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RESUME

La représentation des processus sous-maille reliés aux nuages demeure une source
importante d’incertitudes dans les modeles climatiques. Plus particulierement,
I'interaction nuage-rayonnement dépend fortement de la maniére dont est représen-
tée la variabilité sous-maille des nuages dans les modeles. La méthode McICA a
été proposée par Barker et al. (2002) et Pincus et al. (2003) afin de remplacer les
hypothéses fixes des nuages implémentées dans les schémas de transfert radiatif
par une représentation stochastique de la variabilité sous-maille des nuages. Cette
méthode permet de relier beaucoup plus aisément les parameétres sous-mailles des
nuages aux observations ou aux variables du modele. Par contre, puisque les
modeles sont souvent ajustés afin d’obtenir un bon budget radiatif au sommet
de I'atmosphere, enlever les corrections constantes des nuages pourrait révéler
d’autres biais, auparavant cachés.

Cette these présente I'implémentation de la méthode McICA dans le modele GEM-
CLIM ainsi qu’une analyse détaillée de ses impacts sur les différentes composantes
du budget radiatif et sur la structure de 'atmospheére simulée. Les dépendances
fondamentales des effets radiatifs de la variabilité sous-maille sont aussi analysées
en parallele avec les possibilités de paramétrages, basées sur les observations ou
les variables du modéle, qui s’offrent avec cette méthode.

Le cadre général de cette these est composé de simulations globales dont les mailles
de la grille horizontale sont de 0.5° afin d’échantillonner le plus d’états possibles
de nuages. Les simulations varient de 48 h & trois ans, limitées par le grand
nombre de simulations requises pour tester les différents paramétrages. Seule-
ment quelques simulations ont été étendues jusqu’a trois ans afin d’observer la
réponse du modele & plus long terme & la méthode McICA. Les effets radiatifs
des différentes composantes la méthode McICA et des différents parametres, sont
étudiés sous plusieurs angles: des moyennes globales et zonales au sommet de
I’atmosphére et & la surface, des profils verticaux moyens zonaux et des cartes de
0.5° de résolution horizontale. Les données satellites de CERES-EBAF, CERES-
SYNl1deg et SSM/I sont utilisées pour fin de comparaison et de validation des
différentes simulations.

Les résultats montrent que la méthode McICA, par 'introduction de 'inhomogé-
néité horizontale, réduit généralement 1’albédo des nuages et leur émissivité, en
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comparaison au traitement homogene des nuages. Quant au changement d’hypo-
thése de recouvrement vertical, il produit des effets radiatifs opposés mais de se-
cond ordre, avec comme résultats, une tendance générale d’atténuation des effets
radiatifs de I’inhomogénéité horizontale.

Puisqu’un biais important dans le contenu en eau liquide des nuages simulés a été
établi, 'implémentation de la méthode McICA dans le modele GEMCLIM dégrade
les performances du modéle en comparaison aux flux observés par CERES, au-
tant & la surface qu’au sommet de 1’atmospheére, puisque cette méthode n’est pas
congue pour corriger les biais des nuages simulés. Lorsqu’on compare aux correc-
tions d’inhomogénéité existantes, I'introduction d’inhomogénéité horizontale par
MCcICA est bien plus faible quant & sa réduction de ’albédo et de ’émissivité des
nuages. La surestimation du contenu en eau liquide amplifie ces résultats puisque
les effets McICA sont plus faibles pour des valeurs élevées de contenu en eau,
alors que les effets des corrections existantes sont plus importants. Une fois la
méthode implémentée dans le modéle, de petites modifications quant aux nuages
bas sont visibles dans la structure atmosphérique simulée et ce, pour toutes les
échelles de temps. Une fraction nuageuse et un contenu en eau réduits sont dis-
cernables, ce qui atténue les effets radiatifs totaux de McICA, excepté pour les flux
de longues longueurs d’onde au sommet de ’atmosphére qui sont moins sensibles
aux variations des nuages bas.

D’un point de vue plus général, il est démontré que I’inhomogénéité horizontale
de McICA varie en fonction de 1’épaisseur optique des nuages, produisant plus
d’effets & de faibles valeurs, comme la théorie le suggérait. De plus, les nuages
de glace montrent un effet opposé pour les courtes longueurs d’ondes avec une
augmentation de leur albédo, ce qui était aussi expliqué par la théorie. Les effets
sont plus importants pour les courtes longueurs d’ondes que les longues longueurs
d’ondes. Ceci s’explique par la relation de ’émissivité des nuages en fonction du
contenu en eau qui sature plus rapidement que la relation de 1’albédo des nuages
en fonction du contenu en eau. Finalement, les effets McICA augmentent avec
la fraction nuageuse puisque plus de nuages peuvent alors contribuer aux flux
modifiés.

Cette thése porte aussi sur la comparaison de paramétrages de différentes com-
plexités, autant pour 'inhomogénéité horizontale que pour le recouvrement verti-
cal des nuages. Il est démontré que, pour le modéle GEMCLIM, I'inhomogénéité
horizontale a plus de potentiel radiatif que le recouvrement vertical. De plus, dans
la plupart des cas, les différentes combinaisons de parametres produisent les effets
attendus, exceptés quelques cas ol des interactions non-linéaires sont révélées.
Les paramétrages qui dépendent de la phase des nuages ou de leur type (e.g. en
fonction du déclenchement de la convection) sont prometteurs puisqu’ils sont plus
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physiquement réalistes (ils peuvent étre basés sur des observations ou reliés aux
processus nuageux simulés) et qu'ils produisent des effets radiatifs significatifs.
Enfin, ces paramétrages permettront de relier les différents schémas de nuages
d’'un modele de maniére plus cohérente autant par les échelles sous-mailles que
résolues.







ABSTRACT

Subgrid scale cloud process representation is still a dominant source of uncertainty
in climate models. Cloud-radiation interactions are highly dependent on how the
cloud subgrid-scale variability is represented in models. The McICA methodology
has been proposed by Barker et al. (2002) and Pincus et al. (2003) to replace fixed
hypotheses on unresolved cloud structure from the radiative transfer scheme by
a stochastic representation of cloud subgrid-scale variability. This methodology
offers a new flexibility to link subgrid-scale cloud parameters to observed cloud
properties or to model variables. However, since models are often tuned to have
the right top of atmosphere radiative budget, removing fixed cloud corrections
may reveal hidden biases.

This work presents the McICA implementation in the GEMCLIM model with a
detailed analysis of its modifications to the different radiative components and its
consequences on the model atmospheric state. The fundamental dependencies of
the subgrid scale cloud variability radiative effects are also addressed in parallel
with possible parameterizations that can be used to link these processes with
observational data or model variables.

The general framework is composed of global simulations with an horizontal grid
mesh of 0.5° in order to sample all possible cloud states. The simulation timescales
vary from 48 h to three years, mainly limited by the many simulations needed to
study the different parameterizations. A few simulations are done up to three
years to assess the model longer timescale responses to McICA. The radiative
sensitivities of the McICA components and its different parameters are studied
through a range of perspectives: from global and zonal mean sensitivities at sur-
face and top of atmosphere, to zonal mean vertical profiles, to 0.5° by 0.5° maps.
CERES-EBAF, CERES-SYN1deg and SSM/I satellite data sets are used to com-
pare and validate the different simulations.

Results show that, compared to the homogeneous cloud treatment, the McICA
methodology generally reduces the cloud albedo and emissivity due to its domi-
nant effect of horizontal inhomogeneity. The change in vertical overlap generally
produces opposite radiative effects but is far less important, hence it generally
only attenuates the horizontal inhomogeneity radiative effects.

Given that a significant overestimation in liquid water path is established com-
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pared to observations, the McICA implementation in the GEMCLIM model de-
grades the model performance in comparison to the CERES fluxes, both at surface
and top of atmosphere, since this methodology is not conceived to compensate
for simulated cloud biases. When compared to the GEMCLIM existing inhomo-
geneity corrections, the McICA horizontal inhomogeneity introduction is far less
effective at reducing the cloud albedo and emissivity. The liquid water path over-
estimate is amplifying these results since the McICA effects are smaller at larger
values while the existing corrections are greater. Experiments with McICA show
small low cloud adjustments, visible on all timescales. The reduced cloud fraction
and cloud water path are attenuating McICA radiative total signals, except for
the LWU at TOA which are less sensitive to low clouds.

From a general point of view, the McICA horizontal inhomogeneity is shown to
be cloud optical depth dependent with more effects at low values as suggested
by the theory. Moreover, ice clouds exhibit opposite shortwave radiative effects
with increased cloud albedo, a feature that was also explained by theory. The
shortwave fluxes exhibit greater McICA sensitivities compared to the longwave
fluxes. These differences can be explained by the more rapid saturation of cloud
emissivity as a function of cloud water path compared to the variation of cloud
albedo as a function of cloud water path. As a last point, the McICA effects are
increasing with cloud fraction since more clouds can contribute to these modified
fluxes.

This work has compared many parameterizations of different complexity, both
for the horizontal inhomogeneity and the vertical overlap parameters. It shows
that, in this model context, the horizontal inhomogeneity parameter has more
potential radiative sensitivities than the vertical overlap parameter. Moreover, it
shows that in most of the cases, the combined parameters are producing what
is theoretically expected but a few cases produce unexpected non-linear results.
Parameterizations that are function of cloud phases or cloud types (e.g. when
convection is triggered) are promising since, on one side, they are more physically
based (either linked to observations or modeled processes), and on the other side,
they can produce significant radiative effects. These parameterizations will allow
to link the different cloud schemes more coherently both by the sudgrid and the
resolved scales.




INTRODUCTION

0.1 Clouds, climate and subgrid-scale variability

Currently, general circulation model (GCM) horizontal resolutions vary from ten
to hundreds km, still far from the cloud resolving model resolutions. This in-
cludes climate models (global and regional) and numerical weather prediction
models (NWP) of various complexities. Even though computational resources are
increasing, the model spatiotemporal resolution growth is in part limited by grow-
ing demand for ensemble simulations to quantify uncertainty in model projection
(e.g. with perturbed physics ensembles, Meehl et al., 2007), to distinguish internal
variability from climate change signal (Randall et al., 2007) or to obtain climate
features that are generally improved with multi-model ensembles compared to
a single model simulation (Randall et al., 2007; Hegerl et al., 2007). Thus, pa-
rameterizations for subgrid-scale processes will still be needed for the foreseeable

future.

An important part of the subgrid-scale parameterizations concerns clouds and
their feedbacks on the climate system. Clouds are a great example of how pro-
cesses of different scales are interacting. Figure 0.1 illustrates well how the cloud-
controlling processes span from the microphysics scale to the planetary scale.
Moreover, clouds are the link between the radiative balance of the earth and its
hydrological cycle. It relates a part of the atmospheric chemistry to the formation
of precipitation to the development and evolution of storm systems to the large-

scale dynamics. Therefore, the simulation of clouds and their feedbacks implies
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Figure 0.1 Schematic diagram of the cloud-related processes as a function of
the spatiotemporal scale. The grey text indicates the categories of atmospheric

dynamics from which processes emerge. From Siebesma et al. (2008), figure 12.1.

the simulation or the parameterization of the microphysical processes (e.g. con-
densation, evaporation, auto-conversion, Bergeron-Findeisen effect) jointly with
the clouds macro-characteristics (e.g. cloud top temperature, vertical overlap)

and the cloud radiative properties (albedo, emissivity, transmissivity).

Cloud process representation has been recognized as a dominant source of un-
certainty in climate models since the 1970’s (e.g. Arakawa, 1975; Charney et al.,
1979; Cess et al., 1989; Randall et al., 2003; Arakawa, 2004; Bony et al., 2006;
Randall et al., 2007) and is still a primary source of spread in climate projec-
tions in the last Intergovernmental Panel on Climate Change assessment report

(Boucher et al., 2013).

As highlighted by Siebesma et al. (2008), cloud uncertainty in GCMs has different
origins. For example, there is a lack of observations or knowledge of some fun-

damental cloud processes (particularly for ice- and mixed-phase clouds), as well




as a deficiency of knowledge about how to represent sub-grid processes (that can
be well understood at their native scale) at grid-box scale. This misrepresenta-
tion can affect not only the cloud itself but also the circulation and precipitation

patterns, for example.

B2 Cloud parameterizations in climate models

Cloud representation in climate models implies many parameterizations: from tur-
bulence and microphysics to convection and radiative transfer. All these parame-
terizations are connected through different cloud processes and ideally, they should
be as physically realistic as possible and work coherently, while they also need to be
computationally efficient and numerically stable. However, in GCMs, these cloud
processes and interactions were, and sometimes are still, over-simplified within the

microphysics, convective and radiative transfer schemes (Randall et al., 2003).

Parameters in these schemes are derived from observations or from physical or
statistical relationships, both introducing their own weaknesses, as the former are
usually limited to specific cases and include observational uncertainty (Isaac and
Schmidt, 2008), the latter are mostly educated guesses since physical processes are
not always well understood (Lopez, 2006). Moreover, GCMs are often tuned to
balance the global energy budget at the top of the atmosphere and while achiev-
ing this goal, they cannot easily reproduce the observed clouds or precipitation
(Pincus et al., 2008). This underlines the fact that the radiative budget can be
right for wrong reasons or from compensating biases (Tjernstrom et al., 2008;
Markovic et al., 2008). Even with the recent advances in cloud parameterizations,
the CMIP5 models are still presenting the 'too few, too bright’ low-cloud problem
(Nam et al., 2012) where the cloud optical depth overestimation is compensating

the cloud cover underestimation. In a changing climate, we cannot assume that



these compensating errors will still hold and result in realistic projections.

0.3 The representation of cloud-radiation subgrid-scale variabil-

ity in the GEMCLIM model

Since observations show that variability exists at all scales when considering
clouds, the challenge of modeling boils down to taking into account this vari-
ability in all model schemes that are cloud related: in microphysical schemes, in
convective schemes, in planetary boundary layer schemes as well as in radiative
transfer schemes. In this work, the Monte Carlo Independent Column Approxima-
tion (McICA) methodology is used to relax fixed hypotheses on unresolved cloud
structures from the radiative transfer solution and to replace them with a flexible
stochastic representation of cloud subgrid-scale variability. On the bright side,
such an approach gives much more flexibility to test observed cloud properties
(e.g. vertical overlap, cloud water content distributions) and allows, for example,
to potentially use different properties for different cloud types. On the down side,
models are often tuned to give the right mean top of atmosphere radiative bud-
get, which hides compensating biases. Correcting a specific bias could degrade

the general model performance.

This thesis is based on the McICA implementation in the GEMCLIM model
(Global Environmental Multi-scale Climate model, Herndndez-Diaz et al., 2013;
Martynov et al., 2013; Zadra et al., 2008). The goal is to provide a detailed anal-
ysis of McICA impacts and possibilities that is beyond the model specificity. It is
also to explain how the subgrid scale cloud variability radiative effects vary and
on what conditions they are dependent. Furthermore, since the cloud subgrid
scale variability representation in the radiative transfer boils down to two distinct

components, the horizontal distribution of cloud water content and the vertical




overlap, it is to understand how their radiative effects compare and interact, and

how they can be more physically connected to model variables or processes.

The first chapter of this thesis presents the cloud-radiation known biases in GCMs
and proposed solutions to account for the unresolved cloud variability. Chapter
two details the McICA methodology theory, its applications and results in different

models.

The following three chapters present the thesis main results. First, a detailed
evaluation of the McICA implementation in the GEMCLIM model is performed
using online and offline radiative transfer calculations. This analysis focuses on
top of the atmosphere and surface fluxes as a function of cloud fraction and cloud
water path to analyze the different cloud component contributions. Secondly,
the model results are compared to satellite observations to put in perspective
the McICA modifications to the radiative fluxes. Vertical profiles are also used
to connect and understand top of atmosphere and surface effects. Finally, since
MCcICA offers a new flexibility in cloud subgrid-scale parameterizations, the free
parameters are tested and compared. Tests are also performed with different cloud
optical depth scalings to put in perspective the different radiative sensitivities and

to analyze the McICA methodology in different regimes.







CHAPTER 1

HOW TO PARAMETERIZE SUBGRID-SCALE VARIABILITY
FOR THE CLOUD-RADIATION INTERACTIONS

1.1 Common assumptions and known biases

Up until recently, the plane-parallel homogeneous clouds (PPH, Fouquart and
Bonnell, 1980; Stephens, 1984) and the maximum-random cloud vertical overlap
(MRO, Geleyn and Hollingsworth, 1979; Morcrette and Fouquart, 1986) were
the most common assumptions used in the radiative transfer schemes of GCMs.
The former assumes that within each model grid cell, cloud are homogeneous
and occupy a fractional volume, whereas the later assumes a maximal vertical
overlap between contiguous cloud fraction within each model column and a vertical

random overlap otherwise.

From a theoretical point of view, one can refer to the cloud albedo relationship to
cloud water path to understand how an homogeneous cloud representation would
generally lead to an overestimation of its albedo. Figure 1.1 shows examples of
this relationship. First the top panel, from Stephens and Webster (1981), shows
how the cloud albedo and effective emittance increase with liquid water path
(LWP) for a given zenith angle of 30°, based on a simple parameterization for

water clouds. Secondly, the bottom panels, from Liou (2002), show a computed




broadband solar albedo (0.2-5 um) as a function of liquid or ice water path (LWP
or IWP) and as a function of different effective radius or diameter. In this case,
the albedo is obtained by a multiple scattering program for spherical droplets for

water clouds and hexagonal ice crystals for ice clouds.

Both examples exhibit a fast increasing albedo at low LWP followed by a satura-
tion at higher LWP values. As the relationship is non-linear, a mean value of LWP,
for example 60 g/m? would be associated with an albedo value of ~ 0.45 (for a 16
pm effective radius, represented by the full blue line in figure 1.1), but a constant
distribution of liquid water paths with the same mean value and ranging from 20
to 100 g/m? would lead to a distribution of corresponding albedos (represented by
the dashed blue arrows) with a different and generally lower mean albedo, in this
case around 0.4. The former case represents the homogeneous cloud assumption,
since the cloud albedo is calculated with the mean LWP value, while the later
case represents the inhomogeneous assumption, since the mean cloud albedo is

calculated from the distribution of LWP corresponding albedos.

This misfit between homogeneous and inhomogeneous assumptions should be in-
creasing as the relationship is steeper. In this regard, at higher LWP values where
the slope is lower, the difference between an homogeneous and inhomogeneous
cloud albedo should be smaller (represented by the orange arrows). Similarly, the
cloud emissivity varying slower than cloud albedo as a function of LWP, the un-
derestimation due to homogeneous assumption should be reduced. Furthermore,
since the ice cloud solar albedo relationship at low IWP values is concave rather
than convex compared to the liquid clouds relationship at high LWP values, the
inhomogeneous cloud albedo should be larger than the homogeneous cloud albedo
(represented by the red arrows). In summary, from these simple theoretical con-
siderations, it is expected that neglecting inhomogeneity results in overestimating

albedo of liquid clouds while it underestimates albedo of ice clouds.
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Figure 1.1 Top panel: cloud albedo and cloud effective emittance as a function

of LWP for a zenith angle of 30°, from Stephens and Webster (1981), figure la.

Bottom panel: Solar albedo of water and ice clouds as a function of liquid or

ice water path for different mean effective radius or diameter, from Liou (2002),

figure 8.16.
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As the previous explanation is based on many assumptions, such as cloud droplet
distributions or zenith angles, more complete simulations have been performed
to verify these preliminary conclusions. Barker et al. (1998), using a 3D Monte
Carlo photon transport algorithm, have shown that PPH clouds generally transmit
less and reflect more radiation compared to 3D clouds. However, for low sun, the
opposite is seen since PPH clouds intercept less photons than 3D clouds (as there is
no cloud side effects). It was also shown that MRO systematically underestimates
vertically projected cloud fraction (Réisdnen and Barker (2004)) and therefore,
it relies on homogeneous clouds to balance the reflectivity underestimate (Barker

et al. (1998), Barker et al. (2003)).

To compensate for these known biases, simple tuning parameters were used as
correcting factors with these assumptions in GCMs. For example, in the radiative
transfer scheme operational in GEM (Global Environmental Multi-scale model,
Zadra et al., 2008; Coté et al., 1998) up until June 2009, the cloud optical thickness
was tuned by multiplying it by a factor of 0.3, whereas for the NWP model of
the European Centre for Medium-Range Weather Forecasts (ECMWF), it was
multiplied by 0.7 until version 32R2 (Tiedtke, 1996; Morcrette et al., 2008).

1.2 Proposed solutions to account for unresolved clouds vari-

ability

Common cloud radiation parameterizations, such as PPH clouds and MRO, often
combined with tuning parameters are generally embedded in the radiative transfer
equations. This makes it quite complex and time consuming to test different
assumptions and parameters. Furthermore, it is not clear to which extent these
parameters are adaptable to increasing resolution, or to which extent they can be

relaxed or adapted to GCMs that are growing in complexity.



11

To remedy this situation, different solutions were proposed around the same pe-
riod. To name only a few, Li and Barker (2002) and Li et al. (2005) proposed
an optical-depth adjustment algorithm to implement in GCM radiative transfer
scheme to account for horizontal inhomogeneous clouds both for the infrared and
solar spectra. On the other hand, Barker et al. (2002) and Pincus et al. (2003) pro-
posed a radical alternative to calculate mean-column radiative fluxes: the Monte
Carlo independent column approximation (McICA) based on a stochastic version
of the independent column approximation (ICA, Stephens et al., 1991) to be used
with a subgrid-scale stochastic cloud generator (SCG).

From another perspective, Grabowski and Smolarkiewicz (1999) introduced the
super-parameterized GCM, where a cloud resolving model is embedded in each
GCM grid cell. As the super-parameterized GCM is 10% to 10% times more ex-
pensive and cannot be widely used to this day, this approach won’t be presented
further in this work. As the first solution is used in our control model for this
study, a brief description will follow before the main subject of McICA method-

ology is presented.

The work of Li and Barker (2002) demonstrated that infrared radiative impacts
of cloud subgrid-scale variability can be well accounted when cloud optical depth
horizontal variability is approximated by a gamma distribution that respects the
model grid mean value (7). The complexity of this calculation is based on the
fact that radiative interactions between two model levels depend on the horizontal
cloud subgrid-scale variability integrated over the two levels. This variability,
defined as v = (7/o)? (Barker et al., 1996), where o is the standard deviation
of 7, has to be determined as an integrated value for continuous cloud layers. In
this study, v for individual cloud layers generated by a cloud resolving model,
was varying between 0.8 and 1.2, whereas for whole cloud blocks (defined by

consecutive vertical cloud layers in a GCM column), v was always found to be
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lower than for individual layer due to vertical overlap conditions. Therefore, the
authors have chosen to set v to the minimum value found in the cloud block and

have tested specific values like 0.5, 1 and 2.

Previous results from Barker et al. (1996), which derived v values from different
Landsat scenes, showed values ranging from 0.1 for scattered cumuli to as high as
22.5 for overcast stratocumuli with reduced values when clear-sky contributions
were included. Furthermore, Oreopoulos and Barker (1999), based on 3D gener-
ated cloud and Monte Carlo photon transport algorithm, proposed a first order
parameterization for v as a function of cloud fraction (CF): v =~ 4 when CF=1

decreasing to v = 1 when CF=0.9 and hold constant to 1 for CF <0.9.

As the use of a gamma distribution is not as simple for the solar radiative transfer
due to scattering, Li et al. (2005) put forward an optical-depth adjustment algo-
rithm that can be incorporated within the cloud overlap assumption. When using
a gamma-function-weighted transmission (as proposed by Li and Barker, 2002,
for the infrared radiation) for the solar spectrum, the scattering is neglected and
the mean optical depth for inhomogeneous cloud leads to an underestimation of
transmission. Consequently, for a given cloud block, the cloud optical depth is
reduced following an empirical scheme. For a layer k in a cloud block, the adjusted

cloud optical depth 73} becomes

Tk
= 1.1
T T 110.185(2 — po)°4f, f, (L)
1
b= T 5 6mne

k
fr=m+92 > 7

g=i

where v is also set to the minimum value for every layer within the cloud block and
Lo is the cosine of the solar zenith angle. The summation is done from the cloud

top to the bottom and the layer optical depth is reduced increasingly going down
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since the error in direct transmission is increasing with the mean optical depth.
Figure 1.2 presents an example of the adjusted cloud optical depth behavior as a
function of cloud optical depth. As can be seen, the adjusted cloud optical depth
is reduced increasingly with lower v (since inhomogeneity is greater at lower v),

but also with higher 7 or more cloud layers.

1 T T T T

| ——1 cloud Yayer, v=1 "
0.6 S

— 1 cloud laye?,v=2
—1 cloud layer,v=4"~ _

0.5} - - = 2 cloud layers, v=1 "
- - =2 cloud layers, v=2 “~-\_
- = =2 cloud layers, v=4 T S
0.4 ' ' ' .
0 2 4 6 8 10

Figure 1.2 Example of the ratio of adjusted cloud optical depth (7/7%) as a
function of cloud optical depth (1) for different v values and for one or two cloud

layers, with the 2 layers having the same cloud optical depth. g is set to 1.







CHAPTER II

A STOCHASTIC TREATMENT FOR CLOUD
SUBGRID-SCALE VARIABILITY: THE MCICA
METHODOLOGY

The basic principle of the McICA methodology is to generate and treat the
subgrid-scale cloud structure stochastically separately from the radiative transfer
(RT) calculations. This implies that the description of the subgrid-scale cloud
structure (both the horizontal cloud water distribution and the vertical over-
lap) must be extracted from the core radiation calculation. Within McICA, a
stochastic cloud generator randomly generates cloudy subcolumns of the possible
cloud fields respecting the grid mean fields provided by the model cloud schemes
(Réisénen and Barker, 2004). The subcolumns are then randomly selected for
the RT calculations. These steps are performed without further cloud correction
since the subgrid-scale information has already been taken into account. Hence,
by its nature, McICA provides unbiased radiative fluxes and heating rates (with
respect to ICA) at the cost of random errors. However, the cloud information
(both at the model scale and the subgrid-scale) can be biased, depending on the
multiple cloud schemes and parameterizations used in a model. These possible
biases will be transferred to the McICA methodology and the RT calculations.
This methodology further allows a simplification of the RT scheme and a highly

flexible description of the subgrid-scale cloud structure within the cloud generator
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(Pincus et al., 2003).

This section reviews the basic assumptions behind the McICA methodology, the
methodology in itself, the stochastic cloud generator and a few alternatives to
reduce noise sampling. An overview of evaluations done with different GCMs for
different spatiotemporal resolutions and different versions of the McICA method-
ology is presented with the latest developments of cloud parameterizations. It
concludes with what is left to evaluate in our model and in general for the McICA

community.

del The background hypotheses in the radiative transfer scheme

At scales resolved by GCMs, 3D horizontal transport of photons across column
boundaries is generally ignored. This greatly simplifies the radiative calculations

for a minimal cost in accuracy. This method is the independent column approxi-

mation (ICA) and is defined as:

(Fy = (Fo4) = | S(A){ J[ Finlz.y, )\)d:cdy}d)\ (2.1)

where Fip is flux for a wavelength A at a point (z,y) computed by a 1D radiative
transfer algorithm and S()\) is a spectral weighting function for each spectral

interval d) that depends on the incoming spectral flux.

ICA has been shown to perform well for different cloud regimes (Chambers et al.,
1997; Fu et al., 2000; Barker et al., 1999) and for resolutions as high as those
used in cloud resolving models (CRMs, O’Hirok and Gautier, 2005). Barker et al.
(1998) have shown that even for towering 3D clouds, the ICA approximation

produced similar solar heating than 3D calculations.

To numerically solve this radiative transfer equation, the spectral intervals need

to be transformed in discrete sums with weights w()x) (that could be unequal) as




17

follow:
K

(P8 = ’;w()\k)S()\k)Fw()\k) (2.2)
The discrete summation can be done over the the quasi-monochromatic intervals
k as defined by the correlated-k distribution (CKD, Lacis and Oinas, 1991; Fu
and Liou, 1992) which is based on the absorption coefficients (k). This method is
commonly used in climate models since it has been demonstrated to be efficient
and accurate (Li and Barker, 2005) and it will be used in this study. Moreover,

this equation can be separated between clear-sky and cloudy-sky areas with CF

representing the vertically projected cloud fraction and p(s) the possible cloud

states:
(PO e (] ~ ) Z (k) SOe)FE (M) (2.3)
J
+ CFZw(Ak)S(Ak )N () FES (s, M)
k=1 J=1
2.2 The stochastic cloud generator

Barker et al. (2002) and Pincus et al. (2003) introduced the McICA methodol-
ogy to produce unbiased radiative budgets within GCMs and to extricate the
subgrid-scale cloud structure description from the RT scheme. The motivation
is that with limited and imprecise information available to work with (on cloud
subgrid-scale structure), there is an infinite number of compatible underlying 3D
fields and corresponding domain-averaged radiative flux profiles. Consequently,

an algorithm is needed to generate possible cloud states from the GCM variables.

The stochastic cloud generator (SCG) introduced by Réisénen and Barker (2004)
(hereafter RB2004) creates subcolumn cloud fields based on the model layer cloud
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fraction and cloud condensates, and probability distributions that describe the
horizontal variation of cloud water. The first assumption behind the generator
is that horizontal correlations in unresolved cloud structure are unimportant for

computation of radiative fluxes in GCMs. This implies that subcolumns are in-

dependent and that the ICA holds.

The SCG uses variables from the GCM: the number of vertical layers (Z) with
their cloud fraction (C,) and total water content (w,). It generates J subcolumns
in which each vertical layer k is either clear or filled with cloud (c;, =0 or 1):
0 Zjz < 1- Cz
Cjz = yoily >0 (2.4)
1 Ljz > 1-C,
For cloudy cells (c;, =1), the condensate amount w;, is distributed following y;.,

the cumulative frequency distribution of w:

s =1 P:(v) Vz:icj=1 (2.5)
Wiz = Yj2W,
The form of the normalized probability density function p,(w) can be prescribed

following different distributions.

Based on Hogan and Illingworth (2000) and Bergman and Rasch (2002), the
authors introduce a generalized vertical overlap in the SCG as it reproduces better
vertically integrated cloud fraction compared to MRO, and since the MRO was
used to partly compensate for homogeneous clouds. Hence, the SCG vertically
distributes the cloud with a linear combination of maximum and random overlap
that is a function of decorrelation lengths L. and L, for cloud fraction and cloud

water content respectively following:

Czl,zZ = * max(C’zl, sz) + (1 = a)(C'zl + Ozg = Czlczz) (26)

a:exp(— - m




19

where C.; .9 is the vertically projected cloud fraction for two layers (21 and
22), L is the decorrelation length for cloud fraction or cloud water and « is the
cloud overlap parameter. These equations imply some assumptions. First, the
linear combination of maximum and random overlap (equation 2.6) implies no
anti-correlation: o = [0 : 1]. Second, non-overlapping and overlapping portions
of cloud have the same p,(w) distribution; any potential conditionality between
cloud geometry and distributions of w are neglected. Third, the ratio of liquid to

solid condensate amounts is horizontally invariant.

RB2004 conclude that with these three assumptions, when reproducing cloud
profiles from a cloud-resolving model, the SCG has a smaller underestimate of
cloud fraction combined with a smaller overestimate of cloud water path compared
to the MRO assumption. RMSEs for radiative fluxes and heating rates are also

reduced by = 60% compared to MRO.

28 The McICA methodology

Computing equation 2.2 in a GCM is nearly impossible, as it would require enor-
mous computational resources (typical numbers of k intervals in GCMs are of the
order of 50-100 and with only 10 possible cloud states, it would require 500-1000
radiative calculations per model column). As an alternative to a deterministic
solution, the Monte Carlo methodology randomly samples possible inputs and
calculates a deterministic solution of these inputs. As the number of samples

(M =k x J) is growing, the methodology error converges in 1/v M.

The Monte Carlo methodology applied to ICA consists of randomly selecting a
cloud state (a subcolumn generated by the SCG) for each interval k (as defined in
equation 2.2) used in the radiative transfer scheme to calculate the mean-column

radiative fluxes (FMIC4)  As the clear-sky radiation is generally calculated sepa-
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rately in models for diagnostic purposes, the random selection is concentrated on

cloudy subcolumns j as shown by the following equation:
K K

(FMeICAY = (1 - CF)Y_ Fd" +CF)_ Fi4 (2.7)
k=1 k=1

If a single cloud state exists in the column, then the McICA is equivalent to ICA.
The methodology requires the same integration timne as a broadband calculation
but introduces a sampling error that is random, unbiased and uncorrelated (e. g.
correlation of 1 to the spatiotemporal resolution of the radiative transfer scheme

and correlation of 0 for longer /larger resolutions).

The authors suggest that this inner-scale unbiased error may not be a problem for
a GCM as it is incapable of generating organized structures that can significantly
affect the simulation. Furthermore, Pincus et al. (2003) suggest that, because of
the relatively long time scale impact of radiation on atmosphere and ocean, it is
better to solve the right problem approximately with the McICA methodology

than the wrong problem exactly.

2.4 McICA: proof of concept

McICA usefulness depends on its sampling errors having no statistically signifi-
cant impact on a simulation and being considered beneath or close to the system’s
intrinsic noise horizon. Moreover, its intrinsic goal is to allow the implementation
of different flexible cloud parameterizations that could improve radiative transfer
simulations and remove systematic biases deriving from the vertical overlap as-
sumptions or fixed inhomogeneous corrections. Most studies have focused on the
former aspect of the noise impact and few have looked at the direct improvement
of the methodology in simulated cloud and radiation biases. These results are
summarized in the next two sections followed by a section on the parameteriza-

tion sensitivity studies.
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McICA has been tested in at least five global climate models: the Finnish Me-
teorological Institute ECHAMS model (Raisénen et al., 2007, 2008), the Na-
tional Center for Atmospheric Research’s Community Atmosphere Model (CAM
Réisénen et al., 2005; Zhang et al., 2014), the Geophysical Fluid Dynamics Lab-
oratory’s Atmosphere Model version 2 (Pincus et al., 2006), the Environment
Canada—Canadian Centre for Climate Modelling and Analysis model (Barker
et al., 2008), the GEOS-5 Atmospheric General Circulation Model (Oreopou-
los et al., 2012a). It has been also tested in three NWP models: the European
Centre for Medium-Range Weather Forecasts model (ECMWF, Morcrette et al.,
2008), the UK Met, Office Unified Model (MetUM Hill et al., 2011b) and the GEM
model (Barker et al., 2008)). For the ECMWF model, McICA has been used op-
erationally since 2007. Different time periods (10 to 14 day forecasts, 12 to 36
months, 10, 17 and 70 years) were tested with atmospheric models and one study

was done with an interactive mixed-layer ocean model (Réisénen et al., 2008).

MCcICA can be implemented in many different ways, based on how many sub-
columns are produced in the cloud generator and how many are selected randomly
for the radiative transfer calculations. The simplest version is called the 1COL,
which maximizes the noise level by selecting only one subcolumn from the cloud
generator for all spectral interval calculations at every timestep. The CLDS ver-
sion is the original version shown in equation 2.7 where the random selection is
done only with cloudy subcolumns and clear-sky fluxes are computed separately.
At the opposite, the most complete version (and expensive in computer time)
is the REF, which minimizes the random noise by generating many more (over
1000) subcolumns in the generator and using almost all these in the radiative

calculations.

Réiséinen and Barker (2004) suggest that at some level of significance, overly

large random errors would be undesirable in a GCM simulation. Therefore, they
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introduced techniques to reduce the magnitude of these errors in McICA. One of
these techniques is the optimal spectral sampling (hereafter SPEC), which consists
in repeated sampling and averaging for the CKD terms with large cloud radiative
effects (CREs) to maximize the reduction of the noise introduced and minimize
the additional cost of cloudy-sky radiation calculations (as for CLDS, clear-sky
fluxes are computed separately). Therefore, additional sampling (the summation
over j) is done for the k points in the cumulative probability space (CPS), with
the largest CREs:

(FICA) = (1 — CF) Z e s C’Fki{: (Jik Z Ff,f"i) (2.8)

where J represents the number of subcolumns used for the calculation for each
k intervals. It will be 1 for the less-contributing intervals and could be as high as
10 for the most-contributing intervals. To determine the different J, fractional
contributions from each point k& to SW and LW CREs are determined for net
fluxes at surface and for heating rates. This evaluation can be done once for a

specific GCM.

The most utilized and logically designed methods for climate modeling (best ratio
between minimum random noise and computational time) are CLDS and SPEC.
SPEC uses generally 50% more cloudy subcolumns in its calculation than CLDS
specifically for spectral intervals that contribute more to the CREs (equation 2.8).
As an example, the ECMWEF model uses the CLDS version.

Different studies show that the impact of McICA noise introduction is model
dependent. The CLDS version shows a small but statistically significant impact
principally on global-mean low cloud fraction at the 95 to 99 % confidence level.
These differences from the reference simulation tend to cluster over tropical oceans
(CAM and ECHAMS5, Raisanen et al., 2005, 2007). On the other hand, SPEC

shows no statistically significant difference at the 95 % confidence level for most
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models (Réisdnen et al., 2005; Barker et al., 2008) for global mean values of many
variables such as precipitation, cloud radiative forcing, 2 m temperature, as well
as for their annual mean horizontal variability. For the CAM model, Riisénen
et al. (2005) estimated that the model noise horizon was between the noise levels
introduced by the CLDS and the SPEC version of McICA. Hill et al. (2011b)
showed that for a low resolution NWP simulation, the CLDS version produced
worse forecast of near-surface temperature than the PPH-MRO assumptions while

the SPEC version they proposed, produced better results.

2.0 Results in climate and NWP models

When looking at the improvements on clouds and radiative variables with the
McICA implementation, results varied but all authors agree on the positive sim-
plification and new flexibility that the methodology brings to the radiative transfer

scheme.

At one end of the spectra, Morcrette et al. (2008) implemented the McICA
methodology in parallel with a new radiative transfer scheme, new cloud and
surface properties in the ECWMF model. This new package was shown to benefit
most variables and particularly the cloud-radiation interactions in the Tropics.
The authors further specify that these improvements are only visible when all
modifications are applied together but are mainly due to the McICA methodol-
ogy. However, other studies have shown that McICA alone has not led to direct

improvement in simulated climate (e.g. Pincus et al., 2006).

At the other end of the spectra, for the ECHAMS and CAM models, McICA-
CLDS version have shown a small reduction in low cloud fraction, especially over
tropical oceans (Réisénen et al., 2005, 2007). Further investigations by Raisinen

et al. (2008) have shown that, for the ECHAMS model, this bias is originating from
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a non-linear response of the autoconversion rate to McICA noise in heating rates
and is further amplified by radiative feedbacks. When coupled to an interactive
mixed-layer ocean, the model drifts to a warmer climate. The authors suggest
putting emphasis on radiative-heating rates with a noise reduction technique such

as the SPEC version (see equation 2.8).

Raisanen and Jarvinen (2010) tested the introduction of the Tompkins cloud
scheme in the ECHAMS model as well as the transmission of the subgrid-scale
information of that scheme into the McICA calculations (again with the CLDS
version). As the model was using a cloud optical depth scaling before the McICA
implementation, tuning parameters were modified to counteract the shift pro-
duced by McICA and the cloud scheme, as they increased the SWU at TOA. The
authors highlight that the use of McICA strengthen the negative short-wave cloud
radiative effect without noticeable change in cloud cover. An important conclusion
was that even if, for current climate, all model versions were performing similarly,
for a climate change projections, the McICA version showed a response in global
warming 1.5 time stronger (in global mean 2 m temperature) than the control

model, mainly due to cloud feedbacks.

2.6 Specifying the free parameters in the SCG

With the use of the McICA method, parameterization paradigm switches from
cloud overlap or homogeneous plane parallel cloud assumptions embedded in pre-
vious radiative schemes to the cloud stochastic generator decorrelation lengths
(Les and Ley,) and horizontal variability of cloud condensate (f,, = 0,/w, where
fuw is the relative standard deviation of cloud water content). Since the McICA
and SCG introduction, some studies have, first, derived the SCG parameters from

observations and second, assessed model sensitivities to these parameters. Fol-
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lowing is a brief recapitulation of these studies in which this thesis is embedded.

Zhang et al. (2013) provided a good overview of this modeling problematic us-
ing the Cloud-Aerosol-Radiation ensemble modeling system to evaluate the indi-
vidual contribution of cloud optical properties, cloud horizontal inhomogeneity,
cloud vertical overlap, and gas absorptions to the spread among the major ra-
diation schemes in terms of cloud radiative effects (CREs). They demonstrated
that cloud subgrid-scale structures (overlap and horizontal inhomogeneity) were
responsible for 40-75% of model spread. More specifically, different cloud verti-
cal overlap assumptions were critical for SW components and TOA LW CREs
while the horizontal inhomogeneity assumptions were key factors for SFC LW

components.

Also from a modeling perspective, Barker and Réisdnen (2005) presented a sen-
sitivity study on the three SCG parameters. As a diagnostic tool, they used the
stochastic cloud generator initialized by a CRM’s data together with the McICA
methodology. Estimates of radiative sensitivities and uncertainties with respect
to one of the three studied variables were computed diagnostically by varying the
variables (6Lcs = £ 0.5 km, § Ly, = £ 0.25 km and 6f,, = £ 0.1, where f = 1/4/v)
and using the two others directly from the CRM dataset. The results showed that
global-mean radiative sensitivities in TOA and surface SW flux for L. and f,
were of similar amplitude whereas for L, they were generally five times smaller.
Generally, the radiative sensitivities were much larger in the SW than in the LW.
The authors also compared these parameter sensitivities to parameterizations of
effective radius (resr) with a £10% variation and found that sensitivities from
fw and resy were well correlated as they both operate on horizontal layers. 7.y
sensitivities were larger than f,, for high latitudes but of the same order of mag-
nitude in the Tropics. The authors emphasized that cloud overlap and horizontal

variability parameterizations should be studied as much as cloud microphysical
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structures.

From the observations point of view, Barker (2008b) used two months of the
cloud-mask product derived from CloudSat and Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation (CALIPSO, Stephens et al., 2002; Winker et al.,
2003) data to derive an effective L to be used in GCMs with the SCG as the
majority of previous studies used decorrelation lengths L.s and L, of 2 km and 1
km respectively (based on Réiséinen et al., 2005). The median values of L.s were
shown to be weakly dependent on the satellite cross-section length. On the global
scale (for satellite cross section between 100 and 1000 km), the median values
of Lcs tended to 0 km for very small CF (vertically projected cloud fraction),
increased linearly to 2-3 km for CF around 0.7 and decreased to 1.5 km when
CF tended to 1. Looking at the spatial and temporal variability of L.s, maxima
appeared in polar regions during their respective winters and in the northern
tropics during summer. As precipitation was present in the cloud-mask satellite
data, the author applied a rough precipitation screening and global median values

of L5 were reduced from = 2 km to =~ 1.5 km.

In a second article, Barker (2008a) estimated the impact of a constant L.s value
of 2 km with off-line radiation calculations. Tests were done for homogeneous
and inhomogeneous clouds. Compared to L.y derived from observations in the
previous article, the use of a constant L.s showed that zonal-mean biases and
random errors for TOA SW and LW CRE increase only slightly and sometimes
even decrease (due to random error cancellations). However, the largest errors
(=~ 15 %) are in the tropics for the SW heating rates at altitude between 10 and
15 km because of an overestimate of C'F, corresponding to too much cloud top

exposed to direct solar radiation.

In a two part article, Shonk et al. (2010) and Shonk and Hogan (2010) derived and
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evaluated a relative standard deviation of water content (f, = 0w/@ = 1/\/V)
and a decorrelation length L.s to be used in the Tripleclouds scheme of Shonk
and Hogan (2008). For the f,, values, it was derived from a number of studies
(based both on optical depth and water content observations) and the authors
did not find any consensus on how it varied with cloud type or grid size, for
example. They found a general value of 0.75 £ 0.17 (for a corresponding v of 1.8
with a range between 1.2 and 3.0). For the decorrelation length, they derived a
linear fit as a function of latitude based on the studies of Hogan and Illingworth
(2000) and Mace and Benson-Troth (2002) to be used in an exponential-random
overlap parameterization (as the one in the SCG). The L.s values vary from
0.4 km at the poles to 2.9 km at the Equator. When these parameters were
tested in radiative transfer calculations, the largest radiative effects were noted in
marine stratocumulus areas for the f,, parameters and in deep tropical convection
areas for the L.; parameters for individual contributions of SW and LW effects.
The sensitivity was assessed with values of f,, of 0.57 and 0.93 and L.s ranges of
[0.46 — 2.5]km and [0.77 — 3.5]km. The uncertainty on top of atmosphere radiative
budget was found to be of the order of £:60% for the f,, while for the L, it was

much smaller.

Hill et al. (2011a) derived a relative standard deviation (f,) parameterization
for ice clouds based on CloudSat and MODIS data, function of horizontal scale,
thickness layer and cloud fraction. Results showed that f,, is generally between
0.2 to 0.8 (wich corresponds to a range of 1.6 to 25 for v). It increases with the
horizontal scale, the thickness layer, and with small cloud fraction but becomes

smaller for overcast conditions.

Boutle et al. (2013) derived a similar parameterization to that of Hill et al. (2011a),
although for liquid clouds. It is based on aircraft in situ measurements, land-based

radars and lidars, and CloudSat data. It is function only of horizontal scale and
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cloud fraction. As for the ice, f,, increases with the horizontal scale and cloud
fraction, but drops for overcast conditions. This parameterization produces f,
values around 0.75 for grid box sizes in the range 50-150 km, as it was suggested

by Shonk and Hogan (2008).

Oreopoulos et al. (2012a) introduced a spatiotemporal fit for the decorrelation
lengths based on CloudSat and CALIPSO measurements. The parameterization
is a Gaussian fit with values ranging from 1.5 km at the poles to 3.5 km around
the Equator (for the L,s, while L, vary from 0.75 km to 1.5 km) with the maxi-
mum following the intertropical convergence zone during the year. Furthermore,
for two model versions (with different convective assumptions and different strati-
form cloud parameterizations), the authors tested the effects of cloud overlap and
horizontal inhomogeneity. They found that the overlap parameterizations was
cloud-scheme dependent, whereas the horizontal inhomogeneity effects were more

consistent across cloud schemes.

Finally, Zhang et al. (2014) introduced two distinct L.s, one for the deep con-
vective clouds (set to 10 km) and one for the other clouds (set to 1 km). These
decorrelation lengths are weighted by their respective cloud fraction and the sum
is applied on the model grid point. It produces a global mean L.; of 1.7 km, with
zonal mean maximum between 3 and 3.5 km in the Tropics depending on the
season, similarly to Oreopoulos et al. (2012a). Compared to constant L.s, they
found local differences >20 W/m? for the SW CRE and >10 W/m? for the LW
CRE in regions of frequent convection. However, the horizontal inhomogeneity
introduction produced the most striking effects, both globally and zonally, with
maximum of 1 K differences for near-surface temperature at the mid-latitudes

over 10 years of simulations.

These studies show that the SCG parameters and their related radiative sensitiv-
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ities are still being assessed. On one hand, parameter radiative sensitivities are
not well understood and seem to be model dependent and even cloud scheme de-
pendent. One the other hand, results from observations show that variability can
come from physical processes that can be linked to cloud phase or cloud regime, or
from the model representation in itself, such as horizontal and vertical resolutions.
To this day, it is still not clear to which extent complex physical parameterizations
would improve model radiative results as these parameters are intimately associ-
ated with cloud representation through convective, microphysics and stratiform
cloud schemes. However, the SCG offers a framework to test extensively these

open questions.

2.7 McICA in the GEMCLIM model: a detailed analysis and
beyond

As the McICA methodology has shown to be model or even cloud scheme depen-
dent, a detailed evaluation of its implementation in the GEMCLIM model needs
to be done. Since the McICA implementation implies the removal of inhomogene-
ity corrections that were implemented in the RT scheme, four components must
be analyzed and disentangled in their radiative effects, if possible: the inhomo-
geneity corrections removal, the McICA horizontal inhomogeneity introduction,
the McICA vertical overlap assumption and the model adjustment or response to

this new methodology.

Once the McICA methodology implementation in the GEMCLIM model is un-
derstood, validation against global observation data sets becomes important to
understand how the model reproduces the cloud-radiation interactions. From
there, radiative biases can be explained, put in context, and it will show how the

McICA methodology affects these results.
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Finally, to provide a more complete overview of the McICA methodology radiative
sensitivities, the SCG parameters must be assessed with all the flexibility it offers,
in a variety of conditions, and moreover, they must be compared to other radiative
parameterizations like the effective radius. Furthermore, one cannot ignore the
possible non-linear effects when combining changes in different parameters, these

effects must at least be studied, if not completely understood.




CHAPTER III

COMPARING TWO APPROACHES TO ACCOUNT FOR
CLOUD SUBGRID-SCALE VARIABILITY IN THE GEMCLIM
MODEL

3.1 Introduction

The first part of this thesis is an analysis of the replacement of fixed inhomo-
geneity corrections and maximum-random overlap by the McICA methodology
in the GEMCLIM model, in global mode. As explained in the previous section,
the McICA implementation effects have four different contributions: the inho-
mogeneity correction removal, the McICA horizontal inhomogeneity introduction,
the McICA vertical overlap assumption and the model adjustment or response to
this new methodology. To analyze separately these contributions, different sim-
ulations, in which the first three components are implemented one at the time,
are presented. Furthermore, offline (or diagnostic) McICA fluxes are compared
with online McICA fluxes to isolate McICA direct radiative effects from the gen-
eral model signals, which include possible atmospheric adjustments to McICA

methodology as well as model internal variability.

The present analysis is concentrated over different axes to try to detail the McICA

radiative effects. The analysis is performed as a function of cloud variables to illus-
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trate the intrinsic relationships between McICA subgrid-scale parameterizations
and their radiative effects. Besides, the time scale evolution of the different sig-
nals is presented to see how instantaneous signals contribute to the mean seasonal
signals. Finally, analysis is also performed as a function of cloud phases as liquid

and ice clouds interact differently with radiation.

8.2 Methodology

il Model description and configuration

The GEM model (Global Environmental Multiscale model) used in this study
was developed for NWP applications (Coté et al., 1998) at Environment Canada
and is now used at ESCER Centre for regional climate studies under the name
CRCM5 (Canadian Regional Climate Model version 5, Hernandez-Diaz et al.,
2013; Martynov et al., 2013). It can be used in global uniform or stretched grid
as well as limited area mode. The particular setup of GEM used in this work,
which is similar but not identical to the operational NWP versions, is referred to

as GEMCLIM in this thesis.

GEM employs a two-time-level semi-Langragian, semi-implicit advection scheme.
Surface fluxes of heat, moisture and momentum are calculated over four surface
sub-types following the ISBA scheme (in this version, Bélair et al., 2003b,a). Sub-
grid scale turbulent fluxes are calculated using an implicit vertical diffusion scheme
with prognostic turbulent kinetic energy (TKE) and a mixing length based on
Bougeault and Lacarrére (1989) (Bélair et al., 1999).

GEM uses a prognostic total cloud water variable with a bulk-microphysics scheme
for non-convective clouds. Fractional cloudiness is based on a diagnostic relative

humidity threshold approach (Sundqvist, 1988). The deep convection scheme is
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that of Kain and Fritsch (Kain and Fritsch, 1990, 1993), whereas a Kuo Transient

scheme is used for shallow convection (Kuo, 1965; Bélair et al., 2005).

The radiation scheme is that of Li and Barker (2005). It employs a correlated k-
distribution (CKD) method for gaseous transmission, with nine frequency intervals
for longwave and four for shortwave radiation. While the longwave spectrum and
the near-infrared portion of the shortwave spectrum are treated using the CKD
method, the rest of the shortwave spectrum is dealt with in frequency space with
UVC, UVB, UVA and photosynthetically active radiation is separately considered.
The scheme treats the following gases interactively, HyO, CO,, O3, N3O, CHy,
CFC11, CFC12, CFC13 and CFC14. Background aerosols are included based
on the climatology of Toon and Pollack (1976). This simple climatology specifies
maximum aerosol loading at the equator and a decrease towards the poles, with

different values for continents and oceans.

The total water content is transferred without tuning to the radiative transfer
(RT) scheme. The separation of total cloud water into liquid and solid is based on
the local air temperature and total water content ranging from all ice at —40°C
to all liquid at 0°C (Boudala et al., 2004). The liquid effective radius is a function
of LWC and CCN (Lohman and Roeckner, 1996) and has a range of [4 — 17|um
whereas the ice effective radius is set to a constant value of 15um. The integrated
cloud fraction (CF) is calculated with the maximum-random overlap assumption.
In the RT scheme, a gamma distribution correction is used following Li and Barker
(2002) to account for fluctuations in cloud absorption in the infrared (hereafter,
LW-GD correction) and an adjusted cloud optical depth is used to take into ac-
count the overestimation of homogeneous clouds albedo for the shortwave fluxes
(hereafter, SW-ACOD correction) following Li et al. (2005), as explained in section
1.2,
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In Oreopoulos et al. (2012b), an intercomparison of various radiative transfer
codes is presented with respect to reference line-by-line calculations for seven
particular cases with two including overcast liquid clouds. The Li and Barker
(2005) radiative transfer code is evaluated in this article and identified as the
number 4 model. The results show that for the overcast homogeneous liquid
cloud cases, the code produces a small overestimation of SWU at TOA with more
important underestimation in SWD at SFC, reaching 10 %. However, the LW

biases are quite small, below 1 %.

In our study, when McICA methodology is used, the intermediate noise reduc-
tion version is used with 100 subcolumns generated, with 45 sampled for the SW
radiative calculations and 71 for the LW. The SCG parameters are set to stan-
dard values from the literature: the decorrelation lengths for CF and cloud water
content (CWC) are 2 km and 1 km respectively, the horizontal water content
distribution (p,) is a gamma distribution and its normalized standard deviation
(f = 1/4/v) is kept to the model definition (v = [1;2;4] as a function of CF
=[<0.9;> 0.9& < 1;1]):

p(CWC|(CWC),v) = f-(lj)((—cﬁ”fa)”cwcv—le-wwcﬂcwm (3.1)
The model is run with an horizontal grid mesh of 0.5° and 56 vertical levels,
extending up to 10 hPa on a global grid. The global evaluation is required in order
to sample all cloudy conditions (from polar clouds to deep convection, over land
as well as over ocean) since the McICA methodology can respond very differently.
The model time step is 1200 s whereas the radiative time step is 3600 s. In between
the radiative time steps, the LW fluxes and heating rates are constant, whereas the
SW fluxes and heating rates are corrected for the change in solar angle. Different
simulations are made for the period 2006/11 to 2009/12 both employing observed

sea surface temperatures (SSTs) and sea-ice as the lower boundary conditions
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Table 3.1 Simulation descriptions

name description offline McICA

CTL reference model yes
HOMOG?* | reference model without the inhomog. corrections | yes, with MRO
HOMOG | reference model without the inhomog. corrections yes

McICA | online McICA (without the inhomog. corrections) no

from the Atmospheric Model Intercomparison Project dataset (Hurrell et al., 2008,
AMIP). The first month of simulation is excluded from seasonal analysis.

3.2.2 Experiments: offline vs. online McICA calculations

As both the LW-GD and the SW-ACOD corrections are implemented in the con-
trol model to account for cloud subgrid scale inhomogeneity (see section 1.2),
these corrections are removed when using the McICA methodology, because of
the explicit inhomogeneity treatment through the SCG. To have a measure of
these removal effects, the HOMOG simulation was performed by removing these
corrections from the control model, therefore treating the cloud homogeneously
in the RT scheme. In order to better understand all the impacts of the McICA
methodology, four simulations were conducted as listed in table 3.1: one with
the control model (CTL), two with the SW-ACOD and LW-GD inhomogeneity
corrections removed (HOMOG) and one with the McICA calculations (McICA).

For the CTL and the two HOMOG simulations, the model is run with two calls to
the RT scheme: first with the classic RT calculations and second, with the SCG
and McICA methodology applied. The second call to the RT with the McICA
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methodology is an offline calculation (sometimes called diagnostic calculation in
the literature, e.g. Oreopoulos et al., 2012a) as the resulting fluxes are not fed back
into the model simulations. These offline calculations allow a direct comparison
between the RT classic calculations and the McICA RT calculations for the exact
same atmospheric profiles, over the whole domain and period of integration. The
HOMOG* simulation is different from the second one (HOMOG) only in its offline
McICA application since the MRO assumption (see section 1.1) is kept contrarily
to the the other McICA applications where decorrelation lengths are applied.

As listed in table 3.2, the differences seen in radiative fluxes with the offline
calculations allow to, first, understand the McICA direct effects of only intro-
ducing horizontal inhomogeneity (HOMOG3ca mro - HOMOG*). Secondly, to
understand the McICA direct effects of introducing horizontal inhomogeneity and
changing the vertical overlap assumption (HOMOGycica - HOMOG). Finally, it
allows to understand the effects of replacing the SW-ACOD and LW-GD correc-
tions by the McICA methodology (CTLyca - CTL) without any change to the
cloud and atmospheric variables. On the other hand, the McICA - CTL differ-
ences will include internal variability of the model simulations and to an extent,
possible drift to new atmospheric states. These two sets of comparisons (with of-
fline/online calculations and with different simulations) allow to distinguish first,
what is coming from the McICA methodology directly and second, how this signal
is modified when the modeled atmosphere is allowed to respond to the new flux

calculations.

32,3 Surface and top of atmosphere fluxes

This chapter focuses on four flux components: the downwelling shortwave and

longwave fluxes at surface (SWD and LWD at SFC respectively), and the up-
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Table 3.2 Comparison list

A simulations effects

HOMOG} 104 Mro - HOMOG* | offline horizontal inhomog. McICA effects
HOMOGyyca - HOMOG offline McICA effects

CTLycca - CTL offline McICA - inhomog. correction effects
McICA - CTL online McICA - inhomog. correction effects

welling shortwave and longwave fluxes at top of atmosphere (SWU and IWTU at
TOA). The SFC downwelling fluxes present how clouds modify, on one part, the
incoming solar radiation as a primary reflective and scattering component of the
atmosphere, and on the other part, how clouds, together with water vapor, absorb
and radiate back the SFC and atmospheric thermal heat. Whereas at TOA, the
upwelling fluxes integrate both the SFC, cloud and other atmospheric components

signatures.

For the SW fluxes, regions of high incoming solar radiation can produce signif-
icantly more flux differences and therefore contribute more to the global mean
differences. For this reason, SW fluxes are presented divided by the incoming
solar radiation at TOA creating a ”SWD ratio” at SFC (SWD at SFC divided by
SWD at TOA) and the TOA albedo (SWU at TOA divided by SWD at TOA).

3.2.4 Co-variability diagrams

Co-variability diagrams of radiative fluxes as a function of cloud variables such
as cloud fraction (CF) or cloud water path (CWP) are the main tool used in this
chapter for the analysis of the results. Since the radiative response of the model to

radiative modifications can be non-linear depending on the various cloud variables,
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these diagrams allow to extricate those relationships and to better understand the

underlying contributions to the total response.

Building co-variability diagrams when looking at differences between offline and
online fluxes of a specific simulation is simple. The cloud variables being identical
by definition, it becomes easy to simply subtract the two flux variables, McICA
offline fluxes ( ffjf f) and classic online fluxes ( £, for each grid point (i, 7). These
flux differences (Af;;) can be distributed as a function of CF or CWP (c;;), cre-

ating a 2D relative frequency distribution of flux differences (Dogs—on):

Afy=F -1

B Ao = @;%ﬁ]ﬂ ¥ 100% (3.2)

However, when comparing independent simulations, the model freely evolves
creating different cloud variable distributions. As the flux differences between two
simulations cannot be taken at a single grid point, since the atmosphere conditions
are possibly different, 2D frequency distributions of fluxes as a function of CF or
CWP are first created for each simulation (n;) over an identical co-variability

space (with identical intervals for the X and Y-coordinates). Then a relative

difference of distributions (dy_z) is calculated:

ng(f, ¢) = dist[f(cij)]
ny(f,c) = dist[f}(ci;)]

dy_o(f,0) = =% % 100% (3.3)

2 Zj Ny

Figure 3.1 presents an example of the two treatments for the downwelling long-
wave fluxes (LWD) at surface as a function of CF. The first row is the relative
frequency distribution of the flux differences (Dyfs_on) between CTLycica offline
fluxes and fluxes for the CTL simulation. Whereas the second row presents, in or-

der, the frequency distributions of LWD as a function of CF for the CTL (norr)
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Figure 3.1 First row: example of D,yss_on (in %) for LWD as a function of CF
for the CTL simulation. Second row: example of ngrr and naseca for the same
variables for the CTL and McICA simulation (left and middle panel, in number
of occurrences) with their relative difference of distributions daserca—crr (right

panel, in %).

and McICA (npserca) simulations, followed by the relative differences of these

distributions (d McICA—CT L) 3

3.3 Results and interpretation

Results are presented in four parts. First, an idealized case is used to demonstrate
simply the McICA horizontal inhomogeneity effects on fluxes. The second part
presents the offline results with instantaneous flux difference distributions at two
time steps together, January 1% 2007 at 00 UTC and 12 UTC. This analysis helps
to understand all the components of the McICA application and to illustrate the
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effects of its stochastic nature. January 1% is chosen as a middle day of the
winter season and the two time steps are chosen 12 hours apart to sample the
whole globe with the sun up. Next, the offline flux difference distributions are
presented for a seasonal mean boreal winter (DJF 2006-2007) to understand how
the instantaneous conclusions are preserved or not over a seasonal mean. Finally,
the online results are presented over a 3 year DJF seasonal mean (2006-2009)
with relative differences of distributions. As a reference, the offline results are

presented in parallel to the online results in the same manner.

Co-variability diagrams of flux variables as a function of CWP are filtered such
that CF> 0.9 for instantaneous data, and for CF> 0.7 for seasonal mean data.
This is necessary to isolate the relationship between fluxes and CWP without the
influence of varying CF. The SW fluxes are also filtered for daytime only. The
global mean flux (or ratio) or global mean difference in flux (or ratio) is shown
in all diagrams. For the SW ratios, the global mean flux or global mean flux
difference is also indicated in parenthesis to illustrate the differences due to the

two calculations.

To isolate effects from liquid, mixed or ice cloud phases, a filtering is applied on
liquid and ice water content (LWC and IWC). The limit was set to 0.01 g/kg for
LWC and IWC to detect a liquid, an ice or a mixed cloud at a specific vertical level
for each model grid point. To isolate the phase related signal, a second filtering -
is applied to consider only model columns with a single cloud phase. This limit
has been tested with lower and higher threshold values to find a compromize
between enough occurrences of each cloud type (a lower limit is more restrictive
and reduces the number of model columns containing only one cloud phase) and
not too many mixed signals (i.e. a higher limit allows, for example, small values

of LWC in model columns identified as containing only ice clouds).
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Note that the analysis is presented for the boreal winter season (DJF) only but
the boreal summer (JJA) was also analyzed and yielded similar conclusions. A

few JJA results are presented for comparison in the last result section.

3.1 MCcICA horizontal inhomogeneity effects: a simple ideal-

ized case

As an introduction to the McICA horizontal inhomogeneity effects on SW and LW
fluxes for different water content values, a simple idealized case is presented. This
case includes only one cloud layer with a CF of 1, with three different specified
LWP values: 1.0, 0.5 and 0.1 kg/m?. The specific humidity and temperature
vertical profiles are presented in figure 3.2 left column. The McICA REF version
is used (sec dcfinition in section 2.4) in order to remove any stochastic noise

contributions.

To illustrate the basic McICA effects of introducing horizontal inhomogeneity
against an homogeneous cloud treatment, vertical flux differences are shown in
figure 3.2 between the offline McICA methodology and the homogeneous cloud
radiative transfer. The middle and right top panels show that McICA horizontal
inhomogeneity effect is to reduce the cloud reflectivity by increasing the SWD and
reducing the SWU. The different colors show that differences in SW fluxes are in-
creasing for decreasing LWP values. The middle and right bottom panels show
that for the LW, a reduced emissivity (which decreases the LWD and increases the
LWU) is seen with McICA only at the lowest LWP values. For the other cases, the
emissivity is even slightly increased. These results confirm that the homogeneous
assumption produces greater biases (or greater cloud albedo overestimations) at
low LWP values as explained theoretically in section 1.1. Moreover, this effect

disappears rapidly with increasing LWP for the LW fluxes, since the cloud emis-
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sivity relationship as a function of LWP reaches its maximum value rapidly and

therefore, the McICA methodology has almost no impact.

R Offline results for instantaneous fluxes

Figure 3.3 shows the SWD ratio differences at SFC and TOA albedo differences
between the offline McICA calculations and the classic RT calculations for the
HOMOG*, HOMOG and CTL simulations as a function of total water path
(TOTWP) and cloud fraction (CF).

The first column presents the horizontal inhomogeneity McICA effects compared
to homogeneous cloud treatment (HOMOG}10a mro - HOMOG*). The signal
shows a stochastic noise (+ differences in fluxes due to the Monte Carlo sampling
of cloudy sub-columns) with a positive or negative skewness (a positive or negative
signal) due to the horizontal inhomogeneity introduction which decreases the cloud
reflectivity (as explained in section 1.1), hence increases the SWD ratio at SFC
and decreases the TOA albedo. This signal is clearly decreasing with increasing
CWP (1% and 3" rows); a feature that is directly derived from the cloud albedo
and CWP relationship, the slope being steeper (hence more sensitive) at lower
CWP as explained in section 1.1. On the other hand, as a function of CF (2™
and 4" rows) the signal is growing with CF as it is expected with more clouds of

reduced reflectivity that contribute to modify the SW fluxes.

The second column presents both McICA effects: the horizontal inhomogeneity in-
troduction and the decorrelation length vertical overlap assumption (HOMOGyca
- HOMOG). The overall signal is similar to the HOMOG* differences except for
a general decrease in amplitude and mean signal. This is the effect of switching
from MRO to decorrelation lengths, which generally leads to a small increase in

integrated CF (Réisdnen and Barker, 2004), which decreases SWD ratio at SFC
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Figure 3.2 Vertical profiles of: specific humidity and temperature profiles (left
column), downwelling flux differences (middle column) and upwelling flux differ-
ences (right column) between offline McICA methodology and homogeneous cloud

radiative transfer (HOMOGyica - HOMOG) for three different LWP values.
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and increases TOA albedo. However, this signal cannot be identified directly
in this figure as the inhomogeneity effect is dominant and of opposite direction.
Occurrences of negative signal at SFC and positive signal at TOA can be either
attributed to the stochastic noise or the secondary effect of changing the overlap
assumption. A particular case is seen for TOA albedo as a function of TOTWP
with a mean TOA albedo increased signal of 0.002 but a mean SWU at TOA of
-2.9 W/m?2. This can come from the regional distribution of positive and negative
flux differences that are divided by the SWD at TOA. The TOA albedo ratio will
give more weight on regions with less incoming solar radiation and thus, the global
mean values can switch sign. In this case, the global mean TOA albedo shows a
small increased signal, meaning that the overlap assumption slightly overrides the
horizontal inhomogeneity introduction. Since the global mean SWU at TOA is
negative, it suggests that the positive signal comes from regions of lower incoming

solar radiation, or higher latitudes.

When replacing the SW-ACOD corrections by the McICA methodology (CTLyaca
- CTL, 3™ column), the signal is completely reversed with an important, decrease
in SWD ratio at SFC and increase in TOA albedo, result of an increased cloud
reflectivity. This can be attributed to the SW-ACOD removal effects (see section
1.2) that now dominate over the McICA effects. In other words, the treatment
of cloud inhomogeneity by the SW-ACOD is much stronger in terms of reducing
cloud reflectivity than the treatment of cloud inhomogeneity through the present
McICA methodology. Moreover, the signal is now increasing with TOTWP, at
least up to 0.5 kg/m? and then fades out as occurrences of high TOTWP are also
decreasing. This can be explained by the fact that the SW-ACOD corrections are
increasing with cloud optical depth, or TOTWP. However, the McICA signature
may be visible at low TOTWP (where its effects are stronger and the SW-ACOD

effects are weaker) with few occurrences of small positive flux differences at SFC
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and negative flux differences at TOA. Stochastic noise may also be responsible for

these occurrences.

For all simulations, the TOA signal is similar to the SFC signal with opposite
signs. However, a reduction both in the maximum amplitude and in the mean
signal is visible. This signal attenuation can be understood for cases over high
reflective surface, where the modified cloud reflectivity is compensated by the
surface reflection, resulting in smaller flux differences at TOA compared to SFC.
To confirm this hypothesis, figure 3.4 shows that over land for all cases, where
surface albedo is higher relative to ocean (particularly for winter season), the
McICA response is particularly damped for SWU at TOA (right) compared to
SWD at SFC (left).

Flux differences as a function of cloud phase are not shown (see annex 5.4 for
the detailed diagrams) but their global mean values are presented in table 3.3.
For all simulations, the liquid and mixed clouds are contributing the most to the
signal since SW flux are mainly modified by larger cloud optical depth values that
are representative of liquid and mixed clouds. On the other hand, the ice clouds
exhibit almost a null global mean signal for the HOMOG{;0s Mro - HOMOG*
differences. This can be understood by looking at figure 1.1 where the cloud
albedo relationship to IWP exhibits regions where the homogeneous assumption
will overestimate the cloud reflectivity and regions where it will underestimate it.
Moreover, ice clouds exhibit opposite signals for SWD ratio at SFC (-0.006) and
TOA albedo (0.003) for the HOMOGyica - HOMOG differences. This oppo-
site signal is now the visible effect of changing the overlap assumption since the
horizontal inhomogeneity effect is almost not affecting the ice clouds (0.0 global
mean difference for the SWD ratio at SFC and -0.002 for the TOA albedo for
the HOMOGj1ca mro - HOMOG™ differences). As a function of CWP, both the
liquid and ice clouds exhibit a positive TOA albedo signal of 0.004 responsible for
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the positive signal seen in figure 3.3.

Figure 3.5 presents the offline LWD flux differences at SFC and LWU flux differ-
ences at TOA between the offline McICA calculations and the classic RT calcu-
lations for the HOMOG*, HOMOG and CTL simulations as a function of total
water path (TOTWP) and cloud fraction (CF).

The horizontal inhomogeneity McICA effects (HOMOG}; 104 Mro - HOMOG*,
first column) produces decreased LWD at SFC and increased LWU at TOA due
to a reduced cloud emissivity as expected (see section 1.1). This is analog to the
SW signal due to reduced reflectivity but with smaller signal since the emissivity
relationship to CWP has a lower slope than cloud albedo and it reaches saturation
more rapidly (at lower CWP). This means that the McICA treatment generally

decreases the cloud greenhouse effect.

Opposite occurrences to the mean signal are also visible and can be due to the
stochastic noise. Similarly to the SW, the signal decreases with TOTWP but
its amplitude is maximum at CF around 0.6 for the LWD at SFC and towards
CF=1 for LWU at TOA. Unlike the SW signals, the LW signals are not as sym-
metrical between SFC and TOA: a broader signal as a function of TOTWP and
higher global mean signals are seen for LWU at TOA. These discrepancies will be

discussed in more detail as a function of cloud phase.

When the overlap assumption is also modified with the McICA methodology,
(HOMOGycca - HOMOG, second column), the global mean signal is attenuated
compared to the first column and opposite occurrences (positive occurrences for
LWD at SFC and negative occurrences for LWU at TOA) are more visible. As
explained for the SW, this is the effect of switching from MRO to decorrelation
lengths, which generally leads to a small increase in integrated CF (R&isénen and

Barker, 2004), which increases LWD at SFC and decreases LWU at TOA. The
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Figure 3.3 SW ratio differences for January 1% for the HOMOG* (1% column),
the HOMOG (2™ column) and the CTL simulations (3™ column). First and sec-
ond rows are for SWD at SFC divided by SWD at TOA as a function of TOTWP
and CF respectively, while 3™ and 4** rows are for TOA albedo differences. The

global mean ratio differences (or the global mean flux differences, i.e. without the

normalization by the SWD at TOA) are indicated in each panel. The distribution

mean and standard deviation are represented with the full and dashed lines.
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Table 3.3 Global mean offline SW flux differences as a function of cloud type.

All conditions is equivalent to co-variability diagrams (as a function of CF) inset

information. Values in parenthesis correspond to co-variability diagrams as a

function of CWP (for CF >0.9).

cloud type | SWD ratio | SWD at SFC | TOA albedo | SWU at TOA
HOMOG} 104 Mro - HOMOG*
all 0.012 (0.014) | 12.7 (13.6) |-0.006 (-0.003) | -7.8 (-6.6)
liquid | 0.016 (0.011) | 16.8 (12.3) | -0.008 (0.001) | -10.0 (-4.1)
ice 0.000 (0.012) | 6.1 (13.8) |-0.002 (-0.005) | -4.7 (-8.7)
mixed | 0.018 (0.016) | 17.2 (14.4) |-0.009 (-0.005) | -10.3 (-7.8)
HOMOGpca - HOMOG
all 0.007 (0.007) 8.7 (8.7) -0.001 (0.002) -4.6 (-2.9)
liquid | 0.012 (0.007) | 12.8(9.2) | -0.004 (0.004) | -6.9 (-2.0)
ice -0.006 (0.0) 2.7 (5.9) | 0.003 (0.004) | -2.1(-3.5)
mixed | 0.010 (0.008) | 10.7 (8.8) | -0.002 (0.0) | -5.3 (-3.6)
CTLperca - CTL
all -0.046 (-0.084) | -28.1 (-51.2) | 0.039 (0.069) | 23.2 (38.2)
liquid | -0.055 (-0.099) | -34.9 (-56.2) | 0.049 (0.061) | 29.3 (42.2)
ice -0.038 (-0.071) | -14.6 (-36.0) | 0.024 (0.051) | 10.3 (26.2)
mixed -0.061(-0.071) | -37.4 (-44.5) | 0.048 (0.056) | 27.9 (32.060)
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Figure 3.4 SWD differences at SFC (left) and SWU differences at TOA (right)

as a function of CF for CTL over land only.

signal attenuation is more important at TOA compared to SFC.

The third column presents the effects of replacing the LW-GD corrections by
McICA (CTLymeca - CTL). As for the SW, the LW-GD corrections are stronger
than what McICA can produce and therefore, their removal results in an increased
LWD at SFC and decreased LWU at TOA. This signal also decreases rapidly with
TOTWP and increases with CF. This behavior as a function of TOTWP is not
expected (as it was for the SW), since the LW-GD corrections are highly non-
linear as a function of cloud optical depth. Similarly to the SW, the McICA signal
may be visible at low TOTWP values, where its effects are more pronounced but

stochastic noise contribution cannot be excluded.

Table 3.4 presents global mean LW flux differences as a function of cloud phase.
Contrarily to the SW counterpart, the ice clouds exhibit the largest McICA signals
(HOMOGj 104 Mro - HOMOG* and HOMOGycica - HOMOG), both in global
mean signals and amplitude (see annex 5.4 for diagrams). Moreover, the ice cloud

signals as a function of CF are also maximum at CF around 0.6, where the ice




50

cloud occurrences are maximum. Since the ice clouds are the major contributors
to the LW signals, it can explain the maximum seen around CF=0.6 for LWD
at SFC. For the LWU at TOA, mixed clouds are also contributing to the signals
towards CF=1, removing the decreasing trend in amplitude between CF=0.6 and

CF=1.

On the other hand, liquid clouds exhibit the smallest McICA signals. This can
be explained by the liquid clouds reaching rapidly the emissivity saturation (of
1) since their LWP is generally greater than the ice cloud IWP. Moreover, the ice
clouds are presenting more occurrences at very low IWP. When the cloud emissiv-
ity is reaching saturation, the McICA horizontal inhomogeneity introduction will
have little effect on the model column emissivity whereas the overlap effect can
produce opposite signals: an increased LWD at SFC or decreased LWU at TOA.
The LWU signal at TOA is effectively negative only for the liquid clouds for the
HOMOGmc1ca - HOMOG difference.

For the CTLycca - CTL differences, the mixed clouds are presenting the greater
global mean signal probably due to the LW-GD corrections that are non-linear as

a function of cloud optical depth.

This first section has shown that:

e The main McICA effect is a decreased cloud reflectivity and emissivity due
to WC horizontal inhomogeneity introduction, which increases the SWD
ratio at SFC and reduces the TOA albedo, while decreases LWD at SFC
and increases LWU at TOA;

- The LW differences are much less than the SW differences;

- This effect strongly decreases as a function of CWP, and increases with

CF;
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e The McICA overlap assumption, which results in a small increasing CF,

offsets the horizontal inhomogeneity effect;

- This secondary effect is mainly seen for ice clouds where the mean
horizontal inhomogeneity effect is almost zero for the SW, and for liquid

clouds for the LW;

e Replacing the SW-ACOD and LW-GD corrections by the present McICA
methodology results in an increased cloud reflectivity and emissivity, which
decreases the SWD ratio at SFC and increases the TOA albedo, while in-
creases the LWD at SFC and decreases the LWU at TOA;

- This means that the SW-ACOD and LW-GD corrections are much
stronger (in decreasing the cloud reflectivity and emissivity) than the present

McICA inhomogeneity introduction;

- This effect increases with TOTWP up to 0.5kg/m? for the SW and
decreases for the LW, while it increases with CF for both SW and LW;

- For low TOTWP values, the McICA effects may be visible but the

stochastic noise contribution cannot be excluded;

o All SW signals are damped at TOA since the surface reflection partly com-
pensates the modified cloud reflectivity, whereas for LW signals, amplitude
is similar but different patterns are seen (such as different decreasing rates

and different maximum localizations);

e For all SW signals, the liquid and mixed clouds are contributing the most
since the SW flux are mainly modified by larger cloud optical depth values
which correspond generally to the liquid and mixed clouds; while for LW
MCcICA signals, the ice clouds exhibit the greater signals both at SFC and
TOA.
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Figure 3.5 LW differences for January 1% for the HOMOG* (1% column), the
HOMOG (2™ column) and the CTL simulations (3™ column). First and sec-
ond rows are for LWD at SFC as a function of TOTWP and CF respectively,
while third and fourth rows are for LWU differences at TOA. The global mean

flux differences are indicated in each panel. The distribution mean and standard

deviation are represented with the full and dashed lines.




Table 3.4 As table 3.3 but for LW flux differences.

cloud type | LWD at SFC | LWU at TOA
HOMOGjc10a,Mro - HOMOG*

all -1.2 (-0.7) 1.6 (1.9)
liquid | -0.9 (-0.3) (-0.2)

ice -3.3 (-2.0) 3.1(2.8)
mixed -1.4 (-0.8) (L.7)

HOMOGyycica - HOMOG

all -0.8 (-0.5) 0.8 (0.9)
liqud | -05(-0.3) | -0.1(-0.4)

ice 2.3 (-1.4) 2.0 (1.6)
mixed | -0.9(-0.6) | 0.7(0.8)

CTLwmeca - CTL

all 1.3 (1.8) -1.6 (-2.5)
liquid 6 (2.1) -1.2 (-1.5)

ice 6 (1.8) -1.9 (-3.3)
mixed 0 (1.9) -2.1 (-2.4)
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3.3.3 Offline results for seasonal mean fluxes

This section presents the offline SW ratio and LW flux differences similarly to the
previous section but for one winter (DJF 2006-2007) seasonal mean to see how

instantaneous signals are modified over a season average.

Figure 3.6 presents the seasonal mean SW ratio differences as a function of
TOTWP and CF. The first column presents the horizontal inhomogeneity McICA
effects. Similar results to the previous section are found: a decreased cloud re-
flectivity which increases the SWD ratio at SFC and decreases the TOA albedo.
Since the difference are now taken over a seasonal mean period, the stochastic
noise should disappear. However, occurrences of opposite sign to the mean signal
are still visible and they are mainly coming from the ice and mixed clouds. The
ice clouds even exhibits a negative global mean effect as a function of CF (see
table 3.5) with a maximum in amplitude around CF=0.5 (not shown, see annex
5.4 for detailed diagrams). This feature was not seen at the instantaneous time
scale. It means that, at the seasonal scale, the McICA horizontal inhomogeneity
introduction increases the ice clouds reflectivity. Finally, the decreasing McICA
inhomogeneity effect with increasing TOTWP is no more visible in the seasonal
mean signal and its increasing tendency with CF is reduced, particularly for TOA

albedo.

The second column presents the combination of horizontal inhomogeneity and
decorrelation length effects. Similarly to the instantaneous results, the global
mean signal is reduced (compared to the horizontal inhomogeneity effects only)
and more opposite occurrences are visible since the vertical overlap assumption is
producing opposite effects to the inhomogeneity introduction. Again, occurrences
of opposite sign to the mean signal are mainly coming from the ice and mixed

clouds (not shown). The ice clouds exhibit a global mean signal of -0.006 for SWD
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ratio at SFC and 0.004 for TOA albedo since the horizontal inhomogeneity and

the vertical overlap are producing effects of same sign.

For both experiments (first and second column), global mean signals are greater
at the seasonal scale compared to the instantaneous values. This may be due to
the stochastic noise cancellation or to a time sampling effect: January 1% may

not be representative of the season.

The third column presents the SW-ACOD and LW-GD removal effects combined
to the McICA inhomogeneity and vertical overlap effects. As for the instanta-
neous results, the SW-ACOD removal effects are dominant and no more opposite
occurrences are visible. However, the global mean signals are reduced compared
to the instantaneous values, maybe due to the increased McICA signals over the
seasonal scale. As seen in the previous section, the liquid and mixed clouds are
contributing more importantly since the SW-ACOD correction is proportional to

cloud optical depth.

The LW seasonal mean effects are presented in figure 3.7. Looking at the hori-
zontal inhomogeneity McICA effects on the first column, the results are similar
to the instantaneous results for the LWD at SFC, even keeping the decreasing
tendency as a function of TOTWP. The ice clouds are still the main contributors
for the signal, particularly for the maximum signal seen at CF=0.5. However, for
the LWU at TOA, the signal is changed as a function of TOTWP due to contri-
butions of liquid clouds to the higher LWU differences occurrences. Looking at
table 3.5, for the LWU at TOA, the three cloud phases are exhibiting a similar

global mean signal.

The second column, which presents the horizontal inhomogeneity and vertical
overlap McICA effects, is similar to the first column. The signals are similar to

the instantaneous results for the LWD at SFC with the ice clouds being the main
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contributors while it is different for the LWU at TOA with the liquid and mixed

clouds contributing to the higher LIWU difference occurrences.

For both experiments (first and second column), contrarily to the SW signals, the
LWD global mean signals remain approximately the same at the seasonal scale
compared to the instantaneous time scale. However, the maximum amplitude is

reduced as expected from stochastic noise cancellation at the seasonal scale.

Finally, the third column presents similar results to the instantaneous results
for the combined McICA effects and SW-ACOD and LW-GD removal effects.
Opposite occurrences to the mean signal have almost disappeared while global

mean signals remain the same. Tendency of increasing effects as a function of

TOTWP and CF are still visible.

This section has presented how the instantaneous offline signals are changed or

maintained over a one year seasonal mean. In summary, the main results are:

e The same McICA horizontal inhomogeneity effect is seen at the seasonal
mean: a general increased SWD ratio at SFC and LWU at TOA, while a
reduced TOA albedo and LWD at SFC, due to decreased cloud reflectivity

and emissivity ;

- Its decreasing effect as a function of TOTWP is no longer visible for

the SW and only at SFC for the LW;

- TOA signals are still reduced compared to SFC signals for the SW

only;

- Without the stochastic noise, the ice clouds exhibits more clearly their
opposite response with an increased cloud reflectivity while their emissivity

is still decreasing with McICA,;

- For the LW, the ice clouds are still the main contributors at SFC while
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at TOA, liquid clouds are more contributing, particularly to higher LWU

difference occurrences;

o As before, the McICA effect due to vertical overlap assumption counteracts

partly the horizontal inhomogeneity effect;

- For the ice clouds, both effects are increasing the reflectivity;

e Compared to instantaneous results for the McICA effects only, the maximum
amplitude is reduced in all cases, but the global mean signal is increased for

the SW and remains generally the same for the LW;

e Similarly to the instantaneous time scale, the SW-ACOD and LW-GD cor-

rection removal effects are dominant over the McICA effects;

- Almost no more opposite occurrences (that were attributed to either
stochastic noise or McICA inhomogeneity signals) are visible at the seasonal

scale;

- The liquid and mixed clouds are still the most contributing clouds to

this effect;

- As for the McICA effects only, the maximum amplitude is reduced com-
pared to instantaneous results. However, the global mean signal is reduced

for the SW and maintained for the LW.

334 Online results for seasonal mean fluxes

This section presents online seasonal average results as it is the goal of this study
to show and explain the McICA replacement effects at the seasonal scale. Since
the flux differences between two simulations cannot be illustrated with the co-

variability diagrams of flux differences for each grid point (as the cloud variables
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Figure 3.6 SW ratio differences for DJF2007 for the HOMOG-MRO (1% column),
the HOMOG (2™ column) and the CTL simulations (3™ column). First and 2™
rows are for SWD at SFC divided by SWD at TOA as a function of TOTWP
and CF respectively, while 37 and 4t* rows are for TOA albedo differences. The
global mean ratio differences (or the global mean flux differences, i.e. without the
normalization by the SWD at TOA) are indicated in each panel. The distribution

mean and standard deviation are represented with the full and dashed lines.
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Table 3.5 Global mean offline SW ratio and LW flux differences as a function of

cloud type for DJF 2007. All conditions is equivalent to co-variability diagrams

(as a function of CF) inset information. Values in parenthesis correspond to co-

variability diagrams as a function of CWP (for CF>0.7).

cloud type | SWD ratio TOA albedo | LWD at SFC | LWU at TOA
HOMOG}10a Mro - HOMOG*
all 0.016 (0.022) | -0.010 (:0.014) | -1.2 (-1.2) 1.5 (1.9)
liquid 0.019 (0.025) | -0.012 (-0.016) | -0.8 (-0.8) 1.2 (1.4)
ice -0.001 (0.001) | 0.002 (0.001) | -2.6 (-2.4) 1.5 (1.9)
mixed | 0.018 (0.021) |-0.011 (-0.013) | -1.3 (-1.4) 1.7 (1.8)
HOMOGyca - HOMOG
all 0.010 (0.015) | -0.005 (-0.007) | -0.8 (-0.8) 0.8 (1.0)
liquid 0.014 (0.019) | -0.008 (-0.011) | -0.4 (-0.5) 0.6 (0.7)
ice | -0.006 (-0.005) | 0.004 (0.005) | -2.0(-1.9) 0.8 (L.1)
mixed | 0.011(0.013) |-0.005 (-0.006) | -0.8 (-0.9) 0.9 (0.9)
CTLmcica - CTL
all -0.043 (-0.058) | 0.036 (0.050) 1.3 (1.7) -1.6 (-2.0)
liquid | -0.043 (-0.057) | 0.039 (0.051) | 1.2 (1.7) 1.5 (-1.8)
ice | -0.038 (-0.043) | 0.018 (0.029) | 1.7 (2.3) 1.2 (-1.8)
mixed | -0.049 (-0.050) | 0.041 (0.047) | 1.7 (L.9) 1.9 (-2.0)
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Figure 3.7 LW differences for DJF2007 for the HOMOG-MRO (1% column), the
HOMOG (2™ column) and the CTL simulations (3™ column). First and 2™ rows
are for LWD at SFC as a function of TOTWP and CF respectively, while 37
and 4% rows are for LWU differences at TOA. The global mean flux differences
are indicated in each panel. The distribution mean and standard deviation are

represented with the full and dashed lines.
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can freely evolve in each simulation), the co-variability diagrams now present the
differences of distributions. To disentangle the offline " direct” results (where only
fluxes are calculated differently) from the online results (where the atmospheric
conditions can also differ), the offline results (CTLyeca - CTL) are presented in

parallel to the online results (McICA-CTL) for the same co-variability diagrams.

Figure 3.8 presents the SW ratio at SFC and TOA albedo relative frequency dis-
tributions as a function of CWP and CF, and their offline and online relative dis-
tribution differences. The 2™¢ column presents the same offline signal (CTLueica
- CTL) as figure 3.6 but for a 3 year seasonal mean DJF (from December 2006 to
February 2009) instead of one year. The red and blue dipole indicates the same
decrease in SWD ratio at SFC with less occurrences (in blue) at higher values and
more occurrences (in red) at lower values. The inverse is seen for the TOA albedo
with a general decrease. With these co-variability diagrams, no clear tendency
emerges as a function of CF or TOTWP. The global mean signals are almost the

same as the one year seasonal mean of figure 3.6.

The 3¢ column presents the online results (McICA - CTL), where the atmosphere
can evolve freely and respond to the modified McICA fluxes. The patterns are very
similar to the offline results but the global mean signals are reduced in all cases.

This suggests that the cloud variables may be different in the McICA simulation.

Figure 3.9 presents the LWD at SFC and LWU at TOA relative frequency distribu-
tions as a function of CWP and CF, and their offline and online relative distribu-
tion differences. Similarly to the SW, the global mean offline signals (CTLycica
- CTL) are almost identical to the previous section (see figure 3.7). Since LW
signals are much weaker than the SW signals, the LWD increase at SFC and the
ILWU decrease at TOA are barely visible on these diagrams. For the online signals

(McICA-CTL, 3™ column), the relative distribution of differences exhibit differ-
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ent patterns compared to the offline distributions but without any clear tendency.

However, the global mean signals are reduced at SFC and approximately the same

at TOA.

This reduction in LW signal at SFC, together with the reduction in SW signals,
suggest that the differences in cloud variables may be more important in the lower
clouds since the LWU at TOA are almost unchanged. However, this may also be a
result of canceling signals at TOA. In table 3.6, the ice clouds exhibit the smallest
changes in SW global mean signal between offline and online signals, while the
mixed clouds exhibits the largest changes. Moreover, table 3.7 shows that the
CF, IWV and LWP are slightly reduced in the McICA simulation while the TWP
remained almost constant. These atmospheric adjustments and their radiative

consequences will be discussed in more detail in the next chapter.

To conclude with the online seasonal mean analysis, it has been shown that:

e The online McICA effects (which include the SW-ACOD and LW-GD cor-
rections removal, the horizontal inhomogeneity introduction and the change

of vertical overlap assumption) are diminished for all flux variables except

LWU at TOA compared to the offline McICA effects;

- The results are still a decrease in SWD ratio at SFC and LWU at TOA,
and an increase in TOA albedo and LWD at SFC, due to an increased cloud

albedo and emissivity;

- The tendencies (or patterns) as a function of TOTWP or CF remain
the same, particularly for the SW signals;

- The reduction in global mean signal suggests some atmospheric modi-

fications for the McICA simulation, particularly in the low clouds.
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Figure 3.8 SW ratio for the CTL simulation (1% column), SW differences be-
tween CTLperca - CTL (2 column) and between McICA - CTL (3™ column)
for DJF2007-2009. First and 2™ rows are for SWD ratio at SFC as a function of
TOTWP and CF respectively, while 3™ and 4% rows are for TOA albedo. The
global mean ratio differences (or the global mean flux differences, i.e. without the

normalization by the SWD at TOA) are indicated in each panel.
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Table 3.6 Global mean SW ratio and LW flux differences as a function of cloud
type for DJF 2007-2009. All conditions is equivalent to co-variability diagrams

(as a function of CF) inset information. Values in parenthesis correspond to co-

variability diagrams as a function of CWP (for CF>0.7).

cloud type | SWD ratio TOA albedo | LWD at SFC | LWU at TOA
CTLyeica - CTL
all -0.043 (-0.057) | 0.036 (0.049) | 1.3 (1.7) -1.6 (-2.0)
liquid | -0.044 (-0.056) | 0.040 (0.050) | 1.2 (1.5) 1.6 (-1.8)
ice -0.040 (-0.050) | 0.019 (0.033) | 1.7 (2.4) -1.2 (-2.0)
mixed | -0.049 (-0.056) | 0.041 (0.046) | 1.7 (1.9) -1.9 (-2.0)
McICA - CTL
all -0.037 (-0.043) | 0.032 (0.038) | 0.4 (0.3) L7 L8
liquid | -0.036 (-0.035) | 0.033 (0.032) | 0.4 (0.3) 489 (1.5)
ice -0.035 (-0.042) | 0.019 (0.030) | 0.5 (0.6) il 3 1.5
mixed | -0.039 (-0.044) | 0.034 (0.037) | 0.4 (0.5) -1.6 (-1.8)
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Figure 3.9 LW fluxes for the CTL simulation (1% column), LW flux differences
between CTLyica - CTL (2 column) and between McICA - CTL (3" column)
for DJF2007-2009. First and 2™ rows are for LWD at SFC as a function of
TOTWP and CF respectively, while 3" and 4** rows are for LWU differences at

TOA. The global mean flux differences are indicated in each panel.
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Table 3.7 Global seasonal mean values and differences for DJF and JJA

CTL ACTLpcica AMcICA

DJF/JJA | DJF/IIA DJF/JJA

WV (g/m2) 23.8 / 26.3 - 02/-03

effective CF (%) 59.3 / 59.9 - -0.7 /0.4

true CF (%) 70.9 / 70.1 - -0.6 /-0.4

LWP (g/m?) | 1014 /107.3 = 2.2 /-2.0

IWP (g/m?) 38.5 / 39.4 - 0.0 / +0.9
SWD-SFC (W/m?) | 177.8 / 167.1 | -15.1 /-14.3 | -12.7 /-12.6
SWU-TOA (W/m?) | 1207 / 109.9 | +12.9 / +12.2 | +11.2 / +11.5

LWD-SFC (W/m2) |339.2 /3552 | +13/+13 | +0.4/-02

LWU-TOA (W/m2) | 232.8 / 2378 | -16/-1.6 | -17/-20

3.4 Conclusions

The goal of this chapter was to extricate and explain the McICA contributions at
SFC and TOA in the GEMCLIM model. To achieve this, co-variability diagrams
were chosen in an attempt to isolate McICA signal tendencies as a function of
CWP or CF. The three part analysis (offline instantaneous, offline seasonal mean
and online seasonal mean) allowed a step by step analysis of the components that

contribute to the seasonal mean signals.

Four main simulations were performed: CTL, HOMOG*, HOMOG and McICA.
These simulations allow to assess McICA impacts compared to an homogeneous

cloud treatment separately of the overall effect of replacing the SW-ACOD and
LW-GD corrections by the McICA methodology.

When using McICA and the SCG, an horizontal inhomogeneity is introduced in
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CWP within each model column and the overlap assumption follows an expo-
nential relationship based on decorrelation lengths instead of a MRO. Based on
the theory, a decrease in cloud albedo and cloud emissivity is expected with the
MCcICA inhomogeneity treatment, as least for low CWP and particularly for liquid
clouds. Inversely, the overlap assumption used in the SCG should lead to a small

increase in vertically integrated CF in comparison to the MRO.

Offline results have demonstrated that the dominant McICA effect (compared
to an homogeneous cloud treatment) is the horizontal inhomogeneity effect. It
effectively produces a decreased cloud albedo and cloud emissivity, which results
in an increased SWD at SFC and LWU at TOA and a decreased SWU at TOA
and LWD at SFC. One exception is the ice clouds albedo which increases with

the horizontal inhomogeneity introduction.

The signal is presented with two components, the global mean signal and the
amplitude. Compared to instantaneous results, the maximum amplitude of the
signal is reduced for all flux variables on the seasonal scale. However, the global
mean signal is increased for the SW on the seasonal scale while remaining the
same for the LW. For the SW, the signal is similar between SFC and TOA except
for a generalized attenuation of the signal at TOA due to SFC reflection which
partly compensates the decreased cloud albedo. For the LW, the SFC signal is

more disconnected from the TOA signal with different patterns as a function of

CWP and CF.

For the signal tendencies as a function of CWP and CF, the instantaneous time
scale results allow to see the decreasing McICA sensitivities with CWP while the

increasing effects with CF are visible also on the seasonal time scale.

For the SW, the liquid and mixed clouds are the main contributors to the McICA

signals while for the LW, the ice clouds have a more important contribution.
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The McICA overlap assumption has smaller and opposite effects compared to
horizontal inhomogeneity effects, except for ice clouds where both effects are of

the same sign. In general, the overlap assumption decreases the global mean

MCcICA signal.

When replacing the SW-ACOD and LW-GD inhomogeneity corrections of the
model by the McICA methodology, the McICA effects are counteracted by the
removal of the SW-ACOD and LW-GD corrections. For the GEMCLIM model,
this removal has much stronger effects than the McICA introduction which means
that the SW-ACOD and LW-GD corrections are stronger (in decreasing the cloud
albedo and emissivity) than what McICA produces with the standard SCG pa-
rameters. The general results are decreased SWD at SFC and LWU at TOA with
increased SWU at TOA and LWD at SFC.

Similarly to the McICA effects, the signal amplitude is reduced on the seasonal
scale compared to the instantaneous time scale. However, its global mean signal
is also reduced on the seasonal scale. This signal is increasing with CF in all
conditions while as a function of CWP, it decreases for the LW at the instantaneous
time scale while it increases in all other conditions (at the seasonal scale and for the
SW). For all flux variables, liquid and mixed clouds are the principal contributors

to this signal.

For all effects, the SW signals are always attenuated at TOA compared to SFC
while the LW signals are approximately the same. Moreover, the LW signals are

much weaker than the SW signals.

Finally, when looking at the online McICA effects (which include the SW-ACOD
and LW-GD removal, the horizontal inhomogeneity introduction and the change
of vertical overlap assumption), all global mean signals are reduced except for

the LWU at TOA. This suggests some atmospheric adjustments for the McICA




69

simulation. However, the signal tendencies remain the same between offline and

online McICA effects.

To conclude, the McICA methodology modifies SW and LW fluxes as expected
with a reduced cloud albedo and emissivity (except for the ice cloud albedo) com-
ing from the horizontal inhomogeneity introduction with opposite effects due to
the overlap assumptions. A surprise was the intensity of the SW-ACOD and LW-
GD inhomogeneity corrections, which, when replaced by the McICA methodology,
produces a dominant opposite signal over the whole CWP and CF ranges. The
next chapter will explain why this correction, implemented from the literature

without any particular tuning, is so strong in the GEMCLIM model.

This chapter has only presented results for the DJF season for practical reasons,

but the boreal summer season (JJA) exhibited similar conclusions as presented

by table 3.7.

These results are model dependent in a sense that it is a function of: the mod-
eled clouds, which are dependent on the convection and microphysics schemes;
the different radiative cotrections that are replaced by the McICA methodology;
and finally the radiative transfer scheme in itself. However, a clear demonstration
was made concerning the greater contribution coming from the horizontal inho-
mogeneity over the overlap assumptions; how the inhomogeneity impacts wear off
rapidly with increasing CWP but increase with CF; how its different impacts are
depending on the cloud phase; and on the asymmetry in the McICA radiative
impacts between SW and LW fluxes. Particularly, the McICA sensitivity to the
CWP and CF that was observed in this study can help understand and anticipate
in which cloud regimes it will have more or less radiative impacts. For example,
the inhomogeneity introduction will mostly modify cloud albedo for optically thin

(liquid) clouds whereas the longwave emissivity will change mostly for ice clouds.
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As a last point, it is important to notice that the SCG was used with its ba-
sic parameters untouched as this was not a sensitivity study and it may not be
the optimal parameter set for this model configuration. This work, an extended

parameter sensitivity study, will be presented in the last chapter.




CHAPTER IV

MCICA IN THE GEMCLIM MODEL: COMPARISON WITH
GLOBAL OBSERVATIONS

4.1 Introduction

The intention of this chapter is to assess the radiative budget of the GEMCLIM
model and its cloud components at TOA and SFC against recent global observa-
tion data sets. This will help understand the model biases and how the McICA
methodology can change the relationship between cloud and radiative variables.
Furthermore, vertical profiles of radiative fluxes are presented and compared be-
tween the two model simulations to illustrate the link between SFC and TOA

radiative McICA responses.

4.2 Methodology

421 Model simulations

The two simulations used in this study are the same used in the previous chapter:
CTL and McICA. Moreover, CTLyjca offline flux calculations are also presented
as a third comparison to help disentangle McICA direct contributions from the

model adjustments to the modified fluxes.
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As a reminder, the model is run with an horizontal grid mesh of 0.5° and 56 vertical
levels, extending up to 10 hPa on a global grid. The model time step is 1200 s
whereas the radiative time step is 3600 s. In between the radiative time steps, the
LW fluxes and heating rates are constant, whereas the SW fluxes and heating rates
are corrected for the change in solar angle. The different simulations are made for
the period 2006/11 to 2009/12 both employing observed sea surface temperatures
(SSTs) and sea-ice as the lower boundary conditions from the Atmospheric Model
Intercomparison Project data set (AMIP, Hurrell et al., 2008). The first month

of simulation is excluded from analysis.

422 Observation data sets and evaluated variables

This study uses 3 years (December 2006-August 2009) of Clouds and the Earth’s
Radiant Energy System Energy Balanced and Filled (CERES-EBAF) data prod-
uct for SFC and TOA fluxes and cloud radiative effect (CRE) in 1° zonal bands.
CERES-EBAF v2.7 TOA fluxes and CRE are produced with an objective con-
straint algorithm that adjusts SW and LW TOA fluxes within their range of
uncertainty to remove the inconsistency between average global net TOA flux
and heat storage in the Earth-atmosphere system (Loeb et al., 2009). It uses
instantaneous TOA fluxes from unfiltered radiances (Loeb et al., 2003) for scene

types from MODIS (Minnis et al., 2011b). -

For surface fluxes and CRE, radiative transfer calculations are performed hourly
on the CERES 1° equal-area grid with cloud properties derived from narrowband
imagers onboard both EOS Terra and Aqua satellites as well as geostationary
satellites. Gridded monthly mean cloud and atmospheric properties are adjusted
so that results approach TOA EBAF product and closely match modeled LWD

surface fluxes that include active cloud base measurements from CALIPSO and
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CloudSat. Uncertainties regarding surface fluxes are below 5 W/m? and 3 W/m?2
for the SW and the LW fluxes respectively (Kato et al., 2012), while for TOA
fluxes are below 5 W/m? (Loeb et al., 2009). The clear-sky TOA fluxes are from
cloud free regions both from the CERES footprint and from the MODIS sub-
CERES footprint, while at the surface, clear-sky fluxes are adjusted separately to
the monthly mean EBAF-TOA clear sky product.

Model clear-sky fluxes are calculated diagnostically at every time step in parallel
to the complete radiative transfer calculations. When comparing to observations,
one has to be careful since the clear-sky sampling from observations may not come

from all atmospheric conditions unlike the model clear-sky fluxes.

For the cloud properties and integrated water vapor (IWV), this study uses two
data sets. The first one is MODIS-derived and 3-hourly geostationary satellite
cloud properties from the CERES-SYNldeg product available in 1° zonal bands
(Minnis et al., 2011a). Whereas the second is the SSM/I (Special Sensor Mi-
crowave Imager, F16-v7) available at 0.25° resolution, over ocean only (Wentz,
2013). While SSM/I observations are only available for IWV and LWP, MODIS
data set also includes CF and IWP. However, for multi-layered clouds contain-
ing ice in the top layers, only an IWP estimate is produced, even if liquid is
possibly present in lower cloud layers. Moreover, Minnis et al. (2011a) mention
that this derived IWP overestimates the total water path (TOTWP), since for a
theoretical only ice-cloud, the TOTWP needs to be greater to match the opti-
cal depth radiative properties of a cloud containing even only a thin liquid layer.
Other issues for the MODIS cloud properties are the great discrepancies seen over
ice-covered surfaces against other observations and greater uncertainties for the
nighttime derived cloud microphysics properties. Finally, the LWP uncertainties
are around +100g/m? when compared to AMSR-E (Aqua Advanced Microwave

Scanning Radiometer—Earth Observing System) datasets for zonal mean overcast
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nonprecipitating liquid clouds over ocean (Minnis et al., 2011a), whereas the IWP

uncertainties are not available on the global scale.

On the other side, microwave observations have large uncertainties related to the
. radiative treatment of large precipitating particles and they are only available over
ocean. Finally, the better agreements between MODIS and microwaves observa-
tions are for warm, non-precipitating, low clouds (Horvath and Davies, 2007). For
all these reasons, both data sets are presented for LWP. For IWP, estimations from
MODIS are still presented in order to have some insight on the model TOTWP

but the absolute biases have to be taken with great caution.

4.3 Results and interpretation

Results are presented in four sections. The first two sections are the comparison
between model simulations and observations for the water vapor and cloud vari-
ables, followed by the SFC and TOA fluxes. The last two sections present detailed
differences between the two simulations, with zonal mean vertical profiles and sea-
sonal mean 2D maps for vertically integrated variables and SFC/TOA fluxes. All

results are for three year seasonal means for DJF and JJA.

4.3.1 Modeled cloud variables and water vapor against observa-

tions

This section presents cloud variables and integrated water vapor against obser-
vations to evaluate the basic atmospheric state of the model that is relevant to
radiative fluxes. Only two simulations are compared against observations, CTL
and McICA, as the CTLyica simulation has, by definition, the same atmospheric

state than CTL.
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First are presented the cloud fraction (CF), integrated water vapor (IWV), liquid
water path (LWP) and ice water path (IWP) in figures 4.1 and 4.2 to assess how
the model represents the basic cloud properties. In all figures, the zonal mean is
presented for the boreal winter seasonal mean (DJF) for both model and obser-
vations as a reference, followed by differences between model and observations for

both winter and summer seasonal means (DJF and JJA).

The modeled CF is presented against MODIS observations in figure 4.1 left col-
umn. For the model, two variables are presented, the total or ”true” cloud fraction
(plain lines) as calculated with the maximum-random overlap and the effective
cloud fraction (dashed lines) in which the cloud fraction is weighted by the cloud
transmittance in the atmospheric window at = 11 um following Ebert and Curry
(1992). As seen in the figure, the modeled effective CF is close to observed CF
with biases generally below 0.1 for both seasons. One exception is towards the
South Pole where the model effective CF underestimates the observed CF but
the true CF is closer to it, particularly for DJF. It means that model clouds are
too optically thin and that is why it does not show for the effective CF. For
both variables, no significant difference appears between the CTL and McICA

simulations.

The modeled IWV is presented in figure 4.1 right column against MODIS and
SSM/T observation data sets. As the SSM/I is available only over ocean, the
modeled IWV has also been filtered over ocean (dashed lines). Model biases are
up to 3 g/m? at high latitudes but are generally lower than 2 g/m? against the
two data sets. In this case, the McICA simulation exhibits a significantly different
IWV zonal mean compared to CTL, particularly for latitudes north of 30°N for
JJA where the values are reduced up to 5%. Note that this signal is not seen
in CF even if this diagnostic variable is based on humidity (it will be shown in

section 4.3.3 that this IWV decrease is accompanied by a temperature decrease).
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Figure 4.2 presents modeled LWP, IWP and TOTWP against MODIS and SSM/1
observations. As for the IWV, modeled LWP is filtered over ocean (dashed line,
left column) for comparison with SSM/I. Looking at modeled LWP (left column),
it is clearly overestimated with respect to either MODIS or SSM/I, except for
high latitudes where it is underestimated (approximately south of 50°S for both
seasons, north of 45°N for DJF and between 50-70°N for JJA); whereas for mod-
eled IWP (right column) it is a clear underestimate. As the phase separation
for MODIS derived LWP and IWP has to be taken with caution, a summation of
LWP and IWP from MODIS is also presented (dashed lines, right column) against
modeled TOTWP. Compared to this variable, the model overestimate is restricted
to latitudes below 30° approximately, with an underestimate over these latitudes.
However, as mentioned in section 4.2.2, the TOTWP may be too high in MODIS
where ice clouds are occurring. Looking at the three CWP variables together, a
conservative conclusion would be that the model has a wrong phase separation
(too much liquid and too few ice) with an overall TOTWP overestimate in the
Tropics and underestimate over 30°. As seen for CF, no important difference ap-
pears between the McICA and CTL simulations for IWP and only small reductions
in LWP are visible for McICA, mostly over the Tropics and mid-latitudes.

In conclusion, the model reproduces fairly well the observed CF and IWV but
seems to do a poor job at producing the right separation between liquid and ice
water content, resulting in a general overestimation of LWP, except polewards,
and an underestimation of IWP. The McICA simulation reproduces generally the

same cloud properties as CTL.
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4.3.2 Modeled SFC and TOA fluxes against observations

Looking now at the fluxes for both SFC and TOA, the SW fluxes are first assessed,
followed by the LW fluxes and finally the cloud radiative effects (CREs) defined
as:

CRE = Fr — poi (4.1)

following Liou (2002), where F%" is for the clear-sky fluxes and F°¥ is for the
all-sky fluxes.

Figure 4.3 presents SWD at SFC and SWU at TOA as well as clear sky fluxes
(dashed lines; for SFC fluxes, net clear sky fluxes are presented for technical rea-
sons, with the sign convention SW,;=SWD-SWU). Looking at the SWD first (left
column), the modeled clear sky net fluxes (the three simulations are collapsing on
the same line as expected) are relatively close to observations, except polewards,
with better results for DJF compared to JJA. For high latitudes regions, obser-
vations are to be taken with caution due to high observational uncertainties over
ice-covered surfaces (Minnis et al., 2011a). Looking at differences between the two
simulations, the only change between McICA and CTL (CTLyca being exactly
the same to CTL, by definition) is for JJA north of 80°N with McICA presenting
a very important reduction in net clear sky fluxes. This is mainly coming from
the SWU reflected at surface since figure 4.4 shows higher SFC albedo for the
MCcICA simulation.

On the other hand, the modeled all sky SWD are underestimated almost every-
where for both seasons, up to 30 W/m? for CTL simulation. This is expected with
regards to the overestimate in LWP, but the underestimation does not fade out
for high latitudes where LWP becomes underestimated. A significant decrease in
biases around 40°S and 40°N is also visible for all simulations and both seasons.

This feature could explain why the biases are not fading at higher latitudes with
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the decreased LWP biases: from these latitudes, the modeled IWP is increasing
rapidly towards the poles and could be responsible for the underestimate of SWD
at SFC (combined with the clear sky biases for JJA). This could suggest that the
IWP biases are not as negative as suggested by MODIS observations and possibly
even positive. Another hypothesis would be that ice clouds, even if underestimated
in their water content, are wrongly treated in the RT scheme with, for example,
wrong effective radius assumption. More specifically, the model has a constant
ice effective radius of 15 ym, which could strongly overestimate ice cloud albedo.
As a reference, MODIS zonal mean ice effective diameter varies between 42 and

66 um (not shown).

When looking at CTLpycica and McICA simulations compared to CTL, the un-
derestimation is even worse (up to 50W/m?) since the SW-ACOD (as explained
in section 1.2) is removed and the horizontal inhomogeneity introduction cannot
counteract its effects, especially for such large LWP values. Differences between
CTLwmcica and McICA simulations are small but fairly constant and could be due
to the reduced LWP seen in figure 4.2. It is also coherent with the global mean
reduced online McICA signals seen in the previous chapter. These differences are
much smaller compared to the McICA and CTL differences, indicating that the
atmosphere response to McICA fluxes is not a major contribution in the later.
However, for latitudes north of 80°N for JJA, McICA fluxes are higher (present-
ing lower negative differcnces against observations) and closer to CTL whereas
CTLmcca fluxes present larger negative biases. A possible cause for this would
be that, for'thin clouds in that region, the lower McICA LWP values (compared to
CTL), seen in figure 4.2, lead to significantly higher McICA SWD fluxes compared
to CTLycica (which sees the CTL LWP by definition).

For the SWU at TOA (right column), the clear sky SWU are now presented
(instead of the net fluxes presented for the SFC). As seen for the SFC fluxes, the
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modeled clear sky SWU are generally close to observations with few latitudinal
band biases reaching 10 W/m? except for latitudes over 80°N for JJA where biases
are reaching 60 W/m? as seen at SFC and linked to SFC albedo overestimate. The
all sky modeled SWU biases are generally of similar amplitude as seen for SFC
with an important overestimated SWU linked to the overestimated LWP and
the increasing IWP towards poles. The main differences between SFC and TOA
biases are for latitudes south of 70°S for DJF where the modeled SWU at TOA
have almost no bias compared to SWD biases of 20-30 W/m?2, probably due to
high reflective SFC reflection compensation. Finally, the difference seen at SFC
between McICA and CTLycica for latitudes north of 80°N in JJA is now reversed
for TOA with greater biases seen in McICA than CTLygca even if the McICA
LWP is lower. In this case, the SFC reflexion with the greater clear sky bias (or
greater SFC albedo bias) is compensating the lower LWP.

Figure 4.5 presents LW fluxes with the net clear-sky fluxes at SFC presented
with reverse sign convention for practical reasons (left column, LW,;=LWU-
LWD). The net clear-sky LW at SFC are relatively close to observations with
larger biases polewards and for JJA. Maximum biases are around 15 W/m? for
DJF and 25 W/m? for JJA. At TOA (right column), clear sky LWU are closer
to observations than at SFC with maximum biases around 10 W/m?. For the
LW fluxes, particularly at SFC, the observational sampling for clear-sky fluxes
that differs from the model, may have morc impacts than for SW, and could be
responsible for larger differences seen between model and observations. As for SW
fluxes, almost no difference is seen between CTL and McICA at SFC and only
small differences are visible at TOA; these differences are coherent with the IWV

differences visible in figure 4.1

For the all sky fluxes, LWD at SFC (left column) present smaller biases compared

to observations than SW fluxes. However, these biases are still important, reaching
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20-30 W/m? towards the poles. Biases are generally positive, coherently with the
overestimated LWP and the increasing IWP where the LWP biases disappear. On
the other hand, regions of negatives biases, like for latitudes south of 70°S and
between 30-70°N, for JJA, are coherent with the underestimate of effective CF (in
figure 4.1) which means that clouds are optically too thin, also corresponding to
regions with higher IWP negative biases. For LWU at TOA (right column), biases
are generally negative, again coherently with the overestimated LWP. TOA biases
are smaller compared to SFC and, contrarily to SW fluxes, are not as related in
their zonal patterns, to SFC biases. One difference is that the LWU biases are
minimal in the Tropics and maximal from the mid-latitudes to the poles. This
could be supported by the hypothesis that the ice effective radius is too small
in the model, which leads to an overestimate of ice cloud optical depth, hence

reducing the LWU at TOA.

Comparing the two simulations, differences in LW flux biases are much smaller
than for the SW fluxes. As expected from chapter 3, CTLycica generally follows
CTL biases, with a small constant increase in LWD at SFC and decrease in LWU
at TOA, as it has been shown that replacing the LW-GD corrections by McICA
produces increased cloud emissivity. For the McICA simulation, LWD at SFC are
between the CTLycca and CTL fluxes, suggesting some atmospheric adjustments
as seen in chapter 3. One exception is visible in the zonal band between 40-
70°N for JJA, where the McICA LWD are smaller than CTL, coherently with the
IWV differences between CTL and McICA seen in figure 4.1. However, at TOA,
McICA follows more the CTLygca LWU fluxes and exhibits greater differences
in particular regions. North of 40°N in JJA, McICA presents decreased LWU at
TOA, oppositely to what is expected with a decreased IWV. It will be shown in
section 4.3.3 that it can be related to an important decreased temperature going

from the surface up to 250 hPa.
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Figure 4.6 presents CREs for SW (left column) and LW (right column) for both
SFC (dash lines) and TOA (full lines). The modeled SW CREs are too strong (as
expected from the overestimated cloud albedo) for both seasons and biases are
generally slightly lower for SFC compared to TOA. McICA have more important
biases (up to 20 W/m? greater) even for JJA for latitudes north of 80°N where
McICA SW CRE biases are becoming positive. This is coherent with the greater
McICA net clear sky SW fluxes at SFC compared to CTL combined with the
similar all sky SWD fluxes.

On the contrary of SW CREs, LW CREs are very different between SFC and TOA
with greater CREs at SFC from mid-latitudes to poles and greater CREs at TOA
in the Tropics. The modeled LW CREs have smaller biases compared to modeled
SW CREs, particularly for TOA where biases are generally positive and within 10
W/m?2. For SFC, modeled LW CREs have also general positive biases, up to 20
W/m? except for JJA between 20-70°N where a negative bias is seen as reported
for the LWD at SFC (figure 4.2). The greater LW CREs biases at SFC compared
to TOA can be expected, since the dominant model bias is concerning the liquid
clouds, which have more impacts on the LW fluxes in the lower atmosphere, in

comparison to the ice clouds that have more influence on the LWU at TOA.

This section has shown that the general trends are:

e Clear sky fluxes are relatively close to observations (within 10 W/m?) for
both SW and LW at SFC and TOA, with better results for DJF than JJA
and growing biases towards poles. Almost no distinction is seen between

CTL and McICA simulations.

o All sky SW fluxes are underestimated at SFC and overestimated at TOA for
all seasons due mainly to the large overestimation of modeled LWP. However,

for high latitudes where modeled LWP is not overestimated, the SW biases
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are still present possibly due to too low ice effective radius. Patterns are

very similar between SFC and TOA, as expected.

The McICA simulation exhibits greater SW biases (up to 20 W/m? greater)
due to the SW-ACOD correction removal primarily. The differences be-
tween CTLycica and McICA are small compared to CTL suggesting that
the atmosphere modifications are not important contributors to SW flux

responses.

Coherently, the SW CREs are overestimated at SFC and TOA with McICA
having bigger biases than CTL.

All sky LW fluxes are generally overestimated at SFC and underestimated at
TOA, coherently with the overestimation of modeled LWP and possibly the
too low ice effective radius. Biases are generally smaller than for SW fluxes,
smaller for DJF compared to JJA, as well as smaller at TOA compared to
SFC. The LW CREs exhibit the same features with general positive biases
and smaller biases at TOA compared to SFC.

Differences between simulations are much smaller than for SW fluxes with
McICA LW biases being slightly greater, both at SFC and TOA meaning
that cloud emissivity is enhanced with the McICA methodology. However,
CTLycca and McICA differences are now of the same order of McICA and
CTL differences, meaning that the atmospheric modifications in McICA

simulations are playing an important role in the modified LW fluxes.

However, some zonal exceptions are also present;:

e For clear sky fluxes, an exceptional bias (up to 60 W/m?2) is shown for

McICA SW fluxes over 80°N in JJA linked to higher SFC albedo for that

simulation.
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o Some regions exhibit different SW bias trends between SFC and TOA: south
of 70°S for DJF, smaller biases are seen at TOA probably due to SFC re-
flexion compensation; and between 30-60°N for JJA, the TOA biases are
greater than SFC biases, may be linked to the model SFC albedo small

overestimation.

e For LW fluxes, a region over 40°N for JJA exhibits decreased LWD for
McICA simulation compared to CTL. This could be linked to the decreased
IWV in McICA or other variables like temperature that will be presented

in the next section.

4.3.3 Differences in modeled zonal vertical profiles

This section presents zonal mean vertical profiles for SW and LW fluxes to help
understand the link between the different radiative responses to McICA method-
ology at SFC and TOA presented in the previous section. Other variables such
as CF, total water content (TOTWC), temperature (T) and absolute humidity
(HU) are presented to see how the atmosphere vertical structure is modified in

response to McICA fluxes over the three year period.

First is presented the vertical structure of CF and TOTWC in figure 4.7 with
differences between McICA and CTL. The modified McICA atmosphere exhibits
differences up to 0.05 for CF and 7.5%10~3 g/kg for TOTWC with slightly more
negative occurrences for the winter season. At the two poles, both variables are
reduced in the McICA simulations for both seasons. The low clouds also exhibit
slightly reduced TOTWP and CF, particularly for DJF, that were only slightly
visible in their corresponding vertically integrated variables of the previous section

(figures 4.1 and 4.2).




86

400

: 300/ %2 —'—CERES EBAF
350N\ 2 i : i G : :

300k N\ M- 250

o 2501
E

N
[=]
(=]

SWU (W/m?)
3

N
o

=1
o

[=]

=10 b
NE NE
£ 208 z
S 30 =
5 5
< <

JIA

70 ' ! ! ! !
——CTL-CERES:EBAF ; : :

601 —— CTliyocs~CERES: EBAF 5 ool

——McICA—CERES EBAF ..

A SWD (W/m?)
A SWU (Wim?)

| —cTi-cERES:EBAE. V'
CTLyyqoa~CERES: EBAF: :
== MCICA=CERES: EBAF""g ---------- creei

=& =net, clear sky : : H : : : : : : : : : :
70 A i 3 i i _ogl—i ; L8 3 : i 1 : A

-80 —60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0 20 40 60 80
lat lat
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Figure 4.4 Surface albedo for DJF (left) and JJA (right).

Figure 4.8 presents how the SW fluxes are modified with McICA. The CTLycca-
CTL differences (2™ row for DJF and 5%* row for JJA) show how the fluxes are
modified with the McICA methodology without any changes to the atmospheric
conditions. It is clear from the SWD fluxes how the cloud albedo is increased,
particularly for low clouds due to the SW-ACOD removal which is proportional to
cloud optical depth. The resulting SWU are increased from the low level clouds
and up, except for latitudes south of 70°S for DJF. For this region, high ice clouds
have little condensate and are probably more scattering than reflecting SWD, and
this is reduced with CTLycca. Moreover, as seen in the top panel for CTL, the
SWU are mainly coming from surface reflection, which is reduced by the reduced

SWD reaching SFC for CTLyqch .

Looking at McICA-CTL differences, which includes atmospheric interactions with
McICA fluxes, the McICA signal is still predominant with fluctuations that slightly
reduce the signal for DJF and even increase the signal for SWU for JJA for lat-
itudes north of 45°N. In that later case, both CF and TOTWC are increased
for low to mid-level clouds, increasing the reflected SWU, but for high clouds,
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ulations for DJF (1% row) and differences between model and observations for

DJF (2™ row) and JJA (3™ row). For convenience, the SFC CREgw/w sign

convention is reversed in this figure.
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TOTWC is decreased resulting in a cancellation of the SWD reduction in that
region for McICA compared to CTL. This combination leads to the greater TOA

biases (compared to SFC) seen in the previous section.

In figure 4.9, temperature (T) and absolute humidity (HU) vertical profiles are
presented with their differences as they are key variables, together with CF and
TOTWC, for LW fluxes. It is clear that T and HU modification structures are
more organized than what was seen for CF and TOTWC (figure 4.7). For DJF, a
marked T difference dipole is seen above 250 hPa with a general decrease in both
T and HU below 250 hPa except for few zonal bands. For JJA, a heating and
moistening is visible for latitudes south of 60°S while the opposite is more striking

for latitudes north of 30°N.

Looking now at LW fluxes in figure 4.10, differences between CTLysqca and CTL
show how the McICA methodology increases the cloud emissivity or enhanced
its greenhouse effects by increasing LWD and decreasing LWU for all seasons
and latitudes. However, differences between McICA and CTL exhibit how the
LW fluxes are dominated by atmospheric modifications of cloud, water vapor and
temperature. For DJF, the general McICA effect of increasing LWD is still visible
even with the generally decreased T with small zonal bands of decreasing LWD
where the HU, CF and TOTWC are decreasing the most. However, these opposite
trends are not visible in the LWU differences. Moreover, bands of no difference

or slight increased LWU are more correlated with T differences.

For JJA, differences between McICA and CTL are more homogeneous through
latitude bands. Looking at the North Hemisphere, the decreased LWD and LWU
fluxes are corresponding to the decreased T and HU for latitudes north of 30°N.
Even if CF and TOTWP exhibit patches of increased values, HU differences have
more impacts on LW fluxes as contrary of DJF. Around 15°N, both CF and
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TOTWC are contributing to the increased LWD and decreased LWU. For the
South Hemisphere, the increased LWD seems to come from increased high cloud
CF, increased TOTWC for mid-level clouds, with a high altitude increased T, and
a strong T increased for the whole atmosphere south of 60°S. Where the increased
T is dominating, an increased LWU is also seen, whereas when the increased LWD

is more linked to water variables, it results in a decreased LWU.

Finally, the visible and infrared heating rates (VIS-HR and IR-HR) zonal mean
vertical profiles are presented in figure 4.11. The CTLyca differences show that
McICA methodology has the effect of heating more the low cloud layers and high
cloud layers through SW fluxes with a reduced heating below these cloud layers.
For JJA, the increased heating for low clouds is only visible in the Tropics as there
is less CF and TOTWC over the North hemisphere mid-latitudes compared to the
South hemisphere. For the IR-HR, CTLyca exhibits increased cooling for the
low and high clouds. The separation between increased and reduced cooling is
located higher in the cloud layers (particularly for low clouds) compared to the
VIS-HR. Besides, the IR-HR scale is 2.5 times the VIS-HR scale. The McICA
differences are much noisier through the cloud layers and CTLygca remaining

signals are only visible at SFC and for high clouds.

Looking at the sum of the visible and infrared HR, or the NET-HR, in figure 4.12,
it is clear that the IR-HR is dominating with a general cooling except for TOA
and SFC in the Tropics where a small heating is visible. For high clouds, the
CTLycca signal is also dominated by the IR-HR tendencies with more cooling at
cloud tops and less below. For low clouds, as the VIS-HR and IR-HR tendencies
are partly overlapping, the increased cooling is reduced for cloud tops and the
reduced cooling is still present in clouds and below. Looking at the McICA-CTL
NET-HR, the low cloud dipoles seen for CT Lyerca-CTL lose their clear structures

and the signal amplitude is generally reduced. These modifications from offline
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to online heating rates could explain how the McICA low cloud adjustments are
taking place: i.e. a reduced cooling in the lower atmosphere could reduce CF or

TOTWP, and in turn, it would modify the online HR.

The goal of this section was to demonstrate how the McICA methodology changes
radiative fluxes in the vertical as well as how the atmospheric structure is modified.

The general results are:

e For SW fluxes, zonal mean vertical profiles show that McICA effects of
increased cloud albedo is dominant for low clouds (as expected since the

SW-ACOD removal effects are stronger with greater cloud optical depth);

e The McICA simulation exhibits these McICA effects with small modifica-
tions compared to the offline signal (CTLyca) due to CF and TOTWC

modifications;

e For LW fluxes, the offline signal shows how cloud emissivity is increased for

all clouds (due to LW-GD correction removal);

e However, as mentioned in the previous section, the online signal is greatly

modulated by atmospheric changes in T, HU, CF and TOTWC;

e Differences between CTL and McICA simulations are more striking in the
T and HU zonal mean profiles compared to CF and TOTWC: for JJA, a
general decrease in T and HU is visible over the North hemisphere while for
CF and TOTWC, signals are noisy except for a reduction of both variables

over the poles at both seasons;

e LWD seems to be more correlated to changes in cloud and water variables
(CF, TOTWC and HU) whereas for LWU, it seems more correlated to T

changes;
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e Even if SW differences are almost three times the LW differences, IR-HR
differences are approximately two times greater than the VIS-HR, resulting
in offline McICA NET-HR effects of increased cooling at high and low cloud

tops, and reduced cooling at low cloud bases;

e Online McICA NET-HR effects are very noisy (similarly to LW effects) with

the increased cooling at high cloud top still visible.

43.4 Local differences in modeled SFC and TOA fluxes

This section looks in more detail the different areas that present opposite patterns
to the general zonal mean differences between McICA and CTL fluxes at TOA
and SFC.

As shown in section 4.3.2 with the zonal means, the main McICA effects are to
increase SWU at TOA and LWD at SFC and oppositely, to decrease SWD at
SFC and LWU at TOA. Looking at figure 4.13 for DJF seasonal mean, these
general tendencies are clear, particularly for SW fluxes, and with more variations
for LW fluxes since LW fluxes respond as strongly to McICA modifications as to

atmospheric state modifications as shown in section 4.3.3.

For the SW fluxes, only few areas are presenting opposite signals, with an increased
SWD at SFC and a reduced SWU at TOA. To try to explain what processes
underly these opposite signals, four of these regions are highlighted (with grey
rectangles) in figure 4.13 : west of the Baja California coast over the Pacific Ocean,
west of the Sahel region over the Atlantic Ocean, south-east of the Brazilian coast
over the Atlantic Ocean and north of the Australian coast over the Pacific Ocean.
As a reference, three other regions over the Pacific and Atlantic oceans around

60°S and equator are chosen and highlighted by grey ovals. For the LW fluxes, the
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Figure 4.10 As figure 4.7 but for LWD (left column) and LWU (right column).
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Figure 4.12 As figure 4.11 but for NET-HR.
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rectangle regions are also exhibiting opposite signals (decreased LWD at SFC and
increased LWU at TOA) compared to the zonal average but it is not restricted
to these areas as even the oval reference areas are sometimes exhibiting the same

opposite signals.

Looking first at the offline McICA signal (CTLyeica-McICA) in figure 4.14, the
rectangle regions are sometimes showing a weaker signal (for SW fluxes west of
the Baja California coast and west of the Sahel region) but all regions, rectangles
and ovals, are showing the same trends of increased cloud albedo and emissivity

under the same atmospheric conditions as CTL.

Figure 4.15 presents differences in IWV, effective CF, LWP and IWP between
McICA and CTL. Over the four rectangle regions, all variables are decreasing with
different strengths. This could explain a decrease in cloud albedo and emissivity
(from less TOTWP) and a decrease in cloud effects (from less CF), hence resulting
in an increased SWD at SFC and LWU at TOA, and a decreased SWU at TOA
and LWD at SFC, as it is seen in figure 4.13. However, looking at the reference
regions in ovals, the same tendencies are visible for all four variables except for
IWYV over one region. These reductions in IWV, TOTWP and effective CF do not
lead to increased SWD at SFC, reduced SWU at TOA, or not always to decreased
LWD at SFC and increased LWU at TOA in these regions.

Thus, for all these regions, generally over ocean, modifications to cloud variables
and IWV do not seem to be entirely responsible for the opposite differences in
radiative fluxes between McICA and CTL. In the rectangle regions, the cloud
albedo and emissivity are reduced, as it was seen in chapter 3 when McICA was
compared to homogeneous cloud treatment. In other words, when the SW-ACOD
and LW-GD correction removal effects (of increasing of cloud albedo and emis-

sivity) are low, the McICA horizontal inhomogeneity introduction effects become
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visible with reduction of cloud albedo and emissivity. These effects were shown to
be visible for specific conditions like low CF or low CWP but generally disappear
over seasonal mean. Figure 4.16 shows the same variables as figure 4.15 but for
the CTL simulation. The common feature to the rectangle regions is the lower
effective CF (generally below 0.6) contrary to the oval regions. In conclusion, the
combination of low effective CF and reduced water variables allows the McICA
horizontal inhomogeneity introduction effects to counteract the SW-ACOD and

LW-GD correction removal effects of increasing cloud albedo and emissivity.

Looking back at figure 4.13, other regions exhibit small but opposite trends in SW
fluxes such as over north India and the west Mediterranean basin. These regions
exhibit the same decrease in water variables but more importantly, the same lower
effective CF. Finally, the LW fluxes are less coherent in their responses to McICA
fluxes with much more opposite signals than the four rectangle regions as they

are more correlated to IWV and cloud variable modifications.
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4.4 Conclusions

This chapter has presented, in a first part, the modeled results for two simulations,
CTL and McICA in comparison to global satellite observations to validate and
explain model results for zonal seasonal means (DJF and JJA) over a three year
period. As the seasonal zonal mean results hide many details, both in the time
and space averaging as in the integrated vertical variables, two sections were
focusing on some of these different aspects. In the second part, zonal mean vertical
profiles were presented to explain in more detail the link between SFC and TOA
flux modifications when the McICA methodology is applied and the atmosphere
structure freely evolves. Finally, maps of SFC and TOA fluxes were presented
to illustrate how, in specific conditions, some areas are presenting opposite flux

signals when McICA is applied.

For the first section, the model was compared to two data sets for the cloud
and water variables: SSM/I and MODIS. The model reproduces fairly well the
observed IWV and CF but exhibits large biases when it comes to CWP, with a
large overestimation of LWP in the Tropics (compared to both data sets) and an
underestimate of IWP or TOTWP elsewhere. These conclusions are to be taken
with caution concerning the IWP (and derived TOTWP) as the observational
uncertainties can be very large in some conditions. The two simulations, CTL
and McICA exhibit only small differences in CF and LWP for the seasonal zonal

mean.

With these informations on atmospheric water variables, the second section com-
pared the SFC and TOA modeled fluxes to CERES-EBAF data set. For the
clear-sky fluxes, the model results were within 10 W/m? to observations, with
greater biases for JJA and polewards. As for the water variables, there were

almost no difference between the two simulations.
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For the all sky SW fluxes, large biases were present (an underestimation for SWD
at SFC and an overestimation for SWU at TOA), mainly due to the overestimated
LWP. For latitudes over 40°, LWP biases fade out rapidly but the SW biases do
not. One hypothesis is that the ice cloud may be too reflective in the model
due to too low effective radius, even if MODIS observations suggest that the
IWP is underestimated. Further tests on ice effective radius will be presented in
the next chapter. As the dominant McICA effect is an increased cloud albedo
due to the inhomogeneity correction removal, the SW biases are worse for the
McICA simulation. Differences between offline McICA results (CTLyqca) and
online McICA results are small compared to differences with the CTL simulation,

suggesting that the atmospheric modifications are minor contributors to McICA

SW flux differences.

Similarly for the all sky LW fluxes, the model presents a general overestimation
for LWD at SFC and underestimation of LWU at TOA coherently to the LWP
overestimation and the ice effective radius underestimation. LW biases are smaller
than SW biases and smaller for DJF and TOA. Oppositely to SW, differences
between CTLy1ca and McICA are now of the same order as between McICA and
CT1L, since the atmospheric modifications in McICA simulations are now playing

as much an important role in the modified LW fluxes as the McICA methodology.

The third section focused on zonal mean vertical profiles for the model simulations
only, to link the SFC and TOA results. It has shown that for SW fluxes, the biggest
McICA differences (both offline and online) are coming from the low clouds, as
expected, due to the SW-ACOD correction removal that is proportional to cloud
optical depth. Whereas for the LW fluxes, all clouds are responding similarly to
McICA modifications for offline fluxes. However, as mentioned before, the LW
online fluxes are strongly modulated by differences in T, HU, CF and TOTWC.
The NET-HR is dominated by the IR-HR with increased high cloud top cooling
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and reduced cooling at low cloud bases for the offline McICA signals. This reduced
cooling could be responsible for the low cloud reduction in CF and TOTWP.
The online signals are more noisy, particularly at low altitude but still show the

increased high cloud top cooling.

Finally, the last section has presented maps of seasonal mean flux differences
at SFC and TOA to understand some opposite signals, particularly in the SW
fluxes. It demonstrates that in a few areas, McICA exhibits decreased SWU
at TOA and increased SWD at SFC due to a combination of decreased cloud
variables and more importantly, to conditions of low CF. These conditions allow
the McICA horizontal inhomogeneity introduction effect to compensate the SW-
ACOD and LW-GD correction removal. For the LW fluxes, these regions also
present opposite signals compared to the zonal mean trends, but these opposite
signals are not restricted to these areas, since LW responds strongly to variations

in water variables and temperature.

To conclude, this chapter has shown how the model is biased high for the LWP
compared to observations and how it affects its radiative fluxes both at SFC and
TOA. As shown in the previous chapter, the model response to McICA method-
ology is strongly restricted by the SW-ACOD and LW-GD corrections removal,
particularly with overestimated LWP since this removal strength is increasing with
optical depth, and its McICA counterpart is decreasing with CWP. One could ex-
pect that under observed LWP values, McICA would be more equilibrated between
the SW-ACOD and LW-GD correction removal and the horizontal inhomogene-
ity introduction, and that resulting flux signals would be more subtle depending
on the atmospheric conditions. In that regard, next chapter will explore McICA

sensitivities in lower cloud optical depth regimes.

As a last point, an hypothesis was formulated about the ice effective radius pa-
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rameterization being too low. Next chapter will present tests, on short time scales,
on the different parameterizations available in the SCG as well as on ice effective

radius to explore the McICA flux sensitivities and to illustrate its potential.







CHAPTER V

RADIATIVE SENSITIVITIES OF THE MCICA
METHODOLOGY AND THE SCG PARAMETERS

5.1 Introduction

Chapter 3, section 3.3.2, shows that the McICA inhomogeneity introduction is
more sensitive at low TOTWP or cloud optical depth, meaning that its radiative
impacts will be more important at low cloud optical depth. It further shows that
the GEMCLIM SW-ACOD and LW-GD corrections have stronger capabilities
to reduce cloud albedo and emissivity compared to the McICA inhomogeneity
introduction. Replacing the former by the later results in increased cloud albedo
and emissivity. In parallel, chapter 4 shows that the GEMCLIM model is highly
overestimating LWP, resulting in too high cloud albedo and emissivity, which the

present McICA methodology further amplifies.

This overestimation of LWP is problematic for the proper understanding of the
MCcICA methodology impacts. The McICA approach is meant as a method to
allow flexible sampling of sub-grid scale variability, not has a method to compen-
sate for biases in the inputs to the RT scheme. As discussed in section 2.2, the
SCG creates cloudy subcolumns with a cloud water content varying according to

a defined horizontal distribution around the mean, provided by the model. If this
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mean is systematically too high, and therefore farther in the "saturation” region
(i.e. where the cloud albedo or emissivity are less varying as a function of CWP,
see section 1.1), then little sensitivity will result, i.e the McICA response will be

close to that of the HOMOG simulation, as seen in section 3.3.2.

The first goal of this chapter is to study the McICA sensitivity under reduced cloud
optical depth conditions. Two simple techniques will be presented to effectively
reduce it: first, by reducing the LWP passed to the radiative transfer scheme,
and second, by changing the constant ice effective radius to a function of IWC,
with a minimum value that is greater than the previous constant value. The
first correction is suggested by the model and observation comparison of section
4.3.1. The second correction is based both on observational results (as mentioned
in section 4.3.2) and literature (e.g. Okamoto et al., 2010) that suggests higher

values of ice effective radius.

These two approaches are simple since the goal of this chapter is to study the
McICA sensitivity under reduced cloud optical depth, to see if it confirms the
theoretical behavior explained in section 1.1 and the instantaneous results of sec-
tion 3.3.2 on a global scale. Furthermore, the radiative sensitivity of these cloud
optical scalings is also addressed by comparing how fluxes are modified with the

classic RT calculations compared to the McICA methodology.

The second goal of this chapter is to study the sensitivity of the SCG horizontal
and vertical parameters, i.e. the horizontal cloud water inhomogeneity and the
decorrelation lengths. This part will provide several examples of the flexibility and
potential of the McICA approach to better parameterize the effect of cloud subgrid
scale variability as diagnosed from observations or from information provided by
the model itself. Finally, a few combinations are explored to illustrate the possible

non-linearities between all these radiative parameters and to give an example of
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possible tuning techniques to approach observations.

5.2 Methodology

In this chapter, up to 28 simulations that combine one or many parameters mod-
ifications are presented. All results showed are for a one day mean average. The
one day mean starts 24h after the beginning of the simulations (i.e. November
274, 2006). This time period allows to compare simulations that have not diverged
much from the initial conditions while the water variables (e.g. IWV, CWP, CF)

spin up is mostly achieved (not shown).

Results are compared to CERES-SYN1deg observation data set since the CERES-
EBAF dataset used in the previous chapter is not available for daily mean. The
CERES-SYN1deg data set (Doelling et al., 2013) provides temporally interpolated
TOA fluxes from 3-hourly radiances and cloud properties from geostationary im-
agers to model temporal variability between CERES observations on a 1° latitude
zonal grid. MODIS derived cloud properties are also included as well as computed

surface fluxes from the Langley Fu-Liou radiative transfer model.

The model configuration for all these simulations is the same as in the previous

chapters.

Dt | Test descriptions

Table 5.1 presents a first group of simulations. The CTL, HOMOG and McICA
simulations are the same as presented in chapters 3 and 4. The ICE simulation in-
cludes the ice effective radius modification following Lohman and Roeckner (1996)
(see equation 5.1) with a range of [20 : 50]um. The simulation named McICAice
includes both the McICA methodology and the ice effective radius modification.
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All those denoted with a ”3” (e.g. ICE3, McICAice3) include a scaling factor of
0.3 that multiplies the LWC that is passed to the radiative transfer scheme. This
factor is suggested by the overestimation seen in modeled LWP against observa-
tions in section 4.3.1. Similarly for the ”5”, it means a scaling factor of 0.5 to the
LWC. For all simulations of table 5.1, the SCG parameters are maintained like the
original version: the horizontal inhomogeneity parameter v = [vy; vo; v3] = [1;2; 4]
(defined as a function of CF = [< 0.9;> 0.9& < 1;1]) and the decorrelation
lengths for CF and water content (WC): L.y=2 km and Le,=1 km.

Teffice = 83.8 % 10_6(103 * IWC)0-216 (5.1)

As a comparison to the SW-ACOD corrections, the effects of the 0.3* LWC scaling
on the cloud optical depth are presented on figure 5.1. The scaling is not as strong
on the cloud optical depth as on the LWC, since the cloud optical depth is also a
non-linear function of the effective radius, which is in turn function of the LWC
(see annex A). In that sense, this scaling is less radiatively effective compared to a
direct tuning of 0.3 on the LWP, which would not affect the liquid effective radius
and would directly multiply the cloud optical depth by a 0.3 factor.

Table 5.2 presents a second simulation group, which includes the ice effective
radius modification but no LWC scaling for all simulations. The first SCG pa-
rameter that is tested is the horizontal inhomogeneity which is represented by the
v variable. The first ¥ modification (denoted simply v) is to increase the hori-
zontal inhomogeneity when CF <0.9 (with v1=0.5) since the McICA horizontal
inhomogeneity seems weaker then the SW-ACOD and LW-GW corrections previ-
ously implemented in the GEMCLIM model. A more physical way of increasing
the inhomogeneity, is to decrease the same v; parameter, but only when shallow
or deep convection is triggered, since convective clouds should present more hor-

izontal inhomogeneity than stratiform clouds (Rossow et al., 2002). In this case,
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Figure 5.1 Same figure as 1.2 but with the additional example of the 0.3*LWC

scaling effects on cloud optical depth.
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Table 5.1 Sensitivity tests, part 1

tests LWC scaling | 7Tegsice (um) | [V1;v2508] | Lef; Lew (km)

CTL 1 15 [1; 2 4] 21
‘HOMOG | A T I L4 | %1
1cE | 1| HIWC): [20:50] | [1;24] | - %1
1cE3 | 03 |fIWC): [2050] | [1;2;4] | %1
HOMOGice | 1 |fOWO): [2050) | [1;24] | %1
HOMOGice3| 03 | f(IWC): [2050] | [1;2,4] | %1
MdocA | A T Y ;24| 21
McICAice | 1| FIWC): [2050) | [1;2;4) | %1
McICAice3 | 03  |f(IWC): [2050] | [1;2;4] | 21
McICAice5 | 05  |f(IWC): [2050] | [1;2;4 | %1

model convective activity serves as a proxy for higher cloud subgrid-scale variabil-
ity and this test is denoted vepn,. Furthermore, two studies presented in section
2.6, derive v parameterizations for liquid and ice clouds based on satellite obser-
vations as a function of CF and model grid size (Boutle et al., 2013; Hill et al.,
2011a, resprectively). Two tests are done based on a approximate mean value
of these parameterizations: the vy, test with only the v3 parameter changed to
11 (since v; and v, are close to the suggested parameterization); and the v;., test
with all three v components changed to 11. Note that these parameterizations

decrease the horizontal inhomogeneity.

The other SCG parameters that are tested are the decorrelation lengths (L.; and
Ley). Based on the parameterization from Oreopoulos et al. (2012a), two simple
tests are first performed with the minimum and maximum values used in the ar-

ticle: 1.5 and 0.75 km (for L.; and L, respectively) and 3.5 and 1.5 km. Since
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the Oreopoulos et al. (2012a) parameterization idea is to set the maximum values
at the Intertropical Convergence Zone, a test is done as a function of presence of
shallow and deep convection. For both decorrelation lengths, three values are pos-
sible, the first one (the minimum value) when only stratiform clouds are present,
the second one (the standard value) when shallow convection is triggered and the
third one (the maximum value) when deep convection is triggered (with or with-
out shallow convection). This test is denoted Lgy,,. Given that the Oreopoulos
et al. (2012a) parameterization values are zonal mean values, another test, de-
noted Leonyarax, is performed with more extreme values, used in the Zhang et al.
(2014) study only in presence of convection. Finally, because all tests on decorre-
lation lengths are using L., values that are approximately half of the L. values,
a last test, denoted Leonvaraxw, is performed by increasing L, values to the L.¢

values.

Finally, table 5.3 presents a last simulation group, which includes the ice effec-
tive radius modification and the 0.3 LWC scaling for all simulations. As before,
tests were performed with the different v parameters as well as combinations of

decorrelation lengths and horizontal inhomogeneity.

5.3 Results and interpretation

Results are presented with 2° zonal means for a one day mean period. First pre-
sented is the offline and online McICA radiative flux sensitivities (SWD and LWD
at SFC, SWU and LWU at TOA) under the different cloud optical depth scalings.
In parallel, cloud optical depth scaling radiative sensitivities are also presented.
Secondly, the SCG parameters sensitivities are presented with different parame-
terizations, as listed in the previous section, and under different conditions (e.g.

with or without the different cloud optical depth scaling or combined with other
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Table 5.2 Sensitivity tests, part 2. All tests have reff.= fIWC), [20:50] pum
and no LWC scaling.

tests [v1;09;05] Lo Loy {fem)
ICEv [0.5; 2; 4] 21
HOMOGicer | 0524 | %1
McChAicer | P&%4 | 21
McICAicery, | 1,2 11] for lig. clds | %1
McCAicerie |1, 15; 11 forice clds | %51
MclCAicevem, | | 052 4 forall conv. | %51
McCAiceIme | L4 | 35,15
McCAiceLmn | 24 | 15,075
McICAiceLems | L4 | Les=[L5; 2.0; 3.5];
Lew=[0.75; 1.0; 1.5]
McICAiceLomorax | L4 | Les=[L0; 5.0; 10},
Lew=[0.5; 2.5; 5.0]
McICAiceLomraxe | 524 | Les=[1.0; 5.0; 10];
Ly=1.0¢ 5:0; 10
MICAiceLumoaxav | 0524 | Les=1.0; 5.0; 10];
Lew=]1.0; 5.0; 10]
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Table 5.3 Sensitivity tests, part 3. All tests have ressi..= f(IWC), [20:50] pm

and a LWC scaling of 0.3.

tests IZBZHZ Lef; Lew (km)

McICAice3uy;, [1; 2; 11] for lig. clds 20
McICAicedvee | 11;11; 11] forice clds | %1
McICAicedvemy | 05 2 4 forall conv. | %51

Ls=[1.0; 5.0; 10];
L=|00.5; 257 5]

L¢s=[1.0; 5.0; 10];
Lew=10.5; 2.5; 5.0]

L¢s=[1.0; 5.0; 10];
Lew=[0.5; 2.5; 5.0]

McICAice3 LeonumAx s Veon,ice

[0.5; 2; 4] for all conv.
[11; 11; 11] for ice clds

parameterizations). Finally, a combination of different scalings and parameteri-
zations is presented to approach the observational fluxes and illustrate the SCG

flexibility. In all figures, global mean values or differences are indicated.

As an introduction to the results, basic features of different simulations using
the different cloud optical depth scalings are presented against observations of the
one day mean period. Figure 5.2 presents zonal mean differences between different
model simulations and CERES-SYN1 observations for effective CF, IWV, LWP
and IWP. Similarly to chapter 4, figure 4.1, the modeled effective CF and the
IWYV are close to observations. For LWP, the ICE3 and McICAice3 simulations
illustrate the 0.3*LWC scaling, in order to approach observations between 40°S
and 40°N (without completely removing biases). However, LWP becomes under-
estimated over these latitudes. For these simulations, the global mean LWP bias is

reduced to -5 g/m?. As before, the modeled IWP seemmns largely underestimated in
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comparison to values derived from observations, but these derived values include
large uncertainties. These conditions for a one day average are representative of

the seasonal model biases seen in chapter 4.

Figure 5.3 present flux differences against observations. The ICE simulation (with
modified ice effective radius, in red) reduces all flux biases compared to CTL (in
black) particularly for latitudes >30°S for SW, and for latitudes >40°S/N for LW.
This is expected given that the ice effective radius is bigger, reducing the cloud
albedo and emissivity where ice is present, and exhibiting more impacts where
the liquid clouds are not radiatively dominant. It confirms the previous chapter
hypothesis, that CTL had too low extra-tropical ice effective radii. When McICA
is applied with the modified ice effective radius (McICAice, in magenta), SW
biases are worse compared to ICE, since the SW-ACOD removal signal dominates
but a few zonal regions show improvement with respect to the CTL simulation.
For the LW, McICAice is worse than ICE but still reduces the model biases in

comparison to CTL.

Since the flux biases are not reduced over the Tropics for the ICE simulation and
that the LWP biases are clear for this region, the ICE3 simulation is performed
where both the ice effective radius is modified and the LWC is scaled by a 0.3
factor (see table 5.1 for simulation descriptions). In this simulation (blue line),
SW flux biases are reduced between 30°S and 30°N but enhanced elsewhere (ap-
proximately where the LWP becomes underestimated), whereas LW biases are
generally reduced at SFC but increased at TOA. This is also expected since the
cloud optical depth is reduced linearly with the reduced LWP, decreasing the cloud
albedo and emissivity. Once McICA is applied on ICE3 (McICAice3, in cyan), it
increases cloud albedo and emissivity to values between ICE and ICE3 for SW
biases and close to ICE for LW biases. This simulation, McICAice3, will be the

basic state from which radiative sensitivities are studied in this chapter.
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Figure 5.2 Zonal 1 day mean differences between different model simulations
(see table 5.1 for simulation descriptions) and observations (CERES-SYN1deg).
Global mean observation values or differences against observations are indicated
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5.3:1 MCcICA sensitivities with cloud optical depth scaling

Figure 5.4 presents zonal mean differences between pairs of simulations to illus-
trate McICA offline (full lines) and online (dashed lines) effects. For all the pairs
of simulations, the same inputs are used (i.e. the scaled LWP or the modified ice
effective radius) but the RT calculations are different: either the McICA method-
ology is used or the classic homogeneous RT calculations (HOMOG simulations).
Furthermore, for the offline McICA simulations, denoted with subscripts as in
the previous chapters, all the atmospheric variables are also identical. Hence the
flux differences represent the McICA horizontal inhomogeneity and decorrelation

length effects against the homogeneous and MRO cloud treatment.

When compared to the homogeneous cloud treatment, for all pairs of simulations,
MCcICA effects are decreasing cloud albedo (for liquid clouds) and emissivity (as
shown in chapter 3), resulting in increased SWD at SFC and IWU at TOA,
and decreased SWU at TOA and LWD at SFC. However, for ice clouds, the
cloud albedo is increased with McICA (as explained in section 3.3.3) resulting in

opposite trends for SW fluxes visible for latitudes south of 65°S.

The red lines represents the offline and online McICA effects for modified (and
increased) ice effective radius. Comparing the HOMOGiceyica-HOMOGice dif-
ferences to HOMOGyqca-HOMOG (red lines vs. black lines), almost no differ-
ence are visible except for the SWD at latitudes south of 75°S, for the LWD at
latitudes greater than 40° and for the LWU over Tropics. This can be understood
since the ice cloud SW McICA effects are weak (as seen in chapter 3), and that
liquid or mixed clouds are radiatively dominant when averaged with ice cloud
effects. For the LW, the reduced cloud emissivity (due to increased ice effective
radius) leads to an enhanced McICA effects that is visible in regions where ice

clouds can contribute more to the radiative impacts (higher latitudes for LWD,




124

and mid-latitudes and Tropics for LWU).

The cyan lines are for both the modified ice effective radius and the 0.3 LWC
scaling simulations. The HOMOGice3ycca - HOMOGice3 differences illustrate
how the McICA horizontal inhomogeneity effects are increased at lower cloud
optical depth values. However, looking at the SW differences, these effects are
reduced for latitudes south of 50°S (compared to the HOMOGyca-HOMOG
differences), since the reduced liquid cloud SW radiative effects leave place to the
ice cloud SW radiative effects, which produce the inverse McICA effects. For the
LWD at SFC, the increased McICA horizontal inhomogeneity effects are visible for
all latitudes except greater than 70°S/N, whereas for the LWU at TOA, no clear
tendency is visible. This is understandable since low clouds have more radiative

impacts at SFC than TOA for the LW.

Finally, comparing online McICA effects (dashed lines) to offline effects (full lines),
the online effects are reduced between 60°S and 40°N particularly for the SW, sug-
gesting some cloud adjustments (as previously seen in section 3.3.4). Figure 5.5
shows McICAice - HOMOGice differences for T, HU and cloud variables (differ-
ences between McICA and HOMOG are similar, thus not shown). It shows that
low clouds present a small but systematic increase in CF, LWC and IWC. This
reduces the McICA effects and, furthermore it directly decreases SWD at SFC
and increases SWU at TOA. For the LW, the effects are less clear, particularly for
the LWU at TOA (since the high cloud modifications may have more influence).
One exception stands out for the LWD at SFC for latitudes north of 60°N, where
the CF decreases the most, particularly for the McICA simulation (compared to
HOMOG, not shown), thus reducing greatly the LWD at SF C The McICAice3
simulation differs from the McICA and McICAice simulations since its LWP is
already reduced greatly and therefore presents only small cloud adjustments (not

shown).
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Once the McICA effects are understood for different cloud optical depth scalings
in comparison to the radiative homogeneous cloud treatment, another comparison
can be made to the CTL simulation, which includes the SW-ACOD and LW-GD
corrections to take into account cloud inhomogeneities (as discussed in detail in

chapter 3).

Figure 5.6 presents also the McICA offline and online effects as figure 5.4, but in
comparison to control simulations that include the SW-ACOD and LW-GD cor-
rections. Therefore, the flux differences for each pair of simulations represent the
combined effects of McICA horizontal inhomogeneity and decorrelation lengths,
and the SW-ACOD and LW-GD removal. Compared to figure 5.4, the combined
McICA effects are reverse since the SW-ACOD and LW-GD removal effects dom-

inate (also shown in chapter 3).

Looking at the red lines for the McICA combined effects for modified ice effec-
tive radius (ICEyca-ICE), more differences are visible compared to the black
lines (CTLmeca-CTL). It shows smaller SW combined McICA effects for lati-
tudes south of 40°S while almost no SW effect were visible in figure 5.4. This
means that the reduction in cloud optical depth (from the increased ice effective
radius) weakens the SW-ACOD removal effects, since the SW-ACOD corrections
are proportional to cloud optical depth. For LWU at TOA, a small similar reduc-
tion in LW-GD removal effects is also visible over the Tropics. However, opposite
effects are clear for LWD at SFC for latitudes greater than 40°S/N. This effect can
be understood by looking at the zonal mean vertical LW flux profiles in figure 5.7.
The top panel shows that the combined McICA effects are reduced for ICEy1ca
compared to CTLyca for the high ice clouds as expected, and then increased
lower in the clouds. This is due to the LW-GD correction that varies non-linearly
as a function of cloud optical depth, contrarily to the SW-ACOD. This increase

in combined McICA effects is maximum for low ice clouds around 60°S/N.
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Looking at the ICE3ycca - ICE3 differences (cyan lines which include both the
modified ice effective radius and the 0.3 LWC scaling), it further reduces the SW
combined McICA effects compared to ICEyqca - ICE (red lines), and for all lat-
itudes. At a lower LWP range, the SW-ACOD corrections are weaker and the
McICA horizontal inhomogeneity introduction effects are stronger, resulting in
more balanced opposite effects, with still the SW-ACOD removal effects dominat-
ing. The opposite effects seen for LWD at SFC can be understood by looking at
figure 5.7 bottom two panels. It shows how low liquid clouds have an increased
emissivity due to LW-GD removal non-linearities when the LWC is scaled by 0.3.

These LW effects are again more visible at SFC compared to TOA.

Finally, comparing online combined McICA effects (dashed lines) to offline ef-
fects (full lines), the online effects are reduced between 60°S and 60°N for the
SW and the LWD at SFC, suggesting some cloud adjustments similarly to figure
5.4. Figure 5.8 shows McICAice - ICE differences for T, HU and cloud variables
(differences between McICA and CTL are similar, thus not shown). Even if the
vertically integrated values shown in figure 5.2 did not exhibit significant differ-
ences between McICAice and ICE, the vertical profiles in figure 5.8 show that low
clouds present a small but systematic decrease in CF, LWC and IWC (inversely of
figure 5.5 but coherently with section 4.3.3 for seasonal means). These conditions
reduce the SW-ACOD and LW-GD removal effects. One exception is the LWU
at TOA, which are not very sensitive to this low cloud adjustment, and this can
be understood since LWU at TOA are mainly controlled by high cloud radiative

properties.

In conclusion, McICA effects are dependent on the cloud optical depth range. Un-
der lower cloud optical depth conditions, McICA horizontal inhomogeneity effects
are increased (particularly for liquid clouds), reducing more the cloud albedo and

emissivity, confirming the theoretical behavior deduced from section 1.1. There-
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fore, the combination of McICA horizontal inhomogeneity introduction and SW-
ACOD and LW-GD correction removal are more balanced, resulting in smaller
effects since the later are still overrunning the former. Moreover, McICA horizon-
tal inhomogeneity effects are inverse for the ice cloud albedo, with an increased

cloud albedo compared to the homogeneous treatment.

From another perspective, radiative sensitivities are now presented for the two
different cloud optical scaling techniques used: the ice effective radius modification
and the LWC scaling. Given that the goal behind these scalings is to modify
SFC and TOA fluxes, the idea is to understand how the flux responses will vary
with different RT methodologies such as the ”classic” RT calculations and the
McICA methodology. In other words, how the cloud optical depth scalings are
radiatively sensitive to RT methodologies. Figure 5.9 presents the ice effective
radius modification radiative effects, while figure 5.10 presents the LWC scaling
radiative effects. For both scaling techniques, the cloud albedo and emissivity
are reduced, producing increased SWD at SFC and LWU at TOA and decreased
SWU at TOA and LWD at SFC.

For the ice effective radius modification in figure 5.9, SW flux differences are in-
creased between the classic RT scheme (in black) and the offline McICA method-
ology (in red) where the ice cloud radiative effects are dominant (south of 50°S).
This is due to McICA being more sensitive than the SW-ACOD corrections to
low cloud optical depth values, hence increasing the SW flux differences between
lower cloud optical depth values and the original values. For the LW differences,
as explained previously, the LW-GD corrections vary non-linearly with cloud op-
tical depth, resulting in this case, with less sensitivity when McICA is applied
for LWD at SFC and a similar response for LWU at TOA. When McICA online
is applied (in blue), the zonal flux sensitivities to ice effective radius are slightly

increased, mostly over Tropics for SW and LWU at TOA. This can be explained




128

by the low cloud adjustment shown in figure 5.8 (and that occurs for both McI-
CAice and McICA simulations), since a reduction in low clouds, that are mostly
liquid, will allow the ice clouds above to have a bigger radiative contribution.
Hence, the different ice effective radius parameterization shows slightly increased
radiative impacts in these conditions. The global mean values put in perspective
that global mean differences for LWU at TOA are of the same order of the SW

differences, whereas the global mean LWD differences at SFC are smaller.

Looking at figure 5.10, the LWC scaling radiative cffects are presented. Similarly
to the ice effective radius sensitivities, the offline McICA simulation (in red) is
more sensitive in the SW and less in the LW compared to the classic RT scheme
(in black). This is for the same reasons of greater SW sensitivities in lower cloud
optical depth for McICA and non-linearities in the LW-GD correction responses.
However, for the McICA online simulations (in blue), the flux sensitivities are now
decreased compared to the offline McICA simulations (in red). Since the low liquid
cloud adjustment is taken place, the LWC scaling is applied over lower values,
producing slightly lower flux differences. Finally, McICAice5 (in cyan) is presented
as an example of the LWC scaling factor being 0.5 instead of 0.3, to illustrate the
relative radiative strength of different LWC scalings. As expected, the radiative
sensitivities are smaller compared to McICAice3, with global mean values that
are approximately half the McICAice3 values. One test was also performed with
an increased horizontal inhomogeneity (ICE3vmcica-ICEvMeca, not shown), and
flux sensitivities were similar to ICE3ycca-ICEmaca, suggesting no significant

influence from this parameter on the LWC scaling radiative sensitivities.

In conclusion, these results show that these different cloud optical depth scaling
techniques are producing greater radiative differences at SFC and TOA with the
McICA methodology. These conclusions should hold only for scalings that are

reducing cloud optical depth, since McICA is generally more sensitive at lower
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cloud optical depth values.

5.3.2 SCG horizontal and vertical parameter sensitivities

This section presents SCG parameter radiative sensitivities. First presented are
the radiative sensitivities to decorrelation lengths in figure 5.11. The black lines
are for the maximum values and minimum values used in Oreopoulos et al. (2012a)
(see table 5.2 for simulation descriptions). The maximum values (black full line)
increase the CF overlap, thus reduce the integrated CF, hence increase the SWD
at SFC and LWU at TOA, and decrease the SWU at TOA and LWD at SFC,
compared to control values. These effects are maximum in the Tropics for the
SW fluxes while generally constant for LW fluxes. The minimum values (black
dashed line) exhibit the opposite flux sensitivities with smaller amplitudes since

differences to control values are smaller.

When the maximum values (same as Ly,,;) are applied for deep convection and
the minimum values (same as Ly,,) are applied to the stratiform clouds (keeping
the control values when only shallow convection is triggered), the flux sensitivi-
ties (Leony In cyan) are oscillating around 0 and approaching the minimum flux
sensitivities (black dashed line) at high latitudes (where the stratiform clouds are
dominating). This means that the L.y, values associated with deep convection
activity is not sufficient over zonal mecan to recreate the L., radiative effects over
the Tropics but rather reproduces the control radiative effects. However, it does
not mean that, locally, in presence of deep convection, the change in decorrelation

lengths is not significant.

Looking at figure 5.12, similar tests are presented with different values. The
blue lines (Leonurmax) represent values of 10 km for Lgs (5 km for Ley,) for deep

convection, 5 km (2.5 km) for shallow convection and 1 km (0.5 km) for stratiform
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clouds, inspired from Zhang et al. (2014). The flux sensitivities (in blue) are
reaching the values of the constant maximum value of 3.5 km (L,,,, black full line
in figure 5.11) in the Tropics and are exceeding the values of the constant minimum
value of 1.5 km (L,un, black dashed line in figure 5.11) over high latitudes. It
means that such large decorrelation lengths for deep convection are able to recreate
zonal mean flux sensitivities of constant L., values. However, with varying
decorrelation lengths as a function of cloud type, this parameterization is more

physically sound and weather dependent.

The red lines (Leonyaraxw) represent the test with CWC decorrelation lengths set
to the same values as CF. By increasing these decorrelation lengths, the CWC is
vertically more overlapping, reducing the integrated cloud albedo and emissivity,
and it should increase the SWD at SFC and LWU at TOA, and decrease the SWU
at TOA and LWD at SFC, compared to the previous experiment (in blue). These
expected effects are only visible at high latitudes and mostly for the LW fluxes,
where the integrated cloud albedo and emissivity are lower and fluxes are more

sensitive to smaller variations.

Finally, the dashed lines represent the same two previous tests (Lemymax and
Leonvmaxw) but with other pairs of simulations (which both include increased
horizontal inhomogeneity) to see if the signal is constant within different inhomo-
geneity regimes. Surprisingly, only the red dashed line exhibits a different signal
for the LW fluxes and even becomes of opposite sign for the LWU at TOA (whereas
the increased horizontal inhomogeneity produces increased LWU at TOA). This

is an example of non-linear interactions between parameters.

Note here that decorrelation length tests were mostly performed and compared to
MCcICAice simulations and not to the LWC scaled version McICAice3. Another

test was done with McICAice3 (not shown) and showed the same sensitivities as
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the one in figure 5.11, suggesting that changing to lower cloud optical depth values

does not impact the decorrelation lengths flux sensitivities.

Figure 5.13 presents the horizontal cloud water inhomogeneity (with the variabil-
ity parameter v) radiative effects, with two increased inhomogeneity parameter-
izations (decreased v) whereas figure 5.14 presents two decreased inhomogeneity

parameterizations (increased v).

In figure 5.13, when the inhomogeneity is increased, the cloud albedo and emissiv-
ity are reduced, increasing the SWD at SFC and the LWU at TOA, and decreasing
the SWU at TOA and the LWD at SFC. These effects are all seen for the different
experiments. Two groups of experiments are shown: the increased inhomogeneity
in all cases (denoted v, blue and cyan lines), and the increased inhomogeneity
only when shallow or deep convection is triggered (Veony, red lines). The effects
are similar over the Tropics and mid-latitudes and generally larger over high lati-
tudes for the former, as expected; since no convection is triggered in these regions.
However, large differences occurs within the two groups. For example, the differ-
ences between the cyan line and the two blue lines are important for the LW fluxes
almost everywhere except for the Tropics. Even by taking into account that the
blue lines includes the Lesnymax parameterization which, for example, reduces
LWD over Tropics and mid-latitudes, and increases LWD over high latitudes, it
does not explain directly the discrepancies seen in figure 5.13. However, since
a higher L., value means that the CWC is more overlapping in the vertical, it
can reduce inhomogeneities between cloud vertical layers. Hence, it can counter-
act the increased horizontal inhomogeneity when this effect is integrated over the
vertical. In this case, differences are more important at all latitudes for LWU at

TOA whereas for LWD at SFC, differences are seen only for latitudes >40°.

Looking at the two decreasing horizontal inhomogeneity parameterizations on
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figure 5.14, the opposite responses are seen, as expected. The ice parameterization
(Viee with v = [11;11; 11] for IWC, blue and cyan lines) presents more sensitivities,
especially over high latitudes for SW fluxes and everywhere for LWU at TOA.
This is expected, since for SW fluxes, ice cloud contributions are more important
when liquid clouds are minimal, and LWU at TOA are mainly controlled by high
(ice) clouds. When the LWC scaling is applied, the ice sensitivity is even higher,
as explained in the previous section: with less liquid to interact with radiation,
the ice clouds are contributing more to the radiative sensitivities. For the liquid
parameterization (v, with v = [1;2;11] for LWC, red and magenta lines), the
lower sensitivities can be explained by the fact that only v is increased (contrarily
to the ice parameterization where all three v components are increased), and that
this parameter is used only when CF=1. The differences due to the LWC scaling

do not seem to be significant in this case.

Looking at all these tests, the horizontal inhomogeneity parameter has the larger
radiative sensitivities, at least for the increased inhomogeneity tests in the GEM-
CLIM model. Whereas the decreased inhomogeneity tests are similar in global
mean sensitivity to the decorrelation lengths tests. In comparison, Barker and
Raisénen (2005) have also found similar global mean sensitivities between hor-
izontal inhomogeneity and CF decorrelation length. While Shonk and Hogan
(2010) have found more important radiative sensitivities for horizontal inhomo-
geneity compared to CF decorrelation lengths. Moreover, Barker and Réisanen
(2005) also found similar radiative sensitivities between effective radius and hor-
izontal inhomogeneity, while this chapter results show higher ice effective radius
sensitivities. However, the present ice effective radius test is a much more drastic
test compared to Barker and Riisénen (2005) test of £10% variation in effective

radius.

In conclusion, this section showed that both horizontal and vertical SCG param-
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eterizations are generally producing what is expected from their modifications.
However, a few examples have shown that non-linear interactions can exist and
produce unexpected flux modifications. Besides, it is shown that parameteriza-
tions linked to the cloud phases or cloud types can be easily introduced in the
SCG and they can produce significant radiative responses compared to constant

parameters.
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B3 Combined parameterizations to approach observations

For this last result section, a combination of different scalings and SCG param-
eterizations is presented step by step (by modifying one parameter at a time) to

illustrate how it can be combined to approach the observations.

Figure 5.15 presents the different flux differences against CERES-SYN1deg obser-
vations. The basic state is the McICAice3 simulation (black line) since both the ice
effective radius parameterization and the LWC scaling reduce the model radiative
biases. To further reduce the SW biases over the Tropics, the horizontal inho-
mogeneity is increased when the shallow and deep convection is triggered (Veony,
red line). However, this increases the LWU biases over the Tropics and increases
the SW biases between 40°S and 60°S. To go one step further, the Lopnomax is
applied (blue line) which reduces only slightly the SW biases over the Tropics
and still increases the LWU biases over the Tropics (but reduces the global mean
LWU bias at TOA). Finally, mainly to reduce the LWU biases over the Tropics,
the ice horizontal inhomogeneity is decreased (Vice, cyan line), effectively reducing
the LWU biases over the Tropics and the SW biases between 40 and 60°S at the

cost of increasing all global mean biases.

These flux modifications can seem insignificant compared to the observation biases
but they are an illustration of what can be done with the SCG and the McICA
methodology. This is also an example of correcting some zonal biases at the cost
of degrading other areas even if parameters are more physically related to the

different cloud phases or regimes.

From a global mean perspective, the ICE3 simulation presented in figure 5.3
presents better results compared to observations, whereas in figure 5.15, it is
the McICAice3veony Leconvmax simulation which performs better. This can lead to

the conclusion that McICA does not perform as well as the classic RT calculations
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in this case, but it can be argued that the model cloud biases are certainly not
helping since McICA is not designed to counteract such cloud related biases. This
is a conclusion that other authors have reached when comparing basic McICA
implementations in their respective models (e.g. Pincus et al., 2006; Riisénen
et al., 2005, 2007). Furthermore, it can also be argued that it is more physically
sound to clearly identify the modeled cloud biases and try to reduce them instead
of mitigating the mean results with radiative compensations. It is reasonable to
believe, that once the basic cloud biases are reduced, the different SCG parameter-
izations proposed here could be used to approach the radiative flux observations

with physically based parameterizations.

5.4 Conclusions

This chapter focuses on McICA and SCG parameters radiative sensitivities in
different conditions. Many simulations were performed to i) assess the McICA
effects under different cloud optical depth scalings, ii) isolate the different param-

eters effects and iii) illustrate the combined parameter effects.

Since many simulations were required, only short-term simulations were analyzed,
over a one day mean period, 24 h after the beginning of the simulations. With
regards to the previous chapter results, two cloud optical depth scaling were tested:
a reduced LWC passed to the RT scheme and a modified (and increased) ice
effective radius parameterization. These two scaling techniques reduce the cloud
optical depth and therefore allow to test the theoretical McICA behavior that was
demonstrated in section 1.1: the McICA horizontal inhomogeneity effects should

be greater at lower cloud optical depth values.

Results were presented in three sections: the McICA sensitivities under different

cloud optical depth scalings, the SCG parameters sensitivities, and an example of
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Figure 5.15 Zonal 1 day mean flux differences between different model simula-

tions and observations (CERES-SYN1deg).
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combined parameterizations to approach observations.

The first section showed that at lower cloud optical depth values, the McICA hor-
izontal inhomogeneity radiative effects are generally larger, particularly for liquid
clouds, when compared to homogeneous cloud treatment. However, when com-
pared to the classic RT calculations, the combined McICA effects (of horizontal
inhomogeneity introduction and deco.rrelation lengths, and the SW-ACOD and
LW-GD correction removal) are smaller due to more balanced effects between the
horizontal inhomogeneity introduction (that have stronger effects) and the SW-
ACOD and LW-GD removal (that have smaller effects). However, for the LWD
at SFC, McICA effects are stronger in specific regions to due non-linearities be-
tween the LW-GD corrections and cloud optical depth. It is also demonstrated
that the McICA horizontal inhomogeneity radiative effects are increasing the ice
cloud albedo, oppositely to the liquid clouds, but as expected from theory in sec-
tion 1.1. Besides, the reducing cloud optical depth scalings have more radiative
impacts when the McICA methodology is applied, given that it is more sensitive

to lower cloud optical depth values.

The second section showed that the SCG parameters exhibits radiative sensitivi-
ties that are expected: increased horizontal inhomogeneity decreases cloud albedo
and emissivity, and increased decorrelation lengths decreases integrated CF. How-
ever, these sensitivities vary under different conditions or combinations (e.g. the
parameterizations regarding ice clouds are more radiatively sensitive when liquid
clouds are radiatively reduced) and in few cases, even produce unexpected results
when combined. As a further matter, parameterizations that are linked to ei-
ther the cloud phase or cloud type are producing significant radiative sensitivities
(comparable to the constant parameter sensitivities) and with more zonal vari-
ability. Finally, under the tested conditions and for the GEMCLIM model, the

horizontal inhomogeneity parameter is showing the largest radiative sensitivities.
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The last section is an example of combined parameterizations to approach radia-
tive flux observations. It shows how parameterizations that are based on cloud
phase or cloud type can modify biases over more specific regions than a constant
parameter. However, the parameterizations presented here are still simple, and
even if it allows to reduce some zonal biases for one flux component, it generally

increases other flux biases at the same time.

It is important to mention that the McICA methodology and its SCG are not
conceived to correct or mitigate the cloud intrinsic biases in their CF or CWC. It is
rather a flexible tool to integrate one or many parameterizations for the horizontal
inhomogeneity and overlap assumption. The parameterizations presented here

were mostly to illustrate the possibilities that the SCG offers.

Once the cloud biases are reduced in a model, the SCG offers the flexibility to
include parameterizations that are based on observations or directly on the model
cloud schemes. It further offers the possibility to link the different cloud schemes
through both the subgrid and the resolved scales. An example would be the length
of a convective tower calculated by the convective scheme that could be passed
as a decorrelation length. Another example would be the distribution form and
width for the horizontal water content, as calculated or defined by a second or

third moment microphysics scheme.




CONCLUSION

Context

Cloud-radiation interactions are a complex problem to isolate, analyze and im-
prove in today’s GCMs because of: the many scales involved, the lack of obser-
vation or knowledge about some fundamental cloud processes, and the remaining

open question about how to represent subgrid cloud processes in GCMs.

The McICA methodology has been proposed by Barker et al. (2002) and Pincus
et al. (2003) to remove fixed assumptions on unresolved cloud structure from the
radiative transfer solution and replace it with a flexible stochastic representation
of cloud subgrid-scale variability. Such an approach gives much more flexibility
to test observed cloud properties (e.g. vertical overlap, cloud water horizontal
distributions) and also allows to potentially use weather dependent parameteriza-
tions. However, models are often tuned to have a right mean top of atmosphere
radiative budget that hides compensating biases. Correcting a specific bias can

degrade the general model performance.

This methodology has been implemented in a number of NWP and climate models
but with mitigated resultssince it can reveal cloud biases that were previously cor-
rected by the radiative transfer scheme fixed corrections. However, it is generally
recognized as an improvement since it offers a new flexibility in cloud subgrid-scale
parameterization. A few studies have also derived SCG parameterizations based

on observations or on model variables.
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Scientific questions

Even if the McICA methodology has been introduced more than 10 years ago,

many questions remain on different levels.

For a specific model implementation, the basic questions would be: how does
McICA perform? How does it compare to existing and already implemented in-

homogeneity corrections? How does the model adjust to these flux modifications?

Concerning the general McICA methodology, the more fundamental questions
would be: how do the subgrid scale cloud variability radiative effects vary? On

what conditions are they dependent?

Finally, cloud subgrid scale variability boils down to two distinct components
from the radiative transfer perspective: the horizontal distribution of cloud water
content and the vertical overlap or correlation of cloud fraction and cloud water
content. Given that, how do these parameter radiative effects compare to each
other? How do they compare to other radiative parameters such as effective radii?
How do they interact? How can they be connected to model variables or physical

processes and is it radiatively significant?

Thesis framework

This thesis is focusing on the implementation of the McICA methodology in the
GEMCLIM model and trying to answer the McICA questions that are beyond

this specific model.

To achieve these goals, the GEMCLIM model is used in a global uniform mode
with an horizontal grid mesh of 0.5° in order to test and evaluate the McICA

radiative effects in all conditions: over land and ocean, from Arctic to tropical
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conditions. The different chapters present simulation results from timescales that
spread from 24h after the beginning of simulations to three year seasonal means.
This is dictated, on one side, by the great number of simulations (almost 30) that
were needed to assess the different parameterizations, and on the other side, by a
longer simulation period to assess the model responses and possible adjustments
on longer time scales. However, it is clear that this study is not a climatological
assessment of the model or the McICA methodology. Moreover, the model possible

adjustments were still limited to a few years and to conditions of prescribed SST's.

Different tools and approaches were used in this thesis to try to illustrate the many
components behind the cloud-radiation interactions. As mentioned, different time
scales were studied: from the instantaneous results to the seasonal mean results,
but also different spatial scales were studied. For the radiative effects at surface
and top of atmosphere, global mean signals were used, in parallel to zonal mean,
and 0.5° by 0.5° maps. To connect the surface and top of atmosphere signals, zonal
mean vertical profiles were also presented. In parallel, co-variability diagrams
were used to illustrate the relations between the different flux signals and the
cloud fraction or cloud water content. Finally, offline McICA simulations where
also presented to put in perspective the direct McICA effects and the possible

model adjustments to this new methodology (and to remove natural variability).

Observations used to validate the model simulations were different global satellite
data sets: the CERES EBAF and SYNIdeg data sets for all the radiative fluxes
and for the derived cloud variables, and the SSM /T data set for another source of
cloud liquid water path and water vapor. One key variable that was limiting this
analysis was the IWP that was available with the different CERES data sets, but
that has such a great associated uncertainty that it was impossible to conclude

about the model performance concerning this variable.
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Results and contributions

Compared to homogeneous cloud treatment and the MRO assumption, the McICA
methodology general effect is a reduced cloud albedo and emissivity due the domi-
nant horizontal inhomogeneity introduction. The change from MRO to decorrela-
tion lengths has only small effects and generally slightly attenuates the horizontal
inhomogeneity effects (since its effects are reverse to the horizontal inhomogeneity

effects).

Given that the comparison with observations showed a major overestimation of
LWP on all time scales in the GEMCLIM model, it has been demonstrated that
the McICA methodology generally degrades the radiative fluxes at surface and
top of atmosphere in comparison to CERES fluxes, both on the one day mean
period and the three year seasonal mean. This is explained by the fact that the
McICA methodology within its standard implementation (i.e. without any pa-
rameterization modification) has much less radiative effects both in SW and LW
in comparison to the GEMCLIM existing inhomogeneity cloud corrections. More-
over, the existing SW corrections are increasingly correcting the cloud albedo with
increasing cloud optical depth, while the McICA methodology effects of reducing
the cloud albedo are oppositely decreasing with cloud optical depth. This later ef-
fect is linked to the relationships between cloud albedo (and emissivity) and cloud
optical depth: they vary more rapidly at low cloud optical depth values, creating
greater differences between homogeneous and inhomogeneous cloud treatment at
low optical depth values. Hence, the overestimated LWP enhances the flux dis-
crepancies since the existing corrections are stronger at larger cloud optical depth

values and inversely for the McICA methodology.

Once the McICA methodology is implemented, small cloud adjustments are visible

on all time scales. These adjustments are visible through a reduction in low cloud
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CF and CWP. A probable cause is the modification of heating rates with McICA:
with offline McICA fluxes, a reduced cooling in net heating rate is visible in low
clouds and below. However, for online McICA fluxes, this signal structure mostly
disappears. It can mean that the McICA reduced cooling reduces low clouds in
online simulations and, in turn, these modified clouds would alter the online net
heating signal. These modifications lead to reductions in McICA zonal and global
mean signals for all fluxes except for LWU at TOA, which are less influenced by

low clouds.

From a more general perspective, the McICA methodology has been shown to be
CWP dependent as suggested by the theoretical behavior of cloud albedo or emis-
sivity as a function of LWP or IWP. It has been shown that under reduced cloud
optical depth conditions, McICA horizontal inhomogeneity effects are greater, i.e.
it reduces more the cloud albedo and emissivity. However, it has also been shown
that ice cloud albedo is increased with McICA, a feature that was also expected
from the theory since the curvature of the cloud albedo relationship to IWP is in-
verse of the one to LWP. Besides, since the emissivity relationship to LWP reaches
a saturation point more rapidly (at lower LWP values) compared to the albedo
relationship, the McICA LW effects also diminish more rapidly and therefore,
are generally much weaker than the McICA SW effects. As an example, results
from one winter (DJF) seasonal mean McICA effects against homogeneous cloud
treatment show a global mean increase of 4.7 W/m? for the SWD at SFC and
a decrease of 0.8 W/m? for LWD at SFC. Moreover, the McICA SW effects are
greater at SFC compared to TOA while the LW effects are of similar amplitude
at SFC and TOA, with a decrease of 2.6 W/m? for the SWU at TOA and an
increase of 0.8 W/m? for IWU at TOA. Finally, the McICA effects increase with

CF since more clouds can contribute to these flux modifications.

Looking at the SCG parameters, many parameterizations have been tested on
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short time scales: from global constant values to cloud type or cloud phase de-
pendencies, both for the horizontal inhomogeneity and the decorrelation length
parameters. It has been shown that the horizontal inhomogeneity parameter
has more potential to modify the radiative fluxes compared to the decorrelation
lengths, with global mean signals two to three times bigger for the former. The
increased inhomogeneity parameterization as a function of convection produces
global mean differences of 2.7 W/m? for SWD at SFC and between -0.5 and -0.7
W/m? for the LWD at SFC, while the decorrelation length parameterization as
a function of convection produces global mean differences of 1.0 W/m? for SWD
at SFC and between 0 and -0.2 W/m? for LWD at SFC. However, these radiative
effects are only half the ice effective radius effects tested. The ice effective radius
modification tested are producing global mean differences of 7.1 W/m? for the
SWD at SFC and -1.3 W/m? for the LWD at SFC while the zonal mean maxima
can reach 30 W/m? for the SWD at SFC around 60°S and -18 W/m? over the
Arctic for the LWD at SFC. In general, these parameterizations produce radiative
effects that are expected but a few tests showed unexpected results with non-linear

interactions between the two parameters, particularly for the LW fluxes.

Examples with cloud phase or cloud type parameterizations seem promising since
they are either based on observations or physical insights and produce radiative
effects that are discernible and that vary locally. One example is the decorrelation
lengths based on convection occurrences, which can reproduce the global mean
radiative effects of the constant decorrelation lengths, while being meteorologically
dependent. Furthermore, these parameterizations offer the possibility of easily
link the different cloud schemes in a model via both the subgrid and resolved
scales. This coherence would enhance the physical representation of clouds and
could even help in understanding the cloud biases while comparing to observations

since the radiative transfer scheme would reflect more directly the model cloud
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biases.

Previous articles have shown how the McICA improves or not the respective model
performances but few have looked at specific SCG parameterizations. This work
innovates by analyzing in detail the different McICA contributions (the horizontal
inhomogeneity vs. the vertical overlap, the SW vs. the LW effects, the SFC vs.
the TOA effects, the local vs. the global mean effects, the liquid vs. the ice
cloud effects, etc.) and putting it in perspective with an already existing cloud
inhomogeneity correction. Moreover, a clear demonstration was made about how
the horizontal inhomogeneity radiative effects vary as a function of CWP and
cloud phase. Furthermore, it demonstrates how the SCG parameters can be easily
linked to model variables and observations to be more weather dependent and
more physically sound and that such implementations are producing significant
radiative responses. By regrouping and comparing many parameterizations, a new
step is taken to understand these parameter radiative effects and the possibilities

they offer.

Limitations of the project

This project has looked mainly at the SFC and TOA radiative budget, but these
components are only a part of a complete model evaluation. Since the McICA
methodology changes the radiative fluxes also in their vertical structure, it can
affect significantly other variables such as temperature and precipitation. Fur-
thermore, the diurnal cycle may be affected, both from the direct radiative mod-

ifications and from indirect feedbacks such as the convection triggering.

The model’s significant LWP bias has limited the possibility of comparing the
many parameterization tests with observations given that the modeled clouds

were far from the observational range, even with the different cloud optical depths
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scalings used (since zonal biases remain). This problem is not currently seen in
limited area studies with the same model, probably due to the lateral boundary
constraints. The choice of global grid was made in order to sample all cloud

conditions, and therefore all McICA possibilities.

In terms of timescale, many simulations (particularly for the different parame-
terizations) were performed only over a few days, thus limiting our conclusions
with regards to the long terms model responses and adjustments. Moreover, as
mentioned before, the model being only an atmospheric model, the adjustments
possibilities were more restricted compared to a coupled model. With regards of
the previous points, no conclusion is drawn from the different SCG parameteriza-

tions in terms of specific model performances.

Remaining questions

For the GEMCLIM model, despite the obvious LWP bias in global mode that has
to be addressed, the McICA methodology remains to be tested on climatological
time scales and for a more complete set of variables that include at least surface

temperature and precipitation, as mentioned in the previous section.

For the SCG parameterizations, development needs to be done to link the dif-
ferent cloud scheme information or the other model variables to the parameters.
In parallel, these modifications need to be evaluated with observations, possibly
at higher spatiotemporal resolutions with data sets that include more cloud vari-
ables. Surface observation sites can provide such observation data sets at the
cost of spatial coverage. New satellite observation data sets are also providing
more coherent cloud and radiative informations, but again, only at the satellite

spatiotemporal scale (generally two times a day for bands of a few kilometers).

Going one step further would be to include a stochastic treatment of subgrid scale
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variability for different variables that influence clouds and to be coherent between
the different schemes. For example, a subgrid scale variability in humidity could
be integrated to a double or triple moment microphysics scheme (which include
subgrid CF), which could in turn, provide horizontal distribution of cloud water
content to the SCG. Convection, which is generally subgrid scale, could also be
integrated better into the SCG by kecping the associated cloud tower together in
the subgrid columns depending on the wind shear. This suggests that the different
schemes in a model would be connected not only via the resolved scales but also

via the subgrid scales.







ANNEX A

Other useful equations

From Liou (1992), the cloud optical depth (in the visible) can be approximated

as a function of effective liquid radius or effective ice diameter and LWP or IWP

as followed:

3LWP
The= = (Al)

2P1iq * Teff liq
Tice ™ IWP(c e )

effiice

However, in the GEMCLIM model formulations, the cloud optical depth is calcu-

lated as followed:

a a

Tlig,SW = LWP[(h + B g 2 2 (A.2)
Teff,lzq Te f flig  Tefflig
Tice,sw = IWP[A; + ———
; C* Tefflice
b3 by bs
Tlig LW = LWP[bl + by * Teffliqg + +— + -3
Teffiia  Teffliq  Teffiiq
B.

Toootw = IWP[B; + =]

Cx* Teffzce (C * Teff,ice)z
With these model equations, the relationship for 7 is proportional to LWP or
IWP and approximately inversely proportional to r.ss similarly to equation A.1

except for 7, 1w where it can either increase or decrease as a function of resy 4.







ANNEX B

Co-variability diagrams by cloud phases

This annex presents flux differences similarly to chapter 3 but as a function of
cloud phase. For all figures, top row is for all cases (as seen in chapter 3 figures),
2™ row is for liquid clouds only, 3™ row is for ice clouds only and bottom row is
for mixed clouds only. Global mean values are indicated in each panel and were

included in chapter 3 in tables 3.4, 3.5 and 3.6.
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Figure B.4 TOA albedo differences as a function of CF for January 1% for the
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Figure B.5 LWD differences at SFC as a function of CWP for January 1 for
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(374 column). Top row is seen in figure 3.5.
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Figure B.6 LWD differences at SFC as a function of CF for January 1 for the
HOMOG* (1° column), the HOMOG (2™ column) and the CTL simulations (37

column). Top row is seen in figure 3.5.
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Figure B.7 LWU differences at TOA as a function of CWP for January 1% for
the HOMOG* (1% column), the HOMOG (2™ column) and the CTL simulations

(37 column). Top row is seen in figure 3.5.
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Figure B.8 LWU differences at TOA as a function of CF for January 1% for the
HOMOG* (1% column), the HOMOG (2™ column) and the CTL simulations (3"

column). Top row is seen in figure 3.5.
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Figure B.9 SW ratio differences at SFC as a function of CWP for DJF 2007 for
the HOMOG#* (1% column), the HOMOG (2™ column) and the CTL simulations

(374 column). Top row is seen in figure 3.6.
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Figure B.10 SW ratio differences at SFC as a function of CF for DJF 2007 for
the HOMOG* (1% column), the HOMOG (2™ column) and the CTL simulations

(374 column). Top row is seen in figure 3.6.
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Figure B.11 TOA albedo differences as a function of CWP for DJF 2007 for the
HOMOG* (1 column), the HOMOG (2™ column) and the CTL simulations (3™

column). Top row is seen in figure 3.6.
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Figure B.12 TOA albedo differences as a function of CF for DJF 2007 for the
HOMOG* (1% column), the HOMOG (2™ column) and the CTL simulations (3"

column). Top row is seen in figure 3.6.
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Figure B.13 LWD differences at SFC as a function of CWP for DJF 2007 for
the HOMOG* (1% column), the HOMOG (2™ column) and the CTL simulations

(374 column). Top row is seen in figure 3.7.
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Figure B.14 LWD differences at SFC as a function of CF for DJF 2007 for the
HOMOG* (1 column), the HOMOG (2™ column) and the CTL simulations (3"

column). Top row is seen in figure 3.7.
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Figure B.15 LWU differences at TOA as a function of CWP for DJF 2007 for
the HOMOG* (1° column), the HOMOG (2™ column) and the CTL simulations

(374 column). Top row is seen in figure 3.7.
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Figure B.16 LWU differences at TOA as a function of CF for DJF 2007 for the
HOMOG* (1% column), the HOMOG (2™ column) and the CTL simulations (3™

column). Top row is seen in figure 3.7.
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Figure B.17 SW ratio for the CTL simulation (1% column), SW differences
for the offline McICA (CTLyca - CTL, 27 column) and the online McICA
simulation (McICA - CTL, 3 column) for DJF 2007-2009 as a function of CWP.

Top row is seen in figure 3.8.
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Figure B.18 SW ratio for the CTL simulation (1% column), SW differences
for the offline McICA (CTLycca - CTL, 2™ column) and the online McICA
simulation (McICA - CTL, 3™ column) for DJF 2007-2009 as a function of CF.

'Top row is seen in figure 3.8.
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Figure B.19 TOA albedo for the CTL simulation (1% column), TOA albedo
differences for the offline McICA (CTLygica - CTL, 2™ column) and the online
McICA simulation (McICA - CTL, 3¢ column) for DJF 2007-2009 as a function

of CWP. Top row is seen in figure 3.8.
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Figure B.20 TOA albedo for the CTL simulation (1°* column), TOA albedo
differences for the offline McICA (CTLycica - CTL, 24 column) and the online
McICA simulation (McICA - CTL, 3 column) for DJF 2007-2009 as a function

of CF. Top row is seen in figure 3.8.
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Figure B.21 LWD at SFC for the CTL simulation (1% column), LWD differences
at SFC for the offline McICA (CTLyrca - CTL, 27 column) and the online
McICA simulation (McICA - CTL, 3" column) for DJF 2007-2009 as a function

of CWP. Top row is seen in figure 3.9.
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Figure B.22 LWD at SFC for the CTL simulation (1% column), LWD differences
at SFC for the offline McICA (CTLygca - CTL, 2™ column) and the online
McICA simulation (McICA - CTL, 3™ column) for DJF 2007-2009 as a function

of CF. Top row is seen in figure 3.9.
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Figure B.23 LWU at TOA for the CTL simulation (1% column), LWU differences
at TOA for the offline McICA (CTLyeca - CTL, 2™ column) and the online
McICA simulation (McICA - CTL, 3™ column) for DJF 2007-2009 as a function

of CWP. Top row is seen in figure 3.9.
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Figure B.24 LWU at TOA for the CTL simulation (1% column), LWU differences
at TOA for the offline McICA (CTLygca - CTL, 274 column) and the online
McICA simulation (McICA - CTL, 38" column) for DJF 2007-2009 as a function

of CF. Top row is seen in figure 3.9.
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