitement, statut social, taux de croissance avant coupe et compétition des arbres voisù1s. Pat· 
rapp01t aux peuplements témoù1s, une réaction positive de croissance a été observée seulement suite au 
prélèvement de 100% du tremble. Compat·ativement aux at·bres témoins, au coms des dix ans suivat1t 
les coupes, les taux de croissat1ce radiale et voluméttique ont été supériems de 23,5% et 7,1% pom les 
donrinants, 67,7% et 24,1% pom les co-domü1ants et 115,8% et 65,6% pom les at·bres supprin1és. 
Toutes les classes sociales ont répondu positivement au tt·aitement, mais la croissance en volun1e 
absolu était supériew·e pom les at·bres domù1ants alors que la croissat1ce radiale était sù11ilaù·e pom les 
tt·ois classes. En tetmes de croissance relative, les at·bres supprù11és ont eu la plus grande hausse de 
croissance cumt.ùative. Pat· ai llems, la réaction de croissat1ce après coupe s'est avérée propottiOJmelle 
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au taux de croissance avant traitement. En utili sant des variantes d' indices de compéti tion de Hegyi, 
nous avons observé que seuls les voisins conifères ont eu w1 effet négatif sm la croissance des 
épinettes échantillonnées. Les réstùtats indiquent que les épinettes blanches sont capables d'accélérer 
lem taux de croissance après l'enlèvement du tremble dans ces types de peuplements de la forêt 
boréale mixte et suggèrent que les réactions positives de croissance seraient encore plus grandes si 
les traitements incluaient l'éclaircie de conifères agrégé et les dominants. 

Mots-clés: coupe pmtielle, épinette blm1ehe (Picea glauca (Moench.) Yoss), peuplier faux-tremble 
(Populus tremuloides Mic11X.), forêt boréale mixte, croissm1ce radiale, croissm1ce de voltm1e, classe 
sociale. 
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ABSTRACT 

Boreal mixedwood stands in the Abitibi-Témiscarningue region ofQuebec are often charactetized by a 
dominance of shade intolerant hardwoods, particularly aspen (Populus tremuloides Michx.), with shade 
tolerant softwoods such as balsam fir (Abies ba!samea (L.) Mill) and white spruce (Picea glauca 
(Moench.)Voss) distributed throughout the understory and sub-canopy. Intolerant hardwood and 
softwood species are typically harvested at the same rime via CPRS (cutting with protection of 
regeneration and soils), the predominant harvesting method applied throughout boreal Quebec. Due to 
differences in the growth dynanlics of aspen and the tolerant softwood species, the conifers in these 
stands are often of small merchantable size classes when the aspen has reached its maxitmm1 growth 
potential and is suitable for harvest. This has led to an interest in the diversification of silvicultmal 
treatments better suited to the structme and dynanlics of mixedwood stands. ln cettain boreal stand 
conclitions, partial harvesting has been promoted as an altemative silvicultmal system to CPRS and as a 
stand-leve! tool to meet ecosystem management and forest production objectives. Residual trees are 
expected to e:xllibit accelerated radial and volume growth following partial harvesting. In theory, to 
achieve maxitnum productivity in mixed aspen-spruce-fir stands, dominant aspen stems should be 
harvested fu·st, to encourage the regeneration and growth of residual conifers, patticularly wllite spruce. 
One of the major challenges in tllis context is detemùning t11e approptiate proportion of canopy aspen to 
remove tl1at will release white spruce trees from competition but limit aspen suckering and n1Ïllin1Ïze 
physiological stress fi·om t11e extreme changes in environmental conclitions. 

The purpose of tllis study is to evaluate raclial and volume growtl1 responses of white spruce trees in 
boreal nlixedwood stands subjected to pattial hatvesting. Treatrnents consisted of fow- intensities of aspen 
removal (0, 50, 65 and 100% basal at·ea (BA)), applied in 2001 -2002. Ten years after treatment, 72 white 
spmce stems representing tl1ree social classes (dominant, co-dominat1t and suppressed) were 
destructively satnpled at1d subjected to stem analysis using dendroecological techniques. Growtl1 was 
at1alyzed as a :function of treatment intensity, time since treatment, social status, pre-t:reat:ment growth rate 
and neighbourhood competition. Accelerated radial at1d volw11e growth rates were detected only in tl1e 
100% aspen BA removal treatment. Compared to contTol trees, average a1111ual radial and vol tune 
increments were, respective! y, 23.5% and 7.1 % higher for dominant trees, 67.7% at1d 24.1% lligher for 
co-dominat1t: trees and 115.8% and 65.6% higher for suppressed trees over tl1e 10 yeat·s post-treat:ment. 
All social status classes responded positively, but absolute volw11e growtl1 was superior for dorrùnant 
trees wllile radial growth was sinlilar for ali tl1ree classes. Growtl1 response was propottional to pre
treatrnent growtl1 rate witl1 vigorous, yow1ger trees having llighest growth rates post-treatment. Based on 
vatiants ofHegyi 's competition index, only coniferous neighboms had a negative effect on wllite spruce 
growth. Results indicate tl1at wllite spruce trees are capable of release following aspen overst01y removal 
in boreal nlixedwood stat1d types and suggest that positive growth responses wou.ld be even greater if 
treatments included tllinning of crowded co ni fers and at !east patti al removal of dominant conifers. 

Key words: Pattial hatvesting, white spn.tce (Picea glauca (Moench.) Voss), trembling aspen (Populus 
tremuloides Michx.), boreal nlixedwood forest, radial growth, volume growtl1, social class. 



CHAPTERI 

GENERAL INTRODUCTION 

1.1 Introduction to boreal mixedwood forests 

The boreal forest en compasses 90% of forested lands in Canada (Chen and Popadiouk, 2002; 

Nati onal Foresh·y Inventory, 2006), spanning the cow1try from Briti sh Columbia and the 

Yukon Territory to Newfoundl and (Chen and Popadi ouk, 2002; Thompson and Pitt, 2003). 

From a global perspective, the Canadian boreal forest accounts for 30% of total boreal forest 

caver and 10% of the world 's forested landmass (Natural Resources Canada, 2014). Despite 

its extent, tree diversity is relative] y low and typically consists of vigorous, generalist species 

of spruce, pine, fir , tamarack, birches and poplars, which are weil suited to cool climatic 

conditions and recurring disturbances (Brassard and Chen, 2006). Although the boreal forest 

may seem tmiformly spread across the country, it is in fact composed of a vari ety of forest 

types that vary in response to local climate, topography, soi l conditions and disturbances 

(Thompson and Pitt, 2003; Brassard and Chen, 2006). 

Mixedwood forests accow1 t for 16% of total forest caver 111 Canada (Natural Resources 

Canada, 20 14). Boreal mixedwood forests are comprised of both deciduous and coniferous 

species and are often representative of forests transitioning from hardwood to softwood 

dominance. ln Quebec, a stand is considered to be mixed when it contains both conifer and 

broadleaf species, without one species type accounting for more than 75% of the total stand 

basa l area (MRNF, 2009). ln the Abitibi-Témi scamingue region of north-western Quebec, 

boreal mixedwood forests are found in the western Black spruce (Picea mariana (Mill.) BSP) 

- feathermoss and in the Balsam fi r (Abies balsamea (L.) Mill.) - whi te birch (Betula 

papyrifera (Marsh.)) bi oclimatic subdomai ns (Saucier, 1998) . ln this region, mixedwood 

stands are initi ated fo llowing large scale di sturbances and often represent mid-successional 

stages of development (Bergeron and Harvey, 1997). Shade intolerant hardwoods, such as 

aspen (Populus tremuloides Michx.) , balsam poplar (Populus balsamifera L.) and white birch 
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typically in iti ally dominate forest canopy on mesic sites , with shade tolerant coni fers 

including whi te spruce (Picea glauca (Moench.)Voss), bl ack spruce and balsam fi r in the 

understory. T he structme and composition of these stands greatly depends on species h·aits, 

particularly modes of regeneration, initial growth rates, shade to lerance and longevity, as weil 

pre disturbance stand conditions and the nature of the di stmbance. Depending on the stage of 

stand development, species compos ition and partia l disturbances, the softwood component 

may co-dominate the stand or may be temporaril y restr icted to the understory. In compari son 

with other boreal forest types such j ack pine (Pinus banksiana Lamb.) stands on dry, sandy 

soils or lowland black spruce forests, boreal mixedwoods are assoc iated w ith mesic sites and 

considered relative! y compl ex ecosystems that suppo1i a broad diversity of flora l, fauna l and 

fungal species (Chavez and Macdonald, 201 2). The hi gh productivity of mixedwood stands 

make them important ecologica lly fo r maintaining bi odiversity, wildli fe habitat, 

bi ogeochemical cycling and carbon sequestration (MacDonald, 1995 ; Thompson and Pi tt, 

2003; Brassard and Chen, 2006). 

Forest management has intensifi ed over the last half century, particularly with the 

modernizati on of harvesting equipment and wi th increasing globa l demand for wood products 

(Comeau et al. , 2005). Coni fer species, especially whi te and black spruce, have always bad 

higher economi e value than intolerant hardwood species. Canada is the leading expotter of 

softwood lumber and pul p and paper products, whi ch accoun t for approx imately 12 bill ion 

dollars in annual revenue (Na tura! Resources Canada, 20 14). In the past, intolerant 

hardwood-dominated mixed stands have generally been avoided, primarily because of the 

low commercial va lue of the hardwood component (and thus greater softwood wood 

procurement costs) and because the conifer component may often be of small or pre-mature 

size classes. However, in many borea l regions, harvesting of coni fer-dominated mixedwoods 

fo ll owed by inadequate conifer regeneration and vegetation control has resul ted in substanti al 

increases in the proporti on of intolerant hardwood-dominated mixedwood fo rests to the 

detriment of softwood-dominated fo rest (Grondin and Cimon, 2003). Consequent ly, it is 

expected that the forestry industry w ill become increas ingly re liant on borea l mixedwood 

stands, even those with a strong hardwood component, to meet thei r wood supply needs. 
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In recent decades, the economie importance of intolerant hardwoods bas increased with 

advancements in wood processing technologies and growing market opportunities (Natural 

Resources Canada, 20 14). In parti cul ar, as pen is the primary constituent in the manufacture 

of oriented strand board (OSB), whi ch bas virtually replaced plywood in most Canadian and 

US housing construction . While the utilization and exportation of intolerant hardwood 

products remains relatively low compared to softwood products across the counh·y (Natural 

Resources Canada, 2014), aspen, and to a lesser extent balsam poplar and birch, are used in 

the production of OSB and laminated veneer lumber (LVL) in mills in the Abitibi

Témiscamingue region . 

Despite their respective commercial possibilities, when white spruce and aspen cohabitate in 

mixedwood stands, their inherent differences in regeneration and growth dynamics make it 

difficult to maximize total stand yield using a single harvest treatment. The initially slower 

growing white spruce trees are often in pre-commercial or small merchantable size classes 

when the faster growing aspen have reached their peak growth (Chen and Popadiouk. 2002). 

The differences in height and di ameter growth between the two species are related to their 

respective growth potentials as weil as their capacity for increased growth during periods of 

reduced competition (Claveau et al. , 2002; Filipescu and Comeau, 2007). White spruce is 

genera lly suppressed by the initially faster growing aspen, but often experiences periods of 

accelerated growth coinciding with periods of reduced growth in aspen, including senescence 

(Bergeron and Charron, 1994). Thus, when white spruce trees are suitab le for harvesting, the 

aspen tJ·ees have often already passed their maximum growth period and are in physiological 

decline. Nonnall y, using clear-cutting or harvesting with protection of advance regeneration 

and soi ls (CPRS), both species would be harvested at the same time. This ultimately results in 

!osses of either aspen or white spruce vo lume, since the two species do not attain maximum 

growth rates at the same point in time (MacDonald, 1995). In this regard, the deve lopment of 

alternative si lvicultural approaches better sui ted to the stJ·ucture and dynamics of boreal 

mixedwoods constitute an opportunity to maximize stand productivity and possibly enhance 

white spruce regeneration. Such approaches should be based on well des igned and 

documented si lvicultural experiments and will require a thorough understanding of 

mixedwood dynamics and the use of innovative harvesting techniques. 
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1.2 Stand structure, composition and dynamics 

Stand structure refers to the vertical and horizontal organization of living and dead trees from 

leaf litter and woody debris on the forest floor, into the understorey and up tlu·ough to the top 

of the canopy (McEihim1y et al. , 2005). Stand complexity is defined by the arrangement of 

the stand structure, the component species, the number of individuals and interactions 

between the biotic and abiotic enviro11111ents. Ecological pro cesses su ch as seedl ing and 

sapling recruitment, competition, mortality, decomposition and nutrient cycling as weil as 

soi l productivity and natural disturbances are important factors in determining the spatial 

patterns of tree colonization, growth and survival (Chen and Popadiouk, 2002; Brassard and 

Chen, 2006). Species traits such as longevity, reproduction, nutrient requ irements and shade 

tolerance are also important facto rs in influencing how a forest stand will develop (Bergeron, 

2000; Chen and Popadiouk, 2002). A number of studies have led to a good understanding of 

successional dynamics in the boreal mixedwood forests ofnorthwestem Quebec composed of 

aspen, balsam fir and white spruce (Bergeron and Charron, 1994; Bergeron and Harvey, 

1997; Kneeshaw and Bergeron, 1998; Bergeron, 2000; Pothier et al., 2004). Over time, 

natural succession brings about changes in the stand structure and composition of boreal 

mixedwood forests, generally involving a decrease in the proportion of short-lived, shade

intolerant hard wood species in favour of an increased proportion of more shade-tolerant and, 

with the exception ofbalsam fir, more long-lived conifer species (Brassard and Chen, 2006). 

1.2.1 Stand initiation 

The stand initiation phase occurs following a severe di stmbance such as a natural fire or 

harvesting where the majority of mature trees are killed, and in the case of harvesting, 

removed. Canopy remova l creates new growing space and favourable environmental 

conditions allowing for the colonization of an initia l cohort of pioneer tree species. The type 

and severity of the disturbance along with site and stand conditions prior to disturbance will 

strongly influence the initia l post-distw·bance species composition . Aspen's capacity to root 

sucker is weil adapted to stand initiating disturbances and open conditions therefore, it is 

often the primary earl y successional tree species on rich, mesic sites, typical of the claybelt 
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region of northwestern Quebec and northeastern Ontario (Bergeron, 2000; Chen and 

Popadiouk, 2002). Furthermore, since suckering occurs locally, within the limits of parent 

root systems, aspen is more likely to dominate site colonization if it was present on the site 

prior to the disturbance. An initial cohort of aspen can establish quickly and reach very high 

densities of tens of thousands of stems per hectare because of the species adaptations for 

efficient growth in high light conditions and its ability to regenerate vegetatively (Brais et al., 

2004; Groot et al., 2009; Prévost and DeBlais, 2014). According to Pothier et al. (2004), 

aspen growth decline occurs, on average, around 60-65 years of age but the timing varies 

greatly, depending on site, climate and genetic factors. Mm·eover, aspen suckering may give 

way to the development of multiple cohorts which can dominate a stand for over 100 years 

(Bergeron and Dubuc, 1988; Cumming et al., 2000) . White spruce cannat vegetatively 

regenerate and thus relies on seed somces for establishment fol lowing a major disturbance. 

White spmce establishment therefore depends on an abw1dant seed crop as weil as favourable 

germination sites (Greene et al. , 1999; Martin-DeMoor et al., 2010; Robe1t et al. , 2012). The 

stand initiation phase concludes with the closing of the aspen canopy. 

1.2.2 Stem exclusion 

The stem exclusion phase begins when the dominant aspen have experienced rapid lateral 

growth preventing new trees from occupying the canopy. Intense competition for light 

combined with finite growing space results in a dramatic reduction in stem density of aspen 

in a relatively short period oftime (Chen and Popadiouk, 2002). Suckering is inhibited as the 

amount of sunlight that is able to penetrate the forest floor is diminished. The opposite is true 

for spruce and balsam fir, where stem densiti es have been shown to increase during the 

period of aspen self-thinning (Chen and Popadiouk, 2002). Compared to aspen, white spruce 

generally establishes more gradually in the stand and slow juvenile growth limits saplings to 

the aspen understorey for severa! years (Bergeron and Charron, 1994; Harvey et al. , 2002) 

until they outcompete other vegetation in the shrub layer (Groot, 1999; Chen and Popadiouk, 

2002). This results in a vertical stratification of trees and the development of mixedwood 

stands, as the heavy shade in the understorey limits suckering and sucker smviva l but not 

necessarily establishment and growth of the more shade-tolerant conifers. 
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1.2.3 Canopy transition 

Canopy mortality of the initial aspen cohort eventually shifts from being density-dependant 

to density-independent ( e.g., associated with na tura! senescence, fun gal infection). At this 

point, stand breakup begins to occur (Pothier et al. , 2004) freeing up growing space, light and 

nutrient resources. When tolerant conifers are already present in the understory or sub

canopy, progress ive mortality of overstory aspen eventually leads to their replacement by 

balsam fir, white and black spruce as stands slowly transition toward conjfer dominance 

(Harvey et al. , 2002). Intermediate and understorey white spruce tJ.·ees and other conifers 

frequently experience accelerated diameter and height growth as they are released from 

competition . This period of high growth has been found to correspond with relatively slower 

rates of growth of the deciduous component (Bergeron and Charron, 1994). The canopy 

u·ansition period can be accelerated or delayed by small or partial disturbances such as insect 

outbreaks or senescence and mortality of individual trees. Again, when conifers are present in 

the understory, an outbreak of forest tent caterpillar (Malacosoma disstria) , for example, can 

accelerate the u·ansition by causing mortality of some or ali aspen (Gend.reau-Berthiaume et 

al. , 2012). However, Moulinier et al. (20 11) showed that, if conifers are absent, the same 

outbreak can have the opposite effect; that is, site occupation of aspen will be prolonged 

because canopy opening will stimulate sucker recruitJ.11ent. Spruce budworm (Choristoneura 

fumiferana) outbreaks can induce retroaction in stand succession dynamics, by causmg 

severe foliage and growth Joss and mortality of host species (fir and spruce), thereby 

improving understorey conditions, particularly light levels, for regeneration and growth of 

intolerant hardwoods that recruit into gaps (Kneeshaw and Bergeron, 1998). 

1.2.4 Gap dynamics 

Where the ti me between stand replacing disturbances is longer than the lifespan of the initial 

cohort of pioneer hard wood species, small gaps in the canopy start to appear as individual or 

groups of individual trees die (Kneeshaw and Bergeron, 1998; Chen and Popadiouk, 2002). 

Regeneration in the gaps create an uneven canopy with a patchy arrangement of young, 

intermediate, old and dying trees throughout the stand . The layout of the dead trees is 

important for the growth and re-establishment of the understory trees. Standing trees that 
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perish slowly over time, are important for the release of advance regeneration whereas 

uprooted trees, for example resulting fi·om windthrow, create suitable substrates fo r seedling 

establi shment (Lieffers et a l. , 1996; Robert et al. , 20 12). The decomposing fa li en h·ees as weil 

as exposed mineral soi! pro vide two of the best seedbeds fo r white spruce recruitment. T hi s is 

because of reduced competition with herbaceous plants and shrubs, the lack of leaf debris 

which typically inhibits root peneh·ati on into the soi! and because rotting wood maintains a 

humid environment whi ch is essential for the surviva l of small germinants (Robert et al. , 

20 12). Gap size is an important factor influencing recrui tment in mixedwood stands 

(Kneeshaw and Bergeron, 1998; Beaudet et al. , 2011 ), in that larger gaps provide more 

sunlight exposure, thus tending to favour regeneration and growth of aspen and white birch 

whereas smaller gaps tend to favour regeneration of more shade-tolerant coni fe rs. These 

speci es generally grow weil in diffuse sunlight, and are more prone to water and heat stress 

which can occur in larger gaps (Call away, 1995 ; Kneeshaw and Bergeron, 1998) . 

Maintenance of mixedwood stands therefore depends on reoccurring small scale 

di sturbances, site conditi ons and the h·aits of the species involved (Bergeron and Harvey, 

1997; Man and Lieffers, 1999a). 

1 .3 Tree growth 

Reliable measurements of h·ee growth are essential fo r assessing the effects of sil vicultural 

treatments as we il as predi cting fu ture wood yields (Avery and Burkhart, 2002). Although 

growth predicti ons are typi ca lly calcul ated at the stand-l eve!, it is firs t necessary to analyze 

growth at the tree leve!, since it is a :fundamenta l component of stand leve! producti on (Avery 

and Burkhart, 2002) . 

Tree growth is an irreversible and peri odi c processes represented by an increase in volume 

resulting fi·om the formation of new cell s, their enl argement and di fferenti ati on into di fferent 

growi ng parts (Vaganov et al. , 2006). The seasonal period of growth depends on annual 

flu ctuati ons in environmental conditi ons (Vaganov et al. , 2006) during which time growth 

may occur simul taneously or independently in different parts of the tree. Growth increment 

refers to the change in size between the beginning and end of a growth peri od and can be 

measured by severa! parameters including the change in radius, diameter, basa l area, height 
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or vo lume. Growth is influenced by interna! factors including species genetics as well as tree 

age and by the externat environment in which the tree is situated. Externat influences include 

climatic conditions such as temperature, precipitation, wind and sunlight; soi ! conditions 

include moisture, textw-e and chemical characteristics; and physio-geographical conditions 

li ke slope, elevation and aspect (Vaganov et al., 2006). Complete tree growth involves the 

extension and thickening of the shoots, stems and roots. 

Under natural growing conditions, growth curves for diameter, basal area, height and volume 

genera li y follow a similar elongated sigmoidal shaped pattern as a function of age (Assmann, 

1970). In juvenile years, growth in all dimensions is typically slow until the seedling 

becomes weil established (A very and Burkhart, 2002). As the tree matures, it enters the full 

vigor stage, during which time it experiences a rapid increase in growth (Assmann, 1970). 

Once the growth rate has peaked, it declines slowl y during the senescence phase (Assmann, 

1970). As long as the tree is living and healthy it will continue to grow, though the magnitude 

of growth may be severely reduced (Avery and Bm·khart, 2002). 

Primary growth involves the lengthening of shoots and roots through apical meristems where 

high cell division contributes to the vertical extension of the tree (Raven et al., 2005). Root 

extension anchors the tree and increases its surface area, which is important for water and 

nutrient absorption from the so i! (Raven et al. , 2005). Shoot extension occurs at the tip of the 

stem resulting in height growth. Secondary growth is initiated by latera l meristems, or 

cambium, and results in the thickening (increase in diameter) of the stem and roots (Raven et 

al., 2005). The cambium layer perpetually produces an unlimited number of cel! divisions 

that differentiate into secondary tissues (Raven et al. , 2005). Cel ls formed on the outside of 

the cambium layer wil l differentiate into phloem which is primarily responsible fo r 

photosynthate transportation along the length of the stem (Raven et a l. , 2005). Cells formed 

on the inside of the cambium layer wi ll differentiate into xylem tissue, which in conifers is 

mainly composed of tracheid cell s, the primary component of wood, and is responsible for 

water transport tlu·oughout the stem (Raven et al. , 2005). Tlu·oughout the growing season the 

xylem matures by undergoing a series of growth phases that involve radial expansion of the 

tracheids and thickening of the ce l! wal l (Vaganov et a l. , 2006). The seasonal periodic 

activity of these growth processes results in the formation of annual growth rings which are 
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made visible by the di fference in colour and sh·ucture of the earlywood and latewood 

(Vaganov et al. , 2006). Earlywood is produced at the beginning of the growing season and is 

characteri sed by its lighter colour, lm·ger radi al cell s ize, thinner cell wall and lower density 

(Vaganov et al. , 2006). In mid growing season, the structure of the tracheids transitions into 

the fo rmation of latewood. Latewood is characteri sed by its darker colour, smaller radial cel! 

size, thicker cell wall and higher density (Vaganov et al. , 2006). D ensity is the most 

important factor influencing wood quality (Kennedy, 1995). For spruce, annual r ings closest 

to the pith typica lly exhibit the highest dens ity, fo llowed by a graduai decrease and minimum 

density usually reached in the first 20 years of growth (Kennedy, 1995; Gagné et a l. , 201 2). 

Wood density then increases to an intermedi ate leve! in later years (Kennedy, 1995; Gagné et 

al. , 201 2) . 

It is necessary to di fferenti ate the age of the tree as a whole from the age of tree ti ssue, 

parti cul arl y the cambial age. Wl1il e the actual age of the tree is the cumulative number of 

years since establishment, cambi al age is based on the year of ring formation. Since new 

sheaths of tissue are layered on annually over the length of the stem, the cambi al age at the 

top of the tree is younger relative to cambial age at the base of the h·ee. Cambial age is 

determined by counting the number of rings at any g iven height of a tree. Young cambium is 

highly active, resul ting in greater wood producti on and thi cker annual rings than those 

produced by older cambium (Vaganov et a l. , 2006) . 

Among other factors, height growth is influenced by a species' shade toleran ce. Species that 

require high light levels, like aspen, generally reach their maximum annual increment earli er 

than more shade tolerant species , like white spruce. On ri ch sites, height growth is rapid 

during the full vigor stage, until the b·ee reaches an age of culminati on during whi ch time 

height growth rate decreases and its cumul ative height is maintained in to senescence 

(Assmann, 1970). Intense neighbourhood competition during the earl y years restri cts height 

growth of saplings and seedlings, resulting in vertical sh·ati fica ti on of height classes. The 

relati ve position of a tree, referred to as its social status, consists of the tall est trees or 

dominants whi ch have well developed crowns and dominate the canopy; co-dominant trees 

which have relatively normal crowns but are more weakly developed than the dominants; and 
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intermediate and suppressed trees w hich have stunted crowns and primarily occupy the 

middl e-understory layers (Assmann, 1970). 

ln dense stands, radi al growth of white spruce - as with other species - is more strongly 

affected by competition than height growth (McCiain et a l. , 1994). Once respiration demands 

of a tree have been met, all ocation of carbon is prioritized to height growth in an attempt to 

maintain or better its socia l ranking in the stand (Wagner, 2000). As more resources are 

ava ilabl e in less dense stands, a greater proportion of photosynthate becomes ava il able fo r 

diameter growth (McCiain et al. , 1994). At any given height along the stem, radial increment 

is greatest near the pith where cambium age is young, reaching maximum growth rate w ithin 

the first few years then gradually declining towards the bark with increasing cambium age 

(Vaganov et al. , 2006). Longitudinally, the stem profil e for a typ ica l spruce tree follows a 

growth pattern where growth is greatest in the butt, decreases in diameter increment towards 

the base of the crown and then increases again before thinning towards the tip of the tree 

(Assmann, 1970; Clyde and Titus, 1987) . This pattern is most evident for middl e aged trees 

and becomes Jess exaggerated as tree age when height increment is reduced and diameter 

increment becomes more evenly distr ibuted along the length of the stem (Clyde and Titus, 

1987) . 

Radi al growth in white spruce is also strongly related to crown length, as growth is hi ghest in 

areas with greater leaf biomass and photosyntheti c activity. ln dense stands where li ght levels 

decrease steeply between the upper and lower canopy, photosynthesis becomes Jess effi cient 

in lower branches and crown recess ion occm s as trees self-prune (Power et a l. , 20 12) . As a 

resul t, stems become more cylindrical in fo nn as the branch free region of the bole becomes 

progress ive ly longer and diameter increment is reduced (Makinen and Isomaki, 2004). When 

stand density is low or reduced through sil vicultural treatments, fo r exampl e, trees tend to 

maintain their lower branches and therefore have longer crowns; as a result, diameter growth 

remains high in lower parts of the bole. Furthennore, stronger wind speeds in more open 

stands causes bending stress in tJ·ees. In these conditi ons, diameter growth becomes unequally 

distributed, as increased growth is a ll ocated to stressed parts, parti cul arl y at the base of the 

stem; to improve anchorage, trees w ill a lso invest in root growth (Urban et al. , 1994; 

Kneeshaw et a l. , 2002). Trees grown in less dense stands therefore tend to have more of a 
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conical than cylindrical stem form. Stem taper, an important measure of h·ee value, is the 

graduai decrease in di ameter from the base to the tip of a tree over the length of the stem. 

Because the cylindrical form produces maximum wood recovery for the sawmill industry, 

trees with hi gh stem taper typically have lower economi e va lue and often exhi bi t poor wood 

quality characteristics (Tong and Zhang, 2008). The intermed iate shade tolerance and typical 

long crown length of white spruce favour a larger diameter increment over ti me, compared to 

other intolerant conifer species such as pines (Clyde and Titus, 1987). 

1.4 Silvicultural practices in boreal mixedwood forests 

1.4.1 Traditional harvesting practices 

With increased industrial utili zation of aspen, mixedwood forests have become an important 

source of both hard wood and softwood volumes for the Canadian forest industry (Comeau et 

al., 2005; Pitt et al., 201 0). Silvicultural practice following clear-cutting or careful Jogging 

regimes have generally promoted successive rotations of similarly composed stands of ei ther 

intolerant hard woods by exploiting the prolific natural regeneration of as pen , or softwoods by 

relying on site preparati on, planting and vegetation competiti on control. This reduction of 

stand and forest-leve! compositional and sh·uctural complexity has been referred to as 

"unmixing the mixedwoods" (Bergeron and Harvey, 1997; Pitt et al. , 20 10). Clear-cutting 

can be a very effective treatment for initiating virtually pure stands of aspen; however, when 

the obj ective after harvesting is to regenerate pure spruce stands, in tensive management 

interventions are generally required to minimize the effects of competition and establish ea rl y 

spruce dominance (Groot, 1999; Man et al. , 2008; Pitt et al. , 2010). 

The predominant harvesting method applied throughout Quebec 1s CPRS, where ail 

merchantabl e stems 2: 10 cm in diameter at breast height (DBH) are fe ll ed. CPRS aims to 

protect advanced regeneration and minimi ze soi! disturbance by restricting harvesting 

equipment to parallel skid trails that cannot exceed more than 25% of cutover area. 

Ostensibly, the objective of CPRS is to regenerate the forest naturally from advance 

regeneration or vegetati ve propagules, and in this regard, it diffe rs from clear-cutting. 
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However, to most forest users , it resembles a variant of clear-cutting and like clear-cutting, 

there has been growing public and scientific cri ticism over the generalized (over)use of 

CPRS, particularly some of its pernicious effects . Most notably, the unprecedented rate of 

loss of old and over-mature forests and, in some cases, by not disturbing soils enough, 

favouring bal sam fir regeneration over spruce (Harvey and Brais, 2002) or resulting in 

decreases in forest productivity (Lafleur et al., 201 0) . Extensive forest harvesting followed 

by inadequate regeneration practices over the last half century have reduced the abundance 

softwood dominated stands in mixedwood regions (balsam fir - white birch and balsam fir -

yellow birch bioclimatic domains in Quebec), augmenting the proportion of mixedwood 

stand types and pl acing greater reliance on these mixedwood stands to meet demands for 

spruce lumber (Yang, 1991). 

Due to differences between aspen and white spruce in terms of regeneration, tree growth rate 

and shade tolerance, aspen attains canopy dominance when the white spruce are still 

generally of small commercial size in the sub-canopy and understory. Harvesting both 

species at the same time, using CPRS or a similar harvesting method, would therefore appear 

to result in a loss in stand productivity, since the softwood component is harvested before it 

bas attained its fu ll growth potential (MacDonald, 1995). In contrast, protecting and retaining 

the immature and understorey conifer h·ees while harvesting the aspen component could 1) 

pem1it spruce stems to continue to accrue volume, 2) sho11en the following rotation cycle, 

and 3) eliminate or reduce the costs associated with white spruce regeneration and tending 

(Man et a l. , 2008). According to Thompson and Pitt (2003), silvicultural techniques that 

promote the regeneration and growth of valuable conifer species, such as the approach 

mentioned, should be a priority for the forest indush-y. 

1.4.2 Forest ecosystem management 

The lega l and regulatory framework governing forest management practices in Quebec has 

undergone severa! revisions in the last three decades, the most recent being the Sustainable 

Forest Development Act which was put into force in April 20 13. The Act is intended to 

ensure sustainable development of the province 's forest resources for environmental , 

economie and social purposes (Quebec, 201 0). Over the past two decades , an ecosystem-
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inspi red management paradi gm, also referred to as fores t ecosystem management (FEM), has 

emerged with the fund amental principl e of main taining long-term ecosystem viabili ty 

(Attiwill , 1994; Galindo-Lea l and Bunnell , 1995; Bergeron and Harvey, 1997), and is central 

to Quebec's new sustainabl e forest poli cy. To ensure long-term ecologica l viability of 

managed fo rests, FEM aims to maintain forest ecosystem health and res iliency by reducing 

the maj or differences between managed and natural forest landscapes (Gauthier et al. , 2009). 

Theoretically, this approach also ensures the maintenance of habitats critical to a multitude of 

fl oral and faunal species thus, to a certain degree, sustaining biological diversity (Gauthier et 

al. , 2009). 

Advances in ecological knowledge have led to a better understanding of the na tur a! dynamics 

of boreal mixedwoods (Chen and Popadiouk, 2002; Jardon et al. , 2003; Bergeron et a l. , 2004) 

and natural disturbances are now cl early recogni zed as important drivers in the long-term 

functioning and regulati on of forest ecosystems (Attiwill , 1994). A fundamental principle of 

FEM is to fu lly integrate knowledge and understanding of natm·a] forest dynamics into 

management practices at stand, landscape and regional levels in order to maintain key 

ecological attributes and processes of na tura! forests, including th ose whicb are influenced by 

or result from natural pe1t urbati ons (Attiwill , 1994; Vaill ancourt et al. , 2009; Patry et al. , 

201 3). At the landscape leve!, management obj ectives should aim to maintain the necessary 

proporti on of earl y, mid and late successional stages of forests with spatial organizati on, 

di stribution and connectiv ity within the range of natural vari ability (Bergeron et al. , 1999, 

Landres et al. , 1999) . 

At the stand leve!, obj ectives should focus on maintaining stands of a variety of forest types, 

with compositional and structmal compl exiti es as inspired by the outcomes of natural 

di sturbances and stand dynami cs (Attiwill , 1994). Forest ecosystem-based management does 

not aim to mim ic natural di sturbance or eliminate even-aged harvesting treatments, such as 

CPRS. Rather, FEM silvicultural practi ces are intended to ameli orate or adapt conventi onal 

practices to better mainta in features of na tura! fo rests within managed fo rest landscapes. It is 

thought tbat thi s can be achieved by diversify ing sil vicultural practices wbi ch vary in 

intensity, pattern and spatial scope (Harvey et al. , 2002) . Because the boreal forest bas been 

overwhelmingly managed under an even-aged regime whi cb, arguably, reduces ecosystem-
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leve! diversity, treatments that emul ate natural partial di sturbances have been promoted to 

counter this effect by generating greater stand and , cumulatively, forest-leve! diversity 

(Bergeron and Harvey, 1997; Harvey et a l. , 2002) . 

Despite a good understanding of aspen-conifer dynami cs in the boreal mi xedwoods, adaptive 

silvicultural treatments that better exploit both hardwood and softwood components for the 

forest industry white maintain ing ecosystem functions are sti ll in development (Brais et a l. , 

2004; Prévost et al. , 201 0). Wh ile severa! ecosystem-inspired management practices have 

been incorporated into forest regul ations in severa ! Canadian provi nces, their effective 

implementati on and measurement ofsuccess can be di ffic ult due to the inherently complex ity 

of boreal mixedwood stands (Thompson and Pitt, 2003) and the ti me horizons invo lved. 

1.4.3 Partial harvesting 

Partial harvesting has been promoted as an ecosystem-inspired silvicul tw-al treatment (or 

rather, category of treatments), with the idea that it has the potential to maintain ecosystem 

services and the compositional and structural attributes of natural forests whi le also meeting 

other silvicu ltural obj ecti ves such as sustained wood producti on (Comeau et a l. , 2005). 

Partial harvesting is a generic term and is defined here as a commercial, stand-leve! 

silvicu ltural treatment in which a portion of canopy trees are harvested. In this sense, partia l 

harvesting covers a broad spech·um of cutting intensities and configurations, with the 

common element that not ali commercial-sized trees are harvested in a partial eut. Moreover, 

parti al harvesting di ffers from va ri able retenti on (VR) in that res idual trees in VR are left as 

bi ological legacies permanent! y, or at !east for a fu ll rotati on (Gustafsson et al. , 20 12), 

whereas in the case of partial harvesting, ali or a portion of residual stems are in tended to be 

harvested during a later stand entry. 

Theoretically, par tial harvesting h·eatments simul ate low-intensity, secondary di sturbance 

processes, such as insect outbreaks, loca l windthrow or mortality due to competition or 

senescence, th at would naturall y result in some tree morta! ity and canopy gaps (Harvey et al. , 

2002). One argument fo r applying partial harvesting treatments in aspen-coni fer mixedwood 

stands is that se lective remova l of aspen stems simu lates, to some extent, the natural 
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successional process of aspen morta li ty in the transitional phase of stand development. 

Moreover, a redi stribution of light and nutri ent resources via the parti al removal of the aspen 

overstory (Man and Lieffers, 1999; F ilipescu and Comeau, 2007) should "release" the 

residual conifer stems from competiti on, resulti ng in an accelerati on of diameter, height and 

volume growth. Clearly, there exists a silvicultural argument fo r app lying parti al harvesting 

treatments in these mixed stands and it is likely that they will be increasingly applied in 

northwestern Quebec and other parts of the boreal forest as ecosystem management 

regulations and gu idelines are implemented. Whil e there are numerous potential benefi ts to 

parti al harvesting in boreal mixedwood stands, these must be weighed aga inst economie and 

operati onal constraints to determine their feas ibility and potential for success (Tabl e 1). 

Table 1.1 Potential benefi ts and constraints to parti al harvesting in boreal mixedwood forests 
1. Potential benefits 
Contributes to meeting forest ecosystem management goals 
More residual forest cover than fo ll owing CPRS 
Greater compositi onal & structural complexity than CPRS 
Better residual habitat of intact forest than CPRS 
Lower impacts on wi ldlife habitat, biodivers ity 
Increased forest productivity by synchronizi ng harvesting with growth potential of 
component species 
Grea ter protecti on of regeneration, sap ling and tree layers 
Reduced vegetati on competition and enhanced conifer (spruce) establishment 
Maintenance of local seed source (res idual trees, particul arly whi te spruce) 
In stands containing white spruce, can conh·ibute to maintaining white spruce and reduce 
the relative proportion of balsam fir 
Favours future growth potential of pre-mature and small merchantable res idual stems, 
includi ng white spruce, fo llowing treatment 
Bigger stems = easier and cheaper processing in fo rest and mi li s; higher product value 
Public perception - greater social acceptabi lity than clear-cutting 

2. Constrain ts 
Requi res specialized equipment 
High stem density restricts movement of machinery 
Potential Jogging damage to residual stems 
Potentia l for sign ificant mortality of res idual stems (volume Joss) 
Poss ible growth lag of residual stems 
Removes Jess vo lume/area - requires greater harvest area to meet volume obj ectives 
Higher economie costs assoc iated with planning, road constructi on and maintenance, 
harvesting, mon itoring 
Uncertainty concerning yields, stand stabili ty, surviva l, stand renewal, etc. - few long-term 
studi es measuri ng success 
Potential negative effect on wood quai ity 
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1.5 Tree growth responses to partial harvesting 

There are severa! internai and externat factors that can affect growth responses of trees to 

partial stand removal and, in many cases, these factors are augmented through the app lication 

of si lvicultura l treatments such as partial harvesting. It has long been recognized that smaller 

and younger trees have a strong capacity to respond positively in terms of improved radial 

and volume growth following release from competition, a tendency that bas formed the basis 

of commercial thinning practices. Severa] recent studies have, however, reported that mature 

res idual n·ees are also capable of responding positively to release treatments. When 

neighbouring trees are removed t1u·ough partial harvesting, residual trees typically exhibit 

increased growth rates above pre-treatment levels. 

For example, following an initial seed eut of a regu1ar shelterwood system in a 174 year old, 

nearly pure white spruce stand in Alaska, Youngblood (1991) determined that dominant and 

co-dominant white spruce trees exhibited superior radial growth rates compared to pre

treatment levels. On average, radial growth increased 27% per year, resulting in a net mean 

increase in diameter growth of 164%, over a period of 8 years post-treatment. This growth 

acceleration was atn·ibuted to the thinning n·eatment which removed 66% total stand BA. 

This pattial harvest was designed to encourage wh ite spruce regeneration by creating 

favourab le seed beds and leaving 100 dominant and co-dominant seed trees, equally spaced 9 

to 12 m apart. 

In mixedwood stands in Manitoba, Yang (1989) tested the effect of two thinning intensities 

concentrating on aspen overstory removal , on the growth responses of residual white spruce 

trees. Treatments consisted of a relatively light thinning corresponding to 44% stand BA 

removal and a moderate thiiming of 60% BA removal. Fifty years post-treatment, diameter 

and vo lume increments showed 28% and 81% and 50% and 260% improvement for the light 

and moderate thinnings, respective1y, when compared to n·ees in control stands. In the same 

study, for simil arly composed mixedwood sites situated in Saskatchewan, Yang (1989) found 

that when subjected to complete aspen removal , white spruce diameter increment improved 

50-1 77% whi le volume increment improved 24-304% compared to conn·ol trees over a 

period of35 years. 
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Simi larly, in stands rangi ng from 5-65 years in Alberta, Yang (199 1) observed improved 

growth rates of whi te spruce when direct aspen neighbours with in a circul ar area two times 

the crown radius were removed and herbi cide h·eatments appli ed to aspen stumps. Residual 

trees showed 4 1% improvement in diameter growth and 82% increase in volume growth 

compared to contro l trees over a post-treatment period of 35 years. 

Stati stical analysis of models developed using metadata derived fro m severa! independent 

white spruce studies throughout western Canada and parts of the USA, support the 

conclusion that residual trees display accelerated di ameter, height and volume growth rates 

relative to contrais fo ll owing a range of partial harvesting treahnents (Man and Greenway, 

2004). 

Other conifer species have also shown simil ar patterns of enhanced growth fo ll owing release. 

In 1owland black spruce stands in northern Ontario, Thorpe et a l. (2007) found that residual 

bl ack spruce trees subj ected to HARP (Harvest w ith Advance Regeneration Protecti on, 

similar to CPPTM, coupe avec protection de petites tiges marchandes), w hi ch reduced stand 

BA by 80% by concentrating removal of larger size classes (> 14 cm DBH), resulted in 

accelerated radial growth during the 12 year post-h·eahnent period. Radial growth peaked 8 to 

9 years post-treatment, at whi ch time radial growth was double the mean pre-treatment leve! 

(mean rad ial growth rose from 0.54 to !.1 0 mm ·year" 1
). 

In central Ontari o, di ameter growth rates for white pine (Pinus strobus) have been observed 

to increase by 60% in stands subj ected to retention harvesting of 50% white pine BA 

(approximately 24% of tota l stand BA removal). Treatments were des igned to mainta in 

structura l heterogeneity and age structure of the stands by leaving both vigorous seed trees 

and trees in declining hea lth which would eventually contribute to snags and coarse woody 

debri s (Bebber et al. , 2004). 

Furthermore, in mixed stands 111 the Great Lakes-St. Lawrence Forest Region of the 

Petawawa Research Forest in eastern Ontari o, Bevil acqua et a l. (2005) establi shed that whi te 

pine experienced accelerated growth rates fo ll owing partia l harvesting, and that growth 

response depended on tree social status. Compared to contro l trees , average ann ua l di ameter 
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and volume increments were, respectively, 63% and 35% higher for dominant trees , 62% and 

43 % higher for co-dominant trees and 23 1% and 170% higher for suppressed trees over the 

23 years post-treatment. 

In mixed stands in the balsam fi r -yell ow birch bioclimatic domain of Quebec, Gendreau

Berthiaume et a l. (20 12) eva luated two partial harvesting treatments that predominantly 

removed intolerant hardwood species and balsam fir, and compared them to stands that had 

been affected by partial natural disturbances (windthrow and forest tend caterpi llar). Trees 

were harvested along 5 m wide skid trails, separated by 15 m wide res idual bands. Two 

treatment intensities were tested. The first termed a "successional eut" where ali balsam fir 

(> 10 cm DBH), 2/3 intolerant hardwood tJ·ees (> 10 cm DBH), and some spruce (>24 cm 

DBH) were removed, resulting in 47.9% total BA removal. The second tJ·eatment termed 

"diameter limit" where ali balsam fir and intolerant hardwood u·ees (> JO cm DBH), and some 

spruce (> 18 cm DBH) were removed, resulting in 63.2% total BA removal. After 4 years 

post-treatment, total stand BA increased by 25 and 13.5% in the succession eut and diameter 

limit eut, respectively, compared with the natura ll y disturbed stand in which the BA was 

relatively stable over the 4 years. Additionally, white birch, balsam fir and white spruce 

showed the highest increases in BA relative to initi al levels, indicating that these species have 

the capacity to respond positive! y to partial harvesting u·eatments. 

In the Pacifie Northwest, Latham and Tappeiner (2002), found that although growth 

responses to partial harvesting were slow and occurred over a period of 20 years, very old 

ponderosa pine (Pinus ponderosa) and Douglas fir (Pseudotsuga menziesii) trees did display 

increased growth rates and improved vigor over contrais. 

Partial harvesting treatments have also been shown to improve recruitment of coni fer 

seedlings and increase growth of advanced growth and large saplings (Man et a l. , 2008; 

Gendreau-Berthiaume et al., 2012). Growth responses to partial disturbances can be hi ghly 

variab le among trees even for the same species, poss ibly due to differences in age and size or 

to local resource avai lab ili ty and neighbouring competition (Thorpe et al. , 2007). Results of 

Youngblood ( 1991 ), Thorpe et a l. (2007) and Latham and Tappeiner (2002) , suggest th at 
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large mature trees are capable of responding to release from competiti on induced by parti al 

harvesting treatments. 

One trend that has been frequently observed among different coni fer species is a time lag in 

growth responses fo llowing partial harvesting treatments. Reports of response lag in white 

spruce are var iable: improved growth rates have been reported to occur immedi ately 

fo llow ing trea tment (Man and Greenway, 2004), after two years (Youngbl ood, 199 1), and up 

to nine years post-treatment (Urban et al. , 1994). Time lags have also been observed in bl ack 

spruce (Thorpe et al. , 2007; Gendreau-Berthiaume et al. , 201 2), white pine (Bebber et al. , 

2004), Douglas fi r and Jodgepole pine (Pinus conforta) (Kneeshaw et al. , 2002). These delays 

in stem growth response have been attributed to growth allocation to other parts of the tree, 

particularl y roots, which is thought to increase stability aga inst windthrow (U rban et al. , 

1994) and offset the transpiration !osses associated with environmental changes, parti cul arly 

greater radiation and wind exposure (Kneeshaw et al. , 2002) . The time period in which 

residual trees reach their peak growth rate and maintain an accelerated growth response over 

pre-treatment levels is also highly variable among species and treatments. Growth declines 

fo ll owing initi al increases have been repotied as early as nine years post-treatment for black 

spruce to decades in white spruce and other coni fer species (Youngblood, 1991 ; Latham and 

Tappeiner, 2002; Thorpe et a l. , 2007) . 

1.6 Treatment intensity 

The total or partial remova l of aspen in mixed stands bas the potential to shorten the canopy 

h·ansition phase fi·01n hardwood to softwood dominance (Bergeron and Harvey, 1997) and 

parti al harvesting has been suggested as an option fo r converting even-aged (or even-sized) 

stands to uneven-aged and sized mixed stands, with the obj ective of restoring fo rest 

complex ity and the characteri sti cs of natural mixedwoods (Nyland, 2003) . In the context of 

ecosystem management, partial harvesting reduces the differences between naturally 

di sturbed and developing fo rests and those under management by ma in ta ining fo rest cover 

with mixed species compositions in mu ltiple age and size classes (Man et al. , 2008; 

Gendreau-Berthi aume et al. , 201 2). These attributes are important fo r the maintenance of 

structural compl ex ity, considered important fo r wildli fe habitat, biodiversity and ecosystem 
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resilience (Chen and Popadiouk, 2002; McElhinny et al., 2005). Furthermore, the res idual 

forest cover provides seed source for natura l seedling recruitment and a tempered 

environment for advanced regeneration white generally reducing the intensity of aspen 

recruitment (Brais et al., 2004; Prévost and DeBloi s, 2014). 

One of the chal lenges for forest managers has been to determine the appropriate amount of 

canopy opening that will maintain enough cover to suppress competition from shade 

intolerant herbaceous, slu·ub and aspen regeneration but allow for an adequate amount of 

sunlight for the growth of understorey white spruce (Comeau et a l. , 2005). Aspen suckering 

has been found to increase proportionally to partial harvesting intensity (Prévost and Pothjer, 

2003; Brais et al. , 2004) and, due toits fast growth rate, has the potential to repress seedlings 

and saplings and limit the growth of juvenile white spruce and other conifers. Understorey 

conifer regeneration and growth have also been found to increase proportionally with pa1tial 

harvesting intensity (Prévost and Pothier, 2003). Excessive removal of canopy trees can 

however have a negative impact on residual trees by causing physiological shock related to 

wind, water and heat stress, and thereby postponing growth responses and limiting diameter 

growth (Prévost et al., 201 0). A pa1tial harvesting intensity of 45 to 65% tota l basal area 

remova l has been suggested as optimal, as it provides a compromise between adequately 

limiting aspen suckering and other herbaceous competition and maximizing white spruce 

growth response (Prévost and Pothier, 2003; Prévost et al., 201 0; Beaudet et al. , 201 1 ). lt is 

clear that harvesting intensity will have an influence on the growth responses of residual 

trees. On rich sites, however, grasses such as Calamagrostis canadensis or shade tolerant 

woody shrubs such as mountain maple (Acer spicatum) that are present in the understory may 

also come into play in post-treatment dynamics (Lieffers and Stadt, 1994; Bose et al. , 20 14). 

1.7 Neighbourhood environment and competition 

The growth and survival of an individual tree depends its abili ty to capture avai lable li ght, 

water, soi ! nutrients and growing space. When the demand for these resources is hi gher than 

the supply, competition occurs between neighbouring individuals (Balandier et a l. , 2006). 

Interspecific competition ensues when one individual has a negative effect on the growth of 

another individual. Once h·ees have attained the "free-to-grow" stage, grasses, herbs and 
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shrubs are considered to be strong competitors for belowground water and soil nutri ent 

resources, whereas canopy tJ·ees are stronger competitors for growing space and light 

resources (Balandier et al. , 2006). Each tree is limited by the amount of space above and 

below ground in which it has to grow and thi s can be restricted by the number and proximity 

of neighbours. Neighbourhood competition indices are used to estimate the effect of 

competition on tree growth as a function of neighbour species, size, abundance and distance 

to target tree (Avery and Burkhart, 2002). Understorey light levels and growing space can be 

manipulated using silvicultural treatments by varying the cutting intensity, the di stribution 

and the configuration of canopy openings (Beaudet et al. , 2011 ). It is therefore impm1ant to 

understand how partial harvesting treatments influence competition in mixedwood stands in 

order to better control growth responses of residual n·ees and maintain desired stand 

composition and stJ·ucture. 

Sunlight is likely the most 1imiting resource for white spruce in aspen dominated mixedwood 

stands (Filipescu and Comeau, 2007; Beaudet et al. , 2011) . Competition for light is usually 

refen-ed to as asymmetric since n·ees in the dominant social c1ass are situated in a favourable 

position for intercepting the highest proportion of sunlight, thereby supressing trees 1ower in 

the canopy (Connolly and Wayne, 1996). Aspen is often considered to have a competitive 

advantage, at !east in the short to medium term, due to its abi1ity to efficiently capture and use 

resources, resulting in accelerated growth and canopy dominance (Ba1andier et aL, 2006). 

However, Boivin et al. (20 10) found that in young (8-15 year old) mixedwood stands in 

Quebec, competition was strongest between conspecific neighbours and among the 4 species 

evaluated in the study, aspen was the weakest competitor. They suggest that the high 

occurrence (density) of aspen in the stands is related to the species ability to reproduce 

quickJy and root sucker, rather than a strong capacity for competition (Boivin et al. , 2010). 

Furthermore, according to Man and Lieffers ( 1997), differences in species n·aits between 

white spruce and aspen reduce the effects of competition by differentiating or partitioning 

resource niches and allow the two species to coexist in the same stands. The foliage of white 

spruce has 1ower photosynthetic compensation and saturation points than aspen but is able to 

fix carbon in diffuse light more efficiently, thus is able to grow and survive under the aspen 

canopy (Boardman, 1977). Moreover, according to Lieffers and Stadt (1994), while full 
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sun light is optimal for maximum diameter growth , white spruce can reach its maximum 

height growth in 40 to 60% of full sunli ght. 

Interactions between white spruce and aspen can also be positive. For example, the shade 

created by the aspen canopy is beneficiai in supressing herb and shrub growth wh ich often 

competes with white spruce seedlings (Lieffers and Stadt, 1994). This is advantageous 

because white spruce seedl ings can take a number of years to attain heights above the shrub 

layer (Groot, 1999; Fi lipescu and Comeau, 2007). Aspen is also an important species for 

nutrient cycling in mi xedwoods since it can draw nutrients from deep mineral soi] Jayers and 

retmn them to the soi l through Jeaf litter, whereas most conifers generally concentrate their 

roots in and above the humus layer-mineral soi l interface. The process of nutrient recycling 

by aspen could be particularly critical for juvenile spruce on poor sites (Man and Lieffers, 

1999b) and underlines the importance of considering this interaction and other positive 

relationships of species mixtures when applying partial harvesting h·eatments that remove the 

hardwood component. 

1.8 Project objectives and hypotheses 

Partial harvesting treatments will likely be increasingly incorporated into boreal mixedwood 

management strategies throughout Canada. Before these relatively new treabnents become 

genera li zed, it is important to take a precautionary approach to their implementation, one 

aspect of which is to assess knowledge of tree and stand-leve] responses from existing 

s il vicu ltu ral experiments . The treatments evaluated in this study were initiated in 2001 by the 

Industrial Chair in Sustainable Forest Management (SFM Chair) at the Univers ity of Quebec 

in Abitibi-Témiscamingue in collaboration with the industrial partner Tembec industries. The 

proportion of white spruce basal area in the treated stands was considerab ly hi gher than what 

is generally found in mixed stands in Quebec (and in eastern Canada, generally), which 

incited Tembec and the SFM Chair to establish the study. The experimenta l units were 

established in 200 1 and were subjected to partial harvesting in the late summer of 2001 and 

in the fa li of 2002. The treatments consisted of removing four different proportions of canopy 

aspen (0, 50, 65 and 100% basal area) in order to encourage regeneration and growth of 

residual conifer stems, primarily white spruce. The pL11-pose of this project is to quantitatively 
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eva luate and compare the radi al and volume growth responses of resi dual white spruce trees 

10 years after the app li cation of the partial harvesting treatments. Moreover, the influence of 

ti me s ince treatment, tree social status (dom inant, co-dominant or suppressed), pre-treatment 

growth rate and neighbourhood competition on post-treatment growth rates wi ll be evaluated. 

These variables are important for understanding and nuancing the capacity oftrees to respond 

to competition and the increased ava il abi lity of resources. Thi s proj ect is based on the 

fo llow ing hypotheses: 

F irstly, the intens ity of the partial harvesting treatment wi ll have an effect on the magnitude 

of growth response. We anticipated that white spruce trees in the 50 and 65% aspen removal 

treatments would exhibit the hi ghest levels of growth response. These intermediate 

treatments should transmit adequate levels of sunlight to accelerate white spruce growth 

rates, while maintaining enough cover to reduce the effects of increased heat, water and wind 

stress and suppress aspen suckering. Secondly, tree social status wi ll have an effect on the 

magnitude of growth response. We expected that absolute radial and volume growth would 

be higher for dominant and co-dominant trees than suppressed u·ees because of their Iar·ger 

initial size and vigor. However, we further hypothes ized that the relative change in resource 

avai labi li ty should be greatest for individuals in the supressed social status and therefore, 

suppressed and co-dominant trees wou ld ex hi bit greater cumul ative relative growth increase 

than dominants. Finally, the neighbourhood environment surrounding each fe ll ed white 

spruce tree will have an influence on its post-treatment radial and vo lume growth rate. We 

anti cipated that competiti on exerted by neighbouring trees would decrease re lative to 

increasi ng aspen remova l and that the competitive effect would be proportional to the 

number, s ize and proximity of neighbours. 



CHAPTER II 

SPRUCING UP EASTERN CANADIAN MIXEDWOODS: DOES WHITE SPRUCE 
(PICEA GLAUCA) RESPOND TO PARTIAL HARVESTING? 
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2. 1 Abstract 

Borea l mixedwood stands in eastern Canada are often characterized by a dominant canopy of 
shade intolerant hardwoods like aspen (Populus tremuloides M ichx.) with more shade 
to lerant conifers like whi te spruce (Picea glauca (Moench.)Voss) situated in the mid- to sub
canopy layers. Partial harvesting has been promoted as an alternati ve treatment to clear
cutting in mixedwood stands. We tested fo ur partial harvesting h·eatments in mixed aspen -
white spruce stands, including a contro l, consisting of di fferent prop01t ions of aspen removal 
(0, 50, 65 and 100% basa l area (BA)). Ten years after treatments, 72 whi te spruce stems 
representing dominant, co-dominant and suppressed social classes were destructive ly 
sampled fo r stem ana lysis. Us ing 1inear mixed effect models, growth was analyzed as a 
fu ncti on of treatment intensity, time since treatment, social status, pre-treatment growth rate 
and neighbourhood competition. Relative to contro l stands, radial and volume growth 
responses were detected only in the exh·eme treah11ent of 100% aspen BA removal. 
Compared to contro l trees, average annual radi al and volume increments were, respectively, 
23.5% and 7. 1% higher for dominant trees, 67 .7% and 24.1 % higher for co-dominant h·ees 
and 115.8% and 65.6% higher for suppressed trees over the 10 years post-treatment. In 
relative terms, suppressed trees showed the greatest magnitude of cumulative growth 
increase. Growth response was proportional to pre-treatment growth rate with vigorous, 
younger trees hav ing highest post-treahnent growth rates . Based on Hegyi 's competition 
index, only coniferous neighbours had a negative effect on sampled white spruce growth. For 
stand types and partial harvesting treatments simi lar to the ones tested here, we conclude that 
it is necessary to remove a very high proporti on of the shade intolerant hardwoods, and of 
total stand BA, in arder to obtain accelerated whi te spruce growth rates . The removal of some 
domi nant white spruce trees and th inning of dense conifers may fu rther reduce inh·aspecific 
competition and have a positive effect on resi dual h·ee growth. These resu lts shou ld 
conh·ibute to the deve lopment of partial harvesting treatments better adapted to the structm e 
and dynamics of borea l mixedwood fo rests. 
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2. 2 Résumé 

Les peuplements mixtes de 1 'est du Canada sont souvent caractéri sés par une dominance 
d ' espèces intol érantes à l' ombre, comme le peup lier faux-trembl e (Populus tremuloides 
Michx.), avec une forte composante de conifères p lus tol érants, comme l'épinette blanche 
(Picea glauca (M oench .) Voss), situés davantage dans les strates inféri eures de la canopée. 

Dans les peuplements mixtes, les coupes parti elles ont été promues comme un tra itement 
sylvicole alternatif à la coupe à blanc. Nous avons testé quatre traitements de coupe parti ell e 

dans les peuplements mixtes tremble-épinette blanche, comprenant un témoin, selon quatre 

intensités de prélèvement de tremble (0, 50, 65 et 100% de la surface terrière (ST)). Dix ans 
après les traitements, 72 épinettes représentant les classes soci ales dominante, co-dominante 

et supprimée, ont été abattues et des di sques récoltés pour fin s d 'analyses de tiges. À 1 'aide 
des modèles mixtes, la croi ssance a été analysée en foncti on des facteurs suivants: intensité 

du traitement, temps depuis traitement, statut social, taux de cro issance avant tra itement et 

compétition des arbres voisins. Par rapport aux peuplements témoins, une réaction positive de 
croissance a été observée seulement suite au traitement extrême (1 00% prélèvement du 
h·emble). Comparativement aux arbres témoins, le taux de croi ssance radi ale et en volume ont 

été supérieures de 23,5% et 7, 1% pour les dominants, 67,7% et 24,1% pour les co-dominants 

et 115,8% et 65 ,6% pour les arbres supprimés, au cours des dix an s suivant les traitements. 
En tem1es de croissance relati ve, les arbres supprimés ont eu la p lus grande hausse de 

croi ssance cumulative. Par aill eurs, la réaction de croissance après traitement s'est avérée 
proportionnelle au taux de croissance avant traitement. En uti lisant les indi ces de compétition 

de Hegyi, nous avons observé que seuls les voisins conifères ont eu un effet négati f sur la 
croissance des épinettes échantillmmées. Nos résultats contribueront au développement de 

systèmes sylvicoles mieux adaptés à la structure et à la dynamique des forêts boréales mixtes. 
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2.3 Introduction 

In mucb of the south-eastern Canadian boreal forest, mi xedwood stands are considered to be 

in a transitional succession phase (Bergeron, 2000). Mi xedwood stands are frequently 

initiated fo llowing large-scale di sturbances such as wildfires and, in early stand development, 

are typically dominated by fas t-growing, shade-intolerant hardwoods, such as trembling 

aspen (Populus tremuloides) and white birch (Betula papyrifera) . More shade-tolerant conifer 

species such as white spruce (Picea glauca) and balsam fir (A bies balsamea) may seed in 

immedi ately after fire from peripheral or patches of intact forest or slowly recruit in the 

understory in subsequent years fo ll owing disturbance (Ga lipeau et al. , 1997). Because of 

di fferences between aspen and coni fer species in terms of regeneration dynamics, shade 

to lerance and sap ling and h·ee growth, white spruce is often of pre-commercial or of small 

merchantable size classes when aspen arrives at a stage suitable for commerci al harvesting. 

Over the last half century, even-aged management has generally been applied across the 

boreal forest of Quebec, and for reasons of industrial demand, harvesting has largely 

concentrated in conifer or coni fe r-dominated mixed stands. One the most evident legacies of 

thi s regime, particularly on mesic sites, has been an important increase in intolerant 

hardwood-dominated mixedwood stands (Laguerre et al. , 2009) in whi ch industry is 

increasingly required to intervene. However, when coni fer stems are suitabl e for harvesting, 

the aspen have generally surpassed their peak growth period . Therefore, harvestin g the two 

species at the same time results in some Joss of stand producti vity, since they do not atta in 

their maximum growth rates at the same point intime (MacDonald, 1995). 

The remova l of the dominant aspen canopy in mature mixedwood stands should, at !east 

temporarily, release res idual conifers, in particular the white spruce, from aspen competition. 

Thus, in thi s type of h·eatment, aspen are idea lly harvested before succumbing to age -related 

mortality and white spruce trees are left to occupy the freed-up growing space and exploit the 

greater ava ilabi lity of light and so i! resources. Pre-treatment growth rate has been fo und to 

influence post-h·eatment growth (Thorpe et a l. , 2007; Bose et al. , 2014) and vigorous, small 

and young trees are generally assumed to have the greatest potenti al for release. Presumably, 

the relative change in resource ava il abili ty should be greatest fo r indiv iduals in suppressed 
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social status c lasses (Bevilacqua et al. , 2005; Vincent et al. , 2009) but recent studi es have 

demonstrated that larger coni fers most often exhibit highest absolute volume growth rates 

fo llowing release treatments (Latham and Tappeiner, 2002; Makinen and Isomaki, 2004; 

Gagné et al. , 2012). 

One major design challenge is determining the opti mum range of canopy opening that will 

maintain enough cover to suppress competition from siu·ubs and regenerating aspen, but will 

also all ow an adequate amount of sunlight for the growth release of understory white spruce 

(Lieffers and Stadt, 1994; Groot, 1999; Comeau et al. , 2005). Aspen suckering has been 

fo und to increase proportionally with partial harvesting intensity (Prévost and Poth ier, 2003; 

Brais et al. , 2004) and due to its fas t growth rate, it has the potential to overtop short white 

spruce n·ees. ln additi on, the compl ete or near-compl ete removal of canopy tJ·ees can 

negatively impact residual trees by causing physiological shock due to wind, water and heat 

stress, thus postponing growth responses and/or limiting diameter growth (Youngblood, 

199 1; Urban et al. , 1994). 

Though severa! studi es have evaluated pati ial harvesting in tenns of white spruce recrui tment 

and mortality, very few have evaluated the growth responses of residual trees in aspen-whi te 

spruce mixedwood stands in eastern Canada. Even fewer have used stem analys is to evaluate 

tree-level volume responses among di fferent social status classes foll owing parti al harvesting 

treatments. The pm-pose of this study was to evaluate the effect of partia l harvesting 

treatments on radial and vo lw11e growth rates of whi te spruce trees in mixed stands, over a 

period of 10 years post-treatment. More specifically, our obj ectives were to investigate the 

effect of treatment intensity, tree social status, pre-treatment growth rate and neighbourhood 

competiti on on post-treatrnent annual radial and volume growth of residual white spruce 

stems. At the beginning of the study, we fonnul ated the fo llowing hypotheses: (i) n·ees in 

in termediate (5 0 and 65%) partial harvesting treatments would have superior radi al and 

vo lume growth rates compared to contro l stands; (ii ) abso lute growth rates would be higher 

fo r dominant and co-dom inan t trees than suppressed trees; (iii) cumul ative relative growth 

rates would be hi gher for suppressed trees than co-dominant and domi nant tJ·ees; (iv) growth 

rates would be negatively affected by neighbourhood competition. 
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2.4 Methods 

2.4 .1 Study area and site description 

The study site is situated m Abitibi-Témi scamingue, Quebec (48. 14' 32.2"N, 

79. 17' 12.00"W), in the Western bal sam fir-white birch (Betula papyrifera) biogeoclimatic 

subdo111ain (Saucier, 1998). The area is characteri zed by mesic soils, primarily Grey Luvisols 

originating from lacush·ine clay deposits left by proglacial Lake Ojibway (Vincent and 

Hardy, 1977) . The cli111ate is continental with a daily average temperature of 1.7° C and 

annual precipitation of 883 111111 of whi ch 625 mm fall s as rain from April to November 

(Riviere Kinoj evis meteroro logi cal stati on (48°13' N, 78°52 ' W), Canadi an climate normals 

1971 -2000, (Environment Canada, 201 3) . 

Treated stands were mixed aspen-conifer w ith mean basal area (BA) of 41 m2·ha-1 (Table 

2. 1 ) . Mature aspen dominated the canopy cover with conifers generally dish·ibuted through 

the suppressed to co-dominant canopy layers. Mean white spruce and aspen ages were 71 and 

68, respective! y. While some old (1 00 to 120 years) white spruce h-ees were present in stands, 

roughly 89% of sampl ed trees established within 14 years, con-esponding to calendar years 

1937 to 1950. Aspen establishment generally occurred throughout the same time period , but 

recruitment was more graduai. Basa l area di sh-ibution of control stands at ti me of treatments 

was 75% aspen (includes balsam pop! ar), 20% white spruce, 3% bal sam fi r, 1% bl ack spruce 

(Picea mariana) and 1% white birch . 

2 .4 .2 Experimental des ign and treah11ents 

Experimental units were laid out based on pri sm inventori es done prior to treatments. Partial 

harvesting prescripti ons were appli ed to the experimental units in the late su111mer of 200 1 

and the fa ll of 2002. Trees were manually harvested, limbed and eut to length on site and 

hau led to roadside us ing narrow-tracked skidders and forwarders in order to minimi ze 

damage to res idual tTees during harvesting operations. Treat111ents consisted of removing 

vari ous proportions of aspen in order to encourage the growth of res idual coni fer stems, 
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primarily white spruce, and promote conifer recruitment. Treatments consisted of a no

harvest control, (0% BA removal), two intermedi ate trea tments that removed 50 and 65% of 

aspen BA and an extreme treatment of 1 00% as pen BA removal (Table 2. 1 ). Bach treatment 

was repeated three times fo r a total of twelve experimental units. Immediately fo llowing 

treatments a total of thirty, 400 m2 circul ar permanent sampl e plots (PSPs, radius= 11 .28 m) 

were established (9 in each of the two intermedi ate treatments and 6 in the control and total 

treatments). Stems greater than 5 cm in diameter at breast height (DBH, 1.3 m) were tagged, 

measured and identified to speci es. PSPs established in year 0 were re-measured at 5 and 10 

yea rs post-treatment. 

2.4.3 Sampling 

In 2012, ali experimental un its had atta ined the 10 year post-treatment period. In the summer 

of 201 2, destructive sampling was conducted for tree growth analyses. Thi s consisted of 

harvesting a total of 72 residual white spruce trees fi·01n contrais and partially eut stands. 

Trees selected for fe l ling were live and vigorous with little to no external evidence of disease. 

Two trees fi·om each of tinee di fferent social status classes (dominant, co-dominant and 

suppressed), were selected from each experimental w1i t. Whil e recogn izing that social status 

is a classificati on of vertical crown position of a tree relati ve to ali other tree crowns in a 

stand, we used tree diameter distribution as a proxy for height di stri buti on in each 

experimental uni t. Also, given that aspen generally occupied the dominant social class with 

only a minor component of spruce, ass ignment of social status to individuals was based 

exclusively on the relative size among the white spruce trees, rather than the true interspecific 

social status of ali trees within the stand . Stem size distribution was calculated for each 

experimental un it based on white spruce trees in the PSPs and the following classifica ti on 

was used to select indi vidual trees to be destructi vely sampl ed fi·om each social status class: 

dominant trees : di ameter size class ?: 2 standard deviati ons (SD) of mean DBH; co-dominant 

trees : size class of ?: 1 SD of mean DBH; suppressed trees ::S the mean DBH. Foll owi ng 

fe lling, crown length was measured and live crown rati o fo r each tree was determined. 

Branch length was measured at each disk height and crown width was taken as the sum of the 

two longest branches from opposite sides of the crown (Table 2.2). 
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Cross sectional di sks were sampl ed from 11 positions along the length of the stem of each 

tree. The first disk was taken at 0.3 111 stu111p height and the second from 1.3 111 , breast height 

(BH). The remaining 9 disks were sectioned from equa lly spaced positions relative to length 

of the stem fro m BH to the top of the tree (Chhin et al., 201 0). Ail disks were marked to 

identi fy the tree number and to specify the height at which each was collected. In order to 

determine minimum age of canopy aspen, stems ~20 cm DBH situated closest to each 

collected white spruce stem were cored at 1 m in control , 50% and 65% BA removal 

experimental units. 

2.4.4 Neighbourhood competition assessment 

At the time of felling, the neighbourhood environment of each collected (target) white spruce 

tree was assessed in circu1ar plots within a 10 m radius of each fe lled tree (Hartmann et al., 

2009). Ali standing trees (~ 10 cm DBH) within the neighbourhood area were identified to 

species leve! and measured for DBH and distance to the felled white spruce tree (Canham et 

al. , 2004; Hartmann et al., 2009) . Neighbourhood competition was assessed to quantitatively 

evaluate the influence of competition on the radial and volume growth rates of target n·ees. 

Hegyi ' s (1974) neighbourhood competition index (HCI) was calculated for ail neighbour 

trees within the 10 m rad ius of each sampled white spruce n·ee. Di stance-independent HCls 

were calculated as a function of the white spruce and neighbour tree DBH' s. Distance

dependent HCis incorporated the distance between each neighbom tree and the target wh ite 

spruce tree in the ca lculation . Hegyi ' s HCI was then adapted based on additional conditi ons 

including: neighbour tree type (b roadl eaf species consisting of: aspen, balsam poplar, white 

birch or coniferous species cons isting of: white spruce, black spruce, balsam fir, jack pine) 

and distance to the sam pied white spruce stem (:S l 0 m, :::; 8 111 , :::;6 m,:::; 5 m, 5-l 0 m). ln total , 

30 variations of the HCI were computed (Annex B, Table B.!). 

Distance-independent equation is given as, 

n 
~ dbh · 

HCI = ~ (dbh:) 

Distance-dependent equation is given as , 
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n 

I dbh· 
HCI= t 

. ( dbht) ( distanceit) 
t=l 

where, dbh; is neighbour tree di ameter at breast height (cm); dbh , is target tree di ameter at 

breast height (cm); distance;, is the hori zontal di stance (rn) between neighbour (i) and target 

tree (t). 

2.4.5 Disk preparation and measurements 

Ali white spruce cross sectional disks and aspen radial cores were dried and sanded with 

progress ively finer grit sand paper in order to clearl y discern the annual growth rings. 

Sampl es were analyzed in the laboratory using dendroecological procedures to count and 

measure annual radial growth increments . Disks were visually cross dated us ing a microscope 

in order to identi fy any fa lse or miss ing rings, and were scanned fo r image analys is. Annual 

ring widths were measured along 3 radii per di sk using WinDendro (Regent Instruments 

Canada l.nc. , 2009). The ring width data obtained from WinDendro was further analyzed 

us ing WinStem (Regent Instruments Canada Inc. , 2004) whi ch computed average annual 

radial growth increments (mm·y( 1
) for each disk and was used to reconstruct an.nual volume 

increments (dm3 ·yr1
). Radial growth rates at 1.3 m and volume growth rates fo r the entire 

stem, over the last 15 years of growth were used fo r stati stical analyses. Pre-trea t:ment growth 

rate was taken as the average annual growth rate in the 5 years pri or to treatment while post

treatment growth rates were the annual increments for each yea r in the 10 year post-treatment 

peri od. 

Because radia l growth rates generally decrease fo ll ow ing a period of rap id growth in the 

juvenil e stage (Annex A, Fig. A.7) , cambi al age at 1.3 m was measured and used to account 

fo r age effects in stati sti ca l analyses . To determine general age of white spruce trees in the 

stand, minimum tree age of white spruce was tak en from cambi al age at 0.3 m. The aspen 

cores were aged under the mi croscope to determine the minimum age of aspen in the stand . 

Relati ve cumulative growth (%) was determined for each socia l status-treatment 

combination, using annual cumul ative radial and vo lume growth fo r each year in the 10 years 

post-treatment. Thi s information was not analyzed statisti ca ll y, but was used to determine 

which social status showed the greatest magnitude in growth response over the 10 years. 
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2.4.6 Statistical analyses 

2.4.6.1 Mode! selection and Linear mixed effect models 

Statistical analyses were conducted using the nlme package (Pinheiro et al. , 2013) in R (R 

Core Development Team, 2012). Linear mixed effect models were used to account for the 

non-independence of data since white spruce trees were nested within experimental units and 

repeated measurements (annual growth rates) were taken from each individual tree. Mode! 

selection based on Akaike's information criteria corrected for small sampl e sizes (AlCc) was 

accomplished using the AlCcmodavg package (Mazerolle, 2013) in R. The mode] with the 

lowest AICc value was considered to be the most parsimonious. For each analysis, growth 

predictions, mode] average estimates and unconditional 95% confidence intervals were based 

on the entire set of candidate models, using the AICcmodavg package (Mazerolle, 2013). 

2.4.6.2 Treabnent intensity, social status, pre-treatment growth rate, time and cambial age 

Fifteen competing models (Annex B, Table B.2), including a nul! mode!, were tested to 

determine the effects of partial harvesting b·eabnents, tree social status and pre-treatment 

growth rates on post-treatment radial and volume growth rates in the 10 years fo ll owing 

treatments. Treabnent intensity and social status were treated as categorical variables while 

pre-treatment growth rate and ti me were b·eated as continuous variables. Seven of the models 

included the squared value of time (time2
), to account for quadratic effects white the 

remaining models ( excluding the nu li mode!) accounted for linear effects of ti me. Cambial 

age at 1.3 m was also included in ali models (excluding the null mode!) , when the response 

variable was radial growth rate. Specifie interactions were included in the models to 

determine how growth changed over ti me and wh ether growth of the three socia l statuses was 

simil ar across ali treatment intensities. The above mentioned variables were considered as 

fixed factors in the mixed effect models. Tree number and experimental unit were considered 

as random effects. Transformations were app lied to response variables to ensure mode! 

assumptions were met (normality and homoscedasticity of residuals). A square root 
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transformation was applied to radial growth rate and a log transformation was applied to 

volume growtb rate. 

2.4.6.3 Selection of most parsimonious Hegyi Competition Index (HCI) 

The sa me mode! selection approach was used to determine which variant of the 30 HCis best 

explained radial and volume growth rates of col lected white spmce trees. Each HCI was 

considered as a separate mode! and a null mode! was included in the analyses (Annex B, 

Table B.l). Since the competitive effect of neighbours changes tlu·ough time, the HCis were 

assumed to be representative of competition only in the last few years of growth before stem 

collection. Therefore, average growth rates in the last 3 years (years 8, 9, 10 post-treatment) 

were ana lyzed as a function ofHCL Both average radial and volume growth rates in the last 3 

years were log transformed to meet mode! assumptions. For these analyses, HCI was 

considered as the fixed effect and experimental unit was considered as the random effect. The 

most parsimonious models, or best HCI explaining radial growth and best HCI explaining 

volmne growth, were included in the subsequent analyses. 

2.4.6.4 Treatment intensity, social status, pre-treatment growth rate, HCI and cambial age 

A..fter selecting the best HCis explaining neighbourhood competition, nine additiona l models 

(Annex B, Table B.3) were tested using the same mode! selection approach, to determine the 

effects of partial harvesting treatments, social status, pre-treatment growth rate and HCI on 

average radial and volume growth rates in the last 3 years (years 8, 9, 10 post-treatment). 

Cambial age at 1.3 m was also included in ali models (excluding the null mode!), when the 

response variable was radial growth rate. Specifie interactions were included in the models. 

These variables were considered as the fixed factors , and experimenta l unit was considered as 

the random factor. Datasets were not h·ansformed prior to analyses since they conformed to 

mode! assumptions. 
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2.5 Results 

2.5.1 Treatment intensity, social status, pre-treatment growth rate, time and cambi al age 

When considering both annual radial and volume growth rates as response vari abl es, the most 

parsimonious mode! was that whi ch included the additive effects of treatment intensity, social 

status, time, time2
, pre-treatment growth rate and cambial age (for radial growth) as weil as 

the interactions between treatment and time and treatment and time2 (Table 2.3). 

For radial growth, the top ran.ki ng mode! was cl early the most probable (AICc Wt. 1.0, 

Table 2.3). ln tenns of volume growth, the most likely mode! (AICc Wt. 0.68) was 2. 13 

times more parsimonious than the second ran.king mode! (Table 2.3). The second ranking 

mode! included the same variabl es as the top mode! but excluded the quadratic effect of ti me 

(time2
) . 

Annual radial and volume growth rates for white spruce trees in the two intermediate parti al 

harvesting treatments (50 and 65%) were similar to control stands. The extreme partial 

harvesting treatment of 100% as pen BA removal did, however, have a positive effect on both 

radial and volume growth rates of residual white spruce trees in the 10 years fo ll owing 

treatment (Tabl e 2.4). Radi al and volume growth rates were superi or to control stands, and 

this effect was evident across ali th ree social statuses . 

The treatment effect was immediate with growth rates increasing within the fi rst two years 

fo ll owing treatment. Radi al growth fo ll owed a negative quadratic form with peak growth 

rates occurring at approximately 6 years post-treatment, then graduall y decreas ing from 6 to 

10 years fo llowing h·eatment (Fig. 2.1 ). This pattern was apparent fo r ali three social statuses. 

Volume growth fo ll owed a similar negative quad.ratic form, though growth rate continued to 

increase throughout the l 0 year peri od (Fig. 2.2) . 
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Table 2.4 Mode! averaged estimates and their 95% confidence interva l (Cl) based on mode! 
se lecti on for mixed linear effects models. Only parameter estimates for terms which exclude 
0 in the confidence interva l are presented. Response vari abl es are annual radial growth rate at 
1.3 m (mm ·yea( 1

) and am1Ual vo lume growth rate along the stem (dm3 ·yem·- 1
). 

Term Est imate Lower CI Upper CI 

Radial growth at 1.3 m (mmyear-1
) 

ti me 0.0275 0.0048 0.0502 
0 ? 

ti me- -0.0026 -0.0043 -8e-04 
pre-h·eatment growth rate 0.3617 0.2652 0.4583 
intensity 4 (1 00% as pen BA removal) 0.2966 0.1311 0.4620 
intensity 4 : time 0. 15 11 0.0976 0.2047 
intensity 4: time2 -0 .0115 -0.0162 -0.0067 

Volume growth along the stem (dm3 year-1
) 

ti me 0.0217 0.0024 0.041 
ss 2 (co-dom inant) 0.9391 0.6876 1.1907 
ss 3 (dom inant) 1.3049 0.8358 1.774 
pre-h·eatment growth rate 0.0489 0.0300 0.0679 
intensity 4 (1 00% as pen BA removal) 0.3814 0.0992 0.6636 
intensity 4: time 0.1414 0.0050 0.2778 
intensity 4: time2 -0.011 1 -0.0194 -0.0029 

Since the treatment effect was independent of h·ee social status, dominant, co-dominant and 

suppressed h·ees reacted similarly to the aspen removal (Fig. 2. 1 and 2.2). Wh ile radial 

growth rates were similm· for a li three social classes, volume growth rates were superior for 

dominant and co-dom inant trees compared to suppressed trees (Table 2.4). Suppressed trees 

however, exhibited the highest relative increase in cumul ative radi al and vo lume growth (Fig. 

2.1 and 2.2). This was apparent in ali treatments including the control, but the greatest 

in crea se was observed in the 100% as pen removal treatment. Pre-treatment growth rate 

affected both radia l and volume growth (Table 2.4); h·ees with superior average growth rates 

in the five years prior to treatment continued to have superior growth rates in the post

treah11ent period. For radial growth, this variable was a stronger predictor of post-treatment 

growth rate than tree social status (Table 2.4). 
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2 .5.2 Neighbourhood competition 

The highest ranking HCI fo r radial growth (AICc Wt. 0.79) was a distance independent 

mode! that accounted for competition with coniferous neighbours only within a 5 m radius 

(Table 2.5). ln terms of volume growth, neighbourhood competition was best explained 

(AJCc Wt. 0 .68) by a distance dependent HCI, also accounting for competition with 

coniferous neighbours only, but within a 10 m radius of the sampled white spruce tt·ees 

(Table 2.5). These respective top ranking HCis were used in subsequent ana lyses to 

determine the effect of coniferous neighbourhood competition on the radial and vo lume 

growth rates of the white spruce tt·ees. 

Table 2.5 Resu lts of mode! selection for mi xed linear effects models based on Akaike ' s 
Information Criterion corrected for small sample size (AJCc). Average annua l radial growth 
rate (mm·yea( 1

) at 1.3 m and average annual volume growth rate along the stem (dm3 ·yea(1
) 

of residual white spruce t:rees in the last 3 years of growth was ana lyzed as a function of the 
30 variations of Hegyi 's competition index (HCI). Only the most probable models are shown 
for brevi ty. 

Mode! K AICc 6AICc AICc Wt. R2 

Radial growth at 1.3 m (mm-year.1
) 

HCI13 4 11 1 .49 0.00 
HCI22 4 115.64 4.15 

Volume growth along the stem (dm3 -year-1
) 

HCI22 4 140.12 0.00 
HCI13 4 141 .72 1.59 

0.79 
0.10 

0.68 
0.31 

0.56 
0.53 

0.72 
0.71 

2.5.3 Treatment intensity, social status , pre-treatment growth rate, HCI and cambial age 

Average annual radial growth in the last 3 years fol lowing partial harvesting tt·eatments was 

best explained by the mode! which accounted for the additive effects of treatment intensity, 

HCI, pre-treatment growth rate and cambial age. This top mode! (AICc Wt. 0.89) was 9.9 

times more parsimonious than the second ranking mode! (AICc Wt. 0.09, 6AICc 4.58, Table 

2.6). This same mode!, excluding camb ial age, was also the most parsimon ious in terms of 

vo lume growth (AICc Wt. 0.75), although the second rank.ing mode! accounting for additive 

effects of HCI and pre-treatment growth rate was also highly probable (6AlCc 2.94, Table 

2.6). 
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Radial and volume growth rates differed depending on partial harvesting intensity, with white 

spruce trees in the 100% aspen BA removal treatment continuing to show improved growth 

rates over the control in years 8, 9 and 10 fo ll owing treatment (Table 2.7). No differences 

were found between the two intermediate treatments (50 and 65%) and control stands. 

The treatment effect was independent oftree social status; in fact, models that included social 

status ranked relatively low. Average pre-treatment growth rate was an important factor 

affecting growth in that tJ·ees with high pre-treatment growth rates showed higher growth 

rates 7 to 10 years post-treatment (Table 2.7). Furthermore, as cambial age increased, radial 

growth rates decreased (Table 2.7) . Mean pre-tJ·eatment radial growth rate was higher for 

dominant tJ·ees compared to co-dominant and suppressed, but some dominant trees had low 

pre-treatment growth rates, equivalent to the mean pre-treatment values of suppressed tJ·ees 

(0.75 mm·year·· 1
). When considering the mean increment over the 10 year post-treatment 

period, the smaller, suppressed tJ·ees had superior radial growth rates when the pre-treatment 

radial growth rate was low (0 to 1.9mm ·year" 1
). No suppressed trees had high pre-treatment 

growth rates (2.0 to 3.8mm ·year"1
), but mean increment over the 10 year post-treatment 

period was higher for co-dominant and dominant trees with pre-h·eatment growth rates in this 

range. Co-dominant and dominant trees younger than median age of 52 at ti me of tJ·eatment 

ail had high pre-h·eatment growth rates (0.95 to 3.8 mm·year" 1
) whereas n·ees older than 52 

generally had low pre-treatment growth rates (0 to 2.84 mm ·year"1
) and older suppressed 

trees bad very low pre-treatment growth rates (0 to 0.95mm ·year.1
). Of the older aged tJ·ees, 

co-dominants had higher mean increments over the 10 year post-treatJnent period, despite 

having low pre-treatment values. 

Neighbourhood competition as expla ined by the HCis, negatively affected both radial and 

volume growth rates (Table 2.7). The most parsimonious neighbourhood competition indices 

were those that accounted for competition with coniferous species on ly (Table 2.5). Radial 

growth was negatively influenced by con ifer trees located anywhere within a 5 m radius to 

the white spruce tJ·ees regardless of actual proximity, wbereas white spruce volume growth 

was negatively affected by conifer trees with in a 10 m radius, with both DBH and proximi ty 

ofneighbour trees influencing the competitive effect. 
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2.6 Discussion 

Partial harvesting treatments, where dominant and co-dominant aspen trees were removed, 

were successful in releasing residual merchantable-sized (~ 10 cm DBH) white spruce trees. 

Based on the results of this ex periment, it was necessary to rem ove 100% of dominant and 

co-dominant shade intolerant broadl eaved trees to s ignifi cantly acce lerate radial and volume 

growth rates of white spruce. Growth responses were best explained by treatment intensity, 

time since treatment, tree social status, pre-treatment growth rate and neighbourhood 

competition . 

2.6.1 Treatment intensity 

We hypothesized that intermediate treatments (50 and 65% aspen BA remova l) would induce 

the greatest growth response in the residual white spruce trees. It was expected that moderate 

removal of canopy aspen would increase incident light levels enough to produce a positive 

growth response in white spruce trees, while not altering growing conditi ons to a leve! that 

might create an effect of growth shock (Urban et al. , 1994; Vincent et al. , 2009) or induce 

high levels of aspen suckering (Prévost and Pothier 2003; Brais et al. , 2004). 

White spruce is considered a moderately shade-to lerant species and although physiological 

traits, such as low photosynthetic compensation and saturation points, a ll ow the species to fix 

carbon more efficiently than aspen in low light, competiti on for light is often regarded as one 

of the most li mi ting factors affecting wh ite spruce growth (Lieffers and Stadt, 1994; Lieffers 

et al. , 2002; Comeau et al. , 2005). According to Coates and Burton (1999), photosynthetic 

saturation occurs between 40 and 60% of full sun li ght and whi te spruce seed lings require 

40% fu ll sun li ght to atta in maximum height growth (Lieffers and Stadt, 1994). While light 

requirements may change through tree development (Claveau et a l. , 2002), based on these 

values, an optima l cutting intensity was expected to be between 45 to 65% stand BA removal 

(Prévost and Pothier, 2003; Beaudet et al. , 201 1). The two intermediate treatments translated 

to relatively low levels of total stand BA remova l. In the 50 and 65% treatments tota l BA 

removal ranged from 3 1-42% and 41-51 %, respectively. Even the more intense 65% 
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treatment was at the lower end of the spectrum (Table 2.1 ). Although light transmittance was 

not measured in the present study, it is clear that the intermed iate harvesting intensities did 

not sufficiently improve light avail ab ili ty, as white spruce growth continued to be inhibited 

by residual aspen cover. If it is presumed that residual trees are more strongly influenced by 

the environment created fo ll owing treatment, rather than what is removed during harvesting, 

then it is not surpris ing that trees in the 65% h·eatment did not exhibit enl1anced growth rates 

over the 50% aspen BA removal h·eatment. Ultimately, due to differences in initial stand BA, 

both post-treahnent residual BA and the proportion of broadleaf and conifer species were 

relatively simi lar in the two intermed iate h·eatments (Table 2. 1 ). 

In contrast, white spruce trees displayed significant increases in radial and volume growth 

rates in the exh·eme partial cutting treahnent where 100% aspen BA harvesting translated into 

64-83% total stand BA removal. Compared to control h·ees, average annual radial and 

volwne increments were, respective! y, 23 .5% and 7.1 % higher for dominant h·ees, 67.7% and 

24.1 % higher for co-dominant trees and 115.8% and 65.6% higher for suppressed trees over 

the 10 years post-treahnent. These findings are consistent with similar studies for white 

spruce release following partial harvesting and thinning treatments (Man and Greenway, 

2004; Gagné et al. , 201 2) . 

In a 174 year old nearly pme (90% overstory h·ees), white spruce stand in Alaska, 

Youngblood ( 1 991) determined th at compard to pre-treatment growth rates, rad ial growth of 

white spruce trees increased an average of27% per year, over a period of 8 years fo ll owing a 

moderate thinning of 66% total stand BA. The thinning treatment corresponded to the seed 

eut of a regu lar shelterwood system, designed to encourage white spruce regeneration by 

leaving 100 co-domi nant and dominant white spruce seed h·ees in the stand . Residual white 

spruce trees exhibited a net mean increase in diameter growth of 164%, w ith peak growth 

rate occurring 8 years post-treatment. 

Fifty years after light thinning (44% stand BA removal) and moderate thinning (60% stand 

BA removal) in mixedwood stands in Manitoba, Yang (1989) reported that white spruce trees 

in mixedwood stands in Manitoba responded pos itively to partial removal of aspen overstory 

that consisted of two th inning intensities, a light thinning of 44% stand BA removal and a 



48 

moderate thinning of 60% stand BA remova l. Compared to contro l trees, di ameter and 

volume increments showed 28% and 8 1% and 50% and 260% improvement fo r li ght and 

moderate thinning, respective ly. ln the same study, bu t for sites situated in Saskatchewan, 

Yang ( 1989) found that when subj ected to complete aspen removal, white spruce diameter 

increment improved 50-1 77% whil e vo lume increment improved 24-304% compared to 

contro l trees over a period of 35 years. 

Similarly, in stands ranging from 5 to 65 years in Alberta, Yang ( 199 1) observed improved 

growth rates of white spruce when direct aspen neighbours within a circular area two times 

the crown radius were removed and herbi cide treatments applied to aspen stumps. Residual 

trees showed 41% improvement in diameter growth and 82% increase in vo lume growth 

compared to control trees over a post-treatmen t period of 35 yea rs. 

More recently in Alberta, 77 year old aspen-whi te spruce mixedwood stands were subj ected 

to two pass strip cutting. lts effect on pre-commercial, understory white spruce growth was 

evaluated by Graver et a l. , (2014). In thi s system, the feller buncher was restricted to 8 m 

wide corridors and extracted broadleaf rr·ees, particul arl y the dominant aspen, up to 8 m on 

either si de of the trai l. A 24 m wide unh arvested srr·ip was mainta ined between the eut stri ps 

to protect residual trees from windthrow. Throughout the 10 year monitoring period, Graver 

et al. (20 14) found that annual diameter and volume growth increments were, respective! y, 

152% and 83% higher for released whi te spruce compared to controls . 

2.6 .2 T ime 

Growth responses to the l OO% partial harvesting prescription were apparent w ithin the fi rst 

two yea rs foll owing treatment. The lack of th inning shock and absence of an extended ti me 

lag in growth response was somewhat surpri si ng since these effects have been observed fo r 

white spruce (Youngb lood, 199 1; Urban et a l. , 1994) and other coni fer species fo llowing 

parti al harvesting (Kneeshaw et al. , 2002; Latham and Tappeiner, 2002; Bebber et al. , 2004; 

Thorpe et al. , 2007; Vincent et a l. , 2009) . Environmental condi tions created fo ll owing 

harvesting apparentl y did not indùce enough phys iological stress to hinder an immedi ate 

positi ve growth response to the treatment. Compared to contro l rr·ees, radial growth was more 
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responsive than vo lume over the 10 yea rs, but the effect was not sustained through ti me. 

Radi al growth rate peaked approximately 6 years follo wing trea tment, then graduall y 

decreased from 6 to 10 years post-treatment. Alternati ve! y, volume growth was essenti all y 

linear, with growth rates continuing to increase tlu·oughout the 10 years. Surprisingly, for 

trees in the 100% treatment, cumulative vo lume growth over the post-treatment period was 

much higher than cumul ative radial growth with suppressed, co-dominant and dominant h·ees 

having 373, 147 and 57% increases, respectively. Thi s is compared to more modest increases 

of 84, 77 and 34% for the respective social classes in control stands. 

2.6 .3 Social status, pre-h·eatment growth rate and cambi al age 

Using di ameter di stributi on as a proxy to height distributi on was effective in partiti oning 

dominant, co-domi nant and suppressed social classes of white spruce h·ees in each 

experimental unit (Annex A, Fig. A.4, DBH vs height, R2 
= 0.84). Social status at the time of 

treatment was maintained tlu·oughout the post-t:reatment period; th at is, an individual 's soci al 

status did not change as a result of treatment (Annex A, Fig. A.5, DBH year 0 vs DBH year 

10, R2 
= 0.96). 

We hypothesized that social status would have an effect on the magnitude of radial and 

vo lume growth responses of whi te spruce. Overall , radi al growth was su peri or in the 100% 

aspen remova l treatment compared to controls, however, no di fferences in abso lute g:rowth 

rates were fo und between the three social classes. Cambial age at the ti me of treatment has a 

direct influence on increment growth potenti al and affected post-treatment radial growth. 

Young cambium is more effective th an older cambium in producing new wood ce li s and 

thicker annual rings (Vaganov et a l. , 2006). Radi al (and di ameter) growth rates decrease after 

maxi mum annual increment has been reached, so old h·ees have slower radi a l growth rates 

than younger trees of the same size (J ogiste, 2000). However, there is a lso a poss ible 

geometri e expl anati on for lower radial growth in dominant stems: as tree diameter increases, 

annual rings are added to an increas ingly larger circumference, so annual BA increment may 

remain constan t or increase despite decreases in radi al growth (A. Achim, pers. Comm.). 
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As expected, absolute volume growth was directly related to social status, with highest 

increment occurring in dominant trees, fo llowed by co-dominants and finally suppressed. 

This has been observed for white and black spruce grown in thinned plantations (Gagné et al. , 

20 12) and na tura! stands in Quebec (Vincent et al. , 2009) and fo r thinned stands of Norway 

spruce in Finland (Makinen and lsomaki, 2004). Larger trees by definition have a greater 

height and diameter resulting in a larger cambium surface area than smaller n·ees. This larger 

surface area results in greater volume accumulation in dominant trees, even when radial 

growth is similar for the tlu·ee social statuses. 

In terms of relative growth, however, suppressed trees showed the greatest positive response 

to n·eatments, followed by co-dominant and dominant trees. The factors at play here are 

related to di fferences both in growing conditions and growth potential of trees between the 

di fferent social classes. According to Vincent et al. (2009), dominant trees are generally !east 

affected by thinning because their relatively large crowns situated in and above the upper 

canopy already benefit from the highest levels of direct light exposure of ali n·ees in a stand. 

Whil e they can maintain their good absolute growth rates, the relative effect of thinning on 

their growing environment is therefore Jess than for trees in the mid- to lower-canopy. 

Moreover, the capacity of dominant trees to respond to treatments, particul arly if they are old 

and/or approaching max imum height, may be limited. 

In conn·ast, the potential change in the light environment of suppressed (and to a lesser 

extent, co-dominant) n·ees induced by partial harvesting treatments is much greater. As weil , 

whil e ea rl y suppression limits height growth of suppressed trees and postpones the time at 

which maximum growth rate is reached, it does not necessarily inhibit their growing capacity 

(Assmann, 1970), so the greater change in the light environment and the growth potential of 

suppressed trees both conh·ibute to explaining their superi or relative growth. 

Although ail h·ees responded positi vely to partial harvesting, growth responses were 

proporti onal to their pre-treatment growth rate: Jess vigorous trees with slower pre-treatment 

growth rates continued to exhibit s low but improved post-treatment growth rates whil e more 

vigorous, younger trees continued to have highest growth rates post-treatment. The effect of 
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pre-treatment tree vigour on post-treatment growth has also been fow1d for bl ack spruce 

(Thorpe et al. , 2007) and trembling aspen (Bose et al. , 20 14) in eastern Ca nada. 

2.6 .4 Neighbourhood competit ion 

Neighbourhood competition ind ices are generally based on the size ratio of target and 

neighbour trees and assume that competition decreases with increasing di stance to neighbour 

u·ee but increases with increasing neighbour size. We used a seri es of simp le indices based on 

Hegyi ' s competiti on index (1974) because it is easily computed yet has proved to be effective 

(Avery and Burkhart, 2002; Filipescu and Comeau, 2007; Neufe ld et al. , 2014). 

Across ali treah11ents, average radi al and volume growth in years 8, 9 and 10 post-treatment 

was negatively influenced by neighbourhood competiti on. Aspen is generall y considered to 

have the competitive advantage in mixed stands on productive sites, such as the ones in thi s 

study (Wagner, 2000; Boivin et al. , 2010), primari ly due to its superior juvenile growth rate 

which all ows u·ees to attain canopy dominance and capture more resources, particularly light 

(Balandier et al. , 2006) . It was therefore expected that aspen would exhibit a strong 

competitive effect on the white spruce. Indeed, it was a fu ndamental assumpti on in the design 

of the harvesting experiment. 

Somewhat surprisi ngly, results indicated that coniferous competiti on had a greater effect on 

white spruce growth than deciduous competition . This concurs with Stadt et al. (2007) and 

Huang et al. (20 13) who, through the use of more comp lex competition indices, a Iso fo u nd 

that intraspecific competi tion caused greater reducti ons in white spruce growth than aspen 

competiti on. In Quebec mixedwood stands simil ar to but younger than those in this study, 

Boivin et a l. (20 1 0) fou nd th at conspecific neighbours were stronger competitors affecting 

balsam fi r growth, and that aspen was the weakest competitor among the four species 

evaluated in their study. They suggest that high densities of aspen in mixedwood stands are 

more related to the species' ab ility to vegetati ve ly reproduce through root suckers and grow 

quickly, rather than a parti cularl y su·ong capacity to compete. 
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The results of this study are further supported by the work ofFradette (2014), who fo und that 

competition in 15 to 30 year old white spruce plantations was primarily intraspecific but also 

strongly affected by other coni fer species like balsam tir. H igh levels of competi tion fo r light 

from spruce (and ti r) is attributed to the large crowns and persistent fo li age of these conifers. 

As weil , close prox imity of conspecific neighbours can cause negative phys ical interactions 

between the crowns and inhibit crown expansion and radial growth (Canham et al. , 1994; 

Power et al. , 20 12). Fra dette (20 14) a Iso found th at as pen was a weak competitor for white 

spruce and that competition was only likely to be significa nt if aspen density was high and 

produced a high shading effect. Higher light h·ansmi ssion levels in aspen canopies are related 

to morphological and phys iological di fferences between the two species, notabl y aspen 's 

lower leaf biomass, particul arly during the spring and fa ll when aspen have !ost their leaves 

(Lieffers and Stadt, 1994; Constabel and Lieffers, 1996; Man and Lieffers, 1999). This 

supports the present findings that aspen was not a strong competitor and would explain why 

positive growth responses in white spruce occmred on! y after 100% removal of as pen. 

Radi al growth was negatively influenced by conifer trees located anywhere within a 5 m 

radius to the white spruce trees regardless of actual proximity. Alternative! y, volume growth 

was negatively affected by conifer trees within a 10 m radius, with both DBH and prox imi ty 

of neighbour trees influencing the competitive effect. Diameter growth has long been known 

to be more sensitive to competition (stand density) than height growth (McClain et a l. , 1994; 

Jobidon, 2000; Wagner, 2000; von Oheimb et al. , 20 Il ) . Once respi rati on demands have 

been met, carbon allocation is pri oriti zed to height growth before di ameter, and as a result 

he ight growth is Jess affected by neighbour density and thinning prescripti ons (Wagner, 

2000). This suggests that conifer speci fi e neighbourhood competiti on within the immediate 

vicinity of the white spruce trees are regulating their diameter growth , but not necessarily 

height and volume growth (von Oheimb et a l. , 2011 ). 

2.6.5 Management impli cati ons 

As fo rest compa111 es Ill eastern Canada increasingly intervene in aspen-dominated mi xed 

stands, new opportuniti es will emerge to retine harvesting practices in order to take 

advantage of di fferences in competiti ve and treatment effects, tree size and growth potential 
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of the component species. In the mixed aspen-white spruce stands studied here and e lsewhere 

(Stadt et al. , 2007; Huang et al. , 20 13), sp ruce growth is primari ly affected by competition 

from conifers (spruce and balsam fïr) and only showed a signifïcant growth response to 100% 

removal of aspen stems. While large white spruce stems accrue more volume than smal ler 

stems, the relative response of suppressed stems to partial harvesting is considerably greater 

than stems in co-dominant and dominant classes. Younger, vigorous stems have greatest 

relative growth increases and the greatest potential for sustained positive growth increment 

following partial harvesting. Therefore, with an adapted prescription, a regular shelterwood 

or heavy commercial thinning treatment with a final eut in 10 to 20 years cou Id result in 

significant tree volume increments between initial and final harvests . In mixedwood stands 

with an important spruce component in ali canopy layers, a heavy partial eut or complete 

remova l of aspen stems, accompanied by harvesting a portion of the largest and preswnably 

oldest spruce, and thinning of other crowded spruce, should result in positive growth 

response of both residual spruce in the lower to mid canopy and residual aspen stems in the 

upper canopy (Bose et al. , 2014). This recommendation is based on potential effects on 

growth of residual stems only; regeneration dynamics were not part of the present study and 

certain ly must be considered in the evaluation of such a harvesting option. Finally, because 

partial harvesting treatments result in rapid growth and often delay crown recession, residual 

trees are prone to increased stem taper. A detailed evaluation of growth allocation along the 

length of the stem accompanied by an assessment of wood quality properties ofresidual trees, 

wou ld pro vide a better indication of the success of these harvesting prescriptions. 

2.7 Conclusion 

Boreal mixedwood stands vary in their composition and structure but some common patterns, 

notably the transition from intolerant hardwood dominance to conifer or mixed-conifer 

dominance, characterize their success iona l dynamics. Integrated mixedwood management 

increasingly promotes the maintenance of a broad range of mixedwood stand types across 

forest landscapes, and the efficient exploitation of both the hardwood and softwood 

components in mixed stands. The results presented here demonstrate that white spruce trees 

are capab le of accelerated growth fo ll owing aspen canopy removal , but only when aspen 
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harvesting is severe (100%) and total stand basal area removal is high (64-83 %). In contrast 

with previous studi es, growth response was detectabl e within the fi rst two years following 

treatment and growth rates largely depended on tree soci al status and vigor prior to treatment. 

Longer term monitoring is required to evaluate regeneration dynami cs since heavy 

recruitment of aspen could influence whi te spruce regeneration and growth in the fu tu re. Tree 

morta li ty was not eva luated in th is study, but would provide another indication of how tJ·ees 

acclimatize to severe canopy opening. In the context of increased ecosystem-based forest 

interventi ons in mixedwood fores ts, the resul ts of th is study should contribute to the 

refinement of partia l harvesting tJ·eatments that integrate natural stand dynami cs and concerns 

for maintaining fo rest productivity . 
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3.0 Conclusion 

As harvesting has intensifi ed througbout Quebec 's boreal forest, and the cumu lative effects 

of even-aged management on forest composition and age structure have come to light, there 

bas been growing interest in developing sound silvicu ltural alternatives to CPRS and variants 

of clear-cutting. In the context of forest ecosystem management (FEM), silvicultura l 

treatments that emu late natural disturbances and successional dynamics bave been 

recommended as a means of increasing stand- and forest-l eve! structmal diversity and 

mitigating some of the negative impacts of stri ct even-aged management regimes. In this 

respect, parti al harvesting bas been proposed as a viable complement to conventional 

management with the potential to balance the goals of ecosystem management with economie 

obj ectives, such as maintained or increased wood production (Harvey et al. , 2002; Comeau et 

al. , 2005). According to Bergeron et al. (2009), althougb such treatments do not perfectly 

emulate natural dynamics, they should be designed and implemented in a manner that 

maintains natural ecosystem processes and attributes and at scale that corresponds to the 

frequency and severity of natura l disturbances. 

In aspen-dominated boreal mixedwood stands where white spruce reaches its max1mum 

annual growth increment later than aspen, pattial harvesting cou Id increase stat1d productivity 

if each species is harvested at its optimum moment of development, genera lly aspen first and 

spruce later. It is in thi s context that experiments developed to test and eva luate silvicultura l 

treatments consisting of canopy aspen extraction and the retention of pre-commercial and 

small merchantable white spruce (and other tolerant coni fer) trees find their relevance. An 

added benefit to parti al harvesting is that res idual trees typically exhibit accelerated growth 

rates as they are released from compet ition. Despite the potenti al benefits of partial 

barvesting, few studi es have actually evaluated the growth responses of residual u·ees in 

borea l mixedwood stands, parti cular ly in eastern Canada. Even fewer have used stem 

analys is to study longer-term volume growth responses of white spruce tJ·ees subj ected to 

partial harvesting treatments in which canopy aspen is removed. 

The abundance of good quality white spruce trees, many of whi ch were premature, in the 

stands of the present study provided the primary incenti ve fo r initi ating this partial harvesting 
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experiment. Initial objectives were to encourage white spruce regeneration and stimulate 

growth responses in residual white spruce stems through aspen removal; the present study 

concentrated on the latter objective. This type of treatment is not common in eastern 

Canadi an boreal mixedwoods because of the many constraints associated with partial 

harvesting, including higher costs associated with multiple interventions, lower initial 

economie retums and longer time horizons involved (Bose et al., 2013) . 

3.1 Summary of results 

The primary objective of this project was to evaluate the effect of partial harvesting on the 

growth of residual white spruce trees over a period of ten years post-treatment. We 

investigated the effect of treatment intensit:y by measuring white spruce growth across a 

gradient of partial harvesting intensities involving four proportions of aspen basal area (BA) 

removal (0, 50, 65 and 1 00%). A severe cutting intensit:y of 100% aspen removal was 

necessary to induce accelerated radial and volume growth rates in canopy (suppressed to 

dominant) white spruce trees. Growth response was apparent within the first two years 

fo llowing treatment, indicating that the n·ees did not suffer fro m growth stagnation following 

harvesting. While radial growth peaked at approximately six years post-n·eatment, volume 

growth continued to increase throughout the ten years following treatment. 

We also determined that n·ee social status was an important predictor of the magnitude of 

growth response. ln terms of absolute volume growth, dominant trees exh ibited superior 

growth rates than co-dominant and suppressed trees. This was likely due to their greater 

initial height and circumference, which provided them with a greater capacit:y to accumulate 

wood. ln relative tenns, however, suppressed trees showed the greatest improvement in 

cumulative growth, probably because they had higher growth potential than co-dominant and 

dominant n·ees and because they experienced the greatest change in environmenta l conditions 

fo ll owing harvesting. Ali three social statuses responded similarly in tenns of radial growth, 

but more vigorous n·ees with higher pre-treatment growth rates continued to have superior 

growth rates post-treatment. 
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Furthennore, we used Hegyi ' s competiti on index to assess the influence of neighbouring 

trees on the growth rates of each samp led spruce in the last three years (8-1 0 years) fo ll owing 

treatment. Wl1i le aspen is often perceived to be a strong competitor of whi te spruce, our 

results ind icated that coni ferous competiti on had a greater effect on whi te spruce growth than 

deciduous competi tion. Radial growth was regulated by coni fer neighbours situated anywhere 

within 5 m of the sampl ed white spruce trees . In contrast, vo lume growth was negative ly 

affected by conifer trees within a 10 m radius, with both DBH and proximity of neighbour 

trees influencing the competitive effect. 

3.2 Future considerations 

For the studied stands, futw-e harvesting depends on longer term obj ectives and whether they 

are strictly rel ated to timber producti on or include other pm-poses, such as those related to 

maintaining structural and habitat diversity, as we il as other ecosystem values. Depending on 

the amount and configuration of trees left foll owing pati ial harvesting, residual forest cover 

will tend to maintain some attributes and functions of the original, intact stand (Rue] et a l. , 

2013). In many forests these "biological legacies" have been shown to be important for the 

maintenance of biodi versity and bi ogeochemi cal cycling (Vanderwel et al. , 2009; Gustafsson 

et al. , 20 12) and this res idual forest cover li ke ly maintains a more compl ex structure than 

what would be fo und fo llowing a CPRS or clear-cut. 

At the time of partial harvesting, a second and likely final eut was tentatively p lanned for 

approx imately fi fteen years post-treatment. Although the composition and structure of these 

stands potentia ll y !end themselves we il to subsequent "alternative treatments", under current 

standard practices, the most likely treatment would consist of a CPRS harvest, whether white 

spruce regeneration has established in the interim or not. If thi s comes to frui tion, it would be 

di ffi cult to j udge whether such parti al harvesting treatments w ith high canopy aspen remova l 

are justifiable. Although white spruce showed accelerated radi al and volume growth at the 

tree leve!, the removal of the aspen trees ultimately reduced tota l stand vo lume and BA which 

could not be recovered to pre-treatment levels over such a short time frame. That being sa id, 

indi vidual tree va lue and stand va lue may be improved since larger, more va luable and eas ier 

to process stems can be produced. 
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Although our results demonstrate that white spruce trees exhibit positive growth responses 

fo llowing remova l of canopy aspen, res idual tree growth represents on ly one measure of the 

success of partial harvesting. ln order to evaluate the fu ll potent ial of the silv icultural 

treatments employed in this study, fu ture work should concentrate on assess ing tree 

regenerati on and mortali ty. White spruce and aspen regenerati on in the four treatments 

shou ld be evaluated since this will have a direct infl uence on the compositi on of the future 

stands. If treatment obj ectives include hastening the transition of these stands to conifer 

dominance and they are to be retained on a longer term, white spruce regeneration would 

need to be high and aspen suckering relatively low. Since white spruce trees in these stands 

were primarily in the large sapling and merchantable size classes, and therefore well 

establi shed at the ti me of treatment, regenerating aspen in the 100% treatment was un i ikely to 

have restricted growth of whi te spruce sapling and tree stems during the 10 year post

treatment period . However, aspen regeneration by suckering can be prolific and fas t-growing 

(Prévost and Pothi er, 2003; Brais et a l. , 2004) and may pose a problem in the future if it over

tops and represses advanced regeneration and post-harvest recruitment of spruce seed lings . If 

this is indeed the case and res idual white spruce stems are expected to survive and accrue 

volume, it is poss ible that the future harvest could be prolonged unti l the regenerating aspen 

has reached matu rity, at which time both the residual white spruce and aspen could be 

harvested. Furthermore, tree mortali ty, which we did not quanti fy for the 10 year period 

fo ll owing harvesting, can be high when residual stand BA is low (Thorpe and Thomas, 

2007). Morta! ity can occur as a direct resu lt of damage du ring harvesting operations or 

because trees fail to accli mati ze to the environmental changes induced through severe canopy 

opening (Thorpe and Thomas, 2007) . Morta li ty in the treated stands should be evaluated 

si nee tree loss (and product recovery) ultimately affects the profi tability of partial harvesting 

and subsequent treatments. 

The fact that coni fe r trees bad a strong competi tive effect on radi al and vo lume growth of 

whi te spruce suggests that removing some dominant white spruce trees and over-crowded 

conife r stems at the time of aspen remova l could result in even greater treatment growth 

responses . Conifer-specific competiti on probably kept suppressed and co-domi nant tree 

growth in check in the partia ll y eut stands. Trees in these socia l c lasses have the greatest 
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potential for increases in commercial va lue because they exhibit the greatest magnitude of 

relative growth response. Moreover, if social status reflects tree age, their positive growth 

response should be sustained longer than that of older dominant stems. 

Crown characteristics and stem taper are influenced by the crowding of neighbouring tJ·ees. 

Thinning treatments that reduce crowding often produce tJ·ees with comparatively longer 

crowns than those of unthinned n·ees and these longer crowns continue to allocate growth in 

lower parts of the stem (Karlsson, 2000; Makinen and Iso maki, 2004; Power et al., 20 12). 

High stem taper tends to reduce stem value and often complicates wood processing (Tong 

and Zhang, 2008) . If stem taper is high, the benefits of increased volume accumulation 

(product recovery) resulting from partial harvesting (and thiiming) could be negligible if it 

does not increase the value of the stems that are to be used for saw logs. In such a case, 

partial harvesting treatments (even those with additive yields of hardwoods and softwoods) 

may not be considered economically acceptable. Therefore, the commercial viability of these 

types of pmtial harvesting tJ·eatments should also be assessed to determine whether the 

increased tree growth offsets the costs of initial harvest and future interventions . 

3.3 Research contribution 

This thes is encompasses one sub-proj ect of a much more comprehensive research initiative 

currently undertaken at the University of Quebec in Abitibi-Témiscamingue (UQAT) in 

collaboration with the Centre for Forest Research, the UQAT -UQÀM Industrial Chair in 

Sustainable Forest Management (Chaire AFD), the Canadian Forest Service and the 

industrial partners Tembec Industries and Norbord Industries . This larger project was 

initiated to address a broad range ofresearch questions that will help advance our k:nowledge 

and understanding of boreal mixedwood dynamics in eastern Canada and aid in the 

development of sound silvicultural approaches better suited to mixedwood stand types. 

In general , the results of this project contribute to a growing body of knowl edge concerning 

the efficacy and suitability of applying partial harvesting in the boreal forest. More 

specifically, this study provides quantitative information regarding the magnitude of white 

spruce growth responses to a variety of parti al harvesting intensities, the duration of response 
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and the factors affecting tree growth , including tree social status, pre-treatment growth rate 

and neighbourhood competition. This information should aid in validating the feasibi li ty of 

partial harvesting and in the refinement and adaption of treatments to specifie boreal 

mixedwood stand conditions. The boreal fo rest is deeply ingrained in Canada 's national 

identity and, as such, we must work towards balancing the ecological, social and economie 

services it provides. 



ANNEXA 

SUPPLEMENT AR Y FIGURES 

Experimental units were laid out based on prism inventories comp leted prior to partial 

harvesting. Harvesting treatments consisted of a no-harvest conh·ol, (0% BA removal), two 

intermed iate treatments that removed 50 and 65% of aspen BA and an extreme treatment of 

100% aspen BA removal. Each treahnent was repeated three times for a tota l of twelve 

experimental uni ts. 

· ..... 
····· ...................... . 

100% 
Scale 1: 1 0.000 

Figure A l Spatia l arrangement of experimenta l units and treatment replications. 
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Cross sectional disks were sampled from 11 positions along the length of the stem of each 
samp led white spruce h·ee. The first two disks were samp led from fixed heights of 0.3 and 
1.3 m, while the remain ing nine disks were sectioned from equall y spaced pos itions along the 
]ength of the stem from 1.3 m to the top of the tTee. Fig. A. 2 provides a vi suai representation 
of the spruce stem and sampling heights. 

------- 4 

------- · 3 

------- · 2 (J .3 m) 

-------- - 1 (0.3 m) 

Figure A.2 Relative position of cross sectional disks sampled from 72 wh ite spruce trees 
(adapted from Chhin et al., 20 10). 
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Minimum age of sam pi ed white spruce was based on cambi al age from di sks taken at 0.3 m 

while minimum aspen age was determined by coring (at 1 m) the nearest aspen tree (2: 20 cm 

DBH) to each sampl ed white spruce. Mean white spruce and aspen ages were 71 and 68, 

respective! y. Wh ile some old ( 100 to 120 years) whi te spruce trees were present in stands, 

roughly 89% of sampled tt·ees established within 14 years, corresponding to calendar yea rs 

1937 to 1950. Aspen establi slunent generally occurred tlu·oughout the same time period, but 

recruitment was more gradua!. 
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F igure A.3 Age distribution of sampl ed whi te spruce and aspen trees. Mean age of white 
spruce was 71 (tea l dashed Jine) whil e mean age ofaspen was 68 (orange dot-dash line). 
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We used tree di ameter di stribution as a proxy fo r height di stributi on and social status in each 

experimental uni t. Also, g iven that aspen genera ll y occupi ed the dominant canopy social 

class with only a mi nor component of spruce, assignment of social status to individual spruce 

stems was based exclusively on the relative size among the white sp ruce u·ees (relative 

intraspecific canopy posi ti on), rather than the true interspecific social status ofall trees w ithin 

the stand. Stem size di stributi on was calculated for each experimental unit based on white 

spruce u·ees in the permanent samp le plots (PSPs) and the fo ll owing classification was used 

to select individual u·ees to be destructively sampled fro m each social status class: domi nant 

u·ees: diameter size class 2 2 standard deviations (SD) of mean DBH; co-domi nant trees: size 

class of 2 1 SD of mean DBH; suppressed trees :S the mean DBH. 
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Social status at the time of treatment was maintained throughout the post-treatment period; 

that is, an individual's social status did not change as a result oftreatment. 
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Figw-e A.5 Diameter at breast height (DBH) of sampled white spruce h·ees at the time of 
partial harvesting and ten years post-h·eatment. 
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Crown length of the sampl ed whi te spruce trees was measured at the time of sampling in 

201 2. As expected, crown dimensions were strongly influenced by tree social status with 

dominant n·ees having longer crowns than co-dominant and suppressed trees. 
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Cambi al age at the time of treatment has a direct influence on increment growth potenti al. 

Young cambium is more effective in producing new wood cell s and thi cker annual rings than 

older cambium (Vaganov et al., 2006). Radi al (and diameter) growth rates decrease after 

max imum atmual increment has been reached so old n·ees tend have slower radi al growth 

rates th an younger n·ees of the same size (logiste, 2000). 
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Figure A.8 Relationship between radial and volume growth rates and neighbourhood 
competition index values. Solid !ines represent predicted va lues, dashed !ines are 95% 
confidence intervals. Points represent observed values. Growth decreases with increasing 
neighbour competition . 
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ANNEX B 

SUPPLEMENTARY TABLES 

Table B. l The 30 vari ations ofHegyi's neighbourhood competiti on index (HCI) 
Neighbour Distance D istance to target 

M odel Tree Type Dependent white spruce n·ee 
HCII Ali n·ees No 0-10m 
HCI 2 Ali trees No 0-8m 
HCB Ail n·ees No 0-6m 
HCI4 Ali trees No 0-5m 
HCI 5 Ali trees No 5-10m 
HCI 6 Broadleaf No 0-!0m 
HCI 7 Conifero us No 0-10m 
HCI 8 Broadleaf No 0-8m 
HCI 9 Coniferous No 0-8m 
HCI 10 Broadleaf No 0-6111 
HCI 11 Coni ferous No 0-6111 
HCI 12 Broadleaf No 0-5m 
HCI 13 Coni ferous No 0-5m 
HCI 14 Broadl eaf No 5-1 0111 
HCI 15 Coni ferous No 5-10m 
HCI 16 Ali trees Y es 0-10m 
HCI 17 Ali trees Y es 0-8111 
HCI 18 Ali n·ees Y es 0-6m 
HCI 19 A li trees Y es 0-5m 
HCI 20 A li trees Y es 5-1 Om 
HCI 21 Broadleaf Y es 0- 10m 
HCI 22 Coniferous Y es 0- lOm 
HCI 23 Broadl eaf Y es 0-8111 
HCI 24 Coni ferous Y es 0-8m 
HCI 25 Broadl eaf Y es 0-6111 
HCI 26 Coni ferous Y es 0-6m 
HCI 27 Broadleaf Y es 0-5111 
HCI 28 Coni ferous Y es 0-5m 
HCI 29 Broadleaf Y es 5-lOm 
HCI 30 Coni ferous Y es 5-10m 
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