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RÉSUMÉ 

Le mercure (Hg) représente un dangereux polluant aquatique en raison de sa 

libération importante dans les eaux usées industrielles. En milieu aquatique, le Hg2
+ 

sera conve11i en méthylmercure (MeHg) par le biais de l'activité des micro­

organismes. Ensuite, la bioaccumulation de MeHg se produira dans les organismes 

aquatiques par l'intermédiaire de la chaîne alimentaire, et enfin, il peut être transféré à 

l'humain causant des problèmes de santé graves. La technologie de phycoremediation 

est une nouvelle méthode en développement utilisant les microalgues pour 

l'assainissement des eaux usées contenant du mercure. L'objectif de ce projet est de 

déterminer la capacité de bioaccumulation du mercure dans la biomasse algale de 

Chlorella vulgaris exposée aux différentes concentrations de HgCh pendant 72 h. Les 

effets de la bioaccumulation du mercure sur la division cellulaire et l'activité du 

photosystème II (PSII) ont aussi été examinées en ce qui concerne l'induction du 

glutathion (GSH) et des phytochélatines (PCs). Les méthodes d'analyse utilisées dans 

cette étude étaient la spectrométrie d ' absorption atomique pour déterminer 

l'accumulation de mercure dans la biomasse algale, le compteur de cellules pour 

évaluer l' inhibition de la division cellulaire, l ' émission de fluorescence de la 

chlorophylle pour analyser l'activité du PSII et enfm la chromatographie liquide de 

haute performance (HPLC) pour déterminer l'induction du GSH et des PCs. os 

résultats indiquent que la plus grande efficacité de bioaccumulation a été atteinte 

lorsque les cellules d ' algues ont été exposées pendant 24 h à 100 11M de HgCh. Sous 

cette condition, la division cellulaire et l'activité du PSII ont diminué respectivement 

de 32 et 30 % par rapport au témoin. En effet, l'effet inhibiteur du mercure sur la 

photosynthèse peut expliquer la diminution de la division cellulaire. Dans les mêmes 

conditions de traitement, l ' induction du GSH et des PCs augmente aussi 

considérablement à 24 h. Cela explique la tolérance des cellules algales contre les 

effets de la bioaccumulation du mercure montrant l'importance de ce mécanisme de 

détoxication moléculaire. De plus, nos résultats démontrent que le HgCh induit un 

impact plus fort de toxicité dans les cellules d ' algues à 48 h par rapport à 24 h 

d' exposition, comme en témoigne le nombre croissant de cellules endommagées ou 

mortes, expliquant l'absorption inférieure de mercure par les cellules d 'algues après 

24 h d'exposition. En effet, après 48 h d ' exposition, l' induction de PC2 et PC4 n'a pas 
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été détectée en raison d'un plus fort effet toxique de mercure provoquant des 
dommages sur le système cellulaire plus importants affectant les activités 
enzymatiques. Par conséquent, nos résultats indiquent que l' activité du PSII a été 
utilisée comme un biomarqueur fiable des effets de la bioaccumulation du mercure au 
niveau cellulaire, qui était indicateur de l'efficacité de la bioaccumulation du mercure 
dans la biomasse algale. En conclusion, selon les résultats obtenus dans cette étude, il 
est démontré que cette espèce d' algue verte, C. vulgaris a été assez résistante à l'effet 
du HgCb jusqu'à 100 ~M pendant 24 h d'exposition tout en maintenant son efficacité 
maximale de bioaccurnulation. 



ABSTRACT 

Mercury (Hg) represents a dangerous aquatic pollutant due to its important release 
from industrial wastewater. In aquatic environment, inorganic Hg2

+ will be converted 

into methylmercury (MeHg) through the activity of microorganisms. Then, the 
bioaccumulation of MeHg will occur in aquatic organisms through the food chain, 
and finally it can be transferred to human causing serious health problems. A new 
developing method using microalgae permitting the remediation of wastewater 

containing mercury is the technology of phycoremediation. The objective of this 
project is to determine the bioaccumulation capacity of Hg in algal biomass of 
Chlorella vulgaris exposed to different concentrations of HgCh during 72 h. the 
bioaccumulation effects of Hg on cellular division and Photosystem II (PSII) activity 
were also investigated in relation to the induction of glutathione (GSH) and 
phytochelatins (PCs). Analytical methods used in this study were Atomic Absorption 
Spectrometry to determine mercury accumulation in algal biomass, cells counter to 
evaluate the inhibition of cellular division, chlorophyll fluorescence emission to 
investigate PSII activity and High performance liquid chromatograpy (HPLC) to 
determine the induction of glutathione and phytochelatins. Our results indicated that 
the highest bioaccumulation efficiency was reached when algal cells were exposed 
during 24 h to 100 !J.M of HgCh. Und er this condition, cellular division and PSII 
activity decreased respectively by 32 and 30 % in comparison to control. Indeed, the 

inhibitory effect of mercury on photosynthesis may explained the decrease in cellular 
division. Under the same treatment condition, the induction of GSH and PCs 
increased also significantly at 24 h. This explained the algal cell tolerance against the 
bioaccumulation effect of mercury, determining the importance of this molecular 

detoxification mechanism. Moreover, our results demonstrated that HgCh induced a 
stronger toxicity impact in algal cells at 48 h in comparison to 24 h of exposure as 
indicated by the increasing number of injured or dead cells, explaining the lower 
uptake and sequestration capacity of mercury by algal cells after 24 h of exposure. 
Indeed, at 48 h of exposure, the induction of PC2 and PC4 was not detected due to the 
strong toxic effect of mercury causing damages on the cellular system and affecting 
enzymatic activities. Therefore, our results indicated that the PSII activity was used 
as a reliable biomarker of the bioaccumulation effects of mercury at cellular leve! 
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which was highly related to the efficiency of the bioaccurnulation of mercury in algal 
biomass. In conclusion, according to obtained results in this study, it is most likely 
that this species of green algae, C. vulgaris was enough resistant to the effect of 
HgCh up to 100 !-lM and until 24 h of exposure in order to maintain its maximum 
bioaccumulation efficiency. 



GENERAL INTRODUCTION 

Human health is at risk to toxic metals through different ways of exposure, such 

as the consumption of contaminated food and drinking water (Adriano et al. , 2005). 

For example, it has been shown that metals as cadmium and mercury can cause 

serious damages to the nervous system and kidneys (Bernard, 2011). These metals 

can contaminate the environment from both natural and anthropogenic sources, 

representing a threat to the quality of aquatic eco systems (Adriano et al. , 2005; Gadd, 

2009). In particular, wastewaters rejected from industrial effluents contribute to the 

pollution of aquatic ecosystems by their high level in metals. Therefore, the 

decontamination of polluted water with metals is one of the most important human 

needs for preserving environmental quality. Presently, it exists several conventional 

methods for the removal of metals having advantages and disadvantages that are 

defined according to their effectiveness, necessity and quantity of chemical reagents. 

For example, biological methods are interesting because microorganisms are capable 

of accumulating both organic and inorganic pollutants (Eccles, 1999). Furthermore, 

the use of microalgae for wastewater treatment is representing a recent environmental 

biotechnology in development, which is defmed as "phycoremediation" of polluted 

water. Indeed, this technology uses the ability of microalgae to absorb and sequester 

large quantities of contaminants into their cells (Baumarm et al. , 2009; La voie et al., 

2009; Nishikawa et al. , 2006). In addition, several studies had shown the ability of 

different species of microalgae to remove toxic metals and organic compounds from 

water (Wang et al. , 2007; Zhang et al. , 2011). This new approach possesses a strong 

advantage since it does not lead to secondary pollution such as usual methods for 

wastewater treatment, since microalgae use inorganic nitrogen and phosphorus for 

their growth (Abdel-Raouf et al. , 2012). Also, the biomass can be used for different 
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applications including the production of biogas and energy through the digestion of 

biomass (absence of oxygen) into CH4 and C02 (Mui'ioz and Guieysse, 2006). 

In the development of the phycoremediation technology, the main problem is to 

select the most appropriate algal species able to bioaccurnulate efficiently 

contaminants in order to apply them for the remediation of wastewater. Therefore, it 

is important to consider bath the efficiency of algal cells to bioaccurnulate metals and 

the tolerance against the cellular toxicity of accurnulated metals in relation to specifie 

environrnental conditions such as the pH, light irradiance and temperature. My study 

contributed to the use of microalgae in the treatment of wastewater contaminated with 

metals, by deterrnining the efficiency of algal cells to accurnulate mercury at different 

concentration and time of exposure. In this study, the highest capacity of mercury 

bioaccumulation was evaluated by using the green alga madel Chlorella vulgaris. 

Therefore, this work is based on these following specifie objectives: 

1- To determine the bioaccurnulation capacity of mercury in al gal biomass; 

2- To investigate the taxie effects of mercury on cellular division and on 

Photosystem II photochemistry activity; 

3- To investigate the induction of glutathione and phytochelatins in response to 

metal stress effect. 

The realization of our specifie objectives 1s based on two mam working 

hypothesis: 

1- The bioaccurnulation efficiency of algal cells is dependent to the exposed 

mercury concentration and the time of exposure. 

2- The induction of molecular detoxification mechanisms, especially the 

synthesis of glutathione and phytochelatins, 1s related to the cellular 

bioaccurnulation of mercury. 



3 

This Master thesis is organized into four main chapters. In the first chapter, the 

environmental context is presented, including the selection of mercury, the 

management of environmental pollution sanitation and the use of remediation water 

technologies. In this chapter, the biochemistry of green algae is also presented 

including photosynthesis and related physiological processes, ability of plant cells to 

respond to metal contamination, criteria for the selection of green algae for 

wastewater treatment, characteristics of the algal model C. vulgaris and finally 

mechanism of mercury toxic effects at cellular level. Moreover, cellular and 

biochemical indicators related to the mechanism of stress response induced by 

mercury are presented. In the second chapter, methodological approaches used in this 

study are explained in details including the use of chlorophyll fluorescence emission 

as a biomarker of metal toxicity and the analysis of the induction of glutathione and 

phytochelatins in response to metal uptake. Finally, the results obtained in this study 

are presented and discussed in the third chapter. 



CHAPTERI 

ENVIRONMENTAL CONTEXT 

1.1 Contamination of water by rn etals 

Metals are present in all environmental compartments such as atmosphere, soil 

and water at even low concentrations which can bioaccumulate through the food 

chain (di Toppi and Gabbrielli, 1999). Severa! metals such as Fe, Cu, Zn and Mn are 

considered essential for biological functions and they are needed in small quantities 

in aquatic ecosystem, while others like Cd and Hg are toxic at very low 

concentrations (Adriano et al. , 2005). Metal sources of input come from 

anthropogenic activities such as agriculture, metallurgy, power generation, mineral 

extraction, nuclear processes and industrial effluents (Adriano et al. , 2005 ; Gadd, 

2009). Indeed, there are a lot of rivers especially in developing countries that are 

contaminated by the release of metals from anthropogenic activities (Macklin et al. , 

1994; Swennen et al., 1994. Miller et al., 2002). The risk of toxicity of metals is 

determined by their bioavailability, which is defined by the capacity of living 

organisms to absorb chemicals that are involved in their metabolism (Adriano et al., 

2005). It is well known that excess consumption of metals such as Cd and Pb can 

result in neurological, bone and cardiovascular diseases, renal dysfunction, and 

various cancers, even at relatively low levels (Calderon, 2000; Watt et al., 2000; 

Jarup, 2002). Moreover, mercury can deteriorate the nervous system, impairs hearing, 

speech, vision and gait, difficulties on chewing and swallowing, and it can also 

causes involuntary muscle movements, corrodes skin and mucous membranes. In 

Canada, almost 150 billion liters of untreated and undertreated wastewater (sewage) 

are released into our waterways every year (Environment Canada, 2011). Particularly, 
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in 2011 , the amount of Hg released into water was about 3 51 kg. More details are 

presented in the Table below (1.1), the sources of mercury releases into water in 

Canada are presented. Therefore, it is well known that the release of metals into water 

representa current environmental problem for the St. Lawrence River. According to 

studies by Environment Canada (2011), the surface sediments in the river are 

generally less contarninated in comparison to sediments 20 years ago which resulted 

from effluent treatment, but concentrations of sorne substances have remained 

unchanged or increased. 

Table 1.1 Sources of releases in mercury into water in Canada (Environment Canada, 

2011). 

Sources of releases in mercury into water Kg % 

Water, sewage and other systems 174 49 

Pulp, paper and paperboard mills 77 22 

Metal ore mining 77 22 

Non-ferrous metal (except aluminum) production and 9 3 
processmg 
Iron and steel mills and Ferro-alloy manufacturing 4 1 

Alumina and Aluminum production and processing 3 1 

Electric power generation, transmission and distribution 3 1 

Other sources 1 <1 



6 

1.2 Studied metal, mercury 

Mercury is not degradable because it is a metallic element, so it can just 

converts into various species forms, and it is a naturally occurring element known as 

"heavy metal" which can be taxie for organisms at low concentrations (Jackson, 

1998; Selin, 2009). In nature, mercury can have 3 possible conditions of valence state 

(Morel et al., 1998; Leermakers et al. , 2005 ; Leopold et al., 2010): 1- Elemental 

mercury giving a volatile liquid colourless and odourless vapour at room temperature; 

2- Inorganic mercury when combined with sulphur, chlorine or oxygen; 3- Organic 

mercury such as methyl mercury or dimethyl mercury. 

As a natural element, mercury is ubiquitous in the environment (Figure 1.1 ), 

almost 10,000 tons produced from degassing of earth' s crust, and approximately 

20,000 tons/year is added by anthropogenic activity (Hansen and Dasher, 1997; Zahir 

et al., 2005). One of the main sources of anthropogenic discharge and mercury 

pollution in atmosphere is the emission of mercury from the coal smoke and also is 

estimated that it will increase at a rate of 5% a year (Zhang et al. , 2002). Mercury in 

air eventually passes into rivers, lakes and oceans. With mercury contaminating rain 

(Domagalski et al. , 2004; Levine, 2004), ground and seawater (Beldowski and 

Pempkowiak, 2003), no one is safe. When atmospheric mercury falls to earth, it can 

be changed by bacterial or chemical action into an organic form known as 

methylmercury that has the ability to migrate through cell membranes and 

"bioaccumulate" in living tissue. Bioaccumulation is the process by substances that 

builds up in a living organism from air or water, or through the contaminated food 

(Jackson, 1998; Zahir et al., 2005 ; Selin, 2009). 
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Figure 1.1 Mercury distribution in the environrnent (Zahir et al. , 2005). 
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As it is shown in figure 1.2, in aquatic environrnents, inorganic mercury can be 

microbiologically transformed into lipophilic organic compound, methylmercury (the 

accumulated methylmercury is indicated by the red dots) (Environrnent Canada, 

2011). Therefore, methylmercury is easily accumulated into phytoplankton, and then 

can be transfer through the food chain to zooplankton, fishes, mammals, birds and 

fmally to humans via consumption. Indeed, this process known as "biomagnification" 

is an environrnental concem since it inflicts increasing toxicity to species of higher 

trophic levels (Environrnent Canada, 2011). 
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The Bioaccumulation of 
Methylmercury 

Figure 1.2 Methylmercury bioaccumulation in aquatic organisms. If the 

concentration of methylmercury in lake water is considered to have an absolute value 

of 1, th en approximate bioaccumulation factors for phytoplankton are 1 05
; for 

zooplankton are 106 and for fish, birds and humans are 107 (Environment Canada, 

2011). 

1.2.1 Mercury in pharmaceuticals and utility products 

In developed country, skin whitening creams and soaps were recognized as a 

source of chronic mercury poisoning (Harada et al. , 1999, 2001). Also, it was 

demonstrated that mercury develops acrodynia and kawasaki disease in young 

children who used mercuric chloride in teething powders (Kazantzis, 2002). The use 

of mercury in vaccines had previously made sorne concem about death of infants 

(Westphal and Hallier, 2003). Moreover, there are sorne concems about mercury 

since it has been widely used in pharmaceuticals products such as preservative in 
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Hepatitis B, Diphtheria, Pertussis, Acellular pertussis and Tetanus vaccines (Zahir et 

al. , 2005). 

1.2.2 Mercury toxicity and human health 

It has been demonstrated that low dose of mercury had sorne effects on the 

nervous system of foetus, children and adults. Such developmental neurotoxicity can 

have an impact on the entire population and the life span of humans (Rice and 

Barone, 2000; Zahir et al. , 2005). Moreover, mercury toxicity can also affect 

cardiovascular system. Indeed, recent evidence suggested that mercury content in fish 

may reduce the cardioprotective effect of fish intake (Chan and Egeland, 2004; Zahir 

et al., 2005). In Table 1.2, it is shown a shortlist of toxic effects of mercury on 

various organ systems. 

Table 1.2 Toxicity effect of low dose of mercury in various organ systems (Zahir et 

al. , 2005). 

N ervous system 
(Adults) 

Children/infants 

Motor system 
Adults 

Memory loss, including Alzheimer like dementia, deficit in 
attention, hypoesthesia, ataxia, dysarthrea, subclinical finger 
tremor impairment of hearing and vision, sensory disturbances, 
increased fatigue . 
Deficit in language (late talking) and memory deficit in 
attention, Autism. 

Disruption of fine mo tor function, decreased muscular 
strength, increased tiredness. 

Children/infants Late walking. 

Renal system Increases plasma creatinine level. 

'- - ..L 



Cardiovascular Alters normal cardiovascular homoeostasis. 
system 

Immune system 

Reproductive 
system 

exacerbates lupus like autoimmunity, multiple sclerosis, 
autoimmune thyroiditis or atopic eczema. 

Decreases rate of fertility in both males and females, birth of 
abnormal offsprings. 

1.3 Clean water technologies 
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The management of wastewater pollution has been an important environmental 

topic, especially during the last two centuries (Eccles, 1999): The elimination of 

biochemical oxygen demand (BOD), N and P, mater in suspension, coliforms and 

bacteria was the main objective for the remediation of wastewater. The wastewater 

treatment consists in several steps (Abdel-Raouf et al. , 2012): The first step ofis the 

elimination of bulk materüils such as wood and heavy grain. The reduction of BOD 

by removing organic matter is the secondary treatment of wastewater. Tertiary 

wastewater treatment involves the elimination of metal ions of ammonium, nitrate, 

phosphate and of toxic organic compounds. Finally, the destruction of pathogens will 

be carried out by the stage of disinfection of wastewater. 

Several conventional methods showed the removal of metals from aqueous 

solutions such as ion exchange, electrolysis, precipitation, filtration and evaporation 

(Fabiani, 1992; Aderhold et al. , 1996). As a result, the conventional separation of 

metals from aqueous solutions as chemical precipitation and reverse osmosis requires 

large quantities of reagents and energy, which restricts the practice of these methods 

with low concentrations of metals (Ozdemir et al. , 2005 ; Pehlivan and Altun, 2006). 
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1.4 Use of microalgae in water remediation 

The contamination of wastewater by nitrogen, phosphorus, metals and organics 

which are not processed completely by conventional treatment will cause 

environmental problems in the watercourse. The use of algae for the treatment of 

wastewater has been recently applied since sorne strains can be produced in large 

quantities such as Chlorella and Dunaliella using nitrogen and inorganic phosphorus 

for their growth (Abdel-Raouf et al., 2012). In addition, studies have shawn the 

capacity of algae to remove pollutants: For example, the capacity of C. reinhardtii 

has been proposed as a biotechnological approach interesting for the decontamination 

of organic pollutants (Wang et al. , 2007; Zhang et al. , 2011). However, the use of 

algal biomass from the industrial wastewater treatment is rarely appropriate for the 

production of food or chemicals such as fertilizer because of the existence of taxie 

metals and organic contarninants (Mufioz and Guieysse, 2006). Therefore, the 

utilization of wastewaters as nutrient sources can replace growth media and reduce 

the cultivation costs for algal growth economies. For example, it had been shawn that 

C. vulgaris could be cultured in wastewater for biomass production while nitrogen 

and phosphorus are reduced during the tertiary treatment of wastewater (Wang et al. , 

2010; Ruiz et al. , 2014; Ponnuswarny et al. , 2013). Another study had shawn that the 

cultivation of alga C. vulgaris on wastewater had two positive effects, first the 

removal of inorganic elements from wastewater and second the produced biomass 

used as a source for biofuel or byproduct (Fathi et al., 2013). 

Moreover, photobioreactors systems (open or closed) for the treatment of 

wastewater using algae need a high efficiency for the use of light, a good mix, low 

hydrodynamic stress on photosynthetic algal cells, a low risk of contamination, a 

minimum of space, ease of cleaning, an economical energy consumption and ease to 

control the temperature (Pulz, 2001; Ugwu et al., 2008; Xu et al. , 2009). For 
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example, Cyanotech Corp in Hawaii and Earthrise Farms in California are two 

companies that grow algae on a large scale (Richmond, 2004; Mufioz and Guieysse, 

2006; Spolaore et al., 2006). However, the loss of water by evaporation and 

contamination, large space, predation risk, no control over volatilization of pollutants 

and on growing conditions are disadvantages concerning open compared with closed 

photobioreactors systems (Borowitzka, 1999; Pulz, 2001; Mufioz and Guieysse, 

2006). 

At commercial level, the biomass production of microalgae has been found to 

be useful for many applications in various branches of industry such as the 

production of dyes, food additives, antibiotics and bio fuel energy (Liang et al. , 2009; 

Gors et al. , 2010; Priya, 2012; Mallick et al. , 2012). These studies showed that the 

industrial potential of green microalgae relies on their rapid growth of biomass in 

photobioreactors, since they need a relatively small area required for cultivation in 

comparison to crop plants such as maize. Moreover, optimizing'the growth media is a 

critical step for algal biomass production at large scale, since the cost of growth 

media nutrients required in large quantities can be significant (Sharma et al. , 2011 ; 

Blair et al. , 2014). 

1.5 Biochemistry of green algae Ch/orel/a vulgaris as a model of study 

Green microalgae are a large group of microorganism eukaryotes using the 

solar energy to perform photosynthesis to create biomass with water, carbon dioxide 

and other nutrients. As the major primary producers in freshwater ecosystems, 

microalgae play a primordial role in the functioning of aquatic eco system, and can be 

indicative of the environmental quality of freshwater for aquatic organisms of higher 

tropic levels (Buchanan et al. , 2000). 
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The spec1es C. vulgaris presents several morphological and physiological 

advantages, belonging to the phylum of Chlorophyta (Vymazal, 1995). It is single­

cell and spherical in shape, about 2 to 10 J..Lm in diameter, without flagella (Figure 

1.3). Since this algal species can bioaccumulate easily aquatic pollutants, it had been 

used as a sensitive biosensor of environmental quality for freshwater, permitting the 

assessment of the risk of toxicity in the development of environmental regulations 

(Rioboo et al. , 2002; Gonzalez-Barreiro et al. , 2006; Afkar et al. , 2010; Ou-Yang et 

al. , 2013). For example, it has been shawn an inhibition of growth during 96 hon C. 

vulgaris for two herbicides used wide-spread, isoproturon (class of phenylurea) and 

terbutryn (class oftriazine) (Rioboo et al., 2002): These herbicides classes act on the 

photosynthesis process by displacing a plastoquinone from its binding site in the 

photosystem II. However, the possibility of making a bioremediation system for the 

removal of herbicides in water with this species has been shawn for short time of 

exposure only. Indeed, it was shawn recently that, during 24 hours oftreatment, algal 

cells of C. vulgaris were able to bioconcentrate efficiently the triazine herbicides 

atrazine and terbutryn (Gonzâlez-Barreiro et al., 2006). Moreover, the change in 

growth rate of C. vulgaris has been used as an indicator of the inhibitory and 

stimulatory effects of several metals (zinc, cobalt and copper) depending to their 

concentration in the aqueous solution (Afkar et al. , 201 0). In a recent study, the taxie 

effects of cadmium on C. vulgaris were investigated during 96 h which resulted in the 

alteration of cellular functions as indicated by the response of several biomarkers 

such as cell growth, photochemical efficiency of photosynthesis by chlorophyll a 

fluorescence and cell viability (Ou-Yang et al. , 2013). 
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Figure 1.3 Photo of algal cells of Chlorella vulgaris. Seattle, Washington, USA, 

cement wall, 1000 x, DIC. 01 Nov 2008, taken by Karl Bruun© 

( sko genman@earthlink.net). 

1.6 Photosynthesis 

Photosynthesis is the only source of solar energy storage on Earth permitting 

the production of biomass by plants and algae which use directly the light energy by 

the process of photosynthesis permitting the synthesis of organic compounds (Ort and 

Whitmarsh, 2001): The oxygenic photosynthesis is a redox reaction able to perform 

the photolysis of water providing the electrons for the reduction of carbon dioxide 

(C02) and the synthesis of carbohydrates. Therefore, photosynthesis includes 

absorption of light, the transformation of energy, electron transport and enzymatic 

pathways. The photosynthesis takes place in a cellular organelle called chloroplast 

which is surrounded by a lipid bilayer and an internai membrane system called 

thylakoid (Taiz and Zeiger, 2010) (Figure 1.4) : The thylakoids membranes are in an 
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aqueous matrix called stroma, and there is a regional distinction by granum and 

stromallamellae (a granum is made up of lü to 100 dises). 

Gran a 
lamellae 
(sl.:lc of 

Stroma 1 ermembrane space 
lamellae 

t la 1ds) 1 ner membrane 

Ou er membr e 

Gran m 

Figure 1.4 (A) Schematic diagram of a chloroplast including thylakoid 

membranes (Taiz and Zeiger, 201 0). 

The photosynthetic process can be divided into two phases (see Figure 1.5) 

according to Malkin and Niyogi (2000): During the light reaction, 0 2, ATP 

(adenosine triphosphate) and NADPH (nicotinamide adenine dinucleotide phosphate) 

are synthesized, and ATP and NADPH produced are used by stroma! enzymes for the 

synthesis of carbohydrate by fixing C02 in the cycle of Calvin-Benson. 
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Figure 1.5 Light and dark reactions of photosynthesis (Malkin and Ni yogi, 

2000). 

1.6.1 Photosynthetic apparatus 
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Oxygenic photosynthesis depends on two photosystem reaction center 

complexes, Photosystem II (PSII) and Photosystem I (PSI), that are linked by electron 

transport carriers (Malkin and Niyogi, 2000; Ort and Whitmarsh, 2001; Whitmarsh 

and Govindjee, 2002). In paticular, the PSII is composed of a core reaction center 

surrounded by a light-harvesting antenna system (Whitmarsh and Govindjee, 2002): 

The core center includes Dl and D2 polypeptides that bind the cofactors of the 

photochemical charge separation and electron transfer carriers that oxidize water and 

reduce plastoquinone pool. Moreover, the antenna system consists of protein 

complexes that contain light-absorbing molecules, as chlorophylls and others 

accessory pigments, which permit the capture of photons and the transfer of the 

excitation energy to reaction centers where primary charge separation occurs. 

Therefore, photosynthesis is driven by visible light that is absorbed by chlorophylls 
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and carotenoids bound to the light-harvesting proteins that surround the PSII and PSI 

reaction centers in the photosynthetic membrane. 

The major light-absorbing pigment in many algae is· chlorophyll, a cyclic 

tetrapyrrole in which the nitrogens of the pyrroles are coordinated to a central 

magnesium ion (Malkin and Niyogi, 2000; Ort and Whitmarsh, 2001 ; Whitmarsh and 

Govindjee, 2002), and it is a green pigment that strongly absorbs red and blue light 

since it absorbs wavelengths of 430 and 680 nm while the green light will be 

reflected (see Figures 1.6 and 1.7; Malkin and Niyogi, 2000). The light antenna 

collector of PSII possess between 200-250 molecules of chlorophylls and 60-70 

molecules of carotenoids, enhancing the spectrum of visible light absorbed by the 

antenna system (Govindjee et al. , 201 0) : The light is absorbed by chlorophylls and 

carotenoids which are linked to the light collector complexes in the membrane of 

thylakoids. In fact, chlorophyll molecule enters into the excited state and the 

excitation energy can be transferred to the reaction centers causing the primary 

photochemical act. Blue light has a higher energy than red light causing the passage 

of chlorophyll in the upper excited state. During the absorption of light by pigments, 

these are electrons n that interacts with visible light. In fact, the cycles of chlorophyll 

have conjugated double bonds and electron n is involved in responsible for the 

absorption of light. Excitation energy is transferred by resonance of a molecule of 

chlorophyll to another until the special pair of Chl reached the PSII reaction center, 

called P680, which will rise to an excited state P680*. The internai passages or 

relaxations take place during the return of the chlorophyll excited at a lower level 

than the energy of excitation energy dissipation in the form of heat or in the form of 

fluorescence (Ort and Whitmarsh, 2001 ; Whitmarsh and Govindjee, 2002; Govindjee 

et al. , 2010). 
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Figure 1.6 Chemical structures of chlorophylls (Fujita, 2005). 
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Figure 1.7 Absorption spectra of chlorophylls a and b in the visible region of the 

solar spectrum when dissolved in nonpolar solvents (Malkin and Niyogi, 2000). 
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In the thylakoid membrane, photosynthetic complexes as the photosystems I 

and II (PSI and PSII) are responsible for performing the photochernical reactions 

(Malkin and Niyogi, 2000; Ort and Whitmarsh, 2001 ; Whitmarsh and Govindjee, 

2002; Govindjee et al. , 2010). Indeed, it is the PSII reaction center that triggers the 

primary photochernical act and the electron transport from the water splitting system 

(Figure 1.8) (Govindjee et al. , 2010): The light is absorbed by antenna systems of 

PSII and PSI providing energy for the transport of electrons from water in 

nicotinarnide adenine dinucleotide phosphate (NADP+). Indeed, the PSII and PSI 

electron transport pro vides the energy for the formation of the proton gradient across 

the membrane, and this proton gradient will be used by the ATP synthase to produce 

ATP (Figure 1.9) (Govindjee et al. , 201 0) . 
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These photochemical reactions consist on two stages, the photooxidation of 

water and the reduction of the plastoquinone pool (Lubitz et al., 2008) : The 

photooxidation of water is the sum of four individual reactions in which two water 

molecules are split to obtain a molecule of 0 2 and four protons are released into the 

lumen contributing to the formation of the proton gradient. The oxygen evolving 

complex participates in the photolysis of water, and it is composed of three extrinsic 

proteins next to the lumen: PsbO (33 kDa), PsbQ (17 kDa) and PsbP (23 kDa) . In 

fact, the cluster of MI140xCa is surrounded by proteins D 1 and D2, internai antenna 

proteins CP43 and CP47 and several extrinsic polypeptides which stabilize and 

optimize the photolysis ofwater complex and its activity (Rivas et al. , 2004). 
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Figure 1.8 Structural model of PSII reaction center P680, showing proteins D 1, D2, 

CP43 and CP47. The oxidation ofwater by the Mn cluster triggers the primary 
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photochemical act. Electrons are transferred from P680 to plastoquinone molecules 

QA and Q8 (Govindjee et al. , 2010). 
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Figure 1.9 (a) Thylakoid membrane organization ofphotosystems and electron 

transport carriers in higher plants. (b) Z-scheme indicating the Em values of 

photosynthetic electron transport carriers (Govindjee et al. , 2010). 
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1.6.2 Energy dissipation through fluorescence 

Several research groups (Strasser and Strasser, 1995; Strasser et al., 2004; 

Lazar, 2006; Baker, 2008; Govindjee et al. , 2010) participated to the development of 

a comprehensive model representing the photochemical reactions within the PSII in 

which the excitation energy can be used for photochemistry or dissipated in the forms 

of chlorophyll fluorescence and heat (Figure 1.1 0). Therefore, it was considered that 

the photochemistry of PSII was in competition with the processes of fluorescence 

emission and heat loss. 

Antenna system with an open reaction centre 

Fluorescence (Fr) 

Antenna system with a closed reaction centre 

Fluorescence (Fmax) 
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Figure 1.10 Schematic representation of the excitation energy transfer (small 

red arrows) between chlorophyll molecules in the light collector antenna system. 

Green dises represent chlorophylls a and b, and yellow dises represent carotenoids; 

the darker green dise represents an open reaction center and the lighter green dise 

represents a closed reaction center. (a) the reaction center is open and the energy is 

used for charge separation, while the fluorescence emission is minimal (labelled as 

Fo); (b) the reaction center is closed and the fluorescence emission is maximal (FM) 

(Govindjee et al. , 201 0). 

The chlorophyll fluorescence emission cornes from chlorophylls of the light 

collector antennas of PSII which can be used as a very sensitive, rapid and non­

invasive method (Lazar, 2006; Govindjee et al., 2010). Two main steps are observed 

in the fluorescence induction, the rapid increase (1 sec) of the fluorescence intensity 

from an initial level (Fo) to a maximum intensity level (FM) under a saturating light 

(Lazar, 2006; Govindjee et al. , 2010): The minimum fluorescence level is named 

basal fluorescence (Fo) when QA is oxidized, and when the reaction center is closed, 

the chlorophyll fluorescence emission is maximum which is named maximum 

fluorescence level (FM), when QA is completely reduced. 

When the rapid kiuetic of chlorophyll fluorescence was analyzed in a 

logarithmic time scale, different steps were identified as 0 -J-1-P, showing different 

states of redox carriers of electrons from PSII (Popovic et al. , 2003 ; Lazar, 2006; 

Govindjee et al., 201 0): The 0 -J transition represents the reduction of the primary 

acceptor of electron, QA; The emission of fluorescence to the transition I shows the 

first reduction of Q8 , the 1-P transition represents an accumulation of Q8 completely 

reduced (QA-Q8 -
2
) and the maximum fluorescence level is reached when the PQ are 

completely reduced. Therefore, it was showed in ecotoxicological studies that any 

alteration of the electron transport by chemical inhibitors will be indicated by the 
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change of theses steps (Popovic et al. , 2003). The figure 1.11 is showing the change 

of the fluorescence transients of the fluorescence induction, which is affected 

differently depending on the electron transport inhibitor, DCMU or mercury, due to 

their different mode of action (Popovic et al. , 2003). 
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Figure 1.11 The rapid and polyphasic (OJIP) rise of Chl a fluorescence induction 

presented on a logarithmic time scale when L. gibba plants were exposed to a 

saturating light (9000 f.!IDOl of photons m-2 s-1
) after a dark adaptation of20 min. 

Legend: Control, round; treated 5 h to 1 00 flg L -l of Hg2
+, triangle; treated 5 h to 1 0 x 

10-5 M ofDCMU, square; (Popovic et al. , 2003). 
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1.7 Synthesis of glutathione and phytochelatins for metal detoxification 

Phytochelatins (PCs) are corriposed of three amino acids: glutamine (Glu), 

cysteine (Cys) and glycine (Gly), and the general structure (1'-Glu-Cys)n-Gly has been 

proposed for phytochelatin, where « n » can be between 2 and 11 (Crawford et al. , 

2000; Pal and Rai, 2010) (see Figure 1.12). When algae or plants are exposed to toxic 

metals such as mercury, the synthesis of thiol-rich peptides as glutathione (GSH) and 

phytochelatins (PCs) are induced for their activities in the protection against oxidative 

stress and metal detoxification processes (Wu and Wang, 2012). 

H 0 (H H 0 

H/N~~~N~OH 
O~OH O 

y-Glu - Cys - Gly 

H 0 (7H 0 

HtN~~~N~OH 
O~OH O 

[y-Glu -- Cys -t- Gly 

Figure 1.12 Chernical structures of glutathione and phytochelatin (Pal and Rai, 

2010). 

The glutathione (GSH) protects cells by reducing the reactive forrns of oxygen 

(ROS) and also by binding to metals (Crawford et al. , 2000; Stoiber et al. , 2010): In 

the first stage, the synthesis of 1'-glutamylcystein is done with L-glutamate and L­

cysteine which is catalyzed by the enzyme 1'-glutamylcystein synthetase; In the 
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second step, the addition of glycine is catalyzed by the enzyme glutathione synthetase 

to produce GSH. Finally, the GSH level remains high due to the intervention of the 

enzyme glutathione reductase in the reduction of oxidized glutathione which is 

essential for maintaining the redox of the cytoplasm. This interconversion between 

reduced and oxidized form of glutathione is illutrated in Figure 1.13. 

It is well accepted that phytochelatins are formed from glutathione in the 

presence of metal ions, following the intervention of an enzyme, the -r-glutamyl­

cysteine dipeptide transpeptidase, known as the phytochelatin synthase (Grill et al. , 

1987; Grill et al. , 1989; Crawford et al., 2000; Pal and Rai, 2010). In fact, Grill et al. 

(1987) first observed that the level of phytochelatins decreased in the presence of 

increasing concentrations of buthionine sulfoximine, which is an inhibitor of -r­

glutamylcysteine synthetase enzyme involved in the synthesis of glutathione. 
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Reduced glutathione 

Figure 1.13 (A) Interconversion between reduced and oxidized form of glutathione; 

(B) Structure of reduced glutathione (Crawford et al., 2000). 

1.8 Sequestration of rn etals in the vacuole 

Moreover, it has been reported that phytochelatins are induced in plant cells by 

several metals such as cadmium, zinc, copper, lead and mercury, since they are 

involved in the cellular distribution and vacuolar sequestration of metal ions 

(Crawford et al. , 2000). lndeed, it is because of the cysteine that phytochelatins are 

able to form complexes with metals preventing their excess in the cytosol by vacuolar 

sequestration (Kobayashi and Yoshimura, 2006; Pal and Rai, 2010). 
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Previously, Hu and colleagues (2001) reported the formation of two types of 

complex PC-Cd in C. reinhardtii, a complex of low molecular weight (LMW) which 

is formed quickly after exposure to Cd and a complex of high molecular weight 

(HMW) from the rapid conversion ofHMW to LMW complex (Figures 1.14). In fact, 

they mentioned that the HMW complex was formed by the addition of sulfide in the 

LMW complex. Indeed, the complex of high molecular weight (HMW) is very stable 

and plays an essential role for Cd storage in the vacuole during the process of 

detoxification (Hu et al. , 2001). The formation of low and high molecular weight 

phytochelatin-Cd complexes is illustrated in Figure 1.15 . 

? 

. \ 
:\ 

1 
'1 

il 

Il 
'1 

Figure 1.14 Mechanism of sequestration of cadmium in the cell by phytochelatins; 

LMW: low molecular weight phytochelatin Cd complex; HMW: high molecular 

weight phytochelatin Cd complex (Crawford et al. , 2000). 
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Figure 1.15 Formation of low or high molecular weight phytochelatin-Cd complexes. 

Interaction of PCs coordinately binding with sulfur atoms of Cys residues from either 

single or multiple PC molecules, forming different complexes (Pal and Rai, 2010). 



CHAPTERII 

MA TERIAL AND METHODS 

2.1 Algal culture 

The green alga C. vulgaris was provided by the Culture Collection of Algae 

from the Canadian phycological culture center (University of Waterloo, ON). The 

alga C. vulgaris was grown in Bold' s Basal Medium (BBM) under a constant 

temperature of 21 ± 1 °C and a continuous irradiance of 80 ± 10 Jlmol of photons m-2 

s-1 provided by white fluorescent bulbs (Sylvania Grolux F36W, Drummondville, 

Canada). The BBM culture's composition is reported in Table 2.1 (Stein, 1973). This 

medium is highly enriched in nutriments and is used for many species of green algae . . 

The culture medium was then sterilized by using the autoclave. All stock cultures 

were gently mechanically shaken (at 90 rpm). For all algal cultures, glasswares were 

cleaned by soaking them in 10 % HCl for at least 24 h, and then rinsed three times 

with de-ionized water. 
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Table 2.1 Bold' s Basal Medium (BBM) modified from the original recipe (Stein, 

1973). 

2 CaCh.2H20 1.25 g/500 mL 

3 MgS04.1H20 3.75 g/500 mL 

4 NaN03 12.5 g/500 mL 

5 K2HP04 3.75 g/500 mL 

6 NaCl 1.25 g/500 mL 

Na2EDTA 10 g/L 
KOH 6.2 g/L 

FeS04.7H20 4.98 g/L 
H2S04 (conc.) 

9 Trace metal See below* 
solution 

10 H3B03 5.75 g/500 mL 

*The composition of the trace metal solution: 

Substance 
H3B03 
MnChAH20 
ZnS04.1H20 
NaMo04.5H20 
CuS04.5H20 
Co(N03)2.6H20 

g/L 
2.86 (4.62 x 10"4M) 
1.81 (1.82 x 10-5 M) 
0.222 (7.67 x 10-5 M) 
o.390 (1.23 x 1 o·~ M) 
0.079 (1.57 x 10-) M) 
0.0494 (4.21 x 10-6 M) 

10mL 

10mL 3.04 x 104 M 

10mL 2.94 x 10- M 

10mL 4.31 x 10 M 

10mL 4.28 x 104 M 

1 mL 2.7 x 10- M 
1.1 x 10-4 M 

1 mL 4.48 x 10- M 

1 mL See below* 

0.7mL 1.3 x 10-4 M 

The pH of the medium is then adjusted to 6.8 with NaOH or HCl before 

autoclave. 
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2.2 Determination of cell density 

The change in the growth of al gal cells was determined during 72 h of exposure 

to different concentrations of HgCh: 0, 1, 10, 25, 35 , 50 and 100 j.!M. To investigate 

the effect of mercury on cellular division, the cell density was monitored every day. 

At t = 0, the initial cell density was of 106 cells/mL and all experiments were 

performed in triplicates. For the measurement of cell density, the Multisizer™ 3 

Coulter Counter® (Beckman Coulter Inc, Fullerton, CA) was used for sizing and 

counting. This instrument is a particle sizing and counting analyzer available today 

using the Coulter Principle, also known as ESZ (Electrical Sensing Zone Method). In 

Figure 2.1 , this instrument is illustrated . 

• 
~ -

111111 

Figure 2.1. The Multisizer™ 3 Coulter Counter (www.beckmancoulter.com). 

In order to determine the change of cell density during time with the change of 

absorbance, a standard curve was determined based on the relation between the 

change of absorbance at 750 nm and the change of cell density. Three initial cell 

densities of starting algal cultures were used: 106
, 500000 and 250000 cells/mL. Cell 

density was evaluated by monitoring culture absorbance at 750 nm using a 
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spectrophotometer UV-Vis (Lambda 40, Perkin-Elmer, Woodbridge, Canada). Then, 

the change of cell density and absorbance at 750 nm were monitored during 72 h 

when algal cells of C. vulgaris were grown at 21 ± 1 oc in BBM under a constant 

illumination of 80 ± 10 ~J.mol of photons m-2 s-1
• From this relation, a linear fitting 

curve of the data and its formula was determined (Figure 2.2). 
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'Il = ~ 6.00E+06 "0 -'QS 
u 

4.00E+06 • 

2.00E+06 

O.OOE+OO 
0 0.1 

• 
• 

0.2 

y = 3E+07x + 197793 
R2 = 0.9925 

0.3 0.4 

Absorbance at 750 nm 

0.5 0.6 

Figure 2.2 Standard curve indicating the relation between the change of cell density 

and the change of absorbance at 750 nm by using three initial algal cell densities of C. 

vulgaris grown during 72 h. 
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2.3 Analysis by Atomic Absorption Spectrometry 

In this study, the bioaccumulation of mercury was quantified in al gal biomass 

of C. vulgaris by using Atomic Absorption Spectrometry (AAS), which was 

determined as mg of Hg per mg of dry weight. The quantification of mercury was 

done using a V arian SpectrAA 220 FS system. 

The configuration of the atomic absorption spectrometer possesses three basic 

required components that are shawn in Figure 2.3 (Richard et al. , 1993): 

(1) A light source, 

(2) A sample cell, 

(3) A means of specifie light measurement. 

* Sample Cell 
Specifie Light 
Measurement 

Llght So uree 

Figure 2.3 Technical requirements for absorption spectrometry (Richard et al. , 

1993). 

The components inside the atomic absorption system are illustrated in the 

Figure 2.3. There is a light source, a hollow cathode lamp that is designed to emit the 

atomic spectrum of a particular element, and specifie lamps can be selected for 

analytical use depending on the element (Richard et al., 1993). 
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Light Source 1 Sample Cell 1 Specifie Light Measurement 

1 1 1 

: ~-z+g+E§a 0~~~~.~.~~.' : 
1 1 1 Monochromator 1 

1 

Chopper Electronics 

1 Flame 1 1 
(or Furnace) 

Figure 2.4 Basic representation of an atomic absorption spectrometer (Richard et al. , 

1993). 

2.4 Bioaccumulation of Hg in algal biomass 

2.4.1 Standards used 

The range of standard solutions was used according to the detection limit range 

of the atomic absorption spectrometry detector. All standard solutions were prepared 

in BBM with different concentrations of standard Hg(II): 200, 100, 50, 25, 10 and 0.5 

mg/L. All solutions were stored at room temperature. The Figures 2.5 and 2.6 show 

the relation between the change of absorbance (Abs) at 253.652 ± 0.5 nm and the 

concentration of the standard solutions, for respectively 24, 48 and 72 h of 

experimental exposures. 
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Figure 2.5 Standards curve of Hg(II) for 24 and 48 h of exposures. 
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0.3 

0.25 
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ln 
0 
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N 0.15 y = 0.0012x + 0.0027 ln 
~ R2 = 0.9997 M 
ln 
N .... 0.1 ~ 

"' ,.Q 
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Figure 2.6 Standards curve ofHg(II) for 72 h of exposures. 

2.4.2 Stock solutions of mercury 

For experimental treatment conditions, stock solutions of HgCh were prepared 

in the medium BBM having the following concentrations: 1, 10, 25, 35, 50 and 100 

~-tM. All stocks solutions were stored at 4 °C. 

2.5 Treatment conditions and preparation of samples 

Before the preparation of experiments, all glassware and plastic botties were 

cleaned by soaking with 10 % HCl for at least 24 h, and then rinsed three times with 
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de-ionised water and sterilized by autoclave. For all experiments, the initial cell 

density was 106 cells/mL in BBM, and algal sarnples were exposed to 0, 1, 10, 25 , 35, 

50 or 100 ~J.M of HgCh during 24, 48 and 72 h of exposure time. The total volume of 

BBM was always 20 mL, and all experiments were done in triplicates. 

2.5.1 Determination of dry weight 

Before measuring the dry weight, algal cells of C. vulgaris were exposed during 

24-72 h to HgCh as described previously in section 2.5: In the first step, the en tire 20 

mL of sarnple was filtered und er gentle vacuum pressure ( < 5 psi) to avoid breakage 

of cells and loss of biological material. Nitrocellulose paper filters of 4 7 mm in 

diameter and 0.8 -l~J.m pore size were employed for filtration and the recuperation of 

algal biomass. Before filtration, it was necessary to weight all filter papers. In the 

second step, all fil ter papers were put inside the aven for drying during 24 h at 100 

oc, and then they were weight to determine the dry weight of algal biomass by 

subtracting the weight of the filter from this value. 

2.6 Determination of phytochelatins and related thiol-peptides 

For the analysis of the synthesis ofthiol-rich peptides, algal cells of C. vulgaris 

were exposed 24-72 h to HgCh as described previously in section 2.5 . In this study, 

the synthesis of phytochelatins (PCs), cysteine (Cys), glutathione (GSH) and y­

glutamylcysteine (y-EC) was determined in green alga C. vulgaris by HPLC 

separation coupled with a a diode array fluorescence detector. 
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2. 7 High Performance Liquid Chromatography (HPLC) conditions 

The separation of thiol-bimane derivatives was done using a reverse-phase C-

18 column with 3-~m particle size, an injection valve with a 1 00-~L loop and the 

dectection was performed by fluorescence. For this seperation, chromatographie 

conditions were used according to Kawakami et al. (2006): Conceming solvents 

used, sol vent A was composed of 0.1% trifluoroacetic acid (TFA) in water and 

solvent B of acetonitrile. The flow rate of the solvent pump was 1.0 mL/min. The 

gradient used was: 0-13 min, 10-21% B; 13-33 min, 21-35% B; 33-40 min, 35-

100% B; 40-50 min, isocratic 100% B; 50-65 min, 100-10% B. These 

chromatographie conditions permitted the separation of derivatized GSH and PCs in a 

single run. In figure 2. 7, we show the schematic representation of a HPLC 

(http://en.wikipedia.org, 2013). In this study, the HPLC system coupled with the 

fluorescence detector was from Agilent Technologies, model 1200 series. 



- · FIUids c1rculalion 

Fraclions collector 
,--1---Vials conta1mng fractions 

M1xer 

Hlgh-pressure pump _J 
\ 

Valve 
'----------Degasser 

'----------Purgmg pump 

Figure 2.7 Schernatic representation ofthe principle ofHPLC 

(http:/ /en_ wikipedia_org, 20 13)_ 
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Phytochelatin standards (PC2, PC3 and PC4; having a purity > 95%) were 

obtained from Canpeptide Inc_ (Montreal, Quebec, Canada)_ Others chernicals used in 
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this study were purchased from Sigma-Aldrich with the highest available purity for 

analytical grade. These chemicals were cysteine (Cys), glutathione (GSH), 

trifluoroacetic acid (TF A), y-glutamylcysteine (y-EC), trifluoroacetic acid (TF A), 4-

(2-hydroxyethyl)-piperazine-1-propane sulfonic acid (HEPPS), methanesulfonic acid 

(MSA), tris (2-carboxyethyl) phosphine hydrochloride (TCEP), Diethylenetriamine­

pentaacetic acid (DTPA), HPLC-grade acetonitrile (ACN) and monobromobirnane 

(mBBr). The Hg(II) used in our experirnents was as HgCh. 

2.8 Samples collection, handling and preparation 

For the determination of GSH and PCs, the preparation of the sample extracts 

was done according to this multi-step procedure: Sampling, s~ple filtration, 

extraction of thiols, thiol reduction, thiol derivatization, analysis of thiol derivatives 

by HPLC. The protocol of this approach for the analysis of GSH and PCs is 

surnmarised in Table 2.2 (Winters et al., 1995; Rijstenbil and Wijnholds, 1996; Ahner 

et al., 1997; Tang et al. , 2003 ; Kawakami et al. , 2006). According to these authors, 

more details are explained as follow: We used 20 mL of samples to ensure the 

collection of sufficient biomass exposed to HgCh during 24 and 48 h, and then the 

biomass was collected by centrifugation at high speed (20 min, 13000 g, 4 °C). In the 

extraction of PCs and GSH, for avoiding the effects of enzymatic degradation of 

thiols and losses due to oxidation, HCl is added to promote the denaturation of 

enzymes which are capable of degrading thiel-peptides. To minimise the oxidation of 

the -SH groups of PCs and GSH caused by the effect of metals, DTP A was added. 

For the extraction of PCs and GSH from algal biomass, it was added 1.2 rnL ofO.l M 

HCl containing 5 mM of DTP A. Finally, algal cells were disrupted by ultrasonication 

(0 °C, 6 min). Cell extracts were centrifuged at high speed, 13000 g for 20 min at 4 

°C, and the supematant was collected. The reducing reagents were prepared in a 
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solution of 200 mM HEPES (pH 9) having 5 mM DTP A, then 650 ~L of this solution 

was added to 250 ~L of the collected supernatant. For the reduction process of thiols 

compounds, TCEP was used as indicated by the following reaction 1. To minimise 

the oxidation process, DTPA was added to the buffer solution. 

(CH3CH2COOH)3P: + RS-SR + H20 -> (CH3CH2COOH)3P = 0 + 2RS-H (1) 

TCEP oxidized thiol 

The application of a derivatization step for PCs and GSH permitted to increase 

the sensitivity of the analysis by using a derivatizing compound that have a minimum 

of interference. Many derivatizing reagents for PCs and corresponding thiol 

derivatives are avai lable toda y and are listed in Table 2.3 (Kawakami et al. , 2006). In 

our protocol, the derivatization of PCs was done by using rnBrB, a very common 

sulphur-specific fluorescent tag, which have a high sensitivity to naturally occurring 

PCs (Ahner et al. , 1997). The derivatization step of PCs and GSH with rnBrB (in 

final concentration of 1 mM in acetonitrile) was carried out un der dim light 

conditions at room temperature. This process permitted the fluorescence emission 

detection ofPCs at 470 nm by using an excitation light at 380 mn. 

Then after 15 min, the reaction products were stabilized with MSA at a fmal 

concentration of 0.1 M (Kawakami et al. , 2006). Finally, the product of the 

derivatization step was stored at 4 °C in the dark until HPLC analysis is undertaken, 

since it is well known that the rnBrB can be stable for 6 weeks at 4 °C in darkness 

(Rijstenbil and Wijnholds, 1996; Tang et al. , 2003). In contrary to PCs which are 

stable for a month as bimane derivatives, GSH as a bimane derivative can have a 30% 

degradation after storage in the fridge (4 °C) for 15 days (see Fig. 2.8) (Kawakami et 

al. , 2006). 
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Table 2.2 Summary of the methodology for the analysis of phytochelatins and 

glutathione (oxidized + reduced forms) in natural waters (adapted from Winters et al., 

1995; Rijstenbil and Wijnholds, 1996; Ahner et al. , 1997; Tang et al. , 2003; 

Kawakami et al. , 2006). 
- - ----------------, 

Sample Collection : Acid-cleaned botties. 

Centrifugation : 13000 g during 20 min at 4 °C. 

Extraction of thiols from filters : Addition of 1.2 mL of 0.1 M HCl and 5 mM 
DTP A in 1.5 mL microtube; Ultrasonication (0 °C; 6 min) ; Centrifugation (20 
min; 13000 g; 4 °C). 

Reduction, R-S-S-R + TCEP => 2 R-SH : Buffered with 650 IlL of 200 mM 
HEPES and 5 mM DTPA (pH = 8.2); Addition of25 11L of20 mM TCEP. 

Derivatization, R-SH + mBrB = R-S-mBrB + HBr : Addition of 10 IlL of 100 
mM mBrB in acetonitrile; Acidification with 100 11L of 1 M MS A. 

HPLC Analysis: Seperation by Reverse phase using C-18 column; Fluorescence 
detection at 470 nm (excitation light at 380 nm). 



44 

Table 2.3 Reagents and detection methods used for the derivatization of thiols 

compounds (Kawak:ami et al., 2006). 

Rea gents Structures Thiol derivatives and 
products 

DTNP 

OPA 

MBrB 

NPM 

SBD·F 

. .._/\_ ___/\ AS-o-N-1 NO, 
o_. \...(/ s-s~JNO, 11 

~CHO 

~CHO 

+ HF 

+Hp 

Detection Comments 

UV Not sensitive for PCs produced by 
phytoplankton 

Fl Requ lres protection of SH moleties to 

avoid cross· reaction with primary ami no groups 

Fl 

FL Can lead to formation of diastereomers 

FL 

UV, Ultraviolet; FL, Fluorescence. 
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Figure 2.8 Stability of GSH and PCs as bimane derivative forms over a 30-days 

period (Kawakami et al. , 2006). 
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The standards of phytochelatins (PCs), cysteine (Cys), glutathione (GSH) and 

y-glutamylcysteine (y-EC) were prepared at concentrations from 0.1 to 0.8 mg/mL 

and also from 0.1 to lü mM, respectively in working solutions containing 0.12 M 

HCl and 5 mM DTP A. To minimise the oxidation, standard solutions were made in 

MSA solution. The standard curves of GSH, cysteine, y-glutamylcysteine, PC2, PC3, 

PC4 and PC5 were determined by fluorescence detection after HPLC separation of the 

extracts, permitting the identification and the quantification of these compounds 

(Figures 2.9, 2.10, 2.11 , 2.12, 2.13 and 2.14). 
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Figure 2.9 The standard curve of glutathione (GSH) determined by HPLC and 

fluorescence detection. 
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Figure 2.10 The standard curve of Cysteine determined by HPLC and 

fluorescence detection. 
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Figure 2.11 The standard curve of PC2 determined by HPLC and fluorescence 

detection. 
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1 

Figure 2.12 The standard curve ofPC3 determined by HPLC and fluorescence 

detection. 
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Figure 2.13 The standard curve of PC4 determined by HPLC and fluorescence 

detection. 
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1 

Figure 2.14 The standard curve of PC5 determined by HPLC and fluorescence 

detection. 
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2.9 Photosynthesis measurement 

2.9.1 Total chlorophyll content 

The treatment condition is the same as described previously in section 2.5, but 

only three concentrations of HgCb were employed for exposure: 10, 50 and 100 J.!M. 

After 24 h of exposure, 1 mL of algal sample was centrifuged at 7600 g for 5 min. 

Then, 1 mL of 1 00% methanol was added to the pellet which was placed in a hot 

water bath at 65 oc for 1 0 min. The last step was to centrifuge a gain for 5 min bef ore 

taken the absorbance measurements (À= 652.4, 665.2) with a spectrophotometer. 

The amount of total chlorophyll was measured according to the following 

formula of Lichtenthaler (1987): 

[24.93 x Abs 652.4 + 1.44 x Abs 665 .2] x [vol. of methanol/vol. of al gal sample] 

With the total chlorophyll obtained, we were able to determine the volume 

necessary to filter 10 J.lg of total chlorophyll for each fluorometric measurement. 

2.9.2 Plant Efficiency Analyzer Fluorometer (Handy PEA) 

The Handy PEA (Hansatech Ltd. , Norfolk, UK) is a portable fluorescence 

measuring instrument for plant leaves and algae with a high time resolution 

fluorescence detection of fast induction kinetics. Also, it uses saturating light with 

high intensity focused LEDs array for the determination of the maximum 

fluorescence level. The chlorophyll fluorescence signal is then digitized for analysis. 

This instrument is illustrated in figure 2.15 (http://hansatech-instruments.com). 
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Figure 2.15 Handy PEA (http://hansatech-instruments.com). 

2.9.3 Fluorescence measurement technique and parameters 

Prior to fluorescence measurements, algal samples were dark-adapted for 20 

min by using manual stirring to keep oxygenation in liquid. Volume of algal samples 

corresponding to 10 J..Lg of total Chl were preleved and filter using a low pressure 

filtration to be place algal cells on glass fiber filter (Millipore No. AP2001300). Then, 

rapid Chl a fluorescence induction from 10 J..LS to 1 s was measured with the Handy­

PEA by using a saturating light irradiance of 3500 J..Lmol of photons m-2 s-1
. 

Different fluorescence intensity levels were determined according to Strasser et 

al. (2004) : Fluorescence intensity at 20 J..LS was considered to be the 0 transient, 

noted as F20115; Variable fluorescence intensities at J and I transients were determined 

at 2 ms (Fzms) and 30 ms (F3om5) , respectively; The maximum fluorescence yield 

reached maxjmal value of fluorescence intensity under saturating illumination. Based 

on these fluorescence intensity levels, several photosynthetic-based fluorescence 

parameters were determined (Force et al., 2003 ; Strasser et al., 2004) : The PSII 

maximal quantum yield, indicating the efficiency of light energy transfer to PSII 

primary photochemistry, was determined by the ratio between variable fluorescence 

emission (Fv) and maximal fluorescence level (FM), as Fv/FM = (FM- Fzo115) 1 FM; The 

ratio between absorption of photons by chlorophyll antenna complex and 
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photochemically active PSII reaction centers was determined as ABS/RC = (M0N 1) 1 

(Fv/FM); The parameter Mo representing the net rate of PSII reduced by electron 

transport was determined as Mo= [4 x (F3oo1-1s - F2o1-1s) 1 (FM- F2o1-1s)] ; The parameter 

V1 representing the proportion of Q A reduced relative to the plastoquinone pool was 

evaluated as VJ = [(F2ms - F2o1-1s) 1 (FM- F2o 1-15)] ; The performance index ofPSII activity 

was evaluated as P.I. = [(F2ms - F2o1-1s) / 4 x (F3oo1-1s - F2o1-1s) x Fv/FM] x (Fv/F2o~ts) x ((1-

V1)/V1). 

2.10 Statistical analysis 

In this study, all experiments were performed at least in triplicate and in two 

series of experiments. Means and standard deviations were calculated for each 

treatment condition. Significant differences between control and treated samples were 

determined for p < 0.05, by one-way analysis of variance (ANOVA) followed by a 

Dunnett' s Multiple Comparison (DMC) test. 
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RESULTS 

3.1 Inhibition of cellular division by Hg (II) 
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Figure 3.1 Changes in cell density of alga C. vulgaris exposed during 72 h to 

different concentrations of HgCh. Significant differences between control and 

treated samples were determined for p < 0.05*: At 24 h, 50-100 11M; At 48-72 

h, 25-100 11M. 
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In previous toxicological studies about the effect of mercury on severa} algal 

species, the inhibition of cellular division was an important cellular parameter used as 

a global indicator of the algal physiological state (Elbaz et al. , 201 0; Afkar et al. , 

2010; Wu and Wang, 2011 ; Wu and Wang, 2012). Therefore, we monitored in this 

study the change of algal cell density during 72 h in arder to determine the effect of 

mercury on the state of cellular division. When algal cells were exposed during 72 h 

to different concentrations of HgCb, the change in cell density was measured every 

24 h, and treated samples were compared to the control (Fig. 3.1 ). Here, the effect of 

1, 10, 25, 35, 50 and 100 J.lM of HgCb on the state of cellular division of alga C. 

vulgaris was examined. At 24 h of exposure, we noticed only a significant inhibitory 

effect on cellular division for al gal cells treated to 100 J.lM of HgCb in comparison to 

the control. Indeed, under this treatment condition, the cell density decreased by 3 

times compared to control. However, when algal cells of C. vulgaris were exposed 

during 48 and 72 h, a significant inhibition of cellular division was observed even at 

law concentration (25 J.lM) of mercury (Fig. 3.1). But a strong inhibition of cellular 

division was noticed for treatrnent to 50 and 100 J.lM of HgCb in comparison to the 

control. At 48 h, the cell density was respectively decreasing by 1.7 and 2.5 times in 

comparison to the control for treatment to 50 and 100 J.lM of HgCb. At 72 h, the cell 

density was respectively decreasing by 1.4 and 2.7 times in comparison to the control 

for treatrnent to 50 and 100 J.lM of HgCb. Therefore, the exposure to HgCb caused a 

significant toxicity impact on algal cells of C. vulgaris at 48 and 72 h which was 

dependent to the concentration tested. A previous study demonstrated that the growth 

of C. reinhardtii was significantly inhibited when exposed during 96 h to 4-8 J.lM of 

HgCb (Elbaz et al., 2010). Indeed, they showed that the growth of algal cells was 

inhibited by 56 % in comparison to the control when treated to 4 J.lM of HgCb. In 

another study, three al gal species were exposed during 72 h to different 
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concentrations of HgCb (Wu and Wang, 2011). This work showed that the growth 

rate of T. pseudonana, C. autotrophica and J galbana decreased significantly when 

algal cells were exposed to 36, 30 and 15 j.lg L- 1
• However, there was a difference in 

sensitivity where C. autotrophica was the most tolerant and T. pseudonana the least 

tolerant to HgCh. Based on our results and the one found in the scientific litterature, 

it appears that there is a difference in sensitivity to Hg (II) depending to the algal 

species and the experimental conditions. 

3.2 Mercury accumulation in biomass of alga C. vulgaris 

In order to investi gate the bioaccumulation efficiency of mercury by al gal cells 

of C. vulgaris, we determined the content of mercury in algal biomass when C. 

vulgaris was exposed during 72 h to different concentrations of HgCh (Fig. 3 .2). Our 

results showed that the change of mercury content was directly related to the 

concentration tested of HgCb and the time of exposure. The mercury accumulation in 

algal biomass of C. vulgaris was similar at 48 and 72 h of exposure to different 

concentrations of HgCh. Furthermore, when algal cells of C. vulgaris were exposed 

to low concentrations of HgCb (1-35 j.!M), there were no significant differences 

between the accumulated content of mercury during 24 h in comparison to longer 

time of exposure. However, the level of mercury content in algal biomass was 

significantly different for cells treated during 24 h to 50-100 j.!M of HgCb in 

comparison to 48 and 72 h. Under these treatment concentration conditions, the 

highest efficiency of bioaccumulation was reached already at 24 h. Based on these 

results, we concluded that the bioaccumulation of mercury in algal biomass reached 

the maximum level when C. vulgaris was exposed during 24 h to 1 00 j.!M of HgCb. 

In a previous study on marine phytoplankton, similar results on the bioaccumulation 

effect of mercury were noticed concerning the change in intracellular mercury 
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concentration (mol cell-1
) forT weissjlogii exposed during 96 h to two concentrations 

of HgCb, 8.4 and 222 11g/L. Authors found that the intracellular mercury 

concentrations decreased after 24 h and with the increasing time of exposure, 

especially at the highest concentration. According to their results, they found out that 

the highest efficiency of bioaccurnulation of mercury was reached at 24 h and for the 

highest concentration ofHgCb tested, 222 11g/L (Wu and Wang, 2012). 
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Figure 3.2 Accumulation of Hg (II) in al gal biomass of C. vulgaris exposed during 

72 h to different concentrations of HgCb. Significant differences between control and 

treated samples were determined for p < 0.05 *. 
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3.3 Effect of Hg(II) on photosynthetic activity of C. vulgaris 

3.3.1 Change in total chlorophyll content 

Based on our results concerrung cellular division and bioaccumulation 

efficiency, the change in the total chlorophyll content was determined when algal 

cells of C. vulgaris were exposed during 48 h to different concentrations of HgCh. 

The methodological approach used was described in the "Material and Methods" 

chapter. The change in total Chl content, presented in figure 3.3 , showed a significant 

decrease in Chl content in comparison to the control for C. vulgaris exposed during 

48 h to 10-100 !J.M of HgCh. Only 10 !J.M of HgCh during 24 h was not able to cause 

a significant decrease in Chl content in comparison to the control. The control sample 

presented a higher Chl content at 48 compared to 24 h due to the increase in cell 

density. Therefore, the effect of mercury caused a decrease in total Chl content 

dependent to the tested concentration, indicating that the bioaccumulation of mercury 

inhibited the biosynthesis of chlorophylls which may affect the function of the 

photosystems light-harvesting energy transfer of the photosynthetic apparatus. In a 

previous study, the sensitivity of the green alga species C. reinhardtii was 

investigated, and the effect of different concentrations of HgCh (1-8 !J.M) was 

examined during 96 h on the change of the cellular chlorophyll content (Elbaz et al. , 

201 0). According to their results, the amount of total chlorophyll decreased in direct 

relation with the increasing concentration and exposure of mercury. At low 

concentration of HgClz ( 4 !J.M), a decrease on the amount of Chl compared to control 

was shown by 58 .6 % of the control (Elbaz et al., 201 0). 
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Figure 3.3 Change in the total chlorophyll content of alga C. vulgaris exposed during 

48 h to different concentrations of HgCh. Significant differences between control and 

treated sarnples were determined for p < 0.05* . 

3.4 Rapid chlorophyll fluorescence emission 

In this study, the change of the chlorophyll fluorescence emission was 

monitored when C. vulgaris was exposed during 24-48 h to different concentrations 

of HgCh. The measurements of the rapid polyphasic kinetics of Chl a fluorescence 

with the Handy-PEA permitted a rapid and efficient analysis of the photosynthetic 

electron transport activity, which can be used as an indication of the toxic effects of 

metals on the plant physiological state and biomass growth. Indeed, the inhibition in 

photosynthetic activity may affect the synthesis of ATP and NADPH resulting in the 
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alteration of the whole photosynthetic process and consequently cellular growth 

(Popovic et al. , 2003, and see the introduction section). Therefore, fluorescence 

measurements was used here as an indication of PSII photochernistry and electron 

transport activity, providing information of metals interaction with photosynthesis at 

molecular level. In Figure 3.4, results showed the toxic effect of different 

concentrations of HgCb at both 24 and 48 h of exposure on PSII photochemistry 

indicated by the change of variable fluorescence intensity. 
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Figure 3.4 Change in the rapid chlorophyll fluorescence emission in C. 

vulgaris exposed during 48 h to different concentrations of HgClz. 
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According to these results, a decrease in the variable fluorescence intensity of 

PSII was significantly noticed in dependence to the tested concentration of HgCb and 

the time of exposure. The effect of mercury was stronger at 48 h compared to 24 h of 

exposure. Indeed at 24 h, there was not a significant difference between the 

fluorescence intensity of algal cells treated to the highest concentration (1 00 !lM) of 

HgClz in comparison to the control, indicating a low inhibitory effect of mercury on 

PSII reaction center. However at 48 h, the inhibitory effect of mercury on PSII 

photochemical reactions was stronger, especially for the highest concentration of 

mercury (1 00 j.!M) in comparison to the control. Therefore, our results clearly 

indicated that, when algal cells of C. vulgaris was exposed during 48 h to HgCb, the 
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photochemical reactions of PSII, including the absorbed light energy transfer and 

electron transport activity, were altered by the bioaccumulation effect of mercury. In 

previous studies, the effect of mercury on algal photosynthesis was demonstrated by 

the alteration of PSII photochemical reactions and it was shown by a strong decrease 

of the chlorophyll fluorescence intensity (Juneau and Popovic, 1999; Juneau et al. , 

2001; Popovic et al. , 2003). Moreover for another heavy metal, the bioaccumulation 

effect of Cd2
+ (0 - 4.62 ~-tM) during 24 h on algal cells of C. reinhardtii showed a 

similar decrease in the variable fluorescence intensity at ali transients of the rapid 

induction of Chl a fluorescence, which was directly related to the tested Cd2
+ 

concentrations: This decrease in variable fluorescence intensity caused by Cd2
+ 

toxicity was indicative of a diminished proportion of active PSII reaction centres able 

to perform primary photochemistry and electron transport activity (Perreault et al. , 

2011). 

3.5 Change in photosynthetic based fluorescence parameters 

The analysis of the rapid induction of chlorophyll fluorescence permitted to 

estimate several photosynthetic parameters associated with the activity of PSII 

photochemical reactions. For more details, see "Material and Methods" section. The 

change in the relative variable fluorescence at J transient (V1) was monitored when 

alga C. vulgaris was exposed during 24-48 h to different concentrations of HgCh. 

The parameter V1 represents the dependent variable fluorescence reduction of QA and 

is related to the relative value of fluorescence intensity at J transient. Therefore, it is 

indicative of the accumulation of the reduced PSII primary electron acceptor, QA. 
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Figure 3.5 Change in the relative variable fluorescence at J transient (V1) of 

alga C. vulgaris exposed during 48 h to different concentrations of HgCh. 

Significant differences between control and treated samples were determined 

forp < 0.05 *. 
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The figure 3.5 shows the effect of different concentrations ofHgCh (10, 50 and 

1 00 J.!M) on PSII electron transport up to QA reduction during 24 and 48 h of 

exposure time. During 24 h, the value ofV1 increased in comparison to the control by 

4 % for the low treatment concentration of 10 J.!M of HgCb, 5 % for 50 J.!M of HgCh 

and 1 % for the highest concentration of HgCh (1 00 J.!M). This result indicated a low 

non significant effect of mercury on the activity of electron flux up to the electron 

transporter QA. However, at 48 h of exposure time, we noticed that the inhibitory 

effect of mercury was significantly stronger in comparison to 24 h. Moreover, the 

value of V1 in the highest concentration decreased in comparison to the lower 

concentration, because of the inhibitory effect of mercury on PSII reaction center. 

When algal cells of C. vulgaris were exposed during 48 h to 10-50 J.!M of HgCh, the 

value of V1 was increased of about 10 % compared to control, indicating an inhibitory 

effect of mercury on electron transport carriers of PSII. However, the value of V1 

significantly decreased by 9 % for the highest concentration of HgCh (100 J.!M) in 

comparison to the control, showing the inactivation of sorne PSII reaction centers 

which are not participating in primary photochemistry and electron transport activity. 

In a previous study, the toxicity effect of herbicide isoproturon (0-500 J.lg/L) was 

investigated on green alga Scenedesmus obliquus during 24 h of exposure time 

(Dewez et al., 2008). Results of this study showed that increasing the tested 

concentration of isoproturon led to the increase of V 1 value due to the binding pro cess 

of this herbicide with D 1 protein of PSII reaction center, causing a strong inhibition 

of PSII electron transport. 
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Figure 3.6 Change in the maximal PSII quantum yield (Fv/Fm) of alga C. vulgaris 

exposed during 48 h to different concentrations of HgCb. Significant differences 

between control and treated samples were determined for p < 0.05 *. 
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The change in the maximal PSII quantum yield (Fv/Fm) was also investigated 

when alga C. vulgaris was exposed to different concentrations of HgCh. In figure 

3 .6, the change in the parameter Fv/Fm is shawn for alga C. vulgaris treated at 24 and 

48 h to HgCb. After 24 h of exposure, the value of Fv/Fm decreased slightly in 

relation to the concentration of HgCb, which was by 7 % compared to control when 

alga C. vulgaris was treated to the highest concentration of HgCb (1 00 ~-tM) . This 

indicated a negligeable toxicity effect of mercury on the capacity of PSII reaction 

center to convert absorbed light energy into charge separation and electron transport 

activity at 24 h of exposure. However, at 48 h of exposure time, the effect of mercury 

was not stronger on the PSII reaction center. The value of Fv/Fm decreased about 8 

% in comparison to control for cells treated to the highest concentration of HgCh 

(1 00 ~-tM). Results of previous studies on the toxicity effect of different concentration 

of copper (0-20 ~-tM) during 24 h exposure time on green alga Chlorella vulgaris 

showed a direct relation between the decrease in the value of Fv/Fm with the 

increasing tested concentration of copper, which was explained by its mechanism of 

toxicity on the function of the water splitting system and the photochernical reactions 

of PSII (Perreault et al., 201 0; Oukarroum et al. , 20 12). 
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Figure 3. 7 Change in the effective transfer of absorbed-light energy from 

antenna complexes (ABS) to PSII reaction centres (RC) of alga C. vulgaris 

exposed during 48 h to different concentrations of HgCh. Significant 

differences between control and treated samples were determined for p < 0.05*. 



69 

The efficiency of energy transfer by the light harvesting antenna complexes 

through reaction centers of PSII (ABS/RC) was also evaluated under similar 

experimental conditions. The ABS/RC parameter provides an estimate of the number 

of photons absorbed by light harvesting antenna complexes (LHCII) relative to the 

:functional amount of PSII reaction centers (Appenroth et al., 200 1; Strasser et al. , 

2004). In figure 3.7, we presented results of the change in the ABS/RC parameter 

when alga C. vulgaris was exposed during 48 h to different concentrations of HgCh. 

After 24 h of exposure, the value of ABS/RC increased by 7 % compared to control 

for the lowest concentration of HgCh (1 0 1-1M) and 16 % for 50 1-1M of HgCh. The 

highest value of ABS/RC was reached for the highest concentration of HgCh (1 00 

1-1M) as 18 % compared to control, showing a change in energy transfer through non­

photochernical pathway due to inactive PSII reaction centers induced by mercury 

effect. At 48 h of exposure, the value of ABS/RC increased even much higher in 

comparison to the same treatment condition at 24 h. 

According to our results, this parameter was the most sensitive parameter for 

assessing the amount of inactive PSII reaction centers caused by mercury effect. It is 

weil known that high amount of inactive PSII reaction centers lead to an increase of 

waste energy through non-photochemical pathways. Indeed, mercury had a direct 

effect on energy transfer through PSII reaction center. Indeed by inactivating sorne 

PSII reaction centers, the proportion of chlorophylls in antenna available per 

remaining active PSII reaction centers increased (Perreault et al. , 201 0). Moreover, 

the change of the value of ABS/RC at 48 h increased by 12 % and 19 % in 

comparison to control respectively for 10 and 50 1-1M of HgCh (Figure 3.7). At the 

highest concentration of HgCh (100 1-1M), the value of ABS/RC increased by 20.5 % 

compared to control. This change is caused by significant changes in the energy 

dissipation via non-photochemical pathways, which indicated a higher proportion of 
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inactive PSII reaction centers at 48 h compared to 24 h. In a previous study, the 

toxicity effect of isoproturon was investigated on green algae Scenedesmus obliquus 

during 24 h of exposure time, showing an increase in ABS/RC values which was 

dependent to the concentration (0-500 1-!M) of isoproturon. This increase in ABS/RC 

values induced by isoproturon effect was suggested to be caused by the decrease of 

active PSII reaction centers (Lavergne and Lecci, 1993; Perreault et al. , 2010). 
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Figure 3.8 Change in the performance index of PSII activity (PI) of al ga C. 

vulgaris exposed during 48 h to different concentrations of HgCh. Significant 

differences between control and treated samples were determined for p < 0.05*. 

The change in the performance index of PSII activity of alga C. vulgaris 

exposed during 48 h to different concentrations of HgCh was determined as an 

overall indicator of PSII photochemical reactions (Figure 3.8). The performance 

index of PSII activity, PI integrates three processes which are express by these three 

parameters (Appenroth et al. , 2001): 

1- The total number of active PSII reaction centres per absorption from antenna 

pigments (RC/ ABS); 

2- The yield of primary photochemistry; 

3- The efficiency by which a trapped excitation can move an electron into the 

electron transport chain. 
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At 24 h of exposure, the value of PI decreased by 20 and 25 % in comparison to 

control, for respectively the treatment of 10 and 50 1-1M of HgCb. At the highest 

concentration of mercury (1 00 1-1M), the value of PI significantly decreased by 31 % 

compared to control, showing a strong toxic effect of mercury on PSII photochemical 

reactions. At 48 h of exposure, the effect of mercury on PSII functions was stronger 

in comparison to 24 h (Figure 3.8). The value of PI decreased by 37 and 43 % in 

comparison to control for respective! y treatment of 10 and 50 j.!M of HgCb. The most 

significant decrease in the value of PI was observed for the highest concentration of 

HgCb (1 00 1-1M) which was by 57 % compared to control. Similarly, it was 

previously shown that the toxicity effect of different concentrations of copper (0-20 

1-1M) during 24 h of exposure time on green alga Chlorella vulgaris was correlated to 

the decrease in PI value (Oukarroum et al. , 20 12). 

3.6 Induction of cysteine, glutathione and phytochelatin synthesis 

The induction of the cysteine (Cys) synthesis was investigated when algal cells 

of C. vulgaris were exposed during 24 h to different concentrations of HgCb (Figure 

3.9). We compared the changes in content of Cys between low (10 IJ.M) and 10 times 

higher concentrations (1 00 1-1M) of HgCb. The cysteine was detected in control 

sample of algal cells since it already participates in the cellular metabolism of several 

syntheses of peptides and proteins. When algal cells of C. vulgaris were exposed 

during 24 h to 10 1-1M of HgCb, the content of Cys was not significantly different to 

the control, indicating that the bioaccumulated mercury was not enough to induce a 

change in the amount of Cys. However, under the exposure of 100 1-1M of HgCh, the 

induction of Cys was strong, more than 2 times in comparison to the control. This 

result indicated that 100 1-1M of HgCh induced the synthesis of cysteine for cellular 

defence mechanisms such as the glutathione metabolic pathway. In a previous study 
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using the al ga T. weissjlogii exposed during 96 h to different concentrations of HgCh 

(0, 8.4 and 222 flg/L), it was shown a significant increase in the cellular content of 

Cys for the highest concentration tested (222 flg/L) at 24 h of exposure. However, 

under this time of exposure, there was no significant difference between the amount 

of Cys at low concentration tested (8.4 flg/L) in comparison to the control (Wu and 

Wang, 2012). In another study on the toxic effect of mercury during 72 h on three 

marine phytoplanckton species, the increase of cellular Cys was dependent to the 

species: 1 galbana > C. autotrophica > T. weissjlogii (Wu and Wang, 2014). 

Therefore, it appeared that the induction of Cys synthesis was related to the 

concentration of HgCh tested and the al gal species. 
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Figure 3.9 Change in the cysteine (Cys) content in algal biomass of C. vulgaris 

exposed during 24 h to different concentrations of HgCh. Significant 

differences between control and treated samples were determined for p < 0.05*. 
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Figure 3.10 Change in the glutathione (GSH) content in algal biomass of C. vulgaris 

exposed during 24 h to different concentrations of HgCb. Significant differences 

between control and treated samples were determined for p < 0.05*. 

The induction of glutathione (GSH) synthesis was also investigated when algal 

cells of C. vulgaris were exposed during 24-48 h to different concentrations of HgCb 

(Figure 3.10). The cellular content in GSH between low (10 11M) and high (100 11M) 

concentrations of HgCb was compared. The GSH was detected in control cells since 

this compound participates in sequestration and trafficking of metals in order to 

main tain cellular homeostasis (Pal and Rai, 201 0). Wh en al gal cells of C. vulgaris 

were exposed during 24 h to 1 0 11M of HgCb, the content of GSH was not 

significantly changed in comparison to the control, indicating that the content of GSH 
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was enough to deal with the bioaccumulated mercury. However, under the exposure 

of 100 ~-tM of HgClz, the induction of GSH synthesis was much stronger, more than 4 

times in comparison to the control. This result indicated that 100 ~-tM of HgClz highly 

induced the synthesis of GSH synthesis which is known to participate in the cellular 

detoxification mechanism of mercury (Le faucheur et al. , 2006). However, when 

algal cells of C vulgaris were exposed during 48 h to 1 00 ~-tM of HgCh, the content 

of GSH was not significantly changed in comparison to the control. 

In a previous study, the cellular effect of mercury was demonstrated at different 

concentrations (0-222 1-tg/L) on the microalga T. weissjlogii during 96 h of exposure 

(Wu and Wang, 2012). Their results showed a significant increase in the amount of 

glutathione especially for the highest concentration of mercury (222 ~-tg/L) at 48 h of 

treatment. Furthermore, the cellular change in GSH on three marine phytoplanckton 

species (1. galbana, C autotrophica and T weissjlogii) caused by the effect of HgCh 

during 72 h was directly related to the algal species and the tested concentration (Wu 

and Wang, 2014). Moreover, an increase in the induction of GSH was also seen in 

another study conceming the effect of different concentrations of As(III) (0-5x10-5-

2x10-4 M) and As(V) (8 x10-6
, 2x10-5 M) on green algal cells of S. vacuolatus during 

72 h of exposure. According to this study, there wasn't a significant difference 

between the amounts of GSH under low concentration exposure of As(III) in 

comparison to the control, but at higher concentration the synthesis of GSH increased 

significantly. For As (V), the content of GSH was increased under even low treatment 

concentration in comparison to the control and the induction significantly increased at 

higher concentrations (Le Faucheur et al. , 2006). 

When algal cells of C vulgaris were exposed during 24-48 h to different 

concentrations of HgCh, the synthesis of severa! species of phytochelatins (PCs) was 

investigated and quantified (Figure 3.11). The production of PCs was compared 
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und er low ( 1 0 J..LM) and high (1 00 J..LM) concentrations of HgCh treatment. According 

to our results, the synthesis of PCs was not induced in the control sample. Wh en al gal 

cells of C. vulgaris were exposed during 24 h to 1 0 and 100 J..LM of HgCh, the 

synthesis of PC2 and PC4 was detected. Their contents increased significantly in 

comparison to the control and the increase was dependent to the tested concentration 

of HgCh. Furthermore, for both tested concentration of HgCh, the bioaccumulated 

mercury induced a stronger increase in the synthesis of PC4 in comparison to PC2. 

However, when algal cells of C. vulgaris were exposed during 48 h to 10 and 100 J..LM 

of HgCh, the synthesis of PC2 and PC4 was not detected. Indeed, recent works 

examined the induction of PC-metal complexes in phytoplankton for the 

detoxification of metals (Dupont and Ahner, 2005 ; Lee et al. , 1996). In a previous 

study, the change in the amount of phytochelatins induced by mercury was 

determined on rnicroalga T. weissjlogii treated during 96 h. A high increase in the 

amount of PC2 and PC4 was already shown for the highest treatment concentration 

(222 J..Lg/L) at 24 h of exposure time (Wu and Wang, 2012). Authors demonstrated a 

direct relation between the change in content of PC2 and PC4 with the concentration 

tested of HgCb, pe1mitting the cellular sequestration of this metal. Moreover, in 

another study on three marine phytoplanckton species (1. galbana, C. autotrophica, T. 

weissjlogii), the exposure of HgCh during 72 h caused an increase in PCs (PC2, PC3 

and PC4) which was dependent to the species (Wu and Wang, 2014). In comparison 

to the two others species, alga T. weissflogii presented a high ability to synthesized 

PCs, and the PC4 was on1y detected in this algal species. Therefore, it appeared that 

the induction of the different PCs was related to the concentration of HgCh tested and 

was specifie to the algal species. 
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Figure 3.11 Change in PC2 and PC4 contents of alga C. vulgaris exposed 

during 24 h to different concentrations of HgCh. Significant differences 

between control and treated samples were determined for p < 0.05*. 
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CHAPTERIV 

DISCUSSION 1 CONCLUSION 

The goal of this study was to investigate the bioaccumulation effects of 

mercury on green alga C vulgaris by analyzing the cellular division, the 

bioaccumulation efficiency of mercury in algal biomass, the photochernical efficiency 

of photosynthesis (PSII photochemistry) and also the synthesis of glutathione and 

phytochelatins as protective molecular mechanisms against metal toxicity. The 

overview conclusion concerning the change of these cell physiological parameters is 

surnmarized in the Table 4.1. 

Table 4.1 Change of investigated physiological parameters when algal cells of C 

vulgaris was exposed to 1 00 ~-tM of HgCh at 24 and 48 h. 

Bioaccumulation 
efficiency 

Cellular division 

PSII photochemistry 

GSH 

PC
2

, PC4 

100 J1M of HgCh 
24h 

.l'Sx 
compared to 1 ~tM HgCh 

\. 30% 
compared to control 

\. 30% 
compared to control 

/'3X 

compared to control 

For PC
4

: l' 2.5 x 

compared to PC
2 

100 J1M of HgCh 
48h 

/'4X 

compared to 1 ~tM HgCh 

\. 40% 
compared to control 

\. 60% 
compared to control 

\. 0.9 x 
compared to control 

NoPCs 
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The variation of these parameters are shown under the treatment condition 

when algal cells of C. vulgaris had the highest efficiency of Hg bioaccumulation, at 

24 and 48 h of exposure. Indeed, these changes permitted to explain the efficiency of 

Hg bioaccumulation reached and to compare the exposure at 24 h and 48 h. The 

effect of mercury on the change of cell density of C. vulgaris was investigated when 

algal cells were exposed during 24-72 h to different concentrations of HgCb. The 

cellular division was significantly inhibited at higher concentrations of. HgCb (50 and 

100 J.lM). During 24 h of treatment to the highest concentration of HgCh (100 J.lM), 

cellular division was inhibited by 30 % in comparison to the control, but at 48 h of 

ex po sure, cellular division was inhibited by 40 % compared to control (Table 4.1 ), 

showing a relationship between the cel! density and the concentration of mercury. In 

order to determine the maximum capacity of algal cells of C. vulgaris able to 

accumulate mercury, the bioaccumulation efficiency was investigated by estimating 

the content of mercury in algal biomass when C. vulgaris was exposed during 72 h to 

different concentrations of HgCh. According to our obtained results, the highest 

efficiency of bioaccumulation was reached for the highest concentration of HgCh 

(1 00 J.lM) at 24 h of exposure time, and it was 5 times more efficient in comparison to 

the lowest concentration treatment condition, 1 J.lM of HgCb (Table 4.1). However, 

un der the same treatment concentration ( 100 J.lM of HgCb), the content of mercury in 

algal biomass bioaccumulated at 48 h was lower by 4 times in comparison to the 

content of mercury in algal biomass under the treatment condition of 1 J.lM of HgCb. 

These results demonstrated that treatment of HgCh induced a much stronger toxicity 

impact in algal cells at 48 h in comparison to 24 h of exposure, as indicated by the 

increasing number of injured and dead cells. This cellular toxicity impact may explain 

the lower uptake and sequestration capacity of mercury by algal cells after 24 h of 

exposure due to no synthesis of PCs. 
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Furthermore, the characterization of this cellular toxicity impact induced by the 

bioaccumulation effect of mercury was investigated when C. vulgaris was exposed 

during 24-48 h to different concentrations of HgCb. Several cell physiological 

parameters were monitored in order to better explain the bioaccumulation efficiency 

of mercury in algal cells. Our results showed a significant inhibitory effect of HgCh 

on PSII primary photochernistry and electron transport activity at 24 and 48 h of 

exposure time. For C. vulgaris exposed during 24 h to 100 11M of HgCb, the 

performance index of PSII activity decreased by 30 % in comparison to control, 

showing the inhibitory effect of mercury on photosynthesis which may explain the 

decrease in cellular division. However at 48 h of exposure, under the sarne treatment 

condition, the performance index of PSII activity decreased by 60 % in comparison to 

control, showing a stronger effect of mercury on photosynthetic electron transport in 

comparison to 24 h of exposure. This stronger inhibitory effect on photosynthesis by 

mercury was related to a higher inhibition of cellular division at 48 h of exposure. 

Therefore, our results indicated that the performance index of PSII activity was used 

as a reliable biomarker of the bioaccumulation effects of mercury at cellular level, 

and which was highly related to the treatrnent concentration of HgCh and the time of 

exposure. Also, the change of this photosynthetic-based fluorescence parameter was 

related to the efficiency of the bioaccumulation of mercury in algal biomass, which 

reached the highest level at 24 h of exposure and decreasing at 48 h and after. 

Moreover, in order to better understand the cellular toxicity impact of mercury 

in algal cells of C. vulgaris, the synthesis ofthiol peptides, such as glutathione (GSH) 

and phytochelatins (PCs ), was investigated, sin ce it is well known that the se cysteine 

containing peptides are involved in cellular homeostasis and detoxification 

mechanisms of metals accumulation in the cytoplasm (Cobbett and Goldsbrough, 

2003 ; Le Faucheur et al. , 2006). Obtained results showed that the content of thiol 

peptides in algal cells, related to either GSH or PCs, was affected by the exposure of 
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C. vulgaris to different concentrations of HgCb. According to our results, the amount 

of GSH in algal cells of C. vulgaris exposed during 24 h to 1 00 !J.M of HgCb was 3 

times more compared to control, but at 48 h of exposure, the amount of GSH was 

lower by 0.9 times in comparison to the control (Table 4.1). Furthermore, the 

synthesis of PCs which are produced from GSH molecules was also measured to 

determine the importance of this cellular detoxification mechanism in algal cells 

during treatment. Our results indicated that PC2 and PC4 were detected at 24 h of 

exposure when algal cells were treated to 100 !lM of HgCb. Under this treatment 

condition, the content ofPC4 was 2.5 times more than PC2, indicating the formation of 

high molecular weight phytochelatin-mercury complexes which permitted the 

efficient sequestration of mercury in the cellular vacuole (Table 4.1). However, when 

algal cells were exposed during 48 h to 1 00 !lM of HgCb, the induction of both PC2 

and PC4 was not detected, which may be due to the strong taxie effect of mercury 

causing damages on the cellular system and affecting enzymatic activities. Finally, 

these results can exp lain the algal cell level of tolerance against the bioaccumulation 

effect of mercury at 24 h and the stronger toxic effect of mercury on injuring the 

cellular system at 48 h. 

In conclusion, according to the obtained results in this study, it is most likely 

that this species of green algae, C. vulgaris was enough resistant to the effect of 

HgCb up 1 00 !J.M and until 24 h of exposure in arder to maintain its maximum 

bioaccumulation efficiency. Indeed, under this condition, algal biomass bad the 

highest capacity of mercury bioaccumulation although we detected an inhibition of 

cellular division and a decrease in PSII activity due to the bioaccumulation toxic 

effect of mercury. Therefore, algal cellular system was partially protected during 24 h 

against the toxicity of mercury by the high induction of GSH and PCs permitting the 

efficient sequestration of mercury inside the cell. However, this molecular protective 



82 

mechanism was lost at 48 h of exposure, as indicated by the much stronger toxicity of 

bioaccumulated mercury on photosynthesis and cellular division. 

Therefore, this study done at laboratory scale showed the cellular limitation of 

green algae C. vulgaris in the development of phycoremediation technology for the 

treatment of wastewater contaminated by mercury. However, future works need to 

focus on the determination of the bioaccumulation efficiency for others metals (Cd, 

Zn, Pb) and mixtures too, by using C. vulgaris and others species. Moreover, this 

study must be performed at the industrial level for the determination of the efficiency 

of the wastewater treatment at larger scales. 
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