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ABSTRACT
 

The goal of this study was to isolate the impact of chorea on voluntary 
movements, in order to better assess the role of involuntary movement in motor 
disturbances observed in patients with Huntington's disease. Whole-body involuntary 
movements (WBIM) and voluntary motor acts were recorded simultaneously, using a 
magnetic tracker system, in fifteen choreic RD patients and fifteen healthy age-, gender
matched control subjects. Participants were asked to perform two distinct tasks, a rapid 
altemating movement (RAM) task, yielding measures of bradykinesia and hypokinesia, 
and a manual-tracking (MT) task yielding a measure of chorea intrusion during accurate 
movements. 

Patients with RD had better RAM performance than healthy controls, this 
finding ruling out the presence of core bradykinesia in these patients. During the manual 
tracking task patients with RD showed deviations from the target that significantly 
hindered their ability to match target velocity. In addition, error in performance was 
correlated wi th the amplitude of whole-body chorea, illustrating the deleterious effect of 
chorea during accurate movements. These results clearly show that core bradykinesia is 
not a symptom of RD when chorea is predominant, but that chorea is the main cause of 
error in performance during accu rate movements. Accordingly, patients with RD would 
greatly benefit from therapeutic treatment aimed at reducing chorea while maintaining 
proper motor function. 
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RESUME 

Le but de cette étude était d'isoler l'impact de la chorée sur les mouvements 
volontaires, pour mieux évaluer le rôle des mouvements involontaires sur les 
perturbations motrices observées chez les patients ayant la maladie de Huntington. Les 
mouvements involontaires du corps ainsi que les actions motrices volontaires furent 
enregistrés simultanément, à l'aide d'un système de pistage magnétique, chez quinze 
patients choréiques ayant la maladie de Huntington ainsi que chez quinze sujets contrôle 
en bonne santé de même âge et sexe. Il a été demandé aux participants d'accomplir 
deux tâches distinctes; une de mouvements alternés rapides (RAM) qui permettra de 
quantifier l' hypokinésie et la bradykinésie, et une tâche de poursuite manuelle (MT) qui 
fournira une mesure quant à l'intrusion des chorées lors de mouvements précis. 
Les patients ayant la maladie de Huntington ont obtenu de meilleurs résultats 
comparativement aux sujets contrôles lors de la tâche RAM, démontrant ainsi l'absence 
de bradykinésie chez ces sujets. Lors de la tâche MT, les patients ayant la maladie de 
Huntington ont démontré une déviation par rapport à l'emplacement de la cible réduisant 
ainsi leur habileté à reproduire sa vitesse. De plus, une corrélation fût établie entre 
l'erreur au niveau des performances et l'amplitude des chorées du corps, illustrant l'effet 
néfaste des chorées lors de mouvements précis. Ces résultats démontrent clairement que 
la bradykinésie n'est pas un symptôme de la maladie de Huntington lorsque des chorées 
sont présentes, mais que les chorées sont la principale cause d'erreur de performance 
lors de mouvements précis. Donc, les patients atteints de la maladie de Huntington 
bénéficieraient grandement de traitements visant à réduire les chorées tout en maintenant 
une fonction motrice adéquate. 

Mot clefs Huntington, bradykinesia, chorée, quantification, Parkinson 



1. INTRODUCTION 

One in every 10,000 Canadians suffers from Huntington' s Disease (HD) 

(Huntington Society of Canada 2005) a statistic that places Canada at the high end of 

world prevalence rates, 4-10 pel' 100,000 (Qin et al. 2005; Reddy et al. 1999). HD is a 

genetically inherited neurodegenerative condition caused by the unstable expansion of 

the CAG tIinucleotide repeat (Myers 2004; Berardelli et al. 1999; Canals et al. 2004). 

The repeat results from a mutation of the gene that encodes the protein huntingtin, 

located on chromosome 4p16.3 (Myers 2004; Huntington's Disease Collaborative 

Research Group 1993). Huntingtin protein is thought to be necessary for developing and 

sustaining normal brain function (Menalled el al. 2002; Young 2003). lID is 

characterized by disordered voluntary and involuntary movement (Carella et al. 2003; 

Bilney et al. 2005; Berardelli et al. 1999; van Vugt et al. 2004), cognitive deficit and 

psychiatrie symploms (Gardien et al. 2004; Naarding et al. 2001; Young 2003). 

Although the genetic cause of the disease has been isolated, there are no existing 

therapies to delay or prevent onset (Bhidayasiri & Truong 2004), and treatment is aimed 

at the alleviation of symptoms (Bilney et al. 2003). 

The pathophysiology of HD is marked by a progression from hyperkinetic to 

hypokinetic movements in typical adult onset (Berardelli el al. 1999), although there is 

extensive variability in motor symptom expression. HD is the most common cause of 

chorea (Bhidayasiri & Truong 2004), the presence of which often decreases as disease 

progresses to later stages (Berardelli et al. 1999). There is evidence to suggest that 

chorea and other involuntary movements in HO negatively affect motor function,' 

specifically accuracy (Phillips et al. 1996; Bilney et al. 2003) and gait regulation (Bilney 

et al. 2005). The motor symptoms of Huntington's disease have been researched for 

many years but very [iule work has been dedicated to the specifie movement 

charactelistics of choreic patients. Due to the lack of therapeutic options currently 

available to effectively treat chorea in HO it is essential to establish a greater 
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understanding of this involuntary movement, its characteristics and the neural networks 

involved in its expression. 

The first general aim of this study is to quantify the mutual influence of chorea 

and voluntary movement in patients with adult onset Huntington's disease. 

Quantification of chorea during voluntary movement will enable a greater understanding 

of the mutual influence of chorea and voluntary movement, and ifs application to 

therapies aimed at improving performance of daily living activities and the maintenance 

of quality of life in choreic patients. 

Treatment of motor symptoms, specifically chorea, is not suggested unless the 

condition becomes debilitating, as therapies used have extensive negati ve side effects 

and may aggravate psychiatric symptoms (Bhidayasiri & Truong 2004). Adverse side

effects associated with anti-choreic medication include parkinsonism, sedation, 

insomnia, depression, anxiety and akathesia (Bonelli et al 2004). It has been suggested 

that chorea may not be the only, or most influential source of motor disability in HO 

(Thompson et al. 1988). The coexistence of hyperkinetic and hypokinetic motor 

behaviour in patients with HO (Thompson et al. 1988; Joel 2001) makes it increasingly 

difficult to isolate the main source of error in movement, as weil as the effects of each 

condition on performance (Hanajima et al. 1999). The lack of data on un-medicated HO 

patients calls into question whether the hypokinetic features of movement, e.g 

bradykinesia, are a natural symptom of the disease or a condition brought on, or 

aggravated, by drug therapy. It is imperative to isolate and quantify the existence of 

hyperkinetic and hypokinetic characteristics in HO in order to determine which is the 

more influential source of disability. 

The second general aim of this study is to determine if bradykinesia co-exists 

with chorea in patients with adult-onset Huntington' s disease. Quantification of 

hyperkinetic and hypokinetic features of motor behaviour in patients will enable a. 

baseline understanding of motor symptoms in the disease and their interaction with one 

another during performance. This information will enable more accurate and efficient 

tailoring of drug therapy to alleviate negative motor symptoms without introducing any 
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new impairment such as those adverse side effects previously experienced with drug 

treatment. 

2. REVIEW OF LITERATURE 

The following review of literature will outline current information regarding the 

types, prevalence, progression, aetiology and pathophysiology of Huntington' s disease, 

with specifie focus on the motor behavior and abnormalities associated with this disease. 

This review is designed to establish a foundation of information regarding BD in order 

to form an understanding of those aspects of the condition that are widely accepted, 

controversial, or yet unknown. The rational of this study wi Il then be discussed based on 

these findings. 

2.1 Huntington's Disease (HD) 

The cardinal pathological feature of HD is loss of medium spiny neurons in the 

striatum (Backman & Farde 2001), specifically those with GABAergic projections to the 

external pallidum and SNr (Weeks et al. 1997; Reiner et al. 1988). Striatal degeneration 

in BD progresses along mediolateral and dorsoventral gradients affecting the 

dorsornedial caudate and dorsal putamen (Joel 2001; Quinn & Schrag 1998). Currently 

there is no known method to hait or reverse the striatal damage caused by BD. 

BD, occurring at a rate of 10 per 10,000 among Caucasian populations, with no 

gender preference (Bhidayasiri & Truong, 2004), has a mean age at onset of 32-42 years 

with a rnean disease duration of 15-17 years (Quinn et al. 1998). The condition is 

autosornal dominant and 90% of cases are inherited from the father (Quinn et al. 1998), 

offspring of an effected family member have a 50% chance of having inherited the fully 

penetrant mutated gene (Myers 2004; Bhidayasiri & Truong, 2004). Age of onset has 

been inversely correlated with CAG repeat length in BD (Saft et al. 2003; Reddy et al. 

1999; Young 2003), although repeat length accounts for only 50% of variance in age at 

onset (Albin et al. 1995). HD is associated with repeat instability (Ross et al. 1997) and 

genetic anticipation (Young 2003; Reddy et al. 1999). Instability in HD increases with 
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the transmission of longer repeats, paternal transmission can expand more then 1-2 

triplets in length (Ross et al. 1997; Mangiarini et al. 1997). Anticipation, increasing 

disease severity and decreasing age of onset, occurs most commonly through patemal 

transmission (Ross et al. 1997). Approximately 28% of cases are late onset, 50 years and 

older, and on[y 6% juvenile onset (Quinn & Schrag 1998). The Westphal variant, also 

known as the rigid akinetic type and clinically associated with early/juvenile onset is 

very rare and presents with seizures, action tremor, bradykinesia, eye movement 

abnormalities, cerebellar ataxia and dystonia (Magnet et al. 2004). Pathophysiologic 

characteristics of Westphal variant include atrophy of the direct striatal pathway to GPi, 

globus pallidus internus, and atrophy of enkephalin striatal projections to the GPe, 

globus pallidus externus (Albin et al. 1990; Magnet et al. 2004). Adult onset is the 

predominant form of HO, responsible for approximately 68% of cases (Quinn & Schrag 

1998). This form presents initially with motor 'clumsiness' due to abnormal voluntary 

movement, bradykinesia (Sanchez-Pernaute et al. 2000) and involuntary movemenl, 

such as motor tics and chorea (Ross et al. 1997). Predictive genetic testing is available 

for indi viduals with a family history of the condition (Evers-Kiebooms et al. 1998), 

testing predicts whether asymptomatic individuals will be affected by the condition later 

in life. 

Although the onset of Huntington' s disease has long been associated with the 

presentation of motor symptoms (Georgeou et al. 2003), recent research has shown that 

cognitive and emotional disturbances may pre date motor signs (Lawrence et al. 1998; 

Snowden et al. 2002). 

Stage or progression of HD is measured using c1inical scales such as the total 

functional capacity (TFC) scale and the Unified Huntington disease rating scale 

(UlIDRS) (Shoulson 1979; Huntington Disease Study Group 1996). The total functional 

capacity (TFC) scale is a standardized measure of capacity to participate in activities in 

the workplace and home, on a scale from 13 (normal) to 0 (severe disability). According 

to the TFC scale there are five stages of progression in adult-onset Huntington's disease 

(Shoulson 1979). Stages encompass a wide range of years from diagnosis due to the 
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variance in progression and expression of symptoms and degeneration in lID. The first 

stage encompasses diagnosis up to eight years into the disease, engagement in the 

individuals occupation is nonnal, ability to handle financial affairs and domestic 

responsibilities remains in-tact, as weil as full ability to perform activities of daily living 

independently. The second stage occurs 3-13 years from diagnosis, engagement in work 

and financial affairs is diminished but household responsibilities and daily activities can 

be completed independently. The third stage, occurring anywhere From 5-16 years from 

diagnosis, a1l activities are impaired and assistance is required, either home or 

institutional care. The fourth and fifth stage, 9-21 and 11-26 years from diagnosis, 

respectively, individuals are unable to function at work, handle financial affairs or 

manage domestic responsibilities and the inability to complete activities of daily life 

make full institutional care a necessity. For corresponding stages and TFC score values 

see Table 1. 

Table 1. Total Functional Capacity (TFC) scale. Adapted from Shoulson 1979. 

Disease Stage TFC Score Years since diagnosis 

Stage I 11-13 0-8 

Stage II 7-10 3-13 

Stage III 3-6 5-16 

Stage IV 1-2 9-21 

Stage V 0 11-26 

The UHDRS is the gold standard clinical tool for assessing the four domains of 

clinical capacity and performance in lID. The UHDRS assesses motor and cognitive 

function, behaviour abnormalities and overall functional capacity (Huntington Study 

Group 1996). The UHDRS has been found useful in tracking changes in the clinical 

features of lID over time and has excellent inter-rater reliability (Huntington Study 

Group 1996). The UHDRS provides a more specific quantification of capacity in the 
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four clinical domains of HD than the TFC and, therefore, will be used to score patients 

in this study. 

2.1.1 Aetiology 

Huntington's disease is attributed to a dynamic mutation in a single gene, IT15 

(Ross et al. 1997), also known as the huntingtin gene (Bertram 2005), involving a repeat 

expansion in the coding region that affects protei n structure (van Dellen et al. 2005). The 

product of this mutation is referred to as mutant htt. An increased number of CAG 

repeats, nucleic acids cystine, argnine and guanine, which code for the amino acid 

glutamine, in the HD gene on chromosome 4p 16.3 causes disease ex pression (Myers 

2004). CAG repeats occur normally 6-35 times, increased to 40-121 repeats in HD 

(Reddy et al. 1999; Myers 2004). There is an inverse correlation between repeat length 

and age at onset (Saft et al. 2003; Young 2003), patemal transmission is sensitive to 

allele expansion, and this instability of transmission contributes to the anticipation 

observed in HD and other repeat disorders (Ross et al. 1997). The normal function of 

huntingtin is unknown (Albin & Tagle 1995), but has been linked to the development 

and maintenance of normal brain function (Young 2003) and is thought to function 

primarily cytoplasmically in cytoskeletal function or vesicle recycling (Ross 2002). 

Huntingtin is also associated with organelles such as endoplasmic reticulum, the nucleus 

and golgi-complex (Cattaneo et al. 2005). The aetiology of Huntington's disease remains 

unknown, two main theories have surfaced in an attempt to explain the cause and course 

of neurodegeneration in this disease: confonnational toxicity through amyloid-like 

protofibril formation (aggregation or inclusion bodies) and altered gene expression 

(Valera et al. 2005). 

2.1.2 Aggregation 

The abnormally expanded mutant htt is c1eaved or truncated by the ubiquitin 

proteasome system (UPS) (Valera et al. 2005). The UPS performs a variety of cellular 

functions, most importantly the removal of abnormal or inconectly assembled proteins 

(Valera et al. 2005). This truncati<;>n results in the production of toxic polyglutamine 
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containing fragments that interact with other intracellular proteins, including 

components of the proteasome, aggregating in the cytoplasm and nucleus forming 

inclusion bodies (van Oellen et al. 2005). Protein-protein interaction is implicated in the 

neurodegenerative process of Huntington's disease (Sharpe & Ross 1996). It has been 
, 

suggested that glutamine repeats acts as polar zippers, joining proteins with an affinity 

for each other (Perutz et al. 1994). Repeat expansions may then acquire excessive 

affinities for each other or regulatory proteins when expanded in disease conditions 

(Sharpe & Ross 1996; Perutz et al. 1994), and this excessive affinity may account for the 

cascade of events leading to the formation of inclusion bodies. A hypothetical pathway 

for formation of inclusion bodies involves a cascade of binding reactions from soluble 

mutant htt monomers to oligomers which are linearly assembled into protofibrils which 

form fibrils which form filaments that together with other cellular proteins such as 

molecular chaperones, transcription factors, cytoskeletal proteins and components of the 

proteasome system, form inclusion bodies (Valera et al. 2005). The function of 

aggregation is controversial (Reddy et al. 1999). Evidence of protein aggregates in non

neural tissue refutes their role in cell death (Hague et al. 2005); also preferential location 

of Huntington aggregates in striosomes in I-ID support a positive, possibly 

neuroprotective role in the disease (Menalled et al. 2002). Evidence has also been found 

to suggest a neuroprotective role of aggregation in a study examining wild type htt 

aggregation in vivo, results show wild type htt modulates neuronal sensitivity to 

apoptotic death due to N.MDA receptor mediated excitotoxicity (Leavitt et al. 2006; 

Cattaneo et al. 2005). 

2.1.3 Altered Gene Expression 

Altered gene expression, resulting from the mutation of the huntingtin gene, may 

result in deregulation of brain derived neurotrophic factor (BDNF) (Canals et al. 2004), 

altered endocytosis and vesicular transport, abnormalities of synaptic transmission, 

mitochondrial dysfunction (Schulz & BeaI 1994), the activation of apoptotic pathways 

and impairment of the UPS (Valera et al. 2005; van Oellen et al. 2005). BDNF protects 
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striatal neurons and is regulated by huntingtin through protein interactions (Canals et al. 

2004; Cattaneo et al. 2005). BDNF has been shown to regulate the age of onset and 

sevellty of motor dysfunction through protection of striatal enkephalinergic neurons in 

transgenic mice, suggesting that administration of exogenous BDNF may delay or hait 

disease progress (Canals et al. 2004; van Dellan et al. 2005). Wild type htt stimulates 

BDNF vesicular trafficking, and mutant htt inhibits it, as weil as interacting with 

huntingtin associated proteins to enhance vesicular transport intra-cellularly (Cattaneo et 

al. 2005). A disruption of this function would lead to reduced or abnormal protein 

trafficking, affecting endo and exo-cytosis at synaptic terminaIs (Cattaneo et al. 2005). 

Abnormalities of synaptic transmission can be due to the disruption in the expression of 

genes encoding synaptic and intra-neuronal signaling proteins, this could lead to the 

disruption of cortico-striatal networks, via the reduction of dendritic spines in medium 

spiny neurons of the striatum (van Dellan et al. 2005). Mitochondrial dysfunction is a 

leading mechanism implicated in the neural degeneration found in a number of diseases 

(Schulz & Beai 1994). In HO brain tissue there is an increased level of lactate and 

decreased mitochondrial respiratory chain function (Andreassen et al. 2001). Creatine 

administration has been found to improve this condition, as weIl as increasing survival 

and delaying motor symptom onset in HO mice (Andreassen et al. 2001). Markers of 

mitochondrial activity have been found to be reduced in transgenic HO mice, as weil as 

decreased oxidase activity in human HD brains (van Dellan et al. 2005) supporting a role 

for mitochondrial dysfunction in ceIl death, if not as a cause, at least as a contributing 

factor (Schulz & Beai 1994). Wild type huntingtin is neuroprotective, particularly due to 

the fact that it inhibits the formation of pro-apoptotic protein interactors. AIso, 

huntingtin can act as a substrate for a kinase, which acti vates pro-survival pathways 

(Cattaneo et al. 2005). Excitotoxicity, resulting from the prolonged acti vation of 

excitatory receptors (for example glutaminergic receptors in the basal ganglia), leads to 

cell damage and death (Doble 1999). Medium spiny neurons, those preferentially 

affected in HO, receive large amounts of glutaminergic input and their vulnerability to 

excitotoxicity may be increased by decreased glutamate uptake by glial cells in HD 



9 

(Shin et al. 2005). Cell death is a secondary issue in Huntington's disease: it is cell 

dysfunction that plays a more influential role in disease expression (van Dellen et al. 

2005). Impairment of the ubiquitin proteasome system (UPS) is easily related to 

formation of aggregates and inclusion bodies, due to the impaired ability of the UPS to 

remove abnormal or misformed proteins, as weil as impaired removal of regulatory 

proteins leading to cellular deregulation and cell death (Valera et al. 2005). These two 

mechanisms and their associated consequences are supportable hypotheses in the search 

to understand the aetiology of Huntington's disease, although they are still shrouded in 

controversy due to discovery of incongruent findings in human and animal models 

(Valera et al. 2005). 

2.2 Basal Ganglia Pathophysiology 

Models of the basal ganglia have been used to map a number of clinical findings 

in movement disorders such as Parkinson's disease and Huntington's disease. In order to 

understand the progression and expression of Huntington's disease, as weil as the unique 

movement characteristics of chorea, it is important to first understand the role of the 

basal ganglia in movement. 

The basal ganglia (BG) is comprised of the striatum (caudate and putamen), the 

globus pal1idus (internai and external segments), the subthalamic nucleus and the 

substantia nigra (pars compacta and pars reticulata). The thalamus is closely linked to 

the basal ganglia, although not considered a part of the structure, it acts as a relay nuclei 

in many basal ganglia loops. The BG nuclei facilitate transport of sensorimotor, limbic 

and cogniti ve information through fi ve pathways organized in parallel loops: the motor, 

oculomotor, limbic and two prefrontalloops (Alexander et al. 1986). When investigating 

movement disorders, specifically HD, the motor loop is of primary concern, particularly 

because of its raie in the planning and execution of movement. The motor loop begins in 

the primary sensory and motor cortical areas, as weil as the supplementary and premotor 

areas. These areas contain projections to the putamen, the input nuclei of the BG located 

in the striatum (Alexander et al. 1986). From the putamen the loop continues to the 
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output nuclei, internai segment of the globus pallidus and substantia nigra pars reticulata 

which project to the ventral lateral (VL) and anterior thalamus (VA) (Wichmann & 

DeLong 1996). The thalamus then completes the motor loop with projection back to the 

cortex that facilitates information transfer to the brainstem and spinal cord (Yelnik 2002; 

Alexander et al. 1986). (Fig 1). 

Corte x 

---I~~ Dopamine 
---.....1&---...............---. Excitatory/inh ibitory
 

---l''~ ExcitatorySTN 
Glutamate 

...._-_.. ---I~~ Inhibitory 

GABA 

Figure 1. Model of the BG. This figure outlines the CUITent model of the Basal Oanglia. 
The motor loop begins in the cortex and projects to the striatum, the major input nuclei 
of the BO. The OPi and SNr are the major output nuclei of the BO, and the thalamus 
serves as a relay nuclei back to the cortex. (Adapted from Albin et al. 1989) 

2.2.1 Direct and Indirect Pathways 

The popular view of the BG mator loop is that of two opposmg parallel 

pathways, the direct and indirect pathways, and that an increase or decrease in 

movement is based on manipulation of GPi output (Mink 1996). The direct pathway is 

activated by dopamine at the Dl receptars in the striatum that channels GABA, an 

inhibitory neurotransmitter, along projections to the GPi and SNr. The GPi has 
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inhibitory projections to the thalamus, the disinhibition of the thalamus in the direct 

pathway increases excitatory glutamatergic activity to the motor cortex (Silkis 2002; 

Wichmann & DeLong 1996). The indirect pathway is inhibited by dopamine at the D2 

receptors of the striatum that also channel GABA, via connections to the GPe, which 

projects to the STN (Mink 1996; Silkis 2002; Wichmann & DeLong 1996). The 

subthalamic nucleus (STN) then projects to the GPi via excitatory glutamatergic 

connections. These excitatory connections reduce inhibition of GPi, increasing 

inhibitory GABA released to thalamus, thus decreasing excitatory glutamatergic 

projections to the motor cortex (Mink 1996). The direct pathway facilitates desired 

movements through increased thalamocortical activity, while the indirect pathway 

inhibits undesired movements by decreasing thalamocortical activity. (Fig. 2) 

a) Direct pathway b) Indirect pathway 

Thalamus 

.....--+....... 1 GPe 1
 

Dopamine Dopamine 
excitatory inhibitory 
Excitatory --.Excitatory

STN
Glutamate Glutamate 
Inhibitory -----.. Inhibitory 
GABA GABA 

Figure 2. Direct and Indirect Pathways. a)The direct pathway begins in the striatum at 
the site of the DI receptors, inhibiting the GPi/SNr via GABAergic projections, the OPi 
have GABAergic projections to the thalamus. b)The indirect pathway begins at the D2 
receptors in the striatum and have OABAergic projections to the OPe which has 
GABAergic projections to the STN, the STN has glutamenergic projections to the GPi. 
Excitation of the GPi/SNr by the STN activates GABAergic projections to the thalamus. 
(Adapted from Albin et al. 1989) 
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2.3 Basal Ganglia in Huntington 's disease 

Huntington's disease is characterized by progressive and initially selective 

striatal degeneration, causing a loss of GABAergic medium spiny neurons, specifically 

those projecting to the GPe and SNr (Weeks et al. 1997; Joel 2001). According to the 

conventional BG mode! in Hl), the selective loss of striatal projection neurons, 

specifically enkephalin containing GABAergic neurons projecting to the GPe (Tang et 

al. 2005), in the indirect pathway leads to reduced tonic inhibition of thalamocortical 

activity leading to hyperkinesia (Bhidayasiri & Truong 2004; Weeks et al. 1997). This 

suggests a deficit in inhibition which is supported by evidence that patients exhibiting 

hyperkinetic movements such as chorea have difficulty with voluntary suppression of 

these movements (Hashimoto et al. 2001). Hypokinesia of voluntary movement also 

occurs in Hl) (Bilney et al. 2003) and may be explained by the disruption of connections 

between the associative striatum and motor circuit, which are involved in the sequencing 

and selection of motor programs (Joel 2001). In this explanation, the coexistence of 

chorea and bradykinesia in early Hl) is suggested to be due to the intrusion of 

undesirable motor programs in the normal flow of motor acts, suggesting a deficient 

inhibition mechanism, and implying that chorea may be mechanically responsible for 

bradykinesia ln early stages of Hl) (Hashimoto et al. 2001; Albin et al. 1989). 

Bradykinesia ln late Hl) has been described, similar to that of Parkinson' s disease 

bradykinesia, as a deficit in the direct pathway, this would result in a mechanically 

isolated bradykinesia not resulting from chorea, but a mechanism of it's own. (Fig 3) 

Another interpretation of the model has been presented by Mink (2003) theorizes that 

cortical motor pattern generators are "gated in" and "gated out" by selective facilitation 

and sUITound inhibition, and a disruption, or random temporal patterning of this gating 

may be the cause of involuntary movement, specifically chorea in Huntington's disease. 
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a) Bradykinesia in HD b) Chorea in HD 

Striatum 
1 GPi/S;~" 

Thalamus 

Dopamine 
Excitatory Dopamine 

/inhibitory inhibitory 

-.Excitatory --.Excitatory 
GlutamateGlutamate 

-.Inhibitory ~ Inhibitory 
GABAGABA 

Figure 3. BG in Huntington 's Disease. Thick arrows highlight increased activity from 
normal and dotted arrows marked decreased activity. A) One theory of bradykinesia in 
HD is a general degeneration of both indirect and direct pathways. B) Chorea in HD is 
thought to occur due to increased inhibition of the subthalamic nucleus (STN) 
decreasing inhibition of the thalamus and increasing thalamocortical activity. (Adapted 
from Albin et al. 1989) 

2.4 Motor Symptoms 

Huntington's disease is considered a mixed movement disorder due to the 

presence of both hypokinetic and hyperkinetic symptoms, the most c1inical feature of 

which is chorea (Weeks et al. 1997; Bilney et al. 2003; Gardian & Vecsei 2004). 

Secondary motor symptoms of HD are rigidity, dystonia, akinesia, bradykinesia and 

oculomotor deficits (Hamilton et al. 2003; Gardian & Vecsei 2004; Bilney et al 2003; 

Berardelli et al. 1999). 

2.4.1 Chorea 

Chorea cornes from the Greek charos for 'chorus' meaning both dance and song 

(Higgins 2001). Chorea is c1assified as irregular, flowing, non-stereotyped movement 

that occurs at random and possesses a writhing quality (Bhidayasiri & Truong 2004; 
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Yanagisawa 1992). Chorea that is proximal and of large amplitude is referred to as 

ballistic, and irregular, forceful, writhing movements, generally in the extremities, are 

refen-ed to as athetosis (Bhidayasiri & Truong 2004). Aggravated by anxiety and stress, 

chorea begins in peripheraJ limbs and progresses to more proximal 'ballistic' movement 

(Higgins 2001; Bhidayasiri & Truong 2004). Chorea is often reduced in later stages of 

HO (Berardelli et al. 1999) and can coexist with hypokinetic features of the disease, 

such as bradykinesia (Thompson et al. 1988; Joel 2001). 

2.4.1.1 Classification ofChorea 

There are three main classifications of chorea based on the method of contraction 

and occurrence: primary or idiopathie, secondary and other sources. Primary chorea 

includes those forms idiopathie or genetic in origin, such as Huntington's disease, 

neuroacanthocytosis, Wi]son's disease, senile chorea, benign hereditary chorea and 

dentatorubral pallidoJysian atrophy (DRPLA) (Quinn et al. 1998; Bhidayasiri & Truong 

2004). Secondary chorea includes those cases caused by infectious or immunological' 

conditions such as Sydenham's chorea, drug induced chorea, immune mediated chorea 

and vascular chorea, to name only a few (Bhidayasiri & Truong 2004). Other sources of 

chorea include those due to vitamin B land B 12 deficiencies, exposure to toxins and 

paraneoplastic symptoms (Bhidayasiri & Truong 2004). Huntington's disease is the 

most common cause of chorea. 

2.4.2 Bradykinesia 

Bradykinesia is a frequent finding in HO in both early and late stages of the 

disease(Garcia-Ruiz et al. 2002). Bradykinesia can be defined as abnormal slowness of 

movement, specifically referring to a slowness in the execution of a task (van Vugt et al. 

2003). Bradykinesia is believed to be attributed to degeneration of output from the basal 
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ganglia to supplementary motor areas involved with initiation and maintenance of 

sequential movements (Berardelli et al. 1999). 

2.4.3 Rigidity 

Rigidity is defined as the inability to fully relax or completely stretch a muscle 

voluntarily. In RD abnormal EMG responses to muscle stretch and changes in SEP 

(sensory evoked potential) and long latency stretch reflexes suggest ineffective gating of 

afferent infonnation to the brain from the periphery (Mink 1996; Abbruzzese & 

Berardelli 2003). Rigidity occurs at later stages of adult-onset RD or in the akinetic rigid 

type. 

2.4.4 Dystonia 

Dystonia can be defined as abnormal co-contractions of antagonist muscle 

groups that result in twisting movements and abnormal postures (Raike et al. 2005). 

Underlying neural mechanisms of dystonia involve dysfunctional output from the basal 

ganglia and cerebellum (Raike et al. 2005). 

2.4.5 Akinesia 

Akinesia is defined as slowness of movement, referring specifically to slowed 

reaction or initiation of movement (van Vugt et al. 2003). Akinetic/rigid is a fonu of 

Huntington's also known as Westphal's and is characteristic of early/juvenile onset and 

later stages of the disease in nonual adult progression. Akinesia is thought to result from 

general damage and decrease of striatal projections in the BG. 

2.4.6 Oculomotor Deficits 

Oculomotor deficits In RD include delayed initiation of voluntary saccades, 

reduced number of correct saccades and reduced saccadic velocity (Blekher et al. 2004). 

Abnormalities of saccades may be accounted for by the extensive loss of striatal 

projection to SNr that plays a major role in controlling saccadic eye movement (Reiner 

et al. 1988). These deficits may contribute to the visual inattention and visuospatial 
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deficits exhibited in HO (Weeks et al. 1997; Kim et al. 2004; Boulet et al. 2005; 

Hamilton et al. 2003). 

2.4.7 Possible Neural Mechanisms 

The hypokinetic features of HO, rigidity and akinesia, are associated with the 

loss of striatal neurons projecting to both the GPe and GPi (Albin et al. 1990). 

Bradykinesia in the early stages of HD is suggested to be the result of under activity of 

the indirect pathway and the inappropriate tennination of muscle acti vitY (Joel 2001), 

due to the fact that the direct pathway appears to be preserved early in the disease. 

However, this assumes it is bradykinesia, the slowness of movement, and not 

bradyphrenia, sJowness of thought, which is inhibiting RD patient pelformance, 

although the latter is more likely the cause. Bradykinesia in the later stages of HO may 

be due to a similar mechanism as bradykinesia seen in Parkinson 's disease, resulting 

from under activity of the direct pathway (Joel 2001). There seems to be a dynamic shift 

in the influence of the direct vs. the indirect pathway on motor symptoms as the disease 

progresses. In PET studies bradykinesia shows no correlation to loss of either D 1 or D2 

receptor binding, which suggests overall decreases not selective degeneration are the 

cause of bradyk.inesia in HD (Turjanski et al. 1995). The hyperkinetic, involuntary 

characteristics of HO chorea suggest a disruption in the indirect pathway in the basal 

ganglia motor loop (Weeks et al. 1997; Bhidayasiri & Truong 2004). Using the 

conventional BG model, selective loss of striatal projection neurons in the indirect 

pathway would lead to reduced inhibition of the GPe, reducing inhibition of the 

thalamus resulting in hyperkinetic movement (Weeks et al. 1997, Reiner et al. 1988). 

Notably, a PET study ofDl!D2 receptor binding in HO found a reduction in both Dl!D2 

receptors in a patient exhibiting chorea only, which wou Id refute the theory of selective 

striatal degeneration as the cause of choreic movements (Turjanski et al. 1995). 

Abnormal motor cortical excitability in HD has been raised as a possible mechanism for 

choreic movements (Abbruzzese et al. 1997; Brusa et al. 2005), although recent 

evidence has challenged those findings (Priori et al. 2000; Hanajima et al. 1999) and 
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controversy has resulted as to what factors and methodological issues may be at the 

roots of such contrary findings (Abbruzzese et al. 2000). A study looking at GPi firing 

rates found no significant difference between hypokinetic Parkinson's patients and 

hyperkinetic HO patients, although the pattern of firing was different (Tang et al. 2005). 

The high firing rates in HO may be attributed to the presence of bradykinesia (Tang et 

al. 2005). The reported coexistence of bradykinesia with chorea in HO suggests there is 

a more complicated answer to the motor symptoms of this disease, possibly a 

malfunction in the motor program selection which is expressed in HO patients difficulty 

in planning and sequencing action (Kim et al. 2004; Boulet et al. 2005). Kanazawa 

(1989) proposed three mechanisms for choreic movements in HO: massive neuronal 

loss, receptor hypersensi ti vitYand post-synaptic component loss. 

2.4.7.1 Massive neuronalloss 

First, choreic movements may be the result of the massive loss of GABAergic 

inhibitory neurons in the striatum. This would induce disinhibition of the nigra 

dopaminergic neurons and causes activation of these neurons and choreic movement. 

The drawback to this proposai is that loss of GABA in the substantia nigra does not 

always correlate with generation of choreic movement (Kanazawa 1989; Tang et al. 

2005). 

2.4.7.2 Receptor Hypersensitivity 

The second possible neural mechanism underlying choreic movements is that 

there are hypersensitive dopaminergic receptors in the striatum that are causing 

hyperkinetic movement. Receptor hyper-sensitivity, specifically at the DI receptors, 

may be due to huntingtin protein induced toxicity or a compensatory mechanism for 

decreased dopamenergic input (Spektor et al. 2002). However it is generally accepted 

that dopaminergic receptors are decreased in HO and post-synaptic components are 

more influential in HO (Spektor et al. 2002: Turjanski et al. 1995). 
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2.4.7.3 Post- synaptic component loss 

The third possible mechanism is that a massive loss of striatal neurons causes a 

loss of post-synaptic components of dopamenergic termi nais that then acts to change 

existing spared striatal dopamenergic terminais. Ginovart and colleagues (1997) found a 

decrease in the density of post-synaptic dopamine receptor in the striatum in HD along 

with decreased binding to dopamine transpor1er that may suggest malfunctioning in the 

production, processing and transport of dopamine transporter, which plays an essential 

role in regulating dopamenergic neurotransmission. Both pre and post-synaptic markers 

of dopa transmission have been implicated in cognitive performance in HD (Backman & 

Farde 2001). 

2.5 Psychiatrie Symptoms 

Psychiatric symptoms are a key element in the triad of features distinguishing 

HD, the others involving motor and cognitive impairment (Paulsen et al. 2001). HD 

patients exhibit a variety of psychiatric symptoms, preceding the onset of motor 

symptoms in up to 31 % of cases (Lawrence et al. 1998; Snowden et al. 2002; Naarding 

et al. 2001; Seneca et al. 2004)! predating motor manifestations by up to a decade 

(Paulsen et al. 2001). This pre-clinical presentation of symptoms has been the target of 

observation and research in an attempt to slow the progression of the disease by 

attacking the first signs of impairment (Paulsen et al 2001). 

HD patients can express a wide array of psychiatric abnormalities including 

dysphoria, agitation, irritability, apathy and anxiety, with 3-6% of cases exhibiting 

schizophrenic like psychosis (Naarding et al. 2001; Paulsen et al. 2001). Dementia in 

HD is classified as subcortical (Weeks et al. 1997; Naarding et al. 2001). Psychotic 

symptoms have been observed earlier in disease progression, decreasing as cognitive 

impairment becomes more prominent (Leroi & Muchalon 1998). 

Treatment of psychiatric symptoms can be complicated, especially due to 

adverse side effects of medications that include motor abnormalities such as 

parkinsonism. Depression in HD can be treated similarly to major depression in non-HD 
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patients, although sensitivity to sedation and anti-cholinergic induced cognitive decline 

should be monitored (Leroi & Michalon 1998). Management of aggressive symptoms, 

ranging form iITitability to intermittent explosive disorder should focus on underlying 

cause of behavior, neuroleptics and antidepressants have been found effecti ve in 

therapeutic treatment (Mendez 1994;Leroi & Michalon 1998). 

Changes in sexuality, expressed through inappropriate behaviour and hypoactive 

sexual desire, have been reported in lID and may be related to underlying 

neurotransmitter deficits (Lerbi & Michalon 1998). No studies have systematically 

examined the management of sexual changes in lID (Leroi & Michalon 1998). Sleep 

disorders have been reported in HO with varying severity, Weigand and colleagues 

(1991) found decreased sleep efficiency, decreased slow wave sleep and prolonged sleep 

latency in HO, while others found minimal to no differences between lID patients and 

controis. 

Once agam, as with motor symptoms, the measurement tools and patient 

selection criteria have made it increasingly difficult to compare between studies. 

Medication remains a factor, as therapies prescribed for motor symptoms may cause or 

aggravate psychiatrie abnormalities in HO. 

2.6 Treatments 

There IS no CUITent therapy that is able to delay or prevent the onset of 

Huntington's disease (Bhidayasiri & Truong 2004) and therefore treatment IS 

symptomatic (Bilney et al. 2003). Physiotherapy, occupational therapy and speech 

pathology address motor impairments and limitations experienced by patients with lID 

(Bilney et al. 2003), while an increasing number of drug trials attack the neurological 

process of the disease (Qin et al. 2005). Researchers have examined the effects of the 

following agents on lID motor symptoms: anti-dopamenergic, NMDA antagonists, 

GABA agonists, DOPA Agonists, Nootropics, antioxidants and neuroprotective agents 

(Bonelli et al. 2004). Only anti-dopamenergic agents showed majority positive results, 

specifically tetrabenazine and fluphenazine (Bonelli et al. 2004). 
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Treatment of chorea in HD is difficult due to the severity of side effects 

experienced with drugs prescribed to manipulate movement in neurodegenerative 

disorders; for example the aggravation of psychiatric systems and negative effect on 

voluntary movement. Therefore, drug treatments are suggested only when chorea is 

debilitating (Bhidayasiri & Truong 2004; Bonelli et al. 2004). Initial recommendations 

for the treatment of chorea in HD involve discontinuation of medication that may have 

involuntary movement as a side effect. There are a wide variety of anti-choreic agents on 

the market, including neuroleptics that block central dopamine receptors as weil as 

dopamine depleting agents such as tetrabenazine, although these options come with 

serious side effects and only minimal evidence of symptomatic relief (Bonelli et al. 

2004; Bruneau et al. 2002). 

2.6.1 Anti-dopamenergic agents 

Anti-dopamenergic agents such as clozapine and fluphenazine are also classified 

as anti-psychotics and act to competitively block dopamine and seratonin receptors, 

although side effects associated with the use of anti-psychotics include dystonia and 

pseudo-parkinsonism (Brenner 2004). Recently tetrabenazine, an anti-dopaminergic 

agent initially designed for use as an anti-psychotic, has been found to decrease chorea 

in HD patients in a randomised control study (Huntington Study Group 2006). 

2.6.2 NMDA Antagonists 

Amantadine is an example of an NMDA receptor antagonist used in the 

treatment of HD (Qin et al. 2005). The degeneration in HD is thought to be due in part 

to sensitisation of NMDA receptors on residual striatal neurons (Qin et al. 2005). An 

antiviral drug originally used for the treatment of influenza, when used in Parkinson's 

disease, amantadine works by releasing dopamine from nigrostriatal neurons (Brenner 

2004). 
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2.6.3 GA8A Agonists 

GABA agonists are used to treat movement disorders because of their intense 

sedative properties (Soares et al. 2004), although there has been tittle success with their 

use in HO (Bonelli et al. 2004). GABA-ergic drugs act to enhance the activity of the 

inhibitory neurotransmitter GABA in the brain. GABA-ergic drugs act on the 

metabolism or its reuptake into neurones of glia, as weil as mediating the synaptic 

release of GABA (Meldrum 1982). 

2.6.4 DOPA Agonists 

DOPA agonists, or dopamine receptor agonists, directIy activate dopamine 

receptors in the striatum, specifically D2 receptors Ieading to inhibition of the indirect 

pathway (Brenner 2004). 

2.6.5 Nootropics 

Nootropics, such as piracetam, are considered 'cognition enhancing' agents, used 

in the treatment of various dementias, although poor predictive ability in animal trials 

have kept them from general acceptance (Gualtieri et al. 2002). Piracetam has 

antithrombotic and neuroprotective properties, it alters the physical properties of plasma 

membrane, increasing its fluidity and protecting against hypoxia, increasing red cell 

deformability and normalizing aggregation of hyperactive platelets (Winnicka et al. 

2005). 

2.6.6 Antioxidants 

Neurodegeneration in HO is associated with oxidative stress that is manifested 

by lipid peroxidation, protein oxidation and other markers (Butterfieid et al. 2002). 

Antioxidants agents are used to combat the oxidati ve stress that qccurs 10 

neurodegenerative disease, by sJowing progression and limiting the amount of neuronal 

ceIl Ioss (Mossmann & Behl 2002). Agents such as CoEnzyme QlO has been shown to 

protect against striatal lesions in HO mice, and is especially effective in the 

mitochondria, as the enzyme is a co-factor in the electron transport gene (BeaI 2002). 
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2.6.7 Neuroprotective Agents 

Neuroprotective agents such as Lamotrigine, also used as an anti-epileptic, 

blocks sodium channels and interferes with neuronal membrane conduction and the 

release of neurotransmitters such as glutamate (Brenner 2004). Estrogen, a natural 

neuroprotective agent, has been synthesized and found effective in cytoprotection and 

mitoprotection, and has implications for treatment in HO (Simpkins et al. 2005). 

2.6.8 Surgery 

Deep brain stimulation (DBS) and striatal transplantation surgery have been 

examined in the treatment of chorea in HO (Hebb et al. 2006; Moro et al. 2004; Hauser 

et al. 2002; Furtado et al. 2005; Lee et al. 2005). Evidence from rat models (Lee et al. 

2005) has shown functional recovery with administration of human stem cells, although 

c1inical testing in humans shows conflicting evidence, with no benefit from 

transplantation in 7 HO patients (Furtado et al. 2005). 

3. RATIONALE 

Treatment for chorea may have a deleterious effect on motor performance in 

patients with RD. For instance, sorne parkinsonism may be induced by the dopamine 

depleting agents used in treatment of chorea, resulting in increased motor impairment 

due to bradykinesia. The wealth of research examining the motor abnormality in HO 

have focused on tasks requiring timing and or accuracy, with very few studies 

exammmg or quantifying the chorea or it's effect on voluntary movement. Many 

patients participating in the following studies were on anti-choreic drugs at the time of 

testing, altering the natural effect of the involuntary movement and causing or 

aggravating hypokinetic features of movement due to the sedating effects of medication. 

The folJowing is a brief critical review of studies examining motor dysfunction in RD. 

Reilmann and colleagues (2001) used grip force as a measure of progression of RD in 

ten patients over a three-year period. The task involved precision grip and lifting of an 

instrument with two force torque sensors measuring grip and load at the thumb and 
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index finger. Participants were instructed to lift the object to a specified lOcm height and 

hold for 6 seconds. übject weight was manipulated with 10 consecutive trials at each 

weight, and order of trials randomized across patients. Results showed more variabiJity 
, 

in the follow-up period, with more variabiJity in grip force with lighter compared to 

heavier object weights. Chorea was reflected in position and orientation changes in 

object location during the static phase of the task. Variation in these movements was 

found between subjects but measures did not change during follow-up testing, the only 

measure of motor function that changes over time was rigidity, as measured by the 

U1IDRS. Increased variability over time was attributed to presence of chorea. The 

conclusion made in this study was that grip force is a useful tool in measuring 

progression of motor impairment in lID (Reilmann et al. 2001). There are several issues 

to be raised concerning this study. The first is that chorea is a phenomenon of whole 

body involuntary movement, classifying chorea as a displacement of the thumb and 

index finger during a six second task is an inaccurate measure of the influence of chorea 

on voluntary movement. Second there were multiple components to the task, precision 

grasp, lift to a specifie height, maintenance of position at that height of 6 seconds. 

Patients with lID are shown to have difficulty in sequencing movement (Agostino et 

a1.1992) and sub-movement cueing (Curra et al. 2000) which may be due to a slowness 

in initiation of movement (akinesia), slowness of thought (bradyphrenia) or slowness in 

execution or inability to generate adequate force to complete the task (bradykinesia). 

The third complication in this study lies in the fact that ail patients were on multiple 

medications, ail of which changed from the initial to the follow-up data collection, 

possibly complicating results by influencing the variability recorded in the follow-up 

period. The task is sequenced and goal directed which can complicate performance in 

lID patients by adding a cognitive component, not providing a clear picture of motor 

behavior in lID. 

Flexion and extension at the finger and elbow have also been used to measure 

motor behaviour in lID (Hefter et al. 1987; Verbessem et al. 2002). Hefter (1987) used 

self-paced isometric contraction and rapid alternating forefinger movements. 
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Hyperkinesic and voluntary contractions were compared in patients exhibiting clear 

hyperkinesias, using EMG activity. HO patients exhibited prolonged times for self

paced contractions as weil as prolonged time to peak force. In the rapid alternating 

finger movement HO patients also exhibited slowed and more irregular movement, in 

comparison to controls. The majority of hyperkinetic contractions were found to be 

slower than voluntary contractions of a similar amplitude. Controversial points in this 

study include the fact that hyperkinesias were recorded in only one area, i.e. distal upper 

limbs, and once again ail subjects were heavily medicated. Therefore is it difficult to 

isolate the source of the slowness and variability found in their performance. AIso, the 

signal-to-noise ratio (i.e. the amplitude of the intended movement versus the chorea) was 

low, probably limiting the motor impairment to a mechanical one. Verbessem and 

colleagues (2002) used unimanual and bimanual voluntary movement involving flexion 

and extension at the elbow to test motor performance in male patients with lID. 

Unimanual tasks were performed at maximal speed, while bimanual movements were 

performed in-phase and anti-phase at different cycling frequencies. Results showed that 

subjects with HO required more time to complete one movement cycle, and had 

increased variability in measures of range and cycle duration when compared to 

controls. Speed of cycling and accuracy were correlated with disease duration. Another 

aspect of the study that is problematic, is the nature of the movement itself, unimanual 

and bimanual movements involved flexion-extension at the elbow which is a multi

phase movement. Performance on this task could be influenced by three different 

symptoms, akinesia, bradyphrenia and bradykinesia, therefore we are no closer to 

understanding why HO patients appear to be slower then controls, a piece of information 

integral to the management of motor symptoms in lID. 

Reaction time has been a widely used measure of motor disability in HO 

patients, as weil as many other neurodegenerative conditions. Van Vugt et al. (2003, 

2004) utilized simple reaction time paradigms of response to negative stimuli and button 

pressing to determine the cause of slowness in lID. In the response to painful stimuli it 

was hypothesized that motor slowness in lID resulted From failure in activation of 
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agonist muscles and inhibition of unwanted antagonist activity. Results showed that in 

BD patients there was impaired antagonist inhibition prior to and during voluntary 

agonist contraction, and this was strongly correlated with delayed motor initiation, 

akinesia, and slow movement execution, bradykinesia (van Vugt et al. 2003), supporting 

the initial hypothesis. Another study by van Vugt (2004) looked at a buuon-pressing task 

as a measure of reaction time. Results showed that BD patients required more time for 

movement initiation and execution, displaying akinesia and bradykinesia, respecti vely. 

Botb these impairments were present in early stages of the disease and became 

progressively worse with disease progression. These studies improved on previous 

research by isolating the various sources of slowness in movement in an attempt to 

determine at what stage in movement BD patients are impaired. Jahanashi and 

colleagues (1993) looked at reaction time in choreic BD, Parkinson's and cerebellar 

disease. Results showed that patients with BD had significantly longer simple reaction 

times than patients with PD, performance improved with auditory cueing but patients 

with BD were still slower than patients with PD. Patients with BD also exhibited slower 

movement time than the PD group, an indication of the presence of bradykinesia. 

Whether these delays were induced by motor bradykinesia, or by bradyphrenia remains 

to be determined. It is interesting to note that mean age in the PD group was 

significantly greater than that of the BD group, so age was not a factor in performance of 

the simple reaction time test. One interesting note in this study is the fact that only one 

of the seven RD patients was medicated, providing evidence for the coexistence of 

chorea and bradykinesia, although chorea was not recorded during testing, it was 

measured with a subjective clinical scale prior to participation. 

Kim and colleagues (2004) used fMRI to examine the performance of a seriai 

reactio~ time task in patients with BD. The task consisted of an asterisk appearing on a 

screen in one of four boxes each associated with one of four buttons, patients were 

required to push the button of the box in which the asterisk appeared. An implicit 

leaming condition was created with trials following the same 12 item sequence 6 trials 

in a row. The purpose was to evaluate the nature and degree of functional changes in the 
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brain in the earliest stages of BD. Reaction time in the BD patients was longer then 

control s, and BD patients showed a lack of implicit leaming, a deficit consistent with 

cognitive impairment reported in BD (Kim et al. 2004). Striatal activation was highly 

variable in the BD group, suggesting early functional [oss, this data is consistent with 

previously demonstrated early atrophy in these same structures in HO. 

Carella and colleagues (2003) investigated the possibility that bradykinesia ln 

HO is task dependent. They investigated the influence of visual control on the ability of 

HO patients to complete a tracing task. Patients exhibited increased movement time and 

peak velocity in the visual control condition compared to controls, with an increase in 

movement time and decrease in peak and mean velocity in the blindfolded condition as 

compared to their own visual control values. Error scores did not differ significantly 

between HO group and control in the visual control task. Investigators suggest that the 

increased time spent in the deceleration phase may have been a compensatory method in 

response to irregular movements in HO patients. In the blindfolded condition the HO 

group exhibited significantly more variability and error. There was a lack of correlation 

between chorea scores and kinematic variables, leading investigators to conclude that 

chorea was not the source of irregular movement causing error in the task. These 

findings suggest that abnormalities of motor control are present in HD when movement 

accuracy, and not velocity, is required. 

Lemay et al. (2005) also examined BD subjects' ability to trace material with 

and without sensory manipulation, in this case patients received direct or indirect 

(through a monitor) visual feedback. Patients showed larger and more frequent 

deviations from the object to be traced when receiving indirect visual feedback. There 

were also significant group differences in velocity with patients exhibiting slower 

movement than controls, especially slower movement toward the circle, then away from 

il. Un-medicated patients were analysed separately and compared to medicated HO and 

there were no significant differences found. The results of this study imply that error 

feedback is not impaired in HD in situations with direct visual feedback, although 

sensory manipulation, such as that of indirect feedback elicits dysfunctional 
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performance. Investigators concluded that this dysfunction in indirect visual feedback 

may be due to the inefficient use of error feedback, not a fundamental problem in error 

feedback control (Lemay et al. 2005). 

Boulet and colleagues (2005) recorded aiming movements toward peripheral 

targets in HO to determine the effect of transformed visual feedback on movement 

control. Subjects were required to move a pen From a central point to a fixed peripheral 

target with indirect visual feedback on a monitor. Patients with !-ID showed significantly 

lower average speeds that controIs, aithough there was no significant difference in peak 

velocity. Patients with HO showed less precision than controls when one and both 

horizontal and vertical axis were inverted. The data suggests that the deficit in on-line 

feedback control is related to the attention demands of the task, and results From 

problems with executive control. 

Peg insertion has been used as a measure of motor performance in treated and 

untreated HD patients, controls and !-ID gene carriers (Saft et al. 2003). Participants 

were required to transfer 25 pegs to 25 holes in a computer based contact board as 

quickly as possible. The peg insertions score did not differ between !-ID groups and 

controls, although elapsed intervals between groups were significantly different. 

Differences were found between HO gene carriers and diagnosed patients with HO. 

Motor symptoms were quantified using a subjective clinical scale prior to testing and no 

mention was made of involuntary movements during the insertion task. Investigators 

admit that the task is restricted to movement of the upper limbs and therefore is unable 

to incorporate issues of whole body involuntary movement. Once again this task has 

multiple stages that may pose cognitive and mechanical sequencing difficulty for 

patients with HO. 

Timed motor tests, such as the CAPIT test used in Parkinson's disease, have 

been used to assess motor function in HO (Garcia-Ruiz et al. 2002). Tests included 

pronation-supination, finger dexterity, movement in between two points and a walking 

task. HO patients were slower than controls, with deterioration in performance at follow 

up. This study concluded that bradykinesia was the cause of this slowness and a 
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significant factor in motor impairment in BD. This conclusion is controversial due ta the 

fact that the majority of participants were being medicated for motor symptoms that rnay 

have lead to the slowness in task execution, therefore casting doubt on the origin of 

bradykinesia in these patients. 

Comparis"ün between studies is made difficult by the fact that there was no single 

method of movement quantification used, many studies selectively omÜ patients deerned 

'too choreic', and many tasks involve complex sequencing of movement and cognitive 

processes which are known to be impaired in BD patients (Curra et al. 2000; Agostino et 

al. 1992; Brandt et al. 2005). 

The coexistence of hypokinetic (bradykinesia) and hyperkinetic (choreic) 

movement abnormalities provides significant difficulty in isolating the source of 

dysfunction during movement. Bradykinesia has been recorded in BD patients of the 

akinetic rigid type, as well as those exhibiting only chorea, especially in those with 

severe chorea (Thompson et al. 1988). Clinical studies in BD indicated that difficulties 

with voluntary movement becorne more pronounced as chorea subsides (Thompson et 

al. 1988; van Vugt et al. 2004). Aggravation of bradykinesia has been associated with a 

decrease in chorea, and decrease in chorea related to a worsening of reaction time (van 

Vugt et al. 2004). This suggests that involuntary movements may not be the only, or 

even the most influential source of motor disability in HD (Thompson et al. 1988). 

Therefore the first general aim of this study will be to detelmine the mutual influence of 

chorea and voluntary movement in patients with HO. 

To date only one study has systematically quantified tri-dimensional movernent 

patterns in conditions of disordered movement. Ghassemi and colleagues (2006) 

quantified whole body involuntary movement in patients with Parkinson's disease, with 

and without dyskinesias, during a rapid altemating movement (RAM) task. In the RAM 

task, dyskinesias appeared to play a positive role in performance, and results implied 

that a reasonable assumption for this was the presence of cortical over activation 

associated with dyskinesias counteracting the reduction of thalamocortical acti vation 

associated with bradykinesia (Ghassemi et al. 2006). The same assumptions may be 



29 

applicable to the coexisting presence of bradykinesia and chorea in HD, as the 

bradykinesia in both PD and HD share similar characteristics during simple and complex 

movements (Thompson et al 1988). Simultaneous quantification of chorea and 

bradykinesia is critical for isolating the effect of each symptom on voluntary movement 

and evaluating the efficacy of phannacological therapies in HD. 

The issue of motor slowness in HD is addressed in the second general aim of this 

study, which is to determine if bradykinesia coexists with chorea in early 00, and if so 

what is the nature of ifs interaction with hyperkinetic features of the disease, e.g. 

chorea, as weil as ifs influence on motor performance. Two theories have been 

proposed to explain bradykinesia in early and late HD, suggesting an indirect and direct 

pathway malfunction, respectively. In order to illuminate which of these model theories 

may be correct the influence of chorea and bradykinesia on movement must be isolated. 

The current gold standard evaluation method of disease severity and progression 

in HI> is the Unified Huntington's Disease Rating Scale (UHDRS) (Huntington Study 

Group 1996; Hurelbrink et al. 2005). Other clinical measures, such as the Behaviour 

Observation Scale Huntington (BOSH) are also used to deterrnine psychiatric and motor 

abnorrnalities in patients with HI> (Timman et al. 2005). Clinical rating scales, while 

beneficial, are not able to detect sub-clinical changes as weB as sorne components of 

voluntary movement (Beuter et al. 2004). Clinical measures focus on simple tasks that 

fail to incorporate whole body activity during testing. An objective measure capable of 

capturing whole body involuntary movement in HI> is needed to assess the progress of 

the disease and help shed light on the neuro-mechanisms underlying the relationship 

between voluntary and involuntary movement in neurodegenerative diseases (Hurelbrink 

et al. 2005). A quantitative measure capable of recording abnorrnal movement is integral 

for the evaluation of new therapeutic treatments and surgical interventions (Beuter et al. 

2004), by distinguishing hypo and hyperkinetic features, their isolated and combined 

effect on voluntary movement. 
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4. HYPOTHESES 

4.1 Hypothesis 1 

Chorea is aggravated by stress (Bhidayasiri & Truong 2004) and has been observed to 

increase during movement (Mink 1996). Based on these oQservations we hypothesize 

that chorea will increase during the completion of voluntary movement tasks. 

4.2 Hypothesis II 

Bradykinesia is an accepted feature of both akinetic rigid and choreic forms of HD 

(Thompson et al. 1988: Garcia-Ruiz et al. 2002). What is not known, however, is 

whether chorea is mechanically responsible for the bradykinesia when both symptoms 

are present. Here, we hypothesize that during a RAM task, the chorea will not be 

directly responsible for bradykinesia when both symptoms are present. 

5. METHODOLOGY 

5.1 Subjects 

5.1.1 Participants 

This study included two subject groups, one comprised of diagnosed adult-onset 

Huntington's disease patients, and the other comprised of age/gender-matched controls. 

Cohen's method for power calculation was used to determine number of subjects 

required. Based on whole body involuntary movement values of a similar disease 

population, Parkinson's disease dyskinetic (Ghassemi et al. 2006), a minimum of 2 

subjects were needed for comparison of whole body involuntary movement. For the 

bradykinetic measures such as range and velocity, a miriimum of 14 subjects were 

required for comparison, as calculated by at-test with Welch's correction of degrees of 

freedom for unequal variances. 

5.1.2 Recruitment 

Participants were recruited from the London Health Science Movement 

Disorders Chnic. Ali participants were referred to the study by the neurologist Dr. M. 

log. 
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5.1.3 Inclusion/Exclusion Criteria 

AlI participants completed a UHDRS with a certified nurse to establish the 

presence of chorea and severity of motor and psychiatrie symptoms. Early stage choreic 

RD patients, diagnosed with adult onset RD, with Iittle to no psychiatrie disturbance 

were included in the study. Age matched controls were free of any neurologie or motor 

disturbances. Individuals with advanced or juvenile onset Huntington's disease were not 

included in this study. Individuals expressing bradykinesia/akinesia as the prominent 

motor symptom or severe psychiatrie symptoms were not eligible for participation. Ali 

participants were able to stand, walk or sit without the use of assistive devices. 

Individuals with metal implants (i.e. joint stabilizing plates or pins) were not included in 

the study due to the possibility of metallic interference with the testing apparatus. 

Age/gender matched controls were not considered if they suffer from any psychiatrie 

conditions or motor impairment. Ali medications being taken by patients were 

documented. 

S.l.4IRB Concerns 

Ali participants read and signed an infonned consent document detailing the 

procedures, risks and benefits of participation in this study. Participants were assigned a 

subject number, and ail documents containing personal information were stored in a 

locked cabinet accessible to the principal and co-investigators exclusively. Participants 

were able to abstain from participation at anytime without consequence. There was no 

monetary gain to participating in this study although compensation was arranged for 

travel and parking costs. 

5.2 Independent Variables 

This study involved the comparison of whole body involuntary movement and 

motor performance between two groups in two conditions. 
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The two groups included one comprised of patients with adult onset 

Huntington's disease and the other, a control group, made up of healthy age/gender 

matched participants. 

There were two experimental conditions in this study, activity and rest. During 

the active task participants were asked to participate in a motor activity while both their 

performance in that activity, as weIl as their whole body involuntary movement was 

recorded. During the rest period participants abstained from voluntary motor tasks. 

5.3 Dependent Variables 

The two measurements of interest in this study were whole body involuntary 

movement and performance on a rapid altemating movement (RAM) task. Whole body 

involuntary movement is the sum of movement in alilimbs, and is examined in terms of 

displacement in space. Performance of a voluntary task, rapid altemating pronation

supination cycles, provides a measure of motor performance. Variables of interest within 

performance of the RAM task include range, velocity and irregularity. Range is a 

measure of the maximal excursion achieved during pronation-supination cycling. 

Velocity is a measure of the maximal instantaneous velocity achieved from peak to peak 

during a pronation-supination cycle. Irregularity is a measure of the variability in RAM 

amplitude. 

5.4 Data Analysis 

5.4.1 WBIM 

The time series provided by each sensor was divided into 7s epochs for analysis. 

The mean position for x, y and z was subtracted from the actual position to provide a 

displacement time series around a neutral position for each epoch. The RMS values for 

each x, y, z time series are squared, the mean of the three values caJculated and the root 

taken, to attain the three dimensional vectorial amplitude for each sensor. Values for 

each epoch are averaged; the sum of ail the mean vectorial amplitudes over aIl sensors 
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was then calculated to determine whole body involuntary movement. Values for sensors 

located on the performing arm were then compared to those of controls. The mean 

control value was subtracted from the values calculated for patients with HD and the 

remaining displacement in those sensors was treated as chorea. Therefore a value for 

WBIM was calculated with ail other sensors on the body and the chorea value for the 

performing arm, as determined by subtracting the mean movement associated with 

performance of the task. WBIM was also analysed topographically to determine if 

chorea in a patient is localized to either the upper/lower body or rightlleft side. 

5.4.2 RAM 

An automated algorithm was used to identify each peak and trough of the 

pronation-supination cycle. Three characteristics were calculated range, velocity and 

irregularity. Range is the mean angular displacement over a complete pronation

supination cycle in degrees. Velocity, maximal instantaneous velocity from peak to 

peak, was calculated in degrees per second over a complete pronation-supination cycle. 

RAM cycle amplitude irregularity was calculated by normalizing the pronation

supination time series (mean=O, SD=l), applying a low pass (1Hz) filter and obtaining 

the standard deviation of the resulting linear enveJope. A higher score reflected greater 

variability in RAM amplitude, therefore a more 'irregular' performance. The first 7s of 

the pronation-supination cycling was analysed for RAM performance as fatigue may 

become a problem, and this time period has been successful in prior work with similar 

populations (Ghassemi et al. 2006). 

5.5 Procedure 

Participants were asked to arrive at the lab at the appointed time, in comfortab1e' 

clothing. Participants were met at the main doors of the facility and escorted to the lab 

by the investigator. Participants were seated and given a copy of the letter of informed 

consent to read and sign, and any questions regarding procedure and participation were 

addressed at this point. The letter of informed consent was available in both French and 
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English, with investigators available to address questions in either language to ensure 

complete comprehension of participation. 

Once consent has been given participants will be assigned a subject number and 

asked to detail anthropometric data (i.e. height and weight) and CUITent prescription 

medication regimens. 

Pmticipants were asked to move into the testing area where a lightweight shirt 

will be placed over existing clothing. An investigator then palpated the location of each 

of the 15 sensors and attached the sensors using adjustable Velcro bands. Investigators 

were gender matched to participants for palpation and placement of sensors. Sensors 

were placed at the following locations: head, thorax, sacrum, right/left scapula, right/left 

upper arrn, right/left forearm, rightJleft hand, right/left shank and right/left foot. 

5.5.1 Data Quantification 

5.5.1.1 Whole body involuntary movement (WB1M) 

To quantify whole body involuntary movement 10 3 dimensions an 

electromagnetic measurement system with 6 degrees of freedom, the Flock of Birds 

magnetic motion tracker system (lnnovative Sports Training, Chicago, IL), was used. 

The magnetic tracker contains an extended range transmitter that permits accurate 

recording within a 12ft radius. A custom shirt, shoes and gloves are used to fix 15 

sensors adjacent to the joint axes of limbs under consideration. Each sensor provides 

displacement (x,y,z) and orientation (pitch, roll, yaw) of each limb segment. To facilitate 

testing a 3x4x6 foot area was calibrated, using an antropometer and square foot tiles to 

record 72 points, one point every O.304m (l ft) in ail three axis, defining sensor position 

in respect to the location of the transmitter coi!. The calibrated space had an accuracy of 

approximately O.005m. Each sensor has a sampling rate of 100Hz. 

5.5.1.2 Motor Performance 

Motor performance was quantified through the use of a rapid altemating 

movement (RAM) task, requiring pronation-supination cycling at maximal voluntary 
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speed and excursIOn. RAM was recorded simultaneously with WBIM usmg forearm 

rotational sensors. Two handballs were attached to the end of a lightweight wooden 

dowel, the other end of which was attached to a potentiometer, to detect rotational 

movements during pronation-supination, with a resolution of 0.3 degrees. The analog 

output from the potentiometer, sampled at 100Hz, was digitized and stored for analysis. 

5.6 Experimental Procedure 

Once participants are connected to ail sensors, they were asked to step onto the 

testing platform where a calibration recording was taken. During this recording 

participants were asked to stand upright with their arms at their sides, in anatomical 

position. Participants were then asked to stand with arms out in front for a period of 60 

seconds. Participants were seated and asked to hold the foam handballs, with arms bent 

at the elbows, approximately 3 inches, 120 degrees from their sides. Participants were 

instructed to maintain this position, at 'rest' for 20 seconds. They were then instructed, 

for a period of ten seconds, to perform pronation-supination of the dominant hand as fast 

and as complete a rotation as possible. Participants were asked to refrain from any other 

voluntary movement at this time, without restraining any involuntary movements that 

may occur. The non-dominant hand remained stationary during the RAM task. After ten 

seconds the participant was then asked to return to the rest state, both hands stationary, 

holding onto foam handballs, for another 20 seconds 'rest' recording. Three trials were 

recorded. Once the experimental procedure is completed, participants were debriefed 

and escorted out of the facility. 

5.7 Statistical Analysis 

A two-way analysis of variance (ANGYA) was used to determine the existence 

of group by condition interactions, with repeated measure for condition, for WBIM and 

amplitude of the opposite hand pre and during performance. Post hoc analysis was done 

to indicate which group comparisons yield significance. The Student Newman-Keuls 

method was used to test multiple comparisons because it utilizes a per contrast type 1 
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error rate whieh is less eonservative and affords greater power than the Tukey method 

(Glass & Hopkins 1970). A one-way ANOVA was used to determine statistieal 

signifieance of RAM performance variables, sueh as range, duration, veloeity and 

irregularity. A one-way ANOVA was also used to analyse WBIM by quadrant (i.e. 

upper/lower body, right/left side) to detennine if ehorea is topographie. 
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ABSTRACT 

Our goal was to deterrnine whether bradykinesia is present in choreic adult-onset 

Huntington's disease (BD) patients, and determine the impact of chorea on their 

voluntary movements. We recorded whole-body invoJuntary movements (WBIM) and 

voluntary motor acts simultaneously, using a magnetic tracker system, in fifteen choreic 

BD patients and fifteen healthy age-, gender-matched control subjects. Participants were 

asked to perform two distinct tasks; a rapid alternating movement (RAM) task, yielding 

measures of bradykinesia, and a manual-tracking (MT) task yielding a measure of 

chorea intrusion during accurate movements. Results show that patients with BD 

presented with deviations from the target that hindered their ability to match the target 

velocity during the MT task. Furtherrnore, error in performance was correlated with the 

amplitude of whole-body chorea (Rho = 0.67), illustrating the deleterious effect of 

chorea during accurate movements. However, patients with choreic BD presented with 

significantly higher RAM range and velocity than matched controls, therefore ruling out 

the idea that bradykinesia is a systematic feature of BD, even when chorea is 

predominant. The present results imply that patients may have benefited From an intact 

direct pathway ("select ON" pathway in the focused attention model of basal ganglia 

function) that allowed them to supersede any dysfunctions associated with the 

progressive alteration of the "control function" (striatal-globus pallidus-subthalamic) 

pathway responsible for generating the chorea. Finally, the present results suggest that 

patients with adult-onset BD having chorea would greatly benefit From improved 

treatments aiming at reducing their invoJuntary movements while maintaining proper 

motor function. Key Words: whole-body involuntary movements, chorea, basal ganglia, 

Huntington,kinetic 
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1. INTRODUCTION 

Huntington's disease (HD) is usuaJly considered a mixed movement disorder due 

to the presence of both hypokinetic and hyperkinetic symptoms, the most significant 

clinical feature of which is chorea (Weeks et al. 1997; BiJney et al 2003; Gardien & 

Vecsei 2004). There is ample evidence to suggest that the chorea itself negatively affects 

motor function, specifically accuracy (Bilney et al. 2003; Phillips et al 1996), reaction 

time (vanVugt et al. 2003; vanVugt et al. 2004; Jahanshahi et al. 1993; Kim et al 2004), 

sequencing and sub-movement cueing (Agostino et al. 1992; Curra et al. 2000), timed 

motor tests (Garcia-Ruiz et al. 2002) and gait regulation (Bilney et aJ.200S). Although 

there is extensive variability in motor symptom expression, the clinical features of 

typical adult onset HD are characterized by a progression from hyperkinetic to 

hypokinetic movements (Berardelli et al. 1999). Then, motor symptoms of RD may 

include rigidity, dystonia, akinesia and bradykinesia (Thompson et al. 1988; Berardelli 

et al. 1999; Bilney et al 2003; Hamilton et al. 2003; Gardien & Vecsei 2004). 

Aggravation of bradykinesia has been associated with a decrease in chorea, which in 

tum is related to a worsening of reaction time (vanVugt et al 2004). However, the time 

course of the appearance of bradykinetic features is still debated, especially since 

clinical and laboratory observations suggest that the two symptoms may coexist in both 

early and late stages of HD (Thompson et al. 1988; Joel 2001; Hasimoto et al. 2001; 

Kim et al 2004). Interestingly, past basal ganglia models suggest that bradykinetic and 

choreic features are the result of opposite neural disturbances (Albin et al. 1989; 

Alexander et al. 1986). More recently, Mink (2003) has suggested that chorea would be 

the result of impaired inhibition of competing motor pattern generators, and the presence 

of bradykinesia would be the result of the superposition of desired and undesired motor 

pattern generators. If this is indeed true, bradykinesia may simply be a result of 

biomechanical effect due to low signal-to-noise ratio, where the signal is the intended 

movement and the noise represents the involuntary movements. It then becomes 

important to make a distinction between "core" bradykinesia, which is the consequence 

of improper activation of cOl1ical structures by the basal ganglia-thalamo-cortical output, 
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as seen ln Parkinson's disease, and bradykinesia that is caused by mechanical 

disturbances, such as the intrusion of involuntary movements. Since the main treatment 

modality for chorea is to deplete dopamine wîth the potential side effect of drug-induced 

parkinsonism (Bonelli et al. 2004), determining whether "core" bradykinesia is a 

symptom of early HO, or simply the consequence of a low signal-to-noise ratio as 

described above, is imperative to assess whether accepted treatment may actually 

worsen an already existing and important feature of HD. Accordingly, the goals of the 

present study were: to isolate the impact of chorea on motor performance in patients 

with HD and determine whether "core" bradykinesia is being co-expressed with chorea 

during performance. In order to achieve this goal, whole-body involuntary movements 

(WBIM) were simultaneously quantified during two distinct mator tasks; a manual

tracking (MT) task that allowed for the quantification of choreic intrusions during 

ace urate movements, and a rapid altemating movement (RAM) task that provided a 

measure of bradykinesia. 
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2. RESULTS 
Table 2. Subject Characteristics 
Subject Agel Onset UHDRS Disease Inilial/general Meds 
# Gender Motor duration symplOins 
HD03 56/f March 33 3 Whole body chorea (iow Seroquel 25mg, effexor XR 75 mg, 

2003 amplilude, continuous). premarin 0.3 mg. progesterone 100 
(42 RAM normal mg, ditropan XL 5mg 
repeals) 

HD04 33/f Early 7 6 Chorea in exlremilies and Multivilamin 
2000 face, ram (evidence of 

chorealmild bradykinesia) 
HDOS 61/f 1994 10 Chorea, RAM mildly Zyprexa 2.5mg & % mg, 

impaired Temazepam 30mg. Bupropion SR 
150mg, Crestor 10mg 

HD06 54/f 2004 2 Mild-mod chorea, chorea Alivan 1 tablet, Tylenol #2, 
(43 of eyes. hands, lrunk & Meloxicam 15mg, Sertraline 

repeats) longue, RAM normal tablet 
I-[D07 36/m 2001 (43 5 SWled with twilching, Olanzapine 2.5 mg 

repeats) now choreic, RAM normal 
lID09 61/f Jan 2000 6 Started with Chorea in Imovane 7.5mg 

lower limbs, now 
generalized chorea, RAM 
abnormal in upper and 
lower 

"DOlO 50/f 2001 5 Gencralized chorea in Salmon oil, cenlrum omega 3, 
lrunk, limbs and legs Citalopram, I3esacoydyl, serroquel 

HDOll 62/f 1995 II Tremor since age of 30, Estrogen 0.9mg, Inderal LA 60mg, 
with anxiety and Novo gabapentin 300mg. 
depression, now choreic, Paroxeline 20mg, Codeine Contin 
RAM impaired 10 right 150mg, Clonazepam 0.5mg, 
upper limb Seroquel 200mg, Ibuprofen 400mg 

I-[DOI2 58/f April 5 Moderale generalized Aricept 5 mg. Oxybalynin 5mg, 
2001 chorea, RAM normal Larazepam, Omega 3 

HD013 63/m 2001 5 Generalized chorea. RAM Niloman J 2.5mg (letrabenazine), 
(43 abnormal wilh intrusion of celexa 20mg, L-thyroxin 

repeals) choreic in upper and lower 
limbs 

HDOl4 52/f 2001 17 5 Effexor 150mg, Clonazepam 
O.5mg, Estace, Glucomine (for 
artluitis). CoQIO 

HDOIS 64/m (42 53 2 Muscle rigidily ail 4 Iimbs, Quelrapine 200mg, Minazapine 45 
repeals) RAM impaired, chorea, mgh.s, Glyburide 2.5mg, 
initially dystonia upper righl Melformin 500mg, ocusate NA 
misdiagno 100mg, Ritazopine 
sed wilh 
Tourette's 
2004 

HDOl6 60/f 2004 (-41 2 Body and face chorea Indocid loomg, Eslrogen, 
repeats) Amitriptyline 50mg, Losec 20mg, 

Ativan, Elhyl EPA study 
HDOl9 79/f 2001 44 5 Ram slow wilh dyslonic Hydrochlorolhiazide 12.5mg, 

posturing[R], chorea Bisopiolo 7.5mg, Atorvastalin 
10mg, Ramipril 10mg, 
Nitrofurantoin 100mg, Alendronate 

HD20 50/m 1990 16 Chorea, no rigidity or Cogenlin 2mgx3, Olanzapine 
tremor IOmgx3, Salicylate 800mgx4, 

Haldol, Seroquel 150mgx2, Ferrous 
Flimerale, Clomipramine 50mgx2, 
Lactlliose 30mlx2, tylenoi 325mg 

Mean ± S6.9±12.3 S.6± 3.5 
SD 
Controls SS.2±13.8 
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FIGURE 4 illustrates the changes of WBIM amplitude during the rest and active 

conditions of MT and RAM. ANGVA reveals a group effect for WBIM during MT (F = 
17.111, P < 0.05) and RAM (F = 39.790, p < 0.05) confirming the presence of 

significant chorea at rest and during voluntary movements in the HO group. RAM 

movements generated a condition effect that was presént in both groups (F =10.530, p < 

0.05), but not during MT, which suggests that the increase of WBIM amplitude with 

voluntary movement is related to the velocity of the performed motor act. 
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Figure 4. Whole Body Movement (WBM) at rest and during activity. WBIM for manual 
tracking in displacement during MT (top) and RAM in the rest (gray) and active 
conditions. Amplitude was higher for the choreic HO group, confirming the presence of 
chorea in aU conditions. The amplitude of WBIM increased significantly during 
mOvement in both groups during voluntary movement, but significantly more during 
RAM. While the increased WBIM in the contrais could be qualified as motor overflow, 
the increase of WBIM in HO patients represents an increase of chorea. *significant 
difference within group at p < 0.05. **significant difference between groups at p < 0.05. 
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FIGURE S illustrates the amount of error (performance minus target) present 

during MT. In displacement, the difference did not reach the threshold for statistical 

significance (t=2S0, p=0.481), despite a c1ear trend towards more deviation from the 

target. The HO group exhibited high variability in elTor as well as WBIM amplitude, 

therefore, a correlation was done to determine if a relationship existed between these 

variables. Results indicate that indeed patients with higher WBIM presented with 

increased deviations from target (Rho=0.67, p<O.OS). Error in velocity (difference 

between the target velocity and performance velocity) was significantly higher for the 

HO group (t=340, p <O.OS), suggestive of a difficulty in matching the target velocity 

during the different phases of movement. 
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Figure S. MT Performance. Manual tracking performance is evaluated using error in 
performance. Although the Error in displacement (top) did not reach significance, 
patients demonstrated an increased difficulty in following the target. When examining 
their ability to match the target velocity (bottom) patients with choreic HO demonstrated 
significant error. This error was highly correlated with the level of chorea (Rho = 0.67). 
*significant difference between groups at p < 0.05. 

FIGURE 6 illustrates the RAM performance for RANGE, VELOCITY 

and IRREGULARITY. Patients with HO had significantly higher RANGE (t=4.398, 

p<O.OS) and VELOCITY (t=3.072, p<O.OS) than control subjects, suggestive of 

hypermetria. Although there was a trend towards a more irregular quality of 

performance in the HO group, differences did not reach significance (t=1.996, p>O.OS). 
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Figure 6. RAM Performance. Despite receiving similar instructions, patients 
with choreic lID presented with hypermetria, as they significantly had higher RANGE 
(top), and VELOCITY (middle) than age-gender matched controls. Since the velocity 
generated by subjects may be related to the range of movement, we also present results 
(bottom) from a subset group (six HD patients and their controls) who could be matched 
for equal RANGE. In that case, the VELOCITY generated by patients was equat to that 
of their matched controls, confirming that patients with choreic HD were able to develop 
fast movements. *significant difference between groups at p < 0.05. 

FIGURE 7 shows example of MT performance and RAM performance from one 

patient with lID who had c1ear choreic intrusions in their MT performance, but had a 

slightly better performance then the control subject during RAM. 
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Figure 7. Perfonnance traces. Examining the perfolmance of HO subjects compared to 
controls on a trial-by-trial basis reveals clear qualitative differences in performance 
signais. This example illustrates the typical motor performance, during one trial, of a 
patient with relatively high levels of chorea. The intrusion of choreic movement is 
readily visible during the MT task (4a). However, that same patient is able to perform 
the RAM task with greater amplitude and velocity than its counterpart in the control 
group (4b). While the "quantity" of movement is good, the "quality" is less discernable; 
the RAM movements present with more irregularity than the control subject. 
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3. DISCUSSION 

Chorea 

Patients had significantly greater WBIM compared to controls, confinning the 

presence of chorea. Beyond this confinnation, the effect of voluntary motor activity on 

amplitude of WBlM in patients with chorea is well demonstrated. Patients and controls 

both exhibited increased WBIM amplitude during motor activity, especially during 

RAM, with the BD group providing the most dramatic example of this trend. While the 

increased WBIM in the control group could be characterized as motor overflow, the 

increased WBIM in the BD group is the result of increased chorea. These results are 

similar to those of dyskinetic PD patients, where increased dyskinesias were observed 

during voluntary motor acts (Ghassemi et al. 2006; Lemieux et al. 2007). This may 

imply that both PD and BD hyperkinetic symptoms are sensitive to increased cortical 

facilitation brought about by neural activity related to voluntary movements. 

MT 

Patients with BD expressed a significantly greater amount of error in velocity 

during the MT task compared to controls. There was a direct correlation between the 

magnitude of chorea and performance error, in both displacement and velocity. We 

found no correlation between disease duration and age with perfonnance variables. This 

suggests a predominant influence of chorea on manual tracking in patients with BD, and 

the greater the chorea, the greater the difficulty in completing such precision target

oriented tasks. Differences between groups for displacement did not reach significance, 

which suggests that velocity errar differences are influenced by small deviations from 

the target which are corrected quickly, but none the less register as movement away 

from the target. It is reasonable then to suggest that the deviations from target were a 

direct cause of choreic intrusions in the motor performance. 
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RAM 

Patients with HD had RAM performance superior to that of controls, suggesting 

that patients were able to perform fast repetitive movements, despite significant 

increases in WBIM during activity. The HD group displayed a tendency for more 

irregularity of performance, which although not significant, highlights a difference in the 

quality of performance between groups. This evidence rules out the existence of "core" 

bradykinesia in patients with chorea, and suggests that bradykinesia reported in the 

literature is due to the use of tasks that had a low signal-to-noise ratio (here we imply 

that the noise is the chorea and the signal is the intended movement). For instance, 

several studies utilized tasks requiring multi-joint movements where purposeful slowing 

of movement was surely needed to compensate for choreic intrusions during precise 

motor acts (Kim et al 2004; Befter et al. 1987; Verbessem et al. 2002; Shaft et al 2003; 

Lemay et al 2005; Boulet et al 2005) Patients with HD have shown difficulty in 

sequencing multi-joint movement and sub-movement cuing (Agostino et al. 1992; Curra 

et al. 2000); this fact may facilitate the recording of mechanically-induced bradykinesia 

in patients, due to the exaggerated time-scale of each component of a multi-joint 

movement, highlighting the presence of any direct influence of chorea on pace of 

movement (vanVugt et al. 2003; vanVugt et al. 2004; Boulet et al. 2005;). Accordingly, 

slowness of performance recorded in previous studies (Jahanshahi et al. 1993; Garcia

Ruiz et al. 2002; Verbessem et al. 2002) may have been the result of chorea. Then, to 

compensate for involuntary choreic movements, subjects may have attempted to 

"voluntarily" slow their performance in favour of accuracy. Another possibility is the 

fact that cognitive symptoms, which are well-described in HO, may have also 

contributed to bradykinesia being detected in other studies, as the complexity of the task 

used may have been higher in sorne experiments. The simple nature ofour task limited 

the influence of bradyphrenia on the performance of patients. Interestingly, results 

obtained using our device did not correlate with clinical observations that RAM were 

problematic in these patients. This probably stems from the fact that clinical RAM 
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differs greatly as it requires patients to either tap repetitively the index on the thumb, or 

tap the palm and dorsum of the hand on the knee, in an altemating fashion. Both these 

tasks possess a lower signal-to-noise ratio compared to full pronation-supination 

movements. 

IMPLICATlONS FOR CURRENT BG MODELS OF CHOREA 

Selective atrophy of the brain in RD occurs ln the globus pallidus and 

subthalamic nucleus, with the most severe effects reserved for the corpus striatum 

(Sharp & Ross 1996). In the neostriatum, the medium spiny neurons degenerate early, 

while the larger aspiny intemeurons are left intact (Albin et al. 1989; Albin et al. 1990; 

Hedreen & Folstein 1995; Reiner et al. 1988). The specific cause of chorea seems to 

correspond to an early selective loss of GABAergic neurons expressing enkephalin (D2) 

situated in the indirect pathway (Reiner et al. 1988). In HD, the degeneration of D2

mediated striatal neurons causes a disinhibition of the lateral pallidal projections to the 

subthalamic nucleus. This causes the subthalamic nucleus to be exceedingly inhibited. 

The chorea, then, would be generated by a loss of subthalamic excitatory influence upon 

the medial pallidal neurons, yielding a decreased pallidothalamic inhibition upon 

thalamo-cortical pathways (Joel 2001). Consequently, the presence of chorea 

corresponds to a fundamental interruption of the indirect pathway, which involves the 

striatal-extemal paJlidum, subthalamic nucleus and Gpi (Crossman et al. 1988; Jackson 

& Crossman 1984; Mitchell et al. 1989). Later in the disease, a decrease of,thalamo

cortical acti vity can be seen when bradykinesia and rigidity, rather than chorea, are the 

predominant symptoms (Weeks et al. 1997). Then, it is postulated that GABAergic 

neurons of the direct pathway may begin to die. However, it is possible that the direct 

pathway may begin to be affected in the earlier stage when chorea is present (Joel 2001). 

The fact that patients participating in the present study were able to perform fast 

movements as weil as controls may suggest an intact direct pathway. Voluntary 

movements are then facilitated by an intact direct pathway, while chorea would be 

generated by dysfunction of the indirect pathway. The present results also suggest that 
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two competing motor programs do not necessarily cause bradykinesia, as long as the 

signal-to-noise ratio is high. This is what we can observe during the RAM task. As 

soon as this ratio drops, as seen in the MT task, the undue influence of chorea becomes 

clear. The results may also suggest that an intact direct pathway (select ON pathway as 

described in the focused selection model from Mink, 1996) supersedes a dysfunctional 

"control function" (the equivalent of the indirect pathway in the Delong's model) 

pathway, since patients were able to generate fast movements. This was the case for 

patients with PD having dyskinesias where bradykinesia was detected with involuntary 

movements (Ghassemi et al. 2006). In that study, the performance was not correlated 

with either the amplitude of dyskinesias, rigidity or tremor, suggestive of the presence of 

"core" bradykinesia concomitantly with peak-dose levodopa-induced dyskinesias. 

Another interesting finding in the present study, and in the study of dyskinetic PD 

patients (Ghassemi et al. 2006; Lemieux et al. 2007) is the increased amplitude of 

involuntary movements during voluntary motor acts. This suggests that the efficacy of 

the hyperdirect pathway, or select OFF pathway (Mink 1996), is limited in these 

hyperkinetic disorders. This pathway has been linked to inhibition of motor behaviors 

(Nambu et al. 2002; Aron et al. 2006), and is proposed to be the main inhibitor of 

competing motor patterns in the focused attention model of Mink (1996). 

CLINICAL IMPLICATlONS 

The relevance of this study revolves around the clinicat costlbenefit analysis of 

clinically treating chorea in patients with lID. Prior studies have suggested the onset or 

aggravation of bradykinetic features of the disease with drug treatment for chorea 

(Bonelli et al. 2004). The present study has determined conclusively that chorea disrupts 

performance in tasks requiring accuracy, but that "core" bradykinesia is not a feature of 

lID when chorea is present. This fact strongly suggest that any bradykinesia detected 

after dopamine antagonist administration is the result of the drug effect, not simply an 

aggravation of an underiying sJowness of movement that has begun to develop 

simultaneously with the presence of chorea. It may also suggest that patients who do 
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present with severe hypokinesia or bradykinesia after dopamine antagonist 

administration may have already begun the transition from the hyperkinetic phase to the 

hypokinetic phase of the disease. Then, the medication may simply catalyze this 

transition. This hypothesis, however, remains to be confirmed. Interestingly, the patient 

base used in this study received a wide variety of drug treatments, and dosages. After 

examining subgroups of patients based on their medication regimen, no relationship was 

found between drug intake and RAM performance. Robust significance and correlation 

between variables rules out the possibility that other factors such as mild cognitive 

impairments, oculomotor deficits, or sensorimotor integration deficits influenced motor 

performance. 

Based on the fact that "core" bradykinesia is absent in patients with HO chorea, 

that chorea was mostly responsible for elTors during the MT task, and that chorea may 

have played a significant role in the bradykinesia found in other studies uti lizing low 

signal-to-noise ratio tasks, it is reasonable to suggest that chorea, when present, is 

predominantly responsible for motor dysfunctions in patients with HO, and should be at 

the centre of symptomatic treatment of early HO. 

CONCLUSIONS 

Our results unequivocally show that bradykinesia is not a systematic feature in 

BD when chorea is predominant, but that chorea is a main source of error in 

performance during accurate movements. Accordingly, patients with BD would greatly 

benefit from treatments aimed / at reducing chorea whi le maintaining proper motor 

function. In addition, this study may be t~e first to indicate a clinical validation of 

differential degeneration of the indirect vs. direct pathways and their relationship to 

chorea and bradykinesia, thereby adding to cun"ent models of basal ganglia dysfunction 

in lID. 
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4. EXPERIMENTAL PROCEDURES 

Participants 

Thirty participants, fifteen patients with HO (12 women, age: 56 ± 12) and 

fifteen age/gender matched control subjects (12 women, age: 55 ± 13) were tested. 

Patients were recruited through the London Health Sciences Movement Disorders 

Clinic. Control subjects were recruited from the general population. Each participant 

provided inforrned consent. Choreic RD patients, diagnosed with adult onset HO, with 

little to no psychiatric disturbance that may impede their understanding of the tasks were 

included in the study. Individuals expressing bradykinesialakinesia as the prominent 

motor symptom or severe psychîatric symptoms were not eligible for participation. Age

matched controls were free of any neurologic or motor disturbances. Ali experiments 

were approved by the institutional Human Research Ethics Board. 

Quantification of Whole-Body Involuntary Movements (WBlM) 

In order to capture whole-body chorea in 3 dimensions, a 6-degrees-of-freedom 

electromagnetic measurement system, the MotionMonitor™ magnetic motion tracker 

was employed (lnnovative Sports Training, Chicago, Illinois). This methodology has 

been validated in dyskinetic patients with Parkinson's disease. Details on the apparatus 

and experimental procedures are described elsewhere (Ghassemi et al. 2006; Lemieux et 

al. 2007; Gour et al. 2007). In brief, subjects were outfitted with a custom shirt, Velcro 

bands, gloves and shoe covers onto which 15 sensors (receivers) that provided time 

series signaIs of both position (x, y, z) and orientation (pitch, yaw, roll) were attached. 

They were placed adjacent to the joint axes, such as the posterior surface of the head, the 

first thoracic vertebrae, sacral bone, superior spine of the scapulae, lateral surface of the 

forearms and upper-arms, back of the hands, as weIl as the lateral aspects of the calves 

and dorsal surface of the feet. During the calibration phase of the experiment, each 

sensor was then assigned to the Center of Mass of the limb by way of a digitization 

process. Using a stylus receiver, bony landmarks were palpated, and the centroid method 
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was used to form coordinate systems at the Center of Mass of each limb segment. Based 

on the height and weight of the subject, and using integrated anthropometric tables, an 

automated algorithm assigned a particular sensor to the Center of Mass of the Iimb on 

which it was positioned. 

Motor tasks 

Manual tracking (MT) 

Participants were seated and asked to hold, in each hand, a foam handball that 

was attached to rotational sensors. Recordings were taken in this position for 60 seconds 

to provide data for the 'rest' or inactive condition. Then, participants were asked to 

match the position of a computer generated horizontal target line (generated by 

DasyLab8.0 software, DASYTEC, National Instruments Company, Amherst NH) with a 

line they controlled via pronation-supination movement of the dominant hand only. The 

target line was presented on a large projector screen placed 1.5 meters in front of 

participants. The tip of the target line moved from left to right, at a variable velocity 

(between 0.25 to 0.75 HZ), and amplitude (20 to 120 degrees). Although the target 

displacement remained similar between trials, it was not possible for participants to 

antici pate changes of either target amplitude or velocity due to the irregular nature of its 

displacement. They were given the opportunity to practice the task prior to recording in 

order to familiarize themselves with the actions required to match the moving target. 

Three trials in the rest and active conditions were recorded. A pause of one minute was 

given between trials so that participants may rest their arms. This task was previously 

used and proven effective to detect intrusions of large involuntary movements such as 

levodopa-induced dyskinesias (Lemieux et al. 2007) or PD tremor (Duval et al. 2001; 

Duval et al. 2006) during voluntary movements. 

Rapid alternating movements (RAM) 

For the RAM task, testing included three trials of 60 seconds during which 

participants were instructed to maintain the 'rest' position described above for 20 
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seconds, arms bent at their side, holding one foam bail in each hand. Subjects were then 

instructed to perform pronation-supination of the dominant hand as fast and as complete 

a rotation as possible, for a period of ten seconds. After ten seconds the participants 

were asked to return to the rest state for the remaining 20 seconds. Three trials were 

recorded in each condition with periods of rest in between trials. RAM tasks have been 

validated by us (Duval et al 2001; Duval et al 2006a; Duval et al 2006b; Ghassemi et al 

2006) and others [Okada & Okada 1983; Beuter et al. 1999; Fimbel et al 2005] .to 

measure slowness of movement in different populations, and represent the ability of 

subjects to generate high velocity and to main tain it for several seconds. It is a natural 

movement that has little to no learning curve associated to il. Furthermore, this task is 

purely internally generated, which is known to utilize basal ganglia (Cunnington et al 

2000). In fact, activation of the putamen and globus pallidus is known to be related to 

the velocity (Cunnington et al 2000; Turner et al 1998) and amplitude of movement 

(Turner et al 2003). AIso, this task has relatively large amplitude in displacement and 

velocity, which reduces greatly the likelihood of biomechanical effect, and is simple 

enough to minimize greatly the influence of cognitive problems known in both diseases 

studied, which renders this task ideal to detect "core bradykinesia" 

Signal Analysis
 

Whole-body involuntary movements (WBIM)
 

Each sensor time seties was divided into 7-second epochs. Then, the mean 

position for x, y, and z was subtracted from the actual position of x, y and z, yielding a 

displacement time series around a neutral position for each of the epochs. We then 

squared the root mean square (RMS) values for each of the x, y and z time series, and 

calculated the mean of these three squared RMS values. Finally, we computed the root 

of this mean, thus yielding three-dimensional vectorial amplitude for each sensor. 

Values obtained from each 7-second epoch were then averaged. WBIM amplitude was 

determined by computing the sum of all these mean vectorial amplitudes over all 
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sensors. Sensors allocated to the performing limb (i.e., hand, forearm and upper arm) 

were excluded From analysis. WBIM was calculated in both displacement (meters) and 

veloci ty (mes-1). 

MT 

To quantify displacement. ERROR (in degrees) for the MT performance, the 

target line was subtracted from the subjects' performance. Then, the mean of the 

absolu te values of the remaining signal was computed. ERROR velocity was also 

calculated by subtracting target velocity From the velocity of performance, obtaining an 

ERROR value in deges- 1
• The goal was to determine if differences existed between 

groups in their abi litYto match target velocity. 

RAM 

An automated algorithm was used to identify each peak and trough of the 

pronation-supination cycle. Three characteristics were then calculated: range, velocity, 

and irregularity. Range is the mean angular displacement over a complete pronation

supination cycle in degrees. Velocity represents the maximal instantaneous velocity 

From peak to peak, and is provided in degrees per second. Irregularity is a measure of the 

variability in RAM amplitude. Only the first seven seconds of the pronation-supination 

cycles were analysed for RAM performance as fatigue may confound results (Ghassemi 

et al. 2006; Duval et al. 2006; Duval et al. 2001). 

Statistics 

To date, no studies have analysed WBIM and motor performance in patients with 

HD and controls, nor compared motor performance using the motor tasks proposed here. 

However, based on results obtained in a previous study in dyskinetic Parkinson's disease 

patients (Ghassemi et al. 2006) a minimum of 2 subjects is needed to obtain a power of 

0.80 for comparison of Wl?IM amplitude between patients and controIs. For 
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performance measures such as range and velocity, 15 subjects are required for 

comparison to obtain a power of 0.80. In order ta compare group (patients vs controls), 

condition (rest versus active), and group x condition interrelations, we used a two-way 

analysis of variance (ANOVA), with repeated measures for condition. Post hoc analysis 

(Newman-Keuls) was used to indicate which group comparisons yielded significance. 

T-tests were used to determine statistical significance between groups for each RAM 

and MT performance characteristic. Finally, we used Spearman's Rank correlations to 

ex.amine possible interactions between age, disease duration, WBIM amplitude and 

motor performance characteristics. The threshold of significance was set at p < 0.05 for 

ail aforementioned measures. 
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7. GENERAL CONCLUSION
 

We hypothesized that chorea in patients with BD would be aggravated by stress, 

I.e. increased by performing a motar task, and that chorea would not be the cause of 

bradykinesia when both symptoms are present. 

It became obvious during testing that in order to fully capture the dynamics of 

motor performance in patients with HD, the RAM task must be accompanied by one that 

isolates intrusions of chorea during movement, hence providing a measure of chorea's 

influence on motor tasks demanding accuracy. Accordingly, we also included in our 

result section the motor performance of participants during a manual-tracking (MT) task, 

which would compliment and broaden implications of performance outcomes. 

Our study illustrated that chorea indeed increases du ring voluntary movement, 

across several motor tasks, in patients with BD. The absence of bradykinesia in patients 

with BD in our study suggest that slowness of movement reported in the literature may 

be due to inappropriate signal to noise ratio of performance tasks (Agostino et al. 1992, 

Curra et al. 2000, Hefter et al. 1987, Verbessem et al. 2002), which were unable to 

distinguish between influence of chorea and bradykinesia. In fact, chorea may have been 

directly implicated in the slowness of movement, when present. Also, the effect of 

disease phase and expression cannot be ruled out as a factor in the presence of more 

hypokinetic features of BD in these previous studies. It is hard to determine what the 

source of this bradykinesia was, as previous studies have not simultaneously recorded 

chorea with performance measures. 

Our results also support previous hypotheses (see model by Penney & Young, 

Weeks et al. 1997, Reiner et al. 1988) that suggest that the direct pathway remains intact 

during the most 'choreic' phases of adult onset HD. This compliments our original 

hypothesis, illustrating that the presence of chorea in patients with BD does not cause 

bradykinesia during a motor task. 

This study has shown, through correlations between whole-body involuntary 

movements (WBIM) and error in performance in displacement and velocity, that chorea 
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is the main source of perfonnance en-or in subjects with choreic HO, and therefore, 

warrants therapeutic development and aggressi ve treatment. 

Strengths of the Present Study 

The current study is the first to simultaneously WBIM and motor performance in 

patients with HO chorea. The quantification of movement in 3-dimensions provides a 

foundation for the analysis of innumerable characteristics and qualities of who le-body 

voluntary and involuntary movements that are crucial for understanding human 

movement in health and disease. 

The measures incorporated in this study, i.e. rapid altemating movement and 

manual tracking tasks, were able to isolate, with exceptional precision, the impact of 

hypo- and hyper- kinetic features of movement in these subjects, shedding light on the 

dynamic interrelationships between voluntary and involuntary movement in RD. In 

order to full y understand and effecti vely treat symptoms of movement disorders, such as 

RD, there must be an acknowledgment of the effects of each symptom in isolation and 

interaction with one another. These measures enable the isolation and comparison of the 

effects of hypo- and hyperkinetic movement, providing a foundation on which to build a 

better model of the pathways eliciting the concomitant release of hypo-, hyperkinetic 

motor symptoms, as weIl as voluntary motor behaviours. 

Limitations of the Present Study 

Limitations of the present study include subject number, variability of subject 

characteristics and lack of clinical rating scale data. Although subject number was low, 

n=15, this number satisfied statistical requirements for the comparison of both WBIM 

measures and those of motor perfonnance on rapid altemating and tracking tasks (see 

power calculation in statistics section). In fact, this study represents one of the largest 

studies using quantitative methods to examine chorea and its impact on voluntary 

movements. 
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It became obvious during testing that our inclusion criteria were unrealistic and 

would severely limit the context and implications of our work. Therefore, we increased 

the breadth of our inclusion criteria so as to add those receiving medication and who use 

assistive devices. Subjects varied in age, disease duration and medication type/dosage. 

Despite the challenge this variability in subject characteristics may have posed, we 

recorded robust trends in performance and magnitude of WBIM that diminished the role 

any one factor may have had on findings. Surprisingly, almost ail patients showed 

similar levels of performance in both tasks, reducing greatly the variance within that 

group. 

We were unable to obtain UHDRS clinical rating data for ail subjects. However, 

keeping in mind that the purpose of this study was not to correlate UIIDRS scores with 

performance on our motor tasks, in addition to the fact that WBIM values clearly show 

that HO subjects tested were choreic, this limitation did not compromise the findings of 

this study in any way. 

Qualitative analysis of recordings in both patients with HO and control subjects 

raised the issue of movement strategies (i.e. upper and lower arm involvement in the 

completion of pronation-supination activity) utilized during motor tasks. It became 

apparent that the variability in strategy, and therefore amount of movement in the 

perfonning arm, was significant. For instance, sorne subjects had their elbow moving 

more than others during the RAM or MT. Therefore, to remove the influence of 

'movement strategy' on whole-body displacement during recording, we removed the 

performing arm sensors (those located on the hand, lower and upper arm of the 

perfonning ann) from calculations of whole-body movement. Removal of these 

performing arm sensors did not impact significance between groups on any of the 

variables compared. 

Future Implications and Research 

In future work continuing in the analysis of motor performance in RAM and MT 

tasks, adding grip force quantification would allow for another dimension of movement 
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interaction. Grip force recorded simultaneously with WBIM will provide insight into the 

dynamics of performance, which grip force alone, is unable to provide. This would 

synchronize muscle activation with behavioural output and allow compatison of 

activation levels and points of error or accuracy in performance. 

Analysis of patterns in WBIM, in a topographical, as weil as mathematical sense 

would continue to shed light on the charactetistics of involuntary and voluntary 

movement. AIso, compating the present data with that of other disorders with similar 

clinical manifestations could greatly increase our understanding of subtle similarities 

and difference in types of involuntary and voluntary movements in basal ganglia 

. disorders. 

Future research and therapy should focus on the efficient tailoring of medication 

to reduce chorea while maintaining optimal motor performance, i.e. avoiding sedative 

effects of overmedication. Manipulating dosage and medication schedules would enable 

peak performance of anti-choreic agents, enhancing efficiency on scales of both 

economy and quality of life. Analysis of the relationship between pathophysiological 

variables, such as CAG repeats and volumetric fluctuations, would enable a more 

comprehensive understanding of how structural and behavioural changes in the time

course of disease progression may alter the final out-put of motor organization and 

pathways. This information is not only fundamental in understanding Huntington's 

disease and other basal ganglia disorders, but will enhance our understanding of these 

basic pathways in healthy conditions as weil. Quantification of WBJM, simultaneously 

with motor performance, is an integral stepping-stone in the comprehensive analysis of 

the cause and progression of movement disorders. 

Continued research which incorporates simultaneous 3-dimensional capture of 

whole-body movement is, we believe, pivotai to advancement and discovery in basal 

ganglia disorders. 
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Le comité suit les règles de constitution et de fonctionnement de l'Énoncé de Politique des trois 
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Vous souhaitant la meilleure des chances dans la poursuite de vos travaux, Je vous prie 
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Comité d'éthique de la recherche 
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74 

ANNEX-S ETHICS CRIUGM
 



,.",.:._// 
~ ", .. " l.",->e, ~~"-~ENTRE DE RECHERCHE 
"., • ..4' -. - .._--~_. _._...- ...- .- -..-" ....- ... -" .. . .. 
",.- . INSTITUT UNIVERSITAlRE DE GÉRIATRIE DE MONTRÉAL ....' .. ,"' ._"'............,:\ ---..--.-..-..- ,., .. ~-_." -.~ .._~_ ..,-_ - . - ,-_.. -_._,.,.."._.,-~ 

t\rjïli~ il l'IJniv~r,il~ de MOn(r~nl'~·tiié.1 

Le 22 juin 2006 

Dr Christian Duval
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4565, chemin Queen Mary
 
Montréal (Québec)
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Objet:	 Votre projet intitulé: «Étude des mouvements involontaires et volontaires chez les 
personnes ayant la maladie de Parkinson ou la maladie de Huntington» (projet 2006
0604) 

Docteur Duval, 

Le projet cité en rubrique a été réévalué par le Comité d'évaluation scientifique (CÉS). Les précisions 
et améliorations apportées au projet rencontrent nos critères d'évaluation (formulaire d'évaluation ci
joint). Par conséquent, votre projet est approuvé par le CES. 

Je vous souhaite le meilleur succès possible dans la réalisation de votre étude. 

Je vous prie d'accepter, Docteur Duval, l'expression de mes meilleurs sentiments. 

Louise Demers, Ph.D, OTee)
 
Présidente du comité scientifique
 

cc: Paule Savignac, Présidente du CÉR 
Gisèle Semerj ian, Secrétariat, CÉR 
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FORMULAIRE DE CONSENTEMENT
 
À VOTRE PARTICIPATION À UN PROJET DE RECHERCHE
 

TITRE DU PROJET:	 Étude des mouvements involontaires et volontaires chez les 
personnes ayant la maladie de Parkinson ou la maladie de 
Huntington 

RESPONSABLE:	 Dr Christian Duval PhD, professeur en 
Kinanthropologie à l'Université du Québec à Montréal 
et chercheur à l'Institut Universitaire de Gériatrie de 
Montréal. 

COLLABORATEURS:	 Dr Sylvain Chouinard, NID, Clinique des troubles du 
mouvement, Hôtel-Dieu, CHUM. 

Dr Pierre Blanchet, MD, Clinique des troubles du 
mouvement, Hôtel-Dieu, CHUM. 

OBJECTIF DU PROJET:	 Le but général de la recherche est de détenniner quel est 
l'impact de ces mouvements involontaires sur les 
mouvements volontaires des personnes atteintes de 
l'une ou l'autre de ces maladies. 

Nous vous demandons de participer à un projet de recherche. Cependant, avant 
d'accepter de participer à ce projet de recherche, veuillez prendre le temps de lire, de 
comprendre et de considérer attentivement les renseignements qui suivent. 

Ce formulaire de consentement peut vous explique le but de cette étude, les 
procédures, les avantages, les risques et inconvénients, de même que les personnes 
avec qui communiquer au besoin. 

Le présent formulaire de consentement peut contenir des mots que vous ne 
comprenez pas. Nous vous invitons à poser toutes les questions que vous Jugerez 
utiles. 

18 septembre 2006. Certificat éthique #2006-0604 1 



LIEU DE VOTRE PARTICIPATION: 

Votre participation à cette étude se déroulera au centre de recherche de l'institut 
universitaire de gériatrie de Montréal (4565, chemin Queen Mary, Montréal, Québec, 
H3W 1W5, Canada). 

NATURE ET DURÉE DE VOTRE PARTICIPATION: 

Votre participation se limitera à une seule visite, d'une durée d'environ trois 
heures au total. Premièrement, on installera des senseurs par-dessus vos vêtements à 
l'aide de bandes élastiques et de velcro. Par la suite il y aura une période de calibration 
des appareils qui durera environ 15 minutes. Après cette période de calibration, on 
vous demandera de faire trois tâches motrices; la première consistera simplement à 
vous tenir debout, les bras à l'horizontal en avant de vous, et ce pour 60 secondes. 
Durant celle-ci, on vous demandera de compter à rebours de 100 à 0, en soustrayant le 
nombre 7 à chaque fois. Le but de cet exercice est simplement de maintenir votre 
attention durant la tâche. La deuxième tâche consistera à tenir une balle de mousse 
dans chaque main, en position assise. Au signal de l'expérimentateur, vous ferez des 
mouvements de pronation/supination (corrune tourner une poigné de porte), et ce le 
plus rapidement possible pendant 10 secondes. Finalement, la dernière tâche 
consistera à suivre une ligne située sur un écran devant vous avec une autre ligne que 
vous contrôlerez par des mou vements de pronation/supination. Cette tache aura une 
durée de 60 secondes. 

Chacune des tâches mentionnées sera répétée trois fois, avec une pause d'une 
minute entre les tâches. Ces explications vous seront répétées durant 
l'expérimentation. 

AVANTAGES POUVANT DECOULER DE VOTRE PARTICIPATION: 

Votre participation à cette expérience vous offre la possibilité de contribuer à 
l'avancement des connaissances scientifiques en permettant d'étudier les effets des 
mouvements involontaires sur les mouvements volontaires dans la maladie de 
Huntington et Parkinson. 

INCONVENIENTS PERSONNELS POUVANT DECOULER DE VOTRE PARTICIPATION: 

Il n'y a aucun inconvénient direct pouvant découler de votre participation. 
Cependant, votre participation peut impliquer une perte de temps liée à mes 
déplacements et au nombre de séances prévues par la recherche. Assurer vous que 
vous comprenez également qu'il est possible que vous ressentiez un certain état de 
fatigue au cours de votre participation. 

18 septembre 2006. Certificat éthique #2006-0604 2 



RISQUES POTENTIELS: 

Il n'y a aucun risque connu associé aux appareils de mesures utilisés dans la 
présente étude. Le seul inconvénient possible serait de ressentir une certaine fatigue 
une fois l'expérimentation terminée. Afin de minimiser cette fatigue, nous prévoyons 
de nombreuses pauses durant l'expérimentation. 

COMPENSATION MONETAIRE: 

Aucune compensation monétaire n'est remise pour participer à l'étude. 
Cependant des frais de déplacement jusqu'à un maximum de $20.00 pourront être 
remboursés sur présentation de factures. 

INFORMATIONS CONCERNANT LE PROJET: 

On répondra aux questions que vous poserez à propos du projet de recherche 
auquel vous accepter de participer. La divulgation de ces informations ne concernera 
pas voss propres résultats individuels. 

RETRAIT DE VOTRE PARTICIPATION: 

Il est entendu que votre participation au projet de recherche décrit ci-dessus est 
tout à fait volontaire, et que vous êtes à tout moment libre de mettre fin à celle-ci sans 
avoir à motiver votre décision, ni à subir de préjudice de quelque nature que ce soit. 
Le retrait de votre participation n'affectera d'aucune façon les services ou les 
traitements ultérieurs qui vous seront offerts. A votre demande, les données vous 
concernant pourront être détruites. 

ARRÊT DU PROJET PAR LE CHERCHEUR: 

Votre participation au projet peut être interrompue si des circonstances 
particulières surviennent comme, par exemple, des problèmes de santé pouvant 
affecter votre performance. 

AUTORISATION DE TRANSMETTRE LES RESULTATS: 

J'autorise les personnes responsables de ce projet à transmettre les résultats de 
mon évaluation à mon médecin traitant si cela était pertinent: OUI () NON ( ) 

Nom et adresse du médecin traitant: 

18 septembre 2006. Certificat éthique #2006-0604 3 



------------

CONFIDENTIALITE: 

Il est entendu que les observations effectuées en ce qui vous concerne, dans le 
cadre du projet de recherche décrit ci-dessus, demeureront strictement confidentielles. 
Votre dossier sera codé de façon à ce qu'il demeure confidentiel et gardé dans une 
filière sous clé, où seuls les responsables du projet y auront accès. Les données 
nooùnales (nom, adresse ou toute autre indication) seront conservées pendant 5 ans et 
détruites ou anonymisées à la fin de ce délai. Pendant ces 5 ans, les données 
nooùnales seront conservées dans un fichier à part des données scientifiques. En cas 
de présentation des résultats de cette recherche ou de publication dans des revues 
spécialisées, rien ne pourra pennettre de vous identifier ou de vous retracer. 

Une exception sera faite dans les cas où les données de recherche devraient être 
révisées par un comité de déontologie, le comité d'éthique de la recherche ou par les 
organismes qui subventionnent cette recherche. Les membres de ces comités sont 
tenus de respecter les exigences de confidentialité. En outre, un tribunal peut, par 
ordonnance, autoriser un tiers à consulter les données de recherche vous concernant. 

SIGNATURES, précédées des noms écrits en lettres moulées: 

Je déclare avoir lu et pris connaissance du projet, de la nature et de l'ampleur de 
ma participation, ainsi que des risques auxquels je m'expose tels qu'exprimés dans le 
présent formulaire. 

Nom du participant Signature du participant 

Fait à le _ 

Je, soussignéee) , certifie: 

a) avoir expliqué au signataire intéressé les termes du présent formulaire;
 
b) avoir répondu aux questions qu'il m'a posées à cet égard;
 
c) lui avoir clairement indiqué qu'il reste à tout moment libre de mettre un terme à sa
 

participation au projet de recherche décrit ci-dessus. » 

Nom du chercheur ou de son représentant Signature du chercheur ou de son représentant 

Fait à , le _ 
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ACC~SAUXCHERCHEURS: 

Le responsable du projet, Dr Christian Duval, chercheur et professeur, peut être 
rejoint aux deux endroits suivants: 

Centre de recherche de l'Institut universitaire de gériatrie de Montréal 
4565, chemin Queen Mary, Montréal, Québec, H3W 1W5. 
Tél. : (514) 340-3540. 

Département de Kinanthropologie 
Université du Québec à Montréal 
Case postale 8888, succursale Centre-Ville 
Montréal, Québec, H3C 3P8 
Tél. : (514) 987-3000 poste 4440 

EN CAS DE PLAINTE 

Pour tout problème éthique concernant les conditions dans lesquelles se déroule 
votre participation à ce projet, vous pouvez, après en avoir discuté avec la personne 
responsable du projet si possible, faire part de vos préoccupations à la responsable des 
plaintes de l'Institut universitaire de, gériatrie de Montréal à l'adresse suivante: 
Madame Denyse Marier, Commissaire locale à la qualité des services Institut 
universitaire de gériatrie de Montréal, 4565, chemin Queen Mary, Montréal, Québec 
H3vV 1W5, téléphone (514) 340-3517. 

INFORMATIüN SUR LA SURVEILLANCE ÉTHIQUE 

Le comité d'éthique de la recherche de l'Institut universitaire de gériatrie de Montréal 
a approuvé ce projet de recherche et s'assure du respect des règles éthiques durant tout 
le déroulement de la recherche. Pour toute information, vous pouvez rejoindre le 
secrétariat du comité d'éthique de la recherche au (514) 340-1424 poste 3250. 
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ANNEX-7 CONSENT ENGLISH
 



Université du Québec à Montréal 
Study of voluntary and involuntary movements in Park.inson's disease and Huntington's disease 

" \ /./ 
--~-
~ Z;;::irTUT UNIVERSITAIRE DE GÉRIATRIE DE MONTRÉAL UQÀM 

Univmité du Ouéhec àMontréalCHUM 

Consent Form to Participate in Research 

A. Introduction 
1 being asked to partlclpate ln a research study 

involuntary movements in Parkinson's disease or Huntington's disease. 

It is important that 1 read and understand the nature of this study, duration, number of 
vlstts, benefits and risks. 1 should discuss any questions that concem me with the study team. 
This research project is supervised by Christian Duval PhD, from the Department of 
Kinanthropologie at Université du Québec à Montréal. This research project is conducted in 
collaboration with Dr Michel Panisset MD, Sylvain Chouinard MD, and Dr Jean-Pierre Blanchet 
MD PhD. From the movement disorders cIinic at the Hotel-Dieu Hospital (CHUM) The 
research team also inciude Alison Fenney, a Graduate student at the Université du Québec à 
Montréal. 

B. Purpose 

Patients with either Parkinson's disease or Huntington's disease may suffer from 
involuntary movements. We intend to determine the impact of these involuntary movements on 
your daily activities. 

C. Procedures 

Approximately 14 patients with Parkinson's disease and 14 patients with Huntington's 
disease showing involuntary movements will participate in this study. In addition, ten subjects 
free of neurological disease will participate (control group). The total duration of the experiment 
is approximately 3 hours, which inciudes the receptor placement, the calibration, the 
measurements and removal of sensors. 1 was explained that if 1 am in the one of the patient 
groups, 1 will be asked to maintain my normal medication schedule. 

Then, the motor performance will be tested. 

Movement evaluation 

1 was explained that small sensors are placed on my body, using elastic bands. Then a 
cali bration of the equipment will be done. 
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l will perform three different tasks: (a) standing with arms stretched in front of me for 60 
s, (b) l will be seated comfortably on a chair, elbows flexed to 90° For this experiment, I will be 
asked to pronate and supinate (like trying to open a door using the doorknob) as fast as possible 
for 10 s, or (c) to follow a target presented on a computer monitor for 30 s, using a bail attached 
to a angular measuring device. 

l was explained that instructions will be presented to me on a projector screen so that I 
will always know the task to be performed. During this time, the position of my body will be 
monltored using the sensors that were placed on my body. I understand that aIl of the above 
procedures are done for this research study exclusively and are not part of my usual clinical 
assessment of symptoms for Parkinson's disease or Huntington' s disease 

D. Risks of participation 

I was explained that there are no known risks associated with the devices used in the 
present experiment, except for sorne fatigue. However, I may ask questions related to the 
methodology, this at any time during the experiment. 

E. Benefits of participation 

I was explained that I will not have any immediate benefits from participating in this 
study. But, this study will greatly improve our understanding of the effect of dyskinesia on 
voluntary movements. My neurologist will have access to the results for consultation. If 1 am 
interested, l may ask for a copy of the publication that may ensue. 

I understand that I am participating in this experiment on a strictly volunteer basis and I 
am free to withdraw at any time prior to or during the experimental session, without prejudice to 
me effect on my medical care. 

l understand that aIl the information obtained during the course of this study is strictly 
cOl1fidential and will not be released to anyone, including my doctor, without my written consent 
to the researchers. However, this information may be used to advance the body of scientific 
knowledge and may therefore be published in scientific joumals where my anonymity will be 
entirely preserved. 

f. Compensation 

No monetary compensation is given to participate in the study. However, traveling expenses will 
be reimbursed. 

g. Questions 

I am entirely free to ask any question that I believe is relevant. Any question about the 
project, complaints, or comments may be addressed to any of the investigators involved in this 
research project. In addition, I am invited to ask any type of additional explanations if I have any 
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doubts about my willingness to participate in this research project. The coordinates of the 
researcher responsible for this study listed at the end of this consent form: 

1 understand that this research project has received approval from the UQAM's Institutional 
Ethics Committee regarding research involving human subjects. For questions regarding the 
responsibility of UQAM's researchers involved in this project, or to file any complains that 
could not be addressed directly to the researchers, 1 may communicaté with the President of the 
Ethics Committee, Dr. Joseph Josy Lévy. He can be reached at (514) 987-3000 # 4483 or 
through the secretarial office of the Ethics committee at 987-3000 # 7753, 



------------
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1 have read the information above and discussed it with the investigator to my satisfaction. In 
addition, 1 am satisfied of the explanations that 1 have received. 1 am aware of the risks involved 
in participating in these experiments outlined in this consent form. 1 consent to be a subject in 
the research project entitled "Study of voluntary and involuntary movements in Parkinson's 
disease and Hunti ngton' s disease" 

Date: _ ____ ,2005
 
(Month) (Day)
 

Name: Signature: _ 
(Print) 

Witness:	 Signature:-------------,---- 
(Print) 

Coordinates: 

Christian Duval, Ph.D.:	 Telephone number: (514) 987-3000 extension 4440 
E-mail: duval.christian@ugam.ca 

CIÉR at UQÀM:	 secrétariat du Comité: service de la recherche et de la création 
Université du Québec à Montréal 
C.P. 8888, succursale Centre-ville 
Montréal, QC 
H3C 3P8 
Telephone number: (514) 987-3000 extension 7753 
E-mail: src@ugam.ca 

Département de kinanthropologie:	 Université du Québec à Montréal 
Case postale 8888, succursale Centre-ville 
Montréal (Québec) Canada 
H3C 3P8 

mailto:src@ugam.ca
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