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RÉSUMÉ 

L'apoptose est une mort cellulaire qui, contrairement à la nécrose, représente 
un moyen actif d'élimination des cellules endommagées. Elle est impliquée dans 
plusieurs situations pathologiques chez les organismes pluricellulaires et est 
caractérisée par le rétrécissement cellulaire, la fragmentation de l' ADN et la 
condensation de la chromatine, le bourgeonnement membranaire conduisant à la 
formation des corps apoptotiques (vésicules membranaires) . L'apoptose peut 
également survenir suite à une exposition des cellules à plusieurs types de stress, entre 
autres les radiations, le stress oxydatif, le choc thermique, certains polluants 
environnementaux et certains agents chimiothérapeutiques. Toutefois, le mécanisme 
de la mort cellulaire induite par le choc thermique est encore mal élucidé. Nous 
pensons que le choc thermique pourrait générer un stress oxydatif en causant un 
déséquilibre de la balance entre oxydants et anti-oxydants. Ceci survient lorsque le 
taux des espèces réactives de l'oxygène, telles que l' ion superoxyde et le peroxyde 
d'hydrogène, augmente et les défenses anti-oxydantes cellulaires sont inactivées. De 
tels changements, causés par le choc thermique, pourraient causer des dommages 
conduisant à la mort cellulaire. 

Les objectifs de ce projet consistent premièrement, à étudier l'effet protecteur 
de l'anti-oxydant Mn(ID)tetrakis(4-benzoic acid) porphyrin chloride (MnTBAP) 
contre l' induction de l' apoptose par le choc thermique chez les cellules ovariennes de 
hamster chinois (CHO). On s'est intéressé en second lieu, à la capacité de l' inhibiteur 
de la défense anti-oxydante diéthyldithiocarbamate (DCC) à potentialiser la mort 
cellulaire induite par le choc thermique. Les résultats montrent que le MnTBAP 
protège les cellules CHO contre l' apoptose induite par le choc thermique en inhibant 
la translocation des protéines pro-apoptotiques Bax et cytochrome c entre la 
mitochondrie et le cytosol et en inhibant l'activité de la caspase 9 et de la caspase 3. 
Le MnTBAP protège également contre le clivage des substrats des caspases tels que 
l' inhibiteur de la DNase activée par les caspases (ICAD) et la poly(ADP-ribose) 
polymérase 1 (PARP). De même, l' inhibition de la superoxyde dismutase, par le 
DCC, diminue l' activation de la voie mitochondriale de l' apoptose induite par le choc 
thermique sans pour autant protéger contre l' induction de la nécrose. En conclusion, 
l' antioxydant MnTBAP est en mesure de prévenir l'apoptose induite par le choc 
thermique via la voie mitochondriale. De son côté, l' inhibition de la superoxyde 
dismutase par le DCC augmente la mort cellulaire par nécrose plutôt que par 
apoptose. Ces résultats suggèrent que l' apoptose chez les cellules CHO, induite par le 
choc thermique survient suite à la génération d'un stress oxydatif. 

Mots clés : CHO, Apoptose, Choc thermique, Stress oxydatif, Caspases 



ABSTRACT 

Apoptosis is a form of cell death that is distinct from necrosis. As a way to 
remove damaged cells, apoptosis occurs during severe pathological situations in 
multicellular organisms and is characterized by DNA fragmentation, chromatin 
condensation, membrane blebbing, cell shrinkage and formation of apoptotic bodies 
(membrane enclosed vesicles). Apoptosis can also arise following exposure of cells to 
various types of stress, including radiation, oxidative stress, heat shock, 
environmental pollutants and chemotherapeutic agents. The mechanism of beat 
shock-induced cell death is not understood. It appears that heat shock could promote 
an increase in oxidative stress, thus creating a redox imbalance in favour of 
peroxidants. This could arise by increasing generation and reactivity of oxidants such 
as superoxide and H20 2 and by inactivating cellular antioxidant defences. As a 
consequence, heat is likely to induce oxidative changes in cells leading to cell damage 
and eventually cell death. 

The objectives of this study are to determine 1) the ability of the antioxidant 
Mn(III)tetrakis( 4-benzoic acid) porphyrin chloride (MnTBAP) to decrease beat 
shock-induced apoptosis, and 2) the ability of an inhibitor of the antioxidant defence 
system diethyldithiocarbamate (DDC) to potentiate heat-induced cell death in Chinese 
hamster ovary cells. The superoxide scavenger MnTBAP protected cells from heat 
shock-induced apoptosis by blocking the translocation of the pro-apoptotic proteins 
Bax and cytochrome c between the mitochondria and cytosol, and by inhibiting the 
activities of caspase-9 and caspase-3 . MnTBAP also reduced the cleavage of the 
caspase substrates, inhibitor of caspase-activated DNase (ICAD) and poly (ADP
ribose) polymerase-1 (PARP). The inhibition of superoxide dismutase using DDC 
also decreased activation of the mitochondrial pathway of apoptosis by heat shock. 
Instead, DDC induced necrosis rather than apoptosis in Chinese hamster ovary cells. 
In conclusion, the antioxidant MnTBAP is able to prevent apoptosis through the 
mitochondrial pathway of apoptosis. On the other hand, the inhibition of superoxide 
dismutase by DDC increased cell death and shifted the type of cell death from 
apoptosis to necrosis. These findings indicate that heat shock-induced apoptosis is 
mediated by oxidative stress in Chinese hamster ovary cells. 

Key words : CHO, Apoptosis, Heat shock, oxidative stress, Caspases 



CHAPTER 1: INTRODUCTION 

1.1. Programmed cell death 

Multicellular animais often need to get rid of cells that are in excess and that 

are potentially dangerous (Henga.rtner, 2000). Three types of morphological and 

biochemical cell death have been identified. Type I is apoptotic cell death, type II is 

autophagie cell death and type III is necrotic cell death (Bursch et al., 2000; Kim et 

al, 2005). Among these different types of cell death, apoptosis and necrosis have 

drawn a lot attention. They have very different morphological and biochemical 

features (Chandra et al., 2000) (Figme 1.1 ). The tenn apoptosis cornes from a Greek 

word, which describes the falling off of leaves from trees. It was first coined in 1972 

by Kerr and coworkers (Kerr et al., 1972) to describe an alternative type of cell death 

which is distinct from necrosis . Apoptosis is characterized by DNA fragmentation, 

ch.romatin condensation, membrane blebbing, cell shrinkage and fom1ation of 

apoptotic bodies (membrane enclosed vesicles). Apoptosis can be triggered by a 

number ·of factors, including ultraviolet or y-irradiation growth factor withdrawal, 

chemotherapeutic dmgs, or signaling by death receptors (DRs) (Ashkenazi and Dixit, 

1998; K.rmer et al., 1998). In brief, apoptosis is a form of cell death that occurs 

du.ring severe pathological situations in multicellular organisms and constitutes a 

common mechanism of cell replacement, tissue remodelling and removal of damaged 

cells (Delong, 1998). Necrosis appears to be the result of an acute cellular 

dysfunction in response to severe stress conditions after exposme to toxic agents and 

is a relatively passive process associated with rapid cellular ATP depletion (Chandra 

et al., 2000). During necrosis cells swell and then ruptme, releasing their contents and 

thereby eliciting an inflammatory response (Wyllie et al. , 1980). 

Autophagie cell death, characterized by the formation of autophagie vacuoles 

m the cytoplasm of dying cells, occms in many euka.ryotic cell types. During 
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autophagie cell death, organelles and other cell components are sequestered into 

lysosomes, a cellular compartment enriched in hydrolases able to cleave proteins, 

lipids, nucleic acids and carbohydrates, and then the cell is degraded (Klionsky and 

Ernr, 2000). 

Nucleus 
Normal Cell 

Necrosis Apoptosis 

Figure 1.1: Structural changes of cells 
undergoing necrosis or apoptosis. Cells 
undergoing necrosis initially swell and 
the organelles break down. The cells 
eventually rupture and debris is spilled 
out that causes local inflammation. This 
inflammation can cause further death of 
the adjacent cells. Apoptosis affects only 
individual cells. When cells undergo 
apoptosis, the cell body shrinks, the 
DNA in the nucleus condenses and 
breaks apart into small fragments. 
However, other cellular organelles 
remain intact. The cell breaks up into 
several smaller bodies surrounded by a 
membrane. Scavenging cells such as 
macrophages engulf and destroy these 
"apoptotic bodies" (Adapted from 
Goodlett and Hom, 2001). 

1.2. Components of the apoptotic program in mammals 

The identification of components of the apoptotic pro gram in the nematode C. 

elegans was the starting point for the discovery of homologous genes or proteins in 

mammals (Thompson, 1995; Green, 1998; Green and Reed, 1998; Raff, 1998). 

During apoptosis in C. elegans, at least 14 different genes are involved with specifie 

roles in regulation and performance of apoptosis. It was shown that different 

apoptotic signalling pathways are involved, depending on stimulus and cell type, and 

these meet in a common effector pathway. Central components of this effector 

pathway are a certain class ofproteases, the caspases (Kraut, 2001). 
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1.2.1. Caspases: the executioners of apoptosis 

Most of the morphological changes that were observed are caused by a set of 

cysteine proteases that are activated specifically in apoptotic cells (Hengartner, 2000). 

These death proteases are homologous with each other (Muzio, 1998). Caspases are 

highly conserved through evolution and can be found from humans ali the way down 

to insects, nematodes and hydra (Srinivasula et al., 1996). 

1.2.1.1. The structure and activation of caspases 

Caspases are a kind of cysteine containing, aspartic acid-specific protease. 

They exist as zymogens in the soluble cytoplasm, mitochondrial intermembrane space 

and nuclear matrix of vüiually ail cells (Chandra et al., 2000). For example, caspase-

3 is a single-chain consisting of four domains: a NH2-teminal prodomain of variab le 

length, P20 and PlO domains and a linker region c01mecting these catalytic subunits . 

The linker region is missing in sorne caspase family members. The cleavage of the 

caspase precursors results in the mature caspase, a heterotetramer containing the 

P20/P10 heterodimers and two active sites (Wolf and Green, 1999) (Figure 1.2). 

Caspases are typically divided into tlu·ee major groups based on the structure 

of the prodomain and their function: inflammatory caspases which have large 

prodomains, initiator caspases and effector caspases with a sh01i prodomain. The 

prodomain of apoptotic caspases contains a structure called the death domain 

subfamily which includes the death domain (DD), the death effector domain (DED), 

and the caspase recruitment domain (CARD) (Fesik, 2000). Each of these motifs 

interacts with other proteins by homotypic interactions. For example, DD and CARD 

contacts are based on electrostatic interactions, while DED contacts are via 

hydrophobie interactions (Eberstadt et al., 1998). Procaspase-8 and -10 have DEDs 

in their prodomain. The CARD domain is found in procaspase-1 , -2, -4, -5, -9, -11 

and -1 2 (Erstadt et al. , 1998; Muzio et al., 1998; Sprick et al. , 2002; Fuentes-Prior 

and Salvesen, 2004; Larnkanfi et al., 2005) . 
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Based on their proapoptotic functions, the caspases can be divided into two 

groups: initiator caspases (caspase-1 , -2, -4, -5, -8, -9, -10 and -14) which are 

activated via oligomerization-induced autoprocessing (Srinivasula et al., 1998; Yang 

et al. , 1998), while effector caspases (caspase-3, -6 and -7) are activated by other 

proteases, including initiator caspases and granzyme B. Proteolytic cleavage of 

cellular substrates by effector caspases largely determines the features of apoptotic 

cell death (Liu et al. , 1998; Sakahira et al., 1998; Zhang et al. , 1998). Caspases 

inactivate proteins involved in DNA repair, DNA replication and mRNA splicing 

(Cryns and Yuan, 1999; Rheaume et al. , 1997). They destroy the nuclear lamina, 

which results in the degradation of focal adhesion kinase (FAK) (Wen et al. , 1997). 

Procaspase 

N-terminal pro-domain 

AspX l 

Catalytic sites 

AspX 
Maturation 

Active enzvme 

Figure 1.2: Structure and activation process of caspases. Caspases can be 
activated either by autoproteolysis or by other caspases. During the activation, the 
procaspase is cleaved after the aspartic acid residues, then the N-terminal pro-domain 
is discarded and the other two fragments reassemble to form a tetramer with two 
active sites (Adapted from Kraut, 2001). 
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1.2.1.2. The regulation of caspases 

Seven members of the mammalian inhibitors of apoptosis protein (IAP) 

fami ly, such as FADD-like ICE-inhibitory protein (c-FLIP), bifunctional apoptosis 

regulator (BAR) and apoptosis represser with CARD (ARC) are able to down 

regulate the activity of caspases. Ail of the IAP family proteins share a specifie 

baculoviral IAP repeat (BIR) region of about 70 amino acid residues, which allows an 

anti-apoptotic effect. The IAPs can bind to active forms of sorne caspases such as 

caspase -3 and -7 but not to their precursors (Liston et al., 2003). c-FLIP, BAR and 

ARC can interTupt proapoptotic signal transduction by preventing death receptors 

from targeting an apical caspase, such as caspase -8. In addition, BAR protects cells 

from death via mitochondria, death receptors, or endoplasmic reticulum (ER) stress 

(Roth et al., 2003). 

1.2.2. P53 - a guardian of the genome 

The tumor suppressor gene p53 has multiple roles in DNA repair, senescence 

and apoptosis (Fridman and Lowe, 2003). On the one hand, p53 is attributed a role in 

apoptosi s as a transcription factor. It can promote the expression of genes involved in 

the apoptotic process ranging from death receptors, Bcl-2 family and the response to 

DNA damage. P53 mediates cel! death through down regulation of the anti-apoptotic 

genes Bcl-2, microtubule-associated protein 4 (MAP4) and survivin, and up

regulation of the pro-apoptotic genes, Bax, insulin-like growth factor binding protein 

3 (IGF-BP3), death receptor 5 (DRS), Fas, apoptotic protease activating factor-1 

(Apaf- 1) and various other components of the apoptosome (Slee et al., 2004). 

On the other band, the transcriptional-independent apoptosis mediated by p53 

requires the involvement of Bax, cytochrome c and caspase activation (Chipuk et al., 

2004; Chipuk and Green, 2004). Although p53 does not directly release cytochrome c 

from mitochondria, it is capable of performing a function analogons to that of Bcl-2 

homology domain (BH3)-only proteins. Apoptosis induced by p53 is dependent on 

Bax and Bak. P53 has been reported to bind to Bcl-2 and Bel-xL, which might allow 
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for the release of Bax, Bak, Bid and Bim from their inhibitors (Baptiste and Prive, 

2004; Erster et al. , 2004; Mihara et al., 2003). The targeting of mitochondria by p53 

is supported by the finding that wild-type p53 translocates to mitochondria following 

y-irradiation in murine thymocytes (Mihara et al. , 2003). Fmihermore, endogenous 

Bcl-2 and Bel-xL directly bind to wild-type p53 that targets mitochondria, and these 

interactions are dependent on the DNA binding domain of p5 3. This specifically 

involves amino acids 239- 248, because p53 without these amino acids is no longer 

ab le to bind to Bel-xL (Mihara et al., 2003). The mitochondria-targeted effect of p53 

is inhibited by Bcl-2, as demonstrated by the finding that siRNA introduced to down

regulate Bcl-2 caused p53-dependent apoptosis in the absence of genotoxic stress 

(Jiang and Milner, 2003) . In surnmary, p53 can dictate a cell's fate through direct 

caspase-activating functions in the cytoplasm, in coupling or uncoupling of its 

transcriptional effects. 

1.3. Death signal transduction in apoptosis 

Tlrree major pathways have been identified in apoptosis according to their 

initiator caspase: the death receptor pathway involving caspase-8 (Medema et al., 

1997), the endoplasmic reticulum stress pathway attributed to activation of caspase-

12 (Nakagawa et al. , 2000) and the mitochondrial pathway, in which various signais 

can trigger the release of pro-apoptotic proteins from mitochondria into the 

cytop lasm, leading to activation of caspase-9 and downstream cleavage and activation 

of caspase-3, -7 or -6 (Gmtter, 2000; Li et al., 1998; Luo et al., 1998) (Figure 1.3). 



DISC 

i ~aspase-8 
cl1IT 

SpPrllir Subsh;~tps 

) 

CAD --
p53 + J.Bd-2 

~af-1 , i BAX 

- - - - - - - - - - - - - - - - - - - - - - · - - - - - · - · - · - - - - - - - _ _ J 

7 

Figure 1.3: Apoptosis signal transduction pathways. In the death receptor pathway, the 
death receptors (e.g. FasL) recruit an adaptor protein (e.g. F ADD) and procaspase-8 to forma 
death-inducing signaling complex (DISC). The oligomerization of procaspase-8 results in its 
activation. Activated caspase-8 then cleaves and activates caspase-3. The release of 
cytochrome c from mitochondria initiates the mitochondrial pathway. Cytochrome c activates 
formation of the apoptosome complex composed of cytochrome c, Apaf-1 and caspase-9. 
Activated caspase-8 or granzyme B cao cleave a pro-apoptotic Bcl-2 family member Bid, and 
the truncated form of Bid is able to activate the caspase-9 dependent apoptosis pathway. In 
the ER stress pathway, the increase in intracellular Ca2

+ causes the translocation of caspase-7 
to the ER surface and the subsequent activation of caspase-12, which will then activate 
caspase-9 and caspase-3. On the other hand, the increased cytosolic Ca2

+ might be taken up 
by rnitochondria and initiate the release of cytochrome c. The activity of caspases is 
negatively regulated by lAPs, c-FLIP and the anti-apoptotic members of Bcl-2 family 
proteins. Smac and Omi are pro-apoptotic proteins released from mitochondria, which 
antagonize the inhibitory effect of lAPs. P53 regulates apoptosis by its transcriptional and 
non-transcriptional activity. Eventually the cleavage of ICAD by caspase-3 results in the 
liberation of CAD, which is responsible for the intemucleosomal DNA fragmentation 
(Philchenkov, 2004; Gottlieb, 2000). 
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1.3.1. Death receptor signaling 

The best characterized death receptors are CD95 (also called Fas or Apo1) 

and tumor necrosis factor receptor 1 (TNFR1) (also called p55 or CD120a) (Gruss 

and Dower, 1995). Additional death receptors are a vian cerevisiae arginase 1 (CAR 1) 

(Brojatsch et al., 1996), death receptor 3 (DR3) (also called Apo3, WSL-1, TRAMP 

or LARD) (Kitson et al., 1996; Chinnaiyan et al., 1996; Screaton et al. , 1997; 

Bodmer et al. , 1997; Marsters et al. , 1996), DR4 and DR5 (also called Apo2, TRAIL

R2, TRICK 2, or KILLER). Human Fas receptor belongs to the same family of cell 

surface receptors as those for tumor necrosis factor (TNF) and nerve growth factor 

(NGF). The human Fas receptor is a 325 amino acid po lypeptide (Nagata and 

Go lstein , 1995) and bas a sequence in the inh·acellular domains called the death 

domain (Ware et al., 1996). When the engagement of Fas receptor and FasL, a 

transmembrane ligand of 40 kDa expressed on the surface of many cells (Suda et al. , 

1995) occurs, the Fas receptor interacts with Fas associated death domain protein 

(FADD). FADD recruits the signaling complex FADD-associated ICE (FLICE). The 

recruitment of FLICE, or procaspase-8, causes its auto-activation and its subsequent 

re lease into the cytosol. Caspase-8 then cleaves and activates caspase-3 . Activated 

caspase-3 eventuall y results in D A fragmentation and apoptosis, by cleaving 

various cellular proteins. Activated caspase-8 or granzyme B can cleave a pro

apoptotic Bcl-2 family member Bid, and the tnmcated form of Bid is able to activate 

the caspase-9 dependent pathway of apoptosis (Muzio et al., 1998). 

1.3 .2. ER-Stress mediated apoptosis 

The endoplasmic reticulum (ER) is the organelle where the translated proteins 

are modified to fonn their proper tertiary structure and then translocate to the outer 

cel! membrane (Kaufman, 1999). Many stimuli such as the inhibition of 

glycosylation, reduction of disulfide bonds, calcium depletion from the ER lumen, 

impairment of protei n transpmi to the Golgi, and expression of mutated proteins in 

the ER will cause unfolded proteins to accumulate in the lumen of the ER and 
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eventually decide the fate of the cell (Harding et al., 1999). This response is known as 

ER stress, which can cause cell-cycle arrest in G1 /S phase, and a decrease in protein 

synthesis to prevent mal-folded protein aggregation and accumulation, the chaperone 

and folding induction and the degradation of ER-associated proteins to eliminate 

unwanted aggregates (Brewer and Diehl, 2000; Prostko et al. , 1992; Van Laar et al. , 

2001) . The three sensors of ER-stress are Ire1 (a and ~) , activating transcription 

factor 6 (ATF6) and phosphorylated extracellular signal-regulated protein kinase 

(PERI()PEK), which are localized on the ER membrane and trigger ER-stress. 

PERKIPEK and Ire1 (a and~) both share a homologous N-tenninal region which is 

thought to sense protein aggregation (Tirasophon et al. , 1998; Shi et al. , 1998). These 

three sensor molecules have combined effects to upregulate genes encoding proteins 

that are involved in the secretory pathway including ER-resident chaperones and 

proteins required in the ER-associated protein degradation (Shen et al. , 2001). 

Ali of the factors mentioned above are involved in the signaling response to 

maintain the homeostasis of the ER. Ifthe stress cannot be resolved, the cell may then 

die by apoptosis. Two apoptotic pathways have been repotied: the transcription 

factor- and caspase-dependent pathways. In the transcription factor pathway, Ire 1 is 

thought to upregulate the transcription factor growth-arrest and D A damage 

(GADD 153) homologous protein (CHOP) and alter the balance between Bcl-2 and 

Bax (Wang et al. , 1998; Ghribi et al., 2001). Ire1 may also recruit tumour necrosis 

factor receptor-associated factor 2 (TRAF2) adaptor molecules to activate the c-jun 

-terminal kinase (JNK) pathway (Yoneda et al., 2001) . 

The ER can also induce apoptosis through activation of caspase 12. This 

pathway is independent of the mitochondrial and death receptor pathways. Caspase 

12, wluch is localized on the ER membrane, plays a central role in inducing apoptosis 

in response to ER stress (Nakagawa, 2000). Caspase-12 belongs to the group I family 

of caspases including caspases-1 , -4, -5 , -11 and -13 (Van de Craen et al. , 1997) and 

shares a long pro-domain and two catalytic subunits. Functional caspase-12 has been 

cloned from the mouse and rat, but whether a hun1an isoform of caspase-12 exists 
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remains unclear (Fischer et al., 2000). When activated, caspase-12 translocates from 

the ER to the cytosol and then cleaves procaspase-9, which, in turn, activates the 

effector caspase, caspase-3 (Morishima et al., 2002). 

It has been repo11ed that the ER and mitochondria are linked closely because 

the ci + released from the ER eventually accumulates in mitochondria (Nakamura et 

al. , 2000). ER stress also causes oxidative stress and mitochondrial changes can be 

blocked by overexpresion of Bcl-2. Besides the transcription- and caspase-mediated 

cel! death pathways in the ER, disruption of the Ca2+ balance leads to calpain 

activation which, tlu·ough the cleavage of Bid and procaspase-12, contributes to 

caspase-9 activation (Hacki et al. , 2000). 

1.3.3 The role of mitochondria in apoptosis 

Mitochondria are important intracellular organelles for producing energy from 

adenosine 5 '-t1iphosphate (ATP). Many factors can induce mitochondrial mediated 

apoptosis including anti-cancer drugs, inadiation, growth factor deprivation and 

oxidative stress. Recently, research has been focused on mitochondrial dysfunction 

caused by changes in mitochondrial membrane permeabilization (MMP) (Green and 

Kroemer, 2004 ). Alteration of MMP is responsible for the release of small molecules 

from the intermembrane space, including cytochrome c (Liu et al. , 1996), apoptosis 

induci ng factor (AIF) (Joza et al. , 2001), second mitochondria-derived activator of 

caspase (Smac), also lmown as direct IAP-binding protein with low pl (DIABLO) 

(Verhagen et al., 2000; Du et al. , 2000), Omi , also lmown as hi gh temperature 

requirement protein A2 (HtrA2) (Suzuki et al., 2001; Martins et al., 2002; Hegde et 

al., 2002; Verhagen et al, 2002; van Loo et al., 2002), endonuclease G (Li et al., 

200 1) and a subpopulation of pro-caspases (-2, -3, -8, -9) in certain cell types 

(Mancini et al. , 1998; Samali et al., 1998; Susin et al. , 1999 ; Zhivotovsky et al., 

1999; Qin et al. , 2001). Members of the Bcl-2 family contro l this process ti ghtly 

(Iwama et al., 2001). 
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Bcl-2 is a member of a protein family involved in regulation of the apoptotic 

program in mammalian cells (Adams and Cary, 1998; Reed, 1997). At present, at 

!east 15 members are known of the Bcl-2 family, which can have a negative, or a 

positive effect on initiation of the apoptotic program (Kraut, 2001). According to 

their functions, Bcl-2 proteins are divided into two groups: the first group includes 

anti-apoptotic proteins, such as Bcl-2 and Bel-xL, while the second group consists of 

pro-apoptotic proteins such as Bad and Bax. The sensitivity of cells to apoptotic 

stimuli can depend on the balance between pro- and anti-apoptotic Bcl-2 proteins. 

When there is an excess of pro-apoptotic proteins, the cells are more sensitive to 

apoptosis. When there is an excess of anti-apoptotic proteins, the cell s will tend to be 

Jess sensitive (Tsujimoto, 2003). 

Proapoptotic Bcl-2 proteins such as Bax are activated upon receiving apoptotic 

signais resulting in outer mitochondrial membrane permeabilization. However, anti

apoptotic Bcl-2 family members, such as Bcl-2 and Bel-xL, can prevent this process 

by heterodimerization with Bax-like proteins. Other Bcl-2 proteins such as Bad, Bid, 

Bim, Bmf and oxa will impede the function of Bcl-2 or Bel-xL or they will activate 

Bax-like proteins by direct binding. 

A second mechanism ofpermeabilization of the outer mitochondrial membrane is 

the opening of a permeability transition pore (PTP) in the inner mitochondrial 

membrane upon a variety of stimuli. This allows water and small molecules to pass 

through, leading to swell ing of the intem1embrane space and rupture of the outer 

mitochondrial membrane (Green and Kroemer, 2004). Bcl-2 family proteins play a 

pivotai role in regulating the PTP, which is composed of the voltage-dependent anion 

channel (VDAC) (Shimizu, 1999), cyclophilin D and adenine nucleotide translocator 

(A T) (Vyssokilch , 2003). The first protein released from mitochondtia is 

cytochrome c, whi ch plays an essential role 111 caspase-dependent apoptotic ce l! 

death : its re lease triggers formation of the apoptosome (Acehan et al., 2002) 

composed of Apaf-1 , ATP and procaspase-9. This leads to activation of caspase-9, 

which activates effector caspase-3 and caspase-7, leading to oligonucleosomal DNA 
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fragmentation (Baliga et al., 2003). In contrast, AIF acts in a caspase-independent 

pathway that produces large-scale DNA fragmentation leading to apoptotic cell death 

(Cregan, 2004). The protective, anti-apoptotic abilities of lAPs can be in.hibited by 

severa! proteins released from mitochondria, such as Smac/DIABLO and Omi/HtrA2. 

The Smac and Omi proteins both contain IAP binding motifs (IBMs) (Saelens et al., 

2004). Cells with overexpression of Smac or Omi/HtrA2 have enhanced sensitivity to 

UV radiation (Jia et al., 2003; Mrutins et al., 2002). 

1.4. Mediation of apoptos is by poly (ADP-ribose) polymerase-1 

Pol y (ADP-ribose) polymerases (P ARP) are enzymes that catalyze the post

translational modification of pro teins. The P ARP family of enzymes is involved in 

DNA repair, replication, transcription and cell death. The best known member is 

P ARP-1, a 113 !<Da nuclear protein involved in DNA repair. P ARP is synthesized by 

utili zing AD+ as a substrate to catalyze the polymers of ADP-ribose. In general, 

PARP has three domains : the DNA binding domain (DBD, 46 kDa), the 

automodification domain (22 !<Da) and the C-terrninal catalytic domain (54 kDa) 

(Burkle, 2001 ; Smith, 2001; Chiarugi, 2002). When the cells receive environmental 

stimu li such as oxidative stress, P ARP functions as a protector against DNA damage. 

Upon D A damage, P ARP-1 binds to DNA strand breaks and generates pol )'ln ers of 

ADP-ribose bound to chromatin-associated proteins. The negative charge of these 

pol )'ln ers al lows P ARP to dissociate from DNA, thus allowing the enzyn1es to repair 

DNA (Burkle, 2001). 

P ARP-1 can be cleaved by effector caspases such as caspase-3 (Lazebnik, 

1994). During this process, PARP-1 is cleaved into two fragments: 24 and 89l<.Da. It 

is assumed that the 24 kDa fragment containing the DBD may prevent the DNA 

repair enzyme from binding to the fragmented chromatin. The 89 kDa fragment 

contains the automodification and catalytic domains, but it cannot be stimulated by 

D A strand breaks. As a result, cleaved PARP-1 !oses the nick-sensor function and is 

incapable of performing its DNA repair function, thus promoting apoptosis. Poly 
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(ADP-ribosyl)ation is a high energy consuming process, which can also lead to the 

depletion of cellular energy and initiation ofnecrosis (Berger, 1985). Cleaved PARP-

1 also has a role in blocking energy depletion-dependent necrosis since the 

consumption of AD+ is prevented (D'Amours et al., 2001) . 

It bas been reported that . the translocation of AIF from mitochondria to the 

nucl eus requires P AR.P-1 activity and is dependent on pol y (ADP-ribosyl)ation and 

seems to tri gger caspase-independent cell death (Yu et al. , 2002; 2003; Wang et al. , 

2004). However the exact mechanism is unlmown. 

1.5. The rote of DFF40/C~ endonuclease in apoptosis 

An important feature of apoptosis is the fragmentation of genomic DNA 

(Arends et al., 1990). Severa! different endonucleases have been thought to be 

responsible for apoptotic D A fragmentation. One of these is DNA fragmentation 

factor (DFF) (Liu et al., 1997), or caspase- activated DNase (CAD) (Enari et al., 

1998) or caspase- activated nuclease (Halenbeck et al., 1998). DFF45 is a regulatory 

subunit ofDFF while DFF40 is a catalytic subunit (Lugovskoy et al., 1999; Otomo et 

al., 2000). Both of these subunits reside in the cell nucleus (Liu et al., 1998). DFF40 

and DFF45 have a conserved domain of 80 amino acids at their N-te1minal. 

DFF/CAD is a heterodimer composed of 40 and 45kDa protein subunits in an 

inacti ve fonn . DFF45 cm-ries two caspase-3 - recognition sites, aspartate residues 117 

and 224 (Liu et al. , 1997; 1998; Enari et al., 1998; Halenbeck et al. , 1998). 

DFF45 binds to DFF40 to inl1ibit its catalytic activity. Activated caspase-3 

can cleave DFF45 , releasing DFF40. DFF45 can be also cleaved by caspase-7 and 

granzyme B, but not by other caspases. The expression of DFF40 requires the 

presence of DFF45 ; otherwise DFF40 might form inactive aggregates (Liu et al., 

1997; 1998; Enari et al. , 1998). The nuclease activity ofDFF40/CAD can be further 

activated by histone Hl , HMGB 1/2 and topoisomerase II (Durrieu et al., 2000; Liu et 

al., 1998; 1999; Widlak et al., 2000) . When DFF40 is synthesized in the cytoplasm, 

DFF45 binds to its nascent chain and promotes its correct folding. The catalytically 
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inactive complex of DFF40/DFF45 is then transferred to nuclei . DFF40 is specifie for 

doub le-stranded D A and depends on magnesium cations and can be inhibited by 

zinc cations. DFF40 attacks chromatin in the intemucleosomal linker DNA, 

generating mono and oligonucleosomal fragments (Widlak et al., 2000). 

1.6. Oxidative stress 

1.6.1 Sources of oxidative stress 

The intrinsic balance of cells between life and death can be influenced by 

severa! env ironmental stresses such as irradiation, hype1ihermia or certain 

chemotherapeutic drugs (Chandra et al., 2000). Generation of oxidative stress in 

response to a variety of external stimuli has been implicated in the activation of 

transcription factors and in the triggering of apoptosis. In the apoptotic process, ini tial 

damage does not ki lt cells directly; rather it triggers an apoptotic signalling program 

that eventuall y leads to cell death (Gabai et al., 1998). Oxidative stress bas been 

defined as a disturbance in the pro-oxidant/antioxidant balance resulting in potentially 

lethal cel! damage (Sies, 1999). Oxidative stress is a putative mediator of apoptosis 

by decreasing intracellular glutathione, the major buffer of the cellular redox status 

and by increasing cellular reactive oxygen species (ROS) (Suzuki et al., 1998; 

Fridovich et al. , 1995). Cells are then subjected to a chronic redox imbalance leading 

to metabolic oxidative stress (Halliwell, 1999; Aruoma, 1996). ROS are widely 

generated in biological systems and include hydroxyl radicals ("OH), superoxide 

anions (02· -), singlet oxygen (10 2) and hydrogen peroxide (H20 2). H20 2 at low doses 

induces apoptosis via production of ·oH radicals and alteration of the 

.oxidant/antioxidant balance (Wiseman and Halliwell , 1996). 

1.6.2. Oxidative damage to macromolecules 

If oxidative stress persists, oxidative damage to critical macromolecules such 

as po lyunsaturated fatty acids in membrane lipids, essential proteins and DNA 
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accumu lates and eventually resu lts in severa! biological effects. These range from 

alterations in signal transduction and gene expression to mitogenesis, transfom1ation, 

mutagenesis and cel! death (Hunt et al., 1998; Mills et al., 1998). Depending on the 

severity ofthe injuries, cel! death can occur by either apoptosis or necrosis. Apoptotic 

cell death can be switched to necrosis during oxidative stress by two possib le 

mechanisms : 1) inactivation of caspases due to oxidation of their active site thiol 

group by oxidants (Samali et al., 1999), or s-nitrosylation (Melion et al. , 1997), which 

can lead to a necrosis-like cel! death in fatally damaged cells, and 2) a drop in cellular 

levels of ATP due to the failure of mitochondrial energy production by oxidants 

(Leist et al., 1999; Tsujimoto et al., 1997). 

1.6.3. Antioxidant defense mechanisms 

To avo id the consequences ofROS-induced damage, cells have an antioxidant 

defense system that limits the production and accumulation of ROS . A wide array of 

enzymatic and nonenzymatic antioxidant defenses exists . Among these, tlu·ee major 

antioxidant defense pathways are superoxide dismutase (SOD), catalase (CAT) and 

the glutathione redox cycle. The latter two are the major enzymatic pathways for 

H20 2 detoxification (Ahmad, 1995). 

SOD destroys the reactive superoxide radical by converting it into the less 

reactive hydrogen peroxide (H20 2), which can be detoxified by catalase or 

glutathione peroxidase and the glutathione redox cycle. Catalase is mainly 

peroxisomal and catalyzes the reduction ofH20 2 to H20 and 0 2 (Melion et al., 1997). 

Glutathione peroxidases (GPx) catalyse the reduction of a variety of hydroperoxides 

using reduced glutathione (GSH) as substrate, thereby protecting mammalian cells 

against oxidative damage and reducing, among others, cellular lipid hydroperoxides. 

The glutathione peroxidases are divided into two groups, selenium- independent and 

se lenium-dependent enzymes. Selenium-dependent enzymes can decompose H20 2 

and various hydro- and lipid peroxides by the glutathione redox cycle. In this cycle, 

GSH is used as a cosubstrate to metabolize H20 2, resulting in H20 and glutathione 
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disulfide (GSSG). The maJor source of H202 is the biochemical convers10n of 

superoxide anion (02· -) by the action of SOD. GSSG can be reduced back to GSH by 

the enzyme GSH reductase (GR), in a reaction requiring NADPH regenerated by 

glucose 6-phosphate dehydrogenase (G6PDH). The capacity to recycle GSH makes 

the glutathione redox cycle a pivotai antioxidant defence mechanism for cells and 

prevents the depletion of cellular thiols (Ahmad, 1995). 

In addition, severa! non-enzymatic antioxidants such as vitamin C and vitaminE 

are among the important antioxidants. VitaminE is an antioxidant within membranes 

and vitamin C is within extracellular fluids. Both of these are general scavengers of 

free radicals . 

1.6.4. ROS and apoptos is 

ROS can be considered as major mediators of apoptosis (Gottlieb et al., 2000). 

Severa! studies found that the addition of ROS or the depletion of endogenous 

antioxidants can promote cell death (Cmmody et al., 1999; Kane et al. , 1993; Guénal 

et al. , 1997). For instance, catalase can prevent spontaneous and H20 2 induced 

apoptosis in neutrophils (Kasahara et al., 1997). Fmihennore, severa! antioxidants 

can protect cells against apoptosis (Iwata et al., 1997; Greenlund et al., 1995). The 

thiol antioxidant N-acetyl-cysteine can scavenge and inhibit activation of caspases 

and subsequent steps, and then block or delay apoptosis in sorne systems (Mayer and 

Noble, 1994). The overexpression of MnSOD in cells can restore the mitochondrial 

transmembrane potential (Majima et al., 1998) and could protect the cel! from death 

caused by inhibition of the respiratory chain (Kiningham et al., 1999). Increased 

levels of Cu/Zn SOD in the cells can delay apoptosis by scavenging Oz· - (Green! und 

et al. , 1995) and preventing early release of cytochrome c (Fujimura et al. , 2000). 

Increased intracellulm- glutathione levels also prevented Fas receptor-mediated 

apoptosis in these cells (Watson et al. , 1997). Overexpression of the antioxidant 

phospholipid hydroperoxide glutathione peroxidase can also inhibit apoptosis 

(Nomura et al., 1999). 
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1 .6.4.1. Mechanisms of ROS signaling in apoptos is 

Tlu·ough activation of proteins such as tyrosine kinase and mitogen-activated 

proteins, ROS are also involved in signal transduction pathways in di fferent 

physiological processes. It was reported that ROS are used as messengers by different 

stimuli to activate transcription factors, such as AP-l and nuclear factor kappa B (NF

KB), to induce gene expression (Pinkus et al., 1996). Data from many studies 

converge to the hypothesis that increases in ROS in cells are the consequence of an 

impaim1ent of the mitochondrial respiratory chain. An interesting phenomenon is that 

the depletion of GSH, a non-enzymatic cellu lar antioxidant, is an event which takes 

place at the very beginning of the apoptotic process (van den Dobbelsteen et al. , 

1996; Boj es et al. , 1997). The mechanisms for activation of apoptosis have been 

suggested as follows. 

ROS can tri gger death receptor-mediated apoptosis. The first implication that 

ROS could be invo lved in signal transduction arose from studies of TNF-a-induced 

cytotoxicity (Lancaster et al. , 1989, Schulze-Osthoff et al. , 1992). Fas receptor/Fas, 

which also belong to the tumor necrosis factor /nerve growth factor (TNF 1 NGF) 

receptor family, can be activated by ROS and results in a signal transduction pathway 

leading to apoptosis (Um et al. , 1996; Chiba et al. , 1996). In certain cell !ines, the 

expression ofFasL can be unregulated by hydrogen peroxide and the involvement of 

NF-KB (Bauer et al. , 1998; Vogt et al., 1998). For a long time, apoptosis was 

considered to be under the control of nuclear events, but more recent! y, mitochondria 

are a central point of control (Mignotte and Vayssière, 1998; Desagher and Martinou, 

2000; Ferri et al. , 2000). It has been suggested that ROS can activate the 

mitochondri al uncoupling protein-2 (UCP-2) located at the inner membrane of 

mitochondri a. UCP-2 is a homolog of ANT and plays an important role in the 

maintenance of mitochondrial membrane potential (Arsenijevic et al. , 2000; Casteill a 

et al. , 2001; Echtay et al., 2002; Voehringer et al. , 2000). Recent evidence also 

ind icates that VDAC, another PTP complex protein located on the outer 
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mitochondrial membrane, can be targeted by 0 2·- and results in PTP openmg 

(Madesh and Hajnoczky, 2001). Low doses of oxidants can induce apoptosis by 

triggering the mitochondrial membrane permeability transition and the release ofboth 

cytochrome c (Cai et al. , 1999) and AIF (Susin et al. , 1996). On the other hand, high 

doses of oxidants can damage mi tochondrial energetic functions, causing a large 

decrease in cel lular ATP levels and an acute energetic failure (Liu et al., 1996) . The 

depletion of ATP might delay the activation of caspases and switch cell death from 

apoptosis to necrosis. As mentioned previously, the Bcl-2 fami ly of proteins can 

control the process of apoptotic cell death both positively and negatively (Gross et 

aL. , 1999). Interestingly, the anti -apoptotic proteins Bcl-2 and Bel-xL have been 

associated with protection against oxidants and a shift of the cellu lar redox potenti al 

to a more reduced state (Hockenbery et al., 1990; Kane et al. , 1993). These findings 

suggest a role for ROS in the process of apoptosis by the mitochondrial pathway. 

There is no evidence to indicate the involvement of ROS in the autocatalytic 

cascade of caspases (Cai and Jones, 1998) and the redox state of cytochrome c was 

not relevant to its ability to initiate the activation of caspases (Kluck et al., 1997; 

Hampton et aL. , 1998). 

1.7. Hyperthermia 

Hyperthermia refers to vanous techniques of heat application to already 

establ ished strategies in cancer treatment, such as radiotherapy and chemotherapy. 

Heat treatment cannot replace the established therapies, but it can enhance the cell 

ki lling effects of cytotoxic drugs and radiation (Dahl, 1994). Furthennore 

hyperthermia has been used in gene therapy (Gemer et al., 2000; Huang et al., 2000) 

and stem cel ! purging (Moriyama et al. , 1986). 

1.7.1 Hyperthermia in cancer treatment 

Hyperthermia has been used in cancer treatment during the past 10 to 15 years. 

Generally, there is no intrinsic difference between the sensitivity of normal and 
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tumour cells to hyperthermia. However, in vivo, the enhanced tumour cel! ki lling 

effect of hyperthennia has been observed at temperatures in the range of 40 to 44°C. 

This may be due to the fact that the architecture of the vasculature in solid tumours is 

chaotic, as weil as the low pH and hypoxic tumour environments (Reinho ld and 

Endrich, 1986; Song et al., 1995; Vaupel and Kelleher, 1995). 

1.7.1.1 Combination of radiotherapy and hyperthermia 

Hyperthermia may increase radiosensitivity in vivo by causing an increased blood 

flow, which may result in an improvement in tissue oxygenation (Song et al., 1997) 

Hyperthermia also potentiates radiation effects in vitro. The most important 

mechanism is that the effect of hyperthermia interferes with the cellular repair of 

radiation-induced DNA damage, probably by an effect on cellular proteins 

(Kampinga and Dikomey, 2001). 

1.7.1.2 Combination of chemotherapy and hyperthermia 

When chemotherapy is combined with hyperthermia, heat potentiates 

cytotoxic effects of many drugs including Adriamycin, melphalan, BCNU, bleomycin 

and cisp latin , bath in vitro and in vivo (Honess, 1985; Raaphorst et al., 1996; Orlandi 

et al. , 1995; Bates and Mackillop, 1986, 1990,; Dahl, 1994; Bates et al., 1985). 

Severa! of the reasons for an interactive effect are 1) the increase in intracellular drug 

uptake; 2) the enhancement of DNA damage and 3) higher inh·atumoral drug 

concentrations due to the increase in blood flow. 

1.7.1.3. Methods to increase tumor temperatures 

In the clinical application of hyperthermia, the tinee distinct techniques used 

are who le-body hyperthermia (WBH), hyperthermie isolated limb perf-usion (HILP) 

and hyperthermie peritoneal perfusion (HPP). 

Locali sed hyperthem1ia is used mainly to increase the tumour temperature in a 

targeted region. The temperature distribution depends on the energy distribution as 
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weil as on them1al tissue characteristics and blood flow. The reduced blood flow in 

tumour tissue allows the tumour tissue to be heated more easily (Myerson et al. , 

1997). 

Regional hyperthermia is applied by perfusion of a limb, organ or body 

cavity with heated fluids (Schlemmer et al., 2004; Petrovich et al., 1989). When it is 

combined with cytostatic dmgs, the temperature has to be lower than 43°C to avoid 

unacceptab le tox icity. 

For whole-body hypetihermia, the energy is introduced into the body and at 

the same time the energy loss is minimized (Ro?ins et al. , 1992). The approach is to 

increase the temperature to about 40°C for several hours, and to use beat in 

combination with cytokines and cytotoxic dmgs (Bull, 1996). 

1.7.2. Heat shock-induced cell death 

Thermal induced cel! death has been observed in mammalian cells at 

temperatures between 41 and 4 7°C. At lower temperatures ( 41-43 °C), ce il death is 

much less than at higher temperatures above 43 °C. Different cell types exhibit 

varying susceptibi lities to hypetihermia. At temperatures between 41 oc and 42°C, 

human tumour cells are less heat sensitive than rodent cells, and a potential 

therapeutic advantage can be achieved with prolonged heating at these non-lethal 

temperatures (Annour et al. , 1993). The sensitivity of cells to heat also varies with 

phase of the cel! cycle, where cells in S phase and mitosis are the most heat sensitive 

(Yuguchi et al. , 2002). 

Hyperthermia induces alterations involving inhibition of ONA, RNA and protein 

synthesis at molecular levels (Laszlo, 1992). The synthesis and polymerization of 

both RNA and D A molecules are decreased at temperatures between 42 and 45°C. 

When beat exposure terminates, the syntheses of RNA and proteins recover more 

rapidly than the synthesis of DNA (Streffer, 1988; Hahn, 1982; Henle and Leeper, 

1979). The thermal energy dose required to induce cell death is closely conelated to 

that required for cellular protein denaturation. The denaturation of cytop lasmic and 
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membrane proteins is thought to be involved in the cytotoxic effects of hyperthem1ia. 

There is a consistency between thermal damage and protein denaturation (Laszlo, 

1992; Dewey, 1989) . Protein unfolding occurs during heat shock and is responsible 

for thermal damage. Proteins aggregate when cells are heated (Roti Roti et al. , 1979). 

The protein aggt·egates contain denatured protein and also a large quantity of native 

protein (Borrelli et al., 1996). 

During moderate to severe heat shock, protein synthesis is inhibited temporarily. 

However, milder temperatures induce thermotolerance by induction of synthesis of 

heat shock proteins (Kregel, 2002). The heat shock factor (Hsfl) is believed to be 

respons ible for this process through regulating stress gene activation (Voel lmy, 

2004). 

Hyperthennia has also been reported to be cytotoxic 111 drug-resistant cells, 

including the multidrug resistant (MDR) Chinese hamster ovary cell line (CHRC5), 

overexpress ing P-glycoprotein (Bates and Mackillop, 1986). Similar results were 

obtained for MDR human cervical adenoca.rcinoma (HeLa) cells, overexpressing 

multidrug-resistance protein-1 (MRPl) (Souslova and Averill-Bates, 2004). 

1.7.3. Induction of apoptosis by beat sbock 

Hyperthennia can induce both apoptosis and necros1s m a temperature 

dependent manner. At higher temperatures, it is more likely to induce necrosis rather 

than apoptosis, but this varies in different cell lines (Harmon et al., 1990; Allan et al. , 

1998; Bax ter and Lavin, 1992; Gabai et al., 1996). 

There is li ttle knowledge about the signalling pathways that mediate the 

apoptosis-inducing effects of heat. It is commonly believed that enviroru11ental 

stresses, such as UV, gamma-radiation, drugs, toxins or heat shock, induce the release 

of heat shock proteins (HSPs), such as HSP60/HSP10 from mitochondria, which 

accelerates the release of cytochrome c and the subsequent activation of caspases in 

the mitochondrial pathway of apoptosis. In addition, heat shock or certain anti-cancer 

drugs can cause the production of ROS, whose accumulation causes the release of 
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cytochrome c from mitochondria, which leads to apoptosis through the activation of 

caspase-9 and caspase-3 . The stress-activated protein kinase (SAPK) or c-JNI( also 

results in activation of the caspase-dependent apoptotic pathway. Finally, the D A 

damage caused by various stress can increase the Fas/FasL ligation process, which, in 

turn, leads to apoptosis involving the activation of caspase-8 and caspase-3 (Beere et 

al., 2000; Meriin et al., 1999; Gabai et al., 1997). The tumeur suppressor gene p53 

can also be activated as a consequence of stress exposure, resulting in the increased 

transcription of sorne p53 target genes and the decreased transcription of other genes, 

such as c-fos or MDR genes (Amundson et al., 1998; Miyashita and Reed, 1995 ; 

Agoff et al., 1993 ; Elkeles et al., 1999). 

The balance between death and survival in cells during beat shock is 

detennined by the expression of pro and anti -apoptotic proteins. Such proteins 

include Bcl-2 fami ly members, the IAP members and HSP fami ly members (Adams 

and Cory, 1998; Lacasse et al., 1998; Jaattela, 1999). HSP70 has been shown to 

inhibit apoptosis by preventing the recruitment of procaspase-9 to the apoptosome 

complex, thereby preventing the assembly of a functional apoptosome (Beere et al. , 

2000) . HSP70 can also act on the apoptotic pathway by inhibiting JNK activation 

(Gabai et al. , 1997), either through targeting of JNI( itself or the regulators of JNK. 

HSP70 may prevent apoptotic cell death by inhibiting the activation of effector 

caspases, such as caspase-3 (Messer et al. , 1997; Jaattela et al. , 1998). Another 

important mediator of beat shock-induced apoptosis is HSP27, which can block 

apoptosis induced by heat, Fas ligand and anticancer dmgs (Trautinger et al., 1997; 

Richards et al., 1996). Apoptosis can be observed when HSP synthesis is in.hibited, 

altho ugh further research is required to clarify the underlying mechanisms (Buchner, 

1996; Jaattela, 1999; Ciocca et al., 1993; Fuller et al., 1994; Kaur and Ralhan, 2000; 

Samali et al. , 1999). 



1.8. Research project 

1.8.1. Introduction 
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The hypothesis oftbe project is that beat shock could promote an increase in 

oxidative stress, thus creating a redox imbalance in favor of pro-oxidants. This cou id 

arise by a beat-induced increase in the generation and reactivity of oxidants such as 

superoxide and H20 2 and/or by inactivating cellular antioxidant defenses. As a 

conseq uence, heat could induce oxidative changes in cells leading to cell damage and 

eventually cell death. 

It was previously repmied that the antioxidants N-acetyl-L-cysteine (NAC), 

sodium _pyruvate and catalase were able to protect against cytotoxicity induced by 

heat shock and/or exogenous H20 2 in Chinese hamster ovary cells (Lord-Fontaine et 

al., 2001). In add ition, the depletion of antioxidant defenses such as glutathione and 

catalase erù1cmced the cytotoxicity of beat and/or hydrogen peroxide in tbese cells. 

Cytotoxicity was evaluated by the inhibition of cell proliferation using a clonogenic 

cel! survival assay. However, the role of oxidative stress as a mediator of beat shock

induced apoptosis has not been evaluated. This study will investigate the role of 

superoxide in mediating heat shock-induced cell death by apoptosis. 

1.8.2 Objectives 

Objective 1: To determine the ability of antioxidants to protect against beat 

shock-induced apoptosis. 

Manganese (III) tetrakis ( 4-benzoic ac id) porphyrin (MnTBAP) is a cell

permeable SOD mimetic which is able to enter the cells and can detoxify superoxide 

at the intracellular leve!. The ability of MnTBAP to protect cells against apoptosis 

induced by heat shock wi ll be investigated. 



Objective 2: To determine the ability of inhibitors of the antioxidant defense 

system to potentiate heat-induced apoptosis. 
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The inhibitors of certain antioxidants can be used to allow detem1ination of 

the involvement of certain ROS in the induction of apoptosis by different stresses 

such as heat shock. Diethyldithiocarbamate (DDC) was selected because it is a strong 

pro-oxidant which can enter the cel! and promote significant generation of superoxide 

by inhibiting SOD (Renoux, 1984). The ability of DDC to enhance heat shock 

induced apoptosis wi ll be determined . 

1.8.3. Experimental approach 

The effects of MnTBAP and DDC on heat shock-induced apoptosis wi ll be 

eva luated in Chinese hamster ovary cells through the exploration of the mitochondrial 

pathway by measuring: 

1) The translocation of Bax from the cytosol to mitochondria followed by 

depolarization of mitochondrial membrane potential and the consequent release of 

cytochrome c from mitochondria into the cytosol, by Westem blotting and flow 

cytometry (Tanel and Averill-Bates, 2005); 

2) The enzymatic activities of caspases-3 and 9, by a fluorimetric assay 

(Souslova and Averil l-Bates, 2004); 

3) The condensation of chromatin m the nucleus of cells usmg the 

fluorochrome Hoechst 33258 and cellular incorporation of propidium iodide, by 

flu orescence microscopy, for the induction of apoptosis and necrosis, respectively 

(Sous lova and Averill-Bates, 2004); and 

4) The cleavage of ICAD and PARP by caspase 3, using Western blotting 

(Tanel and Averi li-Bates, 2005). 



CHAPTER 2: EXPERIMENTAL RESUL TS 

1-Preface 

The content of this chapter is as follows: 

A manuscript describes the results of the experiments that I carried out in the 

laboratory of Dr. Diana Averill for my Master's research project. This manuscript 

will be submitted for publication in the near future to the journal Archives of 

Biochemistry and Biophysics. It was written by Zhenghui Wang and was revised by 

Dr Diana A verill. The content of the manuscript includes the effect of MnTBAP, a 

SOD mimetic and DDC, an inhibitor of SOD, on hyperthermia-induced cell death by 

apoptosis in Chinese hamster ovary cells. 
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ABSTRACT 

Apoptosis is a mode of cel! death that is different from necrosis . As a way to 

remove damaged cells, apoptosis occurs during severe pathological situations in 

multicellular organisms and is characterized by DNA fragmentation, chromatin 

condensation, membrane blebbing, cell shrinkage and fonnation of apoptotic bodies 

(membrane enclosed vesicles). Apoptosis can also arise following exposure of cells to 

various types of stress, including radiation, oxidative stress, heat shock, 

environmental pollutants and chemotherapeutic agents. The mechanism of heat 

shock-i nduced cell death is not understood. It appears that heat shock could promote 

an increase in oxidative stress, thus creating a redox imbalance in favour of 

peroxidants. This could arise by increasing generation and reactivity of oxidants such 

as superox ide and H20 2 and by inactivating cellular antioxidant defences . As a 

consequence, heat is likely to induce oxidative changes in cells leading to cell 

damage and eventually cel! death. This study evaluates the role of oxidative stress in 

heat shock-induced apoptosis by altering the level of antioxidant defenses against 

superox ide. The ability of the antioxidant Mn(III)tetrakis( 4- benzoic acid) porphyrin 

ch loride (MnTBAP) to decrease beat shock-induced apoptosis and the ability of 

inhibitor of the antiox idant defence system diethyldithiocarbamate to increase heat

induced apoptosis is investigated in Chinese hamster ovary cells. MnTBAP can 

protect cells from heat shock-induced apoptosis through blocking the translocation of 

the pro-apoptotic proteins Bax and cytochrome c between mitochondria and the 

cytoso l, and by inhibiting the activity of caspase-9 and caspase-3 . There was a 

decrease in c leavage of inhibitor of caspase-activated DNase and pol y (ADP-ribose) 

polymerase-1 by MnTBAP. Superoxide dismutase inhibitor di ethyldithiocarbamate 

(DDC) decreased apoptosis via the mitochondrial pathway, which was associated 

with an increase in heat shock-induced necrosis . In conclusion, these results suggest 

that oxidative stress is involved in heat shock-induced apoptosis. 
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Introd uction 

Hyperthermia refers to vanous techniques of heat application which can be 

comb ined with estab lished strategies of cancer treatment. The combination of 

hyperthennia with radiation or chemotherapeutic agents is a very promising strategy, 

implied both from cellu lar and clinical studies (Kampinga and Dikomey, 2001; 

Honess, 1985; Song et al., 1997; Raaphorst et al., 1996; Orlandi et al. , 1995 ; Dahl , 

1994; Bates et al., 1985; Bates and Mackillop, 1986,1990). Further more 

hyperthermia has been used in gene therapy (Gemer et al, 2000; Huang et al. , 2000) 

and stem cel! purging (Moriyama et al., 1986). 

Based on animal and cellular studies, it has been shown that elevated 

temperatures (40-45 °C) can erù1ance the cell-killing effect of cytotoxic drugs and 

radi ation to tumour cells in vitro as well as in vivo (Dahl, 1994). Hyperthermia bas 

been shown to increase the cytotoxic effect of numerous anticancer drugs such as 

AAPH, cisp latin (CDDP), VP-16, CPT-11 and doxorubicin (DOX) in vitro and in 

vivo (Takahashi et al., 2002; Sumiyoshi et al., 2002; Rowe et al., 1999). At present, 

the use of hyperthetmia in clinical cancer treatment is increasing (van der Zee, 2002). 

Hyperthem1ia has a tumor-selective effect because the hypoxic and low pH 

environments make the tumor cells more sensitive to heat killing than notmal cells 

(Reinhold and Endrich, 1986; Song et al., 1995 ; Vaupel and Kelleher, 1995). The 

increased blood flow resulting from hypetihermia improves the tissue oxygenation 

(Song et aL. , 1997), increases drug uptake, enhances DNA damage and leads to higher 

intratumour drug concentrations (van der Zee, 2002). Clinical studies show that the 

combination of radiotherapy, chemotherapy and hyperthermia was effective in 

patients with advanced cervical carcinoma (Westermann et al., 2005). A significant 

loca l control benefit was observed in patients with superficial tumors when radiation 

and hyperthermia was applied (Jones et al., 2005). 

There is very little knowledge about the signalling pathways that mediate the 

cytotox ic effects of heat. It bas been suggested that heat shock could cause alteration 
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of the pro-oxidant/antioxidant balance, thereby promoting an increase in oxidative 

stress, thus creating a redox imbalance in favor of pro-oxidants. This could arise by 

an increase in the generation and reactivity of oxidants such as superoxide and H20 2 

at high temperatures and/or by the inactivation of cellular antioxidant defenses (Lord

Fontaine and A verill-Bates, 1999). As a consequence, beat can indu ce oxidative 

changes in cells leading to cellular damage and evenh1ally cel! death. 

Reactive oxygen species (ROS) such as superoxide anion (02.-) and hydrogen 

perox ide (H20 2) are generated by endogenous metabo lic processes in bio logical 

systems. Many enzymatic and non-enzymatic antioxidant defenses exist, thereby 

protecting mammalian cells against oxidative damage (Jose and Francisca, 2000). 

Among these, major antioxidant defenses are superoxide dismutase (SOD), catalase 

and the glutathione redox cycle (Ahmad, 1995). SOD detoxifies the superoxide 

radical by converting it into the Jess reactive H20 2, which can be detoxified by 

catalase or g lu tath ione peroxidase and the glutathione redox cycle (Lindqu ist and 

Craig, 1998; Li and Nussenzweig, 1996). Catalase is mainly peroxisomal and 

catalyzes the reduction of H20 2 to H20 and 0 2 (Melino et al., 1997). In the 

glutathione redox cycle, glutathione peroxidases (GPx) catalyse the reduction ofH20 2 

and a variety of hydroperoxides, using reduced glutathione (GSH) as substrate. GSH 

is oxidised to GSSG, which can be reduced back to GSH by the enzyme glutathione 

reductase (GR). This reaction requires NADPH, which is generated by glucose 

metabo li sm tlu·ough the pentose phosphate cycle. The capacity to recycle GSH from 

GSSG makes the glutathione redox cycle a pivotai antioxidant defence mechanism 

for cells and prevents the dep letion of cellular thiols (Alunad, 1995). 

Superoxide anion is very stable in an aqueous enviromnent at neutra! pH. Its 

toxicity is mainly based on generation of reaction products such as H20 2 (De Grey, 

2002) . This can result from conversion of 0 2·· in the mitochondrial matrix by MnSOD 

(Melov, 2000). H20 2 can be converted to the highly reactive hydroxyl radical ·oH by 

transition metal-catalysed reactions (Droge, 2002, Gutteridge and Halliwell, 2000), 

mainly by Fe2
+ in the Fenton reaction. ROS disturb the oxidant/antioxidant balance, 
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leading to a state of oxidative stress (Wiseman and Halliwell, 1996). The persisting 

disturbance of "ROS homeostasis" leads to oxidative damage to critical biomolecules 

such as polyunsaturated fatty acids in membrane lipids, essential proteins and DNA. 

The ROS accumulate and eventually result in severa! biological effects. These range 

from alterations in signal transduction and gene expression to mitogenesis, 

transfonnation, mutagenesis and cell death (Hunt et al., 1998; Mills et al., 1998). 

Depending on the severity of the injuries, cell death can occur by either apoptosis or 

necrosis (Samali et al., 1999; Melion et al. , 1997). 

Apoptosis is a highly regulated type of cell death characterized by DNA 

fragmentation, chromatin condensation, membrane blebbing, cel! shrinkage and 

fom1ation of apoptotic bodies (membrane enclosed vesicles), which are eventuall y 

engulfed by phagocytes to avoid inflammation. During. cel! death by necrosis, cells 

swe ll and then rupture their membrane, releasing their contents and thereby causing 

an inflammatory response in adjacent cells and tissues (Wyllie et al., 1980). A family 

of cytosolic cysteine proteases, caspases, exists in most cells as zymogens and play an 

essen ti al role in the execution of apoptosis. The caspases are divided into initiator ( -2, 

-8 , -9, and -1 0) and executioner subsets (-3, -6, and -7) (Salvesen and Dixit, 1997). 

Mitochondria are important intracellular organelles for producing energy from 

adenosine 5' -triphosphate (ATP). Many factors can activate mitochondrial mediated 

apoptosis including anticancer drugs, irradiation, growth factor deprivation and 

oxidative stress (Cai et al., 1999). Mitochondrial dysft.mction appears to be mediated 

by mitochondrial membrane permeabilization (MMP) (Green and Koremer, 2004). 

MMP induces the membrane transition pore to release small molecules from the 

intermembrane space, including cytochrome c (Liu et al. , 1996). This process is 

ti ghtly controlled by the anti-apoptotic members of the Bcl-2 protein family (Chan 

and Yu, 2004). Proapoptotic Bcl-2 proteins such as Bax are activated upon receiving 

apoptotic signais, resulting in outer mitochondrial membrane penn eab ili zation. The 

release of cytochrome c plays an essential role in caspase-dependent apoptotic cel! 

dea th: its release into the cytosol triggers formation of the apoptosome (Acehan et al., 
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2002) composed of apoptotic protease-acti vating factor-1 (Apaf-1) and procaspase-9 . 

This leads to activation of caspase-9 and subsequently effector caspase-3 and 

caspase-7. The effector caspases cleave a range of cellular substrates su ch as the 

D A repair enzyme, poly (ADP-ribose) polymerase-1 (PARP) (Lazebnik, 1994). 

Another protein that can be cleaved by caspase-3 is D A fragmentation factor (DFF) 

(Liu et al. , 1997), also known as irù1ibitor of caspase- activated D ase (ICAD) (Enari 

et al., 1998; Halenbeck et al., 1998). The cleavage of these proteins results in 

oligonucleosomal D A fragmentation and eventually the cell s die (Bali ga et al. , 

2003). 

Hyperthem1ia can induce both apoptosis and necros1s m a temperature 

dependent manner (Harmon et al., 1990). However, the mechanisms involved are not 

known. This stud y determines whether oxidative stress induced by heat shock has a 

role in the induction of apoptosis in Chinese hamster ovary (CHO) cells. The possible 

invo lvement of superoxide in beat shock-induced apoptosis is investigated by 

modul at ion of SOD levels. When the level of SOD is elevated, cells cou ld be 

protected from heat shock-induced apoptosis. The inhibition of SOD activity could 

potentiate the heat shock-induced apoptosis in the cells. The cell- permeable SOD 

mimetic, Mn (III) tetrakis ( 4- Benzoic acid) porphyrin chloride (MnTBAP) was used 

to detoxify superoxide at the intracellular level. Diethyldithiocarbamate (DDC) was 

used to inhibit the activity of SOD. The ability of these modulators of intracellular 

levels of superoxide to alter cellular response to apoptosis was investigated at 

different leve ls, both upstream and downsh·eam ofmitochondria. 
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Materials and Methods 

Cel! culture 

CHO cell s (AuxBI) (Ling and Thompson, 1974) were grown in monolayer in 

minimum essential medium-Alpha (a.-MEM) plus 10% fetal bovine serum (FBS) 

(Inv itrogen Canada, Burlington, ON) and 1% penicillin (50 units/mL)-streptomyc in 

(50 ~-tg/mL) (Flow Laboratories, Mississauga, ON, Canada), in tissue cu lture flasks 

(Sarstedt, St Laurent, QC), in a humidified atmosphere of 5% C02 in a water jacketed 

incubator at 37°C (Bates and Mackillop, 1986). The cell s were grown to near 

confluence and were then incubated for 24 h with fresh culture medium. Confluent 

cell s were then harvested using citrated phosphate-buffered saline (PBS) (0. 14 M 

aCI, 0.01 M sodium phosphate, 0.015 M sodium citrate, pH 7.4), washed by 

centrifugation (1 000 g, 3 min) and resuspended in PBS-1% BSA-2 mM glucose for 

experimental studies. 

Modulation of antioxidants 

CHO cel ls were pretreated wi th MnTBAP (50 p,M) for 1 h or DDC (5 mM) for 2 h in 

a.-MEM with 10% FBS at 3JOC, relative to contra is without any modulator. Then, the 

mod ul ato r was removed and cells were washed, harvested and resuspended in 1 mL 

of PBS-1% BSA-2 mM glucose. Cells, either with or without MnTBAP or DDC 

pretreatment, were subsequently heated at different temperatures (37, 42 and 43°C) 

for 1 h. DDC can inhibit the enzymatic activity of SOD to about 20% of its ini tial 

leve! in CHO cell s (I<Jladir et al. , 1999). 

Morphological analysis of apoptosis 

To visuali ze nuclear morphology and chromatin condensation by fluorescence 

microscopy (Bettaieb and Averill-Bates, 2005), cells were seeded and cu ltured to near 

confluence in tissue culture dishes containing 5 ml of a.-MEM and 10% FBS. Cell s 

were incubated with MnTBAP (50 p,M) for 1 h or DDC (5 mM) for 2 h, and then 
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modulators were removed. Cells were then heated for 1.5 h in PBS-1 % BSA-2 mM 

glucose at different temperatures (37, 42 and 43 °C). Dishes were washed twice with 

PBS and Hoechst (33258) (0.06 mg/ml) was added for 15 min at 37°C to stain 

apoptotic cells. The dishes were washed with PBS and propidium iodide (PI) (50 

)lg/ml) was added to stain necrotic cells. Observations were made by fluorescence 

microscopy (Carl Zeiss Ltd , Montreal, QC) and photographs were taken by digital 

camera (camera 3CCD, Sony DXC-950P, Empix Imaging Inc, Mississauga, ON) . 

Images were analysed by Northern Eclipse software. Cells were classified using the 

following criteri a: a) live cells (normal nuclei , pale blue chromatin with organized 

structure); b) membrane-intact apoptotic cells (bright blue condensed or fragmented 

chromatin); c) necrotic cells (red, enlarged nuclei with smooth nonnal structure (Lee 

and Shacter, 1999). The fractions of apoptotic and necrotic cells were detem1ined 

relative to total cells (obtained using bright field illumination). A minimum of 200 

cells was counted per dish. 

Determination of caspase activity by fluorescence spectroscopy 

Following treatment with modulators (MnTBAP or DDC) and beat, CHO cells (1 

x 1 06
) were washed three times with cold PBS by centrifugation (1 000 g, 3 min) . The 

cells were resuspended in 50 )1.1 of PBS and 25 )1.1 were deposited into 96-well plates 

and lysed by freezing at -20°C for 20 minutes . Fifty )1.1 of reaction buffer (20 mM 

piperazine- ,N'-bis(2-ethanesulfonic acid) (PIPES), 100 mM NaCI, 10 mM 

dithiothTeitol (DTT), 1 mM EDTA, 0.1% 3-[(3- cholamidopropyl) dimethylammonio] 

- 2 - hydroxy l-1-propanesulfonic ac id (CHAPS), 10% suc rose, pH 7 .2) was added 

and stabilized at 37°C (Stennicke and Salvesen, 1997). The kinetic reaction was 

started after addition of 25 )li of the appropriate caspase substrate (200 )lM) at 37°C 

usmg a spectrofluorim eter (Spectra Max Gemini, Molecular Deviees, Sunnyvale, 

CA). 
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Caspase-3 acti vity was measured by cleavage of the fluoro genic substrate N

acetyl-Asp-Glu-Val-Asp-amino-4-methylcoumarin (Calbiochem, La Jolla, CA) to 

produce amino methylcoumarin (AMC) with Àmax excitation at 380 nm and Àmax 

emission at 460 nrn. Caspase-9 activity was measured by cleavage of the substrate 

Ac-Leu-Glu-His-Asp-7-amino-4-trifluoromethyl-coumarin to produce 7-amino-4-

trifluoro methylcoumru.in (AFC) with Àmax excitation at 400 nm and Àmax emiss ion 

at 505 nm . 

Flow cytometry analysis of mitochondrial membrane potential 

To measure mitochondrial membrane potential (6.\jJm), the fluorescent probe 

5,5',6,6' tetrach loro-1, 1',3,3'-tetraethylbenzimidazol-carbocyanine iodide (JC-1) was 

used. Fo ll owing treatment with modulators (MnTBAP or DDC) and heat, the cells 

were washed three times with cold PBS by centrifugation (1 000 g, 3 min). The ce lis 

were resuspended with PBS and then incubated with the lipophi li c cationic dye JC-1 

(5 ,uM) for 30 min at 37°C (Mancini et al. , 1997). Cells were washed three times by 

centrifugation (2,500 g, 3min) and resuspended in 1 ml of cold PBS . Prior to analysis, 

10 ,ug/ml of PI was added to stain necrotic cells. Data were collected using a F ACS 

scan flow cytometer equipped with an argon laser emitting at 488 nm and analyzed 

using Cel! Quest software (Becton-Dickinson, Menlo Park, CA). Forward and side 

scatters were used to establish size gates and exclude cellular debris from the 

analys is . JC-1 emission was collected on FL-1 and FL-2 channels at 530 ± 20 nm and 

590 ± 20 nm, respectively. The PI emission was collected on the FL-3 cha1mel (620 ± 

15 nm). Ten thousand cells were analyzed for each sample. Under normal conditions, 

JC- 1 ex ists in a monomeric form and stains as green fluorescence (FL-1 ). JC-1 forms 

J-agg~·egates in the presence of increasing mitochondrial potential. These J-aggregates 

give a red fluorescence (FL-2). By comparing the red/green fluorescence ratio, after 

removing PI-stained necrotic ce ll s, one can determine the changes in 6.\jJm. 
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Subcellular fractionation and immunodetection of Bax, cytochrome c, 

caspases, ICAD and PARP 

Following treatment with MnTBAP or DDC and heat shock, cells were washed 

in buffer A (100 mM sucrose, 1 mM EGTA, 20 mM MOPS, pH 7.4) and resuspended 

in buffer B [buffer A plus 5% Percoll, 0.01% digitonin and a cocktail of protease 

inl1ibitors: 10 ,uM aprotinin, 10 ,uM pepstatin A, 10 ,uM leupeptin, 25 ,uM calpain 

inl1ibitor I and 1 mM phenylmethylsulfonyl fluoride (PMSF)]. After 30 min 

incubation on ice, lysates were homogenised using a band patter (Kontes glass CO, 

Duall 22, Fisher, QC). Unbroken cells and nuclei were pelleted by centrifugation at 

2500 g for 10 min. The supematant was centrifuged further at 25,000 g for 15 min. 

The resulting supernatant was designated as the cytosolic fraction, which was used 

for detection of cytosolic cytochrome c and Bax. The resulting pellet was designated 

as the mitochondrial fraction, which was used for detection of mitochondrial 

cytochrome c and Bax. 

For immunodetection ofiCAD, PARP and procaspase-3, whole celllysates were 

used. Ce ll s were lysed in 500 ~tl of lysis buffer (Samali et al., 1999) containing 100 

mM sucrose, 1 mM EGTA, 20 mM MOPS, pH 7.4, 0.1 mM DTT, 5% freshly added 

percoll, 0.01 % digitonin, 1 mM phenyl methyl sulfonyl fluoride (PMSF), and 100 

~Li ll 0 ml of cocktail of protease inhibitors. Unbroken cells and nuclei were pelleted by 

centifugation at 2500 g for 10 min. 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of cellular proteins was 

canied out according to Laemmli (1970) . Proteins (30 ).lg) were quantified according 

to Bradford (1976) and then solubilised in Laemmli sample buffer. The samples were 

boiled for 5 min at 100°C and loaded onto a SDS-polyacrylamide gel. Electrophoresis 

was canied out at a constant voltage of 125 V. Cellular proteins were transferred 

electTophoretically to a polyvinylidene difluoride (PVDF) membrane using a 

MilliB!ot Graphite Electroblotter I apparatus (Milli-pore, Bedford, MA) (Turcotte and 

Averi ll-B ates, 2001). The transfer buffer contained 96 mM glycine, 10 mM Tris and 
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10% methanol. The transfer was canied out for 1.5 h at constant amperage of 80 

mA/gel. Hydrophobie or nonspecific sites were blocked overnight at 4°C with 5% 

powdered skim milk in Tris-buffered saline (50 mM Tris, pH 7.4 and 150 mM NaCl) 

containing 0.1% Tween 20 (TBS-T). Membranes were washed four times for 15 min 

in TBS-T. The blats were probed with the following primary antibodies (1:1000): 

anti -cytochrome c (BD Biosciences Canada, Mississauga, ON), anti-caspase-3 , anti

Bax, anti-ICAD, anti-PARP and anti-actin (Santa Cruz Biotechnology, Santa Cmz, 

CA) in TBS-T, 1% BSA for 1 h at room temperature. Membranes were washed four 

ti mes for 15 min and incubated for 1 h at room temperature with peroxidase

conjugated secondary antibody (1:1000) in TBS-T containing 5% milk powder. 

Secondary antibodies consisted of horseradish peroxidase (HRP)-conjugated goat 

anti-mouse, anti-rabbit and anti-goat IgG (Biosource, Can1arillo, CA). PVDF 

membranes were washed four times for 15 min and cytochrome c, Bax, caspase-3, 

ICAD and PARP were detected using the ECL plus chemiluminescence kit 

(PerkinEimer, Boston, MA). For verification of equivalence in protein loading, the 

blot . was probed with the anti-actin antibody and by coloration of the gels usmg 

Coomassie blue. Protein expression was quantified using a scanning laser 

densitometer, relative to actin (Molecular Dynamics, Sunnyvale, CA). 

Statistics 

Data are presented as means ± standard enar of the mean (SEM) from at !east 3 

independent experiments performed with multiple estimations per point. For each 

seties of data, we compare the average values of cells without modulators obtained at 

42 and 43 °C, re lative to a control value at 37°C, designated as 1. The control value 

was subtracted from each observation and a one way analysis of variance (ANOVA) 

was performed to test H0: mean = 0 versus H 1: mean different from zero (bilateral 

test) for each temperatme. A Bonferroni-Holm (sequentially rejective method) 

adjustment was performed to control for the fami ly wise error (FWE) rate at 5%. For 

the comparisons between cells without and with modulators, a bilateral student t-test 
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was perfOJmed with the hypothesis that with modulators at 37°C the va lue is equal to 

1. For the comparisons at 42 and 43 °C, we use the bilateral student t-test for 

independent samp les. 
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Results 

Initially, the types of cel! death induced by beat shock were investigated in CHO 

cells by fluorescence microscopy. Apoptotic cells were identified by the fluorescent 

probe Hoescht 33258 (blue) which binds to condensed chromatin in the nucleus. The 

fluorescent probe PI (red) was used to identify necrotic cells. There was a significant 

increase in apoptotic cell death induced by 1 h of heat shock at 42 and 43°C in the 

absence of SOD modulators (Fig 2.1A, 2.1D), compared to the control cells at 37°C. 

Very few necrotic cells were observed (Fig 2.1A, 2.1D, 2.1G). When cell s were 

pretreated with the superoxide scavenger MnTBAP for 1 h prior to heat shock, 

apoptotic cell death was significantly reduced by about 50% at 42°C and 38% at 

43°C, compared to the controls (Fig 2.1B, 2.1 C). Again, there were very few necrotic 

cells. When the cell s were pretreated with the SOD inhibitor DDC for 2 h prior to 

heat shock at 42 and 43 °C, the apoptotic cell death was also decreased (Fig 2.1E, 

2.1 G). However, DDC increased heat shock-induced cell death by necrosis . These 

graphs show that MnTBAP can protect CHO cells from beat shock-induced 

apoptosis, and that DDC caused an increase in necrosis rather than apoptosis. 

Further investigations were carried out to determine whether the SOD modulator 

effects are at the leve! of the mitochondrial pathway. Molecular events involved in 

apoptosis were evaluated at the pre-mitochondrial, mitochondrial and post

mitochondrial levels. At the pre-mitochondrial leve!, the effects of MnTBAP and 

DDC effect on Bax translocation from the cytosol to mitochondria were detennined 

by immunodetection . Cells were pretreated with MnTBAP or DDC as above and 

were heated at 42 or 43 °C for 1 h. Heat shock caused a graduai loss of Bax in the 

cytoso l (Fig 2.2A, 2.2B), due to its translocation to mitochondria (Fig 2.2E, 2.2F). At 

43 °C, the levet ofBax decreased by about 30% in the cytosol (Fig 2.2C). When cells 

were treated with MnTBAP, the heat shock-induced translocation of Bax from 

cytosol (Fig 2.2A, 2.2C) to mitochondria (2 .2E, 2.2G) was reduced at 42 and 43 °C, 

relative to cells heated without MnTBAP . In DDC administered cel ls, the heat shock-
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induced trans location of Bax from cytosol (Fig 2B, 2D) to mitochondria (Fig 2G, 2H) 

was also inhibited. These experiments with DDC are consistent with a change in the 

mode of cel ! death from apoptosis to necrosis (Fig 2.1 ). 

Translocation of pro-apoptotic protein Bax to the mitochondria leads to 

mitochondriaJ membrane changes. FACS analysis of JC-1 was used to determine the 

ability of MnTBAP and DDC to alter the beat shock-induced changes in 

mitochondriaJ membrane potential (êüjlm). JC-1 emission was co ll ected on FL- 1 and 

FL-2 channels. A significant decrease in the FL-2/FL-1 (red: green) ratio was 

observed in cells when temperature increased (56% at 42°C, 64% at 43 °C) (Fig 2.3A, 

2.3D). Exposure to MnTBAP (Fig 2.3C, 2.3D) slightly reduced damage to the 

mitochondrial membrane caused by 1 h of beat shock in cells. For DDC (Fig 2.3B, 

2.3E), there was s ignificant increase in the FL-2/FL-1 ratio relative to untreated cells 

at each temperature (32% at 37°C, 52% at 42°C). This indicates an antagonistic effect 

of DDC on beat shock-induced alteration of .0.\jfm. The collapse of mitochondriaJ 

membrane potential is considered an important reason for the release of pro-apoptotic 

proteins like cytochrome c. Immunodetection showed that 1 h of hyperthennia (42 

and 43°C) caused Joss of cytochrome c from mitochondria (Fig 2.4A, 2.4B), and 

cotTesponcling gain of cytochrome c in the cytosol (34% at 42°C, 68% at 43°C) (Fig 

2.4E, 2.4F) . A decrease in cytochrome c translocation from mitochondria (Fig 2.4A, 

2.4C) to cytoso l (Fig 2.4E, 2.4G) was observed in MnTBAP treated cells at 42 and 

43 °C, relative to corresponding heated cells without MnTBAP. A similar decrease in 

cytochrome c translocation was obtained in DDC h·eatecl samples (Fig 2.4B, 2.4D, 

2.4F, 2.4H). 

The effects of the superoxide modulators were subsequently investigated at the 

post-mitochondrial level. An important apoptotic event downstream of cytochrome c 

release is the activation of caspases, such as caspase-9 and caspase-3. One hour of 

hyperthermia incluced activation of caspase-9 relative to unheated control cells at 

37°C. MnTBAP treatment significantly lowered the activity of caspase-9 (36% at 
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37°C, 50% at 42°C, 50% at 43 °C) (Fig 2·.5A), relative to cells heated at different 

temperatures without MnTBAP. For cells pretreated with DDC (Fig 2.5B), there was 

decrease in caspase-9 activity, relative to corresponding untreated cells that were 

heated at 42 and 43°C. 

Heat shock caused activation effector caspase-3, which was detected by caspase 

enzymatic activity and immunodetection of pro-caspase cleavage. Hyperthem1ia 

induced activation of caspase-3 relative to unheated control cells at 37°C by 6 fold at 

42°C and 9-10 fo ld at 43 °C (Fig 2.5C). For the cells pretreated with MnTBAP, 

caspase-3 activity was inhibited at 42°C to 43 °C (Fig 2.5C) . DDC also inl1ibited beat 

shock-induced caspase-3 activation at each temperature (50% at 42°C, 60% at 43°C) 

(Fi g 2.5D). The immunodetection of procaspase-3 cleavage further confirmed the 

above experiments, in which beat induced the cleavage of procaspase-3 compared to 

its untreated contra is (Fig 2.6A. 2.6B). Procaspase-3 cleavage was inhibited by 

treatment with bath MnTBAP (Fig 2.6A, 2.6C) and DDC (Fig 2.6B, 2.6D) . 

Caspase-3 can cleave various protein substrates such as P ARP and ICAD, which 

are involved in the final stages of apoptotic damage to DNA. Immunodetecton of 

P ARP and ICAD cleavage was applied to dete1mine the effects of MnTBAP and 

DDC on heat shock-induced DNA impaüment. One hour of heat shock diminished 

the leve! ofPARP by 22% at 42°C and 35% at 43°C (Fig 2.7A, 2.7B), and the ICAD 

leve! by 22% at 42°C and 28% at 43 °C (Fig 2.8A, 2.8C). MnTBAP decreased PARP 

(Fig 2.7A, 2.7C) and ICAD (Fig 2.8A, 2.8C) cleavage caused by 1 h ofheat shock. In 

DDC treated cell s, bath heat shock-induced cleavage of P ARP (2.7B, 2.7D) and 

ICAD (2.8B, 2.8D) were also decreased. 
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Discussion 

Heat shock can potentiate the cytotoxicity of radiation and certain 

chemotherapy drugs (Hahn, 1982; Liu and Wilson, 1998), but the mechanisms 

invo lved are not fully understood. It has been previously reported that more 

superoxide radical is generated in çells treated with hyperthennia (Lin et al. , 1991) 

and th at levels of antioxidants such as superoxide dismutase, catalase, and glutathione 

redox cyc le can affect the cellular sensitivity to heat (Khadir et al., 1999; Lord

Fontaine and Averill-Bates, 1999). When managanese superoxide dismutase was 

overexpressed in human T-cell lines, the cell death induced by hyperthennia was 

diminished (Wong et al., 1991). Overexpression of managanese superoxide dismutase 

could also protect human breast cancer cells (MCF-7) against hyperthermia (Li and 

Oberley, 1997). 

Based on these previous findings, experiments were designed with the hypothesis 

that heat shock could promote an increase in oxidative stress, thus creating a redox 

imbalance in favour of peroxidants . It bas been suggested that during beat shock, 

superoxide or its reaction product H20 2 are generated and can accumulate in cells . It 

is likely that high levels of superoxide produced during heat shock could have a 

detrimental effect on the cells. To identify if the heat shock-induced cell death in 

CHO cells was mediated by oxidative stress, we studied the role of superoxide in this 

process. This was achieved either by decreasing the superoxide production caused by 

heat shock or by inhibiting the activity of antioxidant defence system which 

detoxifies it. 

In this study, we show that heat shock-induced cell death is modulated by 

oxidative stress. This was suppo1ied by the finding that 1) MnTBAP, a potent cell 

permeable SOD mimetic, could protect against apoptotic cell death by detoxifying 

superox ide caused by heat shock; 2) DDC, a strong cell penneable pro-oxidant, can 

promote increased generation of superoxide by inhibiting SOD (Renoux, 1984) and 

eventually induce necrotic death in cells. The mechanisms of heat shock-induced cel! 
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death were investigated by exploration of the mitochondrial apoptotic pathway, 

invo lving Bax translocation, the alteration of mitochondrial membrane potential, the 

release of cytochrome c, the subsequent activation of downstream caspases and the 

c leavage of essen ti al substrates leading to D A damage. 

Heat shock a/one 

We showed that 1 h of heat shock could induce apoptosis m CHO cells, 

especially at 43 °C. This was confim1ed by the condensation of nuclear chromatin 

tlu·ough morphological analysis. Under these conditions, necrotic cell death was not 

induced during beat shock. 

Apoptosis can occur through different pathways: the death receptor pathway 

(Medema et al., 1997), the mitochondrial pathway (Grutter, 2000; Li et al., 1998; Luo 

et al., 1998) and the ER mediated pathway (Nakagawa et al., 2000). Our earlier 

results confinned that apoptotic events caused by beat shock occurred at the 

mitochondrial leve! (Bettaieb and Averill-Bates, 2005). At the mitochondrial level, 

Bax can faci litate cytoclu·ome c release either by interacting with the penneability 

transition pore complex (Brenner et al., 2000) and/or by fom1ing oligomers as 

channels that trigger cytoclu·ome c release (Antonsson et al., 2000). Our findings 

suggest th at the beat induced production of ROS caused opening of the PTPs and the 

loss of 6\vm (Madesh and Hajnoczky, 2001). Our results suggest that the 

translocation of Bax was essential in altering outer membrane penneabilization 

caused by beat shock in CHO cells. 

At the post-mitochondrial level, cytochrome c release occurred due to the 

opening of the PTP. As a pivotai event for the formation of the apoptosome complex, 

heat shock-induced release of cytochrome c caused the activation of caspase-9 and 

the downstream effector caspase-3 (Grutter, 2000; Li et a/1998; Luo et al., 1998). 

The heat shock-induced damage to DNA was confirmed by the cleavage of 

P ARP and ICAD by effector caspases. Caspase-3 can eventually cleave P ARP 

(Lazebnik, 1994) and ICAD (Liu et al. , 1997). However it has been reported that 
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caspase-7 also caused cleavage of ICAD and P ARP (Germain et al., 1999; Wolf et 

al., 1999) . 

The antioxidantfunction of Mn.TBAP 

According to severa! reports , MnTBAP can detoxify superoxide to H20 2 

(Hi Idem an et al, 1999) and prevent neural cells and endothelial cells from apoptosis 

caused by oxidative stress (Day et al. , 1995; 1997; Pate] et al., 1996; Pate!, 1998) . We 

treated ce ll s with 50 ~LM ofMnTBAP for 1 h. Our results showed beat shock-induced 

apoptosis was suppressed by MnTBAP. This indicates that MnTBAP can prevent 

apoptosis of cells caused by heat, probably by detoxifying superoxide. 

Our results also showed that MnTBAP blocked the Joss of mitochond1ial 

membrane potential , possibly by preventing superoxide as a signaling molecule at the 

mitochondri a l leve!. The possible pathways could involve dawn-regulation of Bcl-2, 

which antagon izes Bax (Tsujimoto, 2003). A possible candidate is NF-K.B, which can 

be activated by ROS , and represses the expression ofBcl-2 (Bauer et al., 1998; Voget 

et al., 1998). 

DDC- a SOD inh.ibitor 

DDC can severely disturb the redox balance by inhibiting the activity of SOD in 

heated cell s, w hi ch would result in the accumulation of superoxide. DDC was 

previous ly reported to enhance the cell killing effect of hyperthermia and the 

chemotherap eutic agent Bleomycin (Khadir et al., 1999). As a patent pro-oxidant, 

DDC was able to induce both apoptosis and necrosis in human promyelocytic 

leukemia cells, depending on the concentrations (K!moto-Kinoshüa et al., 2004). An 

interesting discovery of our study is that the combination of DDC and beat shock 

induces necrosis rather than apoptosis, in cells . This might due to DDC stimulation of 

the production of superoxide by inactivation of copper-zinc superoxide dismutase 

(Heikkila et al. , 1976) . However DDC can also inhibit the copper-dependent 

cytochrome c oxidase in the mitochond1ia. The resulting high-dose oxidants 
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eventually damage mitochondrial energetic function, causing a dramatic decrease of 

ce llular ATP leve! and acute energetic failure (Liu et al., 1996). Depletion of ATP 

and accumul ation of ROS can switch cel! death from apoptosis to necrosis (Eguchi et 

al. , 1997). Moreover, there are also reports that P ARP activity provokes necrosis (Ha 

and Snyder, 1999; Watson et al., 1995) due to DNA strand break-dependent 

activation of P ARP. P ARP consumes NAD and in consequence a iso affects the A TP 

pool (Lee and Shacter, 1999; Filipovic et al., 1999). 

Conclusion 

This study provides further evidence that heat shock increases oxidative stress 

in cell s. This fundamental research gives a very promising profile of the modifier of 

ce l! death and might be useful in cancer control, prevention and cancer therapy. 
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Figure 2.1 (continued) 
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Figure 2.1: Morphological analysis of apoptosis and necrosis in cells following 
exposure to beat shock: modulation by MnTBAP or DDC. Cells (0.3 x106

) were 
seeded and cultured for two days to near confluence in tissue culture dishes 
containing n-MEM and 10% FBS at 37°C. Cells were pretreated with MnTBAP (50 
!lM) for 1 h or DDC (5 mM) for 2 h, relative to respective controls without any 
modulator. The modulator was then removed and cells were heated in PBS-1% BSA-
2 mM glucose at different temperatures (37, 42 and 43°C) for 1.5 h. Cells were 
stained with Hoechst and PI and visualised by fluorescence microscopy 
(magnification 320 X). The percentages of apoptotic and necrotic cells are given 
relative to total cells. Representative photographs (A and B for control and MnTBAP; 
D and E for control and DDC) are shown. Data represent means and SEM from 3 
independent experiments (C for MnTBAP, F and G for DDC) performed with 
multiple estimations per point. a, significantly different for heated cells from 
corresponding control (no modulators) at 37°C. b, significantly different for treatment 
with or without modulators, at 42 and 43°C. p<O.OS (*), p< 0.01 (**) or p<0.001 
(***). 
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Figure 2.2 ( continued) 
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Figure 2.2: Inhibition of beat shock-induced translocation of Bax from 
cytoplasm to mitochondria by DDC or MnTBAP. Following treatment with 
modulators and heat shock, immunodetection of Bax was carried out in cytoplasmic 
(A-D) and mitochondrial (E-H) fractions. Representative blots are shown (A andE 
for control and MnTBAP; B and F for control and DDC). Data represent means and 
SEM from 4 independent experiments for controls and MnTBAP (C, G) and 3 
independent experiments for DDC (D, H). Expression of Bax was relative to 
untreated control cells at 37°C, designated as 1. a, significantly different for heated 
cells from corresponding control (no modulators) at 37°C. p<0.05 (*). 



51 

Figure 2.3 
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Figure 2.3: Beat sbock causes a decrease in mitocbondrial membrane potential: 
effects of MnTBAP or DDC. Following treatment with modulators and heat shock, 
cells were analysed by flow cytometry using JC-1. Representative Facs Scan dot blots 
are shown (A-C). Data represent means and SEM of relative fluorescence intensity 
for JC-1 from 8 or 9 independent experiments for cells pretreated with MnTBAP (D) 
or DDC (E), respectively. a, significantly different for heated cells from 
corresponding control (no modulators) at 37°C. b, significantly different for treatment 
with or without modulators, at 42 and 43°C. p<0.05 (*), or p<0.001 (***). 
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Figure 2.4 ( continued) 

E 

Without MnTBAP 

WithMnTBAP 

G 

2.0 

37 

Cytosolic Fraction 
Temperature ec ) 

42 43 / 37 

CytC < 
D Without MnTBAP 

• With MnTBAP -·~ 1.6 
= ~ .e 
~ 

·.È 1.2 
œ 
43 
-.:::, 

<.,) 

ë 0.8 
Q .. .c: 
<.,) 

s 
è 0.4 

0.0 

37 42 43 

-.~ 16 
fi.) • 

= ~ .e 
~ 

.i!: 1.2 ..... œ 
43 .. -<.,) 

ë 0.8 
Q .. 

.c: 
<.,) 

s 
è 0.4 

0.0 

Temperature re) 

42 

37 

F 

43 

WithoutDDC 

WithDDC 

D Without DOC **a 
• WithDDC 

H 

42 43 

54 

Figure 2.4: Inhibition of beat shock-induced release of cytochrome c from 
mitochondria into cytoplasm by modulators of SOD. Following treatment with 
modulators and beat shock, immunodetection of cytochrome c was carried out in 
cytosolic and mitochondrial fractions. Representative blots are shown (A and E for 
control and MnTBAP; B and F for control and DDC). Data represent means and SEM 
from 3 or 4 independent experiments for cells pretreated with MnTBAP (C and G) or 
DDC (D and H), respectively. Expression of cytochrome c was relative to untreated 
control cells at 37°C, designated as 1. a, significantly different for heated cells from 
corresponding control (no modulators) at 37°C. b, significantly different for treatment 
with or without modulators, at 42 and 43°C. p<0.05 (*), or p< 0.01 (**). 
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Figure 2.5: MnTBAP or DDC attenuate activation of caspase-9 and caspase-3 by 
beat shock. Following treatment with modulators and beat shock, caspase-9 (A, B) or 
caspase-3 (C, D) activity was measured in cell lysates using appropriate fluorescent 
substrates. Caspase-9 or caspase-3 activity was expressed relative to untreated control 
cells at 37°C, designated as 1. Data represent means and SEM from 6 (caspase-9) or 3 
( caspase-3) independent experiments for cells pretreated with MnTBAP (A, C) or 
DDC (B, D). a, significantly different for heated cells from corresponding control (no 
modulators) at 37°C. b, significantly different for treatment with or without 
modulators, at 42 and 43°C. p<0.05 (*), p< 0.01 (**)or p<O.OOI (***). 
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Figure 2.6: MnTBAP or DDC decrease beat shock-induced cleavage of 
procaspase-3. Following treatment with modulators and heat shock, 
immunodetection of procaspase-3 was carried out. Representative blets are shown 
for MnTBAP (A) or for DDC (B). Data represent means and SEM from 4 
independent experiments for MnTBAP (C) or for DDC (D). Expression of 
procaspase-3 was relative to the untreated control cells at 37°C, designated as 1. 
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Figure 2.7: MnTBAP or DDC decrease beat shock-induced cleavage ofPARP. 
Following treatment with modulators and heat shock, immunodetection ofP ARP was 
carried out. Representative blots are shown for MnTBAP (A) or for DDC (B). Data 
represent means and SEM from 4 independent experiments for MnTBAP (C) or for 
DDC (D). Expression ofPARP was relative to the untreated control cells at 37°C, 
designated as 1. a, significantly different for heated cells from corresponding control 
(no modulators) at 37°C. b, significantly different for treatment with or without 
modulators, at 42 and 43°C. p<0.05 (*), or p<O.Ol (**). 
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Figure 2.8: Beat shock-induced ICAD cleavage is decreased by modulators of 
SOD. Following treatment with modulators and heat shock, immunodetection of 
ICAD was carried out. Representative blots are shown from 4 independent 
experiments for MnTBAP (A) or for DDC (B). Data represent means and SEM from 
4 independent experiments for MnTBAP (C) or for DDC (D). Expression of ICAD 
was relative to the untreated control cells at 3 7°C, designated as 1. a, significantly 
different for heated cells from corresponding control (no modulators) at 37°C. b, 
significantly different for treatment with or without modulators, at 42 and 43°C. 
p<0.05 (*), or p<O.OOl (***) . 
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CHAPTER 3: CONCLUSION 

Hyperthermia is a recently developed technique clinkally proven to be valuable 

in cancer therapy. Its cell death inducing effect was considered as a promising field in 

cancer therapy. When hyperthermia is combined with traditional chemotherapy, it has 

surprising effects by damaging and killing cancer cells, leading to the shrinkage of 

the tumors (Dahl , 1994). The underlying mechanisms of heat shock-induced cell 

death usually in volve inhjbition of DNA, RNA and protein synthesis (Laszlo, 1992). 

Identification of the molecular pathways leading to cel! death caused by hyperthermia 

will be very important in the development and clinicat application of this technique. 

It has been previously reported that increased levels of superoxide radical are 

generated in cells treated with hyperthermia (Lin et al., 1991). Furthermore, heat 

increased the cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells 

(Lord-Fontaine and Averill-Bates, 1999). The antioxidant, SOD can detoxify 

superoxide (Fridovich, 1975) and can be inhibited by DDC (Heikkila et al., 1976). 

Based on ali these findings, the study was designed with the hypothesis that heat 

shock could promote an increase in oxidative stress, thus creating a redox imbalance 

in favour of peroxidants. This could be achieveed either by increasing generation and 

accumulation of pro-oxidants or by inhibiting the activity of the antioxidant defence 

system. To determine the role of oxidative stress in heat shock-induced apoptosis, 

MnTBAP, a cell-permeable SOD mimetic was used to detoxify superoxide at the 

intracellular level and DDC, was used as an inhibitor of SOD. 

This study showed that MnTBAP could protect the cells from heat shock-induced 

apoptosis via the mitochondrial pathway and that DDC could induce necrosis instead 

of apoptosis, in CHO cells. By exploring the mitochondrial pathway of apoptosis, we 

determined the involvement of Bax in causing the mitochondrial membrane collapse, 

the liberation of sorne essential proteins from mitochondria, such as cytochrome c and 
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the consequent activation of caspases and the cleavage of P ARP and ICAD in the 

process ofD A damage. 

The project initially examined the morphological analysis of cel! death by 

condensation of nuclear chromatin, a later event of apoptosis. A significant increase 

in apoptotic cel! death was induced by heat shock (42 and 43°C) compared to the 

control at 37°C. o significant increase in necrotic cel! death was observed. When 

cells were treated with MnTBAP before heat shock, the apoptotic cell death was 

significantly reduced compared to corresponding contrais. These resuits indicate that 

heat shock can induce apoptosis and not necrosis in cells and that MnTBAP can 

protect cells from heat-shock induced apoptosis. 

It is weil known that apoptosis can occur by different pathways: the receptor 

pathway, the mitochondriai pathway and the ER mediated pathway. As the 

mitochondria are the major sites of ROS production in the cell, this study focused on 

the mitochondriai pathway. 

At the post-mitochondriai ievel, the reiease of cytochrome c is an essentiai event 

for formation of the apoptosome complex composed with cytochrome c, Apafl and 

procaspase-9. The exact mechanism of cytochrome c reiease is not fu lly understood, 

but it is believed that the opening of the PTP and the formation of channeis on the 

mitochondriai membrane are invoived. The mechanism is that Bax can be activated 

upon receiving apoptotic signais resuiting in outer mitochondriai membrane 

pem1eabilization. The data indicate that the translocation of Bax is invoived in 

altering the mitochondrial membrane potential during hypetihermia (42 and 43°C). 

The translocation of Bax was slightly inhibited by MnTBAP at eievated temperatures 

compared to the corresponding control. 

The mitochondriai membrane potential was altered dramatically in cells treated 

by heat shock. MnTBAP reduced the damage to mitochondrial membrane. The 

decrease of cytochrome c in mitochondria at 42°C and at 43°C was consistent with 

the increase in caspase-9 activity during heat shock. When MnTBAP was 

administered to cells, the activation of caspase-9 was reduced. These findings imply 
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that caspase-9 activation 1s essential for the later events in heat shock- induced 

apoptosis in CHO cells. In the MnTBAP treated cells, the activation of caspase-3 was 

also inhibited. These results are consistent with the morphological analysis data in 

which MnTBAP protects cells at each temperature (42°C and 43°C). However, 

caspase-3 is not the only executioner of the late phase of apoptosis. There are reports 

that in sorne cel! !ines, even in the absence of caspase-3 , the cell s sti ll undergo 

apoptosis. Researchers found caspase-9 is ab le to cleave procaspase-7 instead of 

procaspase-3 and leads to the subsequent events of apoptosis (Degterev et al. , 2004; 

Siee et al., 1999). When cells were treated with heat shock, the decrease ofPARP and 

ICAD, due to cleavage by caspase-3 was observed. MnTBAP inhibits the cleavage of 

P ARP and ICAD at 42 and 43 °C. But there are reports that caspase -7 have been also 

invol ved in the cleavage of ICAD and PARP (Germain et al., 1999; Wolf et al. , 

1999). Further research needs to be done to determine the role of caspase-3, caspase-7 

and caspase-6 in the post-mitochondrial events in heat shock- induced apoptosis . The 

inhibitors of these caspases could be used to clarify their roles mechanism in the 

execution phase of apoptosis. 

The second part of the study was with DDC, an inhibitor of SOD. From the 

hypothesis, we were expecting an mcrease in the apoptosis-inducing effect. 

Surprisingly, from the morphological analysis, DDC induced necrosis rather than 

apo ptosis . This is probably due to stimulation of the production of superox ide by 

inactivation of copper-zinc superoxide dismutase by DDC (Heikki la et al., 1976). The 

resulting hi gher-dose of oxidants generated eventually damage mitochondrial 

energetic function , causing a dramatic decrease in cellular A TP levels and an acute 

energetic fai lure (Liu et al. , 1996). The depletion of ATP might delay the activation 

of caspase and switch cell death from apoptosis to necrosis. 

Data from the immunodetection of Bax suggested that the inhibitory effect of 

DDC is a rather early event. Bax translocation to mitochondria was lower in DDC 

treated cells, and the collapse of mitochondria at 42°C and 43°C was decreased . The 

following event, release of cytochrome c, was also inhibited at 42°C and at 43°C 
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compared to the con·esponding control. The enzymatic activity of caspase-3 and 

caspase-9 were decreased in cells treated with DDC. This could be due to oxidation 

of the th iol active site of the caspases. 

In conclusion, this study demonstrates clearly that oxidative stress bas a role in 

hypetihermia induced apoptosis. MnTBAP, as a SOD mimetic, can protect cells from 

heat shock-induced apoptosis by detoxifying superoxide and by blocking the 

mitochondrial pathway of apoptosis involving cytochrome c release from the 

mitochondria and the activation of caspases in CHO cells. When combined with beat 

shock DDC induces necrosis rather than apoptosis in this cellline. These fundamental 

studi es give a very promising profile of this modifier of cell death and might be 

useful in cancer control, cancer prevention and cancer therapy. 
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