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RÉSU MÉ 

Software D fin ed Networking (SDN ) offre la possibilité de contrôler les réseaux en util
i ant un logiciel fonctionnant sur un ystème d 'exploitation dans un contrôleur externe, ce 
qui offre un maximum de fl exibi lité et de simplicité. OpenFlow ( OF ), une des implémenta
t ion SDI les plu uti li ée, e t présenté comme architecture et plan de contrôle unifié pour 
les réseaux de paquets et de circuits . Dans ce projet , nou proposons exp· rim nt al ment 
deux olu tions bas · es , ur OpenFlow pour contrôler à la fois les réseaux de paquets et les 
réseaux optiques : (1) OpenFlow Message-Mapping t (2) OpenFlow Ext nsion. Op nFlow 
M ssage-Nlapping e t basée ur l'association d mesage OpenFlow à des actions appropriées . 
La deuxième solution que nou proposon , OpenFlow Ext n ion , est ba ée sur l'extension du 
protocole OpenFlow standard en ajoutant d nouveaux me sage pour uporter de infor
mations d 'interconn xion optique au lieu cl 'uti li er des messages OpenFlow standard. Nous 
avons implémeté ces deux olutions dans un ban cl ' ai et nou avons effectué deux expéri
ences : (i) la création de canaux optique de bout en bout. (ii) la restauration de chemin 
optique. L s mesures prise à partir de ce expérience ont utili ées pour l'implémntation 
d 'un simulateur J ava. Ce simulateur simule les performances de ces deux technique ur deux 
topologies de réseaux optiques réels et les compare av c le protocole G fPLS standard . Le 
r 'sultat e t représenté sous fo rmat de graphiqu s comr aratifs pour déterminer la technique 
qui a le m illeur temps d 'établissement de liens, la plus petite charge de contrôle et 1 rapport 
de blocage le plus ba . La fai abilité de ce olution a été vérifée dans notre banc d 'essai et 
leurs performances sont quantitativement ' valuée et comparées dans deux réseaux optiques 
r ' el . 



ABSTRACT 

Software Defined Network (SDN) affords the possibili ty to control networks using software 
running on a network operating system in an externat controller , which provides maximum 
fiexibili ty, simplicity and manageability. OpenFlow (OF), one of the widely used SD im
plementations, is pres nted as a unified control plane and architecture for packet and circui t 
switched networks. Based on this, in this thesis, we experimentally propose two solutions 
based on OpenFlow to control both packet and optical networks: (1) OpenFlow Message
Mapping and (2) OpenFlow extension . OpenFlow Message-Mapping is bas d on mapping the 
OpenFlow messages into appropriate cro -connect act ions. The second solu tion we propose, 
OpenFlow Extension, is based on extending the tandard OpenFlow protocol by adding new 
messages to carry the cross-connect information instead of using standard OpenFlow mes-
ages. We implemented these two solu tions on a tes tbed and conduct two experiments: (i) 

End- to-End lightpath e tablishment. (ii ) Backup lightpath restoration. The measurements 
taken from these experiments are used in writing a custom-built J ava event-driven simulator. 
This simulator simulates the performance of these two techniques on two real optical network 
topologies and compare them with t he standard GMPLS protocol. The result is depicted 
with comparative graphs to make it easy to determine which technique has the fastest estab
li hment t ime, lowest control load and lowest blocking ratio. The overall feasibili ty of these 
solu t ions is assessed using our testbed and their performances are quantitatively evaluated 
and compared on a real optical network. 
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INTRODUCTION 

Over v iew 

The exponential growth of Internet traffic requires network providers to construct efficient 

networking systems. These large networks need a complex and sophisticated control system 

especially when it includes two different infrastructures. One solution to manage this problem 

is to reduce the differences in network structure, for example, most network providers have 

removed telephony core switches and replaced them by using voice over IP services. 

Today 's networks are composed of an optical domain (circuit-switched networks) and 

an electrical domain (packet-switched networks) . These two network structures operate on 

different network layers: circuit-switched networks operates on layer one and two, while 

packet-switched network operates on layer three and four (Figure 1). However , electrical 

OSl Model 

Application 
Layer 7 

Presentation Layer 6 

Session Layer 5 

,- ------ ------
1 Packet-switched Network ) 

1 1 

1 • • 1 : . : ./ .....___ -·- - - - ~ - - - - •-. . . . . . . . . (- : -- -- r- --- ; -\ 
1 1 

1 ~ ptical Cl rcuit-switched Network 
..____ ___ _ _______ / 

Transport 

Layer 3 

Data-Link 

Physical Layer 1 

Figure 1: IP and Transport etworks Operating Layers 

domain is more flexible and easier to manage, service providers can not replace optical deviees 

with electrical deviees because optical network has many benefits over electrical network. 

Sorne of these advantages are: 
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• Optical network equipment support up to 10 times the capacity as electrical equipment 

support. 

• Optical transmission supports very long distances without signal attenuation. 

• Optical transmission is interference free which makes it more robust . 

Most of infrastructure providers use two different control plane, one for electrical domain and 

another for optical domain. 

The separation between these two networks is because of the different management 

methodology of establishing a data path. Optical domain which is circuit-switched network 

operates on layer 1 and 2 of OSI model, while electrical domain is packet-switched network 

and it operates on layer 3 of OSI model. Another difference between the two domains is 

packet-switched network meant to be distributed control, each router has its own locally cre

ated control strategy, while on the other hand circuit-switched network is mostly centralized 

control. This separation presents a lack of common control mechanism which supports both 

network domains. 

Most Infrastructure providers use two control mechanisms to operate both networks which 

is more expensive and inefficient than operating one converged network with a unified control 

mechanism. Sorne efforts have been done to unify the control and management of heteroge

neous networks. The most mature and widely common example of these efforts is Generalized 

Multi-Protocol Label Switching (GMPLS)(Mannie, 2004) protocol which is very complicated 

and not even commercially adapted. Even though it was used , GMPLS did not completely 

unify the control mechanism. Indeed, it preserves the separation between the two networks. 

Motivation 

Service providers are obliged to own and operate two distinct wide-area networks (packet

switched and circuit-switched networks). For example, traditional service providers like 

AT&T, Verizon, British Telecom, Deutsche Telekom, NTT and others are all tier 1 and 

tier 2 ISPs (wikipedia, 20 14). These heterogeneous networks require two different design and 

management teams even within the same organization. For sure, owning and operating two 

separate networks is inefficient and it causes great management overhead. The coordination 
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between these two teams is also another challenge to defeat. It also increases the cost of net

works management , operating, designing, planning, and maintenance which effect direc tly 

the Total Cost of Ownership (TCO). 

Networks are built basecl on closed-systems. Routers and witches from the same vendor 

have the ame private features and services. These features are closed and kept secret in ide 

each venclor 's procluct. This secrecy and closecl-box characteristic of network nodes features 

and ervices slow clown the networks innovation and improvements . Using proprietaries man

agement systems by each venclor creates barriers on face of network development in both IP 

and t ransport networks . Thus, it is clear that managing two separate networks operating 

clifi'erently is inefficient . 

Software defined networking (SD ) proposes a new architecture capabl of managing 

different networks with different infrastructures even though with different operational layer. 

This emerging concept , SD , encourages us to present a common abstract that fit s with both 

types of network and provides a common architecture for controlling both networks . 

Sorne efforts have been clone to present SD -based UCP to control packet and circui t 

switches using the most commonly known protocol (OpenFlow). Most notably, PAC.C Das 

et al. (2010) bas experimentee[ with alternative approaches. Other papers Liu et al. (2011 , 

2013 , 2012) have pres ntecl similar work as PAC.C by providing an experimental study or a 

Proof-of-Concept to support the use of OpenFlow as a unifi ed control plane. However , Gior

getti et al. (2012) presents a comparison study between OpenFlow and GMPLS solu tions 

based on a imulation. In this work , we propose two approaches based on OpenFlow protocol 

to control both optical and electrical networks. Then, we experimentally compare the e two 

solutions with a real implementation of G iPLS approach. To the best of our knowledge, this 

is the first work who considers both OpenFlow and GMPLS UCP solutions, and compare 

th rn via testbecl experimentation. We concluct a real case study of implementing end-to-encl 

lightpath and a lightpath restoration by establishing a clynamical configured backup light

path. Finally, we conduct the comparison between the OpenFlow solution and the GMPLS 

approach by simulation on two real network topologies. 
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Goals 

As we discu sed before, managing two separate networks operating differently are inefficient. 

Thus, in this thesis, our main goal is to find a way to manage these heterogeneous networks. 

In this thesis, we are working on finding a common control mechanism to manage both 

networks. These approaches are ba edon SD T technology which provides a common abstract 

to fit both networks. This control mechanism should be able to manage both packet-switched 

network and circui t-switched network. This approach bas to provide a simple and efficient 

method to manage both networks. 

Contribution 

In this the i , two solu tions to converge both types of networks is proposed. This proposai 

is based on the concept of Software Defined 1 etworking (SDI ) (open networking found ation, 

2013). One of the widely used SDN protocols is OpenFlow protocol. We conducted an 

experiment of implementing OpenFlow protocol to control both circui t-switched and packet

switched network . Two techniques of u. ing OpenFlow have been implemented : (1) Open

Flow message-mapping. In this technique, we map the OpenFlow messages into a ui table 

lightpath setup command (using TL1 command (CIS CO, 2012b)) (2) OpenFlow extension. 

In this technique, we extend the OpenFlow protocol by adding new messages to support 

the lightpath specification . We used these new mes ages to carry the reques ted lightpath 

information . In both techniques we implemented an OpenFlow agent to translate between 

OpenFlow mes ages and the TL1 command and execute it on the hardware switches (Fig

ure 2). In the laboratory, we conducted a simple network which consists of 2 Cisco ONS 

15454 DWDM Reconfigurable Optical Add-Drop Multiplexer (ROAD 1) switches and one 

0 S 15454 DWDM Optical Add-Drop Multiplexer (OADM) switch connected a in figure 3. 

Two electrical-optical-converters are connected to each side of the Optical network (to ONS2 

and ONS3). Each electrical-optical-converter is connected to an OpenFlow switch. Each 

OpenFlow switch i connected to a client (Figure 3). 

Two experiments have been conducted for each technique: (i) End-to-End lightpath estab

lishment. (ii) Backup lightpath restoration. The measurements taken from these experiments 

are used in writing a custom-built J ava event-driven simulator . The objective of this sim

ulator i to imulate the performan ce of these two technique on two real opt ical network 
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topologies and compare the result with those obtained by simulating the GMPLS protocol. 

The result is depicted on comparative graphs to make it easy to determine which technique 

has the fas test establishment time, lowest controlload and lowest blocking ratio. 
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STRUCTURE OF THIS DISSERTATION 

This thesis is laid out as follows. 

Chapter 1 introduces the infrastructures of the two network . Then, it states the prol lem 

of managing thi heterogeneous network , after that it introduces a general information about 

the protocol used to manage this problem, and introduces the existing approache address 

this problem. 

Chapter 2 explains the propo ·ed solution to address this problem explaining each corn

panent we created in this research project. T hen, it explains how each technique use the 

components we created . Thi chap ter also presents a brief explanation of how GMPLS oper

ate , and the messaging types used in this solu tion for the pm·pose of comparing it with our 

propo ed olution . 

Chapter 3 discu e the two experiments conducted using our proposed olu tion . 

Chapter 4 presents the custom-built Java event-driven simulator algori thms for each so

lution. It presents also the different topologies w used to run the simulator on. T hen it 

discusses the results got from this simulator . 

F inally, we present the conclusions of our work and suggest directions for future research 

in Chapter 5. 



CHAPTER I 

PRI CIPAL C O CEP T S 

Thi ·hapter 1 resents the pr incipal conce1 ts of the IP network and the tran port network. 

Then it presents the two ole! approaches to addr the controlling of heterogeneous network. 

Finally, it pre. ents the software-defined network concept which we build our solutions on. 

1.1 C ircuit-switched and Packet-Switched e twork 

Wide area network is the backbone of the Internet whi h is IP packet-switched network. 

Packet ar e switched bop-by-hop from source to destination through IP nod es . However , the 

packets may be transp ortee! physically on optical circuit switche and fib r (Figure 1.1 ). In 

orne articles this und rlying circuit-switched network is named as the Transport Network. 

We will take a closer look a t th two network in the following sections. 

1.1.1 Internet Architecture 

Internet components (layers, naming, addressing, protocols etc.) have been widely cov

ered in ev ral book and thi thesis i not about the Internet architectur , but we will give 

a brief introduction about it . Internet is a collection of interconnectee! IP networks. The 

networks that compose Internet have independent ownership , admini tra tion and manage

ment. These networks use pecial kind of routing protocol capable of adverti e IP addresses 

information b twcen these domain , known a Autonomous Systems (A )( \!V ikimedia. Foun

dation , 2003) , and capabl of choosing routes across routing domains. 
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IP networks are based on distributed control mechanisms. These control mechanisms re-

quire routing protocols (I-BGP, OSPF etc) and sometimes signaling protocols (LDP, RSVP 

etc) implemen ted in each router. Control mechanisms are automated after ini tial configura

tion for each node (either manually or using scrip ts) . These automated mechanisms allow 

network nodes to automatically discover their neighbors, the network topology, exchange 

routing information, f01·ward packets, learn about failures and re-route packets to avoid this 

failure and try to guarantee the flow continuity. 

etwork services or functions in IP networks have a distributed implementation too. Each 

network-node-vendor implements its features exclusively and nonstandard even though they 

are using standard control mechanisms. 
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In case of congestion, IP network performs badly. Even though the public IP net

works grant best-effort Quality-of-Service (QoS) , sorne Service Level Agreements (SLAs) and 

Quality-of-Service (QoS) guarantees are not applicable easily. 

IP networks management requires configuration, typically via Command Line Interface 

(CLI), monitoring, auditing, and maintenance. In general, IP networks are hard to manage. 

1.1.2 Transport Network Architecture 

The main function of a transport network is to provide communication between two 

geographie locations presented by network nodes. This connection may be established by 

a time-slotted circuit like Time Division Multiplexing (TDM) or wavelength-circuit Wave

length Division Multiplexing (WDM) figure 1.2. The IP network is an overlay layer on the 

transport layer. 

'11-ansport networks also support several overlay networks or client networks, e.g.: IP net-

®~------@) 

Wavelengths channels 

TDM 

switch 
ROADM 

Figure 1.2: IP Network Overlay Transport etworks 

works, Public Switched Telephone Network (PST ), private-networks, etc. (Figure 1.3). 

More information about transport network architecture is described by the ITU in (ITU, 
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2000). 

Transport Network 

Figure 1.3: The Overlay etworks suppor ted by Transport etwork 

Transport networks are not like IP networks, they are always intra-domain controlled and 

not automated-control. The transport networks are divided into partitions called "demains". 

Each domain is controlled separa tely and manually. They have Element and etwork Man

agement Systems (EMS/ NMS) and Operations Suppor t Systems (OSS) which perform all 

control and management. These systems are not programmatic, vendor proprietary systems, 

and manually configured (Figure 1.4) . Providing services in a transport network is very 

complicated and long manual procedures. For example, providing a da ta-pa th between two 

end-points requires several steps: First , providing the source and the destina tion , planning 

the path from the source to the destination. Then , each provider executes the plan by man

ually configuring their equipment using their corresponding m anagement systems along the 

pa th . Finally the test teams verify the path . Normally, this process takes days or maybe 

weeks, and the path created is st at ic and stays in place for months or years. 
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Figure 1.4: Transport Network Control & Management 

1.2 Existing Approaches 

In this section, we discuss two points of view of addressing the IP and transport networks. 

The first point of view, as we discussed before, is to eliminate circuit switching between 

network nodes. The second attempts to unify the control and the management for bath IP 

and transport networks. 

1.2.1 IP over WDM 

In this point of view, we can achieve our goal, managing one homogeneous network, by 

eliminating the circui t switching components in network. As stated before in section 1.1.2, 

transport network suppor ts many networks as overlay services (Figure 1.3). One example 

which has almost been eliminated is PSTN by moving traditional voice services to IP net

work instead of circui t-switched network on bath end-user and service provider 's core side. 

Meanwhile, private networks are moving to packet-switched networks based solutions by em-
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bracing the Virtual Private etworks (VP s) . It is clear that customers and service providers 

are moving to eliminate circuit switching components or nades and trying to find a packet 

switching substitute for their requirements Computerworld (2000) ; Das et al. (2010). In this 

case, in the future the Internet will be the only client uses the transport network Figure (1.5) . 

AU Services 

Figure 1.5: IP over WDM scenario for the Future of the Tetworks 

In this scenario , it is logical to ask if circuit-switched underlying transport networks are 

required or they can be substituted. As we mentioned befor·e in the overview, circuit-switched 

networks are very useful and have many benefits which make them indispensable. Packet

switched networks are al ways more expensive than circuit-switched networks b ecause of their 

complicity of management and the huge capability of optical switches and optical fib ers. 

Circuit switching switches are much more scalable; a circuit switch can switch much higher 

data rates (about 10 times more than packet switching switch) , and consume much less power 

than an electronic packet switch (about 1/ 10 times less than packet switching switches). In 

general, optical circuit-switched networks are faster , simpler and more space efficient. They 

also have higher capacity, lower cast and lower power consumption than electronic packet

switched network. Therefore, the two networks must work together on a sui table and efficient 

control system. 
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1.2.2 GMPLS as a Unified Control M echanism 

Using SD to create a unified method to control packet and circui t switches is no t the first 

approach to control both networks. GMPLS (Mannie, 2004) is the most commonly known 

as a unified control mechanism. GMPLS has standardized within the IETF (since 2000). 

Generalized Multi-Protocol Label Switching (GMPLS) was designed as an extension of 

MPLS to offer a unified control plane (UCP) for different networks, packet and circui t switch

ing networks. This approach aims to use the capabili ties of MPLS as a labeling protocol and 

extend this feat ure to work on circuit-switched networks. MPLS had a well-developed control 

plane based on the IP network. Thus based on this distributed control plane, GMPLS was 

built as a unified cont rol plane. GMPLS extends distributed methodology, Routing protocol 

(OSPF-TE) and signaling protocols (RSVP-TE) to control circuit switches (Banerjee et al. , 

2001; Farrel and Bryskin, 2005; Mannie, 2004). 

GMPLS has extended MPLS to include Time-Division Multiplex capabilities, Lambda 

Switch capabili ties or Wavelength-Division Multiplex Switching capabilities as well as the 

Packet switching capabili ties and Layer-2 Switching capabili ties inheri ted from MPLS. Fur

thermore, GMPLS eliminates the need of an operator , the entire network can be au tomated. 

GMPLS is a very mature protocol and it was standardized more than a decade ago. 

However , it still was not industrially implemented by equipment vendors because of its com

plexity. GMPLS has not been seen yet commercially deployed as a unified control plan. In 

fact , it is not even deployed as a control plane for transport network according to these ar ti

cles(Das t al. , 2012; lightreading.com , 2011 ). GMPLS is a distributed protocol. This featw-e 

reveals many problems with network stability and the control simplicity while most network 

equipment vendors prefer centralized control solution . 
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1.3 SOFTWARE DEFINED NETWORKING (SDN) 

The traditional network node consists of built-in services and protocols. This hierarchy 

combines the control plane and the datapath in one box (Figure 1.6). 

This hierarchy causes a huge limitation of innovation in real-world networks because the 

enormous installed base equipment and protocols. The unwillingness to experiment with 

production traffi.c is also an obstacle for the researchers. This limitation has created a high 

barrier for new ideas. For example, it is almost impossible to practically experience new 

routing protocol or alternative to IP protocol. Clearly the result is newest ideas from the 

network researchers which do not have chance to be tried or tested. 

----------- .... , 
' / 

... _____________ .... 

Figure 1.6: The Traditional etwork Node hierarchy 

Many networking efforts are clone on the field of developing programmable networks. This 

work is based on the isolation of the datapath (data plane) and the applications responsible 

for controlling this datapath (Figure 1. 7). 

The slicing in the virtualized programmable networks allows the researchers to try new 

ideas which increase the rate of innovation McKeown et al . (2008a). Figure 1.8 shows how 

the production network could be used to carry the experimental flows without interference. 

Programming network nodes provide the capabilities of network slicing, virtualization, 
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Figure 1.7: The Software-Defined etworking etwork ode hierarchy 

Figure 1.8: Software-Defined Networking Network Node hierarchy 

and separation, which accelerate network innovation. Even though, SDN has sorne obstacles 

to defeat . Commercial switch and router vendors do not usually provide an open software 

platform. The network equipment vendors do not accept to open up their boxes, as they 

have spent many years developing their products and enhancing their products performance. 

In addition, open systems will lower the barrier for new competitors. A few open software 

platforms are already existing, for example a PC with several network interfaces and an 

operating sys tem support packets routing b etween interfaces which most operating systems 

do Naous et al. (2008) . This model is effective, but the problem is the performance. A PC has 

limi ted number of ports to install network interfaces on it , and the packet-processing speed 

is very limi ted (PC typically support maximum of lGbit / s while closet switches process over 
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100Gbits/ s of data and increasing). Sorne network equipment providers started to provide 

equipment with SDN support , for example CISCO , HP, Juniper and NEC. 

In brief, in SDN the configurations of network nades, switches and routers, are done 

by software (controller) instead of manual involvement of the network administrator . Hence, 

SD offers error-free network reconfiguration method, as well as high availability. Indeed, if a 

problem occurs in the network the automated recovery mechanism is triggered by the software 

allowing faster convergence compared to the manual approaches. SDN has a centralized 

knowledge about the network McKeown et al . (2008a), so the convergence process is faster 

and more accura te than distributed method. 

1.3.1 OPENFLOW 

We briefly outline the main characteristics of OpenFlow. More details and exhaustive 

documentation are available in the OpenFlow white paper (McKeown et al ., 2008a) and in 

the OpenFlow specification (Consortium et al. , 2009). 

OpenFlow is an open standard that was developed several years ago at Stanford University 

in arder to enable researchers to run experimental new protocols and technologies on real 

networks, without interrupting the existing traffic or network availability (McKeown et al. , 

2008b). In a traditional network, the data pa th and the control path occur on the same deviee 

(switch , router). Open Flow separates these two functions; OpenFlow switches perform the 

data plane funct ion and OpenFlow controller implements the control plane intelligence and 

communicates with the OpenFlow switch via a secure OpenFlow protocol channel (Figure 

1.9). 

The main goal of SD is the separation between the control plane and the data plane 

which OpenFlow algorithm implemented as in figure 1.10 (Consortium et al. , 2009 ; Open

Flow, 2011). Based on this goal the controller and the switch have separated tasks to do. 

An OpenFlow Switch consists of one or more flow tables and group tables, which perform 

packet lookups and forwarding, and an OpenFlow Channel that is connected to an external 

controller . Each Flow table in the Switch contains a set of flow entries; each flow entry con-
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Figure 1.9: OpenFlow network 

Figure 1.10: The separation between data plane and control plane using OpenFlow 

sists of match fields, counters and a set of actions. These actions associated with each flow 

entry tell the switch what to do with the packets match this flow entry. The most OpenFlow 

actions basic types are: 

• Forward the flow packet to a given port (or ports in case of multicast). 

• Encapsulate the packet and f01·ward it to the controller. This happen mostly with the 

first packet of a new flow, so the controller could decide if the flow should be added to 

the flow table, or to audit specifie flow. 

• Drop flow packets. This could be used to limit deniai of service attacks. 

• Forward the flow packets through the normal processing procedures. This action is 
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useful for separating the flows which do not belong to OpenFlow traffics. 

The basic idea is to use the flow tables that most switches and routers contain. OpenFlow 

uses this common function (each switch has a flow table) and provides an open protocol to 

program the flow table by sending flow entries with associated actions to the switch and 

reading statistics about these flow entries (Figure 1.11). 

.. 

... .. ...... -............ 

Network Controll er 

L!:J ...... L!:J 
• •• ······.·· [ Network Operating 1 

... ·· .. · · System 

.. ························::::::...-······ 

Figure 1.11: Packet flow through an Open Flow switch 

When the OpenFlow switch receives a packet, it sear·ches for a match field in its flow table. 

If it finds a match, first it updates the counters. Then, it fetches the actions associated with 

this flow entry and executes these actions on this packet . If it did not find a match, it 

continues with all flow tables. Finally if no match exists in all flow tables, it either drops 

the packet or sends it to the controller based on the table configurations. This algori thm is 

depicted in the flow chart in figure 1.12. 

OpenFlow protocol messages are restricted in three categories (Consortium et al. , 2009); 

controller-to-switch, asynchronous, and symmetric, each with multiple sub-categories: 

• Controller- to-swit ch These messages are initiated by the controller and may or 
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F igure 1.12: Packet flow through an Open Flow switch 

may not require a response from the switch. They are used for directly managing or 

inspecting the state of the switch . The main controller-to-switch message types are: 

Features, Configuration, Modify-State, R ead-State, Packet-Out, and Barrier. 

• Asynchronous : These messages are sent by the switch without the controller solici

tation. Switches send asynchronous messages to the controller to denote packet arrivai, 

switch state change or error. The four main asynchronous message types are: Packet-in, 

Flow R emoved Message, Port Status M essage, and Error M essage. 

• Symmetric : These messages are initia ted by either the switch or the controller and 

sent without solicitation. The main symmetric messages types are: Hello, Echo R equest 

and Echo Reply. 

OpenFlow is an independent protocol and available on currently running networks. These 

advantages put it at the head list of network virtualization techniques which includes sev

era! ambitious worlc like The Global Environment for etwork Innovations (GENI) (geni.net, 

2014) and Federated E-infrastructure Dedicated to European Researchers Innovating in Com

puting network Architectures (FEDERICA) (fp7 federica .eu, 2014) . The main characteristics 

of the OpenFlow that make it the best choice are: 

• Separation between contr-ol plane and data plane : The key advantage of the Open

Flow protocol is the separation between data flow and control flow (OpenFlow, 2011), 
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(Consortium et al. , 2009). 

• Centralized : Most of infrastructure providers prefer centralized solution, which offers 

them simpler management and easier administration than distributed solution. 

• Simple and Flexible : Because of the centralized nature of OpenFlow, this proto col is 

easy to manage and more flexible. 

An example of the simplicity and separation attained by the OpenFlow is: if a researcher 

invents a new routing protocol X-OSPF , for example, and he wants to test it , he can impie

ment his routing protocol on the controller reading the centralized information available at 

the controller instead of implementing it on each network node, and he only needs to send 

the flow entries to the network nodes (Routers and Switches). 



CHAPTER II 

PROPOSED SOLUTIONS 

In this chapter we present our solutions based on OpenFlow protocol as a unified cont rol 

plane for both optical and electrical networks. OpenFlow supports the separation of data 

and control planes for circuit and packet networks. The treatment of L4-L2 fl.ows provide a 

simple flow abstraction that fi ts well with both types of networks. Renee, OpenFlow presents 

a common platform for controlling the underlying switching hardware, these fl.ows of different 

granulari ty, while allowing all of the routing, control and management to be defined outside 

the datapath , in the OpenFlow controller as extended network applications (Figure 2.1 ). 

Q)JenFÙ>)w 
/protocol, 

.!· · ..... 

)

Unified Control 
Plane 

)
Un.ifying 
Abstraction 

)
Data Plane 
Switching 

Figure 2.1: Unified architecture of a converged Packet-Circuit network 

Two solutions for using OpenFlow pro tocol as a unified control plane on both optical 

and electrical domains are presented in this thesis. These techniques is compared with the 

standard GMPLS technique and presented in this research. The first solution is OpenFlow 
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m essage-mapping. ln this solution we map the OpenFlow standard messages (like F10W

MOD message) into optical domain commands to create or delete the lightpath, and translate 

the optical switch ports state into OpenFlow FeatureReply message. Otherwise, for the sec

ond solution OpenFlow extension, new messages is added to the OpenFlow protocol. These 

messages have the capabilities to carry the 11/ 12 switching information explicitly. The added 

messages to OpenFlow P rotocol is explained in details in the OpenFlow Circuit Switch Spec

ifica tion Das (2010) 

In bath solutions we implemented an OpenFlow agent to translate the OpenFlow messages 

toits proper T11 commands (Headquarters, 2003) to be executed on the optical switch using 

telnet channel. The OpenFlow Controller has been extended by adding a new application 

we call it path computation element module (PCE). This addition allows the controller to 

calculate the lightpath for the requests. Then, it sends the appropriate messages to the 

proper optical switches (Figure 2.2) . 

In this section, we fi.rst explain the OpenFlow channel, the OpenFlow optical agent and 

Path Computation Element(PCE) 

OpenFlow ControUer 

OpenFlow 1 TL 1 

Trans la tor 

OpenFlow connection 

1 OpenFlow Standard 1 

Contribution Optical Switch 

Figure 2.2: OpenFlow Agent 

the PCE algorithm. Following that with detailed presentations of our solutions. Finally we 
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present the GMPLS with PCE lightpath mechanism for the purpose of comparing it with 

our solutions. 

2.1 OpenFlow channe l 

OpenFlow channel is a key part of either the controller or the switches. In our code we 

used the (openflow) message library which is used in Beacon Java-based OpenFlow controller. 

This Message Library is a Java implementation of the OpenFlow specification (Consortium 

et aL, 2009) . This Message Library encodes and decodes OpenFlow messages from Java rich 

data types into the bytes stream and vice versa (Figure 2.3). 

L t 
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u ~ f ~ I\2 Byte stream 

- - - - - - - 01 69 F6 8A . . . .. 54 EF - - - -
'----'--=-'..::......=._::.::..::..::,L~i~...::....c..-=:'----J 

-o -o 
0 0 
u u 

~ f 

Figure 2.3: OpenFlow Channel 

In order to create and encode an OpenFlow message, the application Uses the Message 

Factory class to create a message of the required typ e. Then , it encodes this message into a 

byte-stream using Message Factory class, to be transmitted over the media. The other side 
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( controller or switch) will receive the byte-stream. Then , it uses the Message Factory class to 

decode incoming byte-stream into an OpenFlow messages of their J ava rich data type form 

(Figure 2.4) . 

Message 

Factory Class ~Encode-

fr 
t 
'"0 
0 
(.) 
Q) 

~ Messages Byte stream 

01 69 F6 8A .. . . . .. . .... .. 54 EF - - - -

Figure 2.4 : OpenFlow Message Factory 

Table 2. 1 shows a sample code to create a message using the Message Factory class . First, 

in line 1 we create a message factory instance (BasicFactory). Then , we have this factory 

create a message of type OFType.FLOW_MOD. After that, we set the message proper ties 

(line 03 - 20) including the addition of the relevant actions list. Finally, we convert this 

message into byte-stream by calling the stream.write() function at line 22 . 
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01 Bas icFactory factory = new Bas icFacto r y (); 

02 OFFlowMod fm = (OFFlowMod) fa cto r y. getMessage (OFType.FIDW_MOD) ; 

0 3 fm . s e t B u ff e r I d ( b u ff e ri d ) ; 

04 fm .setCommand(( short ) 0) ; 

05 fm. setCoo ki e ( 0); 

06 fm. set F l ags((short) 0); 

07 fm.s et HardTimeo ut(( s hort) 0); 

0 8 fm . s e t I dl eT i rn e o u t ( ( s h o r t ) 5 ) ; 

09 match. set i nputPort (p i . get i nPort ()); 

10 match . setW il dcar ds ( 0) ; 

11 fm. setMatch (match) ; 

12 fm. se tOu tPort ( (short) OFPort .OFPP _NONE . getVal ue ()); 

13 fm . s e t P r i o r i t y ( ( s h o r t ) 0 ) ; 

14 OFActionOutput action = new OFActionOutput (); 

15 action.setMaxLength((short) 0) ; 

16 action. setPort ( outPort); 

17 

18 

List < OF Act ion> actions 

act i ons. add (act ion); 

19 fm . set Act ions ( ac t i ons ) ; 

new Array List < OFAction > (); 

20 fm . set L engt h (U16. t ( OFFlowMod .l\IIINIMUM_LENGTH 

21 + OF Act ionOutput .l\llii\TIMUM_LENGTH)) ; 

22 st r eam. wri te (fm); 

Table 2.1: Message Factory Example 
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2.2 OpenFlow Optical Agent 

As mentioned ab ove, the main role of this agent is to translate the op ti cal channel requests 

and Op nFlow messages into TLl commands to be executed on optical nodes. This agent is 

added to each opt ical node and acts as a virtual switch. It consists of an OpenFlow channel 

to communicate with the OpenFlow controller , OpenFlow / TL l Translater to con vert Open

Flow messages into TL l commands, Ports-Emulation module to emulate the optical node 

ports and send this information to the controller to update ports database (Figure 2.2). This 

information allows the controller to calculate the lightpath. 

2.2.1 Ports-Emulation Module 

This module acts like a virtual switch by creating a list of virtual ports. Each of the e 

virtual ports emulates a physical port of the optical switch (Figure 2.5). This module sends 

thi information to the controller as a way of realization of the optical switch. This mod

ule also manages these emulated ports status information 1. Tabl 2.2 shows the Java code 

used to create a Feature Reply Message and encode all the virtual ports information . First , 

it make the Message Factory create a FeaturesReply message. T hen, it sets the message 

properties (Line 4-8). After that , it i terates on all physical ports and includes their status 

into the message (Line 9-19) . Finally at line 20 , it returns the message. 

2.2.2 OpenFlow / TLl Tra nslator 

This module is responsible for translating the OpenFlow messages and actions into ap

propriate commands. Then, it executes these commands on the optical switches. It creates a 

telnet communication channel with the optical switch to send these TLl commands through 

it . The most common operations we use TLl commands for are creating lightpath , deleting 

lightpath, retrieving lightpath status, and ret rieving port status. The TLl command. used 
1 Port discovery is out of scope of this research project . 
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01 pr o t ec t ed OFMessage c r eat eF ea tur eR eply Msg () { 

02 OFlVIessage fea tur eMsg = f ac tor y . ge tM ess a ge (OFType .FEATURES_REPLY); 

03 OFF ea tu res R eply fR ep ly = ( OFF ea t ur es R ep ly) fea tur eMsg ; 

04 fR ep ly . se t D a tapat hid ( path l d) ; 

05 fR ep ly . se tBuffe r s (lOO ); 

06 fR ep ly . se tT ab les ( (b yte) OxOl ); 

07 fR ep ly . se tCapab ili ti es ( OFCap a b ili ti es .OFPC_FLOW_srATS . ge tVa lu e ()); 

0 Li t < OFPh ys icalP ort > port s = new ArrayLi s t < OFPhy sicalP ort > (); 

0 9 f o r ( i n t i = 0 ; i < v i r t u a 1 P o r t s . 1 en g t h ; i ++) { 

10 \\ It e r a t e on a li port s 

11 OFPhy sicalPort port = new OFPhys ica lP or t ( ); 

12 port. se t Hardw a r e Addres s (v ir t u a l P o r ts [ i ] . g e t Hardw a r eAcldr ess ()) ; 

13 port. etName( v ir tu a lP ort s [ i ]. ge tSho r t 1am e ()) ; 

14 p o rt. se tPor tN umb er ( (s h o rt ) vir t u a lP o r ts [ i ]. getNumber ()) ; 

15 port . se t C u r r ent F e a t ur es ( 0 FP or tFea t ur es . OFPPF _FIBER. ge t Va lu e ( ) ) ; 

16 p ort. se tS t a t e ( v irtu a lP ort s [ i ] . gc tOFP or t St ate ( )) ; 

1 7 port s . ad d ( po r t ) ; 

1 } 

19 fR ep ly . se tPort s (port s ) ; 

20 r e t ur n fR eply; 

21 } 

Table 2.2: Using Message Factory To Create a Feature Reply Message 
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1 V eth L· ~ Veth 5 
Veth 2- Virtual Open Flow ~ Veth 6 
Veth 3- switch ~ Veth 7 
Veth4- ~ Veth 8 

Figure 2.5: Ports-Emulation Module 

in our module are discussed in details in Cisco ONS TL1 Command Guide (CISCO, 2012b) . 

Table 2.3 shows a sample of J ava code responsible for executing the TL1 create lightpath 

command. This function receives the ports information from the OpenFlow message. Then, 

it opens a TL1 session (Li ne 6). After that , it crea tes TL1 Comma nd abject and activates 

the user (Line 7-8). At line 11 , it creates the command string. Then at line 13, it sets the 

command string. At line 14, it sends the command through the TL1 session, created before 

at line 6, and retrieves the execution result . 
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01 priv ate b oo lean addLig h tPath(String portsconnect i o n ,s hort d ir ec tion ){ 

02 \\ p o r tsconnect ion = eg= 

03 \\ CHAN-1- 14-28-RX&LINEWL-1- 17-2-RX- 155 6.55 

04 \\ ,LINEWL-1- 17-2-TX-1556.55&CHAN-1- 13-28-TX 

05 try { 

06 TL1Session t l1 sess i on = new TL1S ess ion (t l 1S e r ver , t l1P o r t); 

07 TL1Command req = new TL1Command (); 

08 r eq = TL1Command.act_user(t l1 Username, tllP wd , TID , " 300") ; 

09 TL1ResponseMsg msg = ( t l1 sess i o n . send ( r eq)) [ 0] ; 

10 System. ou t. prin t ( 11 TL1 l og i n mesg : \ n 11 + msg); 

11 String commandStr = 11 E ~-OCHl\lC: 11 +TID + 11
:

11 + portsconn ec tion 

12 + 11 :30 5:: " + dir ec tion + 1WAY:CKTID=test ; 11
; 

13 r eq . setCommand ( commandStr ); \\ 11 ,ClVJDVJD8=FRCD; 11 

14 TL1ResponseMsg msg1 = (tlls ess i o n .send ( r eq)) [O] ; 

15 System . o ut. print ( 11 ENT-OCHNC r eply msg: \ n 11 + msg1) ; 

16 } catch (Except ion e) { 

17 Syst em. er r . pr i nt l n ( 11 Unab le to co n nect to TL1 agent ( serve r ) 11
); 

18 e . printS tackTr ace (); 

19 r e turn f a l se; 

20 } 

21 r et urn true; 

22 } 

Table 2.3: Executing TL1 Create Lightpath Command on the Optical Switch 
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2.3 Path Computation Element (PCE) 

The objective of this algorithm is to compute a lightpath between source-destination pairs 

in order to create a fully connected logical topology (Tintor and Radunovié, 2012). We have 

created a Traffic Engineering Database (TED) to save the network topology information. 

Thanks to the centralized management of the OpenFlow Controller, the TED is always up

to-date. TED will be updated in case of lightpath setup and release (port status changes). 

Two modules are implemented to achieve our goal ; Executor and ONS Adapter (Figure 2.6). 
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Figure 2.6: Path Computation Element workflow 

2.3.1 Executor 

The obj ective is to ensure the avoidance of using one wavelength more than one time in 

the same fiber and the assurance of the wave length continuity through the lightpath. Each 
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wavelength carries traffic between a source destination pair. Therefore, multiple wavelengths 

are reserved in a single strand of fiber for establishing multiple lightpaths through one fiber. 

These connections between the nodes in a WDM networks are done in two steps: 

• Routing: Dijkstra Algorithm is used in order to find the shortest path between each 

node pair. This algorithm is often used in routing and as a subroutine in other graph 

algorithms. It solves the single-source shortest path problem for a graph with non

negative edge path costs. In our case, we are interested in a network topology that 

contains both OpenFlow switches and Opt ical Network Switches (ONS). 

• Wavelength Assignment : Once the lightpath routes are determined, the wave

length assignment problem can be represented as a graph coloring problem. In graph 

theory, graph coloring is a special case of graph labeling; it is an assignment of labels 

traditionally called "colors" to elements of a graph subject to certain constraints . Each 

lightpath corresponds to a node in wavelength assignment graph, and two nodes are 

set as neighbors only if the respective lightpaths share at least one common link. 

2.3.2 ONS Adapter 

Each ONS consists of a set of cards and each card contains a set of configured ports 

(CISCO, 2012a). ONS edges are connected to OpenFlow switches via WSS and DMX cards, 

whereas 0 S core interfaces are interconnected via LI E cards. Two fibers are used for the 

bidirectional connection between two ONSs. These specifications lead us to add this module. 

2.4 OpenFlow Message-Mapping Solution 

Based on the two units described before, we build our solutions. In the first solution 

(OpenFlow Message-Mapping), the OpenFlow standard messages are used without any mod

ification. The OpenFlow messages are mapped into optical switch commands. In this ap

proach, the OFPT_FLOW_MOD message of type OFPFC_ADD is mapped into ENT

OCHNC TLl-command to create a lightpath channel. The OFPT_FLOW_MOD message 
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of type OFPFC_DELETE is mapped into DLT-OCHNC TLl-command to delete a light

path channel. When the agent receives OFPT_FEATURES_REQUEST message, it encap

sulates the emulated port information into OFPT_FEATURES_ REPLY mes age . Finally, 

the agent reads periodically the ROADM events (using RTRV-ALM-ALL TLl-command) 

and if it finds any cri t ical alerts, it creates OFPT _PORT_ STATUS message and forwards 

it to the controller . The process of lightpath . etup is carried out following these steps: 

• The ource starts sending data to the destination node. 

• Once this flow arrives at an OpenFlow switch, this switch sends a OFPT_ PACKET_ IN 

me sage to the controller . 

• Upon the receiving of this OFPT _PA CKET _IN message, the controller requests the 

PCE unit to compute a lightpath for this packet. T he computed lightpath include 

the information of the wavelength and the link. This information can not be included 

in the OpenFlow standard messaging system. In this case, we map the wavelength 

assignment to a virtual ports as shown before by the OpenFlow agent on section 2.2 . 

• If the PCE isn 't able to compute the path accord ing to lack of resources, it consid ers 

this request block d. 

• If the path is computed successfully, the OpenFlow controller sends OFPT _FLOW_ MOD 

messages of type ( OFPFC _ ADD) to all the circuit-switched no des across the lightpath 

and either a OFPT_PACKET_ OUT and/ or OFPT_ FLOW_ MOD message of type 

OFPFC _ ADD to the packet-switched nodes depending on the defined OpenFlow ap

plication on the controller. 

• When the OpenFlow switch receives the OFPT_PACKET_ OUT message, it forwar 1 

the packet after a considerable delay to be sure that the lightpath i established. 

• Once the time-out expires, both the controller and the switche consider the lightpath 

is established and start to exchange data through the path. 

This centralized approach of OpenFlow allows the controller to have the updated node and 

link information stored in the PCE database (TED). The lightpath release mechanism is 
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fired by the controller using a flow entry time-out timer. This timer is restarted each time 

thi channel i u ed . When thi timeou t expir s the controlier sends a flow_ modification 

m ssages of type (del ete _ flow ) to the n twork nod es causing them to del ete this lightpath . 

The packet-switched nodes will release the path by them elves when the timer expires. 

2.5 OpenFlow Extension Solution 

In this solu tion, OpenFlow m ssage are xtended and new messages are added . The new 

mes age specification Das (2010) allow the controller to distinguish between the circui t

switching and the packet- witching networks. For example, OFPT_FEATURES_REPLY 

message is extended by adding extra information about the circui t-switching por ts. To sene! 

an optical cro s-connect informat ion, a new ma tch structure called OFP _ CONNECT is 

presentee!. Multiple ports can be cross-connectee! by a single structure. Thi structure 

is ad e! d to the newly clefined me sage called OFPT _ CFLOW_ MOD. Finally, when the 

tate of a port changes, the OpenFlow Optical Agent send a new defined message caltee! 

OFPT CPORT STATUS. 

In OpenFlow Extension solu tion the process of lightpath setup is carried out following 

these steps: 

• The source star ts sending data to the des tin ation node. 

• Once this fl ow arrives at an OpenFlow switch , this switch ends a OFPT_PACKET_IN 

mes age to the controller. 

• pon the receiving of this OFPT _PA CKET _ IN mes age, the controller requests the 

P CE unit to compute a lightpath for this packet. The computed lightpath includes 

th information of the wavelength and the link . This information is included in the 

Op nFlow new structure OFF_ CONNECT and encapsulatecl in the new me sage 

OFPT _ CFLO W _ MOD . the OFP _ CONNECT structure coule! carry the bidir ctional 

lightpath instead of sending one message for each direction. 
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• If the PCE is not able to compute the path according to lack of resources, it considers 

this request blocked. 

• If the path is computed successfully, The OpenFlow controller sends OFPT _ CFLO W_ MOD 

messages of type ( OFPFC _ ADD) to all the circuit-switched nod es across the lightpath 

and either a OFPT_ PACKET_ OUT and/ or OFPT_ FLOW_ MOD message of type 

OFPFC_ADD to the packet-switched nodes depending on the defined OpenFlow ap

plication on the controller . 

• When the OpenFlow switch receives the OFPT_PACKET_ OUT message, it forwards 

the packet after a considerable delay to be sure that the lightpath is established . 

• Once the time-out expires, both the controller and the switche consider the lightpath 

is established and start to exchange data through the path . 

Similar as the first solution, the lightpath release mechanism is fired by the controller 

using a flow entry time-out timer. This timer is re tarted each time this channel i u ed. 

When this timeout expires the controller sends a OFPT _ CFLOW _ MOD message of type 

( OFP _ DELETE) to the network no des causing them to delete the lightpath. The packet

switched nodes will release the path by themselves when the timer expire. 

2.6 GMPLS WITH PCE LIGHTPATH SETUP 

GMPLS is presented in this thesis for the purpose of comparing it with our proposed 

solu tions. To be able to accomplish this comparison , we have to understand the Gl\IIPLS 

the lightpath establishment procedures. As we mentioned before, GMPLS is a distributed 

protocol. Using a distributed protocol on large networks makes the path computation process 

very complex and resources consuming. To address this problem, IETF bas introduced a 

centralized Path Computation Element (PCE) entity in the GMPLS control plane. In this 

thesis, we implement the G 1PLS with P CE. The P CE i a centralized network element 

responsible for computing the lightpath. In this topology, PCE also assigns wavelength 

on each link for each request. The PCE is used in GMPLS-controlled Wavelength Switched 

Optical Network (WSON) (Li et al ., 2012; L6pez et al. , 2010). PCE uses a messaging protocol 
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called P CEP to exchange information between GMPLS controller of each node and the PCE. 

PCE maintains the information of the nodes, links tatus and wavelength availabili ty in a 

databa e called Traffic Engineering Databas (TED) The link update i carried out by the 

OSPF messaging (Link State Advertisements - LSAs) . This updates are sent when a new 

wavelength status change occurs (reserve/ release) . A full link status update occurs when 

new node joins or leaves the network. However, to keep the network stable, LSAs ar not 

sent ach time update happened . For each link , once an LSA has b en generated , a time-out 

timer tart . During thi time-out, no update is sent for thi link. Following in detail the 

message sequenc on GMPLS with P CE mechanism to create a lightpath: 

• The source node sends a PCEP request message for submitting a path computation 

request. 

• The PCE compute the path requested and assigns a wavelength to this path. Then , the 

l CE end thi information to the source by using a PCEP P CRep message. Otherwise, 

if the P CE fails in computing a path or in assigning a wavelength on it , it replies with 

a P CRep message with NO-PATH reply, and the lightpath request is refused (forward

blocking) . 

• pon the reception of PCRep message, the source node sends the Resource Reservation 

Protocol-Traffic Engineering (RSVP-TE) messages along the computed path to reserve 

it. The Path reservation message includes the Explicit Route and the Label et. Th 

label et information include the wavelength assigned by the P CE. 

• When a node receives RSVP-TE path reservation m s age, it performs th wavelength 

a ignment if it is available. Oth rwise, another wavelength contained in the Label Set 

is selected , according to a specifie wavelength assignment strategy (e.g., first fi t). 

• If anoth r request requests the am resource (link and wavelength) on a specifie node 

and thi request is accomplished before this one, this will have this node to refuse this 

requ t and reply with RSVP refuse message (backward-blocking) . 

• When the wavelength assigned , th des tination node sencls back a Re v message to 

effect ively reserve the selectecl wavelength on each link of the path. 
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• Once the Resv message reaches the source, the lightpath is established and data can 

be carried through the path. 

Lightpath release i performed in a similar way as the setup process (in a distributed manner 

through RSVP-TE signaling (Giorgetti et al. , 2009)). As the previous description the setup 

procedure may be blocked during path computation because of lack of resources (forward 

blocking), or may be blocked due to wavelength contention (backward-blocking) . Contentions 

arrive when two or more RSVP-TE messages attempt to reserve the same re ource (link and 

wavelength). This actually because the link availability databa e TED may be outdated 

when the path request reached the PCE. 



CHAPTERIII 

CO DUCTED EXPERIME TS 

Two experiments are conducted to demonstrate the efficacy of our propo ed solu tions. 

Th fir t exp rim nt is to create end-to-end lightpath while the second is to create a backup 

re toration lightpath in ca e of the failure of the primary lightpath . 

3.1 Testbed Setup 

Th architecture of our te tbecl is cl epictecl in figure 3.1. It consi ts of two clients A and B , 

which are connected cl ircctly to OpenFlow (OF) switche 1 and 2, respec tively. Each switch 

is connected to an Electrical/ Optical converter . These converters are connectee! to DWD!\1 

optical network composecl of three Ci co ROADM optical witches (Cisco Or S 15454) . 



Open f low 
Switch 1 

Client A 

10 G t: Wtl!i~.98 
IOGt: \\' 1.1 5~. 1 7 

OptnFiow 
Control 1er 

.··· .. · 

ROADM 1 

Figure 3.1: Testbed Architecture 

Cl ient B 
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Open Flow 
Switrh2 

The ROADM switches are connected on full mesh topology using optical fiber_ cables as 

shown in figure 3.2. Each fiber cable is 10 meter long, and supports 32 channels. Each 

ROADM is controlled by an OpenF!ow Optical Agent . The OpenF!ow optical agents and the 

OpenF!ow switches are connected to an OF controller over an OpenFlow channel as shown 

in figure 3 .1. 

Figure 3.3 shows a photo ofthe physical equipments in our lab (Optical Transport Network 

Laboratory) that is used in our experiments. 
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... CHAN · l-13 · 30-TX 

CHAN · 1 · 3 · 2ii·RX .. 

... CHA N· l -5-29- TX 

LINEWL-l-11·2·TX·l 558.38 · LINEWL-1-l -2-TX-1558.98 

LINEINL-1·11·2-RX-1558.98 · LINEWL·l ·l -2-RX-1558.98 

F igure 3.2: Optical domain Interconnection 

CHAN - 1 · 13· 29 - TX ... 

... CHAN - 1 - 14- 29 - RX 

Figure 3.3: physical equipments in the Optical Transpor t Tetwork Laboratory 
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3.2 Scenario 1: End-to-End Lightpath Setup and Release 

The purpose of this experiment is to test the capability of the proposed solution to com

pute and establish a lightpath when required. As shown in the architecture in figure 3.1 , 

when the optical OpenFlow agent is connected to the controller , it acts as an OpenFlow 

switch by sending Hello message followed by FeaturesR eply message which is shown in the 

Wireshark screenshot in Figure 3.4. 

a. 
::::1 .... cu 
VI 
VI 
c 
0 

tl 
cu 
c 
c 
0 
u 
VI .... c 
cu 
t10 

~1 
0 
~ 
c 
RI 
VI 
cu 
~ 
u .... 
'3 :1 
0 
""";::
~ 

"ê .... 
c 
0 
u 
.._1 
0 

~---- -----------------------l 
filter:~~.:!J~- Opcnflo\\ v Exprenicm_ ( Jar 10.1 Sa-. t: Filter1 

1 ~. ---lo. lime Source OestJnWcn L.. P~t~l 1 lenqth lnfo 
23 13.250959000 OF _swi teh! OF _Contro l ler OpenFlow 74Type: OFPT.JiELLO 
25 13. 300689000 OF _Cont roll er OF _Swi teh! OpenFl ow 82Type: OFPT_FEATURES_REQUEST 
27 13.301454000 OF_51viteh1 OF_Controller OpenF low 242Type : OFPT..FEATURES_REPLY 
53 20.122936000 OF _Swi t ch2 OF _Control 1er OpenFlow 74 Type: OFPT.JiELLO 

l 55 20.124558000 OF_Control ler OF_Switeh2 OpenFlow 82Type: OFPT..FEATURES_REQUEST 
l 57 20.126062000 OF _Swi tch2 OF _Contro ller OpenFl ow 242Type: OFPT..FEATURES_REPL Y 

153 41.631382000 OF _Controller OF ..Agent! OpenFlow 70 Type: OFPT..FEATURES_REQUEST 
1160 42 .311926000 OF ..Agen tl OF _Control 1er OpenFlow 62 Type: OFPT.JiELLO 
1162 42.353116000 OF ..Agent! OF _Cont rol 1er OpenFlow 278 Type: OFPT..FEATURES_REPLY 
1 304 72.165885000 OF _Control 1er OF ...Agent2 OpenFlow 70 Type: OFPT..FEATURES_REQUEST 
1 306 72.450784000 OF ...Agent2 OF _Control 1er OpenFlow 62 Type: OFPT.JiELLO 
l308 72.483056000 OF...Agent2 OF_Controller OpenFlow 470Type: OFPT..FEATURES_REPLY 
l 367 84.719829000 OF _Contra lle r OF ...Agent3 OpenFlow 70 Type: OFPT..FEATURES_REQUEST 

371 85.157877000 OF ..Agent] OF _Control 1er OpenFlow 62Type : OFPT.JiELLO l 
373 85.198821000 OF ...Agent3 OF _Contra 11er OpenFlow 470 Type: OFPT..FEATURES_REP 

1 594149.922753000ClientA Broadeast OpenFlow 144 Type: OFPTYACKET_IN 
1 596149. 9246870000F _Cont rol 1er· OF ...Agent3 OpenFlow 134 Type: OFPULOW...mo 
159 149.9250220000F_Cont rolle r OF_51vitchl OpenFlow 90Type : OFPTYACKET_OUT 
l 600149.92586 OOOOF _Cont rol 1er OF ...Agent2 OpenFlow 134 Type: OFPULOW...mO 
l 602150.0362260000F _control 1er OF ...Agent3 OpenFlow 134 Type: OFPT..FLow...mo 

604 150. 0484250000F _Contra ll er OF ...Agent2 OpenFlow 134 Type: OFPT..FLOW...mo 
1 608 150. 961401000ClientA Broadeast OpenFlow 144 Type: OFPTYACKETJN 
1 612151.4655760000F _Contro ler OF __5witch2 OpenFlow 90 Type: OFPTYACKET_OUT 

OFPT _PACKET _IN 
Message from 
OF _Switchl to 
OF _Controller 

(Step A2} 

OFPT_PACKET_OUT Message from 
OF _Controller to OF _Switch2 {Step AG} 

OFPT_PACKET_IN Message from 
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Figure 3.4: Wireshark Screenshot (Lightpath Setup Message Exchange) 

As shown in Figure 3.5, a data flow sent from Client A to Client B arrives at OpenFlow 

switchl. When the OpenFlow switch1 does not find any flow entry that matchs with this 

flow, it encapsulates the first flow packet in an OFPT _PACKET _ IN message and forwards 

it to the Controller. Then, the controller uses the PCE to calculate the lightpath, and 

creates the lightpath by sending OFPT _ FLOW __ MOD message ( OpenFlow Messages 

Mapping solution) or OFPT_ CFLOW __ MOD message (OpenFlow Extension solution) 
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to the switches. The connection is established between the two clients following steps Al , 

A2 , A3 , A4, A5, A6, and A7 (Figure 3.5). The wireshark screenshot presents the exchanged 

messages during this scenario (Figure 3.4). 

0 lightpath Setup Scenario 

Opr:nF'low 

Swircb 1 

Oient A 
ROADM 1 

Figure 3.5: Network configuration and message exchange 

o,u~nFlow 

Switch2 

l@ 
$) 
Oie:n18 

As shawn in figure 3.5 the connection is established between clients, A and B as the 

following scenario: 

Step Al: A data flow sent from client A to client B arrives at OpenFlow switch 1. 

Step A2: OpenFlow switch 1 does not find a flow entry in its flow table to forward this flow, so 

it encapsulates the first flow packet in a OFPT_ PACKET_ IN message and forwards 

it to the controller as shawn in Figure 3.4. 

Step A3: The controller calculates the path from Client A to Client B, and sends OFPT _ PACKET _OUT 

message to the OpenFlow switch 1 . The controller sends also OFPT_FLOW_ MOD 

messages (OpenFlow Messages Mapping solution) or OFPT _ CFLOW _ MOD message 
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(OpenFlow Extension solu tion) to the Optical OpenFlow agents in arder to create the 

lightpath (Message exchange shawn in Wireshark screenshot in figure 3.4). 

Step A4: When OpenFlow optical agents receive this message, they translate them into the ap

propriate TLl commands and send it to the ROADM switches . 

Step A5: After creating the lightpath, the data flow traverses until OpenFlow switch 2. When 

the flow is received by OpenFlow switch 2, the switch does not find a flow entry in its 

flow table to forward this flow. Then, it sends a OFPT_PACKET_IN message to the 

controller requesting an action for this flow (as shawn in Figure 3.4). 

Step A6: The controller sends an OFPT PACKET OUT message to OpenFlow switch 2 to 

forward this packet to client B. 

Step 7: OpenFlow switch 2 forwards this flow to client B .. 

Cisco Transport Controller (CTC) screenshot , in the initial state while no lightpath ex

isted, is depicted in figure 3.6. Figure 3.6 depicts Cisco Transport Controller (CTC) screen

shot showing the optical channel setup on wavelength 1558.98 nm after lightpath creation. 

This scenario is explained by UML diagram in Figure 3.8. 
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Ffo Edt V\ew ferAs wn:aw Hcb 

Figure 3.6: Cisco Transport Controller Screensho t (Ini tial State) 

Figure 3.7: Cisco Transport Controller Screenshot (After Lightpath Establishment) 

Figure 3.8: UML diagram for lightpath establishment 
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3.3 Scenario 2: Backup lightpath R estoration 

This scenario demonstrates how OpenFlow controller acts in case of link failure. Figure 

3.9 shows the steps that are executed in this scenario . 

• Bad:up liahtpath Restoratlon Scenario 

ÛJitnFlow 
Switc: h 1 

Oîrn i A 
ROADM 1 

··················o 

"' 

ID C t: WL 1 ~51. 

HtCEWU5:\!t l7 

""~ .,. .. 

Client B 

Figure 3.9: Exchanged messages Backup lightpath Restora tion Scenario 

Oprnlilow 
Swi lch 2 

Step BO: To simulate the link failure, we unplug the fi.ber cable between ROADM 2 and ROADM 

3. 

Step Bl: When the fi.ber connection between the ROADM 3 and ROADM 2 fails, both OpenFlow 

optical agents corresponding to these Optical Switches read the alarms of the optical 

switches using TLl (RTRV-ALM-ALL) command 1 . Then, they send OFPT _ PORT_ STATUS 

Messages to the controller about the port status update (Message exchange is shown 

in figure 3.10). 

1The mechanism of detecting link failure is out of scope of t his work 
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Step 2B: OpenFlow controller calculates alternative lightpaths for the existing fai led lightpaths. 

Step 3B: The controller sends OFPT_FLOW_MOD (type= OFPT _ADD) messages (OpenFlow 

Messages Mapping solution) or OFPT_ CFLOW_MOD messages (OpenFlow Exten

sion solution) to the optical switches to create new lightpath. In this case, a new 

lightpath is established from ROADM 2 to ROADM 3 via ROADM 1 on a different 

wavelength (1588.17 nm) (Message exchange shown in Wireshark screenshot in figure 

3.10). 

Step 4B: The controller sends other OFPT_FLOW_MOD (Type= OFPFC _ DELETE) mes

sages (OpenFlow Messages Mapping solution) or OFPT_ CFLOW_MOD messages 

(OpenFlow Extension Solution) to the optical switches which are associated with old 

lightpath to delete the primary lightpath (Message exchange shown in Wireshark screen

shot in figure 3.10). 

Step 5B: When the OpenFlow Optical agents receive these messages, they translate them into 

the appropriate TL1 commands and send them to the optical switches. 

OFPT_PORT_STATUS && OFPT_PORT_STATUS Messages from 
OFPT_FLOW_MOD OF _Agent2,3 to OF _Controller {Step Bl) 
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Figure 3.10: Wireshark Screenshot (Lightpath Setup Message Exchange) 

Figure 3.11 shows CTC screensho t after the lightpath res toration is done, representing 

the optical channel setup on a different wavelength 1558 .17 nm. 
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Figure 3.11 : Cisco Transport Controller Screenshot (After Lightpath Restoration) 

This second scenario is explained by this UML diagram in Figure 3.12. 

~ ~Aœn< l 
i 

H: Send Delete: M~O 

Figure 3.12: UML diagram of lightpath recovery 

3.4 GMPLS Approach Experiment 

Still GMPLS is not deployed commercially. Dynamic Resource Allocation via GM

PLSnOptical Networks (DRAGO ) software extends the network equipment using S MP to 

adapt this equipment to GMPLS control plane. The DRAGO project studies and develops 

an open source software to enable dynamic provisioning of network resources on an inter

domain basis across heterogeneous network technologies. The project enables the communi

cation between networks of different types through the GMPLS control suite. The extension 
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of the DRAGON project to support CISCO 15454 ROADM is conducted by a colleague 

in another research project 2 . Further information about DRAGO project is available in 

(Lehman et al. , 2006a) and (Lehman et al. , 2006b) . To experiment GMPLS , we construct 

a transparent optical network testbed with two ROADMs (Figure 3.13) . In this infrastruc-

""' 

VLSR2 

ID ..... ...,.. 
Gtc2 : 10.16.0.1 
Gnll : lll.JO.O.l 

~ Tt : IO.LIIU 
~ Tt : IO.LIO.' 

Gtel 

Figure 3.13: GMPLS Experiment Using DRAGO 

ture, the control plane consists of two Client System Agents (CSA) and two Virtual Label 

Switch Routers (VLSR). The CSAs and the VLSRs are connected via a hub. GRE (Generic 

Routing Encapsulation ) tunnels are created between the CSAs and the VLSRs and between 

the VLSRs themselves to exchange RSVP-TE and OSPF-TE messages. The S MP / TL1 

Gateway has a connection with the switch hub to allow SNMP management by the VLSRs. 

It translates S MP messages to TL1 commandes in order to configure the ROADMs. In 

the S MP / TL1 Gateway machine, we install two machines. Each one listens to a VLSR on 

port 161 and controls one ROADM. sing wireshark capture in VLSR2 (Figure 3.14 (a)) and 

VLSR1 (Figure 3.14 (b)) , we explain the GMPLS signaling to create a Label Switched Path 

(LSP) from CSA2 to CSAL 

CSA2 sends RSVP_ PAT H message to VLSR2 with the destination set to the target CS Al. 

Both VLSRs forward the path message since they are not the destination. When CSA1 re-

2The Configuration and the mechanism of extending DRAGON to suppor t ROADM is out of scope of this 
research proj ect. 
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Figure 3.14: GMPLS Scenario: Wireshark screenshot 

ceives the RSVP_ PATH message, it replies to it with RSVP_ RESV message and sends it 

to VLSRl. VLSRl forwards this message to VLSR2 because again i t is not the destination of 

the message. Finally, VLSR2 forwards the RSVP_ RESV message to CSA2. At this point , 

the LSP is active and can be used. TheS MP / TLl Gateway translates theS MP messages 

sent by the two VLSRs to TLl commands in arder to configure the two ROADMs. 
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3.5 Experimentation Results 

The experiments setup time (in millisecond) is shawn in table 3.1 for OpenFlow solutions 

( OpenFlow M essages Mapping and OpenFlow Extension ) and the GMPLS approach. 

In this table, Path1 and Path2 refer to the primary and the backup lightpaths, respectively. 

Path1 nades are OF _Switch1---+ ROADM2 ---+ ROADM3---+ OF _Switch2, while Path2 nades 

are OF Switch1 ---+ ROADM2 ---+ ROADM1 ---+ ROADM3 ---+ OF Switch2. LSP on the table 

refers to Label Switch Path for GMPLS. LSP nades are CSA1 ---+ ROADM2 ---+ ROADM3 

---+ CSA2. The experiments results show that OpenFlow Extension solu tion (with 216 ms 

setup time) outperforms OpenFlow M ess ages Mapping solution (with 227 ms setup time). 

This result is expected because OpenFlow Extension solution uses one message to encap

sulate bidirectionallightpath information and OpenFlow Messages Mapping needs two 

messages. For th backup lightpath (Path2) which spans on three nades, OpenFlow Exten

sion solution takes 239 ms to create the lightpath while OpenFlow Messages Mapping 

takes 269 ms. On the other hand, GMPLS takes more time (340 ms) to create lightpath 

than OpenFlow solutions. This is because the GMPLS-based control plane is complicated. 

This is due to its distribu ted nature, the number of protocols, and the interactions among 

different layers. The B.exibility and manageabili ty of the GMPLS-based control plane is low, 

because, for example, if we want to create or update an end- to-end lightpath, the signaling and 

reservation messages must be updated and exchanged between ali the intermediate VLSRs. 

However , the OpenFlow-based UCP provides the maximum B.exibility and manageability for 

carriers since ali the functionalities are integrated into a single OpenFlow controlier. 
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OpenFlow Messag s Mapping Solu tion 

Controller Switch est ablishment Total (ms) 

ROADM2 ROADM l ROADM3 

P ath l 16 121 - 90 227 

P ath2 18 110 30 111 269 

OpenFlow Extension Solution 

Controller Switch est ablishment Tot al (ms) 

ROADM2 ROADM l ROADM3 

P a th l 16 100 - 100 216 

P ath2 18 90 30 101 239 

GMPLS Solu tion 

RSVP-TE Switch establishment Total (ms) 

ROADM2 ROADM l ROADM3 

LSP 130 110 - 100 340 

Table 3. 1: T he experiments t iming 



CHAPTERIV 

SIMULATION STUDY 

In th is chapter we present a comparative study of the OpenFlow solu tions (OpenFlow 

Messages-Mapping, OpenFlow Extension) and the GMPLS approach. To conduct the com

parison, A cu tom-buil t J ava event-dri ven simulator i wri tten based on the mechani m 

mention d in chapter 2. T he mcasurements taken from th previously conducted experi

ments are used in writing a custom-buil t J ava event-driven simula tor. 

Table 4.1 shows the signaling protocol used by each solution. In this table the signaling 

protocol is in the fir t row , and in front of each lution we marked which signaling protocol 

i u ed in it . 

The simulation is carried out on two real opt ical network topologies. These network 

topologies are the physical network topology of United States National Science Foundation 

(NSF) and the optical network topology of the European Union Ultra-High Capacity Optical 

messaging protocol 

OFP OSPF-TE RSVP-TE 

GMPLS with PCE NO YES YES 

Op -nFlow Message-Mapping solu t ion YES NO NO 

OpenFlow Extension solu tion YES NO TO 

Table 4.1: Summary of Simulatecl Solu tions 
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Transmission Network (European Research Project Cost239). The next section presents the 

simulation environment , parameters and algorithms. Then, the results for each network are 

presented in sections 4.2 and 4.3. 

4 .1 The Custom-built Java Eve nt-Driven Simulator 

The simulator is a custom-built Java event-driven application. It i written based on the 

mechanisms mentioned in Chapter 2. The internai optical switch lightpath establishment 

time is emulated to 60 ms for all solutions. For both topologies the links between nod s are 

bidirectional Each link supports 32 wavelengths. The controller and the PCE p rform first

fit for assigning wavelengths. Wavelength can no t be changed across the path since node do 

not support wavelength conversion . Lightpath requests are generated according to a Poisson 

proce s and uniformly distributed among all node pairs. The holding time is fixed to 180 

seconds, the average inter-arrivai time is varied from 0.3 s to 18 s. This varies the Erlang 

from 600 to 10. 

Algori thm 1 explains how the written application simulates the OpenFlow solutions. The 

application uses the network topology no des ( G), the connections between them (V), and 

the simulation end- t ime as inputs. Then, it starts by generating on event of type create

channel After that, it reads events one at a time and handles it. Depending on the event 

type, each event type is treated differently by the algorithm, as explained before. For the 

create-channel event , it generates a new create-channel event based on the Poisson inter

arrivai time, updates the controller 's time, calculates the lightpath , finds a free channel 

(wavelength). Finally, it generates the "create cro s-connect " events for each witch through 

the ca.lculated path (events to be executed by the switches) . nless there is no lightpath 

available, it declares this request as a blocked request . For the events of type Delete channel, 

it updates the controller 's time. Then , it generates the delete cross-connect events for each 

witch through the lightpath (events to be executed by the switches). For the event of type 

"create cro s-connect" , it generates an event of type delete channel For both event of type 

createj delete cross-connect, it updates nodes time (emulating the cro s-connect creation time 

60 ms) . Then, it updates vertex information. The cross-connect creation time is calculated 
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from the testbed experiments by measuring the time difference between sending the lightpath 

creation TLl command and the response received from the optical switch after executing th 

command. 



D ata: G: Graph, V: vertex, EndTime: Simulation End Time 

R esult : Establishment t ime, Blocking probabili ty and control traffi c 

lnitialization: Generate one event ( using a uniformly distribu ted source and destination and 

Poisson inter-arrivai time); 

w hile current time < EndTime do 

reac! the nearest event; 

switch Event Type do 

case C1·eate Channel 

Generate new Create Channel event based on Poisson inter-arrivai time; 

Update the controller 's t ime; 

pdate the controller's vertex information; 

Calculate path using Dij k tra Algori thm; 

Fin cl a free channel ( wavelength) cross the calculated path; 

if Path calculation r·etuTn false OR no channel available then 

Declare Request Blocked; 

Continue with the next event; 

else 
Generate "create cro s-connect " events for each node through the calculatecl 

path (with the information of event time, path and wavelength); 

end 

end 

case Delete Channel 

Update the controller's time; 

Upclate the controller 's vertex information; 

Generate delete Cro -Conn ct events for each node through the calculated path 

(with the information of event time, path and wavelength); 

end 

case C1·eate Cross-Connect 

Update nodes' t ime (emulating the cross-connect creation t im 60 ms); 

Update vertex information; 

Generate delete event for the crea ed path (with event time = current time + holcl 

time); 

end 

case Delete Cross-Connect 

Update nocles ' time (emulating the cross-connect creation time 60 rn ); 

Upclate vertex information; 

end 

endsw 

55 
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GMPLS simulation is divided into three algorithms 2,3 and 4 (Main algori thm and two 

event handler procedures) . These algori thms explain how the written application imulates 

the GMPLS with P CE approach. In this algorithm the inputs and the ini tialization are the 

ame as algorithm 1. By trav r ing all the events depending on their types, each event type 

i treated differently a explained on a.lgorithms 2, 3 and 4. For the create-chann 1 v nt, 

it generates a new create-channel vent ba ed on the Poisson inter-arrival time , updates 

the controller t ime, calculates the lightpath, finds a free channel (wavelength), finally it 

genera te the "crea te cro s-connect " event for the first switch in the calculated path (event 

to be executed by the switch). nless there is no lightpath available, it declares this request 

as a blocked request . For the events of type Delete channel, it updates the controller 's 

time. Then, it generates the delete cros -connect events for the first switch in the lightpath 

(event to be executed by the switch). For both vents of type create/ d lete cross-connect, 

it updates node time (Emulating th cross-connect creation t ime 60 ms) . Then , it updates 

vertex informat ion. For the event of type "create cross-connect ", it ver ifies if the requested 

channel is available. If it is not available, it declares thi request blocked (Backward Blocking) 

and it generate delete channel reques t. If it is available and this is not the last witch in 

the lightpath , it generates an event of type "create cross-connect " for the next switch in the 

ligbtpath, otherwise it generates an event of type delete channel. For both events of type 

LSA update (create/ delete), it updates TED (controller V rtex information). 



Data: G: Graph, V: vertex, EndTime: Simulation End Time 

R esult: Establishment time, Blocking probability and control traffic 

Ini tialization : Generate one event (using a uniformly distributed source and destination and 

Poi on inter-arrivai time); 

while cu1-rent time < EndTime do 

read the nearest event; 

if Event Type == C1·eate Channel then Generate one event based on Poisson 

inter-arrivai time ; 

switch Event Type do 

case Create/ Delete Channel 

1 Call Channel Event-Handler procedure; 

end 

case Createj Delete Cross-Connect 

Cail Cross-Connect Event-Handler procedure; 

end 

case LSA update (Cr·eate/ Delete) 

1 pdate TED (controller Vertex information) ; 

end 

endsw 

end 

Algorithm 2: GMPLS/ PCE Event-Driven Simulator algorithms 
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switch Event Type do 

case Create Channel 

Upclate the controller 's time; 

Calculate path u ing Dijkstra Algorithm; 

Fin cl a free chan n l ( waveleng h) cross the calculatecl path; 

if Path calculation 1·etum fal se OR no channel available t h en 

1 Declare Reque t Blockecl ; Continue with he next event; 

el e 
Generate "create cross-connect " event for the first nocle in the calculatecl path 

( with the information of event time, path and wavel ngth); 

end 

end 

case Delete Channel 

Upcla e the controller 's time; 

Generate del t Cro s-Connect event for fir t nocle in the calculatecl path ( with the 

information of v nt time, path and wavelength); 

end 

endsw 
Algorith m 3: Channel Event-Hancller procedure 



switch Event Type do 

case Create Cross-Connect 

Update nodes time (emulating the cross-connect creation time 60 ms); 

Update switch's vertex occupation; 

if current switch is the last one in the path then 

1 

Generate delete event for the created path (with event time = current time + hold 

time); 

else 

if channel (wavelength) is available then 

\ Generate "create cross-connect " event for the next node in the calculated path; 

el se 

1 

Declare this request blocked; 

Generate delete channel event 
end 

end 

Generate LAS update (Create) event; 

end 

case Delete Cross-Connect 

Update nodes time (emulating the cross-connect creation time 60 ms); 

Update switch's vertex occupation; 

if current switch is not the last on the path then Generate delete Cross-Connect 

event for the next node in the calculated path ; 

Generate LAS update (Delete) event ; 

end 

endsw 
Algorithm 4: Cross-Connect Event-Handler procedure 

4.2 National Science Foundation (NSF) topology 
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Figure 4.1 shows the network topology of the Nation al Science Foundation (NSF) top ol

ogy Foundation (2014). SF top ology consists of 14 nodes and 21 links, each link has 32 

channels (wavelengths) (Figure 4.1) . The distances between nodes are shown in the figure. 

Dijkstra algori thm uses these distances to calculate the shor test paths. 
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6 

Figure 4.1: NSF topology (14 nodes and 21 links) 

The simulation is run for a period of 3000 sec to ensure the stability of the network. 

Lightpath establishment time, control traffic got into and out of the controller and PCE, 

and the blocking probability are calculated from the simulation. The results are shown in 

the graphs : (i) Lightpath establishment time expressed in milliseconds vs . network load 

(Erlang) (Figure 4.2) ; (ii) umber of control messages (Controller load) vs. network load 

(Erlang) (Figure 4.4); (iii) Lightpath blocking probability vs . network load (Erlang) (Figure 

4.5). 
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Figure 4.2: Lightpath establishment time [ms] vs . network load ( TSF topology) 
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Figure 4.2 depicts the establishment time for bidirectionallightpath. It shows that Open-

Flow Extension solution experiences the lowest setup time as shown with blue line. Because 

OpenFlow Message-Mapping uses two FLOWMOD messages to establish the lightpath, it 

is expected that this solution experiences higher time than OpenFlow Extension solution as 

shown in the figw-e with the red line. OpenFlow solutions execute the lightpaths on parallel, 

Renee the establishment time of lightpath is around a fixed value. On the other hand, GM

PLS approach executes the lightpaths sequentially, Renee it has higher establishment time. 

As a result , GMPLS has the highest setup time as shown in the figure with the green line in 

the range 600- 900 ms for bidirectional lightpaths. 

GMPLS has the tendency to decrease the establishment time as the network load in

creases. Because at high network load the average path length is shorter as shown in figw-e 

4.3 (it decreases from 3.6 to 2.6 nodes per request) . Even though the number of hop decreases 

too on OpenFlow-based solutions, this do not affect the lightpath setup since the requests is 

executed in parallel. 

Figure 4.4 depicts the control traffic for each solution. It shows that both OpenFlow 

solu tions experience low control traffic compared to GMPLS solution as shown by blue and 

green lines. This difference between the OpenFlow solutions and GMPLS solution due to the 
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Figure 4.4: N umber of control messages vs . network load ( SF topology) 

P CEP messaging has to be sent for each node and also because of the LSA update messages 

which each node has to send back to the controller in case link sta te changes. 

F igure 4.5 depicts the blocking probabili ty. T his figure shows that both OpenFlow based 

solutions have the same blocking probability values which are expected since both tech

niques use the same Dijkstra algori thm and the same resource Database. On the other hand, 

GMPLS-based approach experiences the backward-blocking which malœs this technique have 

higher blocking ratio with low network load as shown in the figure with green line. As we 

mentioned before, the backward-blocking occurs because of wavelength contentions. Con

tentions arrive when two or more RSVP-TE messages attempt to reserve the same resource 

(link and wavelength) . Indeed, the link sta te database TED may be outdated when the path 

request reaches PCE causing this conten tion. 
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Figure 4.5: Lightpath blocking probability vs . network load (NSF topology) 

4.3 European Optical N etwork Topology (COST239) 
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Ultra-High Capacity Optical Transmission Network (European Re-search Project Cost239) 

O'Mahony (1996) is the second topology we ran our simulation on. This topology is depicted 

on F igure 4.6. 

COST239 topology consists of 11 nades and 26 links, each link has 32 channels ( wave

lengths). The distances between each pairs are shawn in the figure. Dijkstra algorithm uses 

these distances to calculate the shortest paths. 

The same simulation steps are followed as the NSF topology. The simulation is run for 

a period of 3000 sec to ensure the stability of the network. Lightpath establishment time, 

control traffic got into and out of the controller and PCE, and the blocking probability are 

calculated from the simulation. The results are shawn in the graphs : (i) Lightpath estab

lishment time expressed in milliseconds vs. network load (Erlang) (Figure 4. 7) ; (ii) Number 

of control messages (Controller load) vs. network load (Erlang) (Figure 4.9); (iii) Lightpath 

blocking probability vs. network load (Erlang) (Figure 4.10) . 

The results shawn in figure 4.7 support the same result of the SF topology. It depicts 
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2 

Figure 4.6 : COST239 Topology (11 nodes and 26 links) 

that OpenFlow Extension solution experiences the lowest setup time as shown with blue line. 

It depicts also that GMPLS has the highest setup time as shown in the same figw-e with 

green line. 

As the previous topology, the figw-e shows that GMPLS lightpath establishment time 

decreases as the network load increases, because at high network load the average path 

length is shorter as shown in figure 4.8 (it decreases from 2.77 to 2.34 hopper request). 

Figure 4.9 depicts the control messages for each solution. It confirms the result we got 

on the NSF topology. It shows that OpenFlow solutions experience the lowest control traffic. 

lt depicts also that GMPLS has the highest control traffic as shown in the same figure with 

the green line. 
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Figure 4.7: Lightpath establishment time [ms] vs. network load (COST239 Topology) 

Figure 4.10 depicts the blocking probability and it also confirms the result we got on the 

SF topology. This figure shows that both OpenFlow based solutions have almost the same 

blocking probability values. On the other hand, GMPLS protocol experiences the backward

blocking which makes this technique have higher blocking ratio with low network load as 

shawn in the figure with green line. 
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4.4 Summary of Simulation Results 

The simulations reveals that OpenFlow extension solution outperforms both GMPLS with 

PCE and OpenFlow message-mapping solution in lightpath establishment time and controle 

plane traffic. It also outperforms GMPLS in blocking probability, while it has almost the same 

blocking probability as OpenFlow message-mapping solution. Table 4.2 shows the summary 

of the simulation results performed on SF network topology. 

GMPLS with PCE OpenFlow OpenFlow Exten-

Message-Mapping sion Solution 

Solution 

Establishment time Between 450 ms Around 170 ms Around 60 ms 

and 380 ms 

Control plane traffic increases till 47 increases till 22 increases till 13 

packets/ sec at packets/ sec at packets/ sec at 

maximum load maximum load maximum load 

Blocking probabili ty star ts at 0.003 , and starts at 0, and starts at 0, and 

reaches 0.5 reaches 0.5 reaches 0.5 

Table 4.2: Summary of SF topology simulation results 

The simulations is repeated using COST239 physical network topology and the results 

support what we had before using SF topology (Table 4.3). 

In brief, the experiments and the simulations show that the two solutions based on OpenFlow 

cau enhance the lightpath establishment time, reduce the control plane traffic and reduce the 

blocking probabili ty. They show also that extending OpenFlow protocol by adding new 
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GMPLS with PCE OpenFlow OpenFlow Exten-

Message-Mapping sion Solution 

Solution 

Establishment time Around 350 ms Around 130 ms Around 60 ms 

Control plane traffic increases ti ll 45 increases till 23 in creas es till 14 

packets j sec at packets/ sec at packetsj sec at 

maximum load maximum load maximum load 

Blocking probabili ty starts at 0.002, and starts at 0, and starts at 0, and 

reaches 0.4 reaches 0.4 reaches 0.4 

Table 4.3: Summary of COST239 topology simulation results 

messages to support optical network has a great effect on enhancing the light path stablish

ment time and reducing the control plane traffic. This enhancement of performance makes 

OpenFlow the best candidate for UCP. 



CHAPTER V 

CONCLUSION 

In thi thesi , the main contributions are: 

Use Software Defined etwork (SDN) to create a unified control plane for 

both optical circuit-switched and packet-switched networks 

In this thesis, a unified control plane is proposed and conducted using OpenFlow (as an SDI 

proto col). The control plane is conducted u ing two techniques and tested on the laboratory 

on the topology shown before in Figure 3. 

Comparison between these techniques and the standard GMPLS technique 

In thi thesi , an experimental comparison conducted between the proposed solutions and 

GMPLS approach is presented in chapter 3. Additionally, a custom-built Java event-driven 

simulator i built and run to simulate the performance of our two proposed t chniques and 

compare them with the standard GMPLS protocol on two real optical network topologies 

( Chapter 4). 

As a conclu ion from these results in the con idered scenario , using SD 1/ 0penFlow 

archi tecture can create mutually beneficiai interaction between IP and transport networks 

by enabling new capabili t ies at the packet-circui t interface. OpenFlow exten ion technique 

can significantly improve the performance of the control plane and the proposed exten ion i 

able to significantly reduce the lightpath setup time and the control plane traffi.c. 
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A.bstract-Finding an effective and simple unificd control 
plane (UCP) for IP/Dense Wavelength Division Multiplexing 
(DWDM) multi-layet· optical networks is very important for 
network providers. Generalized Multi-Protocol Label Switching 
(GMPLS) has been in development for decades to control optical 
transport networks. However, GMPLS-based UCP for IP/DWDM 
multi-layer networks is eKtremely complex to be deployed in 
a •·eal operational products because stiJl there are a lot of 
non-capable GMPLS equ ipments. DRAGO (Dynamic Resource 
Allocation via GMPLS Optical Networks) [1] is a software that 
solves this issue making these equipments capable fo•· working 
in a GMPLS network. On the other hand, OpenFiow (OF), one 
of the most widely used SDN (Software Defined Netwo rking) 
implementations, ean be used as a unified control plane for packet 
and circuit switched networks [2]. 
In this paper, we propose and experimentally evaluate two 
solutions using OpenFiow to control both packet and optical net
wo•·ks (OpenFlow Messages Mapping and OpenFiow Extension). 
These two solutions are compared with GMPLS-based UCP. The 
experimental results show that the OpenFlow Extension solution 
outpe.-f'orms the OpenFlow Messages Mapping and GMPLS solu
tions. 

Keywords-Optical Network; GMPLS; DRAGON; Software De
fined Networking; OpenF/ow 

I. l NTRODUCTI O 

Currentl y, IP and optical layers operate separately withoul 
dy nami c imeracti on which leads to hi gh operational cost, low 
network eflî c iency, and long processing latency for end-to
end palh prov i ioning. T he main rea on behind the e limi
tati ons is thal they are two di ffe rent networks with different 
architecLUres, sw itching technologies, and controlmechanisms. 
Therefore, a unified control plane (UCP) for both fP and 
opti cal layer , as one of the key challenges for the network 
carri ers, is very important to address the aforementioned i sue. 
GMPLS , a re lati vely mature control plane technique for op
rica! transport networks, ha been propo ed a a solution for 
UCP [3]. But due to the di tributed nature, the number of 
protocols, and the interacti ons between different layer , the 
GMPLS-based UCP is overl y complex[4], [5] . Moreover, the 
implantati on of thi s rechnology is diffi cult because still there 
are a lot of non-capable GMPLS equipments. DRAGO [6], 
i a oftware thal olves thi s problem using SNMP (Simple 
Network Management Protocol) to control these equipments 
and making them capable for working in a GMPLS network. 
In thi paper, we u e thi oftware and adapt it to operate with 
our op ti cal witch (Cisco ONS 15454 1 

). 

On the other hand, we propose SDN [7] as a promi sing soluti on 

1 ROADM : Reconfigurable Opt ical Add-Drop MuiLiplexer 

for a UCP. Genera l! y, the SDN technology separate the contro l 
and data planes so thal we can introduce a new functi onality 
by writing a software program, running within an ex ternal 
controller that manipul ates the logical map of the ne twork. 
Th is provides the max imum fl ex ibiliry for the operator to 
control different types of network, and match the carr ier 
pre ferences. One of the widely used SD implementati ons is 
OpenF!ow [8]. OpenF!ow protocol is mature for L2/L3 packet 
witching networks, but still at a starting stage for wavelength

switched opti cal networks. So, it need some exte n ions to be 
abl e to support the optical domain. 
Some e fforts have been done to pre ent OpenF!ow-based UCP 
to contro l packet and circuit switche . M o t notabl y, PAC.C 
[2] has experimented with alternati ve approaches. Other papers 
[9], [ 1 0], [11] have presented s imil ar work as PAC.C by provid
ing an ex perimental study or a Proof-o f-Concept to support the 
using of OpenF!ow as a unifi ed conrrol pl ane. However, [ 12] 
presents a compari son study between OpenF!ow and GMPLS 
solutions based on a simulation. In thi s paper, we propose two 
approache based on OpenF!ow protocol to control both optical 
and electrical network . Then we experimenta ll y compare 
these two solutions with a real implementation of GMPLS 
approach. To the besl of our knowledge, thi s is the first work 
who considers both OpenFlow and GMPLS UCP so luti ons, 
and compare them via te tbed experimentation. We conduct 
a real case study of implementing end-to-end li ghtpath and a 
li ghtpath restorati on by es tabli shin g a dynami cal configurecl 
backup lightpath. 
The first solu ti on i OpenFlow Messages Mapping ; we map 
the OpenF!ow tandard me age into equi valent opti ca l chan
nel requests, without mod ifying the OpenF!ow protocol. The 
econd one i OpenFlow Extension ; new messages have been 

added to the OpenFiow protocol in order to support the 
circuit switching. The proposed soluti on are implemented 
in a tes tbed to demonstrate their effec tiveness, as weil as 
GMPLS-based approach. For both solutions, we implement 
an OpenFiow Optical Agent to tran late the OpenFi ow 
messages to be executed on the optical switches. Moreover, 
a Path Computation Element (PCE) module is added to 
the OpenF! ow contro ll er as a network applicati on in order to 
control the optical domain . 
The remaining of thi paper is organi zed a fo ll ows; Section 
n describes how can OpenFiow de fin e a unifi ed control pl ane 
for both IP and optical networks and the iplementati on of 
the proposed olutions (OpenFlow Messages Mapping and 
OpenFlow Extension). Section III present the GMPLS-based 
UCP approach and the deployment of thi protocol in our 
tes tbed. In particul ar, we explain the adaptation of DRAGON 
so ftware for our ROADM (CISCO 0 S 15454). Section IV 



presents the different experimental scenarios for each solution 
and the comparative results with GMPLS. Concluding remarks 
are eventually given in section V. 

Il. ÜPENFLOW-BASED UN!FIED CONTROL PLANE 

A. Overview 

We briefly outline the main characteristics of OpenFlow. A 
more detailed and exhaustive documentation is avai lable in the 
OpenFlow white paper [13) and in the Open Flow specificati on 
[14). OpenFlow is an open standard that was developed severa] 
years ago at Stanford University in order to enable researchers 
to run experimental new protocols and technologies on real 
networks, without disrupting the existing traffic or network 
availability [15) . In a traditional network, the data path and 
the control path occur on the same deviee (sw itch, router). 
OpenFlow separates these two functions; OpenFlow switches 
perform the data plane functions and OpenFlow controller 
i.mplements the control plane intelligence and communicates 
with the OpenFlow switch via the OpenFlow protocol. 
An OpenFlow switch consists of one or more flow tables and 
group tables, which perf01m packet lookups and forwarding, 
and a secure channel that is connected to an external controller. 
Each flow table in the switch contains a set of flow eotries; 
each fl ow entry consists of match fields , counters and a set of 
instructions to apply to matching packets. 
OpenFlow advocates the separation of data and control planes 
for circuit and packet networks, as weil as the treatrnent of 
packets as part of fl ows, where a packet flow is defined as any 
combination of L2/L3/L4 headers. This, together with Ll!LO 
circui t flows, provides a simple flow abstraction that fits weil 
with both types of networks. Hence, OpenFlow presents a 
common platform for the control of the underlying switching 
hardware, that switches fl ows of different granularities, whil e 
allowing aU of the routing, control and management to be 
defi ned in software outside the datapath, in the OpenFlow 
controller (Figure 1). 

Open flow 
Controller 

... / t ~-. ·. ·. 
_../ Ope,ri Fiow pr~tocol · • 

. · / .......... · .. @ = ..... ·~ .. _ ... ____ 

} Unified Control Plane 

}uni(ying Abstraction 

} Data Plane Swltching 

Fig. 1: Uni fied architecture of a converged Packet-Circuit network 

B. OpenFlow Messages Mapping and OpenFlow Extens ion 

This paper proposes two solutions using OpenFlow pro
tocol as a unified control plan for both optical and electri
cal domains (OpenFlow Messages Mapping and OpenFlow 
Extension) . For both solutions, we implement an OpenFlow 
Optical Agent to translate the OpenFlow messages to its 
proper TLl (Transaction Language 1) commands [1 6] to be 
executed on the optical switch using telnet channel. A Path 
Computation Element (PCE) module is added to the OpenFlow 

controller as a network application (Figure 2). Upon request 
an·ival, PCE calcul ates the corresponding lightpath and sends 
the cross-connection messages to involved ROADMs. In the 
next sections, we describe OpenFlow Messages Mapping and 
OpenFlow Extension solutions. 

1) OpenFlow Messages Mapping: In thi sol u-
tion, the OpenFlow standard messages are used without 
any modification. The OpenFlow messages are mapped 
into optical switch comm ands. In this approacb, the 
OFPT_FLOW_MOD message of type OFPFC_ADD is 
mapped into ENT-OCHNC TL1-command to create a lightpath 
channel. The OFPT_FLOW_MOD message of type OF
PFC_DELETE is mapped into DLT-OCHNC TL1-command 
to deJete a lightpath channel. When the agent receives 
OFPT_FEATURES_REQUEST message, it encapsulates the 
emulated port information into OFPT_FEATURES_REPLY 
message. Finally the agent reads periodically the ROADM 
events (using RTRV-ALM-ALL TLl-command) and if it fi nds 
any critical alerts, it creates OFPT_PORT_STATUS message 
and forwards it to the controller. 

2) OpenFlow Extension: In this solution, OpenFlow 
messages are extended and new messages are added. The new 
messages specification [ 17) allows the controller to distin
guisb between the circuit-switching and the packet-switching 
networks. For example, OFPT_FEATURES_REPLY message 
is extended by adding extra information about the circuit
switching ports. To send an optical cross-connect informa
tion, a new match structure called ofp_connect is presented. 
Multiple ports can be cross-connected by a single struc
ture. This structure is added to the newly defined message 
called OFPT_CFLOW_MOD. Finally when the state of a port 
changes, the OpenFlow Optical Agent sends a new defined 
message called OFPT_CPORT_STATUS. 

C. OpenFlow Optical Agent 

As mentioned above, the main role of the OpenFlow 
Optical Agent is to translate the optical channel requests and 
OpenFlow messages into TLl commands to be executed on 
optical nodes (Figure 2). 

( Openflow Standard) 

Paper Contribunon Opticol Switch 

Fig. 2: Openflow Optical Agent intercations 

This agent is associated to each optical node and 
acts as a vutual switcb. It consists of ; (i) OpenFlow 



Channel to communicate with the OpenFlow controller, (ü) 
Open.Flow!TLI Translator to conven OpenFlow messages into 
TL 1 commands, and (ii i) Ports Emulation module to emulate 
the optical node ports and send the port status information to 
tbe contro ller. This information is used by the controller to 
update ports database and to calculate the ligbtpath 1• 

D. Path Computation Element ( PCE) 

The PCE implements an algorithm to establishe li ghtpaths 
between source-destination pairs in order to create a full y con
nected logical topology [18]. A Traffic Engineering Database 
(TED) is created to save the network topology information. 
As the OpenFlow controller has a centralized management, the 
TED will be updated in case of lightpath creation/release and 
ports status ebange. Two modules are proposed to implement 
the PCE; Executor and Optical Switch Adapter (Figure 3). 
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Fig. 3: Path Computation Element workftow 

1) Executor: Thi modu le ensures the avoidance of using 
one wavelength more than once in the same fi ber. Each 
wavelength cam es tTaffi c between a pair of source and destina
tion. Therefore, mul tiple wavelengtbs are reserved in a single 
strand of fibcr fo r cstabli shing mul tiple lightpath through one 
fiber. The e connections between source/destination nodes in 
DWDM networks are performed in two teps: 

• Routing: We use Dijkstra Algorithm in order to find 
the shortest path between each node pair. In our case, 
we are interested in a network topology composed of 
OpenFiow switches and ROADMs. 

• Wavelength Assignmen t: Once the ligbtpath routes 
are dete1mined, the wavelength a signment problem 
can be represented as a graph coloring problem. Each 
lightpath corresponds to a node in wavelength assign
ment graph, and two nodes are set as neighbors only 
if the respective lightpaths share at !east one common 
lin k. 

2) Optical Switch Adapter: Each ROADM consists of a 
set of cards and each card contains a set of confi gurcd port 
[ 19] . ROADM edges are connected to OpenFlow switches 

1 Ports discovery is out of scope in this paper 

via WSS (Wavelength Selective Switch) and DMX (Channel 
Demultiplexer) cards, whereas ROADM core interfaces are 
interconnected via UNE cards. Two fibers are used for the 
bidirectional connection between two ROADMs. These speci
fications lead us to add this module. 

III. GMPLS-BASED UN lFIED C ONTROL P LANE 

A. Overview 

Actually, there are still a lot of non capable GMPLS 
equipments. DRAGON software solves this problem in the 
Ethernet networks using SNMP to adapt tbese equipments 
to GMPLS control plane. The DRAGON project studies and 
develops an open ource software to enable dynamic provi
sioning of network resources on an interdomain basis across 
heterogeneous network technologies. The project enables the 
communication between networks of diffe rent types through 
the GMPLS control suite. For its implementation, DRAGON 
deploys the IP network infra tructure and creates a GMPLS 
capable optical core network to allow dynamic provisioni ng 
of determin istic network paths in direct response to end-user 
requests, spanning multiple administrative demains. Optical 
transport and switching equipments acting as Label Switching 
Routers (LSRs) prov ide deterministi c network resources at the 
packet, wavelength, and fiber cross-connect levcls. 

B. DRAGON Control Plane Componen.ts 

DRAGON software is thought to work li ke control plane 
within a GMPLS network. The control plane archi tecture 
consists of two basic elements 2 : The Client System Agent 
(CSA) and Virtual Label Switch Router (VLSR). 

1) CSA (Client System Agent): Tbe CSA is a software tbat 
runs on (or on behalf of) any system which terminates the 
data plane (traffic engineering) link of the provisioned service. 
This is the software that participates in the GMPLS protocols 
to al low for on demand end-to-end provisioning from client 
system to client system. A CSA can be a host, a router, or any 
networked deviee. 

2) VLSR (Virtual Label Switch Router): GMPLS bas not 
yet been implemented on large a scale. There are still a lot 
of non GMPLS capable switches in use. To overcome this 
limitation, the DRAGON protocol suite uses the VLSR. A 
VLSR is used to control di fferent kinds of switches like fo r 
instance Ethernet, TDM or Optical switches . What a VLSR 
does besides participati ng in the GMPLS protocols is trans
lating GMPLS comrnands into switch specifie commands like 
SNMP. By the use of these comrnands, a VLSR can control the 
switch and fo r example set a swi tch port in the specifie VLAN. 
To communicate with other VLSRs and CSAs, a VLSR uses 
the routing protocol OSPF-TE (Open Sh01test Path First
Traffi c Engi neeri ng) and path signaling protocol RSVP-TE 
(Resource Reservation Protocol-Traffic Engineering). A VLSR 
uses OSPF-TE to get farni liar with the control plane network 
and to inform the VLSRs and CSAs in the control plane about 
the TE network links. A VLSR uses the OSPF-TE LSAs (Link 
State Advertisements) to send in formation about the TE links. 

2The infom1ations fo und in this section is based on the Sara Project 
documentation produced by the RFC 3945 [20] 



Information that could be send over the control plane is infor
mation about upcoming and down going LSPs (Label Switched 
Paths). The OSPF-TE works with two daemons called OSPFD 
and zebra. Zebra, or GNU Zebra [21], is routing software 
for managing TCP!IP based routing protocols like RIP, BGP 
and OSPF. The DRAGON software extends the OSPF routing 
daemon with Traffic Engi neering informations like bandwidth, 
WDM and TOM used by GMPLS. A VLSR uses RSVP-TE for 
signaling and setting up LSPs within the GMPLS network. The 
RSVP-TE protocol originates from the Technische Universitt 
Darmstadts KOMRSVP [22]. The DRAGON software extends 
the KOM-RSVP signal ing protocol with support for RSVP-TE, 
GMPLS, Q-B1idge, SNMP and VLAN control. 

C. Adapting VLSR for Cisco ONS 15454 

The DRAGON software suite is being developed under 
the GNU General public license [23] . The source code cao 
be viewed, changed for own use. The latest version of the 
software suite can be downloaded at [24]. In arder to install 
the DRAGON software, the VLSR implementation guide has 
been fo llowed [25]. 
By default, the VLSR PC uses SNMP RFC 2674 to communi 
cate with switch. To manage and control the Cisco ONS 15454, 
we use TLl commands. Tbus, we implement an SNMPffLl 
Gateway that acts as a proxy to adapt the VLSR software with 
Cisco ONS 15454 pecification (Figure 4). As hown in figure 
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Fig. 4: SNMPfTLl Gateway 

4, the SNMP/TLl Gateway is composed of two modules: 

• SNMP Agent: Using snmp4j [26] open source Java 
library, we have developed an SNMP agent. It provides 
fonctions to receive and send SNMP PDUs (Protocol 
Data Unit). 

• TLI Agent: Using the iReasing [27] TLl API, we 
have developed a TL 1 based management application 
that communicates with the Cisco ONS 15454. Its 
main function is to map the SNMP messages into 
TL! commands to set-up configuration in Cisco ONS 
15454. 

IV. EXPER lME TAL SETUP 

In this section, we tir t present the OpenFlow experiments 
followed by the GMPLS ones. Theo we discuss the experi
mental results in arder to evaluate and compare the OpenFlow 
solutions with GMPLS . 

A. OpenFlow Experiments 

Two experiments are conducted to demonstrate the efficacy 
of our proposed solutions. The firs t experiment consists of 
creating end-to-end lightpath whi le the second experiment 
performs a backup restoration lightpath wben fai lure occurs 
on the primary lightpath. 

1) Testbed Setup: The architecture of our testbed is de
picted by figure 5. lt consists of two clients A and B, which are 
connected directly to OpenFlow switches 1 and 2, respectively. 
Eacb switch is connected to an Electrical!Optical converter. 
These converters are connected to DWDM optical network 
composed of tbree Cisco ROADM optical switches (Cisco 
ONS 15454) . Each ROADM is controlled by an OpenFlow 
Optical Agent. The OpenFlow optical agents and the Open
Flow switches are connected to an OpenFlow controller over 
an OpenFlow channel. 

2) Scenario 1: End-ta-End Lightpath Setup: As sbown in 
Figure 5, a data flow sent fro m Client A to Client B arrives 
at OpenFlow switchl. When the OpenFlow switchl does not 
find any flow entry that matchs with thi s fl ow, it encapsulates 
the first flow packet in an OFPT_pACKET_IN message and 
forwards it to the Controller. Then the controller uses the 
PCE to calculate the lightpath, and creates the lightpath by 
sending OFPT_FLOW _MOD message (OpenFlow Messages 
Mapping solution) or OFPT_CFLOW _MOD message (Open
Flow Extension solution) to the switches . The connection is 
established between the two clients following steps Al, A2, 
A3 , A4, AS, A6, and A 7 (Figure 5). The wireshark screenshot 
presents the excbanged messages during this scenario (Figure 
6). 

Fig. 6: OpenFiow Scenario! : Wireshark screenshot 

3) Scenario 2: Shared Optical Resto ration: This scenario 
demonst.rates how OpenFlow controller acts when a link fa ilure 
occurs . The path deletion is performed by the controller using 
OFPFC_DELETE message. Figure 5 shows the steps tbat are 
executed in this scenario (B l , B2, B3, B4, and B5). The 
wireshark screenshot presents the exchanged messages during 
this scenario (Figure 7). 

B. GMPLS Experiments 

To experiment GMPLS, we construct a transparent opti
cal network testbed with two ROADMs (Figure 8). ln this 
infrastructure, the control plane consists of two CSA and 
two VLSRs. The CSAs and the VLSRs are connected via the 
switch hub. GRE (Generic Routing Encapsulation ) tunnels 
are created between the CSAs and the VLSRs and between 
the VLSRs themselves to exchange RSVP-TE and OSPF-TE 
messages. The SNMP/TLl Gateway has a connection with 
the switch hub to allow SNMP management by the VLSRs. 
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Open Flow optical agents corrrspondin: t·o these Optical Switches read the 
ala rms of the OJllical switches . Then they send OFYf_PORT _STAT US 
Messages to the controller about the port status update. 

OpenFiow con troUer calcula tes alremati\•e ligbtpaths to the existing failed 
Ugbtputbs. 

The controller sends OFI'T_FLOW _MOD (typ.=ADD FLOW) messages 
(Open Flou' A1t.."SSagej· !Yiapping solution) or OFPT_ CFLO\V _MOD message 
(OpenFlmv Exten:ritm solution) to the opticalswitcbes to crcate new ligbtpatb. 
ln this case, a new lightpath is cstablished from ROADM 2 to ROADM J via 
ROADM 1 on a differeotwavelength (1588.17nru). 

The controller sends nnother OFPT_FLOW _MOD (Type=OFPFC DELETE) 
messages (Opct~Fiow Nl es.mgLi3. ftlt~ppiug solution) or OFPT _CFLO\V_MOD 
messn:e (Open Flow Exte11siou Solution) to the opticol switches which are 
assodat·ed with old lightpa tb to deJete the prinL1 ry ligbtpatb. 

\Vhen the Open Flow Optical agents receive these messne:es. they translate ir 
into the nppropriate TLJ cornm:1nds and send it to the optical switches. 

Fig. 5: Network configuration and exchanged messages during the OpenFiow experiments 

It translates SNMP messages to TL! commandes in order to 
confi gure the ROADMs. ln the SNMPffLI Gateway machine, 
we installed two virtual machines . Each one listens to a 
VLSR on port 161 and cont:rols one ROADM. Using wireshark 
capture in VLSR2 (Figure 9 (a)) and VLSR l (Figure 9 (b)), 
we ex plain the GMPLS signaling to create an LSP from CSA2 
to CSAl. 
CSA2 sends RSVP _FATH message to VLSR2 witb the des

tination set to the target CSA l. Botb VLSRs fm·ward the path 
mes age si.nce they are not the destination. When CSA l receivs 

the RSVP _PATH message, it replies to it witb RSVP _RESV 
message and sends it to VLSRl. VLSRl forwards this message 
to VLSR2 because again it is not the destination of the 
message. Final! y, VLSR2 forwards the RSVP _RESV message 
to CSA2. At this point, the LSP is active and can be used. The 
SNMPffLI Gateway translates the SNMP messages sent by 
the two VLSRs to TLl commands in order to configure the 
two ROADMs. 
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Fig. 7: OpenFlow Scenario2 : Wireshark screenshot 

C. Experimentation Results 

Table 1 shows the time (in ms) consumed on each solution 
(OpenFlow Messages Mapping and OpenFlow Extension) 
and the GMPLS approacb. ln this table, Patbl and Path2 
refer to the primary and the backup li ghtpaths. Pathl nodes 
are OF_Switchl -+ ROADM2 -+ ROADM3-+ OF_Switch2, 
wbile Path2 nodes are OF _Switchl -+ ROADM2 -+ ROADMl 
-+ ROADM3 -+ OF _Switch2. LSP on the table refers to 
Label Switch Pa th for GMPLS. LSP nodes are CSA 1 -+ 
ROADM2 -+ ROADM3 -+ CSA2. The experiments results 
show that OpenFlow Extension solution (2 16 ms) outperforms 
OpenFlow Messages Mapping (227 ms) solution. This result 
is expected because OpenFlow Extension solution use one 
message to encapsulate bidirectional lightpath information 

(b)VLSR 1 

Fig. 9: GMPLS Scenario Wireshark creenshot 

and OpenFlow Messages Mapping needs two messages. For 
the backup lightpath (Path2) whi ch span on three node , 
OpenFlow Extension solution takes 239 ms to create the 
lightpath while OpenFlow Messages Mapping takes 269 ms. 



upen"tow Messages Mappmg ~o uuon 
Comrol er Swllch eslabilshment Tota (ms) 

KUAUM~ KUAUMI KUAUMJ 
1 Path l 16 121 1 - 1 90 227 
1 Path2 18 110 1 30 1 Ill 269 

OpenFiow Extension Solution 
Con troUer !Swnch estab 1s 1ment ota (ms) 

RUAUMZ KUAUMI RuADMJ 
1 Pathl 16 100 1 1 100 2 16 
1 Path2 18 90 1 30 1 10 1 239 

GMPLS Solution 
KSVP- t to Swllch eSiabiiShment ota (ms) 

RUAUMZ KUAUIVII KUAUMJ 1 

1 LSP 130 110 1 1 100 1 340 

TABLE 1: The experiments timing 

On the other hand, GMPLS takes more time (340 ms) to 
create lightpath than OpenFlow solutions. This is because the 
GMPLS-based control pl ane is complicated especially when it 
is deployed as a unifi ed control plane (UCP) for TP/DWDM 
multi-layer networks. This is due to its disuibuted nature, 
the number of protocol s, and the interactions among different 
laycrs. The fl ex ibility and manageabi li ty of the GMPLS-based 
control plane is low, because, for example, if we want to 
create or update an end-to-end lightpath, the signalisation and 
reservation messages must be updated and exchanged between 
ali the intermediate VLSRs. However, the OpenFlow-based 
UCP provides the maximum fl exibility and manageability for 
ca1Tiers since ali the functionalities are integrated into a single 
OpenFlow controller. More importantly, the OpenFlow-based 
control plane is a natural choice for a UCP in IP/DWDM multi
layer networks due to its inherent feature, as the procedure 
shown in Figure 5. Thus, the technical evolution from GMPLS 
to OpenFlow is a process that the control plane evolves from 
a fully distributed architecture to a fully centralized one. 

V. CO CLUS ION 

In this paper, we experimentally present two solutions 
(OpenFlow Messages Mapping and OpenFlow Extension) 
for a dynamic wavelength path control in IP/DWDM multi
layer optical networks. The overall feasibility of these solution 
is experimentally assessed, and their performance is quantita
tively evaluated and compared with GMPLS approach, on an 
actual u·ansparent network testbed. The comparison reveals that 
the OpenFlow-based control plane is simpler, more flexible and 
manageable than the GMPLS-based control plane, especially 
for an IP/DWDM multi-layer optical network. Finally, the ex
perimental results show that the OpenFlow Extension solution 
outperforms the OpenFLow Messages Mapping and GMPLS 
solu tions. It can significantly improve the performance of the 
control p lane and reduce the lightpath setup time. 
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OpenFlow and GMPLS Unified Control Planes: 
Testbed Implementation and Comparative Study 

Mahmoud Bahnasy, Karim Idoudi, and Halima Elbiaze 

Abstract-Finding an effective and simple unified control 
plane (UCP) for IP/Dense Wavelength Division Multiplex
ing (DWDM) multi-layer optical networks is very important 
for network providers. Generalized Multi-Protocol Label 
Switching (GMPLS) has been in development for decades to 
control optical tt·ansport networks. However, GMPLS-based 
UCP for IP/DWDM multi-layer networks is extremely com
p lex to be deployed in a real operational products because 
still there are a lot of non-capable GMPLS equipments. On 
the other ha nd, OpenFiow (OF), one of the most widely used 
SDN (Software Defined Ne tworking) implementations, can 
be u sed as a unified control plane for packet and circuit 
switched networks [1]. 
In this paper, we pr·opose and experimentally evaluate two 
solu tions using OpenFlow to control both packet and optical 
networks (OpenFlow Messages Mapping and OpenFlow Ex
tension) . The overall feasibility of these solutions is assessed, 
and their performance is evalu ated and compared with 
GMPLS approach, using a custom-build simulator. Simu
lation res ults show that the OpenFlow Extension solu tion 
outperforms the OpenFlow Messages Mapping and GMPLS 
solutions. 

Index Term.s-Optical Network; Software Defined Network
ing; OpenFlow; GMPLS; Testbed 

I. I NTRO D UCTIO N 

C URRENTLY, IP and optical layer s opera te separately 
without dynamic interaction which leads to high op

erational cost , low network effici ency, and long latency for 
end-to-end path provisioning. The main reason behind these 
limitations is that IP-based and optical-based networks have 
differen t architectures, switching technologies, and control 
mech ani sms. Therefore, a unifi ed control plane (UCP) for 
both IP and optical layers, as one of the key challenges 
fo r the network carriers, is very impor tant to address th e 
aforementioned issue. 
GMPLS, a relatively mature control plane technique for 
optical transport networks, has been proposed as a solution 
for UCP [2] . The GMPLS protocol suite has been developed 
decades ago to fully opera te in a distributed fashion. It is 
considered as the reference control plane for IP/Dense Wave
length Division Multiplexing (DWDM) multi-layer optical 
networks. But due to i ts distributed nature, the number 
of protocols, and the interactions between different layer s, 
the GMPLS-based UCP is overly complex[3], [4]. Moreover, 
the implantation of this technology is difficult because s till 
ther e ar e a lot of non-capable GMPLS equipments. DRAGON 
(5], [6] (Dynamic Resource Allocation via GMPLS Optical 
Networks), is a software tha t solves this problem using 
SNMP (Simple Network Management Protocol) to control 
these equipmen ts and making them ca pable for working in 
a GMPLS network. In this pa per, we use this software and 
ada pt it to operate with our optical switch (Cisco ONS 15454 

H. Elbiaze is with the Depar tm ent of Electrical and Computer 
Engi neeri ng, Université du Québec à Montréal, Québec, Canada (e
mail : elbiaze.halima@uqam .ca) . 

1 ) . 

On the other h and, we propose SDN [7] as a prormsmg 
solution for a UCP. Generally, the SDN technology separ a tes 
the control and data planes so tha t we can in troduce new 
functionalities by writing software programs, running within 
an ext ernal controller that manipula tes the logical ma p of 
th e network. This provides the maximum flexibiliLy for the 
opera tor to control differen t types of network, and match 
the carrier s preferences. One of the widely used SDN imple
mentations is OpenFlow [8]. OpenFlow protocol is mature 
for L2/L3 packet switching networks, but still at a starting 
stage for wavelength-switched optical networks. So, it needs 
sorne extensions to be able to support the optical domain. 
Sorne efforts have been done to present OpenFlow-based 
UCP to control packet and circuit switches. Most notably, 
PAC. C [1] has been experimented with alterna tive ap
proaches. Other works [9] , [10], [11] h ave presen ted similar 
proposition to PAC.C by providing an experimental study or 
a Proof-of-Concept to support the using of OpenFlow as a 
unified control plane. However, [12] presents a comparative 
study between OpenFlow and GMPLS solutions based only 
on simula tions. In this paper, we propose two a pproaches 
based on OpenFlow protocol to control both optical and elec
trical networks. Then we experimentally compar e these two 
solutions with a real implementa tion ofGMPLS approach. To 
th e best of our knowledge, this is the first work considering 
both OpenFlow and GMPLS UCP solutions, and compare 
them via testbed experimentation. We conduct a real case 
study of implementing end-to-end ligh tpath and a ligh tpath 
restoration by establishing a dynamical configur ed backup 
lightpath. 
The first solution is named OpenFlow Messages Mapping . 
It maps the OpenFlow standard messages in to equivalen t 
optical channel requests, without modifyi ng the OpenFlow 
protocol. The second one is named OpenFlow Extension 
where new messages have been added to the OpenFlow pro
tocol in arder to support the circuit switching. The proposed 
solutions are implemented in a testbed to demonstrate their 
effectiveness, as well as GMPLS-based approach. For both 
solutions, we implement an OpenFlow Optical Agent to 
translate the OpenFlow messages to be executed on the 
optical switches. Mor eover, an Open Flow-Path Computa
tion Element (OF-PCE) module is added to the OpenFlow 
controller as a network application in order to control the 
optical domain. 
The r emaining of this pa per is organized as follows. Sec
tion II descr ibes how can OpenFlow defines a unifie d con
trol plane for both IP and optical networks and the iple
mentation of the proposed solutions (OpenFlow Messages 
Mapping and OpenFlow Extension) . Section III presents 
the GMPLS-based UCP approach and the deployment of 
thi s protocol in our testbed. ln particular, we explain the 

1ROADM : Reco nfigurable Optical Add-D rop Mul tipl exer 
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adaptation of DRAGON software for our ROADM (CISCO 
ONS 15454). Section IV presents the different experimental 
scenarios for each solution and the comparative results with 
GMPLS. In Section V, we present our custom-built Java 
event-driven simulator and the different algorithms and 
topologies used in order to compare the performances of the 
proposed solutions. Concluding remarks are eventually given 
in Section VI. 

Il. 0PENFLOW-BASED UNIFIED CONTROL PLANE 

A. Overview 

We briefly outline the main characteristics of OpenFlow. 
A more detailed and exhaustive documentation is available 
in the OpenFlow white paper [13] and in the Open Flow 
specification [14]. OpenFlow is an open standard that was 
developed several years ago at Stanford University in order 
to enable researchers to run experimental new protocols 
and technologies on real networks, without disrupting the 
existing traffic or network availability [15] . In a traditional 
network, the data path and the control path occur on the 
same deviee (switch, router). OpenFlow separates these two 
functions. OpenFlow switches perform the data plane func
tions and OpenFlow controller implements the control plane 
intelligence and communicates with the OpenFlow switch 
via the OpenFlow protocol. 
An OpenFlow switch consists of one or more flow tables and 
group tables, which perform packet lookups and forwarding, 
and a secure channel that is connected to an external con
troUer. Each flow table in the switch contains a set of flow 
en tries. Each flow entry consists of match fields2

, counters 
and a set of instructions to apply to matching packets. 
OpenFlow advocates the separation of data and control 
planes for circuit and packet networks, as well as the 
treatment of packets as part of flows, where a packet flow 
is defined as any combination of L2/L3/L4 headers. This, 
together with Ll/LO circuit flows, provides a simple flow 
abstraction that fits well with both types of networks. Hence, 
OpenFlow presents a common platform for the control of 
the underlying switching hardware, that switches flows of 
different granularities, while allowing all of the routing, 
control and management to be defined in software outside 
the datapath, in the OpenFlow controller as shown in figure 
1. 

Open flow 
Controller 

-.. .. 
·········· .... 

~ 

} unified Control Plane 

} Unifying Abstraction 

} Data Plane Switching 

Fig. 1. Unified architecture of a converged Packet-Circuit 
network 

2Match Field: a field on wh.ich packet could be matched, including 
packet headers, the ingress port, and the metadata value. 

2 

B. OpenFlow Messages Mapping and OpenFlow Extension 

This paper proposes two solutions using OpenFlow proto
col as a unified control plan for both optical and electrical 
domains (OpenFlow Messages Mapping and OpenFlow 
Extension). For both solutions, we implement an OpenFlow 
Optical Agent to translate the OpenFlow messages to its 
proper TL1 (Transaction Language 1) commands [16] to 
be executed on the optical switch using telnet channel. 
A Path Computation Element (PCE) module is added to 
the OpenFlow controller as a network application (Figure 
2). Upon request arrival, PCE calculates the corresponding 
lightpath and sends the cross-connection messages to in
volved ROADMs. In the next sections, we describe separately 
the two solutions. 

1) OpenFlow Messages Mapping: In this solution, 
OpenFlow standard messages are used without any modi
fication. OpenFlow messages are mapped into optical switch 
commands. Hence, the OFPT _FLOW_ MOD message of type 
OFPFC _ADD is mapped into ENT-OCHNC TL1-command 
to create a lightpath channel. The OFPT FLOW MOD 
message of type OFPFC DELETE is mapped into DLT
OCHNC TL1-command to delete a lightpath channel. When 
the agent receives OFPT FEATURES REQUEST mes
sage, it encapsulates the emulated port information into 
OFPT _ FEATURES _RE PLY message. Finally the agent 
reads periodically the ROADM events (using RTRV-ALM
ALL TL1-command) and if it finds any critical alerts, it 
crea tes OFPT _PORT_ STATUS message and forwards it to 
the controller. 

2) OpenFlow Extension: In this solution, OpenFlow 
messages are extended and new messages are added. 
The new messages specification [17] allows the 
controller to distinguish between the circuit-switching 
and the packet-switching networks. For example, 
OFPT _FEATURES_REPLY message is extended by 
adding extra information about the circuit-switching 
ports. To send an optical cross-connect information, a new 
match structure called ofp _ connect is presented. Multiple 
ports can be cross-connected by a single structure. This 
structure is added to the newly defined message called 
OFPT _CFLOW _MOD. Finally when the state of a port 
changes, the OpenFlow Optical Agent sends a new defined 
message called OFPT _CPORT _STATUS. 

C. OpenFlow Optical Agent 

As mentioned above, the main role of the OpenFlow Op
tical Agent is to translate the optical channel requests and 
OpenFlow messages into TL1 commands to be executed on 
optical nodes (Figure 2). 

This agent is associated to each optical node and 
acts as a virtual switch. It consists of : (i) OpenFlow 
Channel to communicate with the OpenFlow controller, (ii) 
OpenFlow 1 TLl Translator to con vert OpenFlow messages 
into TL1 commands, and (iii) Ports Emulation module to 
emulate the optical node ports and send the port status 
information to the controller. This information is used by 
the controller to update ports database and to calculate the 
lightpath 1

. 

1 Ports discovery is out of scope in this paper 
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OpenFiow-Path ComputaUon Element 
(OF-PCE) 

( OpenFiow Standard) 

Paper Contribution Optical Switch 

Fig. 2. OpenFlow Optical Agent intercations 

D. OpenFlow-Path Computation Element (OF-PCE) 

The OF-PCE implements an algorithm to establishe light
paths between source-destination pairs in order to create a 
fully connected logical topology [18]. A Tra.ffic Engineering 
Database (TED) is created to save the network topology 
information. As the OpenFlow controller has a centralized 
management, the TED will be updated in case of light
path creation/release and ports status change. Two modules 
are proposed to implement the PCE; Executor and Optical 
Switch Adapter (Figure 3). 

Inilial Pons 
Configurat ion 

Pons Updates 

r-- ~ -- ----------------------------, 
1 OpenFiow-Path Computation Element: 
1 1 
1 1 
1 

Executor 1 
1 1 
1 1 
1 1 
1 1 
1 Wavelength Assignment Adaptrr 1 1 

(Graph Coloring) i 1 Source + Destmnuon 1 
1 lnformaùon 1 L _____________________________ ----• 

Output : LightPath 
infonnation 

Fig. 3. OpenFlow-Path Computation Element workflow 

1) Executor: This module ensures the avoidance of us
ing one wavelength more than once in the same fiber. 
Each wavelength carries traffi.c between a pair of source 
and destination. Therefore, multiple wavelengths are re
served in a single strand of fiber for establishing multi
ple lightpath through one fiber. These connections between 
source/destination nodes in DWDM networks are performed 
in two steps: 

• Rou ting: We use Dijkstra Algorithm in order to find the 
shortest path between each node pair. In our case, we are 
interested in a network topology composed of OpenFlow 
switches and ROADMs. 

• Wavelength Assignment: Once the lightpath routes 

3 

are determined, the wavelength assignment problem 
can be represented as a graph coloring problem. Each 
lightpath corresponds to a node in wavelength assign
ment graph, and two nodes are set as neighbors only 
if the respective lightpaths share at least one common 
link. 

2) Optical Switch Adapter: Each ROADM consists of a set 
of cards and each card contains a set of configured ports 
[19]. ROADM edges are connected to OpenFlow switches 
via WSS (Wavelength Selective Switch) and DMX (Channel 
Demultiplexer) cards, whereas ROADM core interfaces are 
interconnected via LINE cards. Two fibers are used for 
the bidirectional connection between two ROADMs. These 
specifications lead us to add this module. 

III. GMPLS-BASED UNIFIED CONTROL PLANE 

A. Overview 

It is easy to guess that GMPLS cornes from MPLS. MPLS 
was introduced in the nineties and its best characteristics 
are that it could set up multiple tunnels and apply tra.ffic 
engineering properties to them and also with MPLS had 
found a way to make two opposing Technologies coexist next 
to each-other and establish end-to-end paths in both packet
based and cell-based networks. At the beginning of the new 
millennium appears GMPLS to put together ail the current 
networking technologies. The GMPLS is an extension of 
MPLS that solves sorne problems and adds new features. 
GMPLS has a set of five interfaces such as a Time-Division 
Multiplex capable, Lambda Switch capable or Fi ber Switched 
capable interfaces as well as the Packet switch capable and 
Layer-2 Switch capable interfaces inherited from MPLS. 
Furthermore, of the diversity of networking technologies the 
GMPLS supports, it eliminates the need of an operator, the 
entire network can be automated and no human interference 
will be required in the tunneling process. Using a distributed 
protocol on large networks makes the path computation 
process very complex and resources consuming. To address 
this problem, Internet Engineering Task Force (IETF) has 
introduced a centralized Path Computation Element (PCE) 
entity in the GMPLS control plane. 

B. GMPLS WITH PCE SIGNALING 

Because of the complexity of the GMPLS protocol, a cen
tralized approach is presented using a PCE. The PCE is a 
centralized network element responsible for computing the 
lightpath. In this topology PCE also assign wavelength on 
each link for each request. The PCE is used in GMPLS
controlled Wavelength Switched Optical Network (WSON) 
[20], [21]. PCE uses a messaging protocol called PCEP to 
exchange information between GMPLS controller of each 
node and the PCE. PCE maintains the information of the 
nodes, links status and wavelength availability in a database 
called Traffi.c Engineering Database (TED) The links up
date is carried out by the OSPF messaging (Link State 
Advertisements - LSAs). This updates are sent when a new 
wavelength status change occurs (reserve/release). A full 
link status update occurs when new node joins or leaves 
the network. Following in detail the message sequence on 
GMPLS with PCE mechanism to create a lightpath: 

• The source node sends a PCEP request message for 
submitting a path computation request. 
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• The PCE computes the path requested and assigns a 
wavelength to this path. Then the PCE sends this infor
mation to the source by using a PCEP PCRep message. 
Otherwise, if the PCE fails in computing a path or in 
assigning a wavelength on it, it replies with a PCRep 
message with NO-PA TH reply, and the lightpath request 
is refused (forward-blocking) . 

• Upon the reception of PCRep message, the source node 
sends the Resource Reservation Protocol-Traffic Engi
neering (RSVP-TE) messages along the computed path 
to reserve it. The Path reservation message includes the 
Explicit Route and the Label set. The label set informa
tion include the wavelength assigned by the PCE. 

• When a node receives RSVP-TE path reservation mes
sage, it performs the wavelength assignment if it is 
available. Otherwise, another wavelength contained in 
the Label Set is selected, according to a specifie wave
length assignment strategy (e.g., fust fit) . 

• If another request requested the same resource (link 
and wavelength) on a specifie node and this request is 
accomplished before this one, this will have this node to 
refuse this request and reply with RSVP refuse message 
(backward -blocking). 

• When the wavelength assigned, the destination node 
sends back a Resv message to effectively reserve the 
selected wavelength on each link of the path. 

• Once the Resv message reaches the source, the lightpath 
is established and data could be carried through the 
pa th. 

Lightpath release is performed in a sinlilar way as the setup 
process (in a distributed manner through RSVP-TE signaling 
[22]). As the previous description the setup procedure may be 
blocked during path computation because oflack ofresources 
(forward-blocking), or may be blocked due to wavelength 
contentions (backward-blocking). Contentions arrive when 
two or more RSVP-TE messages attempt to reserve the same 
resource (link and wavelength). This actually because the 
link availability da tabase TED may be outdated when the 
path request reached PCE. 

C. DRAGON 

Actually, there are still a lot of non capable GMPLS 
equipments. DRAGON software salves this problem in the 
Ethernet networks using SNMP to adapt these equipments 
to GMPLS control plane. ln this paper, we use this software 
and adapt it to operate with our optical switch (Cisco ONS 
15454). 
The DRAGON project studies and develops an open source 
software to enable dynamic provisioning of network re
sources on an interdomain basis across heterogeneous net
work technologies. The project enables the co=unication 
between networks of different types through the GMPLS 
control suite. For its implementation, DRAGON deploys the 
lP network infrastructure and creates a GMPLS capable 
optical core network to allow dynamic provisioning of de
terministic network paths in direct response to end-user 
requests, spanning multiple administrative domains. Optical 
transport and switching equipments acting as Label Switch
ing Routers (LSRs) provide deterministic network resources 
at the packet, wavelength, and fib er cross-connect levels. 

1) DRAGON Control Plane Components: DRAGON soft
ware is thought to work like control plane within a GMPLS 
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network. The control plane architecture consists of two basic 
elements 3 : The Client System Agent (CSA) and Virtual 
Label Switch Router (VLSR). 

a) CSA (Client System Agent): The CSA is a software 
that runs on (or on behalf of) any system which terminates 
the data plane (traffic engineering) link of the provisioned 
service. This is the software that participates in the GMPLS 
protocols to allow for on demand end-to-end provisioning 
from client system to client system. A CSA can be a host, 
a router, or any networked deviee. 

b) VLSR (Virtual Label Switch Router): GMPLS has 
not yet been implemented on large a scale. There are still 
a lot of non GMPLS capable switches in use. To overcome 
this limitation, the DRAGON protocol suite uses the VLSR. 
A VLSR is used to control different kinds of switches like 
for instance Ethernet, TDM or Optical switches. What a 
VLSR does besides participating in the GMPLS protocols 
is translating GMPLS co=ands into switch specifie com
mands like SNMP. By the use of these commands, a VLSR 
can control the switch and for example set a switch port in 
the specifie VLAN. To co=unicate with other VLSRs and 
CSAs, a VLSR uses the routing protocol OSPF-TE (Open 
Shortest Path First-Traffic Engineering) and path signal
ing protocol RSVP-TE (Resource Reservation Protocol-Traffic 
Engineering). A VLSR uses OSPF-TE to get familiar with 
the control plane network and to inform the VLSRs and 
CSAs in the control plane about the TE network links. A 
VLSR uses the OSPF-TE LSAs (Link State Advertisements) 
to send information about the TE links. Information that 
could be send over the control plane is information about 
upcoming and down going LSPs (Label Switched Paths). The 
OSPF-TE works with two daemons called OSPFD and zebra. 
Zebra, or GNU Zebra [24], is routing software for managing 
TCPIIP based rou ting protocols like RIP, BGP and OSPF. The 
DRAGON software extends the OSPF routing daemon with 
Traffic Engineering informations like bandwidth, WDM and 
TDM used by GMPLS. A VLSR uses RSVP-TE for signaling 
and set ting up LSPs within the GMPLS network. The RSVP
TE protocol originates from the Technische Universitt Darm
stadts KOMRSVP [25]. The DRAGON software extends the 
KOM-RSVP signaling protocol with support for RSVP-TE, 
GMPLS, Q-Bridge, SNMP and VLAN control. 

2) Adapting VLSR for Cisco ONS 15454: The DRAGON 
software suite is being developed under the GNU General 
public license [26]. The source code can be viewed, changed 
for own use. The latest version of the software suite can 
be downloaded at [27]. In order to install the DRAGON 
software, the VLSR implementation guide has been followed 
[28]. 
By default, the VLSR PC uses SNMP RFC 2674 to com
municate with switch. To manage and control the Cisco 
ONS 15454, we use TL1 co=ands. Thus, we implement an 
SNMP/TL1 Gateway that acts as a proxy to adapt the VLSR 
software with Cisco ONS 15454 specification (Figure 4). As 
shown in figure 4, the SNMP/TL1 Gateway is composed of 
two modules: 

• SNMP Agent: Using snmp4j [29] open source Java 
library, we have developed an SNMP agent. It provides 
functions to receive and send SNMP PDUs (Protocol 
Data Unit). 

3The informations found in this section is based on the Sara 
Project documentation produced by the RFC 3945 [23) 
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TLl Agen t : Using the iReasing [30] TLl API, we have 
developed a TLl based management application that 
communicates with the Cisco ONS 15454. Its main func
tion is to map the SNMP messages into TLl commands 
to set-up configurations in Cisco ONS 15454. 

IV. EXPERIMENTAL SETUP 

In this section, we first present the OpenFlow experi
ments followed by the GMPLS ones. Then we discuss the 
experimental results in order to evaluate and compare the 
OpenFlow solutions with GMPLS. 

A. OpenFlow Experiments 

Two experiments are conducted to demonstrate the effi
cacy of our proposed solutions. The fust experiment consists 
of crea ting end-to-end lightpath while the second experiment 
performs a backup restoration lightpath when failure occurs 
on the primary lightpath. 

1) Testbed Setup: The architecture of our testbed is de
picted by :figure 5. It consists of two clients A and B, which 
are connected directly to OpenFlow switches 1 and 2, re
spectively. Each switch is connected to an Electrical/Optical 
converter. These converters are connected to DWDM optical 
network composed of three Cisco ROADM optical switches 
(Cisco ONS 15454). Each ROADM is controlled by an Open
Flow Optical Agent. The OpenFlow optical agents and the 
OpenFlow switches are connected to an OpenFlow controller 
over an OpenFlow charmel. 

2) Scenario A: End-ta-End Lightpath Setup: As shown 
in Figure 5, a data flow sent from Client A to Client 
B arrives at OpenFlow switchl. When the OpenFlow 
switchl does not :find any flow entry that matchs with 
this flow, it encapsulates the first flow packet in an 
OFPT PACKET IN message and forwards it to the Con
troller:- Then the controller uses the OF-PCE to calcu
late the lightpath, and creates the lightpath by sending 
OFPT FLOW MOD message (OpenFlow Messages Map
p ing solution) or OFPT CFLOW MOD message (Open 
Flow Extension solutiorD to the ~tches. The connection 
is established between the two clients following steps Al, 
A2, A3, A4, A5, A6, and A7 (Figure 5). The wireshark 
screenshot presents the exchanged messages during this 
scenario (Figure 6). 

3) Scenario B: Shared Optical Restoration: This scenario 
demonstrates how OpenFlow controller acts when a link fail
ure occurs. The path deletion is performed by the controller 
using OFPFC DELETE message. Figure 5 shows the steps 
that are executed in this scenario (Bl, B2, B3, B4, and B5). 
The wireshark screenshot presents the exchanged messages 
during this scenario (Figure 7). 
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Fig. 6. OpenFlow Scenario A: Wireshark screenshot 
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Fig. 7. OpenFlow Scenario B: Wireshark screenshot 

B. GMPLS Experiments 

To experiment GMPLS, we construct a transparent op
tical network testbed with two ROADMs (Figure 8). In this 
infrastructure, the control plane consists of two CSAs and 
two VLSRs. The CSAs and the VLSRs are connected via the 
switch hub. GRE (Generic Routing Encapsulation ) tunnels 
are created between the CSAs and the VLSRs and between 
the VLSRs themselves to exchange RSVP-TE and OSPF
TE messages. The SNMP!TLl Gateway has a connection 
with the switch hub to allow SNMP management by the 
VLSRs. It translates SNMP messages to TLl commandes in 
order to configure the ROADMs. In the SNMPtrLl Gateway 
machine, we installed two virtual machines. Each one listens 
to a VLSR on port 161 and controls one ROADM. Using 
wireshark capture in VLSR2 (Figure 9 (a)) and VLSRl 
(Figure 9 (b)), we explain the GMPLS signaling to create 
an LSP from CSA2 to CSAl. 

CSA2 sends RSVP PATH message to VLSR2 with the 
destination set to the target CSAl. Both VLSRs forward 
the path message since they are not the destination. When 
CSAl receives the RSVP PATH message, it replies to it 
with RSVP RESV messa~ and sends it to VLSRl. VLSRl 
forwards this message to VLSR2 because again it is not 
the destination of the message. Finally, VLSR2 forwards the 
RSVP RESV message to CSA2. At this point, the LSP is ac
tive arÎd can be used. The SNMPtrLl Gateway translates the 
SNMP messages sent by the two VLSRs to TLl commands 
in order to configure the two ROADMs. 
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Scenario 1 

• ScenarioZ 

OpenFlow 
Switch 1 

Client A 
ROADM 1 

A data flow sent from client A to client 8 arrives at Open Flow switcb J. 

0tJenF1ow switch 1 does not find n flow enlry in its flow table to forward 
this flow, so it eocapsulates the first flow pncket in a OFPT PACKET IN 
message and fonvnrds il to tbe controUer. - -

The cootrollcr calculates the tJath from Client A tu Client B, ami sends 
OFPT_PACKET_OUT message to the OpcnFlow switch 1 . The controUcr 
sends Jalso OFPT _FLO\V _J\100 messages (OpeuFimv Messuges ft1uppi11g 
solution) or OFPT _ CFLO\V _MOD message ( Ope11Fiow E:deusiou so lution) 
tu the Oprical OpenF1ow agents in order tu create the Jjgbtp:.ath. 

\Vhen OpenFiow optical agents receive tbis message, they translate it into 
the appropriate TLI commands and send ir ro the ROADM swirches . 

After creu rin g: the Iigbtp~ttb1 the data flow trn,·erses unriJ Openflow swirch 2. 
\Vhen d1e flow is n~ceived by Open Flow switch 2, if the switch does not fi nd a 
flow entry in irs fl ow table to forward this packet, ir sends a 
OFPT_PACKET_lN message to the controller reques ting a.o action for this 
flow. 

The controller sends .o OFPT_PACKET_OUT message to OpenFlow switcb 2 
to fon~·ard this pncket ro client B. 

Open Flow switch 2 forwards tbis pncket to client B. 

• 
• 
• 
• 
• 

Clienr 8 

ÛJ)tnFtow 
Swirch 2 

When the intercoonection between the ROADM J nnd ROADM 2 fails. both 
Open flow opticalueents corresponding ro these Oprical Switches read. the 
alarms of the OJ>tical switches . Th en theysend OFPT PORT STATUS 
Messages to the con troUer about the port starus UJKiaÏe . -

OpenFiow conrroller calcula tes alternative lightp:Uhs ro the existing failed 
lightJ»Ihs. 

The cootroller seods OFPT _FLOW _MOD (type=ADD FLOW) messa&es 
(OpeuFitJw A-lesst1ge.v kl11pping solution) or OFPT _CFLO\V _MOD mHSage 
(Open Flow Extension solution) to the opricnl switches to crente new li&:htpnth. 
ln this case, a ucw lightparb is establi.shed from ROADM 2 to ROADM J via 
RO.-\DM 1 on n different wovelcngth (1588.17nm). 

The controller sends nnother OFPT_FLOW _MOD (Type=OFPFC DELETE) 
messages (OpenF/uov Me.t~·age:o· Mapping solution) or OFPT CFLOW MOD 
message ( OpenF/mv E\·tem·itm Solution) ro the oprical switches which -are 
associated with old Jigbtpath to delcte lhe primary lightpath. 

\\ih~n the ÛJJ~nFlow Opticul agt:nts receive the.se messages, they trun.slute it 
into the appropri.ute TLI commands and scnd it to the OIJricnl switches. 
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Fig. 5. Network connguration and exchanged messages during the OpenFlow experiments 

C. Experimentation Results 

Table I shows the time (in ms) consumed on each solu
tion (OpenFlow Messages Mapping and OpenFlow Ex
tension) and the GMPLS approach. In tlùs table, Pathl 
and Path2 refer to the primary and the backup lightpaths. 
Pathl nodes are OF Switchl -t ROADM2 -t ROADM3 
-t OF_ Switch2, wlùle Path2 nodes are OF Switchl -t 

ROADM2 -t ROADMl -t ROADM3 -t OF Switch2. LSP on 
the table refers to Label Switch Path for GMPLS. LSP nodes 
are CSAl -t ROADM2 -t ROADM3 -t CSA2. The experi
ments results show that OpenFlow Extension solution (216 

ms) outperforms OpenFlow Messages Mapping (227 ms) 
solution. Tlùs result is expected because OpenFlow Exten
sion solution uses one message to encapsulate biclirectional 
lightpath information and OpenFlow Messages Mapping 
needs two messages. For the backup lightpath (Path2) wlùch 
span on three nodes, OpenFlow Extension solution takes 
239 ms to create the lightpath wlùle OpenFlow Messages 
Mapping takes 269 ms. On the other hand, GMPLS takes 
more time (340 ms) to create lightpath than OpenFlow 
solutions. Tlùs is because the GMPLS-based control plane 
is complicated especially when it is deployed as a unified 
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Fig. 9. GMPLS Scenario : Wireshark screenshot 
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control plane (UCP) for IP/DWDM multi-layer networks. 
This is due toits distributed nature, the number ofprotocols, 
and the interactions among different layers. The flexibility 
and manageability of the GMPLS-based control plane is low, 

lo.l0.23.102/20 

d 

a 
l!tl.LO.l02/2A 

11.1 

ROADM 2 

1 Path1 
1 Path2 

1 .Path1 
1 Path2 

1 LSP 

VLSR2 

Cnl_vlsr2 

GreZ 

Con troUer 

16 
18 

(,jontrouer 

16 
18 

WoO: liUO.:U.' 
G<el : UUO.O . .l 
CiteJ : tO.lO.G.l 
n :to.uu 

Gre3 

CSA2 

(thl :lO.lOO.ULS 
G•el : ICUO.O.t 
rt: : IO.l.IQ.lO 

OpenFlow Messages Mappmg :::iolutwn 
:::>wltch establishment 

1 R 
121 - 1 90 
110 30 1 111 
OpenFlow ~xtenswn Solution 

SWltch establishment 
1 .JA lM:{ 

100 - 1 100 
90 30 1 101 

GMPLS Solution 
K:::>V.P-TJ!; 1 :::iWltch establishment 

1 RJlAnM? 1 R ' 

130 1 110 1 - 1 100 
TAtlLJ!; 1 

THE EXPERIMENTS TIMING 

7 

Total (ms) 

227 
269 
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216 
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340 

because, for example, if we want to crea te or update an end
to-end lightpath, the signalisation and reservation messages 
must be updated and exchanged between all the interme
diate VLSRs. However, the OpenFlow-based UCP provides 
the maximum flexibility and manageability for carriers since 
all the functionalities are integrated into a single OpenFlow 
controller. More importantly, the OpenFlow-based control 
plane is a natural choice for a UCP in IP/DWDM multi-layer 
networks due to its inherent feature, as the procedure shown 
in Figure 5. Thus, the technical evolution from GMPLS to 
OpenFlow is a process that the control plane evolves from a 
fully distributed architecture to a fully centralized one. 
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SUMMARY OF SIMULATED SOLUTIONS 

V. SIMULATION STUDY 

In this chapter we present a simulation comparative study 
of the OpenFlow solutions (OpenFlow Messages-Mapping, 
OpenFlow Extension) and the GMPLS approach. To conduct 
the comparison, a custom-built Java event-driven simulator 
is written based on the mechanisms mentioned in III-B. 
The measurements taken from the previously conducted 
experiments are used in writing the simulator. 

Table II shows the signaling protocol used by each solution. 

The simulation is carried out on two real optical network 
topologies. These network topologies are the optical network 
topology of America National Science Foundation (NSF) and 
the optical network topology of the European union U1tra
High Capacity Optical Transmission Network (European 
Re-search Project Cost239). The next section presents the 
simulation environment, parameters and algorithms. Then, 
the results for each topology is presented in sections V-Band 
V-C. 

A. The Custom-built Java Event-Driven Simulator 

The simulator is a custom-built Java event-driven appli
cation. It is written based on the mechanisms mentioned in 
chapter III-B. The internai optical switch lightpath estab
lishment time is emulated to 60 ms for ali solutions. For both 
topologies, the links between nodes are two directions. Each 
link supports 32 wavelengths. The controller and the PCE 
perform first-fit for assigning wavelengths. Wavelength can 
not be changed across the path since nodes do not support 
wavelength conversion. Lightpath requests are generated 
according to a Poisson process and uniformly distributed 
among ail node pairs. The holding time is fixed to 180 
seconds, the average inter-arrivai time is varied from 0.3 s 
to 18 s. This varies the Erlang from 600 to 10. 

The first algorithm explains how the written application 
simulates the OpenFlow solutions. The application uses the 
network topology nodes (G:Graph), the connections between 
them (V:Vertex), and the simulation end-time as inputs. 
Then, it starts by generating one event of type create
channel. After that, it reads events one at a time and handles 
it. Depending on the event type, each event type is treated 
differently as explained on the algorithm. For the create
channel event, it genera tes a new crea te-channel event based 
on the Poisson inter-arrivai time, updates the controller's 
time, calculates the lightpath, finds a free channel (wave
length). Finally, it generates the create cross-connect events 
for each switch through the calculated path (Events to be 
executed by the switches). Unless there is no lightpath 
available, it declares this request as a blocked request. For 
the events of type DeJete channel, it updates the controller's 
time. Then, it generates the deJete cross-connect events for 
each switch through the lightpath (Events to be executed by 
the switches). For the event of type create cross-connect, it 
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generates an event of type deJete channel. For both events 
of type create/delete cross-connect, it updates nodes time 
(Emulating the cross-connect creation time 60 ms). Then, it 
updates vertex information. 

Data: G: Graph, V: vertex, EndTime: Simulation End Time 
Result: Establishment time, Blocking probability and 

control traffic 
Initialization: Generate one event (using a uniformly 
distributed source and destination and Poisson inter-atTival 
ti me); 
w hile current time < EndTime do 

read the nearest event; 
switch Event Type do 

case Create Channel 
Generate new Create Channel event based on 
Poisson inter-arrivai time; 
Update the controller's time; 
Update the controUer's vertex information; 
Calculate path using Dijkstra Algorithm; 
Find a free channel (wavelength) cross the 
calculated path; 
if Path calculation return false OR no channel 
available then 

1 

Declare Request Blocked; 
Continue with the next event; 

el se 
Generate create Cross-Connect events for 
each node through the calculated path (with 
the information of event ti me, path and 
wavelength); 

end 
end 
case Delete Channel 

Update the controUer's time; 
Update the controller's vertex information; 
Generate deJete Cross-Connect events for each 
node through the calculated path (with the 
information of event ti me, pa th and wavelength); 

end 
case Create Cross-Connect 

Update nodes' time (emulating the cross-connect 
creation time 60 ms); 
Update vertex information; 
Generate deJete event for the created path (with 
event time = cm-rent time + hold time); 

end 
case Delete Cross-Connect 

1 

Update nodes' time (emulating the cross-connect 
creation time 60 ms); 
Update vertex information; 

end 
endsw 

end 
Algorithm 1: OpenFiow Event-Driven Simulator algorithms 

GMPLS simulation is shown in algorithm 2. The algorithm 
explains how the written application simulates the GMPLS 
with PCE approach. In this algorithm, the inputs and the ini
tialization are the same as algorithm 1. By traversing ail the 
events depending on their types, each event type is treated 
differently. For the create-channel events, it genera tes a new 
crea te-channel event based on the Poisson inter-arrivai time, 
updates the controller time, calculates the lightpath , finds 
a free channel (wavelength), finally it generates the create 
cross-connect event for the first switch in the calculated 
path (Event to be executed by the switch). Unless there is 
no lightpath available, it declares this request as a blocked 
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requ est. For the events of types Delete channel, it updates 
the controller's time. Then , it generates the delete cross
connect event for the first switch in t he lightpath (Event 
to be executed by the switch). For both events of type cre
ate/delete cross-connect, it updates node time (Emulating the 
cross-connect creation time 60 ms). Then, it updates vertex 
information. For the event of type create cross-connect, it 
verifies if the req uested channel is available. Ifit is not avail
able, it declares this request blocked (Backward Blocking) 
and it genera tes deJete channel request . If it is available 
a nd this is not the last switch in the lightpa th, it generates 
an event of type create cross-connect for the next switch in 
the lightpa th, otherwise it genera tes an event of type deJete 
channel. For both events of type LSA update (create/delete), 
it updates TED (controller Vertex information). 

B. National Science Foundation (NSF) topology 

The first topology we ran our simulation on is the National 
Science Foundation (NSF) topology [31]. 
NSF topology consists of 14 nodes and 21 links, each link 
has 32 cha nnels (wavelength) (Figure 10). The distances 
between each pairs are shown in the figure . Dijkstra 
algorithm use these distances to calculate the shortest 
pa th . 

Fig. 10. NSF topology (14 nodes and 21 links) 

The Simul ation is run for a period of 3000 sec to ensure 
the stability of the network. Lightpath establishment time, 
control traffic gotten into and out of the controller and 
PCE, and the blocking probability are calculated from 
the simulation. The results are shown in the graph s : (i) 
Lightpath establishment time expressed in millisecond vs. 
network load (Erla ng) (Figure 11); (ii) Number of control 
messages (Controller load) vs. network load (Erlang) (Figure 
13); (iii) Lightpath blocking proba bility vs. network Joad 
(Erlang) (Figure 14). 

Figure 11 depicts the establishment time for bidirectional 
lightpath. It shows that OpenFlow Extension solution ex
periences the lowest setup time as shown with blue line. 
Because OpenFlow Message-Mapping u ses two FLOWMOD 
messages to es tablish the lightpath, it is expected that this 
solution experiences higher time than OpenFlow Extension 
so luti on as shown in the figure with t he red lin e. OpenFlow 
olu tions execute the lightpath on parallel, hence the es

tabli shm ent time of lightpath is around a fixed value. On 
the other hand, GMPLS approach executes the light path 
sequentially. As a result, it has the highest setup time as 
sh own in the figure with the green line in the range 600-
900 ms for bidirectionallightpath. 

Data: G: Graph, V: vertex, EndTime: Simulation End Time 
Result: Establishment time, Blocking probability a nd 

control traffic 
Ini tialization : Generate one event (using a uniformly 
distJ;buted source and destinabon and Poisson inter-anival 
ti me); 
while current time < EndTime do 

read the nearest event; 
if Euent Type == Create Channel then Generate one 
event based on Poisson inter-anival bme ; 
switch Euent Type do 

case Create Channel 
Update the controller's bme; 
Calculate path using Dijkstra Algorithm; 
Find a free channel (wavelength) cross the 
calculated path; 
if Path calculation return fal se OR no channel 
auailable then 

1 

Declare Request Blocked; Continue with the 
next event; 

el se 
Genera te create Cross-Connect event for the 
first node in the calculated path (with the 
information of event ti me, path and 
wavelength); 

end 
end 
case Delete Channel 

Update the controller's time; 
Genera te delete Cross-Conn ect event for first 
node in the calculated path (with the 
information of event ti me, pa th and wavelength); 

end 
case Create Cross-Connect 

Update nodes time (emulating the cross-connect 
creation time 60 ms); 
Update switch's vertex occupation; 
if current switch is the last one in the path th en 

1 

Generate deJete event for the created path 
(with event time = current time + hold time); 

el se 
if channel (wauelength) is auailable then 

1 

Generate create Cross-Connect event for 
the next node in the calculated path ; 

el se 

1 

Declare this request blocked; 
Generate deJete channel event 

end 
end 
Generate LAS update (Create) event; 

end 
case Delete Cross-Connect 

Update nodes time (emulating the cross-con nect 
creation time 60 ms); 
Update switch's vertex occupation ; 
if current switch is not the last on the path th en 
Generate deJete Cross-Connect event for the 
next node in the calculated path ; 
Generate LAS update (DeJete) event; 

end 
case LSA update (Create / Delete) 

J Update TED (controller Vertex information); 
end 

endsw 
end 
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Algorithm 2: GMPLS/PCE Event-Driven Simulator algo-
rithms 
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Fig. 11. Lightpath establishment time [ms] vs network Joad (NSF 
Topology) 

Fig. 12. Nurnber Of Hop Per Request vs network Joad (NSF 

........-~-·ntt•,..,.. 
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Fig. 13. Nurnber of control messages vs network Joad (NSF 
Topology) 

Fig. 14. Lightpath blocking probability vs network Joad (NSF 
Topology) 

Topology) C. European Optical Network Topology (COST239) 

GMPLS has the tendency to decrease the establishment 
time as the network Joad increases. Because at high network 
Joad, the average path length is shorter as shown in figure 
12 (it decreases from 3.6 to 2.6 nodes per request). Even 
though the number of hop decreases too on OpenFlow-based 
solutions, this do not affect the lightpath setup since the 
request is executed on parallel. 

Figure 13 depicts the control traffic for each solution. lt 
shows that both OpenFlow solutions experience low control 
traffic compared to GMPLS solution as shown by blue and 
green !ines. This difference is due to the PCEP messaging 
which bas to be sent for each node and also because of the 
LSA update messages which each node has to send back to 
the controller in case link state changes. 

Figure 14 depicts the blocking probability. This figure 
shows that both OpenFlow based solutions have the same 
blocking probability values which are expected since both 
techniques use the same Dijkstra algorithm and the same 
resource Database. On the other band, GMPLS-based 
approach experiences the backward-blocking which makes 
this technique have higher blocking ratio with low network 
Joad as shown in the figure with green line. As we mentioned 
before, the backward-blocking occurs because of wavelength 
contentions. Contentions arrive when two or more RSVP-TE 
messages attempt to reserve the same resource (link and 
wavelength). Indeed, the link state database TED may be 
outdated when the path request reaches PCE causing this 
contention. 

illtra-High Capacity Optical Transmission Network (Eu
ropean Re-search Project Cost239) [32] is the second topology 
we ran our simulation on. This topology is depicted on Figure 
15. 

COST239 topology consists of 11 nodes and 26 links, each 
link has 32 channels (wavelength). The distances between 
each pairs are shown in the figure. Dijkstra algorithm uses 
these distances to calculate the shortest path. 

Fig. 15. COST239 Topology (11 nodes and 26 links) 

The same simulation steps are followed as the NSF 
topology. The Simulation is run for a period of 3000 sec to 
ensure the stability of the network. Lightpath establishment 
time, control traffic gotten into and out of the controller 
and PCE, and the blocking probability are calculated from 
the simulation. The results are shown in the graphs : (i) 
Lightpath establishment time expressed in millisecond vs. 
network load (Erlang) (Figure 16); (ii) Number of control 
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messages (Controller load) vs. network load (Erlang) (Figure 
18); (üi) Lightpath blocking probability vs. network load 
(Erlang) (Figure 19). 

--+- Openf low mnngn mapping l 
"' + '" 0 penf low EJtention · ... ; ........ .:. 

~:.~i~.~~ .. .;.~ ·.~·i ~ • ~:;:·~=·::_ . 
.J ... ···~ ...... ~····· L ...... ;.. ··r···· .. ··! 

...... ·--~- ...... : .. 

~ ~ ~ D ~ D ~ 0 ~ m ~ ~ 
Network Lo•d (Erlang) 

Fig. 16. Lightpath establishment time [ms] vs network Joad 
(COST239 Topology) 
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Fig. 17. Number Of Hop Per Request vs network Joad (COST239 
Topology) 

~= :: : :i~:j;'I;~d· ' 
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Fig. 18. Number of control messages vs network Joad (COST239 
Topology) 

The results shown in figw-e 16 support the same result 
of the NSF topology. It depicts that OpenFlow Extension 
solution experiences the lowest setup time as shown with 
blue line. It depicts also that GMPLS has the highest setup 
time as shown in the same figure with green line. 

As the previous topology, the figure shows that GMPLS 
lightpath establishment time decreases as the network load 
increases, because at high network load the average path 
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Fig. 19. Lightpath blocking probability vs network Joad (COST239 
Topology) 

length is shorter as shown in figure 17 (it decreases from 
2.77 to 2.34 hopper request). 

Figure 18 depicts the control messages for each solution. 
It confirms the result we got on the NSF topology. It shows 
that OpenFlow solutions experience the lowest control 
traffic. It depicts also that GMPLS has the highest control 
traffic as shown in the same figure with the green line. 

Figure 19 depicts the blocking probability and it also 
confirms the result we got on the NSF topology. This figure 
shows that both OpenFlow based solutions have almost 
the same blocking probability values. On the other hand, 
GMPLS protocol experiences the backward-blocking which 
makes this technique have higher blocking ratio with low 
network load as shown in the figure with green line. 

VI. CONCLUSION 

In this paper, we present a comparative study between two 
OpenFlow solutions (OpenFlow Messages Mapping, Open
Flow extension) and GMPLS approach. The overall feasi
bility of these solutions is experimentally assessed, and 
their performance is evaluated and compared with GMPLS 
approach, using a custom-build simulator. The simulation 
results show that the OpenFlow Extension solution outper
forms the OpenFlow Messages Mapping and GMPLS solu
tions since it experience lower end-to-end lightpath setup 
time and lower blocking ratio and control traffic compared 
by GMPLS. 
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