UNIVERSITE DU QUEBEC A MONTREAL

OPENFLOW PROTOCOL EXTENSION FOR OPTICAL NETWORKS

THESIS
PRESENTED
AS A PARTIAL REQUIREMENT
FOR THE MASTER IN ELECTRICAL ENGINEERING

BY
MAHMOUD MOHAMED BAHNASY

NOVEMBER 2014

UNIVERSITE DU QUEBEC A MONTREAL
Service des bibliotheques

Avertissement

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé
le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522 — Rév.01-2006). Cette autorisation stipule que «conformément a
l'article 11 du Réglement no 8 des études de cycles supérieurs, [I'auteur] concéde a
I'Université du Québec a Montréal une licence non exclusive d’utilisation et de
publication de la totalité ou d’'une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [I'auteur] autorise
I'Université du Québec a Montréal a reproduire, diffuser, préter, distribuer ou vendre des
copies de [son] travail de recherche a des fins non commerciales sur quelque support
que ce soit, y compris I'internet. Cette licence et cette autorisation n’entrainent pas une
renonciation de [la] part [de l'auteur] a [ses] droits moraux ni & [ses] droits de propriété
intellectuelle. Sauf entente contraire, ['auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] posséde un exemplaire.»

UNIVERSITE DU QUEBEC A MONTREAL

EXTENSION DU PROTOCOLE OPENFLOW POUR LES RESEAUX OPTIQUES

MEMOIRE
PRESENTE
COMME EXIGENCE PARTIELLE
DE LA MAITRISE EN GENIE ELECTRIQUE

PAR
MAHMOUD MOHAMED BAHNASY

NOVEMBER 2014

ACKNOWLEDGMENTS

It is my pleasure to thank all those people who made this thesis possible.

At first, I would like to thank my advisor Professor Halima Elbiaze. With her encour-
agement, inspiration and her great efforts of explaining things clearly and simply; she made
the research process as simple as possible throughout my Master period. She provided useful

advice, good guiding, perfect company, and she always gave me great freedom to pursue

independent work.

I would like to thank my colleagues for providing an activating and exciting environment

in which I could learn and enhance my competence.

I wish to thank my entire extended family for all their love and encouragement specially
my beloved mother. And most importantly, I wish to thank my lovely wife, Laila, as they

always support me in this road and they were encouraging me along this way.

Finally, I would like to thank all the staff members of the Computer Science department
at UQAM for their direct and indirect help during my studies at UQAM.

RESUME

Software Defined Networking (SDN) offre la possibilité de contrdler les réseaux en util-
isant un logiciel fonctionnant sur un systéme d’exploitation dans un contréleur externe, ce
qui offre un maximum de flexibilité et de simplicité. OpenFlow (OF), une des implémenta-
tions SDN les plus utilisée, est présenté comme architecture et plan de contrdle unifié pour
les réseaux de paquets et de circuits. Dans ce projet, nous proposons expérimentalement
deux solutions basées sur OpenFlow pour contréler & la fois les réseaux de paquets et les
réseaux optiques : (1) OpenFlow Message-Mapping et (2) OpenFlow Extension. OpenFlow
Message-Mapping est basée sur l’association de mesages OpenFlow & des actions appropriées.
La deuxiéme solution que nous proposons, OpenFlow Extension, est basée sur l’extension du
protocole OpenFlow standard en ajoutant de nouveaux messages pour suporter des infor-
mations d’interconnexion optique au lieu d’utiliser des messages OpenFlow standard. Nous
avons implémeté ces deux solutions dans un banc d’essai et nous avons effectué deux expéri-
ences : (i) la création de canaux optiques de bout en bout. (ii) la restauration de chemin
optique. Les mesures prises & partir de ces expériences sont utilisées pour I'implémntation
d’un simulateur Java. Ce simulateur simule les performances de ces deux techniques sur deux
topologies de réseaux optiques réels et les compare avec le protocole GMPLS standard. Le
résultat est représenté sous format de graphiques comparatifs pour déterminer la technique
qui & le meilleur temps d’établissement de liens, la plus petite charge de contrdle et le rapport
de blocage le plus bas. La faisabilité de ces solutions a été vérifée dans notre banc d’essai et
leurs performances sont quantitativement évaluées et comparées dans deux réseaux optiques
réels.

ABSTRACT

Software Defined Network (SDN) affords the possibility to control networks using software
running on a network operating system in an external controller, which provides maximum
flexibility, simplicity and manageability. OpenFlow (OF), one of the widely used SDN im-
plementations, is presented as a unified control plane and architecture for packet and circuit
switched networks. Based on this, in this thesis, we experimentally propose two solutions
based on OpenFlow to control both packet and optical networks: (1) OpenFlow Message-
Mapping and (2) OpenFlow extension. OpenFlow Message-Mapping is based on mapping the
OpenFlow messages into appropriate cross-connect actions. The second solution we propose,
OpenFlow Extension, is based on extending the standard OpenFlow protocol by adding new
messages to carry the cross-connect information instead of using standard OpenFlow mes-
sages. We implemented these two solutions on a testbed and conduct two experiments: (i)
End-to-End lightpath establishment. (ii) Backup lightpath restoration. The measurements
taken from these experiments are used in writing a custom-built Java event-driven simulator.
This simulator simulates the performance of these two techniques on two real optical network
topologies and compare them with the standard GMPLS protocol. The result is depicted
with comparative graphs to make it easy to determine which technique has the fastest estab-
lishment time, lowest control load and lowest blocking ratio. The overall feasibility of these
solutions is assessed using our testbed and their performances are quantitatively evaluated
and compared on a real optical network.

TABLE OF CONTENTS

HBNPAVIES . S e RS L B L R AT 3 A, o iv
ABSTERAGTGE A o B S o i s e e A el L v
LISTROESEIGURESE S viii
[SRETON MARMETEI Sl 5 3 6 0 0 0™ b o b o Ao o6 EB o a0t olbooo 6 oos ool x
A R A (I S B xi
INFRODUCTION oo e s s g e s 1
STRUCTURE OF THIS DISSERTATION T
CHAPTER 1
PRINGIPATHCONCGERRSIE RS s o s e 8
1.1 Circuit-switched and Packet-Switched Network 8
1.1.1 Internet Architecture 8
1.1.2 Transport Network Architecture 10
1.2 Existing Approaches!0 o oLl 12
UL I et omo WA R R s e S e s s s 8 b B o o B oo a0 g 12
1.2.2 GMPLS as a Unified Control Mechanism 14
1.3 SOFTWARE DEFINED NETWORKING (SDN) 15
LBl QIO ¢ = 6 6o 66 oo 8o aoaoacso0ssacoooosdoooanse. 17
CHAPTER II
PREOPESERSSOREMMEINSE IS e 22
216 o en Bl oA ek T € | A T S 24
2:2®penblowd@ptical EApentie s S s uniE L RS S e S A 27
2.2.1 Ports-Emulation Module L., 27
2.2:28GpenBlow AL @ranslator 5 R 27
2.3 Path Computation Element (PCE) 31
I e, S st R o LS O L. I P SR 31
223020 INSTN AP rEr A = T bl SESSRIERED v et D0 S S o - SR 32

2.4 OpenFlow Message-Mapping Solution 32

vii

CHAPTER III

CONDUCTED EXPERIMENTS 38
3:18iltes thedl S et s PR SPAT L S el RS s et S e 38
3.2 Scenario 1: End-to-End Lightpath Setup and Release 41
3.3 Scenario 2: Backup lightpath Restoration 45
34 GNMPLS Approach Experiment Lol e 47
35 Experimentation Resulbs. ... o0 .8 . L. oL R R e 50
CHAPTER IV

STVRUIASEICINFSIEURYG S o e i, R L e A e T 52
4.1 The Custom-built Java Event-Driven Simulator 53
4.2 National Science Foundation (NSF) topology 59
4.3 European Optical Network Topology (COST239) 63
4.4 Summary of Simulation Results, 68
CHAPTER V

LG ENIE LLEIRR (OIS “anaes BN o B oran e et o il 8 A i e SR B M e 70
CHAPTER VI

BEUBIIEATIONSE RS S e S W Sl o5 Dabeen SRt et & 71
6.1 Accepted paper at IEEE GLOBECOM 2014 conference 71

LIST OF FIGURES

Figure Page
1 IP and Transport Networks Operating Layers 1
2 OpenFlow Messages/TL1 Commands Translator Agent 5
ST es T ed AT e ChITe R 6
1.1 IP and Transport Networks 9
1.2 IP Network Overlay Transport Networks 10
1.3 The Overlay Networks supported by Transport Network 11
1.4 Transport Network Control & Management 12
1.5 IP over WDM scenario for the Future of the Networks 13
1.6 The Traditional Network Node hierarchy 15
1.7 The Software-Defined Networking Network Node hierarchy 16
1.8 Software-Defined Networking Network Node hierarchy 16
1.9 OpenFlow network ot 18
1.10 The separation between data plane and control plane using OpenFlow 18
1.11 Packet flow through an Open Flow switch 19
1.12 Packet flow through an Open Flow switch 20
2.1 Unified architecture of a converged Packet-Circuit network 22
22 (OnpEmnilenr AYTE o oo o o s aaat o aseesdEoa008cb oo caanooe 23
2.3 A penBlowa@Ehanm cl g i R 24
2.4 OpenFlow Message Factory« vt v e 25
2.5 % Ports-EmulationtModile SRt iuii s, SEui U R SR A 29
2.6 Path Computation Element workflow 31

3.1 Testbed Architecture

3.2 Optical domain Interconnection

3.3 physical equipments in the Optical Transport Network Laboratory

3.4 Wireshark Screenshot (Lightpath Setup Message Exchange)

3.5 Network configuration and message exchange

3.6 Cisco Transport Controller Screenshot (Initial State)

3.7 Cisco Transport Controller Screenshot (After Lightpath Establishment)

3.8 UML diagram for lightpath establishment

3.9 [Exchanged messages Backup lightpath Restoration Scenario

3.10 Wireshark Screenshot (Lightpath Setup Message Exchange)

3.11 Cisco Transport Controller Screenshot (After Lightpath Restoration)

3.12 UML diagram of lightpath recovery

3.13 GMPLS Experiment Using DRAGON

3.14 GMPLS Scenario : Wireshark screenshot

4.1 NSF topology (14 nodes and 21 links)

4.2 Lightpath establishment time [ms] vs. network load (NSF topology)

4.3 Number Of Hop Per Request vs. network load (NSF topology)

4.4 Number of control messages vs. network load (NSF topology)

4.5 Lightpath blocking probability vs. network load (NSF topology)

4.6 COST239 Topology (11 nodes and 26 links)

4.7 Lightpath establishment time [ms] vs. network load (COST239 Topology)

4.8 Number Of Hop Per Request vs. network load (COST239 Topology)

4.9 Number of control messages vs. network load (COST239 Topology)

4.10 Lightpath blocking probability vs. network load (COST239 Topology)

ix

39
40
40
41
42
44

44

45
46
47
47
48
49
60
60
61
62
63
64
65
66
66

67

LIST OF TABLES

Table Page
2.1 Message Factory Example 26
2.2 Using Message Factory To Create a Feature Reply Message 28
2.3 Executing TL1 Create Lightpath Command on the Optical Switch 30
3.1 The experiments timing 51
4.1 Summary of Simulated Solutions L 52
4.2 Summary of NSF topology simulation results 68

4.3

Summary of COST239 topology simulation results 69

AS

CLI
Cost239
CSA

CTC
DRAGON
DWDM
EMS/NMS

FEDERICA

ABREVIATIONS

Autonomous System

Command Line Interface

European union Ultra-High Capacity Optical Transmission Network
Client System Agents
Cisco Transport Controller

Dynamic Resource Allocation via GMPLSnOptical Networks
Dense Wavelength Division Multiplexing
Element and Network Management Systems

Federated E-infrastructure Dedicated to European Researchers Innovat-

ing in Computing network Architectures

flow

GENI

GMPLS

ITU

LSA

LSP

MPLS

Node

OADM

NSF

OF

network traffic

The Global Environment for Network Innovations
Generalized Multi-Protocol Label Switching
International Telecommunication Union

Link State Advertisement

Label Switched Path

Multi-Protocol Label Switching

network node (Switch, router ...)

Optical Add-Drop Multiplexer

National Science Foundation

OpenFlow

OFP OpenFlow Protocol

ONF Open Networking Foundation

ONS Optical Network Switches

OSPF Open Shortest Path First

PCE Path Computation Element

PSTN Public Switched Telephone Network

QoS Quality-of-Service

ROADM Reconfigurable Optical Add-Drop Multiplexer
RSVP-TE Resource Reservation Protocol-Traffic Engineering
SDN Software Defined Network

SLA Service Level Agreement

Switch network node (Switch, router, etc..)

TCO Total Cost of Ownership

TDM Time Devision Multiplexing

TED Traffic Engineering Database

UcCP Unified Control Plane

VLSR Virtual Label Switch Routers

VPN Virtual Private Network

WDM Wavelength-division Multiplexing

WSON Wavelength Switched Optical Network

INTRODUCTION

Overview
The exponential growth of Internet traffic requires network providers to construct efficient
networking systems. These large networks need a complex and sophisticated control system
especially when it includes two different infrastructures. One solution to manage this problem
is to reduce the differences in network structure, for example, most network providers have

removed telephony core switches and replaced them by using voice over IP services.

Today’s networks are composed of an optical domain (circuit-switched networks) and
an electrical domain (packet-switched networks). These two network structures operate on
different network layers: circuit-switched networks operates on layer one and two, while

packet-switched network operates on layer three and four (Figure 1). However, electrical

OSI Model

Applicati

Presentatlon Layer 6

Session I Layer 5
Transport I Layer 4

Network Layer 3

.
ptical Circuit-switched Network I Physical Layer 1

Figure 1: IP and Transport Networks Operating Layers

domain is more flexible and easier to manage, service providers can not replace optical devices
with electrical devices because optical network has many benefits over electrical network.

Some of these advantages are:

e Optical network equipment support up to 10 times the capacity as electrical equipment

support.
e Optical transmission supports very long distances without signal attenuation.

e Optical transmission is interference free which makes it more robust.

Most of infrastructure providers use two different control plane, one for electrical domain and

another for optical domain.

The separation between these two networks is because of the different management
methodology of establishing a data path. Optical domain which is circuit-switched network
operates on layer 1 and 2 of OSI model, while electrical domain is packet-switched network
and it operates on layer 3 of OSI model. Another difference between the two domains is
packet-switched network meant to be distributed control, each router has its own locally cre-
ated control strategy, while on the other hand circuit-switched network is mostly centralized
control. This separation presents a lack of common control mechanism which supports both

network domains.

Most Infrastructure providers use two control mechanisms to operate both networks which
is more expensive and inefficient than operating one converged network with a unified control
mechanism. Some efforts have been done to unify the control and management of heteroge-
neous networks. The most mature and widely common example of these efforts is Generalized
Multi-Protocol Label Switching (GMPLS)(Mannie, 2004) protocol which is very complicated
and not even commercially adapted. Even though it was used, GMPLS did not completely

unify the control mechanism. Indeed, it preserves the separation between the two networks.

Motivation
Service providers are obliged to own and operate two distinct wide-area networks (packet-
switched and circuit-switched networks). For example, traditional service providers like
AT&T, Verizon, British Telecom, Deutsche Telekom, NTT and others are all tier 1 and
tier 2 ISPs (wikipedia, 2014). These heterogeneous networks require two different design and
management teams even within the same organization. For sure, owning and operating two

separate networks is inefficient and it causes great management overhead. The coordination

between these two teams is also another challenge to defeat. It also increases the cost of net-

works management, operating, designing, planning, and maintenance which effect directly
the Total Cost of Ownership (TCO).

Networks are built based on closed-systems. Routers and switches from the same vendor
have the same private features and services. These features are closed and kept secret inside
each vendor’s product. This secrecy and closed-box characteristic of network nodes features
and services slow down the networks innovation and improvements. Using proprietaries man-
agement systems by each vendor creates barriers on face of network development in both IP
and transport networks. Thus, it is clear that managing two separate networks operating

differently is inefficient.

Software defined networking (SDN) proposes a new architecture capable of managing
different networks with different infrastructures even though with different operational layer.
This emerging concept, SDN, encourages us to present a common abstract that fits with both

types of network and provides a common architecture for controlling both networks.

Some efforts have been done to present SDN-based UCP to control packet and circuit
switches using the most commonly known protocol (OpenFlow). Most notably, PAC.C Das
et al. (2010) has experimented with alternative approaches. Other papers Liu et al. (2011,
2013, 2012) have presented similar work as PAC.C by providing an experimental study or a
Proof-of-Concept to support the use of OpenFlow as a unified control plane. However, Gior-
getti et al. (2012) presents a comparison study between OpenFlow and GMPLS solutions
based on a simulation. In this work, we propose two approaches based on OpenFlow protocol
to control both optical and electrical networks. Then, we experimentally compare these two
solutions with a real implementation of GMPLS approach. To the best of our knowledge, this
is the first work who considers both OpenFlow and GMPLS UCP solutions, and compare
them via testbed experimentation. We conduct a real case study of implementing end-to-end
lightpath and a lightpath restoration by establishing a dynamical configured backup light-
path. Finally, we conduct the comparison between the OpenFlow solutions and the GMPLS

approach by simulation on two real network topologies.

Goals
As we discussed before, managing two separate networks operating differently are inefficient.

Thus, in this thesis, our main goal is to find a way to manage these heterogeneous networks.

In this thesis, we are working on finding a common control mechanism to manage both
networks. These approaches are based on SDN technology which provides a common abstract
to fit both networks. This control mechanism should be able to manage both packet-switched
network and circuit-switched network. This approach has to provide a simple and efficient

method to manage both networks.

Contribution

In this thesis, two solutions to converge both types of networks is proposed. This proposal
is based on the concept of Software Defined Networking (SDN)(open networking foundation,
2013). One of the widely used SDN protocols is OpenFlow protocol. We conducted an
experiment of implementing OpenFlow protocol to control both circuit-switched and packet-
switched networks. Two techniques of using OpenFlow have been implemented: (1) Open-
Flow message-mapping. In this technique, we map the OpenFlow messages into a suitable
lightpath setup command (using TL1 command(CISCO, 2012b)). (2) OpenFlow extension.
In this technique, we extend the OpenFlow protocol by adding new messages to support
the lightpath specification. We used these new messages to carry the requested lightpath
information. In both techniques we implemented an OpenFlow agent to translate between
OpenFlow messages and the TL1 command and execute it on the hardware switches (Fig-
ure 2). In the laboratory, we conducted a simple network which consists of 2 Cisco ONS
15454 DWDM Reconfigurable Optical Add-Drop Multiplexer (ROADM) switches and one
ONS 15454 DWDM Optical Add-Drop Multiplexer (OADM) switch connected as in figure 3.
Two electrical-optical-converters are connected to each side of the Optical network (to ONS2
and ONS3). Each electrical-optical-converter is connected to an OpenFlow switch. Each
OpenFlow switch is connected to a client (Figure 3).

Two experiments have been conducted for each technique: (i) End-to-End lightpath estab-
lishment. (ii) Backup lightpath restoration. The measurements taken from these experiments
are used in writing a custom-built Java event-driven simulator. The objective of this sim-

ulator is to simulate the performance of these two techniques on two real optical network

Path Computation Element(PCE)

OpenFlow Controller

e OpenFlow connection

OpenFlow Optical Agent
OpenFlow Channel l

OpenFlow / TL1 Ports
Translator Emulation

TL1 command channel

I OpenFlow Standard |

R i

Figure 2: OpenFlow Messages/TL1 Commands Translator Agent

topologies and compare the result with those obtained by simulating the GMPLS protocol.
The result is depicted on comparative graphs to make it easy to determine which technique

has the fastest establishment time, lowest control load and lowest blocking ratio.

o&%

e

2
&

@jna WLissase H
16 GE WL1S98.17 3
Bectrical/pptical 3 i :

Convear H
i RoADM I\ RONDALL :
Switch 1 T’?}

% Switch 2
Client A el Client B

Figure 3: Testbed Architecture

STRUCTURE OF THIS DISSERTATION

This thesis is laid out as follows.

Chapter 1 introduces the infrastructures of the two networks. Then, it states the problem
of managing this heterogeneous network, after that it introduces a general information about
the protocol used to manage this problem, and introduces the existing approaches address

this problem.

Chapter 2 explains the proposed solution to address this problem explaining each com-
ponent we created in this research project. Then, it explains how each technique uses the
components we created. This chapter also presents a brief explanation of how GMPLS oper-
ates, and the messaging types used in this solution for the purpose of comparing it with our

proposed solutions.
Chapter 3 discusses the two experiments conducted using our proposed solutions.

Chapter 4 presents the custom-built Java event-driven simulator algorithms for each so-
lution. It presents also the different topologies we used to run the simulator on. Then it

discusses the results got from this simulator.

Finally, we present the conclusions of our work and suggest directions for future research

in Chapter 5.

CHAPTER I

PRINCIPAL CONCEPTS

This chapter presents the principal concepts of the IP network and the transport network.
Then it presents the two old approaches to address the controlling of heterogeneous network.

Finally, it presents the software-defined network concept which we build our solutions on.

1.1 Circuit-switched and Packet-Switched Network

Wide area network is the backbone of the Internet which is IP packet-switched network.
Packets are switched hop-by-hop from source to destination through IP nodes. However, the
packets may be transported physically on optical circuit switches and fibers (Figure 1.1). In
some articles this underlying circuit-switched network is named as the Transport Network.

We will take a closer look at the two networks in the following sections.

1.1.1 Internet Architecture

Internet components (layers, naming, addressing, protocols etc.) have been widely cov-
ered in several books and this thesis is not about the Internet architecture, but we will give
a brief introduction about it. Internet is a collection of interconnected IP networks. The
networks that compose Internet have independent ownership, administration and manage-
ment. These networks use special kind of routing protocol capable of advertise [P addresses
information between these domains, known as Autonomous Systems (AS)(Wikimedia Foun-

dation, 2003), and capable of choosing routes across routing domains.

— — — — — —

]
4 '
' '
’ ' '
' N :
' ’ .
']
' '] '
' ' '
’ ' '
' ' : H
L . : ' Y,
g5 00 otapiogaeali B | Ryl waplopbage,
i % T "~
.]
' s !

SRR S SRS SRR, RSP

Figure 1.1: IP and Transport Networks

IP networks are based on distributed control mechanisms. These control mechanisms re-
quire routing protocols (I-BGP, OSPF etc) and sometimes signaling protocols (LDP, RSVP
etc) implemented in each router. Control mechanisms are automated after initial configura-
tion for each node (either manually or using scripts). These automated mechanisms allow
network nodes to automatically discover their neighbors, the network topology, exchange
routing information, forward packets, learn about failures and re-route packets to avoid this

failure and try to guarantee the flow continuity.

Network services or functions in IP networks have a distributed implementation too. Each
network-node-vendor implements its features exclusively and nonstandard even though they

are using standard control mechanisms.

10

In case of congestion, IP network performs badly. Even though the public IP net-
works grant best-effort Quality-of-Service (QoS), some Service Level Agreements (SLAs) and
Quality-of-Service (QoS) guarantees are not applicable easily.

IP networks management requires configuration, typically via Command Line Interface

(CLI), monitoring, auditing, and maintenance. In general, IP networks are hard to manage.

1.1.2 Transport Network Architecture

The main function of a transport network is to provide communication between two
geographic locations presented by network nodes. This connection may be established by
a time-slotted circuit like Time Division Multiplexing (TDM) or wavelength-circuit Wave-
length Division Multiplexing (WDM) figure 1.2. The IP network is an overlay layer on the
transport layer.

Transport networks also support several overlay networks or client networks, e.g.: IP net-

TDM
switch
(SONET/

switch
Wavelengths channels ROADM

Figure 1.2: IP Network Overlay Transport Networks

works, Public Switched Telephone Network (PSTN), private-networks, etc. (Figure 1.3).
More information about transport network architecture is described by the ITU in (ITU,

11

2000).

IP Networks

Transport Network

Figure 1.3: The Overlay Networks supported by Transport Network

Transport networks are not like IP networks, they are always intra-domain controlled and
not automated-control. The transport networks are divided into partitions called "domains".
Each domain is controlled separately and manually. They have Element and Network Man-
agement Systems (EMS/NMS) and Operations Support Systems (OSS) which perform all
control and management. These systems are not programmatic, vendor proprietary systems,
and manually configured (Figure 1.4). Providing services in a transport network is very
complicated and long manual procedures. For example, providing a data-path between two
end-points requires several steps: First, providing the source and the destination, planning
the path from the source to the destination. Then, each provider executes the plan by man-
ually configuring their equipment using their corresponding management systems along the
path. Finally the test teams verify the path. Normally, this process takes days or maybe

weeks, and the path created is static and stays in place for months or years.

12

Manual
Interaction

Proprietary
interfaces | i

oo*®

\'

)

\

Data plane
switches

P i

| &

/

Vendors
domains

Figure 1.4: Transport Network Control & Management

1.2 Existing Approaches

In this section, we discuss two points of view of addressing the IP and transport networks.
The first point of view, as we discussed before, is to eliminate circuit switching between

network nodes. The second attempts to unify the control and the management for both IP

and transport networks.

1.2.1 IP over WDM

In this point of view, we can achieve our goal, managing one homogeneous network, by
eliminating the circuit switching components in network. As stated before in section 1.1.2,
transport network supports many networks as overlay services (Figure 1.3). One example
which has almost been eliminated is PSTN by moving traditional voice services to IP net-
work instead of circuit-switched network on both end-user and service provider’s core side.

Meanwhile, private networks are moving to packet-switched networks based solutions by em-

13

bracing the Virtual Private Networks (VPNs). It is clear that customers and service providers
are moving to eliminate circuit switching components or nodes and trying to find a packet
switching substitute for their requirements Computerworld (2000); Das et al. (2010). In this
case, in the future the Internet will be the only client uses the transport network Figure (1.5).

All Services

I[P Networks

Transport Network

Figure 1.5: IP over WDM scenario for the Future of the Networks

In this scenario, it is logical to ask if circuit-switched underlying transport networks are
required or they can be substituted. As we mentioned before in the overview, circuit-switched
networks are very useful and have many benefits which make them indispensable. Packet-
switched networks are always more expensive than circuit-switched networks because of their
complicity of management and the huge capability of optical switches and optical fibers.
Circuit switching switches are much more scalable; a circuit switch can switch much higher
data rates (about 10 times more than packet switching switch), and consume much less power
than an electronic packet switch (about 1/10 times less than packet switching switches). In
general, optical circuit-switched networks are faster, simpler and more space efficient. They
also have higher capacity, lower cost and lower power consumption than electronic packet-
switched network. Therefore, the two networks must work together on a suitable and efficient

control system.

14

1.2.2 GMPLS as a Unified Control Mechanism

Using SDN to create a unified method to control packet and circuit switches is not the first
approach to control both networks. GMPLS (Mannie, 2004) is the most commonly known
as a unified control mechanism. GMPLS has standardized within the IETF (since 2000).

Generalized Multi-Protocol Label Switching (GMPLS) was designed as an extension of
MPLS to offer a unified control plane (UCP) for different networks, packet and circuit switch-
ing networks. This approach aims to use the capabilities of MPLS as a labeling protocol and
extend this feature to work on circuit-switched networks. MPLS had a well-developed control
plane based on the IP network. Thus based on this distributed control plane, GMPLS was
built as a unified control plane. GMPLS extends distributed methodology, Routing protocol
(OSPF-TE) and signaling protocols (RSVP-TE) to control circuit switches (Banerjee et al.,
2001; Farrel and Bryskin, 2005; Mannie, 2004).

GMPLS has extended MPLS to include Time-Division Multiplex capabilities, Lambda
Switch capabilities or Wavelength-Division Multiplex Switching capabilities as well as the
Packet switching capabilities and Layer-2 Switching capabilities inherited from MPLS. Fur-

thermore, GMPLS eliminates the need of an operator, the entire network can be automated.

GMPLS is a very mature protocol and it was standardized more than a decade ago.
However, it still was not industrially implemented by equipment vendors because of its com-
plexity. GMPLS has not been seen yet commercially deployed as a unified control plan. In
fact, it is not even deployed as a control plane for transport network according to these arti-
cles(Das et al., 2012; lightreading.com, 2011). GMPLS is a distributed protocol. This feature
reveals many problems with network stability and the control simplicity while most network

equipment vendors prefer centralized control solution.

15

1.3 SOFTWARE DEFINED NETWORKING (SDN)

The traditional network node consists of built-in services and protocols. This hierarchy

combines the control plane and the datapath in one box (Figure 1.6).

This hierarchy causes a huge limitation of innovation in real-world networks because the
enormous installed base equipment and protocols. The unwillingness to experiment with
production traffic is also an obstacle for the researchers. This limitation has created a high
barrier for new ideas. For example, it is almost impossible to practically experience new
routing protocol or alternative to IP protocol. Clearly the result is newest ideas from the

network researchers which do not have chance to be tried or tested.

Software/Control

Hardware
Datapath

Figure 1.6: The Traditional Network Node hierarchy

Many networking efforts are done on the field of developing programmable networks. This
work is based on the isolation of the datapath (data plane) and the applications responsible

for controlling this datapath (Figure 1.7).

The slicing in the virtualized programmable networks allows the researchers to try new
ideas which increase the rate of innovation McKeown et al. (2008a). Figure 1.8 shows how

the production network could be used to carry the experimental flows without interference.

Programming network nodes provide the capabilities of network slicing, virtualization,

16

|]
Network Operating

Figure 1.7: The Software-Defined Networking Network Node hierarchy

5 SDN Layer

Normal L2/L.3 Datapath
L Experimental
" Flow

2 Production
3 Network Flow

Figure 1.8: Software-Defined Networking Network Node hierarchy

and separation, which accelerate network innovation. Even though, SDN has some obstacles
to defeat. Commercial switch and router vendors do not usually provide an open software
platform. The network equipment vendors do not accept to open up their boxes, as they
have spent many years developing their products and enhancing their products performance.
In addition, open systems will lower the barrier for new competitors. A few open software
platforms are already existing, for example a PC with several network interfaces and an
operating system support packets routing between interfaces which most operating systems
do Naous et al. (2008). This model is effective, but the problem is the performance. A PC has
limited number of ports to install network interfaces on it, and the packet-processing speed

is very limited (PC typically support maximum of 1Gbit/s while closet switches process over

17

100Gbits/s of data and increasing). Some network equipment providers started to provide

equipment with SDN support, for example CISCO, HP, Juniper and NEC.

In brief, in SDN the configurations of network nodes, switches and routers, are done
by software (controller) instead of manual involvement of the network administrator. Hence,
SDN offers error-free network reconfiguration method, as well as high availability. Indeed, if a
problem occurs in the network the automated recovery mechanism is triggered by the software
allowing faster convergence compared to the manual approaches. SDN has a centralized
knowledge about the network McKeown et al. (2008a), so the convergence process is faster

and more accurate than distributed method.

1.3.1 OPENFLOW

We briefly outline the main characteristics of OpenFlow. More details and exhaustive
documentation are available in the OpenFlow white paper (McKeown et al., 2008a) and in
the OpenFlow specification (Consortium et al., 2009).

OpenFlow is an open standard that was developed several years ago at Stanford University
in order to enable researchers to run experimental new protocols and technologies on real
networks, without interrupting the existing traffic or network availability (McKeown et al.,
2008b). In a traditional network, the data path and the control path occur on the same device
(switch, router). Open Flow separates these two functions; OpenFlow switches perform the
data plane function and OpenFlow controller implements the control plane intelligence and
communicates with the OpenFlow switch via a secure OpenFlow protocol channel (Figure

1.9).

The main goal of SDN is the separation between the control plane and the data plane
which OpenFlow algorithm implemented as in figure 1.10 (Consortium et al., 2009; Open-
Flow, 2011). Based on this goal the controller and the switch have separated tasks to do.
An OpenFlow Switch consists of one or more flow tables and group tables, which perform
packet lookups and forwarding, and an OpenFlow Channel that is connected to an external

controller. Each Flow table in the Switch contains a set of flow entries; each flow entry con-

18

Figure 1.10: The separation between data plane and control plane using OpenFlow

sists of match fields, counters and a set of actions. These actions associated with each flow

entry tell the switch what to do with the packets match this flow entry. The most OpenFlow

\ql

gt

NS

Figure 1.9: OpenFlow network

O
6‘8 \Soﬁé |

OpenFlow Switch

OpenFlow

ln.t:r%fAPl

Data Plane

[Forwarding Path]

M

(@]
=1 sscsaan
t=]

actions basic types are:

OpenFlow Controlle

[

Build Information
Programmatically

Store Information
Policy, Topology

Forwarding

Decision

the flow table, or to audit specific flow.

Forward the flow packet to a given port (or ports in case of multicast).

Encapsulate the packet and forward it to the controller. This happen mostly with the
first packet of a new flow, so the controller could decide if the flow should be added to

Drop flow packets. This could be used to limit denial of service attacks.

Forward the flow packets through the normal processing procedures. This action is

19

useful for separating the flows which do not belong to OpenFlow traffics.

The basic idea is to use the flow tables that most switches and routers contain. OpenFlow
uses this common function (each switch has a flow table) and provides an open protocol to
program the flow table by sending flow entries with associated actions to the switch and

reading statistics about these flow entries (Figure 1.11).

Network Controller

N] Read flows statistics I\
" New flow Entry with suitable actions]l/

Network Network
Network Operating

N 5/

Figure 1.11: Packet flow through an Open Flow switch

When the OpenFlow switch receives a packet, it searches for a match field in its low table.
If it finds a match, first it updates the counters. Then, it fetches the actions associated with
this flow entry and executes these actions on this packet. If it did not find a match, it
continues with all flow tables. Finally if no match exists in all flow tables, it either drops
the packet or sends it to the controller based on the table configurations. This algorithm is
depicted in the flow chart in figure 1.12.

OpenFlow protocol messages are restricted in three categories (Consortium et al., 2009);

controller-to-switch, asynchronous, and symmetric, each with multiple sub-categories:

e Controller-to-switch : These messages are initiated by the controller and may or

20

Packet In
Start at Table 0

1

xes
i . [- Update Counters. | J
- Execute Instructions :
it 5
Match in Teblen? —Yes—> g";g::: ::‘c‘::ts/“' Goto - Table n?

match set fields.

I *Update metadat {

No No

|

Execute actions
set

Based on Table configuration , do one Of :
* Send to Controller.

* drop.

* continue to next Table.

Figure 1.12: Packet flow through an Open Flow switch

may not require a response from the switch. They are used for directly managing or
inspecting the state of the switch. The main controller-to-switch message types are:

Features, Configuration, Modify-State, Read-State, Packet-Out, and Barrier.

e Asynchronous : These messages are sent by the switch without the controller solici-
tation. Switches send asynchronous messages to the controller to denote packet arrival,
switch state change or error. The four main asynchronous message types are: Packet-in,

Flow Removed Message, Port Status Message, and Error Message.

e Symmetric : These messages are initiated by either the switch or the controller and
sent without solicitation. The main symmetric messages types are: Hello, Echo Request

and Echo Reply.

OpenFlow is an independent protocol and available on currently running networks. These
advantages put it at the head list of network virtualization techniques which includes sev-
eral ambitious work like The Global Environment for Network Innovations (GENI) (geni.net,
2014) and Federated E-infrastructure Dedicated to European Researchers Innovating in Com-
puting network Architectures (FEDERICA) (fp7 federica.eu, 2014). The main characteristics
of the OpenFlow that make it the best choice are:

e Separation between control plane and data plane : The key advantage of the Open-

Flow protocol is the separation between data flow and control flow (OpenFlow, 2011),

21

(Consortium et al., 2009).

o Centralized : Most of infrastructure providers prefer centralized solution, which offers

them simpler management and easier administration than distributed solution.

e Simple and Flexible : Because of the centralized nature of OpenFlow, this protocol is

easy to manage and more flexible.

An example of the simplicity and separation attained by the OpenFlow is: if a researcher
invents a new routing protocol X-OSPF, for example, and he wants to test it, he can imple-
ment his routing protocol on the controller reading the centralized information available at
the controller instead of implementing it on each network node, and he only needs to send

the flow entries to the network nodes (Routers and Switches).

CHAPTER 1II

PROPOSED SOLUTIONS

In this chapter we present our solutions based on OpenFlow protocol as a unified control
plane for both optical and electrical networks. OpenFlow supports the separation of data
and control planes for circuit and packet networks. The treatment of L4-L2 flows provide a
simple flow abstraction that fits well with both types of networks. Hence, OpenFlow presents
a common platform for controlling the underlying switching hardware, these flows of different
granularity, while allowing all of the routing, control and management to be defined outside

the datapath, in the OpenFlow controller as extended network applications (Figure 2.1).

SDN SDN
App) T App Unified Control
Plane
OpenFlow Controller
Ak
GpenBlgw: %, Unifying
'p rotoco1 Abstraction

acke Cll‘CUl C1rcu1t acke Data Plane
Switch Switch Switch Switch Switching

Figure 2.1: Unified architecture of a converged Packet-Circuit network

Two solutions for using OpenFlow protocol as a unified control plane on both optical
and electrical domains are presented in this thesis. These techniques is compared with the

standard GMPLS technique and presented in this research. The first solution is OpenFlow

23

message-mapping. In this solution we map the OpenFlow standard messages (like FLOW-
MOD message) into optical domain commands to create or delete the lightpath, and translate
the optical switch ports state into OpenFlow FeatureReply message. Otherwise, for the sec-
ond solution OpenFlow eztension, new messages is added to the OpenFlow protocol. These
messages have the capabilities to carry the L1/L2 switching information explicitly. The added
messages to OpenFlow Protocol is explained in details in the OpenFlow Circuit Switch Spec-
ification Das (2010)

In both solutions we implemented an OpenFlow agent to translate the OpenFlow messages
to its proper TL1 commands (Headquarters, 2003) to be executed on the optical switch using
telnet channel. The OpenFlow Controller has been extended by adding a new application
we call it path computation element module (PCE). This addition allows the controller to
calculate the lightpath for the requests. Then, it sends the appropriate messages to the
proper optical switches (Figure 2.2).

In this section, we first explain the OpenFlow channel, the OpenFlow optical agent and

Path Computation Element(PCE)

OpenFlow Controller

e OpenFlow connection

OpenFlow Optical Agent
OpenFlow Channel |

Translator Emulation

TL1 command channel

[OpenFlow Standard I

G

Figure 2.2: OpenFlow Agent

the PCE algorithm. Following that with detailed presentations of our solutions. Finally we

24

present the GMPLS with PCE lightpath mechanism for the purpose of comparing it with

our solutions.

2.1 OpenFlow channel

OpenFlow channel is a key part of either the controller or the switches. In our code we
used the (openflow) message library which is used in Beacon Java-based OpenFlow controller.
This Message Library is a Java implementation of the OpenFlow specification (Consortium
et al., 2009). This Message Library encodes and decodes OpenFlow messages from Java rich

data types into the bytes stream and vice versa (Figure 2.3).

OpenFlow Cntroller

i

Sl 3

I.E €|3 Messages Byte stream
—————— < 0169F68A 54 FF |— — — —

L84

= 83

v

h

Ope owitch

Figure 2.3: OpenFlow Channel

In order to create and encode an OpenFlow message, the application Uses the Message
Factory class to create a message of the required type. Then, it encodes this message into a

byte-stream using Message Factory class, to be transmitted over the media. The other side

25

(controller or switch) will receive the byte-stream. Then, it uses the Message Factory class to

decode incoming byte-stream into an OpenFlow messages of their Java rich data type form
(Figure 2.4).

Message

Factory Class =Pacode TR

T

Messages Byte stream

—Decode-» ‘\\

- — JO0169F68A ... B4 EF e o o e

Figure 2.4: OpenFlow Message Factory

Table 2.1 shows a sample code to create a message using the Message Factory class. First,
in line 1 we create a message factory instance (BasicFactory). Then, we have this factory
create a message of type OF Type. FLOW _MOD. After that, we set the message properties
(line 03 - 20) including the addition of the relevant actions list. Finally, we convert this

message into byte-stream by calling the stream.write() function at line 22.

26

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

BasicFactory factory = new BasicFactory ();

OFFlowMod fm = (OFFlowMod) factory.getMessage (OFType FLOW_MOD);

fm.setBufferIld (bufferld);
fm .setCommand ((short) 0);
fm.setCookie (0);
fm.setFlags ((short) 0);
fm.setHardTimeout ((short) 0);
fm.setIdleTimeout ((short) 5);
match.setInputPort (pi.getInPort ());
match.setWildcards (0);
fm . setMatch (match);
fm.setOutPort ((short) OFPort.OFPP_NONE. getValue ());
fm.setPriority ((short) 0);
OF ActionOutput action = new OFActionOutput ();
action .setMaxLength ((short) 0);
action.setPort (outPort);
List <OFAction> actions = new ArrayList<OFAction>();
actions.add(action);
fm.setActions(actions);
fm.setLength (U16. t (OFFlowMod . MINMUM_LENGTH
+ OFActionOutput .MINIMUM_LENGTH)) ;

stream . write (fm);

Table 2.1: Message Factory Example

27

2.2 OpenFlow Optical Agent

As mentioned above, the main role of this agent is to translate the optical channel requests
and OpenFlow messages into TL1 commands to be executed on optical nodes. This agent is
added to each optical node and acts as a virtual switch. It consists of an OpenFlow channel
to communicate with the OpenFlow controller, OpenFlow/TL1 Translator to convert Open-
Flow messages into TL1 commands, Ports-Emulation module to emulate the optical node
ports and send this information to the controller to update ports database (Figure 2.2). This

information allows the controller to calculate the lightpath.

2.2.1 Ports-Emulation Module

This module acts like a virtual switch by creating a list of virtual ports. Each of these
virtual ports emulates a physical port of the optical switch (Figure 2.5). This module sends
this information to the controller as a way of realization of the optical switch. This mod-
ule also manages these emulated ports status information!. Table 2.2 shows the Java code
used to create a Feature Reply Message and encode all the virtual ports information. First,
it makes the Message Factory create a FeaturesReply message. Then, it sets the message
properties (Line 4-8). After that, it iterates on all physical ports and includes their status
into the message (Line 9-19). Finally at line 20, it returns the message.

2.2.2 OpenFlow/TL1 Translator

This module is responsible for translating the OpenFlow messages and actions into ap-
propriate commands. Then, it executes these commands on the optical switches. It creates a
telnet communication channel with the optical switch to send these TL1 commands through
it. The most common operations we use TL1 commands for are creating lightpath, deleting

lightpath, retrieving lightpath status, and retrieving port status. The TL1 commands used

'Port discovery is out of scope of this research project.

28

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

protected OFMessage createFeatureReplyMsg() {

OFMessage featureMsg = factory.getMessage (OFType . FEATURES_REPLY);

OFFeaturesReply fReply = (OFFeaturesReply) featureMsg;

fReply .setDatapathld (pathld);

fReply .setBuffers (100);

fReply .setTables ((byte) 0x01);

fReply .setCapabilities (OF Capabilities .OFPC_FLOW_STATS. getValue ());

List <OFPhysicalPort> ports = new ArrayList<OFPhysicalPort >();

for (int i = 0; i < virtualPorts.length; i+4) {
\\Iterate on all ports
OFPhysicalPort port = new OFPhysicalPort();
port .setHardwareAddress(virtualPorts[i]. getHardwareAddress ());
port .setName(virtualPorts[i].getShortName());
port .setPortNumber ((short) virtualPorts[i].getNumber());
port.setCurrentFeatures (OFPortFeatures .OFPPF_FIBER. getValue ());
port.setState(virtualPorts[i].getOFPortState());
ports.add(port);

}

fReply .setPorts(ports);

return fReply;

}

Table 2.2: Using Message Factory To Create a Feature Reply Message

29

eth [L Veth 5
Veth 2— Virtual Open Flow — Veth 6
Veth 3— switch — Veth 7
Veth.4—t . Veth 8

Winmmm /
W 2 .

00 3 O W

Figure 2.5: Ports-Emulation Module

in our module are discussed in details in Cisco ONS TL1 Command Guide (CISCO, 2012b).
Table 2.3 shows a sample of Java code responsible for executing the TL1 create lightpath
command. This function receives the ports information from the OpenFlow message. Then,
it opens a TL1 session (Line 6). After that, it creates T'LICommand object and activates
the user (Line 7-8). At line 11, it creates the command string. Then at line 13, it sets the
command string. At line 14, it sends the command through the TL1 session, created before

at line 6, and retrieves the execution result.

30

01 private boolean addLightPath(String portsconnection ,short direction){
02 \\ portsconnection =eg=

03 \\ CHAN-1-14—28-RX&LINEWL-1-17—2—RX—-1556.55

04 \\ ,LINEWL-1-17—2-TX—1556.55&CHAN-1-13—28—-TX

05 try {

06 TL1Session tllsession = new TL1Session(tllServer, tll1Port);
07 TL1Command req = new TL1Command ();

08 req = TL1Command.act _user(tl1Username, tl1lPwd, TID, "300");
09 TL1ResponseMsg msg = (tllsession.send(req))[0];

10 System.out.print ("TL1 login mesg:\n" + msg);

11 String commandStr = "ENT-OCHNC:" +TID+4":"+portsconnection
12 + ":305::"+direction+"WAY:CKTID=test ;";

13 req .setCommand (commandStr);\\ " ,GVDMDEFRCD;"

14 TL1ResponseMsg msgl = (tllsession.send(req))[0];

15 System.out.print ("ENT-OCHNC reply msg:\n" + msgl);

16 } catch (Exception e) {

17 System. err.println (" Unable to connect to TL1 agent(server)");
18 e.printStackTrace ();

19 return false;

20

21 return true;

22 }

Table 2.3: Executing TL1 Create Lightpath Command on the Optical Switch

31

2.3 Path Computation Element (PCE)

The objective of this algorithm is to compute a lightpath between source-destination pairs
in order to create a fully connected logical topology (Tintor and Radunovié, 2012). We have
created a Traffic Engineering Database (TED) to save the network topology information.
Thanks to the centralized management of the OpenFlow Controller, the TED is always up-
to-date. TED will be updated in case of lightpath setup and release (port status changes).
Two modules are implemented to achieve our goal; Executor and ONS Adapter (Figure 2.6).

Initial Ports
Configuration
glln' Ports Updates

C ¢ % " PathComputation Element]
| |
: TED |
I Executor :
' Path Computation i
I Ports Status s ¢ Optical !
| B (Djikastra Algorithm) o] ST :
: Wavelength Assignment Adapter |
I Source + Destination < (Graph Coloring) | :
|

|
|

Information

Output : LightPath
information

Figure 2.6: Path Computation Element workflow

2.3.1 Executor

The objective is to ensure the avoidance of using one wavelength more than one time in

the same fiber and the assurance of the wave length continuity through the lightpath. Each

32

wavelength carries traffic between a source destination pair. Therefore, multiple wavelengths
are reserved in a single strand of fiber for establishing multiple lightpaths through one fiber.

These connections between the nodes in a WDM networks are done in two steps:

o Routing: Dijkstra Algorithm is used in order to find the shortest path between each
node pair. This algorithm is often used in routing and as a subroutine in other graph
algorithms. It solves the single-source shortest path problem for a graph with non-
negative edge path costs. In our case, we are interested in a network topology that

contains both OpenFlow switches and Optical Network Switches (ONS).

e Wavelength Assignment : Once the lightpath routes are determined, the wave-
length assignment problem can be represented as a graph coloring problem. In graph
theory, graph coloring is a special case of graph labeling; it is an assignment of labels
traditionally called "colors" to elements of a graph subject to certain constraints. Each
lightpath corresponds to a node in wavelength assignment graph, and two nodes are

set as neighbors only if the respective lightpaths share at least one common link.

2.3.2 ONS Adapter

Each ONS consists of a set of cards and each card contains a set of configured ports
(CISCO, 2012a). ONS edges are connected to OpenFlow switches via WSS and DMX cards,
whereas ONS core interfaces are interconnected via LINE cards. Two fibers are used for the

bidirectional connection between two ONSs. These specifications lead us to add this module.

2.4 OpenFlow Message-Mapping Solution

Based on the two units described before, we build our solutions. In the first solution
(OpenFlow Message-Mapping), the OpenFlow standard messages are used without any mod-
ification. The OpenFlow messages are mapped into optical switch commands. In this ap-
proach, the OFPT FLOW _MOD message of type OFPFC_ADD is mapped into ENT-
OCHNC TL1-command to create a lightpath channel. The OFPT FLOW_ MOD message

33

of type OFPFC_DELETE is mapped into DLT-OCHNC TLl-command to delete a light-
path channel. When the agent receives OFPT_FEATURES REQUEST message, it encap-
sulates the emulated port information into OFPT FEATURES REPLY message. Finally,
the agent reads periodically the ROADM events (using RTRV-ALM-ALL TL1-command)
and if it finds any critical alerts, it creates OFPT_PORT _STATUS message and forwards

it to the controller. The process of lightpath setup is carried out following these steps:

The source starts sending data to the destination node.

e Once this flow arrives at an OpenFlow switch, this switch sends a OFPT_PACKET IN

message to the controller.

e Upon the receiving of this OFPT PACKET IN message, the controller requests the
PCE unit to compute a lightpath for this packet. The computed lightpath includes
the information of the wavelength and the link. This information can not be included
in the OpenFlow standard messaging system. In this case, we map the wavelength

assignment to a virtual ports as shown before by the OpenFlow agent on section 2.2.

o If the PCE isn’t able to compute the path according to lack of resources, it considers

this request blocked.

e If the path is computed successfully, the OpenFlow controller sends OFPT _FLOW_MOD
messages of type (OFPFC_ADD) to all the circuit-switched nodes across the lightpath
and either a OFPT_PACKET OUT and/or OFPT_FLOW_MOD message of type
OFPFC_ADD to the packet-switched nodes depending on the defined OpenFlow ap-

plication on the controller.

o When the OpenFlow switch receives the OFPT PACKET _OUT message, it forwards
the packet after a considerable delay to be sure that the lightpath is established.

o Once the time-out expires, both the controller and the switches consider the lightpath

is established and start to exchange data through the path.

This centralized approach of OpenFlow allows the controller to have the updated nodes and

links information stored in the PCE database (TED). The lightpath release mechanism is

34

fired by the controller using a flow entry time-out timer. This timer is restarted each time
this channel is used. When this timeout expires the controller sends a flow_modification
messages of type (delete_ flow) to the network nodes causing them to delete this lightpath.

The packet-switched nodes will release the path by themselves when the timer expires.

2.5 OpenFlow Extension Solution

In this solution, OpenFlow messages are extended and new messages are added. The new
messages specification Das (2010) allows the controller to distinguish between the circuit-
switching and the packet-switching networks. For example, OFPT FEATURES REPLY
message is extended by adding extra information about the circuit-switching ports. To send
an optical cross-connect information, a new match structure called OFP_CONNECT is
presented. Multiple ports can be cross-connected by a single structure. This structure
is added to the newly defined message called OFPT_ CFLOW_MOD. Finally, when the
state of a port changes, the OpenFlow Optical Agent sends a new defined message called
OFPT_CPORT_STATUS.

In OpenFlow Extension solution the process of lightpath setup is carried out following

these steps:

e The source starts sending data to the destination node.

¢ Once this flow arrives at an OpenFlow switch, this switch sends a OFPT_PACKET IN

message to the controller.

¢ Upon the receiving of this OFPT_PACKET _IN message, the controller requests the
PCE unit to compute a lightpath for this packet. The computed lightpath includes
the information of the wavelength and the link. This information is included in the
OpenFlow new structure OFP_CONNECT and encapsulated in the new message
OFPT_CFLOW_MOD. the OFP_CONNECT structure could carry the bidirectional

lightpath instead of sending one message for each direction.

35

o If the PCE is not able to compute the path according to lack of resources, it considers

this request blocked.

o If the path is computed successfully, The OpenFlow controller sends OFPT CFLOW_MOD
messages of type (OFPFC_ADD) to all the circuit-switched nodes across the lightpath
and either a OFPT_PACKET OUT and/or OFPT_FLOW_MOD message of type
OFPFC_ADD to the packet-switched nodes depending on the defined OpenFlow ap-

plication on the controller.

¢ When the OpenFlow switch receives the OFPT PACKET OUT message, it forwards
the packet after a considerable delay to be sure that the lightpath is established.

e Once the time-out expires, both the controller and the switches consider the lightpath

is established and start to exchange data through the path.

Similar as the first solution, the lightpath release mechanism is fired by the controller
using a flow entry time-out timer. This timer is restarted each time this channel is used.
When this timeout expires the controller sends a OFPT_CFLOW_ MOD messages of type
(OFP_DELETE) to the network nodes causing them to delete the lightpath. The packet-

switched nodes will release the path by themselves when the timer expire.

2.6 GMPLS WITH PCE LIGHTPATH SETUP |

GMPLS is presented in this thesis for the purpose of comparing it with our proposed
solutions. To be able to accomplish this comparison, we have to understand the GMPLS
the lightpath establishment procedures. As we mentioned before, GMPLS is a distributed
protocol. Using a distributed protocol on large networks makes the path computation process
very complex and resources consuming. To address this problem, IETF has introduced a
centralized Path Computation Element (PCE) entity in the GMPLS control plane. In this
thesis, we implement the GMPLS with PCE. The PCE is a centralized network element
responsible for computing the lightpath. In this topology, PCE also assigns wavelength
on each link for each request. The PCE is used in GMPLS-controlled Wavelength Switched
Optical Network (WSON) (Li et al., 2012; Lépez et al., 2010). PCE uses a messaging protocol

36

called PCEP to exchange information between GMPLS controller of each node and the PCE.
PCE maintains the information of the nodes, links status and wavelength availability in a
database called Traffic Engineering Database (TED) The links update is carried out by the
OSPF messaging (Link State Advertisements - LSAs). This updates are sent when a new
wavelength status change occurs (reserve/release). A full link status update occurs when
new node joins or leaves the network. However, to keep the network stable, LSAs are not
sent each time update happened. For each link, once an LSA has been generated, a time-out
timer starts. During this time-out, no update is sent for this link. Following in detail the

message sequence on GMPLS with PCE mechanism to create a lightpath:

e The source node sends a PCEP request message for submitting a path computation

request.

e The PCE computes the path requested and assigns a wavelength to this path. Then, the
PCE sends this information to the source by using a PCEP PCRep message. Otherwise,
if the PCE fails in computing a path or in assigning a wavelength on it, it replies with
a PCRep message with NO-PATH reply, and the lightpath request is refused (forward-
blocking).

o Upon the reception of PCRep message, the source node sends the Resource Reservation
Protocol-Traffic Engineering (RSVP-TE) messages along the computed path to reserve
it. The Path reservation message includes the Explicit Route and the Label set. The

label set information includes the wavelength assigned by the PCE.

e When a node receives RSVP-TE path reservation message, it performs the wavelength
assignment if it is available. Otherwise, another wavelength contained in the Label Set

is selected, according to a specific wavelength assignment strategy (e.g., first fit).

e If another request requests the same resource (link and wavelength) on a specific node
and this request is accomplished before this one, this will have this node to refuse this

request and reply with RSVP refuse message (backward-blocking).

e When the wavelength assigned, the destination node sends back a Resv message to

effectively reserve the selected wavelength on each link of the path.

37

e Once the Resv message reaches the source, the lightpath is established and data can

be carried through the path.

Lightpath release is performed in a similar way as the setup process (in a distributed manner
through RSVP-TE signaling (Giorgetti et al., 2009)). As the previous description the setup
procedure may be blocked during path computation because of lack of resources (forward
blocking), or may be blocked due to wavelength contention (backward-blocking). Contentions
arrive when two or more RSVP-TE messages attempt to reserve the same resource (link and
wavelength). This actually because the link availability database TED may be outdated
when the path request reached the PCE.

CHAPTER III

CONDUCTED EXPERIMENTS

Two experiments are conducted to demonstrate the efficacy of our proposed solutions.
The first experiment is to create end-to-end lightpath while the second is to create a backup

restoration lightpath in case of the failure of the primary lightpath.

3.1 Testbed Setup

The architecture of our testbed is depicted in figure 3.1. It consists of two clients A and B,
which are connected directly to OpenFlow (OF) switches 1 and 2, respectively. Each switch
is connected to an Electrical/Optical converter. These converters are connected to DWDM

optical network composed of three Cisco ROADM optical switches (Cisco ONS 15454).

39

OpenFlow
Controller,

eea=<[030)04d JQ)+oraseasncaneance

\\ 10 GE WL1558.98
q 10 GE WL558.17

Electrical/Pptical 25 H ‘ o

RO
(OpenFlow
Switch 2

Client B

ROADM 1

Figure 3.1: Testbed Architecture

The ROADM switches are connected on full mesh topology using optical fiber cables as
shown in figure 3.2. Each fiber cable is 10 meter long, and supports 32 channels. Each
ROADM is controlled by an OpenFlow Optical Agent. The OpenFlow optical agents and the
OpenFlow switches are connected to an OF controller over an OpenFlow channel as shown

in figure 3.1.

Figure 3.3 shows a photo of the physical equipments in our lab (Optical Transport Network

Laboratory) that is used in our experiments.

40

CHAN-1-14-30-RX .

O
g CHAN-1-13:30- T Thsbd

LINEWL-1-17-2-TX-1558.98 - LINEWL-1-1-2-TX-1558.98
[
CIIAN-I-J-ZO-RX.

-

gCHAN:1:5:20-TX

-
LINEWL-1-17-2-RX-1558.98 - LINEWL-1-1-2-RX-1558.98

.1”!"'1
-gegT X T
. Lvesst

Figure 3.2: Optical domain Interconnection

= ROADM 3 ROADZ
snisy [

) el
MR 5.8
"]

Figure 3.3: physical equipments in the Optical Transport Network Laboratory

3.2 Scenario 1: End-to-End Lightpath Setup and Release

The purpose of this experiment is to test the capability of the proposed solution to com-
pute and establish a lightpath when required. As shown in the architecture in figure 3.1,
when the optical OpenFlow agent is connected to the controller, it acts as an OpenFlow

switch by sending Hello message followed by FeaturesReply message which is shown in the

Wireshark screenshot in Figure 3.4.

R P

ents Connections setu

Ag

[ae oo s+— OpenFlos:

/}b Time Source

2313.250959000 OF_Switchl

| 2513.300689000 OF_Controller

| 2713.301454000 OF_Switchl

| 5320.122936000 OF_Switch2

I 55 20.124558000 OF_Controller
57 20.126062000 OF_Switch2

153 41.631382000 OF _Controller

1 160 42.311926000 OF_Agent1

| 162 42.353116000 OF_Agentl

| 304 72.165885000 OF_Controller

| 306 72.450784000 OF_Agent?

| 30872.483056000 OF_Agent2

367 84.719829000 OF_Controller

F_Switches and OF

OF_Controller/O

As shown in Figure 3.5, a data flow sent from Client A to Client B arrives at OpenFlow
switchl. When the OpenFlow switchl does not find any flow entry that matchs with this
flow, it encapsulates the first flow packet in an OFPT_PACKET IN message and forwards

it to

creates the lightpath by sending OFPT FLOW__ MOD message (OpenFlow Messages
Mapping solution) or OFPT CFLOW__ MOD message (OpenFlow Eztension solution)

e AP

| 371 85.157877000 oF _Agent3

\I 373 85.198821000 OF_Agent3

| 594 149.922753000CTientA

| 596 149.9246870000F_Controller
597 149.9250220000F_Controller

| 600 149.9258670000F_Contro] Ter
602 150.0362260000F_Controller

| 604 150.0484250000F_Controller

| 608 150.961401000C1ientA

| 612 151.4655760000F_Contro)ler

v Epresion.. Clewr

Destmiaton L_P_M -i

OF_Controller Openflow
OF_Switchl OpenFlow
OF_Controller OpenFlow
OF_Controller OpenFlow
OF_Switch2 OpenFlow
OF_Controller OpenFlow
OF _Agentl OpenF low
OF_Controller OpenFlow
OF_Controller OpenFlow
OF_Agent2 OpenFlow
OF_Controller OpenFlow
OF_Controller OpenFlow
OF_Agent3 OpenFlow
OF_Controller OpenFlow
OF_Controller OpenFlow

Broadcast OpenFlow
OF_Agent3 OpenFlow
OF_Switchl OpenFlow
OF_Agent2 OpenFlow
OF _Agent3 OpenFlow
OF_Agent2 OpenFlow
Broadcast OpenFlow
OF_Switch2 OpenFlow

OFPT_PACKET_OUT Message from
OF_Controller to OF_Switch2 (Step A6)

41

Swve Fikerl l
w’;? OFPT_HELLO '
ype:
82 Type: oFPT_reATuREs_request | | OFPT_PACKET_IN
242 Type: OFPT_FEATURES RepLy || Message from
74 Type: OFPT_HELLO || OF_Switchlto
82 Type: OFPT_FEATURES_REQUEST || OF Controller
242 Type: OFPT_FEATURES_REPLY =
70 Type: OFPT_FEATURES REQUEST (Step A2)
62 Type: OFPT_HELLO
278 Type: OFPT_FEATURES_REPLY |
70 Type: OFPT_FEATURES_REQUEST |
62 Type: OFPT_HELLO
470 Type: OFPT_FEATURES_REPLY |
70 Type: OFPT_FEATURES_REQUEST /6 FPT_FLOW_MOD
62 Type: OFPT_HELLO | Messages from
470 Type: OFPT_FEATURES_REP| OF_Controller to
144 Type: OFPT_PACKET_IN OF_Agent 2,3 (Step
134 Type: OFPT_FLOW_MOD | A3)
90 Type: OFPT_PACKET_OUT |
134 Type: OFPT_FLOW_MOD OFPT PACKET OUT
134 Type: OFPT_FLOW_MOD e =
134 Type: OFPT_FLOW_MOD Message from
144 Type: OFPT_PACKET_IN OF_Controller to
90 Type: OFPT_PACKET_OUT OF_Switch1 (Step
A3)

OFPT_PACKET_IN Message from
OF_Switch2 to OF_Controller (Step A5)

Figure 3.4: Wireshark Screenshot (Lightpath Setup Message Exchange)

the Controller.

Then, the controller uses the PCE to calculate the lightpath, and

42

to the switches. The connection is established between the two clients following steps Al,
A2, A3, A4, A5, A6, and A7 (Figure 3.5). The wireshark screenshot presents the exchanged

messages during this scenario (Figure 3.4).

eenee]030301d O -oenmnreennsmnnnans

10 GE WL1558.98
-18 GE WLI1558.17

£ ROADM 1
Client A

Figure 3.5: Network configuration and message exchange

As shown in figure 3.5 the connection is established between clients, A and B as the

following scenario:

Step Al: A data flow sent from client A to client B arrives at OpenFlow switch 1.

Step A2: OpenFlow switch 1 does not find a flow entry in its flow table to forward this flow, so
it encapsulates the first low packet in a OFPT_PACKET IN message and forwards

it to the controller as shown in Figure 3.4.

Step A3: The controller calculates the path from Client A to Client B, and sends OFPT PACKET OUT
message to the OpenFlow switch 1 . The controller sends also OFPT_FLOW_MOD
messages (OpenFlow Messages Mapping solution) or OFPT_CFLOW_ MOD message

43

(OpenFlow Extension solution) to the Optical OpenFlow agents in order to create the
lightpath (Message exchange shown in Wireshark screenshot in figure 3.4).

Step A4: When OpenFlow optical agents receive this message, they translate them into the ap-
propriate TL1 commands and send it to the ROADM switches.

Step A5: After creating the lightpath, the data flow traverses until OpenFlow switch 2. When
the flow is received by OpenFlow switch 2, the switch does not find a flow entry in its
flow table to forward this flow. Then, it sends a OFPT_PACKET IN message to the

controller requesting an action for this flow (as shown in Figure 3.4).

Step A6: The controller sends an OFPT PACKET OUT message to OpenFlow switch 2 to
forward this packet to client B.

Step 7: OpenFlow switch 2 forwards this flow to client B..
Cisco Transport Controller (CTC) screenshot, in the initial state while no lightpath ex-

isted, is depicted in figure 3.6. Figure 3.6 depicts Cisco Transport Controller (CTC) screen-
shot showing the optical channel setup on wavelength 1558.98 nm after lightpath creation.

This scenario is explained by UML diagram in Figure 3.8.

44

4 Cisco Transport Contraller

Flo Edt View Tods Window Hep

B0 ALK «=+ 13620 2 ¥ W Quge Nevkcscope: [AV @ & R of
2 o i Al
oM | aMm ‘
>l
CTC Tabbed View e X
Alarms | Condeons Hstory| Oreuls provisonng | Martanance | Layer2+ | d b
Gradts [GrkNeme | Type | See [oomcwen [or | moetion | Stews | Sowce Oestntion | |
Rols
< B
ops: (3 (=]
NET [oxT v 59 of 454 MB |

EY
[creato... | [... | [Dokete.. | [Fer.. | [Seach.. | Scope: E

Figure 3.7: Cisco Transport Controller Screenshot (After Lightpath Establishment)

= B B,

9: Send TL1 Commands()

Iﬁ?"mw—m

Figure 3.8: UML diagram for lightpath establishment

§

45

3.3 Scenario 2: Backup lightpath Restoration

This scenario demonstrates how OpenFlow controller acts in case of link failure. Figure

3.9 shows the steps that are executed in this scenario.

.....|o.muud [0 EECee R -

16 GE WL15%8.98
—10 GE WL1558.17

Elsctrical/pptical
Convefter

OpenFlow|
Switeh 1

penFlow
Switch 2

&

ROADM 1
Client A Qlient B

Figure 3.9: Exchanged messages Backup lightpath Restoration Scenario

Step B0: To simulate the link failure, we unplug the fiber cable between ROADM 2 and ROADM
3.

Step B1: When the fiber connection between the ROADM 3 and ROADM 2 fails, both OpenFlow
optical agents corresponding to these Optical Switches read the alarms of the optical
switches using TL1 (RTRV-ALM-ALL) command !. Then, they send OFPT_PORT STATUS
Messages to the controller about the port status update (Message exchange is shown

in figure 3.10).

1The mechanism of detecting link failure is out of scope of this work

46

Step 2B

Step 3B

: OpenFlow controller calculates alternative lightpaths for the existing failed lightpaths.

: The controller sends OFPT_FLOW_MOD (type=OFPT _ADD) messages (OpenFlow
Messages Mapping solution) or OFPT CFLOW_MOD messages (OpenFlow Exten-
sion solution) to the optical switches to create new lightpath. In this case, a new
lightpath is established from ROADM 2 to ROADM 3 via ROADM 1 on a different
wavelength (1588.17 nm) (Message exchange shown in Wireshark screenshot in figure
3.10).

Step 4B: The controller sends other OFPT_FLOW_MOD (Type=OFPFC_DELETE) mes-

sages (OpenFlow Messages Mapping solution) or OFPT_CFLOW_MOD messages
(OpenFlow Extension Solution) to the optical switches which are associated with old
lightpath to delete the primary lightpath (Message exchange shown in Wireshark screen-
shot in figure 3.10).

Step 5B: When the OpenFlow Optical agents receive these messages, they translate them into

ges from

OFPT_FLOW_MOD Messa

the

the appropriate TL1 commands and send them to the optical switches.

OFPT_PORT_STATUS && !| OFPT_PORT_STATUS Messages from
OFPT_FLOW_MOD | OF_Agent2,3 to OF_Controller (Step B1)

o? [__r___:_—_.:.___::-_%' ______ _ _____ = o o
&3 Filter: _openflow 1 Oype == 12l openflow 1 Otype==14 v| Bpression.. Clear Apply Save Filter]] 9‘ I'l'l '_g
:* % |No‘ Time Source Destination [Protocal] Length Info l 3 9 |—|
+ 4+ | 141 21.389403000 OF_Agent?2 OF_Controller OpenFlow 118 Type: OFPT_PORT_STA & S =
cwn ® = r-
&= |10 21.446946000 OF_Agent3 OF_Controller OpenFlow 118 Type: OFPT_PORT_STATU: | 3 g ©
< & ,15121.446999000 OF_Controller OF_Agent3 OpenFlow 294 Type: OFPT_FLOW_MOD o =2
w % ' 15521.564058000 OF_Controller OF_Agent2 OpenFlow 614 Type: OFPT_FLOW_MOD | B
O & 1157 21.650229000 OF_Controller OF_Agent3 OpenFlow 374 Type: OFPT_FLOW_MOD ® O o
O = | = ()

= : | 207 34.746444000 OF Controller OF_Agent2 OpenFlow 134 Type: OFPT_FLOW_MOD S+ o
KT | 209 34.746969000 OF_Controller OF_Agentl OpenFlow 134 Type: OFPT_FLOW_MOD | - % %
© % | 211 34.876159000 OF_Controller OF_Agentl OpenFlow 134 Type: OFPT_FLOW_MOD = @
- QO w O

£ < [215 34.909426000 OF_Controller OF_Agent2 OpenFlow 294 Type: OFPT_FLOW_MOD | a2 P
e | 220 35.880113000 OF_Controller OF_Agent2 OpenFlow 134 Type: OFPT_FLOW_MOD - =0
ol @)| 221 35.880301000 OF_Controller OF Agent3 OpenFlow 134 Type: OFPT_FLOW_MOD l = ~: 3
G), 224 35982299000 OF Controller OF Agent OpenFlow 204Type: OFPTFLONMD | = = §

Figure 3.10: Wireshark Screenshot (Lightpath Setup Message Exchange)

Figure 3.11 shows CTC screenshot after the lightpath restoration is done, representing

optical channel setup on a different wavelength 1558.17 nm.

47

CTC Tabbed View i
| Alorms | Conditions History| Crasts | Provisioning | Maintenance | Layer2+ | ot
= = e OCHNCWien |

Robs | [Equpped non-speciic 1558.17,nm Loway Unprot | DISCOVERED_TLY ONS2/shef 1/53/p29/ ONS3(shelf1/513{p23/8
Equpped non-specfic 1558.17 nm foay Unprot 1 | DISCOVEREDTLE ONS3jsheff 1/514/p2a/ ONSZjshelf1{s5]p23/A

< | _}l
[croate... | [Eax... | [Deete... | [mer... | [Search... | Seopa: @
S [RET [T [iiory: 52 of 494 M6

Figure 3.11: Cisco Transport Controller Screenshot (After Lightpath Restoration)

This second scenario is explained by this UML diagram in Figure 3.12.

= = o
L:r_|u;seﬂpansmm0

12 : Recalailate New LightPath()

F 3

14 : Send Delete Message()

TDRete Light Path()

1 1S : Send TL1 Commands(}

17 : Send Flow J teasage() —r S ettt
Fg?:mmm j
zlg‘uiﬁamamm

Figure 3.12: UML diagram of lightpath recovery

3.4 GMPLS Approach Experiment

Still GMPLS is not deployed commercially. Dynamic Resource Allocation via GM-
PLSnOptical Networks (DRAGON) software extends the network equipment using SNMP to
adapt this equipment to GMPLS control plane. The DRAGON project studies and develops
an open source software to enable dynamic provisioning of network resources on an inter-
domain basis across heterogeneous network technologies. The project enables the communi-

cation between networks of different types through the GMPLS control suite. The extension

48

of the DRAGON project to support CISCO 15454 ROADM is conducted by a colleague
in another research project 2. Further information about DRAGON project is available in
(Lehman et al., 2006a) and (Lehman et al., 2006b). To experiment GMPLS, we construct
a transparent optical network testbed with two ROADMs (Figure 3.13). In this infrastruc-

VISR1 VISR2

| EhO £ho

IT%

Gre2

10.10.23.102 /20

CSA1 = NCSAZ
- NC1 NC1
Etho SNMP /L1 SNMP /Tl Etho
Uk ez = 5
'\\g NC2 —nc2

5" £z 192.1.0.100 /24 192.1.0.102 /24 :m% =
£h & 103035

8 2 00081113
Gre1:30.80.0.1 E SR
TE:l01303
Electrical/Optical @ Electrical/Optical
converter Lot gt ROADM 2 comermr

Figure 3.13: GMPLS Experiment Using DRAGON

ture, the control plane consists of two Client System Agents (CSA) and two Virtual Label
Switch Routers (VLSR). The CSAs and the VLSRs are connected via a hub. GRE (Generic
Routing Encapsulation) tunnels are created between the CSAs and the VLSRs and between
the VLSRs themselves to exchange RSVP-TE and OSPF-TE messages. The SNMP/TL1
Gateway has a connection with the switch hub to allow SNMP management by the VLSRs.
It translates SNMP messages to TL1 commandes in order to configure the ROADMs. In
the SNMP/TL1 Gateway machine, we install two machines. Each one listens to a VLSR on
port 161 and controls one ROADM. Using wireshark capture in VLSR2 (Figure 3.14 (a)) and
VLSR1 (Figure 3.14 (b)), we explain the GMPLS signaling to create a Label Switched Path
(LSP) from CSA2 to CSAL.

CSA2 sends RSVP_PATH message to VLSR2 with the destination set to the target CSAL.
Both VLSRs forward the path message since they are not the destination. When CSA1 re-

2The Configuration and the mechanism of extending DRAGON to support ROADM is out of scope of this
research project.

49

First PATH Message from CSA2 to VLSR2

Py = T T v VLSR2
c Time Soarce Destinsbon — Restocal forwards
- 293 206.751530000 CSA2(Gre3) VLSR2(Gre3) . PATH
w= 3 o H o [296206.764846000 VLSR2(Eth0) Gateway? SNMP 85 get-request 1.3]
O © £ £ Z| 297 206.807176000 Gateway? VLSR2(Eth0) ~ SNMP 343 get-response 1.1| message to
o T N o 3)298206.807594000 VLSR2(Eth0) Gateway? SNMP 85 get-request 1.3] VLSR1
=2 v % = = |299 206.809157000 Gateway2 VLSR2(Eth0) SNMP 343 get-response 1.:
- & gz & | 300 206.809243000 VLSR2(Eth0) Gateway2 SNMP 86 getBulkRequest]
a n 303 206.828414000 Gateway2 VLSR2(Eth0) SNMP 1422 get-response 1.
g 328 206.862966000 VLSR2(Gre2) VLSRL(Gre2) RSWP 250 PATH Message. ﬁ 2
_/| 330 207.601830000 VLSR1(Gre?) VLSR2(Gre2) RSWP 186 RESV Message. S o
337 207.619344000 VLSR2(Eth0) Gateway? SN 93set-request 1.3 L < § w
RESV PATH 11335 507.730158000 ~ Gateway2 WSRA(EthO) W@ 107 get-response 1.0 % Z [os £
Message |343 207.730196000 VLSR2(Eth0) Gateway?2 SNMP 92 set-request 1.3] 2 o f;]
from VLSR1 | 344 207.907520000 Gateway? VLSR2(Eth0) ~ SNWP 105 get-response 1.J - s & B o
£ it |l’>2 209.008920000 VLSR2(Gre3) CSA2(Gre3) RSV 186 RESV Message. Sif cagh
[VLSR2 forwards RESV Message to CSA2 | 2
(a) VLSR 2
[First PATH Message from VLSR2 to VLSR1 |
|m.,-, Irovp jsmmp. be— RSVP-TE && SNMP v| Exresson_ Clear 1 VLSR1
£ Tow Source Desination I rotocol } l| forwards
3 1341 245.879275000 VLSR2(Gre2) VLSR1(Gre2) ~RSVP ~ 250 PATH Message™Ss| PATH
© 2 T o o (344245.901433000 VLSRI(EthO) Gatewayl SNMP 85 get-request 1.3
G @ 5 & [1345245.937331000 Gatewayl VLSRI(Eth0) ~ SNMP 343 get-response 1.|| Message to
aoNg 2346 245.937765000 WLSRL(EhO) Gatewayl SNMP 85 get-request 1.3 CSA1
b gz 2 « |'347 245.939104000 Gatewayl VLSR1(Eth0) SNMP 343 get-response 1.
% oS ﬁ 8 |348 245.939255000 VLSR1(Eth0) Gatewayl SNMP 86 getBulkRequest |
o k349 245.952382000 Gatewayl VLSR1(EthO) SNMP 1422 get-response 1
s 376 245.994387000 VLSR1(Grel) CSAL(Grel) RSVWP 234 PATH Message.’S £
379 246.016820000 CSAL(Grel) VLSR1(Grel) RSWP 186 RESV Message. S 2
—g%‘ass 246.051709000 VLSRI(Eth0) Gatewayl SNMP 94 set-request 1.3\ D L2 < § ©
RESV PATH || 2 ZEhm2
387 246.145049000 Gatewayl VLSR1(Eth0) SNMP 109 get-response 1. |z & o 2
Message ||388 246.145155000 VLSRI(Eth0) Gatewayl SNMP 93 set-request 1.3l £ PR ; ©
from CSA1 |389 246.197931000 Gatewayl VLSRL(Eth0) ~ SNMP 107 get-response 1.} 2 = g n Y
$h ViSRS A0 BLAG00 VR, MBLIVRE) Toin ST ER s R R E T
[VLSR1 forwards RESV Message to VLSR2 | £

(b) VLSR 1

Figure 3.14: GMPLS Scenario : Wireshark screenshot

ceives the RSVP_PATH message, it replies to it with RSVP_RESV message and sends it

to VLSR1. VLSRI1 forwards this message to VLSR2 because again it is not the destination of
the message. Finally, VLSR2 forwards the RSVP_ RESV message to CSA2. At this point,
the LSP is active and can be used. The SNMP /TL1 Gateway translates the SNMP messages
sent by the two VLSRs to TL1 commands in order to configure the two ROADMs.

50

3.5 Experimentation Results

The experiments setup time (in millisecond) is shown in table 3.1 for OpenFlow solutions
(OpenFlow Messages Mapping and OpenFlow Extension) and the GMPLS approach.
In this table, Pathl and Path2 refer to the primary and the backup lightpaths, respectively.
Pathl nodes are OF _Switchl - ROADM2 — ROADM3 — OF _ Switch2, while Path2 nodes
are OF _Switchl - ROADM2 — ROADM1 — ROADMS3 — OF _ Switch2. LSP on the table
refers to Label Switch Path for GMPLS. LSP nodes are CSA1 — ROADM2 — ROADM3
— CSA2. The experiments results show that OpenFlow Eztension solution (with 216 ms
setup time) outperforms OpenFlow Messages Mapping solution (with 227 ms setup time).
This result is expected because OpenFlow Extension solution uses one message to encap-
sulate bidirectional lightpath information and OpenFlow Messages Mapping needs two
messages. For the backup lightpath (Path2) which spans on three nodes, OpenFlow Exten-
sion solution takes 239 ms to create the lightpath while OpenFlow Messages Mapping
takes 269 ms. On the other hand, GMPLS takes more time (340 ms) to create lightpath
than OpenFlow solutions. This is because the GMPLS-based control plane is complicated.
This is due to its distributed nature, the number of protocols, and the interactions among
different layers. The flexibility and manageability of the GMPLS-based control plane is low,
because, for example, if we want to create or update an end-to-end lightpath, the signaling and
reservation messages must be updated and exchanged between all the intermediate VLSRs.
However, the OpenFlow-based UCP provides the maximum flexibility and manageability for

carriers since all the functionalities are integrated into a single OpenFlow controller.

OpenFlow Messages Mapping Solution

Controller Switch establishment Total (ms)
ROADM2 | ROADM1 { ROADM3
Pathl 16 121 - 90 227
Path2 18 110 30 111 269
OpenFlow Extension Solution
Controller Switch establishment Total (ms)
ROADM?2 | ROADM1 | ROADMS3
Path1 16 100 - 100 216
Path2 18 90 30 101 239
GMPLS Solution
RSVP-TE Switch establishment Total (ms)
ROADM?2 | ROADM1 | ROADMS3
LSP 130 110 - 100 340

Table 3.1: The experiments timing

51

CHAPTER IV

SIMULATION STUDY

In this chapter we present a comparative study of the OpenFlow solutions (OpenFlow
Messages-Mapping, OpenFlow Extension) and the GMPLS approach. To conduct the com-
parison, A custom-built Java event-driven simulator is written based on the mechanisms
mentioned in chapter 2. The measurements taken from the previously conducted experi-

ments are used in writing a custom-built Java event-driven simulator.

Table 4.1 shows the signaling protocol used by each solution. In this table the signaling
protocol is in the first row, and in front of each solution we marked which signaling protocol

is used in it.

The simulation is carried out on two real optical network topologies. These network
topologies are the physical network topology of United States National Science Foundation
(NSF) and the optical network topology of the European Union Ultra-High Capacity Optical

messaging protocol

OFP | OSPF-TE | RSVP-TE
GMPLS with PCE NO YES YES
OpenFlow Message-Mapping solution | YES NO NO
OpenFlow Extension solution YES NO NO

Table 4.1: Summary of Simulated Solutions

53

Transmission Network (European Research Project Cost239). The next section presents the
simulation environment, parameters and algorithms. Then, the results for each network are

presented in sections 4.2 and 4.3.

4.1 The Custom-built Java Event-Driven Simulator

The simulator is a custom-built Java event-driven application. It is written based on the
mechanisms mentioned in Chapter 2. The internal optical switch lightpath establishment
time is emulated to 60 ms for all solutions. For both topologies the links between nodes are
bidirectional. Each link supports 32 wavelengths. The controller and the PCE perform first-
fit for assigning wavelengths. Wavelength can not be changed across the path since nodes do
not support wavelength conversion. Lightpath requests are generated according to a Poisson
process and uniformly distributed among all node pairs. The holding time is fixed to 180
seconds, the average inter-arrival time is varied from 0.3 s to 18 s. This varies the Erlang

from 600 to 10.

Algorithm 1 explains how the written application simulates the OpenFlow solutions. The
application uses the network topology nodes (G), the connections between them (V), and
the simulation end-time as inputs. Then, it starts by generating one event of type create-
channel. After that, it reads events one at a time and handles it. Depending on the event
type, each event type is treated differently by the algorithm, as explained before. For the
create-channel event, it generates a new create-channel event based on the Poisson inter-
arrival time, updates the controller’s time, calculates the lightpath, finds a free channel
(wavelength). Finally, it generates the "create cross-connect" events for each switch through
the calculated path (events to be executed by the switches). Unless there is no lightpath
available, it declares this request as a blocked request. For the events of type Delete channel,
it updates the controller’s time. Then, it generates the delete cross-connect events for each
switch through the lightpath (events to be executed by the switches). For the event of type
"create cross-connect", it generates an event of type delete channel. For both events of type
create/delete cross-connect, it updates nodes time (emulating the cross-connect creation time

60 ms). Then, it updates vertex information. The cross-connect creation time is calculated

54

from the testbed experiments by measuring the time difference between sending the lightpath

creation TL1 command and the response received from the optical switch after executing the

command.

55

Data: G: Graph, V: vertex, EndTime: Simulation End Time

Result: Establishment time, Blocking probability and control traffic

Initialization: Generate one event (using a uniformly distributed source and destination and
Poisson inter-arrival time);

while current time < EndTime do

read the nearest event;

switch Event Type do

case Create Channel

Generate new Create Channel event based on Poisson inter-arrival time;
Update the controller’s time;

Update the controller’s vertex information;

Calculate path using Dijkstra Algorithm;

Find a free channel (wavelength) cross the calculated path;

if Path calculation return false OR no channel available then

Declare Request Blocked;

Continue with the next event;

else
Generate "create cross-connect" events for each node through the calculated

path (with the information of event time, path and wavelength);

end

end

ase Delete Channel

[¢]

Update the controller’s time;
Update the controller’s vertex information;
| Generate delete Cross-Connect events for each node through the calculated path

(with the information of event time, path and wavelength);

end

case Create Cross-Connect

Update nodes’ time (emulating the cross-connect creation time 60 ms);

Update vertex information;

Generate delete event for the created path (with event time = current time + hold

time});

end

case Delete Cross-Connect
Update nodes’ time (emulating the cross-connect creation time 60 ms);
Update vertex information;

end

endsw

56

GMPLS simulation is divided into three algorithms 2,3 and 4 (Main algorithm and two
event handler procedures). These algorithms explain how the written application simulates
the GMPLS with PCE approach. In this algorithm the inputs and the initialization are the
same as algorithm 1. By traversing all the events depending on their types, each event type
is treated differently as explained on algorithms 2, 3 and 4. For the create-channel event,
it generates a new create-channel event based on the Poisson inter-arrival time, updates
the controller time, calculates the lightpath, finds a free channel (wavelength), finally it
generates the "create cross-connect" events for the first switch in the calculated path (event
to be executed by the switch). Unless there is no lightpath available, it declares this request
as a blocked request. For the events of types Delete channel, it updates the controller’s
time. Then, it generates the delete cross-connect events for the first switch in the lightpath
(event to be executed by the switch). For both events of type create/delete cross-connect,
it updates node time (Emulating the cross-connect creation time 60 ms). Then, it updates
vertex information. For the event of type "create cross-connect", it verifies if the requested
channel is available. If it is not available, it declares this request blocked (Backward Blocking)
and it generates delete channel request. If it is available and this is not the last switch in
the lightpath, it generates an event of type "create cross-connect" for the next switch in the
lightpath, otherwise it generates an event of type delete channel. For both events of type

LSA update (create/delete), it updates TED (controller Vertex information).

Data: G: Graph, V: vertex, EndTime: Simulation End Time
Result: Establishment time, Blocking probability and control traffic
Initialization: Generate one event (using a uniformly distributed source and destination and
Poisson inter-arrival time);
while current time < EndTime do
read the nearest event;
if Event Type == Create Channel then Generate one event based on Poisson
inter-arrival time ;
switch Event Type do
case Create/Delete Channel
\ Call Channel Event-Handler procedure;
end
case Create/Delete Cross-Connect
| Call Cross-Connect Event-Handler procedure;
end
case LSA update (Create/Delete)
I Update TED (controller Vertex information);

end

endsw

end
Algorithm 2: GMPLS/PCE Event-Driven Simulator algorithms

57

58

switch

end

end

endsw

Event Type do

case Create Channel

Update the controller’s time;

Calculate path using Dijkstra Algorithm;

Find a free channel (wavelength) cross the calculated path;

if Path calculation return false OR no channel available then
‘ Declare Request Blocked; Continue with the next event;

else
Generate "create cross-connect" event for the first node in the calculated path

(with the information of event time, path and wavelength);

end

case Delete Channel
Update the controller’s time;
Generate delete Cross-Connect event for first node in the calculated path (with the

information of event time, path and wavelength);

Algorithm 3: Channel Event-Handler procedure

59

switch Event Type do

case Create Cross-Connect

Update nodes time (emulating the cross-connect creation time 60 ms);
Update switch’s vertex occupation;

if current switch is the last one in the path then
Generate delete event for the created path (with event time = current time + hold

time);
else
if channel (wavelength) is available then
| Generate "create cross-connect" event for the next node in the calculated path;
else

Declare this request blocked;

Generate delete channel event
end

end

Generate LAS update (Create) event;

end

case Delete Cross-Connect

Update nodes time (emulating the cross-connect creation time 60 ms);

Update switch’s vertex occupation;

if current switch is not the last on the path then Generate delete Cross-Connect
event for the next node in the calculated path ;

Generate LAS update (Delete) event;

end

endsw
Algorithm 4: Cross-Connect Event-Handler procedure

4.2 National Science Foundation (NSF) topology

Figure 4.1 shows the network topology of the National Science Foundation (NSF) topol-
ogy Foundation (2014). NSF topology consists of 14 nodes and 21 links, each link has 32
channels (wavelengths) (Figure 4.1). The distances between nodes are shown in the figure.

Dijkstra algorithm uses these distances to calculate the shortest paths.

60

Figure 4.1: NSF topology (14 nodes and 21 links)

The simulation is run for a period of 3000 sec to ensure the stability of the network.
Lightpath establishment time, control traffic got into and out of the controller and PCE,
and the blocking probability are calculated from the simulation. The results are shown in
the graphs : (i) Lightpath establishment time expressed in milliseconds vs. network load
(Erlang) (Figure 4.2); (ii) Number of control messages (Controller load) vs. network load
(Erlang) (Figure 4.4); (iii) Lightpath blocking probability vs. network load (Erlang) (Figure
45).

§00 ! I : T T T T T T T T
; 5 : : {{ —+— OpenFlow messages mapping
450} o ;-o-.e\ A LT T e v e .| «+*4++*OpenFlow Extention
o : : ; s
e ““'\o {—e-GMPLS/PCE
: TO~ e, ..

400 - : *o"’*a— . -o
E :
o 30
B
=
E 10
]
E 250
w
-3
8 200
o
k4

150

100 : : : : ; i

B *..fi.’..*.,f..f.».’-;—*..*.u*..*“‘ni,.,.*..T..*..‘*-;-’»-*..?A.*.‘*i.'<‘*“T.‘*...';i-*..'..‘

0 S0 100 150 200 250 300 350 400 450 500 550 €00

Network Load (Edang)

Figure 4.2: Lightpath establishment time [ms] vs. network load (NSF topology)

61

: : 2 : : . ——+—— OpenFlow messages mapping
~ AAAAAAAAA AAAAAAAAA -~ OpenFlow Extention
: : : : : — & - GMPLS/PCE

Numer Of Hop Per Executed Request

Network Load (Erlang)

Figure 4.3: Number Of Hop Per Request vs. network load (NSF topology)

Figure 4.2 depicts the establishment time for bidirectional lightpath. It shows that Open-
Flow Extension solution experiences the lowest setup time as shown with blue line. Because
OpenFlow Message-Mapping uses two FLOWMOD messages to establish the lightpath, it
is expected that this solution experiences higher time than OpenFlow Extension solution as
shown in the figure with the red line. OpenFlow solutions execute the lightpaths on parallel,
Hence the establishment time of lightpath is around a fixed value. On the other hand, GM-
PLS approach executes the lightpaths sequentially, Hence it has higher establishment time.
As a result, GMPLS has the highest setup time as shown in the figure with the green line in
the range 600- 900 ms for bidirectional lightpaths.

GMPLS has the tendency to decrease the establishment time as the network load in-
creases. Because at high network load the average path length is shorter as shown in figure
4.3 (it decreases from 3.6 to 2.6 nodes per request). Even though the number of hop decreases
too on OpenFlow-based solutions, this do not affect the lightpath setup since the requests is

executed in parallel.

Figure 4.4 depicts the control traffic for each solution. It shows that both OpenFlow
solutions experience low control traffic compared to GMPLS solution as shown by blue and

green lines. This difference between the OpenFlow solutions and GMPLS solution due to the

62

50 T T T T T
~—+— OpenFlow messages mapping :
45 H '+ # ' OpenFlow Extention b,

=& -GMPLS/PCE

R 8 ®
TRl wl

Control Plane Traffic (Packet/Sac)
8
T

Figure 4.4: Number of control messages vs. network load (NSF topology)

PCEP messaging has to be sent for each node and also because of the LSA update messages

which each node has to send back to the controller in case link state changes.

Figure 4.5 depicts the blocking probability. This figure shows that both OpenFlow based
solutions have the same blocking probability values which are expected since both tech-
niques use the same Dijkstra algorithm and the same resource Database. On the other hand,
GMPLS-based approach experiences the backward-blocking which makes this technique have
higher blocking ratio with low network load as shown in the figure with green line. As we
mentioned before, the backward-blocking occurs because of wavelength contentions. Con-
tentions arrive when two or more RSVP-TE messages attempt to reserve the same resource
(link and wavelength). Indeed, the link state database TED may be outdated when the path

request reaches PCE causing this contention.

63

o'l 4
0'/0\ 1 |
Yo—fe - i 1 i —+—OpenFlow messages mapping
/ =4+ OpenFlow Extention
— o+ GMPLS/P
= i 5 i &G CE
100 20 0 00 500 0
Netao Load Edang)

Figure 4.5: Lightpath blocking probability vs. network load (NSF topology)

4.3 European Optical Network Topology (COST239)

Ultra-High Capacity Optical Transmission Network (European Re-search Project Cost239)
O’Mahony (1996) is the second topology we ran our simulation on. This topology is depicted
on Figure 4.6.

COST239 topology consists of 11 nodes and 26 links, each link has 32 channels (wave-
lengths). The distances between each pairs are shown in the figure. Dijkstra algorithm uses

these distances to calculate the shortest paths.

The same simulation steps are followed as the NSF topology. The simulation is run for
a period of 3000 sec to ensure the stability of the network. Lightpath establishment time,
control traffic got into and out of the controller and PCE, and the blocking probability are
calculated from the simulation. The results are shown in the graphs : (i) Lightpath estab-
lishment time expressed in milliseconds vs. network load (Erlang) (Figure 4.7); (ii) Number
of control messages (Controller load) vs. network load (Erlang) (Figure 4.9); (iii) Lightpath
blocking probability vs. network load (Erlang) (Figure 4.10).

The results shown in figure 4.7 support the same result of the NSF topology. It depicts

64

Figure 4.6: COST239 Topology (11 nodes and 26 links)

that OpenFlow Extension solution experiences the lowest setup time as shown with blue line.
It depicts also that GMPLS has the highest setup time as shown in the same figure with

green line.

As the previous topology, the figure shows that GMPLS lightpath establishment time
decreases as the network load increases, because at high network load the average path

length is shorter as shown in figure 4.8 (it decreases from 2.77 to 2.34 hop per request).

Figure 4.9 depicts the control messages for each solution. It confirms the result we got
on the NSF topology. It shows that OpenFlow solutions experience the lowest control traffic.
It depicts also that GMPLS has the highest control traffic as shown in the same figure with

the green line.

65

T T T T | I T ! I l !
~—+— OpenFlow messages mapping 2
*++ 4+ OpenFlow Extention
= GMPLSIPCE

Average Establishment Time (ms)

o8A§§§§§§§§§

Network Load (Erlang)

Figure 4.7: Lightpath establishment time [ms] vs. network load (COST239 Topology)

Figure 4.10 depicts the blocking probability and it also confirms the result we got on the
NSF topology. This figure shows that both OpenFlow based solutions have almost the same
blocking probability values. On the other hand, GMPLS protocol experiences the backward-
blocking which makes this technique have higher blocking ratio with low network load as
shown in the figure with green line.

66

3 ! 1 1 T ! 1 b 1 1 i 6 L

: : : : =+ OpenFlow messages mapping
°| ++ 4 - OpenFlow Extention I
— @& -GMPLS/PCE

N
™

noN
w

Numner Of Nodes Per Executed Requast
[N
m

22 ..,.,A.:,, e ang,,.S,.,,,...?m.,.h.,;.,w..,é.y..,.,.,_é.......,
2.1-E.. g{ gasennn ._g..- 3 ; -
5 i i i i i i
350 400 450 500 550 600
Network Load (Erlang)

Figure 4.8: Number Of Hop Per Request vs. network load (COST239 Topology)

m T 1} 1 1 LI
==+ OpenFlow messages mapping

45H +++ 4=+ OpenFlow Extention

© — - GMPLS/PCE

&

8

Control Plane Traffic (Packet/Sec)
5 & 8 H

(4,

Network Load (Erlang)

Figure 4.9: Number of control messages vs. network load (COST239 Topology)

Blocking Probability
]

=
D.

-| ==+ OpenFlow messages mapping |

4+ OpenFlow Extention

: : . : — @~ GMPLS/PCE

1 1 I I T T T

50 100 150 200 250 300 350 400 450 500 550 600
Network Load (Eriang)

Figure 4.10: Lightpath blocking probability vs. network load (COST239 Topology)

67

68

4.4 Summary of Simulation Results

The simulations reveals that OpenFlow extension solution outperforms both GMPLS with
PCE and OpenFlow message-mapping solution in lightpath establishment time and controle
plane traffic. It also outperforms GMPLS in blocking probability, while it has almost the same
blocking probability as OpenFlow message-mapping solution. Table 4.2 shows the summary
of the simulation results performed on NSF network topology.

GMPLS with PCE | OpenFlow OpenFlow Exten-
Message-Mapping | sion Solution
Solution
Establishment time | Between 450 ms | Around 170 ms Around 60 ms

and 380 ms

Control plane traffic | increases till 47 | increases till 22 | increases till 13
packets/sec at | packets/sec at | packets/sec at

maximum load maximum load maximum load

Blocking probability | starts at 0.003, and | starts at 0, and [starts at 0, and
reaches 0.5 reaches 0.5 reaches 0.5

Table 4.2: Summary of NSF topology simulation results

The simulations is repeated using COST239 physical network topology and the results
support what we had before using NSF topology (Table 4.3).

In brief, the experiments and the simulations show that the two solutions based on OpenFlow
can enhance the lightpath establishment time, reduce the control plane traffic and reduce the

blocking probability. They show also that extending OpenFlow protocol by adding new

GMPLS with PCE

OpenFlow
Message-Mapping

Solution

OpenFlow Exten-

sion Solution

Establishment time

Around 350 ms

Around 130 ms

Around 60 ms

Control plane traffic

increases till 45
packets/sec at

maximum load

increases till 23
packets/sec at

maximum load

increases till 14
packets/sec at

maximum load

Blocking probability

starts at 0.002, and

reaches 0.4

starts at 0, and

reaches 0.4

starts at 0, and

reaches 0.4

Table 4.3: Summary of COST239 topology simulation results

69

messages to support optical network has a great effect on enhancing the light path establish-

ment time and reducing the control plane traffic. This enhancement of performance makes

OpenFlow the best candidate for UCP.

CHAPTER V

CONCLUSION

In this thesis, the main contributions are:

Use Software Defined Network (SDN) to create a unified control plane for
both optical circuit-switched and packet-switched networks
In this thesis, a unified control plane is proposed and conducted using OpenFlow (as an SDN
protocol). The control plane is conducted using two techniques and tested on the laboratory

on the topology shown before in Figure 3.

Comparison between these techniques and the standard GMPLS technique
In this thesis, an experimental comparison conducted between the proposed solutions and
GMPLS approach is presented in chapter 3. Additionally, a custom-built Java event-driven
simulator is built and run to simulate the performance of our two proposed techniques and
compare them with the standard GMPLS protocol on two real optical network topologies
(Chapter 4).

As a conclusion from these results in the considered scenario, using SDN/OpenFlow
architecture can create mutually beneficial interaction between IP and transport networks
by enabling new capabilities at the packet-circuit interface. OpenFlow extension technique
can significantly improve the performance of the control plane and the proposed extension is

able to significantly reduce the lightpath setup time and the control plane traffic.

CHAPTER VI

PUBLICATIONS

6.1 Accepted paper at IEEE GLOBECOM 2014 conference

Software-Defined DWDM Optical Networks:
OpenFlow and GMPLS Experimental Study

M. Bahnasy, K. Idoudi and H. Elbiaze
Université du Québec a2 Montréal
Email: elbiaze.halima@uqgam.ca

Abstract—Finding an effective and simple unified control

plane (UCP) for IP/Dense Wavelength Division Multiplexing
(DWDM) multi-layer optical networks is very important for
network providers. Generalized Multi-Protocol Label Switching
(GMPLS) has been in development for decades to control optical
transport networks. However, GMPLS-based UCP for IP/DWDM
multi-layer networks is extremely complex to be deployed in
a real operational products because still there are a lot of
non-capable GMPLS equipments. DRAGON (Dynamic Resource
Allocation via GMPLS Optical Networks) [1] is a software that
solves this issue making these equipments capable for working
in a GMPLS network. On the other hand, OpenFlow (OF), one
of the most widely used SDN (Software Defined Networking)
implementations, can be uscd as a unified control plane for packet
and circuit switched networks [2].
In this paper, we propose and experimentally evaluate two
solutions using OpenFlow to control both packet and optical net-
works (OpenFlow Messages Mapping and OpenFlow Extension).
These two solutions are compared with GMPLS-based UCP. The
experimental results show that the OpenFlow Extension solution
outperforms the OpenFlow Messages Mapping and GMPLS solu-
tions,

Keywords—Optical Network; GMPLS; DRAGON; Software De-
fined Networking; OpenFlow

I. INTRODUCTION

Currently, IP and optical layers operate separately without
dynamic interaction which leads to high operational cost, low
network efficiency, and long processing latency for end-to-
end path provisioning. The main reason behind these limi-
tations is that they are two different networks with different
architectures, switching technologies, and control mechanisms.
Therefore, a unified control plane (UCP) for both IP and
optical layers, as one of the key challenges for the network
carriers, is very important to address the aforementioned issue.
GMPLS, a relatively mature control plane technique for op-
tical transport networks, has been proposed as a solution for
UCP [3]. But due to the distributed nature, the number of
protocols, and the interactions between different layers, the
GMPLS-based UCP is overly complex[4], [5]. Moreover, the
implantation of this technology is difficult because still there
are a lot of non-capable GMPLS equipments. DRAGON [6],
is a software that solves this problem using SNMP (Simple
Network Management Protocol) to control these equipments
and making them capable for working in a GMPLS network.
In this paper, we use this software and adapt it to operate with
our optical switch (Cisco ONS 15454 '),

On the other hand, we propose SDN [7] as a promising solution

IROADM : Reconfigurable Optical Add-Drop Multiplexer

for a UCP. Generally, the SDN technology separates the control
and data planes so that we can introduce a new functionality
by writing a software program, running within an external
controller that manipulates the logical map of the network.
This provides the maximum flexibility for the operator to
control different types of network, and match the carriers
preferences. One of the widely used SDN implementations is
OpenFlow [8]. OpenFlow protocol is mature for L2/L.3 packet
switching networks, but still at a starting stage for wavelength-
switched optical networks. So, it needs some extensions to be
able to support the optical domain.

Some efforts have been done to present OpenFlow-based UCP
to control packet and circuit switches. Most notably, PAC.C
[2] has experimented with alternative approaches. Other papers
[9], [10], [11] have presented similar work as PAC.C by provid-
ing an experimental study or a Proof-of-Concept to support the
using of OpenFlow as a unified control plane. However, [12]
presents a comparison study between OpenFlow and GMPLS
solutions based on a simulation. In this paper, we propose two
approaches based on OpenFlow protocol to control both optical
and electrical networks. Then we experimentally compare
these two solutions with a real implementation of GMPLS
approach. To the best of our knowledge, this is the first work
who considers both OpenFlow and GMPLS UCP solutions,
and compare them via testbed experimentation. We conduct
a real case study of implementing end-to-end lightpath and a
lightpath restoration by establishing a dynamical configured
backup lightpath.

The first solution is OpenFlow Messages Mapping; we map
the OpenFlow standard messages into equivalent optical chan-
nel requests, without modifying the OpenFlow protocol. The
second one is OpenFlow Extension; new messages have been
added to the OpenFlow protocol in order to support the
circuit switching. The proposed solutions are implemented
in a testbed to demonstrate their effectiveness, as well as
GMPLS-based approach. For both solutions, we implement
an OpenFlow Optical Agent to translate the OpenFlow
messages to be executed on the optical switches. Moreover,
a Path Computation Element (PCE) module is added to
the OpenFlow controller as a network application in order to
control the optical domain.

The remaining of this paper is organized as follows; Section
1T describes how can OpenFlow define a unified control plane
for both IP and optical networks and the iplementation of
the proposed solutions (OpenFlow Messages Mapping and
OpenFlow Extension). Section III presents the GMPLS-based
UCP approach and the deployment of this protocol in our
testbed. In particular, we explain the adaptation of DRAGON
software for our ROADM (CISCO ONS 15454). Section IV

presents the different experimental scenarios for each solution
and the comparative results with GMPLS. Concluding remarks
are eventually given in section V.

II. OPENFLOW-BASED UNIFIED CONTROL PLANE
A. Overview

We briefly outline the main characteristics of OpenFlow. A
more detailed and exhaustive documentation is available in the
OpenFlow white paper [13] and in the Open Flow specification
[14]. OpenFlow is an open standard that was developed several
years ago at Stanford University in order to enable researchers
to run experimental new protocols and technologies on real
networks, without disrupting the existing traffic or network
availability [15]. In a traditional network, the data path and
the control path occur on the same device (switch, router).
OpenFlow separates these two functions; OpenFlow switches
perform the data plane functions and OpenFlow controller
implements the control plane intelligence and communicates
with the OpenFlow switch via the OpenFlow protocol.

An OpenFlow switch consists of one or more flow tables and
group tables, which perform packet lookups and forwarding,
and a secure channel that is connected to an external controller.
Each flow table in the switch contains a set of flow entries;
each flow entry consists of match fields, counters and a set of
instructions to apply to matching packets.

OpenFlow advocates the separation of data and control planes
for circuit and packet networks, as well as the treatment of
packets as part of flows, where a packet flow is defined as any
combination of L2/1.3/L4 headers. This, together with L1/L.0
circuit flows, provides a simple flow abstraction that fits well
with both types of networks. Hence, OpenFlow presents a
common platform for the control of the underlying switching
hardware, that switches flows of different granularities, while
allowing all of the routing, control and management to be
defined in software outside the datapath, in the OpenFlow
controller (Figure 1).

OpenFlow
Controller }M.‘ Control Plane
OpefﬁFlow pr}{tocol }

/3 4 1 Y
\

Packet Circuit Circuit Packet

Switch] [Switch (Switch] [switch J }M Plane Switching
J

Fig. 1: Unified architecture of a converged Packet-Circuit network

B. OpenFlow Messages Mapping and OpenFlow Extension

This paper proposes two solutions using OpenFlow pro-
tocol as a unified control plan for both optical and electri-
cal domains (OpenFlow Messages Mapping and OpenFlow
Extension). For both solutions, we implement an OpenFlow
Optical Agent to translate the OpenFlow messages to its
proper TL1 (Transaction Language 1) commands [16] to be
executed on the optical switch using telnet channel. A Path
Computation Element (PCE) module is added to the OpenFlow

controller as a network application (Figure 2). Upon request
arrival, PCE calculates the corresponding lightpath and sends
the cross-connection messages to involved ROADM:s. In the
next sections, we describe OpenFlow Messages Mapping and
OpenFlow Extension solutions.

1) OpenFlow Messages Mapping: In this solu-
tion, the OpenFlow standard messages are used without
any modification. The OpenFlow messages are mapped
into optical switch commands. In this approach, the
OFPT_FLOW_MOD message of type OFPFC_ADD is
mapped into ENT-OCHNC TL1-command to create a lightpath
channel. The OFPT_FLOW_MOD message of type OF-
PFC_DELETE is mapped into DLT-OCHNC TL1-command
to delete a lightpath channel. When the agent receives
OFPT_FEATURES_REQUEST message, it encapsulates the
emulated port information into OFPT_FEATURES_REPLY
message. Finally the agent reads periodically the ROADM
events (using RTRV-ALM-ALL TL1-command) and if it finds
any critical alerts, it creates OFPT_PORT _STATUS message
and forwards it to the controller.

2) OpenFlow Extension: In this solution, OpenFlow
messages are extended and new messages are added. The new
messages specification [17] allows the controller to distin-
guish between the circuit-switching and the packet-switching
networks. For example, OFPT_FEATURES_REPLY message
is extended by adding extra information about the circuit-
switching ports. To send an optical cross-connect informa-
tion, a new match structure called ofp_connect is presented.
Multiple ports can be cross-connected by a single struc-
ture. This structure is added to the newly defined message
called OFPT_CFLOW_MOD. Finally when the state of a port
changes, the OpenFlow Optical Agent sends a new defined
message called OFPT_CPORT_STATUS.

C. OpenFlow Optical Agent

As mentioned above, the main role of the OpenFlow
Optical Agent is to translate the optical channel requests and
OpenFlow messages into TL1 commands to be executed on
optical nodes (Figure 2).

Path Computation Element(PCE)

(OpenFlow Controller)

1 t OpenFlow connection

OpenFlow Optical Agent
C OpenFlow Channel)

OpenFlow / TL1 Ports
Translator Emulation
TL1 command channel
OpenFlow Standard

Paper Contribution

Fig. 2: OpenFlow Optical Agent intercations

Optical Switch

This agent is associated to each optical node and
acts as a virtual switch. It consists of ; (i) OpenFlow

Channel to communicate with the OpenFlow controller, (ii)
OpenFlow/TLI Translator to convert OpenFlow messages into
TL1 commands, and (iii) Ports Emulation module to emulate
the optical node ports and send the port status information to
the controller. This information is used by the controller to
update ports database and to calculate the lightpath !.

D. Path Computation Element (PCE)

The PCE implements an algorithm to establishe lightpaths
between source-destination pairs in order to create a fully con-
nected Iogical topology [18]. A Traffic Engineering Database
(TED) is created to save the network topology information.
As the OpenFlow controller has a centralized management, the
TED will be updated in case of lightpath creation/release and
ports status change. Two modules are proposed to implement
the PCE; Executor and Optical Switch Adapter (Figure 3).

Initial Ports

Configuration
Ports Updates

____________________________ -

Path Computation ElementI

Execu?trr
. i
| Optical

I

|

Bl focb]| —_— |
| Path Computation |

IM» 1 (Djikastra Algorithm > Switch |
| Wavelength Assignment gAdapfcr II
| (Graph Coloring) . - |
|

|

\

(8

Output : LightPath
information

Fig. 3: Path Computation Element workflow

1) Executor: This module ensures the avoidance of using
one wavelength more than once in the same fiber. Each
wavelength carries traffic between a pair of source and destina-
tion. Therefore, multiple wavelengths are reserved in a single
strand of fiber for establishing multiple lightpath through one
fiber. These connections between source/destination nodes in
DWDM networks are performed in two steps:

e Routing: We use Dijkstra Algorithm in order to find
the shortest path between each node pair. In our case,
we are interested in a network topology composed of
OpenFlow switches and ROADMs.

e Wavelength Assignment: Once the lightpath routes
are determined, the wavelength assignment problem
can be represented as a graph coloring problem. Each
lightpath corresponds to a node in wavelength assign-
ment graph, and two nodes are set as neighbors only
if the respective lightpaths share at least one common
link.

2) Optical Switch Adapter: Each ROADM consists of a
set of cards and each card contains a set of configured ports
[19]. ROADM edges are connected to OpenFlow switches

Lports discovery is out of scope in this paper

via WSS (Wavelength Selective Switch) and DMX (Channel
Demultiplexer) cards, whereas ROADM core interfaces are
interconnected via LINE cards. Two fibers are used for the
bidirectional connection between two ROADMs. These speci-
fications lead us to add this module.

III. GMPLS-BASED UNIFIED CONTROL PLANE
A. Overview

Actually, there are still a lot of non capable GMPLS
equipments. DRAGON software solves this problem in the
Ethernet networks using SNMP to adapt these equipments
to GMPLS control plane. The DRAGON project studies and
develops an open source software to enable dynamic provi-
sioning of network resources on an interdomain basis across
heterogeneous network technologies. The project enables the
communication between networks of different types through
the GMPLS control suite. For its implementation, DRAGON
deploys the IP network infrastructure and creates a GMPLS
capable optical core network to allow dynamic provisioning
of deterministic network paths in direct response to end-user
requests, spanning multiple administrative domains. Optical
transport and switching equipments acting as Label Switching
Routers (LSRs) provide deterministic network resources at the
packet, wavelength, and fiber cross-connect levels.

B. DRAGON Control Plane Components

DRAGON software is thought to work like control plane
within a GMPLS network. The control plane architecture
consists of two basic elements 2 : The Client System Agent
(CSA) and Virtual Label Switch Router (VLSR).

1) CSA (Client System Agent): The CSA is a software that
runs on (or on behalf of) any system which terminates the
data plane (traffic engineering) link of the provisioned service.
This is the software that participates in the GMPLS protocols
to allow for on demand end-to-end provisioning from client
system to client system. A CSA can be a host, a router, or any
networked device.

2) VLSR (Virtual Label Switch Router): GMPLS has not
yet been implemented on large a scale. There are still a lot
of non GMPLS capable switches in use. To overcome this
limitation, the DRAGON protocol suite uses the VLSR. A
VLSR is used to control different kinds of switches like for
instance Ethernet, TDM or Optical switches. What a VLSR
does besides participating in the GMPLS protocols is trans-
lating GMPLS commands into switch specific commands like
SNMP. By the use of these commands, a VLSR can control the
switch and for example set a switch port in the specific VLAN.
To communicate with other VLSRs and CSAs, a VLSR uses
the routing protocol OSPF-TE (Open Shortest Path First-
Traffic Engineering) and path signaling protocol RSVP-TE
(Resource Reservation Protocol-Traffic Engineering). A VLSR
uses OSPF-TE to get familiar with the control plane network
and to inform the VLSRs and CSAs in the control plane about
the TE network links. A VLSR uses the OSPF-TE LSAs (Link
State Advertisements) to send information about the TE links.

2The informations found in this section is based on the Sara Project
documentation produced by the RFC 3945 {20]

Information that could be send over the control plane is infor-
mation about upcoming and down going LSPs (Label Switched
Paths). The OSPF-TE works with two daemons called OSPFD
and zebra. Zebra, or GNU Zebra [21], is routing software
for managing TCP/IP based routing protocols like RIP, BGP
and OSPF. The DRAGON software extends the OSPF routing
daemon with Traffic Engineering informations like bandwidth,
WDM and TDM used by GMPLS. A VLSR uses RSVP-TE for
signaling and setting up LSPs within the GMPLS network. The
RSVP-TE protocol originates from the Technische Universitt
Darmstadts KOMRS VP [22]. The DRAGON software extends
the KOM-RSVP signaling protocol with support for RSVP-TE,
GMPLS, Q-Bridge, SNMP and VLAN control.

C. Adapting VLSR for Cisco ONS 15454

The DRAGON software suite is being developed under
the GNU General public license [23]. The source code can
be viewed, changed for own use. The latest version of the
software suite can be downloaded at [24]. In order to install
the DRAGON software, the VLSR implementation guide has
been followed [25].

By default, the VLSR PC uses SNMP RFC 2674 to communi-
cate with switch. To manage and control the Cisco ONS 15454,
we use TL1 commands. Thus, we implement an SNMP/TL1
Gateway that acts as a proxy to adapt the VLSR software with
Cisco ONS 15454 specification (Figure 4). As shown in figure

S e .

SNMP/TL1 Gateway Clsco ONS 15454

Fig. 4: SNMP/TL1 Gateway
4, the SNMP/TL1 Gateway is composed of two modules:

e SNMP Agent: Using snmp4j [26] open source Java
library, we have developed an SNMP agent. It provides
functions to receive and send SNMP PDUs (Protocol
Data Unit).

e TL1 Agent: Using the iReasing [27] TL1 API, we
have developed a TL1 based management application
that communicates with the Cisco ONS 15454. Its
main function is to map the SNMP messages into
TL1 commands to set-up configurations in Cisco ONS
15454.

IV. EXPERIMENTAL SETUP

In this section, we first present the OpenFlow experiments
followed by the GMPLS ones. Then we discuss the experi-
mental results in order to evaluate and compare the OpenFlow
solutions with GMPLS.

A. OpenFlow Experiments

Two experiments are conducted to demonstrate the efficacy
of our proposed solutions. The first experiment consists of
creating end-to-end lightpath while the second experiment
performs a backup restoration lightpath when failure occurs
on the primary lightpath.

1) Testbed Setup: The architecture of our testbed is de-
picted by figure 5. It consists of two clients A and B, which are
connected directly to OpenFlow switches 1 and 2, respectively.
Each switch is connected to an Electrical/Optical converter.
These converters are connected to DWDM optical network
composed of three Cisco ROADM optical switches (Cisco
ONS 15454). Each ROADM is controlled by an OpenFlow
Optical Agent. The OpenFlow optical agents and the Open-
Flow switches are connected to an OpenFlow controller over
an OpenFlow channel.

2) Scenario 1: End-to-End Lightpath Setup: As shown in
Figure 5, a data flow sent from Client A to Client B arrives
at OpenFlow switchl. When the OpenFlow switchl does not
find any flow entry that matchs with this flow, it encapsulates
the first flow packet in an OFPT_PACKET_IN message and
forwards it to the Controller. Then the controller uses the
PCE to calculate the lightpath, and creates the lightpath by
sending OFPT_FLOW__MOD message (OpenFlow Messages
Mapping solution) or OFPT_CFLOW__MOD message (Open-
Flow Extension solution) to the switches. The connection is
established between the two clients following steps Al, A2,
A3, A4, A5, A6, and A7 (Figure 5). The wireshark screenshot
presents the exchanged messages during this scenario (Figure
6).

Teve P Cusager Thewe | gl 120
2313.25050000 OF_Switchl OF Controller Openlon 74 Typa: OFPTNELLO OFPT_PACKET IN
1 2513.300809000 OF Controller OF_Switchl Openflos 82 Type: GFPT reATRES sccuest | ! o
| 2713.301454000 OF Switchl OF Controller Openclos 242 Type: OFPT_FEATURES REpLY | Message from

5320.122036000 OF Switch2 OF Codtroller OpenFlos 74 Type: OFPT_MELLO || OF_Switchito
| 5520.124558000 O Controller OF Seitch2 OpenFlos 82 Type: OFPTFEATIAESREQUEST | | OF Comtroller

5720126062000 0F Seitch2 OF Controller Openflos 242 Type: OFPT_FEATURES_REPLY | StepA2)
1153 41.631382000 oF Controller GF_Agentl operFlo 70 Type: OFPT_FEATIRES REQUEST | .
116042.311926000 OF sgentl OF Cantroller Opeslos 62 Type: OFPTKELLO
116242, SSTL16000 OF_Agemcd_ O ControTler OpenFlox 278 Type: OFPT_FEATURES SERLY |
1304 72163385000 OF_Controller OF_Agentl OperFlow 70 Type: OFPT_FEATURES REQUEST |

3067245070000 OF_Mgent? OF fontroller Gpenfls 2 Type: OFPTIELLO |

& :
308 72.483036000 OF_Agent2 OF _Controller Openflox 470 Type: OFPT_FEATURES_REPLY
I :xer 84.719829000 OF Controller OF Agent3 OpenFlos 70 Type: OFPT_FEATURES_REQUEST, (GrPy_rLow_mop
37185.157877000 OF_Agent3 OF Controller Openflos 62 Type: OFPT_HELLO | Messages from
373 85.198821000 OF_Agent3 OF _Controller Openflom 470 Type: OFPT_FEATURES_RE OF_Controller to
| 594 149.922753000C 1 fentA Broadcast OpenFlox 144 Type: OFPT_PACKET_IN OF_Agent1,2,3
| 596 149.9246870000F _Controller OF_Agent3 OpenFlow 134 Type: OFPT_FLOW.MOD Tstep A3)
¥ | 597 149.9250220000F Controller OF Switchl OpenFlox 90 Type: OFPT_PACKETOUT | id
§ lmm.gme.'mof_cmmner OF_Agent2 Openflon 134 Type: OFPT_FLOW_MOD [OFFT PACKET OUT]
602150.0362260000¢_Controller OF_Agent3 Openflox 134 Type: OFPT_FLOW WD Pl
604 150. 0484250000 _Controller OF_Agent2 Openflow 134 Type: OFPT_FLOW_MOD g
| 608 150.961401000C T fentA Broadcast Openflow 144 Type: OFPT_PACKET_IN OF_Controller to
1612 151.1655*5000051;12)1« OF_Switch? OpenFlow 90 Type: OFPT_PACKET_OUT OF_Switch1 {Step
e F o o ——————— 4 3)

% | OFPT_PACKET_OUT Message from

OF_Controller to OF_Switch2 (Step AS) A e e

OF_Switch to OF_Controlier (Step AS)

Fig. 6: OpenFlow Scenariol : Wireshark screenshot

3) Scenario 2: Shared Optical Restoration: This scenario
demonstrates how OpenFlow controller acts when a link failure
occurs. The path deletion is performed by the controller using
OFPFC_DELETE message. Figure 5 shows the steps that are
executed in this scenario (B1, B2, B3, B4, and B5). The
wireshark screenshot presents the exchanged messages during
this scenario (Figure 7).

B. GMPLS Experiments

To experiment GMPLS, we construct a transparent opti-
cal network testbed with two ROADMs (Figure 8). In this
infrastructure, the control plane consists of two CSAs and
two VLSRs. The CSAs and the VLSRs are connected via the
switch hub. GRE (Generic Routing Encapsulation) tunnels
are created between the CSAs and the VLSRs and between
the VLSRs themselves to exchange RSVP-TE and OSPF-TE
messages. The SNMP/TL1 Gateway has a connection with
the switch hub to allow SNMP management by the VLSRs.

OpenFlow
Controller,

18 GE W1.1558.98
10 GE WL1558.17

10 GE WL 1558.98
10 GE WLISS8.17-

Electrical/pptical
Convefter

OpenFlow
Switch 1

ROADM 1

Client A

A data flow sent from client A to client B arrives at OpenFlow switch 1.

OpenFlow switch 1 does not find a flow entry in its flow table to forward
this flow, so it encapsulates the first flow packet in a OFPT_PACKET_IN
message and forwards it to the controller.

The controller calculates the path from Client A to Client B, and sends
OFPT_PACKET_OUT message to the OpenFlow switch 1 . The controller
sends also OFPT_FLOW_MOD (OpenFlow Messages M

solution) or OFPT_CFLOW_MOD me;sage (OpenFlow Extension lolnnon)
to the Optical OpenFlow agents in order to create the lightpath.

‘When OpenFlow optical agents receive this message, they translate it into
the appropriate TL1 commands and send it to the ROADM switches.

After creating the lightpath, the data flow traverses until OpenFlow switch 2.
When the flow is received by OpenFlow switch 2, if the switch does not find a
flow entry in its flow table to forward this packet, it sends a
OFPT_PACKET_IN message to the controller requesting an action for this
flow.

The controller sends a OFPT_PACKET_OUT message to OpenFlow switch 2
to forward this packet to client B.

OpenFlow switch 2 forwards this packet to client B.

OpenFlow
Switch 2

Client B

When the interconnection between the ROADM 3 and ROADM 2 fails, both
OpenFlow optical agents corresponding to these Optical Switches read the
alurms of the optical switches . Then they send OFPT_PORT_STATUS
Messages to the controller about the port status update .

OpenFlow controller calculates alternative lightpaths to the existing failed
lightpaths.

The controller sends OFI’l' FLOW_MOD (type=ADD FLOW) messages
(OpenFiow Messag 1g solution) or OFPT_CFLOW_MOD message
{(OpenFlow Extension solnnon) to the optical switches to create new lightpath.
In this case, a new lightpath is established from ROADM 2 to ROADM 3 via
ROADM 1 on a different wavelength (1538.17nm).

The controller sends another OFPT_| FLOW MOD (Type=OFPFC DELETE)
(OpenFlow Messag (pp) or OFPT_CFLOW_MOD
ge (OpenFlow E: ion Solution) to the optical switches which are
associated with old lightpath to delete the primary lightpath.

AL Ry

When the OpenFlow Optical agents receive these messages, they translate it
into the appropriate TL1 commands and send it to the optical switches.

Fig. 5: Network configuration and exchanged messages during the OpenFlow experiments

It translates SNMP messages to TL1 commandes in order to
configure the ROADMs. In the SNMP/TL1 Gateway machine,
we installed two virtual machines. Each one listens to a
VLSR on port 161 and controls one ROADM. Using wireshark
capture in VLSR2 (Figure 9 (a)) and VLSR1 (Figure 9 (b)),
we explain the GMPLS signaling to create an LSP from CSA2
to CSAL.

CSA2 sends RSVP_PATH message to VLSR2 with the des-
tination set to the target CSAl. Both VLSRs forward the path
message since they are not the destination. When CSA1 receivs

the RSVP_PATH message, it replies to it with RSVP_RESV
message and sends it to VLSR1. VLSR1 forwards this message
to VLSR2 because again it is not the destination of the
message. Finally, VLSR2 forwards the RSVP_RESV message
to CSA2. At this point, the LSP is active and can be used. The
SNMP/TL1 Gateway translates the SNMP messages sent by
the two VLSRs to TL1 commands in order to configure the
two ROADMs.

Gre2

SNMmP

10.10.23.101 /20

101022100 /20

s &1

_—
Eh0: 1010206
Gre2:1030.0.1
Gre3:10.30.0.2
;100106
T:101309

Gre2
SNMP / TLL Gateway
102023102 /20
NC1 Gre3

1

[

192.1.0102 /24

@ CsA2

il 152.1.0.100 /24
Eh2 192.1.0.101 /24
n
Electrical tical
a-z:, ROADM 1

i
&h (1010235
Bh2:30100.1115
Gre §:10.30.0.1
TE: 10.1.30.10
Electrical/Optical
ROADM 2 convartar

Fig. 8: DRAGON test with two ROADMs

OFPT_PORT_STATUS Messages from

OFPT_PORT_STATUS &&
ent2,3 to OF_Controller (Step B1)

OFPT_FLOW_MOD | OF_

e e e e === 3
5 28 r;u v bpoca. Ow S Flot 1 5 .9-]
Emnal m o Dt Gzt) Lok o | ,EF‘
€ € & | 1412135903000 OF Agent? oF_ControlTer Dg@nFlon 118 Type: OFPT_PORT. 732
€ 5 | 1502046046000 OF pgem3 OF Controller Openklon 118 Type: OFFT_PORT STATUS | g 2

ﬁ <8 {15120, 46380000 O Controller GF_Agnt3 Cpenflow 284 Type: OFPT_FLOLIAD i 7,
s ...'g 155 21564058000 OF Controller OF.Agent2 Openflow 614 Type: OFPT_FLOWMOD g
295 1157 21650229000 o Controller OF_Agmtd OpenFlow 374 Type: OFPT_FLOLMO0 { §° 2
g S 3 (207 W.746444000 OF Controller OF Agent2 OpenFlow 134 Type: OFFT_FLOLNOO 3 20
|8 B | 20934.746963000 oF Controller OF Agentl Oper¥loe 134 Type: OFPT FLOOD | S-IZ S
20T | U134.876150000 OF Controller OF Agentl Openloe 134 Type: OFPTFLOWIMD =% 5
Q £ £ (121534.90026000 OF Controfler OF Agemt2 OperFlow M4 Type: OPTALOLMD |° T 3
%, 8 ‘@ |l22035.880113000 o Controller OF Agent2 Cpenflow 134 Type: OFPT_FLOXMIO A o [4
£ 15) 221 35.880%01000 o Controller 06 agent3 Openélow 1Type: oPTrio0 | B >
& © 3,24 3.0220000 o comtroller Fagets_peler Biiye: LA00m | T g §

Fig. 7: OpenFlow Scenario2 : Wireshark screenshot

. Experimentation Results

Table I shows the time (in ms) consumed on each solution
(OpenFlow Messages Mapping and OpenFlow Extension)
and the GMPLS approach. In this table, Pathl and Path2
refer to the primary and the backup lightpaths. Pathl nodes
are OF Switchl — ROADM?2 — ROADM3 — OF_Switch2,
while Path2 nodes are OF_Switchl - ROADM2 — ROADM 1
— ROADM3 — OF_Switch2. LSP on the table refers to
Label Switch Path for GMPLS. LSP nodes are CSAl —
ROADM2 — ROADM3 — CSA2. The experiments results
show that OpenFlow Extension solution (216 ms) outperforms
OpenFlow Messages Mapping (227 ms) solution. This result
is expected because OpenFlow Extension solution uses one
message to encapsulate bidirectional lightpath information

e nl'r.r" i e
c b T -
293 206. 751530000 RSP
a 3 p e gy [296 206.764846000 S0P B get-request 1.3
$EE§ E 2 1297 206.807176000 Cateway2 WSR2(EN) $9P 343 get-response 1.1| message to
seng 298 206.807594000 VLSR2(EthD) Catewayl SKWP 85 get-request 1. 3]
H s |299 206.300157000 Gateway? WSR2(EThO) SHWP 343 get-response 1.3
E30% 3| immsamnon wsGhn crewyr see 86 gersuikmeouest §
303 206828414000 Gatewayl WSR2(ELHD) Sw® 1422 get-response 1.
328 206862966000 VLSR2(Gre2) WLSAL(Gre2) RSVP 250 PATH Message. =
330 207.601830000 VLSR1({Gre2) VLSR2(Gre2) RSV 186 RESV Message.
337 207.619344000 VLSR2(Eth0) Gateway? SOP 93 set-request 1.3, e g E g
IMI 207730158000 Gateway2 VLSR2(Eth0) SNWP 107 get-response 1.3) = z
|43 207.730196000 WLSR2(ELhO) Gateway o0 2ser-reqest 1.3)\8 B 8 8 3
from w_qu 344 207.907520000 Gateway? WLSR2(Eth0) SK® 105 get-response 1.j(® E g
1362 209.098920000 WLSR2(Gre3) CSA2(Gred) FSV5) 186 RESV Message. o i g £
VLSR2 forwards RESV Message to CSA2 | g
{2) VLSR 2

Y1 345879275000 um(f.nz) [s
4 245901433000 VUSRI(EthD) Gatemayl S 85 get- rﬂml 1 3
| 345 245.937331000 Ga VLSRL(Eth) S 343 get-response 1.
|346 245927765000 WSRI(Eth0) Gatewayl SoP 85 pet-request 1. }l
347 245929104000 Gatemayl VLSRI(EthD) SMP 343 get-response 1.
1348 245.930255000 WVLSRI(ECHO) Gatemayl P 86 getBulkRequest |
349 245952382000 Gatewsyl VLSRI(EthD) S@ 1422 pet-response 1
376 245.994387000 WLSRL(Grel) CSAL(Grel) RSVWP 234 PATH Message. 'S
379246.016820000 CSAL(Grel) WLSRI(Grel) RSV 186 ReSV message, sl
0 Iaas 246.051709000 VLSRI(Eth0) Gatesayl P 94 set-request 1.3 e g 5
187 246.145049000 Gatewayl VLSRI(EthD) SW& 109 get-response 1. z
|388 246145155000 VSRL(ELMO) Catesayl 9@ 93 set-request 1. xl 3
189 246197931000 Gatewayl WSRI(ELHO) Swow 107 get-response 1, H
Jo4 246, 617886000 W SRI(Gre2) VLSRI(Gre2) RSVR-7 186 RESV Message. 5 L

(b) VLSR 1

Fig. 9: GMPLS Scenario : Wireshark screenshot

and OpenFlow Messages Mapping needs two messages. For
the backup lightpath (Path2) which span on three nodes,
OpenFlow Extension solution takes 239 ms to create the
lightpath while OpenFlow Messages Mapping takes 269 ms.

OpenFlow M Mapping Solution
Controller Switch establishment Total (ms)
ROADM2 | ROADMI | ROADM3
Pathl 16 121 - 90 227
Path2 18 110 30 111 269
OpenFlow Extension Solution
Controller Switch blisk Total (ms)
ROADM2 | ROADMI | ROADM3
Pathl 16 100 - 100 216
[Path2 18 90 30 101 239
GMPLS Solution
RSVP-TE Switch establishment Total (ms)
ROADM2 | ROADMI | ROADM3
[LSP 130 110 | - | 100 340

TABLE I: The experiments timing

On the other hand, GMPLS takes more time (340 ms) to
create lightpath than OpenFlow solutions. This is because the
GMPLS-based control plane is complicated especially when it
is deployed as a unified control plane (UCP) for IP/DWDM
multi-layer networks. This is due to its distributed nature,
the number of protocols, and the interactions among different
layers. The flexibility and manageability of the GMPLS-based
control plane is low, because, for example, if we want to
create or update an end-to-end lightpath, the signalisation and
reservation messages must be updated and exchanged between
all the intermediate VLSRs. However, the OpenFlow-based
UCP provides the maximum flexibility and manageability for
carriers since all the functionalities are integrated into a single
OpenFlow controller. More importantly, the OpenFlow-based
control plane is a natural choice for a UCP in IP/DWDM multi-
layer networks due to its inherent feature, as the procedure
shown in Figure 5. Thus, the technical evolution from GMPLS
to OpenFlow is a process that the control plane evolves from
a fully distributed architecture to a fully centralized one.

V. CONCLUSION

In this paper, we experimentally present two solutions
(OpenFlow Messages Mapping and OpenFlow Extension)
for a dynamic wavelength path control in IP/DWDM multi-
layer optical networks. The overall feasibility of these solutions
is experimentally assessed, and their performance is quantita-
tively evaluated and compared with GMPLS approach, on an
actual transparent network testbed. The comparison reveals that
the OpenFlow-based control plane is simpler, more flexible and
manageable than the GMPLS-based control plane, especially
for an IP/DWDM multi-layer optical network. Finally, the ex-
perimental results show that the OpenFlow Extension solution
outperforms the OpenFlow Messages Mapping and GMPLS
solutions. It can significantly improve the performance of the
control plane and reduce the lightpath setup time.

REFERENCES

[1] “DRAGON: Dynamic Resource Allocation via GMPLS Optical Net-
works,” http://dragon.east.isi.edw/twiki/bin/view/DRAGON/WebHome.

[2] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong,
“Packet and circuit network convergence with openflow,” in Optical
Fiber Communication (OFC), collocated National Fiber Optic Engi-
neers Conference, 2010 Conference on (OFC/NFOEC), March 2010,
pp. 1-3.

[3] E. Mannie, “Generalized multi-protocol label switching (gmpls) archi-
tecture,” Interface, vol. 501, p. 19, 2004.

4]

[51

[6]

Y|
[8]
9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22)

[23]
[24]

[25]

[26]
[27)

L. Liu, T. Tsuritani, and I. Morita, “Experimental demonstration of
openflow/gmpls interworking control plane for ip/dwdm multi-layer
optical networks,” in Transparent Optical Networks (ICTON), 2012 14th
International Conference on. IEEE, 2012, pp. 1-4.

Y. Zhao, J. Zhang, H. Yang, and Y. Yu, “Which is more suitable for
the control over large scale optical networks, gmpls or openflow?”
in Optical Fiber Communication Conference and Exposition and the
National Fiber Optic Engineers Conference (OFC/NFOEC), 2013,
2013, pp. 1-3.

T. Lehman, J. Sobieski, and B. Jabbari, “Dragon: a framework for
service provisioning in heterogeneous grid networks,” Communications
Magazine, IEEE, vol. 44, no. 3, pp. 84-90, March 2006.

“SDN: Software Defined Networking,”
https://www.opennetworking.org/sdn-resources/sdn-definition.
“OpenFlow,” https://www.opennetworking.org/sdn-resources/onf-
specifications/openflow.

L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Openflow-based
wavelength path control in transparent optical networks: a proof-of-
concept demonstration,” in Optical Communication (ECOC), 2011 37th
European Conference and Exhibition on. IEEE, 2011, pp. 1-3.

L. Liy, D. Zhang, T. Tsuritani, R. Vilalta, R. Casellas, L. Hong,
I. Morita, H. Guo, J. Wu, R. Martinez et al., “Field trial of an
openflow-based unified control plane for multilayer multigranularity
optical switching networks,” Journal of Lightwave Technology, vol. 31,
no. 4, pp. 506-514, 2013.

L. Liu, D. Zhang, T. Tsuritani, R. Vilalta, R. Casellas, L. Hong,
I. Morita, H. Guo, J. Wu, R. Martinez, and R. Munoz. “First field
trial of an openflow-based unified control plane for multi-layer multi-
granularity optical networks,” in Optical Fiber Communication Con-
Jerence and Exposition (OF C/NFOEC), 2012 and the National Fiber
Optic Engineers Conference, March 2012, pp. 1-3.

A, Giorgetti, E. Cugini, F. Paolucci, and P. Castoldi, “Openflow and
pce architectures in wavelength switched optical networks,” in Op#i-
cal Network Design and Modeling (ONDM), 2012 16th International
Conference on. IEEE, 2012, pp. 1-6.
http://www.openflow.org/documents/openflow-wp-latest.pdf.

0. S. Consortium et al., “Openflow switch specification version 1.0. 0,”
2009.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

C. Headquarters, “Tl11 command reference for the cisco ons 15808
dwdm system,” 2003.

S. Das, “Extensions to the openflow protocol in support of circuit
switching,” Addendum 1o OpenFlow protocol specification (v1. 0)Circuit
Switch Addendum vO0, vol. 3, 2010.

V. Tintor and J. Radunovié, “Multihop routing and wavelength assign-
ment algorithm for optical wdm networks,” International Journal of
Networks and Communications, vol. 2, no. 1, pp. 1-10, 2012.

“Cisco ONS 15454 DWDM Reference Manual, Release 9.2,"
http://www.cisco.com/en/US/docs/optical/15000r9_2/dwdm/reference/guide/
454d92_refhtml/, 2012,

“RFC 3945 Generalized Multi-Protocol Label Switching (GMPLS)
Architecture,” http://www.ietf.org/rfc/rfc3945.txt.

“GNU Zebra,” http://www.gnu.org/software/zebra/.

“KOMRSVP Engine,” http://www.kom.tu-
darmstadt.de/en/downloads/software/komrsvp- engine/ .

“GNU General Public License,” http://www.gnu.org/copyleft/gpl.html.
“DRAGON Source Code,” http://Dragon.maxgigapop.net/public/Dragon-
swvlsr-daily.tar.gz.
http://dragon.east.isi.edw/twiki/pub/DRAGON/VLSR/dragon-vlsr-
implement-v2.1b.pdf.

“SNMP4J APL” http://www.snmp4j.org/.

“iReasoning TL1 APL” http://ireasoning.com/tl1api.shtml.

79

6.2 Submitted paper at OpticsInfoBase journal (2014)

JOURNAL OF HTgX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

OpenFlow and GMPLS Unified Control Planes:

Testbed Implementation and Comparative Study
Mahmoud Bahnasy, Karim Idoudi, and Halima Elbiaze

Abstract—Finding an effective and simple unified control

plane (UCP) for IP/Dense Wavelength Division Multiplex-
ing (DWDM) multi-layer optical networks is very important
for network providers. Generalized Multi-Protocol Label
Switching (GMPLS) has been in development for decades to
control optical transport networks. However, GMPLS-based
UCP for IP/DWDM multi-layer networks is extremely com-
plex to be deployed in a real operational products because
still there are a lot of non-capable GMPLS equipments. On
the other hand, OpenFlow (OF), one of the most widely used
SDN (Software Defined Networking) implementations, can
be used as a unified control plane for packet and circuit
switched networks [1].
In this paper, we propose and experimentally evaluate two
solutions using OpenFlow to control both packet and optical
networks (OpenFlow Messages Mapping and OpenFlow Ex-
tension). The overall feasibility of these solutions is assessed,
and their performance is evaluated and compared with
GMPLS approach, using a custom-build simulator. Simu-
lation results show that the OpenFlow Extension solution
outperforms the OpenFlow Messages Mapping and GMPLS
solutions.

Index Terms—Optical Network; Software Defined Network-
ing; OpenFlow; GMPLS; Testbed

I. INTRODUCTION

URRENTLY, IP and optical layers operate separately

without dynamic interaction which leads to high op-
erational cost, low network efficiency, and long latency for
end-to-end path provisioning. The main reason behind these
limitations is that IP-based and optical-based networks have
different architectures, switching technologies, and control
mechanisms. Therefore, a unified control plane (UCP) for
both IP and optical layers, as one of the key challenges
for the network carriers, is very important to address the
aforementioned issue.
GMPLS, a relatively mature control plane technique for
optical transport networks, has been proposed as a solution
for UCP [2]. The GMPLS protocol suite has been developed
decades ago to fully operate in a distributed fashion. It is
considered as the reference control plane for IP/Dense Wave-
length Division Multiplexing (DWDM) multi-layer optical
networks. But due to its distributed nature, the number
of protocols, and the interactions between different layers,
the GMPLS-based UCP is overly complex[3], [4]. Moreover,
the implantation of this technology is difficult because still
there are a lot of non-capable GMPLS equipments. DRAGON
[5], [6] (Dynamic Resource Allocation via GMPLS Optical
Networks), is a software that solves this problem using
SNMP (Simple Network Management Protocol) to control
these equipments and making them capable for working in
a GMPLS network. In this paper, we use this software and
adapt it to operate with our optical switch (Cisco ONS 15454

H. Elbiaze is with the Department of Electrical and Computer
Engineering, Université du Québec 4 Montréal, Québec, Canada (e-
mail: elbiaze.halima@ugam.ca).

1
)}
On the other hand, we propose SDN [7] as a promising
solution for a UCP. Generally, the SDN technology separates
the control and data planes so that we can introduce new
functionalities by writing software programs, running within
an external controller that manipulates the logical map of
the network. This provides the maximum flexibility for the
operator to control different types of network, and match
the carriers preferences. One of the widely used SDN imple-
mentations is OpenFlow [8]. OpenFlow protocol is mature
for L2/L3 packet switching networks, but still at a starting
stage for wavelength-switched optical networks. So, it needs
some extensions to be able to support the optical domain.
Some efforts have been done to present OpenFlow-based
UCP to control packet and circuit switches. Most notably,
PAC.C [1] has been experimented with alternative ap-
proaches. Other works [9], [10], [11] have presented similar
proposition to PAC.C by providing an experimental study or
a Proof-of-Concept to support the using of OpenFlow as a
unified control plane. However, [12] presents a comparative
study between OpenFlow and GMPLS solutions based only
on simulations. In this paper, we propose two approaches
based on OpenFlow protocol to control both optical and elec-
trical networks. Then we experimentally compare these two
solutions with a real implementation of GMPLS approach. To
the best of our knowledge, this is the first work considering
both OpenFlow and GMPLS UCP solutions, and compare
them via testbed experimentation. We conduct a real case
study of implementing end-to-end lightpath and a lightpath
restoration by establishing a dynamical configured backup
lightpath.
The first solution is named OpenFlow Messages Mapping.
It maps the OpenFlow standard messages into equivalent
optical channel requests, without modifying the OpenFlow
protocol. The second one is named OpenFlow Extension
where new messages have been added to the OpenFlow pro-
tocol in order to support the circuit switching. The proposed
solutions are implemented in a testbed to demonstrate their
effectiveness, as well as GMPLS-based approach. For both
solutions, we implement an OpenFlow Optical Agent to
translate the OpenFlow messages to be executed on the
optical switches. Moreover, an Open Flow-Path Computa-
tion Element (OF-PCE) module is added to the OpenFlow
controller as a network application in order to control the
optical domain.
The remaining of this paper is organized as follows. Sec-
tion II describes how can OpenFlow defines a unified con-
trol plane for both IP and optical networks and the iple-
mentation of the proposed solutions (OpenFlow Messages
Mapping and OpenFlow Extension). Section III presents
the GMPLS-based UCP approach and the deployment of
this protocol in our testbed. In particular, we explain the

IROADM : Reconfigurable Optical Add-Drop Multiplexer

JOURNAL OF KIEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

adaptation of DRAGON software for our ROADM (CISCO
ONS 15454). Section IV presents the different experimental
scenarios for each solution and the comparative results with
GMPLS. In Section V, we present our custom-built Java
event-driven simulator and the different algorithms and
topologies used in order to compare the performances of the
proposed solutions. Concluding remarks are eventually given
in Section VI.

II. OPENFLOW-BASED UNIFIED CONTROL PLANE

A. Overview

We briefly outline the main characteristics of OpenFlow.
A more detailed and exhaustive documentation is available
in the OpenFlow white paper [13] and in the Open Flow
specification [14). OpenFlow is an open standard that was
developed several years ago at Stanford University in order
to enable researchers to run experimental new protocols
and technologies on real networks, without disrupting the
existing traffic or network availability [15]. In a traditional
network, the data path and the control path occur on the
same device (switch, router). OpenFlow separates these two
functions. OpenFlow switches perform the data plane func-
tions and OpenFlow controller implements the control plane
intelligence and communicates with the OpenFlow switch
via the OpenFlow protocol.

An OpenFlow switch consists of one or more flow tables and
group tables, which perform packet lookups and forwarding,
and a secure channel that is connected to an external con-
troller. Each flow table in the switch contains a set of flow
entries. Each flow entry consists of match fields®, counters
and a set of instructions to apply to matching packets.
OpenFlow advocates the separation of data and control
planes for circuit and packet networks, as well as the
treatment of packets as part of flows, where a packet flow
is defined as any combination of L2/L3/14 headers. This,
together with LI/LO circuit flows, provides a simple flow
abstraction that fits well with both types of networks. Hence,
OpenFlow presents a common platform for the control of
the underlying switching hardware, that switches flows of
different granularities, while allowing all of the routing,
control and management to be defined in software outside
the datapath, in the OpenFlow controller as shown in figure
1.

OpeEow Unified Control Plane
Controller
£
Ope,r;FIow pr..b_tocol }“ sying Al 4
> 4 1 Y
3
Packet Circuit | Circuit Packet
Switch | switeh | st&uh Switch Deta Plane Switching
\ J
Fig. 1. Unified architecture of a converged Packet-Circuit
network

2Match Field: a field on which packet could be matched, including
packet headers, the ingress port, and the metadata value.

B. OpenFlow Messages Mapping and OpenFlow Extension

This paper proposes two solutions using OpenFlow proto-
col as a unified control plan for both optical and electrical
domains (OpenFlow Messages Mapping and OpenFlow
Extension). For both solutions, we implement an OpenFlow
Optical Agent to translate the OpenFlow messages to its
proper TL1 (Transaction Language 1) commands [16] to
be executed on the optical switch using telnet channel.
A Path Computation Element (PCE) module is added to
the OpenFlow controller as a network application (Figure
2). Upon request arrival, PCE calculates the corresponding
lightpath and sends the cross-connection messages to in-
volved ROADMs. In the next sections, we describe separately
the two solutions.

1) OpenFlow Messages Mapping: In this solution,
OpenFlow standard messages are used without any modi-
fication. OpenFlow messages are mapped into optical switch
commands. Hence, the OFPT_FLOW _MOD message of type
OFPFC_ADD is mapped into ENT-OCHNC TL1-command
to create a lightpath channel. The OFPT FLOW_MOD
message of type OFPFC_DELETE is mapped into DLT
OCHNC TL1-command to delete a lightpath channel. When
the agent receives OFPT_FEATURES REQUEST mes-
sage, it encapsulates the emulated port information into
OFPT_FEATURES_REPLY message. Finally the agent
reads periodically the ROADM events (using RTRV-ALM-
ALL TL1l-command) and if it finds any critical alerts, it
creates OFPT_PORT STATUS message and forwards it to
the controller.

2) OpenFlow Extension: In this solution, OpenFlow
messages are extended and new messages are added.
The new messages specification [17] allows the
controller to distinguish between the circuit-switching
and the packet-switching networks. For example,
OFPT_FEATURES_ REPLY message is extended by
adding extra information about the circuit-switching
ports. To send an optical cross-connect information, a new
match structure called ofp_connect is presented. Multiple
ports can be cross-connected by a single structure. This
structure is added to the newly defined message called
OFPT_CFLOW_MOD. Finally when the state of a port
changes, the OpenFlow Optical Agent sends a new defined
message called OFPT _CPORT _STATUS.

C. OpenFlow Optical Agent

As mentioned above, the main role of the OpenFlow Op-
tical Agent is to translate the optical channel requests and
OpenFlow messages into TL1 commands to be executed on
optical nodes (Figure 2).

This agent is associated to each optical node and
acts as a virtual switch. It consists of : (i) OpenFlow
Channel to communicate with the OpenFlow controller, (ii)
OpenFlow[TL1 Translator to convert OpenFlow messages
into TL1 commands, and (iii) Ports Emulation module to
emulate the optical node ports and send the port status
information to the controller. This information is used by
the controller to update ports database and to calculate the
lightpath 1.

IPorts discovery is out of scope in this paper

JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

OpenFlow-Path Computation Element

(OF-PCE)
(OpenFlow Controller)

1; OpenFlow connection

OpenFlow Optical Agent
@ OpenFlow Channel D
Ports

OpenFlow / TL1
Translator

Emulation

TL1 command channel

OpenFlow Standard

Fig. 2. OpenFlow Optical Agent intercations

Optical Switch

D. OpenFlow-Path Computation Element (OF-PCE)

The OF-PCE implements an algorithm to establishe light-
paths between source-destination pairs in order to create a
fully connected logical topology [18]. A Traffic Engineering
Database (TED) is created to save the network topology
information. As the OpenFlow controller has a centralized
management, the TED will be updated in case of light-
path creation/release and ports status change. Two modules
are proposed to implement the PCE; Executor and Optical
Switch Adapter (Figure 3).

Initial Ports
Configuration

Ports Updates
Fr i i o i i e T T A T = 2
8 2FE OpenFlow-Path Computation Element'
e ‘
| |
! TED |
| | Executor :
! N Path Computation [|
Ports Statu: | s 5 | Optical | !
: | Gl | (Djikastra Algorithm) - : S\l:'i(ch ; :
: Wavelength Assignment } iAdapler)
I Soorcc b » (Graph Coloring) . :
| |

Information

Output : LightPath
information

Fig. 3. OpenFlow-Path Computation Element workflow

1) Executor: This module ensures the avoidance of us-
ing one wavelength more than once in the same fiber.
Each wavelength carries traffic between a pair of source
and destination. Therefore, multiple wavelengths are re-
served in a single strand of fiber for establishing multi-
ple lightpath through one fiber. These connections between
source/destination nodes in DWDM networks are performed
in two steps:

» Routing: We use Dijkstra Algorithm in order to find the
shortest path between each node pair. In our case, we are
interested in a network topology composed of OpenFlow
switches and ROADMs.

« Wavelength Assignment: Once the lightpath routes

are determined, the wavelength assignment problem
can be represented as a graph coloring problem. Each
lightpath corresponds to a node in wavelength assign-
ment graph, and two nodes are set as neighbors only
if the respective lightpaths share at least one common
link.

2) Optical Switch Adapter: Each ROADM consists of a set
of cards and each card contains a set of configured ports
[19]. ROADM edges are connected to OpenFlow switches
via WSS (Wavelength Selective Switch) and DMX (Channel
Demultiplexer) cards, whereas ROADM core interfaces are
interconnected via LINE cards. Two fibers are used for
the bidirectional connection between two ROADMs. These
specifications lead us to add this module.

III. GMPLS-BASED UNIFIED CONTROL PLANE
A. Overview

It is easy to guess that GMPLS comes from MPLS. MPLS
was introduced in the nineties and its best characteristics
are that it could set up multiple tunnels and apply traffic
engineering properties to them and also with MPLS had
found a way to make two opposing Technologies coexist next
to each-other and establish end-to-end paths in both packet-
based and cell-based networks. At the beginning of the new
millennium appears GMPLS to put together all the current
networking technologies. The GMPLS is an extension of
MPLS that solves some problems and adds new features.
GMPLS has a set of five interfaces such as a Time-Division
Multiplex capable, Lambda Switch capable or Fiber Switched
capable interfaces as well as the Packet switch capable and
Layer-2 Switch capable interfaces inherited from MPLS.
Furthermore, of the diversity of networking technologies the
GMPLS supports, it eliminates the need of an operator, the
entire network can be automated and no human interference
will be required in the tunneling process. Using a distributed
protocol on large networks makes the path computation
process very complex and resources consuming. To address
this problem, Internet Engineering Task Force (IETF) has
introduced a centralized Path Computation Element (PCE)
entity in the GMPLS control plane.

B. GMPLS WITH PCE SIGNALING

Because of the complexity of the GMPLS protocol, a cen-
tralized approach is presented using a PCE. The PCE is a
centralized network element responsible for computing the
lightpath. In this topology PCE also assign wavelength on
each link for each request. The PCE is used in GMPLS-
controlled Wavelength Switched Optical Network (WSON)
[20], [21]. PCE uses a messaging protocol called PCEP to
exchange information between GMPLS controller of each
node and the PCE. PCE maintains the information of the
nodes, links status and wavelength availability in a database
called Traffic Engineering Database (TED) The links up-
date is carried out by the OSPF messaging (Link State
Advertisements - LSAs). This updates are sent when a new
wavelength status change occurs (reserve/release). A full
link status update occurs when new node joins or leaves
the network. Following in detail the message sequence on
GMPLS with PCE mechanism to create a lightpath:

o The source node sends a PCEP request message for
submitting a path computation request.

JOURNAL OF KIEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

« The PCE computes the path requested and assigns a
wavelength to this path. Then the PCE sends this infor-
mation to the source by using a PCEP PCRep message.
Otherwise, if the PCE fails in computing a path or in
assigning a wavelength on it, it replies with a PCRep
message with NO-PATH reply, and the lightpath request
is refused (forward-blocking).

« Upon the reception of PCRep message, the source node
sends the Resource Reservation Protocol-Traffic Engi-
neering (RSVP-TE) messages along the computed path
to reserve it. The Path reservation message includes the
Explicit Route and the Label set. The label set informa-
tion include the wavelength assigned by the PCE.

« When a node receives RSVP-TE path reservation mes-
sage, it performs the wavelength assignment if it is
available. Otherwise, another wavelength contained in
the Label Set is selected, according to a specific wave-
length assignment strategy (e.g., first fit).

« If another request requested the same resource (link
and wavelength) on a specific node and this request is
accomplished before this one, this will have this node to
refuse this request and reply with RSVP refuse message
(backward-blocking).

« When the wavelength assigned, the destination node
sends back a Resv message to effectively reserve the
selected wavelength on each link of the path.

« Once the Resv message reaches the source, the lightpath
is established and data could be carried through the
path.

Lightpath release is performed in a similar way as the setup
process (in a distributed manner through RSVP-TE signaling
[22]). As the previous description the setup procedure may be
blocked during path computation because of lack of resources
(forward-blocking), or may be blocked due to wavelength
contentions (backward-blocking). Contentions arrive when
two or more RSVP-TE messages attempt to reserve the same
resource (link and wavelength). This actually because the
link availability database TED may be outdated when the
path request reached PCE.

C. DRAGON

Actually, there are still a lot of non capable GMPLS

equipments. DRAGON software solves this problem in the
Ethernet networks using SNMP to adapt these equipments
to GMPLS control plane. In this paper, we use this software
and adapt it to operate with our optical switch (Cisco ONS
15454).
The DRAGON project studies and develops an open source
software to enable dynamic provisioning of network re-
sources on an interdomain basis across heterogeneous net-
work technologies. The project enables the communication
between networks of different types through the GMPLS
control suite. For its implementation, DRAGON deploys the
IP network infrastructure and creates a GMPLS capable
optical core network to allow dynamic provisioning of de-
terministic network paths in direct response to end-user
requests, spanning multiple administrative domains. Optical
transport and switching equipments acting as Label Switch-
ing Routers (LSRs) provide deterministic network resources
at the packet, wavelength, and fiber cross-connect levels.

1) DRAGON Control Plane Components: DRAGON soft-
ware is thought to work like control plane within a GMPLS

network. The control plane architecture consists of two basic
elements ? : The Client System Agent (CSA) and Virtual
Label Switch Router (VLSR).

a) CSA (Client System Agent): The CSA is a software
that runs on (or on behalf of) any system which terminates
the data plane (traffic engineering) link of the provisioned
service. This is the software that participates in the GMPLS
protocols to allow for on demand end-to-end provisioning
from client system to client system. A CSA can be a host,
a router, or any networked device.

b) VLSR (Virtual Label Switch Router): GMPLS has
not yet been implemented on large a scale. There are still
a lot of non GMPLS capable switches in use. To overcome
this limitation, the DRAGON protocol suite uses the VLSR.
A VLSR is used to control different kinds of switches like
for instance Ethernet, TDM or Optical switches. What a
VLSR does besides participating in the GMPLS protocols
is translating GMPLS commands into switch specific com-
mands like SNMP. By the use of these commands, a VLSR
can control the switch and for example set a switch port in
the specific VLAN. To communicate with other VLSRs and
CSAs, a VLSR uses the routing protocol OSPF-TE (Open
Shortest Path First-Traffic Engineering) and path signal-
ing protocol RSVP-TE (Resource Reservation Protocol-Traffic
Engineering). A VLSR uses OSPF-TE to get familiar with
the control plane network and to inform the VLSRs and
CSAs in the control plane about the TE network links. A
VLSR uses the OSPF-TE LSAs (Link State Advertisements)
to send information about the TE links. Information that
could be send over the control plane is information about
upcoming and down going LSPs (Label Switched Paths). The
OSPF-TE works with two daemons called OSPFD and zebra.
Zebra, or GNU Zebra [24], is routing software for managing
TCP/IP based routing protocols like RIP, BGP and OSPF. The
DRAGON software extends the OSPF routing daemon with
Traffic Engineering informations like bandwidth, WDM and
TDM used by GMPLS. A VLSR uses RSVP-TE for signaling
and setting up LSPs within the GMPLS network. The RSVP-
TE protocol originates from the Technische Universitt Darm-
stadts KOMRSVP [25]. The DRAGON software extends the
KOM-RSVP signaling protocol with support for RSVP-TE,
GMPLS, Q-Bridge, SNMP and VLAN control.

2) Adapting VLSR for Cisco ONS 15454: The DRAGON

software suite is being developed under the GNU General
public license [26]. The source code can be viewed, changed
for own use. The latest version of the software suite can
be downloaded at [27]. In order to install the DRAGON
software, the VLSR implementation guide has been followed
[28].
By default, the VLSR PC uses SNMP RFC 2674 to com-
municate with switch. To manage and control the Cisco
ONS 15454, we use TL1 commands. Thus, we implement an
SNMP/TL1 Gateway that acts as a proxy to adapt the VLSR
software with Cisco ONS 15454 specification (Figure 4). As
shown in figure 4, the SNMP/TL1 Gateway is composed of
two modules:

« SNMP Agent: Using snmp4j [29] open source Java
library, we have developed an SNMP agent. It provides
functions to receive and send SNMP PDUs (Protocol
Data Unit).

3The informations found in this section is based on the Sara
Project documentation produced by the RFC 3945 [23]

JOURNAL OF ETgX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

SNMP 2 T
m { SNMP Agent TL1 Agent -

% SNMP/TL1 Gateway Clsco ONS 15454

Fig. 4. SNMP/TL1 Gateway

« TL1 Agent: Using the iReasing [30] TL1 API, we have
developed a TL1 based management application that
communicates with the Cisco ONS 15454. Its main func-
tion is to map the SNMP messages into TL1 commands
to set-up configurations in Cisco ONS 15454.

IV. EXPERIMENTAL SETUP

In this section, we first present the OpenFlow experi-
ments followed by the GMPLS ones. Then we discuss the
experimental results in order to evaluate and compare the
OpenFlow solutions with GMPLS.

A. OpenFlow Experiments

Two experiments are conducted to demonstrate the effi-
cacy of our proposed solutions. The first experiment consists
of creating end-to-end lightpath while the second experiment
performs a backup restoration lightpath when failure occurs
on the primary lightpath.

1) Testbed Setup: The architecture of our testbed is de-
picted by figure 5. It consists of two clients A and B, which
are connected directly to OpenFlow switches 1 and 2, re-
spectively. Each switch is connected to an Electrical/Optical
converter. These converters are connected to DWDM optical
network composed of three Cisco ROADM optical switches
(Cisco ONS 15454). Each ROADM is controlled by an Open-
Flow Optical Agent. The OpenFlow optical agents and the
OpenFlow switches are connected to an OpenFlow controller
over an OpenFlow channel.

2) Scenario A: End-to-End Lightpath Setup: As shown
in Figure 5, a data flow sent from Client A to Client
B arrives at OpenFlow switchl. When the OpenFlow
switchl does not find any flow entry that matchs with
this flow, it encapsulates the first flow packet in an
OFPT_PACKET_IN message and forwards it to the Con-
troller. Then the controller uses the OF-PCE to calcu-
late the lightpath, and creates the lightpath by sending
OFPT_FLOW _MOD message (OpenFlow Messages Map-
ping solution) or OFPT_CFLOW_MOD message (Open-
Flow Extension solution) to the switches. The connection
is established between the two clients following steps Al,
A2, A3, A4, A5, A6, and A7 (Figure 5). The wireshark
screenshot presents the exchanged messages during this
scenario (Figure 6).

8) Scenario B: Shared Optical Restoration: This scenario
demonstrates how OpenFlow controller acts when a link fail-
ure occurs. The path deletion is performed by the controller
using OFPFC_DELETE message. Figure 5 shows the steps
that are executed in this scenario (B1, B2, B3, B4, and B5).
The wireshark screenshot presents the exchanged messages
during this scenario (Figure 7).

a7 Ry y

N Troe S

a o |
2313.250959000 OF Switchl

74 Type: OFPTHELLO

Cegaston et | L
OF _Controller OpenfTow

OFPT_PACKET_IN

| 2513.300689000 OF Controller OF Switchl OpeaFlow 82 Type: OFPT_FEATURES REQUEST |

| 2713.301454000 OF Switchl OF Controller Openflom 242 Type: OFPT FEATRES RepLy || Miessage from

| 5320.122936000 OF_Switch? O Controller OpenFlon 74 Type: OFPTHELLO || OF_Switchl to

| 3520.124558000 OF Controller OF Switch? Openflow 82 Type: OFPTFEATIRES REQUEST || OF_Comtroller
57 20.126062000 OF_Switch? OF Controller Openflos 242 Type: OFPTFEATWRESREPLY | (-SupAZ)

1153 41631382000 0 Controller GF Agentd

OperFlos 70 Type: OFPT_FEATURES REQUEST |
1160 42. 311926000 OF _Agent1 OF Controller Openflos 62 Type: OFPT_HELLO

1162 42.353116000 OF Agentl OF Controller Gpenflow 278 Type: OFPTFEATRESREPLY |
| 304 72.165885000 0OF_Controller OF _Agent2 OpenFlos 70 Type: OFPT_FEATURES REQUEST |
| 306 72450784000 OF _Agent2 OF Coatroller Openflow 62 Type: OFPT_HELLO |

308 72.483056000 OF Agent2 OF Controller Openflom 470 Type: OFPT_FEATURES REPLY
L e et s peloe IOt P EEATRES RSy A CFPT_FLOW_MOD
o "5/ |

1371 85157877000 0F Agent3 OF Controller Openflox 62 Type: OFPTHELLO Messages from
373 85.198821000 0F_Agent3 OF _Controller Openflom 470 Type: OFPT_FEA

OF _Controller to
1594 149.522753000C enta Broadcast OpenFlow 144 Type: OFPT_PACKET_IN OF_Agent 2,3 (Step
Operflox 134 Type: OFPT_FLOS MO bl A3)
\I

596 149.9246870000¢_Controller OF_Agent3

l59'119.9250220000‘_(0:1"::\1" OF Switchl OpenFlow 90 Type: OFPT_PACKET_OuT

| 600 140.9258670000F Controller OF Agent2 Openflow 134 Type: GFPTFLOLID [OFPT_PACKET_OUT |

602 150,0362260000F Controller OF Agent3 Openflow 134 Type: OFPT_FLOW MDD Mes iz

| 604 150,0484250000F_Controller OF Agent? Openflos 134 Type: OFPT_FLOS Y00 essage from

608 150.961401000C1 fenta Broadcast OperFlow 144 Type: GFPT_PAGET_IN OF_Controlier to
OF_Switchi {Step

| 612 151. 4655760000 Contro}ler OF Switch? 90 Type: OFPT_PACET_OUT

OFPT_PACKET_OUT Message from
= 5 OFPT_PACKET_IN Message from
|OF_Comrollerlo OF_Switch2 (Step A6) [OF Switch2 to OF .C ller (Step AS)

OF _Controlier/OF_Switches and OF_Agents Connections setup

Fig. 8. OpenFlow Scenario A: Wireshark screenshot

OFPT_PORT STATUS && OFPT_PORT_STATUS Messages from

OFPT_FLOW_MOD OF_Agent2,3 to OF_Controller (Step B1)

E 2 F [l imts nenitaci Srpeont [R ﬂ| a '2 %
En ol 1w s botnsen [l] gt e ;| ggd
E £ & |14121.380403000 0F Agent2 OF _Controller DpenFlow 118 Type: OFPT_PORT_STA 22
] 5 £ |15021.446946000 OF_Agent3 0F Contraller OpenFlow 118 Type: OFPT_PORT_STATUS | 3 E -]
22% | 15121, 446999000 OF_Controller OF Agent3 Openflow 294 Type: OFPT_FLOW_NOD in li
= w' S 155 21.564058000 OF_Controller OF_Agent2 OpenFlow 614 Type: OFPT_FLOW_MOD | E -
a °° § 157 21650229000 OF_Controller OF _Agent3 OpenFlow 374 Type: OFPT_FLOWMOD 5 S0
Q £ 25 |20734.746444000 0F Controller OF Agent2 OperFlow 134 Type: OFPT_FLO OO I| £Q9

& B | 20934.746969000 OF Controler OF Agentl OpenFlow 134 Type: CEPTFLOMMD | ;(z 2
23 '-:: 21 34876159000 OF_Controller OF Agentl OpenFlow 134 Type: OFPTFLOW OO | =% E
g E £ (! 215 34.909426000 0F_Controller OF Agent2 OpenFlow 294 Typa: OFPT_FLOW_MOD | X
i, § o |!22035.880113000 0F Controller OF Agent2 OpenFlow 134 Type: OFPT_FLOW.MOO s
[a k1 | 221 35.880301000 OF Controller OF Agent3 OpenFlow 134 Type: OFPT_FLOW_NOD | B ~:', =
& O 5\ 22435.982299000 0F Controller OF Agent3 Operflow 204 Type: OFTLFIONLND | ~ g §

Fig. 7. OpenFlow Scenario B: Wireshark screenshot

B. GMPLS Experiments

To experiment GMPLS, we construct a transparent op-
tical network testbed with two ROADMSs (Figure 8). In this
infrastructure, the control plane consists of two CSAs and
two VLSRs. The CSAs and the VLSRs are connected via the
switch hub. GRE (Generic Routing Encapsulation) tunnels
are created between the CSAs and the VLSRs and between
the VLSRs themselves to exchange RSVP-TE and OSPF-
TE messages. The SNMP/TL1 Gateway has a connection
with the switch hub to allow SNMP management by the
VLSRs. It translates SNMP messages to TL1 commandes in
order to configure the ROADMs. In the SNMP/TL1 Gateway
machine, we installed two virtual machines. Each one listens
to a VLSR on port 161 and controls one ROADM. Using
wireshark capture in VLSR2 (Figure 9 (a)) and VLSR1
(Figure 9 (b)), we explain the GMPLS signaling to create
an LSP from CSA2 to CSAL.

CSA2 sends RSVP_PATH message to VLSR2 with the
destination set to the target CSAl. Both VLSRs forward
the path message since they are not the destination. When
CSA1 receives the RSVP_PATH message, it replies to it
with RSVP_RESV message and sends it to VLSR1. VLSR1
forwards this message to VLSR2 because again it is not
the destination of the message. Finally, VLSR2 forwards the
RSVP_RESV message to CSA2. At this point, the LSP is ac-
tive and can be used. The SNMP/TL1 Gateway translates the
SNMP messages sent by the two VLSRs to TL1 commands
in order to configure the two ROADMs.

JOURNAL OF ETgX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

OpenFlow
Controller

10 GE WL1538.98

10 GE WL15S8.17

10 GE WL 1558.98

OpenFlow|
Switch 1

ROADM 1

Client A

A data flow sent from client A to client B arrives at OpenFlow switch 1.

OpenFlow switch 1 does not find a flow entry in its flow table to forward
this flow, so it encapsulates the first flow packet in a OFPT_PACKET_IN
message and forwards it to the controller.

The controller calculates the path from Client A to Client B, and sends
OFPT_PACKET_OUT message to the OpenFlow switch 1. The controller
sends also OFPT_FLOW_MOD messages (OpenFlow Messages Mappmg
solution) or OFPT_CFLOW_MOD ge (OpenFlow E: i)
to the Optical OpenFlow agents in order to create the lightpath.

When OpenFlow optical agents receive this message, they translate it into
the appropriate TL1 commands and send it to the ROADM switches.

After creating the lightpath, the data flow traverses nntil OpenFlow switch 2.
‘When the flow is received by OpenFlow switch 2, if the switch does not find a
flow entry in its flow table to forward this packet, it sends a
OFPT_PACKET_IN message to the controller requesting an action for this
flow.

The controller sends a OFPT_PACKET_OUT message to OpenFlow switch 2
to forward this packet to client B.

OpenFlow switch 2 forwards this packet to client B.

®
o
®
o
g

C. Experimentation Results

Table I shows the time (in ms) consumed on each solu-
tion (OpenFlow Messages Mapping and OpenFlow Ex-
tension) and the GMPLS approach. In this table, Pathl
and Path2 refer to the primary and the backup lightpaths.
Pathl nodes are OF_Switchl -+ ROADM2 — ROADM3
— OF _Switch2, while Path2 nodes are OF _Switchl —
ROADM2 — ROADM1 — ROADM3 — OF _Switch2. LSP on
the table refers to Label Switch Path for GMPLS. LSP nodes
are CSA1 - ROADM2 — ROADM3 — CSA2. The experi-
ments results show that OpenFlow Extension solution (216

10 GE WLI%58.17-

ROADM 2

Client B

When the interconnection between the ROADM 3 and ROADM 2 fails, both
OpenFlow optical agents corresponding to these Optical Switches read the
alarms of the optical switches . Then they send OFPT_PORT_STATUS
Messages to the controller about the port status update .

OpenFlow controller calcul. I ive ligh
lightpaths.

ths to the

failed

The controller sends OI-‘PT _FLOW_MOD (type=ADD FLOW) messages
(OpenFlow Me M lution) or OFPT_CFLOW_MOD message
(OpenFlow Extenslon solunon) to the optical switches to create new lightpath.
In this case, a new lightpath is established from ROADM 2 to ROADM 3 via
ROADM 1 on a different wavelength (1588.17am),

The controller sends another OFPT_] FLOW _MOD (Type=OFPFC DELETE)

ges (OpenFlow Me Mi lution) or OFPT_CFLOW_MOD
message (()penﬂow Ertm.rlon Soluhon) to the optical switches which are
d with ol th to delete the primary lightpath.

When the OpenFlow Optical agents receive these messages, they translate it
into the appropriate TL1 commands and send it to the optical switches.

Network configuration and exchanged messages during the OpenFlow experiments

ms) outperforms OpenFlow Messages Mapping (227 ms)
solution. This result is expected because OpenFlow Exten-
sion solution uses one message to encapsulate bidirectional
lightpath information and OpenFlow Messages Mapping
needs two messages. For the backup lightpath (Path2) which
span on three nodes, OpenFlow Extension solution takes
239 ms to create the lightpath while OpenFlow Messages
Mapping takes 269 ms. On the other hand, GMPLS takes
more time (340 ms) to create lightpath than OpenFlow
solutions. This is because the GMPLS-based control plane
is complicated especially when it is deployed as a unified

JOURNAL OF ETEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

VLSR1

£th0:10.10.23.6

% \ Gre 2:10.200.1
Wre2:1020.0.2 Gre3:10.30.02
TE3:10.1.10.2 TE:10.1.10.6
TE110.1.10.5 Cnl_visr2 TE:10.1.10.9
Eth0 o
I Switch hub 9
Gre2 Gre2
SNMP
10.10.23.101 /20
10.10.23.100 /20 10.10.23.102 /20
Gre1 NC1 Ne1| Gre3
= O
Virtual Machine 1 Virtual Machine 2
Inc2 Nez|
EthO 192.1.0.100 /24 192.1.0.102 /24 | EthO
Bh2 m.uumn;: etz %
n i n1
/
\
’
(. TP 5 L.1) 6th: 1010735
mh3d03081113 21101001115
;nl;n.\l.’l.l % @ Gre3: 103003
- TS
Electrical/Optical Electrical/Optical
converter BOADM 1 ROADM 2 convertar
Fig. 8. DRAGON test with two ROADMs
_____ [FirstpATH Messag OpenFlow Messages Mapping Solution
[y Controller Switch establishment Total (ms)
H 293 '1“0‘:) 751530000 ?S':I(GTE)) \’LSRZ:GFEJ) ROADM2 ROADMI ROA'[')M3
B LR S mesorro et wisatto Sw 343getrepmsed] et 16 L = 20 =
7 206. ¥2 2 -res g
; 5 g |26 206.80750000 MRAEDD) Gatenay2 SWP 85 get-request 1.3] Path2 18 110 30 111 269
299 206.809157000 Gatemay2 \LSR2(EtNO) WP 343 get-response 1.
z E; Z (3 |I300 206.809243000 WSRAET) Gatemay? P séqzmu]kzemlesl i OpenFl_ow Extension Solution
303 206. 828414000 Gatemay2 VLSR2(Eth0) SKW 1422 get-response 1. . ~
2020682966000 WSRGre) MSKIGred) RSV 250 PATH Message. z Controller owitch establishment Total (ms)
330207.601830000 VLSR1(Gre2) VLSR2(Gre2) RSVP 186 RESV Message. S
|37 20761934000 WSR(ECKD) Gatenay2 swe 93 ser-request 1.3) @ @ EE 2 ROADMZ | ROADMI | ROADM3
342 207.730158000 Gateway2 VLSR2(EthD) SNw 107 get-response 1.5 -
|43207.730196000 WLSR2(EThD) Gateway? SN 92 set-request 1.3) £ges Pathl 16 100 100 216
344 207.907520000 Gateway? VSR2(EEhD) SwP 105 get-response 1.1(4 F w § @ Path2 ig8 90 30 101 239
362 200, 000020000 _ wisha(Gred) _ Cmored) __ RS BRESy Message. YN B R R L SMPLS Sl
VISR2 forwards RESV Meszage to C5AZ H olution
() VLSR2 RSVP-TE Switch establishment Total (ms)
ROADMZ [ROADMI | ROADM3
mmo———— e [LSP 130 110 [- 100 340
T lnvpfowng |- RSVATE LA SNMP
.) TABLE I
341 245.879275000 VLSR2(Gre2) VLSR1(Gre2) V 250 PATH Message
% Qo [(34 A5 0000 VSUEDHO) Gatenayl Swe B perrener i THE EXPERIMENTS TIMING
c] E E | 345 245.937331000 Gatewayl VLSRI(EthD) SNWP 343 get-response 1)
& a IJ«Ib 245.937765000 VLSR1(Eth0) Gatewayl S 85 get-request 1.3]
H = V5472450939100 Gatemays VLSRI(ELhD) SWP 343 get-response 1.
z T S 1345 245.939255000 VLSRI(EthO) Gatemayl WP 86 getBuTkRequest |
349 245952382000 Gatewayl VLSRI(EEhO) ~ S\WP 1422 get-response 1
s 376 245.994387000 VLSRL(Grel) CSAL(Grel) RSVP 234 PATH Message. S z
379 246. 016820000 CSAL(Grel) VLSR1(Grel) RSWP 186 RESV Message. SI ﬂ :
(HEUCTUB0 USUEHY) Greayl swe Siserewest 1L 08 £ 9 because, for example, if we want to create or update an end-
387 246.145049000 Gatewayl VLSRI(Eth)) SWP 109 get-response 1. | = B 2R 2 i y - . 4
388 246.245055000 VLSRLGEEhO) Gatemayl swp Odsetremuest LU SR O3 to-end lightpath, the signalisation and reservation messages
from CSAL | (189 246197931000 Gatemayl WSRI(EThO) SWP 107 get-response 1. & B =%y Y
QVISRL | 0424661886000 Ws(GreD)_ Wsuoren) RS)py 186y message. 5, - 2 & § 2 must be updated and exchanged between all the interme-

(b) VLSR 1

Fig. 9. GMPLS Scenario : Wireshark screenshot

control plane (UCP) for IP/DWDM multi-layer networks.
This is due to its distributed nature, the number of protocols,
and the interactions among different layers. The flexibility
and manageability of the GMPLS-based control plane is low,

diate VLSRs. However, the OpenFlow-based UCP provides
the maximum flexibility and manageability for carriers since
all the functionalities are integrated into a single OpenFlow
controller. More importantly, the OpenFlow-based control
plane is a natural choice for a UCP in IP/DWDM multi-layer
networks due to its inherent feature, as the procedure shown
in Figure 5. Thus, the technical evolution from GMPLS to
OpenFlow is a process that the control plane evolves from a

fully distributed architecture to a fully centralized one.

JOURNAL OF WIEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

messaging protocol
OFP [OSPF-TE | RSVP-TE
GMPLS with PCE NO YES YES
OpenFlow Message-Mapping | YES NO NO
OpenFlow Extension YES NO NO
TABLE IT

SUMMARY OF SIMULATED SOLUTIONS

V. SIMULATION STUDY

In this chapter we present a simulation comparative study
of the OpenFlow solutions (OpenFlow Messages-Mapping,
OpenFlow Extension) and the GMPLS approach. To conduct
the comparison, a custom-built Java event-driven simulator
is written based on the mechanisms mentioned in III-B.
The measurements taken from the previously conducted
experiments are used in writing the simulator.

Table II shows the signaling protocol used by each solution.

The simulation is carried out on two real optical network
topologies. These network topologies are the optical network
topology of America National Science Foundation (NSF) and
the optical network topology of the European union Ultra-
High Capacity Optical Transmission Network (European
Re-search Project Cost239). The next section presents the
simulation environment, parameters and algorithms. Then,
the results for each topology is presented in sections V-B and
V-C.

A. The Custom-built Java Event-Driven Simulator

The simulator is a custom-built Java event-driven appli-
cation. It is written based on the mechanisms mentioned in
chapter III-B. The internal optical switch lightpath estab-
lishment time is emulated to 60 ms for all solutions. For both
topologies, the links between nodes are two directions. Each
link supports 32 wavelengths. The controller and the PCE
perform first-fit for assigning wavelengths. Wavelength can
not be changed across the path since nodes do not support
wavelength conversion. Lightpath requests are generated
according to a Poisson process and uniformly distributed
among all node pairs. The holding time is fixed to 180
seconds, the average inter-arrival time is varied from 0.3 s
to 18 s. This varies the Erlang from 600 to 10.

The first algorithm explains how the written application
simulates the OpenFlow solutions. The application uses the
network topology nodes (G:Graph), the connections between
them (V:Vertex), and the simulation end-time as inputs.
Then, it starts by generating one event of type create-
channel. After that, it reads events one at a time and handles
it. Depending on the event type, each event type is treated
differently as explained on the algorithm. For the create-
channel event, it generates a new create-channel event based
on the Poisson inter-arrival time, updates the controller’s
time, calculates the lightpath, finds a free channel (wave-
length). Finally, it generates the create cross-connect events
for each switch through the calculated path (Events to be
executed by the switches). Unless there is no lightpath
available, it declares this request as a blocked request. For
the events of type Delete channel, it updates the controller’s
time. Then, it generates the delete cross-connect events for
each switch through the lightpath (Events to be executed by
the switches). For the event of type create cross-connect, it

generates an event of type delete channel. For both events
of type create/delete cross-connect, it updates nodes time
(Emulating the cross-connect creation time 60 ms). Then, it
updates vertex information.

Data: G: Graph, V: vertex, EndTime: Simulation End Time
Result: Establishment time, Blocking probability and
control traffic
Initialization: Generate one event (using a uniformly
distributed source and destination and Poisson inter-arrival
time);
while current time < EndTime do
read the nearest event;
switch Event Type do
case Create Channel
Generate new Create Channel event based on
Poisson inter-arrival time;
Update the controller’s time;
Update the controller’s vertex information;
Calculate path using Dijkstra Algorithm;
Find a free channel (wavelength) cross the
calculated path;
if Path calculation return false OR no channel
available then
Declare Request Blocked;
Continue with the next event;
else
Generate create Cross-Connect events for
each node through the calculated path (with
the information of event time, path and
wavelength);
end
end
case Delete Channel
Update the controller’s time;
Update the controller’s vertex information;
Generate delete Cross-Connect events for each
node through the calculated path (with the
information of event time, path and wavelength);
end
case Create Cross-Connect
Update nodes’ time (emulating the cross-connect
creation time 60 ms);
Update vertex information;
Generate delete event for the created path (with
event time = current time + hold time);
end
case Delete Cross-Connect
Update nodes’ time (emulating the cross-connect
creation time 60 ms);
Update vertex information;
end
endsw
end
Algorithm 1: OpenFlow Event-Driven Simulator algorithms

GMPLS simulation is shown in algorithm 2. The algorithm
explains how the written application simulates the GMPLS
with PCE approach. In this algorithm, the inputs and the ini-
tialization are the same as algorithm 1. By traversing all the
events depending on their types, each event type is treated
differently. For the create-channel events, it generates a new
create-channel event based on the Poisson inter-arrival time,
updates the controller time, calculates the lightpath, finds
a free channel (wavelength), finally it generates the create
cross-connect event for the first switch in the calculated
path (Event to be executed by the switch). Unless there is
no lightpath available, it declares this request as a blocked

JOURNAL OF ITgX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

request. For the events of types Delete channel, it updates
the controller’s time. Then, it generates the delete cross-
connect event for the first switch in the lightpath (Event
to be executed by the switch). For both events of type cre-
ate/delete cross-connect, it updates node time (Emulating the
cross-connect creation time 60 ms). Then, it updates vertex
information. For the event of type create cross-connect, it
verifies if the requested channel is available. If it is not avail-
able, it declares this request blocked (Backward Blocking)
and it generates delete channel request. If it is available
and this is not the last switch in the lightpath, it generates
an event of type create cross-connect for the next switch in
the lightpath, otherwise it generates an event of type delete
channel. For both events of type LSA update (create/delete),
it updates TED (controller Vertex information).

B. National Science Foundation (NSF) topology

The first topology we ran our simulation on is the National
Science Foundation (NSF) topology [31].
NSF topology consists of 14 nodes and 21 links, each link
has 32 channels (wavelength) (Figure 10). The distances
between each pairs are shown in the figure. Dijkstra
algorithm uses these distances to calculate the shortest
path.

Fig. 10. NSF topology (14 nodes and 21 links)

The Simulation is run for a period of 3000 sec to ensure
the stability of the network. Lightpath establishment time,
control traffic gotten into and out of the controller and
PCE, and the blocking probability are calculated from
the simulation. The results are shown in the graphs : (i)
Lightpath establishment time expressed in millisecond vs.
network load (Erlang) (Figure 11); (ii) Number of control
messages (Controller load) vs. network load (Erlang) (Figure
13); (iii) Lightpath blocking probability vs. network load
(Erlang) (Figure 14).

Figure 11 depicts the establishment time for bidirectional
lightpath. It shows that OpenFlow Extension solution ex-
periences the lowest setup time as shown with blue line.
Because OpenFlow Message-Mapping uses two FLOWMOD
messages to establish the lightpath, it is expected that this
solution experiences higher time than OpenFlow Extension
solution as shown in the figure with the red line. OpenFlow
solutions execute the lightpath on parallel, hence the es-
tablishment time of lightpath is around a fixed value. On
the other hand, GMPLS approach executes the light path
sequentially. As a result, it has the highest setup time as
shown in the figure with the green line in the range 600-
900 ms for bidirectional lightpath.

Data: G: Graph, V: vertex, EndTime: Simulation End Time
Result: Establishment time, Blocking probability and
control traffic

Initialization: Generate one event (using a uniformly

distributed source and destination and Poisson inter-arrival

time);

while current time < EndTime do

read the nearest event;

if Event Type == Create Channel then Generate one

event based on Poisson inter-arrival time ;

switch Event Type do

case Create Channel

Update the controller’s time;

Calculate path using Dijkstra Algorithm;

Find a free channel (wavelength) cross the

calculated path;

if Path calculation return false OR no channel

available then
Declare Request Blocked; Continue with the
next event;

else
Generate create Cross-Connect event for the
first node in the calculated path (with the
information of event time, path and
wavelength);

end

end

case Delete Channel

Update the controller’s time;

Generate delete Cross-Connect event for first

node in the calculated path (with the

information of event time, path and wavelength);

end

case Create Cross-Connect

Update nodes time (emulating the cross-connect

creation time 60 ms);

Update switch’s vertex occupation;

if current switch is the last one in the path then

Generate delete event for the created path

(with event time = current time + hold time);

else

if channel (wavelength) is available then
Generate create Cross-Connect event for
the next node in the calculated path;

else

Declare this request blocked;

dGenerai;e delete channel event

en
end
Generate LAS update (Create) event;
end
case Delete Cross-Connect
Update nodes time (emulating the cross-connect
creation time 60 ms);
Update switch’s vertex occupation;
if current switch is not the last on the path then
Generate delete Cross-Connect event for the
next node in the calculated path ;
Generate LAS update (Delete) event;
end
case LSA update (Create/Delete)
| Update TED (controller Vertex information);
end
endsw
end
Algorithm 2: GMPLS/PCE Event-Driven Simulator algo-

rithms

JOURNAL OF HTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

s T T =T

S

.t
o
hétal
Bion 3 NP
. SO Sa— 4
R e e

B &8 &8 8
(I
\

Arerogn Ustlistment Tioe fra)
R 3 -3
— i
-
o
- -
RO B
¢ i

Fig. 11. Lightpath establishment time [ms] vs network load (NSF
Topology)

»

~ OpenfFlow messages mapping
+ OpenFlow Extention

w
@

osi
=4
o

od Reque
w
-

w
[

Numer Of Hop Per Exe
©
@

o B R B G

Fig. 12. Number Of Hop Per Request vs network load (NSF
Topology)

GMPLS has the tendency to decrease the establishment
time as the network load increases. Because at high network
load, the average path length is shorter as shown in figure
12 (it decreases from 3.6 to 2.6 nodes per request). Even
though the number of hop decreases too on OpenFlow-based
solutions, this do not affect the lightpath setup since the
request is executed on parallel.

Figure 13 depicts the control traffic for each solution. It
shows that both OpenFlow solutions experience low control
traffic compared to GMPLS solution as shown by blue and
green lines. This difference is due to the PCEP messaging
which has to be sent for each node and also because of the
LSA update messages which each node has to send back to
the controller in case link state changes.

Figure 14 depicts the blocking probability. This figure
shows that both OpenFlow based solutions have the same
blocking probability values which are expected since both
techniques use the same Dijkstra algorithm and the same
resource Database. On the other hand, GMPLS-based
approach experiences the backward-blocking which makes
this technique have higher blocking ratio with low network
load as shown in the figure with green line. As we mentioned
before, the backward-blocking occurs because of wavelength
contentions. Contentions arrive when two or more RSVP-TE
messages attempt to reserve the same resource (link and
wavelength). Indeed, the link state database TED may be
outdated when the path request reaches PCE causing this
contention.

10

Gl Pl Taffe (PckaSc)
— T

Fig. 18. Number of control messages vs network load (NSF
Topology)

)
L=

Fig. 14. Lightpath blocking probability vs network load (NSF
Topology)

C. European Optical Network Topology (COST239)

Ultra-High Capacity Optical Transmission Network (Eu-
ropean Re-search Project Cost239) [32] is the second topology
we ran our simulation on. This topology is depicted on Figure
15.

COST239 topology consists of 11 nodes and 26 links, each
link has 32 channels (wavelength). The distances between
each pairs are shown in the figure. Dijkstra algorithm uses
these distances to calculate the shortest path.

Fig. 15. COST239 Topology (11 nodes and 26 links)

The same simulation steps are followed as the NSF
topology. The Simulation is run for a period of 3000 sec to
ensure the stability of the network. Lightpath establishment
time, control traffic gotten into and out of the controller
and PCE, and the blocking probability are calculated from
the simulation. The results are shown in the graphs : (i)
Lightpath establishment time expressed in millisecond vs.
network load (Erlang) (Figure 16); (ii) Number of control

JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

messages (Controller load) vs. network load (Erlang) (Figure
18); (iii) Lightpath blocking probability vs. network load
(Erlang) (Figure 19).

~—+— OpenFlow messages mapping H 2
A4S0 1.4+ OpenFlow Extention el Sl S S T
= @+ GMPLS/PCE : :

: o L e i o B L P ©18160.14-810:0- 0-6-0-0s00<)

R o T L T ot T e e i v s

mu'::ijn:z.::z;:a.:::m«.n;::‘ne;:m
Netwerk Load (Ertang)

Fig. 16. Lightpath establishment time [ms] vs network load

(COST239 Topology)

~+—— OpenFlow messages mapping
: i <+ OpenFlow Extention
X : — &~ GMPLS/PCE

»
©

»

N
N @
S

BB 2 b
7 ;

Numer Of Nodes Per Executed Request
9
@

2|

i
180

Fig. 17. Number Of Hop Per Request vs network load (COST239
Topology)

80— T T T T T T
—+— OpenFlow messages mapping | H
451 .4+ OpenFlow Extention Spasassatienasesegiies % G/O,o—‘
LB - ® - GMPLS/PCE para
€l =
=
L
gt
=
i=r
E]l LTt RIS SO L, 2o OO R SRR SO (Ot s
10 o H
B] o oy ',f-r
Pt g : : i : :
i i i L 1 i i

e :

= 1 1 L

S 100 150 200 250 300 350 400 450 500 550 60
Network Load (Erisng)

Fig. 18. Number of control messages vs network load (COST239
Topology)

The results shown in figure 16 support the same result
of the NSF topology. It depicts that OpenFlow Extension
solution experiences the lowest setup time as shown with
blue line. It depicts also that GMPLS has the highest setup
time as shown in the same figure with green line.

As the previous topology, the figure shows that GMPLS
lightpath establishment time decreases as the network load
increases, because at high network load the average path

11

Blocking Probablity

==+ OpenFlow messages mapping

++4-++*OpenFlow Extention

: s ; i |—e-GMPLSPCE

joogh L i i

50 100 150 200 250 300 350 400 450 500 S50 600
Network Loed (Erang)

Fig. 19. Lightpath blocking probability vs network load (COST239
Topology)

length is shorter as shown in figure 17 (it decreases from
2.77 to 2.34 hop per request).

Figure 18 depicts the control messages for each solution.
It confirms the result we got on the NSF topology. It shows
that OpenFlow solutions experience the lowest control
traffic. It depicts also that GMPLS has the highest control
traffic as shown in the same figure with the green line.

Figure 19 depicts the blocking probability and it alse
confirms the result we got on the NSF topology. This figure
shows that both OpenFlow based solutions have almost
the same blocking probability values. On the other hand,
GMPLS protocol experiences the backward-blocking which
makes this technique have higher blocking ratio with low
network load as shown in the figure with green line.

VI. CONCLUSION

In this paper, we present a comparative study between two
OpenFlow solutions (OpenFlow Messages Mapping, Open-
Flow extension) and GMPLS approach. The overall feasi-
bility of these solutions is experimentally assessed, and
their performance is evaluated and compared with GMPLS
approach, using a custom-build simulator. The simulation
results show that the OpenFlow Extension solution outper-
forms the OpenFlow Messages Mapping and GMPLS solu-
tions since it experience lower end-to-end lightpath setup
time and lower blocking ratio and control traffic compared
by GMPLS.

REFERENCES

[1] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew,
and L. Ong, “Packet and circuit network convergence with
openflow,” in Optical Fiber Communication (OFC), collocated
National Fiber Optic Engineers Conference, 2010 Conference on
(OFC/NFOEC), March 2010, pp. 1-3.

[2] E. Mannie, “Generalized multi-protocol label switching (gmpls)
architecture,” Interface, vol. 501, p. 19, 2004.

[3] L. Liu, T. Tsuritani, and I. Morita, “Experimental demonstra-
tion of openflow/gmpls interworking control plane for ip/dwdm
multi-layer optical networks,” in Transparent Optical Networks
(ICTON), 2012 14th International Conference on. 1EEE, 2012,
pp. 14.

[4] Y. Zhao, J. Zhang, H. Yang, and Y. Yu, “Which is more suitable
for the control over large scale optical networks, gmpls or
openflow?” in Optical Fiber Communication Conference and
Exposition and the National Fiber Optic Engineers Conference
(OFC/NFOEC), 2013, 2013, pp. 1-3.

JOURNAL OF MIEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

[5] “DRAGON: Dynamic Resource Alloca-
tion via GMPLS Optical Networks,”
http://dragon.east.isi.edwtwiki/bin/view/ DRAGON/WebHome,

[6] T. Lehman, J. Sobieski, and B. Jabbari, “Dragon: a framework
for service provisioning in heterogeneous grid networks,” Com-
munications Magazine, IEEE, vol. 44, no. 3, pp. 84-90, March
2006.

[7] “ONF: Open Networking
https//www.opennetworking.org/.

[8] “OpenFlow,” https://www.opennetworking.org/sdn-
resources/onf-specifications/openflow.

[9] L. Liu, T. Tsuritani, I. Morita, H. Guo, and J. Wu, “Openflow-
based wavelength path control in transparent optical networks:
a proof-of-concept demonstration,” in Optical Communication
(ECOC), 2011 37th European Conference and Exhibition on.
IEEE, 2011, pp. 1-3.

[10] L. Liu, D. Zhang, T. Tsuritani, R. Vilalta, R. Casellas, L. Hong,
I. Morita, H. Guo, J. Wu, R. Martinez ef al., “Field trial of
an openflow-based unified control plane for multilayer multi-
granularity optical switching networks,” Journal of Lightwave
Technology, vol. 31, no. 4, pp. 506-514, 2013.

[11] L. Liu, D. Zhang, T. Tsuritani, R. Vilalta, R. Casellas, L. Hong,
L. Morita, H. Guo, J. Wu, R. Martinez, and R. Munoz, “First field
trial of an openflow-based unified control plane for multi-layer
multi-granularity optical networks,” in Optical Fiber Commu-
nication Conference and Exposition (OFC/NFOEC), 2012 and
the National Fiber Optic Engineers Conference, March 2012, pp.
1-3.

[12] A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi, “Open-
flow and pce architectures in wavelength switched optical net-
works,” in Optical Network Design and Modeling (ONDM), 2012
16th International Conference on. IEEE, 2012, pp. 1-6.

[13] http://www.openflow.org/documents/openflow-wp-latest.pdf.

[14] O. S. Consortium et al., “Openflow switch specification version
1.0. 0,” 2009.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 69-74,
2008.

[16] C. Headquarters, “Tll command reference for the cisco ons
15808 dwdm system,” 2003.

[17] 8. Das, “Extensions to the openflow protocol in support of circuit
switching,” Addendum to OpenFlow protocol specification (v1.
0)Circuit Switch Addendum v0, vol. 3, 2010,

[18] V. Tintor and J. Radunovié, “Multihop routing and wavelength
assignment algorithm for optical wdm networks,” International
Journal of Networks and Communications, vol. 2, no. 1, pp. 1-
10, 2012.

[19] “Cisco ONS 15454 DWDM Reference Manual, Release 9.2,”
http//www.cisco.com/en/US/docs/optical/15000r9 _2/dwdm/ ref-
erence/guide/454d92 _refhtml/, 2012.

[20] D. Li, G. Bernstein, G. Martinelli, and Y. Lee, “A framework
for the control of wavelength switched optical networks (wsons)
with impairments,” 2012.

[21] V. Lépez, B. Huiszoon, J. Fernandez-Palacios, O. Gonzalez de
Dios, and J. Aracil, “Path computation element in telecom
networks: Recent developments and standardization activities,”
in Optical Network Design and Modeling (ONDM), 2010 14th
Conference on. IEEE, 2010, pp. 1-6.

[22] A. Giorgetti, N. Sambo, I. Cerutti, N. Andriolli, and P. Cas-
toldi, “Label preference schemes for lightpath provisioning and
restoration in distributed gmpls networks,” Journal of Light-
wave Technology, vol. 27, no. 6, pp. 688-697, 2009.

[23] “RFC 3945 Generalized Multi-Protocol Label Switching (GM-
PLS) Architecture,” http://www.ietf.org/rfc/rfc3945.txt.

[24] “GNU Zebra,” http:/www.gnu.org/software/zebra/.

[25] “KOMRSVP Engine,” httpJ//www.kom.tu-
darmstadt.de/en/downloads/software/komrsvp- engine/ .

[26] “GNU General Public License,”
http://www.gnu.org/copyleft/gpl.html.

[27] “DRAGON Source Code,” http:/Dragon.mazgigapop.net/public/
Dragon-swvlsr-daily.tar.gz.

[28] http://dragon.east.isi.edu/twiki/pub/DRAGON/VLSR/dragon-
visr-implement-v2.1b.pdf.

[29] “SNMP4J API,” http:/www.snmp4j.org/.

[30] “Reasoning TL1 API,” http/ireasoning.com/t11api.shtml.

Foundation,”

12

[31] N. S. Foundation. (2014) National science foundation. [Online].
Available: http:/www.nsf.gov/

[32] M. O’Mahony, “Results from the cost 239 project. ultra-high
capacity optical transmission networks,” in Optical Communi-
cation, 1996. ECOC '96. 22nd European Conference on, vol. 2,
Sept 1996, pp. 11-18 vol.2.

BIBLIOGRAPHY

Banerjee, A., Drake, J., Lang, J., Turner, B., Awduche, D., Berger, L., Kompella, K., and
Rekhter, Y. (2001). Generalized multiprotocol label switching: an overview of signaling

enhancements and recovery techniques. Communications Magazine, IEEE, 39(7):144-151.
CISCO (2012a). Cisco ons 15454 dwdm reference manual, release 9.2.
CISCO (2012b). TI1 cisco : T11 command guide.
Computerworld (2000). Packet-switched vs. circuit-switched.
Consortium, O. S. et al. (2009). Openflow switch specification version 1.0. 0.

Das, S. (2010). Extensions to the openflow protocol in support of circuit switching. Addendum
to OpenFlow protocol specification (v1.0) Circuit Switch Addendum v0, 3.

Das, S., Parulkar, G., and McKeown, N. (2012). Why openflow/sdn can succeed where
gmpls failed. In European Conference and Ezhibition on Optical Communication, pages

Tu-1. Optical Society of America.

Das, S., Parulkar, G., McKeown, N., Singh, P., Getachew, D., and Ong, L. (2010). Packet and
circuit network convergence with openflow. In Optical Fiber Communication (OFC), col-
located National Fiber Optic Engineers Conference, 2010 Conference on (OFC/NFOEC),
pages 1-3.

Farrel, A. and Bryskin, I. (2005). GMPLS: architecture and applications. Academic Press.
Foundation, N. S. (2014). National science foundation.

fp7 federica.eu (2014). Federica: Federated e-infrastructure dedicated to european researchers

innovating in computing network architectures.

geni.net (2014). Geni: Global environment for network innovations.

93

Giorgetti, A., Cugini, F., Paolucci, F., and Castoldi, P. (2012). Openflow and pce architec-
tures in wavelength switched optical networks. In Optical Network Design and Modeling
(ONDM), 2012 16th International Conference on, pages 1-6. IEEE.

Giorgetti, A., Sambo, N., Cerutti, 1., Andriolli, N., and Castoldi, P. (2009). Label preference
schemes for lightpath provisioning and restoration in distributed gmpls networks. Journal

of Lightwave Technology, 27(6):683—697.
Headquarters, C. (2003). Tl command reference for the cisco ons 15808 dwdm system.

ITU (2000). ITU-T Recommendation G.805: Generic functional architecture of transport

networks. Technical report, International Telecommunication Union.

Lehman, T., Sobieski, J., and Jabbari, B. (2006a). Dragon: a framework for service provi-

sioning in heterogeneous grid networks. Communications Magazine, IEEE, 44(3):84-90.

Lehman, T., Sobieski, J., and Jabbari, B. (2006b). Dragon: a framework for service provi-

sioning in heterogeneous grid networks. Communications Magazine, IEEE, 44(3):84-90.

Li, D., Bernstein, G., Martinelli, G., and Lee, Y. (2012). A framework for the control of

wavelength switched optical networks (wsons) with impairments.
lightreading.com (2011). Packet-optical stays out of control.

Liu, L., Tsuritani, T., Morita, I., Guo, H., and Wu, J. (2011). Openflow-based wavelength
path control in transparent optical networks: a proof-of-concept demonstration. In Optical
Commaunication (ECOC), 2011 37th European Conference and Ezhibition on, pages 1-3.
IEEE.

Liu, L., Zhang, D., Tsuritani, T., Vilalta, R., Casellas, R., Hong, L., Morita, I., Guo, H., Wu,
J., Martinez, R., et al. (2013). Field trial of an openflow-based unified control plane for
multilayer multigranularity optical switching networks. Journal of Lightwave Technology,

31(4):506-514.

Liu, L., Zhang, D., Tsuritani, T., Vilalta, R., Casellas, R., Hong, L., Morita, I., Guo, H., Wu,
J., Martinez, R., and Munoz, R. (2012). First field trial of an openflow-based unified control

plane for multi-layer multi-granularity optical networks. In Optical Fiber Communication

94

Conference and Ezposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers

Conference, pages 1-3.

Lopez, V., Huiszoon, B., Fernandez-Palacios, J., Gonzalez de Dios, O., and Aracil, J. (2010).
Path computation element in telecom networks: Recent developments and standardization
activities. In Optical Network Design and Modeling (ONDM), 2010 14th Conference on,
pages 1-6. IEEE.

Mannie, E. (2004). Generalized multi-protocol label switching (gmpls) architecture. Interface,
501:19.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., and Turner, J. (2008a). Openflow: enabling innovation in campus networks.

ACM SIGCOMM Computer Communication Review, 38(2):69-74.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., and Turner, J. (2008b). Openflow: enabling innovation in campus networks.

ACM SIGCOMM Computer Communication Review, 38(2):69-74.

Naous, J., Erickson, D., Covington, G. A., Appenzeller, G., and McKeown, N. (2008). Imple-
menting an openflow switch on the netfpga platform. In Proceedings of the 4th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems, pages 1-9.

ACM.

O’Mahony, M. (1996). Results from the cost 239 project. ultra-high capacity optical trans-
mission networks. In Optical Communication, 1996. ECOC ’96. 22nd European Conference

on, volume 2, pages 11-18 vol.2.
open networking foundation (2013). Software-defined networking (sdn) definition.
OpenFlow (2011). Openflow.

Tintor, V. and Radunovi¢, J. (2012). Multihop routing and wavelength assignment algorithm
for optical wdm networks. International Journal of Networks and Communications, 2(1):1-

10.

Wikimedia Foundation, I. (2003). Autonomous system (internet).

95

wikipedia (2014). Tier 1 and tier 2 isps.

