
UNIVERSITÉ DU QUÉBEC À 1\IO:\TTRÉAL

OPENFLOW PROTOCOL EXTENSION FOR OPTICAL NETWOR I<:S

THE IS

PRESENTED

AS A PARTIAL REQUIREJ\IENT

FOR T HE 1\ IASTER l i'J' ELECTRICAL ENGINEERING

BY

1\ IAH l OUD 1\IOHA lED BAHNASY

NOVEJ\ŒER 2014

UNIVERSITÉ DU QUÉBEC À MONTRÉAL
Service des bibliothèques

Avertissement

La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé
le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles
supérieurs (SDU-522- Rév.01-2006). Cette autorisation stipule que «conformément à
l'article 11 du Règlement no 8 des études de cycles supérieurs, [l 'auteur] concède à
l'Université du Québec à Montréal une licence non exclusive d'utilisation et de
publication de la totalité ou d'une partie importante de [son] travail de recherche pour
des fins pédagogiques et non commerciales. Plus précisément, [l 'auteur] autorise
l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des
copies de [son] travail de recherche à des fins non commerciales sur quelque support
que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une
renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété
intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de
commercialiser ou non ce travail dont [il] possède un exemplaire.»

UNIVERSITÉ DU QUÉBEC À t--10:-JTRÉAL

EXTE SIO DU PROTOCOLE OPENFLOW POUR LES RÉSEAUX OPTIQUES

t!ÉMOIRE

PR ÉSE TÉ

COtl lME EX IGE:-JCE PARTIELLE

DE LA MAÎTRISE EN GÉNIE ÉLECTRIQUE

PAR

MAH ·IO UD MOHAMED BAHNASY

NOVEl\IBER 201-1

ACKNOWLEDGMENTS

It is my pleasure to thank aU those people who made this th sis possible.

At first , I would like to thank my advisor Professor Halima Elbiaze. With her encour

agement, in piration and her great effort of explaining things clearly and simply; sbe made

the research process as simple as possible throughout my faster period. She provided useful

advice, good guiding, perfect company, and she always gave me great freedom to pursue

independent worlc

I would like to thank my colleagues fo r providing an activating and exciting environment

in which I could learn and enhance my competence .

I wish to thank my entire extended family for all their love and encouragement pecially

my beloved mother . And most importantly, I wish to thank my lovely wife, Laila, as they

always support me in this road and they were encouraging me along this way.

Finally, I would like to thank all the staff members of the Computer Science department

at UQA 1 for their direc t and indirect help during my studies at UQAM.

RÉSU MÉ

Software D fin ed Networking (SDN) offre la possibilité de contrôler les réseaux en util
i ant un logiciel fonctionnant sur un ystème d 'exploitation dans un contrôleur externe, ce
qui offre un maximum de fl exibi lité et de simplicité. OpenFlow (OF), une des implémenta
t ion SDI les plu uti li ée, e t présenté comme architecture et plan de contrôle unifié pour
les réseaux de paquets et de circuits . Dans ce projet , nou proposons exp· rim nt al ment
deux olu tions bas · es , ur OpenFlow pour contrôler à la fois les réseaux de paquets et les
réseaux optiques : (1) OpenFlow Message-Mapping t (2) OpenFlow Ext nsion. Op nFlow
M ssage-Nlapping e t basée ur l'association d mesage OpenFlow à des actions appropriées .
La deuxième solution que nou proposon , OpenFlow Ext n ion , est ba ée sur l'extension du
protocole OpenFlow standard en ajoutant d nouveaux me sage pour uporter de infor
mations d 'interconn xion optique au lieu cl 'uti li er des messages OpenFlow standard. Nous
avons implémeté ces deux olutions dans un ban cl ' ai et nou avons effectué deux expéri
ences : (i) la création de canaux optique de bout en bout. (ii) la restauration de chemin
optique. L s mesures prise à partir de ce expérience ont utili ées pour l'implémntation
d 'un simulateur J ava. Ce simulateur simule les performances de ces deux technique ur deux
topologies de réseaux optiques réels et les compare av c le protocole G fPLS standard . Le
r 'sultat e t représenté sous fo rmat de graphiqu s comr aratifs pour déterminer la technique
qui a le m illeur temps d 'établissement de liens, la plus petite charge de contrôle et 1 rapport
de blocage le plus ba . La fai abilité de ce olution a été vérifée dans notre banc d 'essai et
leurs performances sont quantitativement ' valuée et comparées dans deux réseaux optiques
r ' el .

ABSTRACT

Software Defined Network (SDN) affords the possibili ty to control networks using software
running on a network operating system in an externat controller , which provides maximum
fiexibili ty, simplicity and manageability. OpenFlow (OF), one of the widely used SD im
plementations, is pres nted as a unified control plane and architecture for packet and circui t
switched networks. Based on this, in this thesis, we experimentally propose two solutions
based on OpenFlow to control both packet and optical networks: (1) OpenFlow Message
Mapping and (2) OpenFlow extension . OpenFlow Message-Mapping is bas d on mapping the
OpenFlow messages into appropriate cro -connect act ions. The second solu tion we propose,
OpenFlow Extension, is based on extending the tandard OpenFlow protocol by adding new
messages to carry the cross-connect information instead of using standard OpenFlow mes-
ages. We implemented these two solu tions on a tes tbed and conduct two experiments: (i)

End- to-End lightpath e tablishment. (ii) Backup lightpath restoration. The measurements
taken from these experiments are used in writing a custom-built J ava event-driven simulator.
This simulator simulates the performance of these two techniques on two real optical network
topologies and compare them with t he standard GMPLS protocol. The result is depicted
with comparative graphs to make it easy to determine which technique has the fastest estab
li hment t ime, lowest control load and lowest blocking ratio. The overall feasibili ty of these
solu t ions is assessed using our testbed and their performances are quantitatively evaluated
and compared on a real optical network.

RÉSUMÉ

ABSTRACT

LIST OF FIGURES .

LIST OF TABLES .

ABREVIATIO S

I TRODUCTIO

TABLE OF CONTE TS

STRUCTURE OF THIS DISSERTATION

CHAPTER I
PRINCIPAL CONCEPTS.

1.1 Circui t-switched and Packet-Swi tched Network

1.1.1 Internet Architecture

1.1.2 Transport Network Architecture

1.2 Existing Approaches

1.2.1 IP ov r WD 1

1.2.2 G 1PLS as a Unified Control iechanism

1.3 SOFT\NARE DEFlNED ET\i ORKI G (D T)

1.3.1 OPE! FLOW .

CHAPTER II
PROPOSED SOLUTIO S

2.1 OpenFlow channel ...

2.2 OpenFlow Optical Agent

2.2.1 Ports-Emulation Module .

2.2.2 OpenFlow / TL1 Tran lator

2.3 Path Computation El ment (PCE)

2.3.1 Executor . . .

2.3.2 0 S Adapter .

2.4 OpenFlow Message-Mapping Solu tion

iv

v

vii i

x

Xl

1

7

8

10

12

12

14

15

17

. 22

24

27

27

27

31

31

32

32

2.5 OpenFlow Extension Solu tion . .

2.6 GMPLS \1\fiTH P CE LIGHTPATH SETUP

CHAPTERIII
CONDUCTED EXPERIMENTS

3.1 Testbecl Setup

3.2 Scenario 1: End-to-End Lightpath Setup and Release .

3.3 Scenario 2: Backup lightpath Restoration

3.4 GMPLS Approach Experiment

3.5 Experimentation Results .

CHAPTERIV
SIMULATION STUDY

4. 1 The Cu tom-built Java Event-Driven Simulator .

4.2 National Science Foundation (NSF) topology ..

4.3 European Optical etwork Topology (COST239)

4.4 Summary of Simulation Results .

CHAPTER V

vii

34

35

38

38

41

45

47

50

52

53

59

63

68

CONCLUSION . 70

CHAPTER VI
PUBLICATIONS

6.1 Accepted paper at IEEE GLOBECOM 2014 conference

6.2 Submitted paper at OpticslnfoBase journal (2014) . . .

71

71

79

LIST OF FIGURES

Figure

IP and Transport Networks Operating Layer 1

2

3

OpenFlow Me. sages/ TL1 Command Translater Agent .

Testbed rchitecture .

1.1 IP and Transport Networks

1.2 IP Network Overlay Transport Networks

1.3 The Overlay letworks supported by Tran port Network

1.4 Transport letwork Control & Management

1.5 IP over WD f scenar io for the Future of the letworks

1.6 The Tracli t ional Network 1 ode hierarchy ..

1.7 The Software-Definecl Networking etwork ode hierarchy .

1. Software-Defined etworking etwork Nod hierarchy

1.9 OpenFlow network

1.10 The separation betw en data plane and control plane using OpenFlow

1.11 Packet fl ow through an Open Flow witch

1.12 Packet flow through an Open F low witch

2.1 Unified architecture of a convergecl Packet-Circuit network .

2.2 OpenFlow Agent .

2.3 OpenFlow Channel

2.4 OpenFl w Me sage Factory

2.5 Port -Emu lation Module .

2.6 P ath Computat ion Element workflow .

Page

1

5

6

9

10

11

12

13

15

16

16

1

18

19

20

22

23

24

25

29

31

3. 1 Testbed Architecture

3.2 Optical domain Interconnection

3.3 physical equipments in the Optical Transport 1 etwork Laboratory

3.4 Wireshark Screen hot (Lightpath Setup Message Exchange)

3.5 Network configuration and message exchange

3.6 Cisco Transport Controller Screenshot (Initial State)

3.7 Cisco Transport Controller Screenshot (After Lightpath Establishment)

3.8 ML diagram for lightpath e tablishment

3.9 Exchanged messages Backup lightpath Restoration Scenario

3.10 Wireshark Screenshot (Lightpath Setup Me. sage Exchange)

3.11 Cisco Transport Controller Screenshot (After Lightpath Restoration)

3.12 U ifL diagram of lightpath recovery .

313 GMPLS Experiment U ing DRAGO

3.14 GMPLS Scenario : Wireshark screenshot

4.1 SF topology (14 nodes and 21 links)

4.2 Lightpath establishment time [m] vs. network load (SF topology)

4.3 Number Of Hop Per Request vs . network load (JSF topology)

4.4 umber of control messages vs. network load (SF topology) .

4.5 Lightpath blocking probability vs. network load (NSF topology) .

4.6 COST239 Topology (11 nodes and 26 links)

4.7 Lightpath establishment time [ms] vs. network load (COST239 Topology)

4.8 Number Of Hop Per Request vs . network load (COST239 Topology)

4.9 Number of control messages vs . network load (COST239 Topology) .

4. 10 Lightpath blocking probability vs. network load (COST239 Topology)

IX

39

40

40

41

42

44

44

44

45

46

47

47

4

49

60

60

61

62

63

64

65

66

66

67

LIST OF TABLES

Table

2.1 llessage Factory Example

2.2 Using Message Factory To Creat a Featur Reply Message

2.3 Executing TLl Create Lightpath Command on the Optical Switch

3.1 Th experiments timing

4.1 Summary of Simulated Solu tions

4.2 Summary of NSF topology simulation results

4.3 Summary of COST239 topology simulation results

Page

26

2

30

51

52

6

69

AS

CLI

Cost239

CSA

CTC

DRAGON

DWDM

EMS / NMS

FEDERICA

ABREVIATIONS

Autonomous System

Command Line Interface

European union Ultra-High Capacity Optical Transmission etwork

Client System Agents

Cisco Transport Controller

Dynamic Resource Allocation via GMPLSnOptical etworks

Dense Wavelength Division Mul tiplexing

E lement and Network Management Systems

Federated E- infrastructure Dedicated to European Researchers Innovat-

ing in Computing network Architectures

flow

GENI

GMPLS

ITU

LSA

LSP

MPLS

Node

OADM

NSF

OF

network traffic

The Global Environment for etwork Innovations

Generalized Multi-Protocol Label Switching

International Telecommunication Union

Link State Advertisement

Label Switched Path

Multi-Protocol Label Switching

network node (Switch, router ...)

Optical Add-Drop Multiplexer

National Science Foundation

OpenFlow

Xl l

OFP

ONF

ONS

OSPF

PCE

PSTN

QoS

ROADM

RSVP-TE

SDN

SLA

Switch

TCO

TDM

TED

UCP

VLSR

VPN

WDM

wso

OpenFlow Protocol

Open Networking Foundation

Optical Network Switches

Op n Shortest Path First

Path Computation Element

Public Switch d Telephone Network

Quali ty-of-Service

Reconfigurable Optical Add-Drop Multiplexer

l esource Reservation Protocol-Traffic Engineering

Software Defined Network

Service Lev l Agreement

network node (Switch , router , etc ..)

Total Co t of Ownership

Time Devision iultiplexing

Traffic Engineering Databa e

Unified Control Plane

Virtual Label Switch Routers

Virtual Private Network

Wavelength-di vision Multiplexing

Wavelength Switched Optical N twork

INTRODUCTION

Over v iew

The exponential growth of Internet traffic requires network providers to construct efficient

networking systems. These large networks need a complex and sophisticated control system

especially when it includes two different infrastructures. One solution to manage this problem

is to reduce the differences in network structure, for example, most network providers have

removed telephony core switches and replaced them by using voice over IP services.

Today 's networks are composed of an optical domain (circuit-switched networks) and

an electrical domain (packet-switched networks) . These two network structures operate on

different network layers: circuit-switched networks operates on layer one and two, while

packet-switched network operates on layer three and four (Figure 1). However , electrical

OSl Model

Application
Layer 7

Presentation Layer 6

Session Layer 5

,- ------ ------
1 Packet-switched Network)

1 1

1 • • 1 : . : ./___ -·- - - - ~ - - - - •-. (- : -- -- r- --- ; -\
1 1

1 ~ ptical Cl rcuit-switched Network
..____ ___ _ _______ /

Transport

Layer 3

Data-Link

Physical Layer 1

Figure 1: IP and Transport etworks Operating Layers

domain is more flexible and easier to manage, service providers can not replace optical deviees

with electrical deviees because optical network has many benefits over electrical network.

Sorne of these advantages are:

2

• Optical network equipment support up to 10 times the capacity as electrical equipment

support.

• Optical transmission supports very long distances without signal attenuation.

• Optical transmission is interference free which makes it more robust .

Most of infrastructure providers use two different control plane, one for electrical domain and

another for optical domain.

The separation between these two networks is because of the different management

methodology of establishing a data path. Optical domain which is circuit-switched network

operates on layer 1 and 2 of OSI model, while electrical domain is packet-switched network

and it operates on layer 3 of OSI model. Another difference between the two domains is

packet-switched network meant to be distributed control, each router has its own locally cre

ated control strategy, while on the other hand circuit-switched network is mostly centralized

control. This separation presents a lack of common control mechanism which supports both

network domains.

Most Infrastructure providers use two control mechanisms to operate both networks which

is more expensive and inefficient than operating one converged network with a unified control

mechanism. Sorne efforts have been done to unify the control and management of heteroge

neous networks. The most mature and widely common example of these efforts is Generalized

Multi-Protocol Label Switching (GMPLS)(Mannie, 2004) protocol which is very complicated

and not even commercially adapted. Even though it was used , GMPLS did not completely

unify the control mechanism. Indeed, it preserves the separation between the two networks.

Motivation

Service providers are obliged to own and operate two distinct wide-area networks (packet

switched and circuit-switched networks). For example, traditional service providers like

AT&T, Verizon, British Telecom, Deutsche Telekom, NTT and others are all tier 1 and

tier 2 ISPs (wikipedia, 20 14). These heterogeneous networks require two different design and

management teams even within the same organization. For sure, owning and operating two

separate networks is inefficient and it causes great management overhead. The coordination

3

between these two teams is also another challenge to defeat. It also increases the cost of net

works management , operating, designing, planning, and maintenance which effect direc tly

the Total Cost of Ownership (TCO).

Networks are built basecl on closed-systems. Routers and witches from the same vendor

have the ame private features and services. These features are closed and kept secret in ide

each venclor 's procluct. This secrecy and closecl-box characteristic of network nodes features

and ervices slow clown the networks innovation and improvements . Using proprietaries man

agement systems by each venclor creates barriers on face of network development in both IP

and t ransport networks . Thus, it is clear that managing two separate networks operating

clifi'erently is inefficient .

Software defined networking (SD) proposes a new architecture capabl of managing

different networks with different infrastructures even though with different operational layer.

This emerging concept , SD , encourages us to present a common abstract that fit s with both

types of network and provides a common architecture for controlling both networks .

Sorne efforts have been clone to present SD -based UCP to control packet and circui t

switches using the most commonly known protocol (OpenFlow). Most notably, PAC.C Das

et al. (2010) bas experimentee[with alternative approaches. Other papers Liu et al. (2011 ,

2013 , 2012) have pres ntecl similar work as PAC.C by providing an experimental study or a

Proof-of-Concept to support the use of OpenFlow as a unifi ed control plane. However , Gior

getti et al. (2012) presents a comparison study between OpenFlow and GMPLS solu tions

based on a imulation. In this work , we propose two approaches based on OpenFlow protocol

to control both optical and electrical networks. Then, we experimentally compare the e two

solutions with a real implementation of G iPLS approach. To the best of our knowledge, this

is the first work who considers both OpenFlow and GMPLS UCP solutions, and compare

th rn via testbecl experimentation. We concluct a real case study of implementing end-to-encl

lightpath and a lightpath restoration by establishing a clynamical configured backup light

path. Finally, we conduct the comparison between the OpenFlow solution and the GMPLS

approach by simulation on two real network topologies.

4

Goals

As we discu sed before, managing two separate networks operating differently are inefficient.

Thus, in this thesis, our main goal is to find a way to manage these heterogeneous networks.

In this thesis, we are working on finding a common control mechanism to manage both

networks. These approaches are ba edon SD T technology which provides a common abstract

to fit both networks. This control mechanism should be able to manage both packet-switched

network and circui t-switched network. This approach bas to provide a simple and efficient

method to manage both networks.

Contribution

In this the i , two solu tions to converge both types of networks is proposed. This proposai

is based on the concept of Software Defined 1 etworking (SDI) (open networking found ation,

2013). One of the widely used SDN protocols is OpenFlow protocol. We conducted an

experiment of implementing OpenFlow protocol to control both circui t-switched and packet

switched network . Two techniques of u. ing OpenFlow have been implemented : (1) Open

Flow message-mapping. In this technique, we map the OpenFlow messages into a ui table

lightpath setup command (using TL1 command (CIS CO, 2012b)) (2) OpenFlow extension.

In this technique, we extend the OpenFlow protocol by adding new messages to support

the lightpath specification . We used these new mes ages to carry the reques ted lightpath

information . In both techniques we implemented an OpenFlow agent to translate between

OpenFlow mes ages and the TL1 command and execute it on the hardware switches (Fig

ure 2). In the laboratory, we conducted a simple network which consists of 2 Cisco ONS

15454 DWDM Reconfigurable Optical Add-Drop Multiplexer (ROAD 1) switches and one

0 S 15454 DWDM Optical Add-Drop Multiplexer (OADM) switch connected a in figure 3.

Two electrical-optical-converters are connected to each side of the Optical network (to ONS2

and ONS3). Each electrical-optical-converter is connected to an OpenFlow switch. Each

OpenFlow switch i connected to a client (Figure 3).

Two experiments have been conducted for each technique: (i) End-to-End lightpath estab

lishment. (ii) Backup lightpath restoration. The measurements taken from these experiments

are used in writing a custom-built J ava event-driven simulator . The objective of this sim

ulator i to imulate the performan ce of these two technique on two real opt ical network

Path Computation Element(PCE)

OpenFlow Controller

OpenFlow 1 TLl
Trans lat or

OpenFlow connection

1 OpenFlow Standard 1

Contribution Optical Switch

Figure 2: OpenFlow Messages/ TL! Commands Translator Agent

5

topologies and compare the result with those obtained by simulating the GMPLS protocol.

The result is depicted on comparative graphs to make it easy to determine which technique

has the fas test establishment time, lowest controlload and lowest blocking ratio.

6

OprnFiow
Swilch 1

Clitnc A

Op~nJ.low

Controller

6 .., .,
• ~

i

·· ···----..

~1~58.98nm---

························ ...

····-o,..
.o,.. o,.

IO GE WL ISS8.

I U G[WL1~~ 11

Figure 3: Testbed Archi tecture

Clitnl B

OpenF1ow
Switch2

STRUCTURE OF THIS DISSERTATION

This thesis is laid out as follows.

Chapter 1 introduces the infrastructures of the two network . Then, it states the prol lem

of managing thi heterogeneous network , after that it introduces a general information about

the protocol used to manage this problem, and introduces the existing approache address

this problem.

Chapter 2 explains the propo ·ed solution to address this problem explaining each corn

panent we created in this research project. T hen, it explains how each technique use the

components we created . Thi chap ter also presents a brief explanation of how GMPLS oper

ate , and the messaging types used in this solu tion for the pm·pose of comparing it with our

propo ed olution .

Chapter 3 discu e the two experiments conducted using our proposed olu tion .

Chapter 4 presents the custom-built Java event-driven simulator algori thms for each so

lution. It presents also the different topologies w used to run the simulator on. T hen it

discusses the results got from this simulator .

F inally, we present the conclusions of our work and suggest directions for future research

in Chapter 5.

CHAPTER I

PRI CIPAL C O CEP T S

Thi ·hapter 1 resents the pr incipal conce1 ts of the IP network and the tran port network.

Then it presents the two ole! approaches to addr the controlling of heterogeneous network.

Finally, it pre. ents the software-defined network concept which we build our solutions on.

1.1 C ircuit-switched and Packet-Switched e twork

Wide area network is the backbone of the Internet whi h is IP packet-switched network.

Packet ar e switched bop-by-hop from source to destination through IP nod es . However , the

packets may be transp ortee! physically on optical circuit switche and fib r (Figure 1.1). In

orne articles this und rlying circuit-switched network is named as the Transport Network.

We will take a closer look a t th two network in the following sections.

1.1.1 Internet Architecture

Internet components (layers, naming, addressing, protocols etc.) have been widely cov

ered in ev ral book and thi thesis i not about the Internet architectur , but we will give

a brief introduction about it . Internet is a collection of interconnectee! IP networks. The

networks that compose Internet have independent ownership , admini tra tion and manage

ment. These networks use pecial kind of routing protocol capable of adverti e IP addresses

information b twcen these domain , known a Autonomous Systems (A)(\!V ikimedia. Foun

dation , 2003) , and capabl of choosing routes across routing domains.

(

1

1

1

1

1

(

1

1

1

1

1

1

IP Packet-switched Network

• -------.- -- .----
------ --·-- ~ • • •

1
1
1
1
1
1

--f --
1
r
I
1
1

Figure 1.1: IP and Transport Networks

9

__ ,/

IP networks are based on distributed control mechanisms. These control mechanisms re-

quire routing protocols (I-BGP, OSPF etc) and sometimes signaling protocols (LDP, RSVP

etc) implemen ted in each router. Control mechanisms are automated after ini tial configura

tion for each node (either manually or using scrip ts) . These automated mechanisms allow

network nodes to automatically discover their neighbors, the network topology, exchange

routing information, f01·ward packets, learn about failures and re-route packets to avoid this

failure and try to guarantee the flow continuity.

etwork services or functions in IP networks have a distributed implementation too. Each

network-node-vendor implements its features exclusively and nonstandard even though they

are using standard control mechanisms.

10

In case of congestion, IP network performs badly. Even though the public IP net

works grant best-effort Quality-of-Service (QoS) , sorne Service Level Agreements (SLAs) and

Quality-of-Service (QoS) guarantees are not applicable easily.

IP networks management requires configuration, typically via Command Line Interface

(CLI), monitoring, auditing, and maintenance. In general, IP networks are hard to manage.

1.1.2 Transport Network Architecture

The main function of a transport network is to provide communication between two

geographie locations presented by network nodes. This connection may be established by

a time-slotted circuit like Time Division Multiplexing (TDM) or wavelength-circuit Wave

length Division Multiplexing (WDM) figure 1.2. The IP network is an overlay layer on the

transport layer.

'11-ansport networks also support several overlay networks or client networks, e.g.: IP net-

®~------@)

Wavelengths channels

TDM

switch
ROADM

Figure 1.2: IP Network Overlay Transport etworks

works, Public Switched Telephone Network (PST), private-networks, etc. (Figure 1.3).

More information about transport network architecture is described by the ITU in (ITU,

11

2000).

Transport Network

Figure 1.3: The Overlay etworks suppor ted by Transport etwork

Transport networks are not like IP networks, they are always intra-domain controlled and

not automated-control. The transport networks are divided into partitions called "demains".

Each domain is controlled separa tely and manually. They have Element and etwork Man

agement Systems (EMS/ NMS) and Operations Suppor t Systems (OSS) which perform all

control and management. These systems are not programmatic, vendor proprietary systems,

and manually configured (Figure 1.4) . Providing services in a transport network is very

complicated and long manual procedures. For example, providing a da ta-pa th between two

end-points requires several steps: First , providing the source and the destina tion , planning

the path from the source to the destination. Then , each provider executes the plan by man

ually configuring their equipment using their corresponding m anagement systems along the

pa th . Finally the test teams verify the path . Normally, this process takes days or maybe

weeks, and the path created is st at ic and stays in place for months or years.

12

Data plane
switches

{
\

.
ContrC:I <knsole

/ :--: \'

V endors
domains

~ Manu~! ..,._
Interactwn

.. .
Contr; l ~,on sole

Proprietary
interfaces

...

Figure 1.4: Transport Network Control & Management

1.2 Existing Approaches

In this section, we discuss two points of view of addressing the IP and transport networks.

The first point of view, as we discussed before, is to eliminate circuit switching between

network nodes. The second attempts to unify the control and the management for bath IP

and transport networks.

1.2.1 IP over WDM

In this point of view, we can achieve our goal, managing one homogeneous network, by

eliminating the circui t switching components in network. As stated before in section 1.1.2,

transport network suppor ts many networks as overlay services (Figure 1.3). One example

which has almost been eliminated is PSTN by moving traditional voice services to IP net

work instead of circui t-switched network on bath end-user and service provider 's core side.

Meanwhile, private networks are moving to packet-switched networks based solutions by em-

13

bracing the Virtual Private etworks (VP s) . It is clear that customers and service providers

are moving to eliminate circuit switching components or nades and trying to find a packet

switching substitute for their requirements Computerworld (2000) ; Das et al. (2010). In this

case, in the future the Internet will be the only client uses the transport network Figure (1.5) .

AU Services

Figure 1.5: IP over WDM scenario for the Future of the Tetworks

In this scenario , it is logical to ask if circuit-switched underlying transport networks are

required or they can be substituted. As we mentioned befor·e in the overview, circuit-switched

networks are very useful and have many benefits which make them indispensable. Packet

switched networks are al ways more expensive than circuit-switched networks b ecause of their

complicity of management and the huge capability of optical switches and optical fib ers.

Circuit switching switches are much more scalable; a circuit switch can switch much higher

data rates (about 10 times more than packet switching switch) , and consume much less power

than an electronic packet switch (about 1/ 10 times less than packet switching switches). In

general, optical circuit-switched networks are faster , simpler and more space efficient. They

also have higher capacity, lower cast and lower power consumption than electronic packet

switched network. Therefore, the two networks must work together on a sui table and efficient

control system.

14

1.2.2 GMPLS as a Unified Control M echanism

Using SD to create a unified method to control packet and circui t switches is no t the first

approach to control both networks. GMPLS (Mannie, 2004) is the most commonly known

as a unified control mechanism. GMPLS has standardized within the IETF (since 2000).

Generalized Multi-Protocol Label Switching (GMPLS) was designed as an extension of

MPLS to offer a unified control plane (UCP) for different networks, packet and circui t switch

ing networks. This approach aims to use the capabili ties of MPLS as a labeling protocol and

extend this feat ure to work on circuit-switched networks. MPLS had a well-developed control

plane based on the IP network. Thus based on this distributed control plane, GMPLS was

built as a unified cont rol plane. GMPLS extends distributed methodology, Routing protocol

(OSPF-TE) and signaling protocols (RSVP-TE) to control circuit switches (Banerjee et al. ,

2001; Farrel and Bryskin, 2005; Mannie, 2004).

GMPLS has extended MPLS to include Time-Division Multiplex capabilities, Lambda

Switch capabili ties or Wavelength-Division Multiplex Switching capabilities as well as the

Packet switching capabili ties and Layer-2 Switching capabili ties inheri ted from MPLS. Fur

thermore, GMPLS eliminates the need of an operator , the entire network can be au tomated.

GMPLS is a very mature protocol and it was standardized more than a decade ago.

However , it still was not industrially implemented by equipment vendors because of its com

plexity. GMPLS has not been seen yet commercially deployed as a unified control plan. In

fact , it is not even deployed as a control plane for transport network according to these ar ti

cles(Das t al. , 2012; lightreading.com , 2011). GMPLS is a distributed protocol. This featw-e

reveals many problems with network stability and the control simplicity while most network

equipment vendors prefer centralized control solution .

15

1.3 SOFTWARE DEFINED NETWORKING (SDN)

The traditional network node consists of built-in services and protocols. This hierarchy

combines the control plane and the datapath in one box (Figure 1.6).

This hierarchy causes a huge limitation of innovation in real-world networks because the

enormous installed base equipment and protocols. The unwillingness to experiment with

production traffi.c is also an obstacle for the researchers. This limitation has created a high

barrier for new ideas. For example, it is almost impossible to practically experience new

routing protocol or alternative to IP protocol. Clearly the result is newest ideas from the

network researchers which do not have chance to be tried or tested.

----------- ,
' /

... _____________

Figure 1.6: The Traditional etwork Node hierarchy

Many networking efforts are clone on the field of developing programmable networks. This

work is based on the isolation of the datapath (data plane) and the applications responsible

for controlling this datapath (Figure 1. 7).

The slicing in the virtualized programmable networks allows the researchers to try new

ideas which increase the rate of innovation McKeown et al . (2008a). Figure 1.8 shows how

the production network could be used to carry the experimental flows without interference.

Programming network nodes provide the capabilities of network slicing, virtualization,

16

Network Controller

.. ······ E::J ······ E::J
r ------ f.==..-.::-:;3·········:::>······11 Network Operating 1 ..._.......,....._,:;:- / Il Svstem

~.._...,......<'- /./ .• / ..• / •••• ~···

Figure 1.7: The Software-Defined etworking etwork ode hierarchy

Figure 1.8: Software-Defined Networking Network Node hierarchy

and separation, which accelerate network innovation. Even though, SDN has sorne obstacles

to defeat . Commercial switch and router vendors do not usually provide an open software

platform. The network equipment vendors do not accept to open up their boxes, as they

have spent many years developing their products and enhancing their products performance.

In addition, open systems will lower the barrier for new competitors. A few open software

platforms are already existing, for example a PC with several network interfaces and an

operating sys tem support packets routing b etween interfaces which most operating systems

do Naous et al. (2008) . This model is effective, but the problem is the performance. A PC has

limi ted number of ports to install network interfaces on it , and the packet-processing speed

is very limi ted (PC typically support maximum of lGbit / s while closet switches process over

17

100Gbits/ s of data and increasing). Sorne network equipment providers started to provide

equipment with SDN support , for example CISCO , HP, Juniper and NEC.

In brief, in SDN the configurations of network nades, switches and routers, are done

by software (controller) instead of manual involvement of the network administrator . Hence,

SD offers error-free network reconfiguration method, as well as high availability. Indeed, if a

problem occurs in the network the automated recovery mechanism is triggered by the software

allowing faster convergence compared to the manual approaches. SDN has a centralized

knowledge about the network McKeown et al . (2008a), so the convergence process is faster

and more accura te than distributed method.

1.3.1 OPENFLOW

We briefly outline the main characteristics of OpenFlow. More details and exhaustive

documentation are available in the OpenFlow white paper (McKeown et al ., 2008a) and in

the OpenFlow specification (Consortium et al. , 2009).

OpenFlow is an open standard that was developed several years ago at Stanford University

in arder to enable researchers to run experimental new protocols and technologies on real

networks, without interrupting the existing traffic or network availability (McKeown et al. ,

2008b). In a traditional network, the data pa th and the control path occur on the same deviee

(switch , router). Open Flow separates these two functions; OpenFlow switches perform the

data plane funct ion and OpenFlow controller implements the control plane intelligence and

communicates with the OpenFlow switch via a secure OpenFlow protocol channel (Figure

1.9).

The main goal of SD is the separation between the control plane and the data plane

which OpenFlow algorithm implemented as in figure 1.10 (Consortium et al. , 2009 ; Open

Flow, 2011). Based on this goal the controller and the switch have separated tasks to do.

An OpenFlow Switch consists of one or more flow tables and group tables, which perform

packet lookups and forwarding, and an OpenFlow Channel that is connected to an external

controller . Each Flow table in the Switch contains a set of flow entries; each flow entry con-

18

Figure 1.9: OpenFlow network

Figure 1.10: The separation between data plane and control plane using OpenFlow

sists of match fields, counters and a set of actions. These actions associated with each flow

entry tell the switch what to do with the packets match this flow entry. The most OpenFlow

actions basic types are:

• Forward the flow packet to a given port (or ports in case of multicast).

• Encapsulate the packet and f01·ward it to the controller. This happen mostly with the

first packet of a new flow, so the controller could decide if the flow should be added to

the flow table, or to audit specifie flow.

• Drop flow packets. This could be used to limit deniai of service attacks.

• Forward the flow packets through the normal processing procedures. This action is

19

useful for separating the flows which do not belong to OpenFlow traffics.

The basic idea is to use the flow tables that most switches and routers contain. OpenFlow

uses this common function (each switch has a flow table) and provides an open protocol to

program the flow table by sending flow entries with associated actions to the switch and

reading statistics about these flow entries (Figure 1.11).

..

... -............

Network Controll er

L!:J L!:J
• •• ······.·· [Network Operating 1

... ·· .. · · System

.. ························::::::...-······

Figure 1.11: Packet flow through an Open Flow switch

When the OpenFlow switch receives a packet, it sear·ches for a match field in its flow table.

If it finds a match, first it updates the counters. Then, it fetches the actions associated with

this flow entry and executes these actions on this packet . If it did not find a match, it

continues with all flow tables. Finally if no match exists in all flow tables, it either drops

the packet or sends it to the controller based on the table configurations. This algori thm is

depicted in the flow chart in figure 1.12.

OpenFlow protocol messages are restricted in three categories (Consortium et al. , 2009);

controller-to-switch, asynchronous, and symmetric, each with multiple sub-categories:

• Controller- to-swit ch These messages are initiated by the controller and may or

20

~ Packet ln
~ar1 at Tab le 0

~1+•---------Yes

T -Updare Counters.

Match in Table n? -Y es~

No

Based on Table configurati on , do one Of :
• Send to Control! er.
• drop.
• continue to next Table.

- Execute lnstrucrions :
• Update action set. ~
• Update packet 1

match set fields.
•update metadat

Goto - Table o?

1
No

1
Execute actions

set

F igure 1.12: Packet flow through an Open Flow switch

may not require a response from the switch. They are used for directly managing or

inspecting the state of the switch . The main controller-to-switch message types are:

Features, Configuration, Modify-State, R ead-State, Packet-Out, and Barrier.

• Asynchronous : These messages are sent by the switch without the controller solici

tation. Switches send asynchronous messages to the controller to denote packet arrivai,

switch state change or error. The four main asynchronous message types are: Packet-in,

Flow R emoved Message, Port Status M essage, and Error M essage.

• Symmetric : These messages are initia ted by either the switch or the controller and

sent without solicitation. The main symmetric messages types are: Hello, Echo R equest

and Echo Reply.

OpenFlow is an independent protocol and available on currently running networks. These

advantages put it at the head list of network virtualization techniques which includes sev

era! ambitious worlc like The Global Environment for etwork Innovations (GENI) (geni.net,

2014) and Federated E-infrastructure Dedicated to European Researchers Innovating in Com

puting network Architectures (FEDERICA) (fp7 federica .eu, 2014) . The main characteristics

of the OpenFlow that make it the best choice are:

• Separation between contr-ol plane and data plane : The key advantage of the Open

Flow protocol is the separation between data flow and control flow (OpenFlow, 2011),

21

(Consortium et al. , 2009).

• Centralized : Most of infrastructure providers prefer centralized solution, which offers

them simpler management and easier administration than distributed solution.

• Simple and Flexible : Because of the centralized nature of OpenFlow, this proto col is

easy to manage and more flexible.

An example of the simplicity and separation attained by the OpenFlow is: if a researcher

invents a new routing protocol X-OSPF , for example, and he wants to test it , he can impie

ment his routing protocol on the controller reading the centralized information available at

the controller instead of implementing it on each network node, and he only needs to send

the flow entries to the network nodes (Routers and Switches).

CHAPTER II

PROPOSED SOLUTIONS

In this chapter we present our solutions based on OpenFlow protocol as a unified cont rol

plane for both optical and electrical networks. OpenFlow supports the separation of data

and control planes for circuit and packet networks. The treatment of L4-L2 fl.ows provide a

simple flow abstraction that fi ts well with both types of networks. Renee, OpenFlow presents

a common platform for controlling the underlying switching hardware, these fl.ows of different

granulari ty, while allowing all of the routing, control and management to be defined outside

the datapath , in the OpenFlow controller as extended network applications (Figure 2.1).

Q)JenFÙ>)w
/protocol,

.!· ·

)

Unified Control
Plane

)
Un.ifying
Abstraction

)
Data Plane
Switching

Figure 2.1: Unified architecture of a converged Packet-Circuit network

Two solutions for using OpenFlow pro tocol as a unified control plane on both optical

and electrical domains are presented in this thesis. These techniques is compared with the

standard GMPLS technique and presented in this research. The first solution is OpenFlow

23

m essage-mapping. ln this solution we map the OpenFlow standard messages (like F10W

MOD message) into optical domain commands to create or delete the lightpath, and translate

the optical switch ports state into OpenFlow FeatureReply message. Otherwise, for the sec

ond solution OpenFlow extension, new messages is added to the OpenFlow protocol. These

messages have the capabilities to carry the 11/ 12 switching information explicitly. The added

messages to OpenFlow P rotocol is explained in details in the OpenFlow Circuit Switch Spec

ifica tion Das (2010)

In bath solutions we implemented an OpenFlow agent to translate the OpenFlow messages

toits proper T11 commands (Headquarters, 2003) to be executed on the optical switch using

telnet channel. The OpenFlow Controller has been extended by adding a new application

we call it path computation element module (PCE). This addition allows the controller to

calculate the lightpath for the requests. Then, it sends the appropriate messages to the

proper optical switches (Figure 2.2) .

In this section, we fi.rst explain the OpenFlow channel, the OpenFlow optical agent and

Path Computation Element(PCE)

OpenFlow ControUer

OpenFlow 1 TL 1

Trans la tor

OpenFlow connection

1 OpenFlow Standard 1

Contribution Optical Switch

Figure 2.2: OpenFlow Agent

the PCE algorithm. Following that with detailed presentations of our solutions. Finally we

24

present the GMPLS with PCE lightpath mechanism for the purpose of comparing it with

our solutions.

2.1 OpenFlow channe l

OpenFlow channel is a key part of either the controller or the switches. In our code we

used the (openflow) message library which is used in Beacon Java-based OpenFlow controller.

This Message Library is a Java implementation of the OpenFlow specification (Consortium

et aL, 2009) . This Message Library encodes and decodes OpenFlow messages from Java rich

data types into the bytes stream and vice versa (Figure 2.3).

L t
-o -o
0 0
u ~ f ~ I\2 Byte stream

- - - - - - - 01 69 F6 8A 54 EF - - - -
'----'--=-'..::......=._::.::..::..::,L~i~...::....c..-=:'----J

-o -o
0 0
u u

~ f

Figure 2.3: OpenFlow Channel

In order to create and encode an OpenFlow message, the application Uses the Message

Factory class to create a message of the required typ e. Then , it encodes this message into a

byte-stream using Message Factory class, to be transmitted over the media. The other side

25

(controller or switch) will receive the byte-stream. Then , it uses the Message Factory class to

decode incoming byte-stream into an OpenFlow messages of their J ava rich data type form

(Figure 2.4) .

Message

Factory Class ~Encode-

fr
t
'"0
0
(.)
Q)

~ Messages Byte stream

01 69 F6 8A 54 EF - - - -

Figure 2.4 : OpenFlow Message Factory

Table 2. 1 shows a sample code to create a message using the Message Factory class . First,

in line 1 we create a message factory instance (BasicFactory). Then , we have this factory

create a message of type OFType.FLOW_MOD. After that, we set the message proper ties

(line 03 - 20) including the addition of the relevant actions list. Finally, we convert this

message into byte-stream by calling the stream.write() function at line 22 .

26

01 Bas icFactory factory = new Bas icFacto r y ();

02 OFFlowMod fm = (OFFlowMod) fa cto r y. getMessage (OFType.FIDW_MOD) ;

0 3 fm . s e t B u ff e r I d (b u ff e ri d) ;

04 fm .setCommand((short) 0) ;

05 fm. setCoo ki e (0);

06 fm. set F l ags((short) 0);

07 fm.s et HardTimeo ut((s hort) 0);

0 8 fm . s e t I dl eT i rn e o u t ((s h o r t) 5) ;

09 match. set i nputPort (p i . get i nPort ());

10 match . setW il dcar ds (0) ;

11 fm. setMatch (match) ;

12 fm. se tOu tPort ((short) OFPort .OFPP _NONE . getVal ue ());

13 fm . s e t P r i o r i t y ((s h o r t) 0) ;

14 OFActionOutput action = new OFActionOutput ();

15 action.setMaxLength((short) 0) ;

16 action. setPort (outPort);

17

18

List < OF Act ion> actions

act i ons. add (act ion);

19 fm . set Act ions (ac t i ons) ;

new Array List < OFAction > ();

20 fm . set L engt h (U16. t (OFFlowMod .l\IIINIMUM_LENGTH

21 + OF Act ionOutput .l\llii\TIMUM_LENGTH)) ;

22 st r eam. wri te (fm);

Table 2.1: Message Factory Example

27

2.2 OpenFlow Optical Agent

As mentioned ab ove, the main role of this agent is to translate the op ti cal channel requests

and Op nFlow messages into TLl commands to be executed on optical nodes. This agent is

added to each opt ical node and acts as a virtual switch. It consists of an OpenFlow channel

to communicate with the OpenFlow controller , OpenFlow / TL l Translater to con vert Open

Flow messages into TL l commands, Ports-Emulation module to emulate the optical node

ports and send this information to the controller to update ports database (Figure 2.2). This

information allows the controller to calculate the lightpath.

2.2.1 Ports-Emulation Module

This module acts like a virtual switch by creating a list of virtual ports. Each of the e

virtual ports emulates a physical port of the optical switch (Figure 2.5). This module sends

thi information to the controller as a way of realization of the optical switch. This mod

ule also manages these emulated ports status information 1. Tabl 2.2 shows the Java code

used to create a Feature Reply Message and encode all the virtual ports information . First ,

it make the Message Factory create a FeaturesReply message. T hen, it sets the message

properties (Line 4-8). After that , it i terates on all physical ports and includes their status

into the message (Line 9-19) . Finally at line 20 , it returns the message.

2.2.2 OpenFlow / TLl Tra nslator

This module is responsible for translating the OpenFlow messages and actions into ap

propriate commands. Then, it executes these commands on the optical switches. It creates a

telnet communication channel with the optical switch to send these TLl commands through

it . The most common operations we use TLl commands for are creating lightpath , deleting

lightpath, retrieving lightpath status, and ret rieving port status. The TLl command. used
1 Port discovery is out of scope of this research project .

2

01 pr o t ec t ed OFMessage c r eat eF ea tur eR eply Msg () {

02 OFlVIessage fea tur eMsg = f ac tor y . ge tM ess a ge (OFType .FEATURES_REPLY);

03 OFF ea tu res R eply fR ep ly = (OFF ea t ur es R ep ly) fea tur eMsg ;

04 fR ep ly . se t D a tapat hid (path l d) ;

05 fR ep ly . se tBuffe r s (lOO);

06 fR ep ly . se tT ab les ((b yte) OxOl);

07 fR ep ly . se tCapab ili ti es (OFCap a b ili ti es .OFPC_FLOW_srATS . ge tVa lu e ());

0 Li t < OFPh ys icalP ort > port s = new ArrayLi s t < OFPhy sicalP ort > ();

0 9 f o r (i n t i = 0 ; i < v i r t u a 1 P o r t s . 1 en g t h ; i ++) {

10 \\ It e r a t e on a li port s

11 OFPhy sicalPort port = new OFPhys ica lP or t ();

12 port. se t Hardw a r e Addres s (v ir t u a l P o r ts [i] . g e t Hardw a r eAcldr ess ()) ;

13 port. etName(v ir tu a lP ort s [i]. ge tSho r t 1am e ()) ;

14 p o rt. se tPor tN umb er ((s h o rt) vir t u a lP o r ts [i]. getNumber ()) ;

15 port . se t C u r r ent F e a t ur es (0 FP or tFea t ur es . OFPPF _FIBER. ge t Va lu e ()) ;

16 p ort. se tS t a t e (v irtu a lP ort s [i] . gc tOFP or t St ate ()) ;

1 7 port s . ad d (po r t) ;

1 }

19 fR ep ly . se tPort s (port s) ;

20 r e t ur n fR eply;

21 }

Table 2.2: Using Message Factory To Create a Feature Reply Message

29

1 V eth L· ~ Veth 5
Veth 2- Virtual Open Flow ~ Veth 6
Veth 3- switch ~ Veth 7
Veth4- ~ Veth 8

Figure 2.5: Ports-Emulation Module

in our module are discussed in details in Cisco ONS TL1 Command Guide (CISCO, 2012b) .

Table 2.3 shows a sample of J ava code responsible for executing the TL1 create lightpath

command. This function receives the ports information from the OpenFlow message. Then,

it opens a TL1 session (Li ne 6). After that , it crea tes TL1 Comma nd abject and activates

the user (Line 7-8). At line 11 , it creates the command string. Then at line 13, it sets the

command string. At line 14, it sends the command through the TL1 session, created before

at line 6, and retrieves the execution result .

30

01 priv ate b oo lean addLig h tPath(String portsconnect i o n ,s hort d ir ec tion){

02 \\ p o r tsconnect ion = eg=

03 \\ CHAN-1- 14-28-RX&LINEWL-1- 17-2-RX- 155 6.55

04 \\ ,LINEWL-1- 17-2-TX-1556.55&CHAN-1- 13-28-TX

05 try {

06 TL1Session t l1 sess i on = new TL1S ess ion (t l 1S e r ver , t l1P o r t);

07 TL1Command req = new TL1Command ();

08 r eq = TL1Command.act_user(t l1 Username, tllP wd , TID , " 300") ;

09 TL1ResponseMsg msg = (t l1 sess i o n . send (r eq)) [0] ;

10 System. ou t. prin t (11 TL1 l og i n mesg : \ n 11 + msg);

11 String commandStr = 11 E ~-OCHl\lC: 11 +TID + 11
:

11 + portsconn ec tion

12 + 11 :30 5:: " + dir ec tion + 1WAY:CKTID=test ; 11
;

13 r eq . setCommand (commandStr); \\ 11 ,ClVJDVJD8=FRCD; 11

14 TL1ResponseMsg msg1 = (tlls ess i o n .send (r eq)) [O] ;

15 System . o ut. print (11 ENT-OCHNC r eply msg: \ n 11 + msg1) ;

16 } catch (Except ion e) {

17 Syst em. er r . pr i nt l n (11 Unab le to co n nect to TL1 agent (serve r) 11
);

18 e . printS tackTr ace ();

19 r e turn f a l se;

20 }

21 r et urn true;

22 }

Table 2.3: Executing TL1 Create Lightpath Command on the Optical Switch

31

2.3 Path Computation Element (PCE)

The objective of this algorithm is to compute a lightpath between source-destination pairs

in order to create a fully connected logical topology (Tintor and Radunovié, 2012). We have

created a Traffic Engineering Database (TED) to save the network topology information.

Thanks to the centralized management of the OpenFlow Controller, the TED is always up

to-date. TED will be updated in case of lightpath setup and release (port status changes).

Two modules are implemented to achieve our goal ; Executor and ONS Adapter (Figure 2.6).

Initial Ports
Configuration

.
Ports U pdates

r-- r- --- ----------------------------,

'
TED

1 Ports S ta tus

Source + Destination
Information

..

Path Computation Element 1

Path Computation
(Djikastra Algorithm)

Executor

W avelength Assignment
(Graph Coloring)

Op ti cal
....... Switch

Adapter

1

1

1

1

1

1

1

1

1

1

1
1

____ J

Output : LightPath
information

Figure 2.6: Path Computation Element workflow

2.3.1 Executor

The obj ective is to ensure the avoidance of using one wavelength more than one time in

the same fiber and the assurance of the wave length continuity through the lightpath. Each

32

wavelength carries traffic between a source destination pair. Therefore, multiple wavelengths

are reserved in a single strand of fiber for establishing multiple lightpaths through one fiber.

These connections between the nodes in a WDM networks are done in two steps:

• Routing: Dijkstra Algorithm is used in order to find the shortest path between each

node pair. This algorithm is often used in routing and as a subroutine in other graph

algorithms. It solves the single-source shortest path problem for a graph with non

negative edge path costs. In our case, we are interested in a network topology that

contains both OpenFlow switches and Opt ical Network Switches (ONS).

• Wavelength Assignment : Once the lightpath routes are determined, the wave

length assignment problem can be represented as a graph coloring problem. In graph

theory, graph coloring is a special case of graph labeling; it is an assignment of labels

traditionally called "colors" to elements of a graph subject to certain constraints . Each

lightpath corresponds to a node in wavelength assignment graph, and two nodes are

set as neighbors only if the respective lightpaths share at least one common link.

2.3.2 ONS Adapter

Each ONS consists of a set of cards and each card contains a set of configured ports

(CISCO, 2012a). ONS edges are connected to OpenFlow switches via WSS and DMX cards,

whereas 0 S core interfaces are interconnected via LI E cards. Two fibers are used for the

bidirectional connection between two ONSs. These specifications lead us to add this module.

2.4 OpenFlow Message-Mapping Solution

Based on the two units described before, we build our solutions. In the first solution

(OpenFlow Message-Mapping), the OpenFlow standard messages are used without any mod

ification. The OpenFlow messages are mapped into optical switch commands. In this ap

proach, the OFPT_FLOW_MOD message of type OFPFC_ADD is mapped into ENT

OCHNC TLl-command to create a lightpath channel. The OFPT_FLOW_MOD message

33

of type OFPFC_DELETE is mapped into DLT-OCHNC TLl-command to delete a light

path channel. When the agent receives OFPT_FEATURES_REQUEST message, it encap

sulates the emulated port information into OFPT_FEATURES_ REPLY mes age . Finally,

the agent reads periodically the ROADM events (using RTRV-ALM-ALL TLl-command)

and if it finds any cri t ical alerts, it creates OFPT _PORT_ STATUS message and forwards

it to the controller . The process of lightpath . etup is carried out following these steps:

• The ource starts sending data to the destination node.

• Once this flow arrives at an OpenFlow switch, this switch sends a OFPT_ PACKET_ IN

me sage to the controller .

• Upon the receiving of this OFPT _PA CKET _IN message, the controller requests the

PCE unit to compute a lightpath for this packet. T he computed lightpath include

the information of the wavelength and the link. This information can not be included

in the OpenFlow standard messaging system. In this case, we map the wavelength

assignment to a virtual ports as shown before by the OpenFlow agent on section 2.2 .

• If the PCE isn 't able to compute the path accord ing to lack of resources, it consid ers

this request block d.

• If the path is computed successfully, the OpenFlow controller sends OFPT _FLOW_ MOD

messages of type (OFPFC _ ADD) to all the circuit-switched no des across the lightpath

and either a OFPT_PACKET_ OUT and/ or OFPT_ FLOW_ MOD message of type

OFPFC _ ADD to the packet-switched nodes depending on the defined OpenFlow ap

plication on the controller.

• When the OpenFlow switch receives the OFPT_PACKET_ OUT message, it forwar 1

the packet after a considerable delay to be sure that the lightpath i established.

• Once the time-out expires, both the controller and the switche consider the lightpath

is established and start to exchange data through the path.

This centralized approach of OpenFlow allows the controller to have the updated node and

link information stored in the PCE database (TED). The lightpath release mechanism is

34

fired by the controller using a flow entry time-out timer. This timer is restarted each time

thi channel i u ed . When thi timeou t expir s the controlier sends a flow_ modification

m ssages of type (del ete _ flow) to the n twork nod es causing them to del ete this lightpath .

The packet-switched nodes will release the path by them elves when the timer expires.

2.5 OpenFlow Extension Solution

In this solu tion, OpenFlow m ssage are xtended and new messages are added . The new

mes age specification Das (2010) allow the controller to distinguish between the circui t

switching and the packet- witching networks. For example, OFPT_FEATURES_REPLY

message is extended by adding extra information about the circui t-switching por ts. To sene!

an optical cro s-connect informat ion, a new ma tch structure called OFP _ CONNECT is

presentee!. Multiple ports can be cross-connectee! by a single structure. Thi structure

is ad e! d to the newly clefined me sage called OFPT _ CFLOW_ MOD. Finally, when the

tate of a port changes, the OpenFlow Optical Agent send a new defined message caltee!

OFPT CPORT STATUS.

In OpenFlow Extension solu tion the process of lightpath setup is carried out following

these steps:

• The source star ts sending data to the des tin ation node.

• Once this fl ow arrives at an OpenFlow switch , this switch ends a OFPT_PACKET_IN

mes age to the controller.

• pon the receiving of this OFPT _PA CKET _ IN mes age, the controller requests the

P CE unit to compute a lightpath for this packet. The computed lightpath includes

th information of the wavelength and the link . This information is included in the

Op nFlow new structure OFF_ CONNECT and encapsulatecl in the new me sage

OFPT _ CFLO W _ MOD . the OFP _ CONNECT structure coule! carry the bidir ctional

lightpath instead of sending one message for each direction.

35

• If the PCE is not able to compute the path according to lack of resources, it considers

this request blocked.

• If the path is computed successfully, The OpenFlow controller sends OFPT _ CFLO W_ MOD

messages of type (OFPFC _ ADD) to all the circuit-switched nod es across the lightpath

and either a OFPT_ PACKET_ OUT and/ or OFPT_ FLOW_ MOD message of type

OFPFC_ADD to the packet-switched nodes depending on the defined OpenFlow ap

plication on the controller .

• When the OpenFlow switch receives the OFPT_PACKET_ OUT message, it forwards

the packet after a considerable delay to be sure that the lightpath is established .

• Once the time-out expires, both the controller and the switche consider the lightpath

is established and start to exchange data through the path .

Similar as the first solution, the lightpath release mechanism is fired by the controller

using a flow entry time-out timer. This timer is re tarted each time this channel i u ed.

When this timeout expires the controller sends a OFPT _ CFLOW _ MOD message of type

(OFP _ DELETE) to the network no des causing them to delete the lightpath. The packet

switched nodes will release the path by themselves when the timer expire.

2.6 GMPLS WITH PCE LIGHTPATH SETUP

GMPLS is presented in this thesis for the purpose of comparing it with our proposed

solu tions. To be able to accomplish this comparison , we have to understand the Gl\IIPLS

the lightpath establishment procedures. As we mentioned before, GMPLS is a distributed

protocol. Using a distributed protocol on large networks makes the path computation process

very complex and resources consuming. To address this problem, IETF bas introduced a

centralized Path Computation Element (PCE) entity in the GMPLS control plane. In this

thesis, we implement the G 1PLS with P CE. The P CE i a centralized network element

responsible for computing the lightpath. In this topology, PCE also assigns wavelength

on each link for each request. The PCE is used in GMPLS-controlled Wavelength Switched

Optical Network (WSON) (Li et al ., 2012; L6pez et al. , 2010). PCE uses a messaging protocol

36

called P CEP to exchange information between GMPLS controller of each node and the PCE.

PCE maintains the information of the nodes, links tatus and wavelength availabili ty in a

databa e called Traffic Engineering Databas (TED) The link update i carried out by the

OSPF messaging (Link State Advertisements - LSAs) . This updates are sent when a new

wavelength status change occurs (reserve/ release) . A full link status update occurs when

new node joins or leaves the network. However, to keep the network stable, LSAs ar not

sent ach time update happened . For each link , once an LSA has b en generated , a time-out

timer tart . During thi time-out, no update is sent for thi link. Following in detail the

message sequenc on GMPLS with P CE mechanism to create a lightpath:

• The source node sends a PCEP request message for submitting a path computation

request.

• The PCE compute the path requested and assigns a wavelength to this path. Then , the

l CE end thi information to the source by using a PCEP P CRep message. Otherwise,

if the P CE fails in computing a path or in assigning a wavelength on it , it replies with

a P CRep message with NO-PATH reply, and the lightpath request is refused (forward

blocking) .

• pon the reception of PCRep message, the source node sends the Resource Reservation

Protocol-Traffic Engineering (RSVP-TE) messages along the computed path to reserve

it. The Path reservation message includes the Explicit Route and the Label et. Th

label et information include the wavelength assigned by the P CE.

• When a node receives RSVP-TE path reservation m s age, it performs th wavelength

a ignment if it is available. Oth rwise, another wavelength contained in the Label Set

is selected , according to a specifie wavelength assignment strategy (e.g., first fi t).

• If anoth r request requests the am resource (link and wavelength) on a specifie node

and thi request is accomplished before this one, this will have this node to refuse this

requ t and reply with RSVP refuse message (backward-blocking) .

• When the wavelength assigned , th des tination node sencls back a Re v message to

effect ively reserve the selectecl wavelength on each link of the path.

37

• Once the Resv message reaches the source, the lightpath is established and data can

be carried through the path.

Lightpath release i performed in a similar way as the setup process (in a distributed manner

through RSVP-TE signaling (Giorgetti et al. , 2009)). As the previous description the setup

procedure may be blocked during path computation because of lack of resources (forward

blocking), or may be blocked due to wavelength contention (backward-blocking) . Contentions

arrive when two or more RSVP-TE messages attempt to reserve the same re ource (link and

wavelength). This actually because the link availability databa e TED may be outdated

when the path request reached the PCE.

CHAPTERIII

CO DUCTED EXPERIME TS

Two experiments are conducted to demonstrate the efficacy of our propo ed solu tions.

Th fir t exp rim nt is to create end-to-end lightpath while the second is to create a backup

re toration lightpath in ca e of the failure of the primary lightpath .

3.1 Testbed Setup

Th architecture of our te tbecl is cl epictecl in figure 3.1. It consi ts of two clients A and B ,

which are connected cl ircctly to OpenFlow (OF) switche 1 and 2, respec tively. Each switch

is connected to an Electrical/ Optical converter . These converters are connectee! to DWD!\1

optical network composecl of three Ci co ROADM optical witches (Cisco Or S 15454) .

Open f low
Switch 1

Client A

10 G t: Wtl!i~.98
IOGt: \\' 1.1 5~. 1 7

OptnFiow
Control 1er

.··· .. ·

ROADM 1

Figure 3.1: Testbed Architecture

Cl ient B

39

Open Flow
Switrh2

The ROADM switches are connected on full mesh topology using optical fiber_ cables as

shown in figure 3.2. Each fiber cable is 10 meter long, and supports 32 channels. Each

ROADM is controlled by an OpenF!ow Optical Agent . The OpenF!ow optical agents and the

OpenF!ow switches are connected to an OF controller over an OpenFlow channel as shown

in figure 3 .1.

Figure 3.3 shows a photo ofthe physical equipments in our lab (Optical Transport Network

Laboratory) that is used in our experiments.

40

... CHAN · l-13 · 30-TX

CHAN · 1 · 3 · 2ii·RX ..

... CHA N· l -5-29- TX

LINEWL-l-11·2·TX·l 558.38 · LINEWL-1-l -2-TX-1558.98

LINEINL-1·11·2-RX-1558.98 · LINEWL·l ·l -2-RX-1558.98

F igure 3.2: Optical domain Interconnection

CHAN - 1 · 13· 29 - TX ...

... CHAN - 1 - 14- 29 - RX

Figure 3.3: physical equipments in the Optical Transpor t Tetwork Laboratory

41

3.2 Scenario 1: End-to-End Lightpath Setup and Release

The purpose of this experiment is to test the capability of the proposed solution to com

pute and establish a lightpath when required. As shown in the architecture in figure 3.1 ,

when the optical OpenFlow agent is connected to the controller , it acts as an OpenFlow

switch by sending Hello message followed by FeaturesR eply message which is shown in the

Wireshark screenshot in Figure 3.4.

a.
::::1 cu
VI
VI
c
0

tl
cu
c
c
0
u
VI c
cu
t10

~1
0
~
c
RI
VI
cu
~
u
'3 :1
0
""";::
~

"ê
c
0
u
.._1
0

~---- -----------------------l
filter:~~.:!J~- Opcnflo\\ v Exprenicm_ (Jar 10.1 Sa-. t: Filter1

1 ~. ---lo. lime Source OestJnWcn L.. P~t~l 1 lenqth lnfo
23 13.250959000 OF _swi teh! OF _Contro l ler OpenFlow 74Type: OFPT.JiELLO
25 13. 300689000 OF _Cont roll er OF _Swi teh! OpenFl ow 82Type: OFPT_FEATURES_REQUEST
27 13.301454000 OF_51viteh1 OF_Controller OpenF low 242Type : OFPT..FEATURES_REPLY
53 20.122936000 OF _Swi t ch2 OF _Control 1er OpenFlow 74 Type: OFPT.JiELLO

l 55 20.124558000 OF_Control ler OF_Switeh2 OpenFlow 82Type: OFPT..FEATURES_REQUEST
l 57 20.126062000 OF _Swi tch2 OF _Contro ller OpenFl ow 242Type: OFPT..FEATURES_REPL Y

153 41.631382000 OF _Controller OF ..Agent! OpenFlow 70 Type: OFPT..FEATURES_REQUEST
1160 42 .311926000 OF ..Agen tl OF _Control 1er OpenFlow 62 Type: OFPT.JiELLO
1162 42.353116000 OF ..Agent! OF _Cont rol 1er OpenFlow 278 Type: OFPT..FEATURES_REPLY
1 304 72.165885000 OF _Control 1er OF ...Agent2 OpenFlow 70 Type: OFPT..FEATURES_REQUEST
1 306 72.450784000 OF ...Agent2 OF _Control 1er OpenFlow 62 Type: OFPT.JiELLO
l308 72.483056000 OF...Agent2 OF_Controller OpenFlow 470Type: OFPT..FEATURES_REPLY
l 367 84.719829000 OF _Contra lle r OF ...Agent3 OpenFlow 70 Type: OFPT..FEATURES_REQUEST

371 85.157877000 OF ..Agent] OF _Control 1er OpenFlow 62Type : OFPT.JiELLO l
373 85.198821000 OF ...Agent3 OF _Contra 11er OpenFlow 470 Type: OFPT..FEATURES_REP

1 594149.922753000ClientA Broadeast OpenFlow 144 Type: OFPTYACKET_IN
1 596149. 9246870000F _Cont rol 1er· OF ...Agent3 OpenFlow 134 Type: OFPULOW...mo
159 149.9250220000F_Cont rolle r OF_51vitchl OpenFlow 90Type : OFPTYACKET_OUT
l 600149.92586 OOOOF _Cont rol 1er OF ...Agent2 OpenFlow 134 Type: OFPULOW...mO
l 602150.0362260000F _control 1er OF ...Agent3 OpenFlow 134 Type: OFPT..FLow...mo

604 150. 0484250000F _Contra ll er OF ...Agent2 OpenFlow 134 Type: OFPT..FLOW...mo
1 608 150. 961401000ClientA Broadeast OpenFlow 144 Type: OFPTYACKETJN
1 612151.4655760000F _Contro ler OF __5witch2 OpenFlow 90 Type: OFPTYACKET_OUT

OFPT _PACKET _IN
Message from
OF _Switchl to
OF _Controller

(Step A2}

OFPT_PACKET_OUT Message from
OF _Controller to OF _Switch2 {Step AG}

OFPT_PACKET_IN Message from
OF _Switch2 to OF _Controller (Step AS}

Figure 3.4: Wireshark Screenshot (Lightpath Setup Message Exchange)

As shown in Figure 3.5, a data flow sent from Client A to Client B arrives at OpenFlow

switchl. When the OpenFlow switch1 does not find any flow entry that matchs with this

flow, it encapsulates the first flow packet in an OFPT _PACKET _ IN message and forwards

it to the Controller. Then, the controller uses the PCE to calculate the lightpath, and

creates the lightpath by sending OFPT _ FLOW __ MOD message (OpenFlow Messages

Mapping solution) or OFPT_ CFLOW __ MOD message (OpenFlow Extension solution)

42

to the switches. The connection is established between the two clients following steps Al ,

A2 , A3 , A4, A5, A6, and A7 (Figure 3.5). The wireshark screenshot presents the exchanged

messages during this scenario (Figure 3.4).

0 lightpath Setup Scenario

Opr:nF'low

Swircb 1

Oient A
ROADM 1

Figure 3.5: Network configuration and message exchange

o,u~nFlow

Switch2

l@
$)
Oie:n18

As shawn in figure 3.5 the connection is established between clients, A and B as the

following scenario:

Step Al: A data flow sent from client A to client B arrives at OpenFlow switch 1.

Step A2: OpenFlow switch 1 does not find a flow entry in its flow table to forward this flow, so

it encapsulates the first flow packet in a OFPT_ PACKET_ IN message and forwards

it to the controller as shawn in Figure 3.4.

Step A3: The controller calculates the path from Client A to Client B, and sends OFPT _ PACKET _OUT

message to the OpenFlow switch 1 . The controller sends also OFPT_FLOW_ MOD

messages (OpenFlow Messages Mapping solution) or OFPT _ CFLOW _ MOD message

43

(OpenFlow Extension solu tion) to the Optical OpenFlow agents in arder to create the

lightpath (Message exchange shawn in Wireshark screenshot in figure 3.4).

Step A4: When OpenFlow optical agents receive this message, they translate them into the ap

propriate TLl commands and send it to the ROADM switches .

Step A5: After creating the lightpath, the data flow traverses until OpenFlow switch 2. When

the flow is received by OpenFlow switch 2, the switch does not find a flow entry in its

flow table to forward this flow. Then, it sends a OFPT_PACKET_IN message to the

controller requesting an action for this flow (as shawn in Figure 3.4).

Step A6: The controller sends an OFPT PACKET OUT message to OpenFlow switch 2 to

forward this packet to client B.

Step 7: OpenFlow switch 2 forwards this flow to client B ..

Cisco Transport Controller (CTC) screenshot , in the initial state while no lightpath ex

isted, is depicted in figure 3.6. Figure 3.6 depicts Cisco Transport Controller (CTC) screen

shot showing the optical channel setup on wavelength 1558.98 nm after lightpath creation.

This scenario is explained by UML diagram in Figure 3.8.

44

U" Cisc:o Tt4Mport Conlroller - QI

Ffo Edt V\ew ferAs wn:aw Hcb

Figure 3.6: Cisco Transport Controller Screensho t (Ini tial State)

Figure 3.7: Cisco Transport Controller Screenshot (After Lightpath Establishment)

Figure 3.8: UML diagram for lightpath establishment

45

3.3 Scenario 2: Backup lightpath R estoration

This scenario demonstrates how OpenFlow controller acts in case of link failure. Figure

3.9 shows the steps that are executed in this scenario .

• Bad:up liahtpath Restoratlon Scenario

ÛJitnFlow
Switc: h 1

Oîrn i A
ROADM 1

··················o

"'

ID C t: WL 1 ~51.

HtCEWU5:\!t l7

""~ .,. ..

Client B

Figure 3.9: Exchanged messages Backup lightpath Restora tion Scenario

Oprnlilow
Swi lch 2

Step BO: To simulate the link failure, we unplug the fi.ber cable between ROADM 2 and ROADM

3.

Step Bl: When the fi.ber connection between the ROADM 3 and ROADM 2 fails, both OpenFlow

optical agents corresponding to these Optical Switches read the alarms of the optical

switches using TLl (RTRV-ALM-ALL) command 1 . Then, they send OFPT _ PORT_ STATUS

Messages to the controller about the port status update (Message exchange is shown

in figure 3.10).

1The mechanism of detecting link failure is out of scope of t his work

46

Step 2B: OpenFlow controller calculates alternative lightpaths for the existing fai led lightpaths.

Step 3B: The controller sends OFPT_FLOW_MOD (type= OFPT _ADD) messages (OpenFlow

Messages Mapping solution) or OFPT_ CFLOW_MOD messages (OpenFlow Exten

sion solution) to the optical switches to create new lightpath. In this case, a new

lightpath is established from ROADM 2 to ROADM 3 via ROADM 1 on a different

wavelength (1588.17 nm) (Message exchange shown in Wireshark screenshot in figure

3.10).

Step 4B: The controller sends other OFPT_FLOW_MOD (Type= OFPFC _ DELETE) mes

sages (OpenFlow Messages Mapping solution) or OFPT_ CFLOW_MOD messages

(OpenFlow Extension Solution) to the optical switches which are associated with old

lightpath to delete the primary lightpath (Message exchange shown in Wireshark screen

shot in figure 3.10).

Step 5B: When the OpenFlow Optical agents receive these messages, they translate them into

the appropriate TL1 commands and send them to the optical switches.

OFPT_PORT_STATUS && OFPT_PORT_STATUS Messages from
OFPT_FLOW_MOD OF _Agent2,3 to OF _Controller {Step Bl)

ê .S ~ lntter. ~~nllc-.t!_lj_~,";j2~p~1J:.tya,";J';s v ExpJesocn .• Clw Ap S.ve Fotterl ~~~ ~ IQ ~
';;; ~ g- 'Ne. r nne Source Oestlnalicn lp,c~ccl ~ length lnfo 1 ~ ~ 1-t
~ t; tj 114121.389403000 OF_Agent2 OF_Controll er Openn ow 118Type: OFPT_PORT_5TA i (ti ;a ;:!:!
lll
ro Cllb.O-;::: 1150 21.446946000 OF _Agent3 OF_Controller OpenFlow 118 Type: OFPT.YORT5TATU :::1 ""' 0

~ C1l ~ :E
~ C:X: ~ ! 15121.446999000 OF _Control 1er OF _Agent3 OpenFlow 294 Type: OFPT_FLOW.J«JD ~ :E ~ 1
~ 0

1 ~ ! 155 21.564058000 OF _Control 1er OF _Agent2 OpenFlow 614 Type: OFPT.JlOW..MJD 1 c .-. S:
0

0
-~ 157 21.650229000 OF _Contro 11er OF _Agent3 OpenFlow 374 Type: OFPT..FLOW..MJD i l 0

0
0
0 0, ...J 1207 34. 746444000 OF_Controller OF _Agent2 OpenFlow 134 Type: OFPT_FLOW.J«JD

~~ ~ 'E 1 209 34. 7 46969000 OF _Cont1·o 11er OF _Agen tl OpenFl ow 134 Type: OFPT..FLO\·U~D 1 ~ 1; ~
S "ê ~ 1 211 34 .876159000 OF _Cont roller OF _Agentl OpenF low 134 Type: OFPT..FLOW.JIQD 1 Z ~ ~
g t; -f; (1 215 34.909426000 OF _Controller OF _Agent2 OpenFlow 294 Type: OFPT..FLOW..MJD 1 ~ ;a ~
u..l 8 Cll 1 220 35.880113000 OF _Controller OF _Agent2 OpenFlow 134 Type: OFPT..FLOWJ.KJD l -c ._.... Œ
t u..l ~ 1 221 35 .880301000 OF _Contro1ler OF _Agent3 OpenFlow 134Type: OFPT..FLOVKlD i e! t: â
0 0 ~ ~ ~98229900~F _Contro~e~F _Agent3 _ _9penFlow ~94 Type : OFPT..FLOW..MJD _ C) 3

Figure 3.10: Wireshark Screenshot (Lightpath Setup Message Exchange)

Figure 3.11 shows CTC screensho t after the lightpath res toration is done, representing

the optical channel setup on a different wavelength 1558 .17 nm.

47

Figure 3.11 : Cisco Transport Controller Screenshot (After Lightpath Restoration)

This second scenario is explained by this UML diagram in Figure 3.12.

~ ~Aœn< l
i

H: Send Delete: M~O

Figure 3.12: UML diagram of lightpath recovery

3.4 GMPLS Approach Experiment

Still GMPLS is not deployed commercially. Dynamic Resource Allocation via GM

PLSnOptical Networks (DRAGO) software extends the network equipment using S MP to

adapt this equipment to GMPLS control plane. The DRAGO project studies and develops

an open source software to enable dynamic provisioning of network resources on an inter

domain basis across heterogeneous network technologies. The project enables the communi

cation between networks of different types through the GMPLS control suite. The extension

48

of the DRAGON project to support CISCO 15454 ROADM is conducted by a colleague

in another research project 2 . Further information about DRAGO project is available in

(Lehman et al. , 2006a) and (Lehman et al. , 2006b) . To experiment GMPLS , we construct

a transparent optical network testbed with two ROADMs (Figure 3.13) . In this infrastruc-

""'

VLSR2

ID,..
Gtc2 : 10.16.0.1
Gnll : lll.JO.O.l

~ Tt : IO.LIIU
~ Tt : IO.LIO.'

Gtel

Figure 3.13: GMPLS Experiment Using DRAGO

ture, the control plane consists of two Client System Agents (CSA) and two Virtual Label

Switch Routers (VLSR). The CSAs and the VLSRs are connected via a hub. GRE (Generic

Routing Encapsulation) tunnels are created between the CSAs and the VLSRs and between

the VLSRs themselves to exchange RSVP-TE and OSPF-TE messages. The S MP / TL1

Gateway has a connection with the switch hub to allow SNMP management by the VLSRs.

It translates S MP messages to TL1 commandes in order to configure the ROADMs. In

the S MP / TL1 Gateway machine, we install two machines. Each one listens to a VLSR on

port 161 and controls one ROADM. sing wireshark capture in VLSR2 (Figure 3.14 (a)) and

VLSR1 (Figure 3.14 (b)) , we explain the GMPLS signaling to create a Label Switched Path

(LSP) from CSA2 to CSAL

CSA2 sends RSVP_ PAT H message to VLSR2 with the destination set to the target CS Al.

Both VLSRs forward the path message since they are not the destination. When CSA1 re-

2The Configuration and the mechanism of extending DRAGON to suppor t ROADM is out of scope of this
research proj ect.

49

~ ~-~RSW.OF&&SNMP------- ----1
1 '"'"' .!!"·'tl~~ y &;>r,..._a..., .. - . lîlt" l 1

c; jN.. r... s...ce o-n - ~O<d .l.mqth Jnfo forwards
~ ~ 293 206.751530000 CSA2 (Gre3) VLSR2(Gre3) RSVP 266 PATH tJ.ess ag . ~ PATH

.... 3: -c .-t N 296 206.764846000 VLSR2(Eth0) Gateway2 s Ml' 85 get-request 1. 3l
Q) c: -' ~ 1297 206.807176000 Gateway2 Vl.SRl(EthO) s '<P 343 get-response 1..
~ ~ ~ ~ 3: 298 206.807594000 VLSR2(Eth0) Gateway2 s '<l' 85 get - request 1. 3j
~ QJ a: ~ 1299 206.809157000 Gateway2 VLSR2(Eth0) s~w 343 get-response 1. j
z ~ ~ z ~ 1300 206.809243000 VLSR2(Eth0) Gateway2 s •v,p 86 getBulkRequest 1
VI ~ > VI 303 206.828414000 Gateway2 VLSR2(E t h0) S Ml' 1422 get-response 1.
~ 328 206.862966000 VLSR2 (Gre2) VLSRl(Gre2) RSVP 250 PATH tl.essage. ~ S:

330 207 .601830000 VLSRl(Gre2) VLSR2(Gre2) RSVP 186 RESV tJ.essage . s~ Œ

VLSR2

RESV PATH 1 ~!~ ~~i :~~~i1:~~ ~;~:~;~~hO) ~~:~~~0) ~ : 1~~ ~:~=~:i~~~~e\~~~ ~ ~ ~ ~
Message 1343 207. 730196000 VLSR2 (EthO) Gateway2 s Ill' 92 set-request 1. 3) 111 ~ ~ Œ ~

from VLSRl l 344 207 .907520000 Gateway2 VLSR2(Eth0) s 'IJ.P lOS get-response l. j ~ "::i ~ g V>

to VLSR2 ~2~9~98929000 _ VLSRl(Gre3) _ ~Al~r~ _ ~ ~ ~V~es~g~ S N ::::: a. ~ ~
1 VLSR2 forwards RESV Message to CSA21 ~

(a) VLSR 2

First PATH Messa

1 Filter. l,;j;ij;.;p 1.-~VP·TE&&SN-;;;; --- -Y-;f6siCil-~eor AfF

~o. Time- - _, Source Destination ~ P;c~ } ength lnfo

~
341 245.8792 5000 VLSR2(Gre2) VLSRl(Gre2) RSVP 250 PATH Messag . SI

N 344 245.901433000 VLSRl(EthO) Gatewayl SNMP 85 get-request 1. 3
> 345 245.937331000 Gatewayl VLSRl(EthO) s MP 343 get-response L I

346 245 . 937765000 VLSRl(EthO) Gatewayl SNMP 85 get-request 1. 31
.... 347 245.939104000 Gatewayl VLSRl(E thO) SNMP 343 get-response 1.
(!) 348 245.939255000 VLSRl(EthO) Gateway1 SNMP 86 getBulkRequest 1

349 245.952382000 Gatewayl VLSRl(EthO) SNMP 1422 get-response 1
376 245.994387000 VLSRl(Grel) CSAl(Gre1) RSVP 234 PATH Message. S S:
379 246.016820000 CSAl(Grel) VLSRl(Grel) RSVP 186 RESV Message . si Œ

1
386 246.051709000 VLSRl(E thO) Gatewayl s MP 94 set-request 1. 3ij"' ~ ;5 ~ ~
387 246 . 145049000 Gatewayl VLSRl(EthO) SNMP 109 get-response LI ... S: ~ ~ s;

Message 1388 246.145155000 VLSRl(EthO) Gatewayl 93 set-request 1. 3 ~ ~ ~-' ~ -o
from CSAl l 389 246.197931000 Gatewayl Vl.SRl(EthO) 107 get-response 1. ~ ;:l ~ ~)6'

'--t..,o,_V.._l,_,S!..!.R_,_.l.__, ~04246~17886000 _ VLSRl(Gl~) _ ~S~G.c:_2)_ ~6~S~~a~ ~ ~-' ~-' a. ~ .-.
VLSRl forwards RESV Messa e to VLSR2 g:

(b) VLSR 1

Figure 3.14: GMPLS Scenario: Wireshark screenshot

ceives the RSVP_ PATH message, it replies to it with RSVP_ RESV message and sends it

to VLSRl. VLSRl forwards this message to VLSR2 because again i t is not the destination of

the message. Finally, VLSR2 forwards the RSVP_ RESV message to CSA2. At this point ,

the LSP is active and can be used. TheS MP / TLl Gateway translates theS MP messages

sent by the two VLSRs to TLl commands in arder to configure the two ROADMs.

50

3.5 Experimentation Results

The experiments setup time (in millisecond) is shawn in table 3.1 for OpenFlow solutions

(OpenFlow M essages Mapping and OpenFlow Extension) and the GMPLS approach.

In this table, Path1 and Path2 refer to the primary and the backup lightpaths, respectively.

Path1 nades are OF _Switch1---+ ROADM2 ---+ ROADM3---+ OF _Switch2, while Path2 nades

are OF Switch1 ---+ ROADM2 ---+ ROADM1 ---+ ROADM3 ---+ OF Switch2. LSP on the table

refers to Label Switch Path for GMPLS. LSP nades are CSA1 ---+ ROADM2 ---+ ROADM3

---+ CSA2. The experiments results show that OpenFlow Extension solu tion (with 216 ms

setup time) outperforms OpenFlow M ess ages Mapping solution (with 227 ms setup time).

This result is expected because OpenFlow Extension solution uses one message to encap

sulate bidirectionallightpath information and OpenFlow Messages Mapping needs two

messages. For th backup lightpath (Path2) which spans on three nades, OpenFlow Exten

sion solution takes 239 ms to create the lightpath while OpenFlow Messages Mapping

takes 269 ms. On the other hand, GMPLS takes more time (340 ms) to create lightpath

than OpenFlow solutions. This is because the GMPLS-based control plane is complicated.

This is due to its distribu ted nature, the number of protocols, and the interactions among

different layers. The B.exibility and manageabili ty of the GMPLS-based control plane is low,

because, for example, if we want to create or update an end- to-end lightpath, the signaling and

reservation messages must be updated and exchanged between ali the intermediate VLSRs.

However , the OpenFlow-based UCP provides the maximum B.exibility and manageability for

carriers since ali the functionalities are integrated into a single OpenFlow controlier.

51

OpenFlow Messag s Mapping Solu tion

Controller Switch est ablishment Total (ms)

ROADM2 ROADM l ROADM3

P ath l 16 121 - 90 227

P ath2 18 110 30 111 269

OpenFlow Extension Solution

Controller Switch est ablishment Tot al (ms)

ROADM2 ROADM l ROADM3

P a th l 16 100 - 100 216

P ath2 18 90 30 101 239

GMPLS Solu tion

RSVP-TE Switch establishment Total (ms)

ROADM2 ROADM l ROADM3

LSP 130 110 - 100 340

Table 3. 1: T he experiments t iming

CHAPTERIV

SIMULATION STUDY

In th is chapter we present a comparative study of the OpenFlow solu tions (OpenFlow

Messages-Mapping, OpenFlow Extension) and the GMPLS approach. To conduct the com

parison, A cu tom-buil t J ava event-dri ven simulator i wri tten based on the mechani m

mention d in chapter 2. T he mcasurements taken from th previously conducted experi

ments are used in writing a custom-buil t J ava event-driven simula tor.

Table 4.1 shows the signaling protocol used by each solution. In this table the signaling

protocol is in the fir t row , and in front of each lution we marked which signaling protocol

i u ed in it .

The simulation is carried out on two real opt ical network topologies. These network

topologies are the physical network topology of United States National Science Foundation

(NSF) and the optical network topology of the European Union Ultra-High Capacity Optical

messaging protocol

OFP OSPF-TE RSVP-TE

GMPLS with PCE NO YES YES

Op -nFlow Message-Mapping solu t ion YES NO NO

OpenFlow Extension solu tion YES NO TO

Table 4.1: Summary of Simulatecl Solu tions

53

Transmission Network (European Research Project Cost239). The next section presents the

simulation environment , parameters and algorithms. Then, the results for each network are

presented in sections 4.2 and 4.3.

4 .1 The Custom-built Java Eve nt-Driven Simulator

The simulator is a custom-built Java event-driven application. It i written based on the

mechanisms mentioned in Chapter 2. The internai optical switch lightpath establishment

time is emulated to 60 ms for all solutions. For both topologies the links between nod s are

bidirectional Each link supports 32 wavelengths. The controller and the PCE p rform first

fit for assigning wavelengths. Wavelength can no t be changed across the path since node do

not support wavelength conversion . Lightpath requests are generated according to a Poisson

proce s and uniformly distributed among all node pairs. The holding time is fixed to 180

seconds, the average inter-arrivai time is varied from 0.3 s to 18 s. This varies the Erlang

from 600 to 10.

Algori thm 1 explains how the written application simulates the OpenFlow solutions. The

application uses the network topology no des (G), the connections between them (V), and

the simulation end- t ime as inputs. Then, it starts by generating on event of type create

channel After that, it reads events one at a time and handles it. Depending on the event

type, each event type is treated differently by the algorithm, as explained before. For the

create-channel event , it generates a new create-channel event based on the Poisson inter

arrivai time, updates the controller 's time, calculates the lightpath , finds a free channel

(wavelength). Finally, it generates the "create cro s-connect " events for each witch through

the ca.lculated path (events to be executed by the switches) . nless there is no lightpath

available, it declares this request as a blocked request . For the events of type Delete channel,

it updates the controller 's time. Then , it generates the delete cross-connect events for each

witch through the lightpath (events to be executed by the switches). For the event of type

"create cro s-connect" , it generates an event of type delete channel For both event of type

createj delete cross-connect, it updates nodes time (emulating the cro s-connect creation time

60 ms) . Then, it updates vertex information. The cross-connect creation time is calculated

54

from the testbed experiments by measuring the time difference between sending the lightpath

creation TLl command and the response received from the optical switch after executing th

command.

D ata: G: Graph, V: vertex, EndTime: Simulation End Time

R esult : Establishment t ime, Blocking probabili ty and control traffi c

lnitialization: Generate one event (using a uniformly distribu ted source and destination and

Poisson inter-arrivai time);

w hile current time < EndTime do

reac! the nearest event;

switch Event Type do

case C1·eate Channel

Generate new Create Channel event based on Poisson inter-arrivai time;

Update the controller 's t ime;

pdate the controller's vertex information;

Calculate path using Dij k tra Algori thm;

Fin cl a free channel (wavelength) cross the calculated path;

if Path calculation r·etuTn false OR no channel available then

Declare Request Blocked;

Continue with the next event;

else
Generate "create cro s-connect " events for each node through the calculatecl

path (with the information of event time, path and wavelength);

end

end

case Delete Channel

Update the controller's time;

Upclate the controller 's vertex information;

Generate delete Cro -Conn ct events for each node through the calculated path

(with the information of event time, path and wavelength);

end

case C1·eate Cross-Connect

Update nodes' t ime (emulating the cross-connect creation t im 60 ms);

Update vertex information;

Generate delete event for the crea ed path (with event time = current time + holcl

time);

end

case Delete Cross-Connect

Update nocles ' time (emulating the cross-connect creation time 60 rn);

Upclate vertex information;

end

endsw

55

56

GMPLS simulation is divided into three algorithms 2,3 and 4 (Main algori thm and two

event handler procedures) . These algori thms explain how the written application imulates

the GMPLS with P CE approach. In this algorithm the inputs and the ini tialization are the

ame as algorithm 1. By trav r ing all the events depending on their types, each event type

i treated differently a explained on a.lgorithms 2, 3 and 4. For the create-chann 1 v nt,

it generates a new create-channel vent ba ed on the Poisson inter-arrival time , updates

the controller t ime, calculates the lightpath, finds a free channel (wavelength), finally it

genera te the "crea te cro s-connect " event for the first switch in the calculated path (event

to be executed by the switch). nless there is no lightpath available, it declares this request

as a blocked request . For the events of type Delete channel, it updates the controller 's

time. Then, it generates the delete cros -connect events for the first switch in the lightpath

(event to be executed by the switch). For both vents of type create/ d lete cross-connect,

it updates node time (Emulating th cross-connect creation t ime 60 ms) . Then , it updates

vertex informat ion. For the event of type "create cross-connect ", it ver ifies if the requested

channel is available. If it is not available, it declares thi request blocked (Backward Blocking)

and it generate delete channel reques t. If it is available and this is not the last witch in

the lightpath , it generates an event of type "create cross-connect " for the next switch in the

ligbtpath, otherwise it generates an event of type delete channel. For both events of type

LSA update (create/ delete), it updates TED (controller V rtex information).

Data: G: Graph, V: vertex, EndTime: Simulation End Time

R esult: Establishment time, Blocking probability and control traffic

Ini tialization : Generate one event (using a uniformly distributed source and destination and

Poi on inter-arrivai time);

while cu1-rent time < EndTime do

read the nearest event;

if Event Type == C1·eate Channel then Generate one event based on Poisson

inter-arrivai time ;

switch Event Type do

case Create/ Delete Channel

1 Call Channel Event-Handler procedure;

end

case Createj Delete Cross-Connect

Cail Cross-Connect Event-Handler procedure;

end

case LSA update (Cr·eate/ Delete)

1 pdate TED (controller Vertex information) ;

end

endsw

end

Algorithm 2: GMPLS/ PCE Event-Driven Simulator algorithms

57

58

switch Event Type do

case Create Channel

Upclate the controller 's time;

Calculate path u ing Dijkstra Algorithm;

Fin cl a free chan n l (waveleng h) cross the calculatecl path;

if Path calculation 1·etum fal se OR no channel available t h en

1 Declare Reque t Blockecl ; Continue with he next event;

el e
Generate "create cross-connect " event for the first nocle in the calculatecl path

(with the information of event time, path and wavel ngth);

end

end

case Delete Channel

Upcla e the controller 's time;

Generate del t Cro s-Connect event for fir t nocle in the calculatecl path (with the

information of v nt time, path and wavelength);

end

endsw
Algorith m 3: Channel Event-Hancller procedure

switch Event Type do

case Create Cross-Connect

Update nodes time (emulating the cross-connect creation time 60 ms);

Update switch's vertex occupation;

if current switch is the last one in the path then

1

Generate delete event for the created path (with event time = current time + hold

time);

else

if channel (wavelength) is available then

\ Generate "create cross-connect " event for the next node in the calculated path;

el se

1

Declare this request blocked;

Generate delete channel event
end

end

Generate LAS update (Create) event;

end

case Delete Cross-Connect

Update nodes time (emulating the cross-connect creation time 60 ms);

Update switch's vertex occupation;

if current switch is not the last on the path then Generate delete Cross-Connect

event for the next node in the calculated path ;

Generate LAS update (Delete) event ;

end

endsw
Algorithm 4: Cross-Connect Event-Handler procedure

4.2 National Science Foundation (NSF) topology

59

Figure 4.1 shows the network topology of the Nation al Science Foundation (NSF) top ol

ogy Foundation (2014). SF top ology consists of 14 nodes and 21 links, each link has 32

channels (wavelengths) (Figure 4.1) . The distances between nodes are shown in the figure.

Dijkstra algori thm uses these distances to calculate the shor test paths.

60

6

Figure 4.1: NSF topology (14 nodes and 21 links)

The simulation is run for a period of 3000 sec to ensure the stability of the network.

Lightpath establishment time, control traffic got into and out of the controller and PCE,

and the blocking probability are calculated from the simulation. The results are shown in

the graphs : (i) Lightpath establishment time expressed in milliseconds vs . network load

(Erlang) (Figure 4.2) ; (ii) umber of control messages (Controller load) vs. network load

(Erlang) (Figure 4.4); (iii) Lightpath blocking probability vs . network load (Erlang) (Figure

4.5).

~~------~--~------~--'.=~==~~==~ : ·11---r-- Openflow messages mapplng

:: ~-·~~~ .. 6. - ~.:~.~-:~. :: :;.±;~; :l,~~J~. -~]=:~::;;~·:·~ :~·~
::.e 350 ~ ~:........... E · · ·· · ·· : ·· · ·· · ·-·· · ··:······· ···?· ·· ······ · ~·

;::
"· ~ •. . . • ••• : •• ; ,·•...• ,= ...•....••. •.· ...•••••. . . : .· .•....•. = ,· !: Jl.AJ · · ············· · ···~- •• • f' =-··········. ~

-~

~250
w

~DJ
~

:: • , ··· :·· ····-··········<····················· .. ·····.··:·::·:···· : ··········l········

· ·~ ·.:~c:~ ·: r ::~: .·~ ·.: ·~ ·+ ··f ·: ·~ . :~L.:~ :: ·~ : - ~:·. -~:~~ : ~::I· .•..• L • .• .. +···· .•. ; •..•..
~0~~~~~.~00~~.~~~~200~~250~~~300~~350~~~~~.~~~~~~550~~900

Network Load (Er1ang)

Figure 4.2: Lightpath establishment time [ms] vs . network load (TSF topology)

3.8

]il 3.6

" .,.
&! 3.4
"0 .,
~ 3.2

~ 3
CL

g- 2.8
I

-1-- OpenFiow messages mapping
· · · · · + · · · OpenFiow Extenlion

--& ·- GMPLSIPCE

. ··~=·······:·····- · ·; ; ,

.. ~~~ .. ~ .. T ~-

..... · .. ·.·······-:···········-·;_·_·_·_·_·_··.··.· .. ·· ... rj~~+;~;~!·,· 'l! r-'~llb<:i.l...J.
~ 2.6 ··· · ~········ ~ ········ ; ~ ······· ·~ ···· .,
E -l 2.4 : : ; ; ; ; :.

2.2 ... , , : ; ,.

2 L-~--~--~--~--~--~--~--_L __ _L __ _L __ _L __ ~

50 1 00 150 200 250 300 350 400 450 500 550 600
Network Load (Erlang)

Figure 4.3: umber Of Hop Per Request vs . network load (SF topology)

61

Figure 4.2 depicts the establishment time for bidirectionallightpath. It shows that Open-

Flow Extension solution experiences the lowest setup time as shown with blue line. Because

OpenFlow Message-Mapping uses two FLOWMOD messages to establish the lightpath, it

is expected that this solution experiences higher time than OpenFlow Extension solution as

shown in the figw-e with the red line. OpenFlow solutions execute the lightpaths on parallel,

Renee the establishment time of lightpath is around a fixed value. On the other hand, GM

PLS approach executes the lightpaths sequentially, Renee it has higher establishment time.

As a result , GMPLS has the highest setup time as shown in the figure with the green line in

the range 600- 900 ms for bidirectional lightpaths.

GMPLS has the tendency to decrease the establishment time as the network load in

creases. Because at high network load the average path length is shorter as shown in figw-e

4.3 (it decreases from 3.6 to 2.6 nodes per request) . Even though the number of hop decreases

too on OpenFlow-based solutions, this do not affect the lightpath setup since the requests is

executed in parallel.

Figure 4.4 depicts the control traffic for each solution. It shows that both OpenFlow

solu tions experience low control traffic compared to GMPLS solution as shown by blue and

green lines. This difference between the OpenFlow solutions and GMPLS solution due to the

62

~ OpenFiow messages mapping
45 '" + "· OpenFiow Extention ... ; L l. 1 ··;,: ·,:xs.:...C:::'.· ~ :

_ ..,. .. GMPLSIPCE : ; : -

40 ~ ;...... ' : : i . ; : .,.,<>" ·~ :

1: •.••••••• , •••• , ••••..•. , ··•··• .• r ;r;J~t~:r····················:·······
1: ·.-.·.·. ·.·.·-.·.····L.~.-.·.-~~----~-:-· .. ·-.,?.·_,·:·:= ... 1.~~~r::": .. r.·.::: :r ·.·;.: ::.·:::,:., · =-~--+-.....,1':-::-:\'é.:
5 15 · ·· ··· ·- --~ ..,u ~ •••••••..•. ; ••......•.. ~ .. ······-·••

•o , ,/ · ' • . ..: ·::~+,_., .• L,,,J .. .-.~ ·:.-:T".·-·.<::.· .t.::.~.·-··~ ·J .~.- .-.~ · ·
s : .. . ::~~-:,,·.-~. -.: ... ·::.· .. L_, · ~ -~ ·.; ., ·' ', • "T ---~·-··-····-~- ••••• ·--~---·

Networic Load (Erlang)

Figure 4.4: N umber of control messages vs . network load (SF topology)

P CEP messaging has to be sent for each node and also because of the LSA update messages

which each node has to send back to the controller in case link sta te changes.

F igure 4.5 depicts the blocking probabili ty. T his figure shows that both OpenFlow based

solutions have the same blocking probability values which are expected since both tech

niques use the same Dijkstra algori thm and the same resource Database. On the other hand,

GMPLS-based approach experiences the backward-blocking which malœs this technique have

higher blocking ratio with low network load as shown in the figure with green line. As we

mentioned before, the backward-blocking occurs because of wavelength contentions. Con

tentions arrive when two or more RSVP-TE messages attempt to reserve the same resource

(link and wavelength) . Indeed, the link sta te database TED may be outdated when the path

request reaches PCE causing this conten tion.

j
i
~

i

.~ ===~,.--,~=~=r~=c:::=~=~=:r=c~c=-~=c=-c=cc~

to·•

, .
...

·•·

! .

~~.,...mnngtt~
···+ ·· ()ptonflowEaltniOOII

10_,0!---4---,!;,--------*----d,,----------,1--____k-::::•,:·G~~~~==!d.,
~Uud~E'\Iflll

Figure 4.5: Lightpath blocking probability vs . network load (NSF topology)

4.3 European Optical N etwork Topology (COST239)

63

Ultra-High Capacity Optical Transmission Network (European Re-search Project Cost239)

O'Mahony (1996) is the second topology we ran our simulation on. This topology is depicted

on F igure 4.6.

COST239 topology consists of 11 nades and 26 links, each link has 32 channels (wave

lengths). The distances between each pairs are shawn in the figure. Dijkstra algorithm uses

these distances to calculate the shortest paths.

The same simulation steps are followed as the NSF topology. The simulation is run for

a period of 3000 sec to ensure the stability of the network. Lightpath establishment time,

control traffic got into and out of the controller and PCE, and the blocking probability are

calculated from the simulation. The results are shawn in the graphs : (i) Lightpath estab

lishment time expressed in milliseconds vs. network load (Erlang) (Figure 4. 7) ; (ii) Number

of control messages (Controller load) vs. network load (Erlang) (Figure 4.9); (iii) Lightpath

blocking probability vs. network load (Erlang) (Figure 4.10) .

The results shawn in figure 4.7 support the same result of the SF topology. It depicts

64

2

Figure 4.6 : COST239 Topology (11 nodes and 26 links)

that OpenFlow Extension solution experiences the lowest setup time as shown with blue line.

It depicts also that GMPLS has the highest setup time as shown in the same figw-e with

green line.

As the previous topology, the figw-e shows that GMPLS lightpath establishment time

decreases as the network load increases, because at high network load the average path

length is shorter as shown in figure 4.8 (it decreases from 2.77 to 2.34 hopper request).

Figure 4.9 depicts the control messages for each solution. It confirms the result we got

on the NSF topology. It shows that OpenFlow solutions experience the lowest control traffic.

lt depicts also that GMPLS has the highest control traffic as shown in the same figure with

the green line.

65

~rr=c==c~c==c~~~_,--,--.--.--,~

450 li~~::~~:: ~=~:~~i~~s mapp1ng i · ~ j) , ..
11 - -& ·· GMPLSIPCE : : : :

! : . .,.,~:"~:. ,.~ .. ~~ ~ ~J:~~<>-"<!--dl
]i 3)] : ~· · · ·· · ·+··· ·· ···: ··· ·····; ; ~ ~
E
~ 250 , ; : ~ ; ···:······<· ··· ··· ··'· ···· ·· ·
:ë : . :

~ 200 ··-········ · ·· ; ~········ ~ · ···· ··· f ·· ·····~ · · · ·· · ··~·-······-:·-······

.. ;. ~ {.. '•' ~-
[1 50~--~- ,~··-· ~·~··-· ·.· · -· ··r· ·~··-· +·· ·~·i~··~··_· · ·~··~>·~· · .. · ··-· ·~'·~··-·· ·+· ·~~·~·~·· -· ·r· ·~··~··+· · ·~· ·r··~· ·-···+'·-· ~~~t
~ 100

·•·'+ ; ·1-· : ' ; • . ·• · ·• · "* i -~o · ·-to · ·• ·+·'
50 ·· · ~· · · · · · ··>··· ·· · · <··· · ·· · ·~ ·· · · · · · c·······r······>··· ·····i ·······: ··· ····· :········

Q L-50~--1~00~-1~50---2~0~0--250~--~~L---~L---400~--450L_ __ 500L_ __ 55L0--~600
Network Load (Erlang)

Figure 4.7: Lightpath establishment time [ms] vs. network load (COST239 Topology)

Figure 4.10 depicts the blocking probability and it also confirms the result we got on the

SF topology. This figure shows that both OpenFlow based solutions have almost the same

blocking probability values. On the other hand, GMPLS protocol experiences the backward

blocking which makes this technique have higher blocking ratio with low network load as

shawn in the figure with green line.

66

--+-- OpenFiow messages mapping
2.9

128~~~~~14!::......
&1 2.7

· · · + · · · OpenFiow Extention
- -G- · - GMPLSIPCE

-o ..
~ 2.6
)(

w
:;; 2.5
a.
en
{l 2.4
0
z
0 2.3
:;;
5 2.2
z

2.1

... : :··· ·····-:·-·······:··

····i•

... .: r· ·· ····-:········-r·······
.......

.. . · ' .. . ·: ... ·.~·-······
~" •.•.•. ; .••••.• <· •..••.•. ~ ••••... .•.••...

... .;

2 L-~--~--~--~--~--~--~--~--~--~--~--~

50 100 150 200 250 300 350 400 450 500 550 600
Network Load (Erlang)

Figw-e 4.8: Number Of HopPer Request vs. network load (COST239 Topology)

50

45

'ü' 40 ..
~35
""' " Q:30
" ;:=

25 ~
f-..
ai 20
a:
~ 15
0

(..)
10

5

0

--+-- OpenFiow messages mapping
· · · + · · · OpenFiow Extention

-~ · G~':OC. _··········· , .• J~ ~Ft<"'"'
. ..0' :. . : ~ ''" f;Y' .. ,_ : ; : _·· ... ·· ~

._ ·+ ·· · · · · · · ~ · ;o~-~ - - .·
. ~ .

·.~:~r:1~E·. ~:····r~rc ·r ·· ·" :;.. +•·'··
50 1 00 150 200 250 300 350 400 450 500 550 600

Network Load (Erlang)

Figure 4.9: umber of control messages vs. network load (COST239 Topology)

·:· ···· ···:·· ···· ··:
. - ~ i :

~ 10•1 00 :·H······:· :r ··:~ - : ··:-·:.f ··· : ... ·.·:·_·?:.·:·_··:·:·.·::·:::·.:.r ·.·:_·H·f··:.:•·.:}·_: .. ·.~•)-.:···.·.:.:::::·. ·:·.·!··:_·J:_!::··:·•

a.
g>

:.;;<
u

ffi 10·2

: - -~ · • GMPLSIPCE
10·3 Li__-f,.....i..,--_i__j__,.L--,..L,.____.!::I::=::i::=:::i:::====r:=:::IJ

50 100 150 200 250 300 350 400 450 500 550 600
Network Load (Erlang)

Figure 4.10: Lightpath blocking probabili ty vs. network load (COST239 Topology)

67

68

4.4 Summary of Simulation Results

The simulations reveals that OpenFlow extension solution outperforms both GMPLS with

PCE and OpenFlow message-mapping solution in lightpath establishment time and controle

plane traffic. It also outperforms GMPLS in blocking probability, while it has almost the same

blocking probability as OpenFlow message-mapping solution. Table 4.2 shows the summary

of the simulation results performed on SF network topology.

GMPLS with PCE OpenFlow OpenFlow Exten-

Message-Mapping sion Solution

Solution

Establishment time Between 450 ms Around 170 ms Around 60 ms

and 380 ms

Control plane traffic increases till 47 increases till 22 increases till 13

packets/ sec at packets/ sec at packets/ sec at

maximum load maximum load maximum load

Blocking probabili ty star ts at 0.003 , and starts at 0, and starts at 0, and

reaches 0.5 reaches 0.5 reaches 0.5

Table 4.2: Summary of SF topology simulation results

The simulations is repeated using COST239 physical network topology and the results

support what we had before using SF topology (Table 4.3).

In brief, the experiments and the simulations show that the two solutions based on OpenFlow

cau enhance the lightpath establishment time, reduce the control plane traffic and reduce the

blocking probabili ty. They show also that extending OpenFlow protocol by adding new

69

GMPLS with PCE OpenFlow OpenFlow Exten-

Message-Mapping sion Solution

Solution

Establishment time Around 350 ms Around 130 ms Around 60 ms

Control plane traffic increases ti ll 45 increases till 23 in creas es till 14

packets j sec at packets/ sec at packetsj sec at

maximum load maximum load maximum load

Blocking probabili ty starts at 0.002, and starts at 0, and starts at 0, and

reaches 0.4 reaches 0.4 reaches 0.4

Table 4.3: Summary of COST239 topology simulation results

messages to support optical network has a great effect on enhancing the light path stablish

ment time and reducing the control plane traffic. This enhancement of performance makes

OpenFlow the best candidate for UCP.

CHAPTER V

CONCLUSION

In thi thesi , the main contributions are:

Use Software Defined etwork (SDN) to create a unified control plane for

both optical circuit-switched and packet-switched networks

In this thesis, a unified control plane is proposed and conducted using OpenFlow (as an SDI

proto col). The control plane is conducted u ing two techniques and tested on the laboratory

on the topology shown before in Figure 3.

Comparison between these techniques and the standard GMPLS technique

In thi thesi , an experimental comparison conducted between the proposed solutions and

GMPLS approach is presented in chapter 3. Additionally, a custom-built Java event-driven

simulator i built and run to simulate the performance of our two proposed t chniques and

compare them with the standard GMPLS protocol on two real optical network topologies

(Chapter 4).

As a conclu ion from these results in the con idered scenario , using SD 1/ 0penFlow

archi tecture can create mutually beneficiai interaction between IP and transport networks

by enabling new capabili t ies at the packet-circui t interface. OpenFlow exten ion technique

can significantly improve the performance of the control plane and the proposed exten ion i

able to significantly reduce the lightpath setup time and the control plane traffi.c.

CHAPTER VI

PUBLICATIONS

6.1 Accepted paper at IEEE GLOBECOM 2014 conference

Software-Defined DWDM Optical Networks:
OpenFlow and GMPLS Experimental Study

M. Bahnasy, K. Idoudi and H. E lbiaze
Université du Québec à Montréa l
E mai l: elbiaze.ha lima @uqam.ca

A.bstract-Finding an effective and simple unificd control
plane (UCP) for IP/Dense Wavelength Division Multiplexing
(DWDM) multi-layet· optical networks is very important for
network providers. Generalized Multi-Protocol Label Switching
(GMPLS) has been in development for decades to control optical
transport networks. However, GMPLS-based UCP for IP/DWDM
multi-layer networks is eKtremely complex to be deployed in
a •·eal operational products because stiJl there are a lot of
non-capable GMPLS equ ipments. DRAGO (Dynamic Resource
Allocation via GMPLS Optical Networks) [1] is a software that
solves this issue making these equipments capable fo•· working
in a GMPLS network. On the other hand, OpenFiow (OF), one
of the most widely used SDN (Software Defined Netwo rking)
implementations, ean be used as a unified control plane for packet
and circuit switched networks [2].
In this paper, we propose and experimentally evaluate two
solutions using OpenFiow to control both packet and optical net
wo•·ks (OpenFlow Messages Mapping and OpenFiow Extension).
These two solutions are compared with GMPLS-based UCP. The
experimental results show that the OpenFlow Extension solution
outpe.-f'orms the OpenFlow Messages Mapping and GMPLS solu
tions.

Keywords-Optical Network; GMPLS; DRAGON; Software De
fined Networking; OpenF/ow

I. l NTRODUCTI O

Currentl y, IP and optical layers operate separately withoul
dy nami c imeracti on which leads to hi gh operational cost, low
network eflî c iency, and long processing latency for end-to
end palh prov i ioning. T he main rea on behind the e limi
tati ons is thal they are two di ffe rent networks with different
architecLUres, sw itching technologies, and controlmechanisms.
Therefore, a unified control plane (UCP) for both fP and
opti cal layer , as one of the key challenges for the network
carri ers, is very important to address the aforementioned i sue.
GMPLS , a re lati vely mature control plane technique for op
rica! transport networks, ha been propo ed a a solution for
UCP [3]. But due to the di tributed nature, the number of
protocols, and the interacti ons between different layer , the
GMPLS-based UCP is overl y complex[4], [5] . Moreover, the
implantati on of thi s rechnology is diffi cult because still there
are a lot of non-capable GMPLS equipments. DRAGO [6],
i a oftware thal olves thi s problem using SNMP (Simple
Network Management Protocol) to control these equipments
and making them capable for working in a GMPLS network.
In thi paper, we u e thi oftware and adapt it to operate with
our op ti cal witch (Cisco ONS 15454 1

).

On the other hand, we propose SDN [7] as a promi sing soluti on

1 ROADM : Reconfigurable Opt ical Add-Drop MuiLiplexer

for a UCP. Genera l! y, the SDN technology separate the contro l
and data planes so thal we can introduce a new functi onality
by writing a software program, running within an ex ternal
controller that manipul ates the logical map of the ne twork.
Th is provides the max imum fl ex ibiliry for the operator to
control different types of network, and match the carr ier
pre ferences. One of the widely used SD implementati ons is
OpenF!ow [8]. OpenF!ow protocol is mature for L2/L3 packet
witching networks, but still at a starting stage for wavelength

switched opti cal networks. So, it need some exte n ions to be
abl e to support the optical domain.
Some e fforts have been done to pre ent OpenF!ow-based UCP
to contro l packet and circuit switche . M o t notabl y, PAC.C
[2] has experimented with alternati ve approaches. Other papers
[9], [1 0], [11] have presented s imil ar work as PAC.C by provid
ing an ex perimental study or a Proof-o f-Concept to support the
using of OpenF!ow as a unifi ed conrrol pl ane. However, [12]
presents a compari son study between OpenF!ow and GMPLS
solutions based on a simulation. In thi s paper, we propose two
approache based on OpenF!ow protocol to control both optical
and electrical network . Then we experimenta ll y compare
these two solutions with a real implementation of GMPLS
approach. To the besl of our knowledge, thi s is the first work
who considers both OpenFlow and GMPLS UCP so luti ons,
and compare them via te tbed experimentation. We conduct
a real case study of implementing end-to-end li ghtpath and a
li ghtpath restorati on by es tabli shin g a dynami cal configurecl
backup lightpath.
The first solu ti on i OpenFlow Messages Mapping ; we map
the OpenF!ow tandard me age into equi valent opti ca l chan
nel requests, without mod ifying the OpenF!ow protocol. The
econd one i OpenFlow Extension ; new messages have been

added to the OpenFiow protocol in order to support the
circuit switching. The proposed soluti on are implemented
in a tes tbed to demonstrate their effec tiveness, as weil as
GMPLS-based approach. For both solutions, we implement
an OpenFiow Optical Agent to tran late the OpenFi ow
messages to be executed on the optical switches. Moreover,
a Path Computation Element (PCE) module is added to
the OpenF! ow contro ll er as a network applicati on in order to
control the optical domain .
The remaining of thi paper is organi zed a fo ll ows; Section
n describes how can OpenFiow de fin e a unifi ed control pl ane
for both IP and optical networks and the iplementati on of
the proposed olutions (OpenFlow Messages Mapping and
OpenFlow Extension). Section III present the GMPLS-based
UCP approach and the deployment of thi protocol in our
tes tbed. In particul ar, we explain the adaptation of DRAGON
so ftware for our ROADM (CISCO 0 S 15454). Section IV

presents the different experimental scenarios for each solution
and the comparative results with GMPLS. Concluding remarks
are eventually given in section V.

Il. ÜPENFLOW-BASED UN!FIED CONTROL PLANE

A. Overview

We briefly outline the main characteristics of OpenFlow. A
more detailed and exhaustive documentation is avai lable in the
OpenFlow white paper [13) and in the Open Flow specificati on
[14). OpenFlow is an open standard that was developed severa]
years ago at Stanford University in order to enable researchers
to run experimental new protocols and technologies on real
networks, without disrupting the existing traffic or network
availability [15) . In a traditional network, the data path and
the control path occur on the same deviee (sw itch, router).
OpenFlow separates these two functions; OpenFlow switches
perform the data plane functions and OpenFlow controller
i.mplements the control plane intelligence and communicates
with the OpenFlow switch via the OpenFlow protocol.
An OpenFlow switch consists of one or more flow tables and
group tables, which perf01m packet lookups and forwarding,
and a secure channel that is connected to an external controller.
Each flow table in the switch contains a set of flow eotries;
each fl ow entry consists of match fields , counters and a set of
instructions to apply to matching packets.
OpenFlow advocates the separation of data and control planes
for circuit and packet networks, as weil as the treatrnent of
packets as part of fl ows, where a packet flow is defined as any
combination of L2/L3/L4 headers. This, together with Ll!LO
circui t flows, provides a simple flow abstraction that fits weil
with both types of networks. Hence, OpenFlow presents a
common platform for the control of the underlying switching
hardware, that switches fl ows of different granularities, whil e
allowing aU of the routing, control and management to be
defi ned in software outside the datapath, in the OpenFlow
controller (Figure 1).

Open flow
Controller

... / t ~-. ·. ·.
_../ Ope,ri Fiow pr~tocol · •

. · / · .. @ = ·~ .. _ ... ____

} Unified Control Plane

}uni(ying Abstraction

} Data Plane Swltching

Fig. 1: Uni fied architecture of a converged Packet-Circuit network

B. OpenFlow Messages Mapping and OpenFlow Extens ion

This paper proposes two solutions using OpenFlow pro
tocol as a unified control plan for both optical and electri
cal domains (OpenFlow Messages Mapping and OpenFlow
Extension) . For both solutions, we implement an OpenFlow
Optical Agent to translate the OpenFlow messages to its
proper TLl (Transaction Language 1) commands [1 6] to be
executed on the optical switch using telnet channel. A Path
Computation Element (PCE) module is added to the OpenFlow

controller as a network application (Figure 2). Upon request
an·ival, PCE calcul ates the corresponding lightpath and sends
the cross-connection messages to involved ROADMs. In the
next sections, we describe OpenFlow Messages Mapping and
OpenFlow Extension solutions.

1) OpenFlow Messages Mapping: In thi sol u-
tion, the OpenFlow standard messages are used without
any modification. The OpenFlow messages are mapped
into optical switch comm ands. In this approacb, the
OFPT_FLOW_MOD message of type OFPFC_ADD is
mapped into ENT-OCHNC TL1-command to create a lightpath
channel. The OFPT_FLOW_MOD message of type OF
PFC_DELETE is mapped into DLT-OCHNC TL1-command
to deJete a lightpath channel. When the agent receives
OFPT_FEATURES_REQUEST message, it encapsulates the
emulated port information into OFPT_FEATURES_REPLY
message. Finally the agent reads periodically the ROADM
events (using RTRV-ALM-ALL TLl-command) and if it fi nds
any critical alerts, it creates OFPT_PORT_STATUS message
and forwards it to the controller.

2) OpenFlow Extension: In this solution, OpenFlow
messages are extended and new messages are added. The new
messages specification [17) allows the controller to distin
guisb between the circuit-switching and the packet-switching
networks. For example, OFPT_FEATURES_REPLY message
is extended by adding extra information about the circuit
switching ports. To send an optical cross-connect informa
tion, a new match structure called ofp_connect is presented.
Multiple ports can be cross-connected by a single struc
ture. This structure is added to the newly defined message
called OFPT_CFLOW_MOD. Finally when the state of a port
changes, the OpenFlow Optical Agent sends a new defined
message called OFPT_CPORT_STATUS.

C. OpenFlow Optical Agent

As mentioned above, the main role of the OpenFlow
Optical Agent is to translate the optical channel requests and
OpenFlow messages into TLl commands to be executed on
optical nodes (Figure 2).

(Openflow Standard)

Paper Contribunon Opticol Switch

Fig. 2: Openflow Optical Agent intercations

This agent is associated to each optical node and
acts as a vutual switcb. It consists of ; (i) OpenFlow

Channel to communicate with the OpenFlow controller, (ü)
Open.Flow!TLI Translator to conven OpenFlow messages into
TL 1 commands, and (ii i) Ports Emulation module to emulate
the optical node ports and send the port status information to
tbe contro ller. This information is used by the controller to
update ports database and to calculate the ligbtpath 1•

D. Path Computation Element (PCE)

The PCE implements an algorithm to establishe li ghtpaths
between source-destination pairs in order to create a full y con
nected logical topology [18]. A Traffic Engineering Database
(TED) is created to save the network topology information.
As the OpenFlow controller has a centralized management, the
TED will be updated in case of lightpath creation/release and
ports status ebange. Two modules are proposed to implement
the PCE; Executor and Optical Switch Adapter (Figure 3).

ln il ial Pons
ConJigur:llion

Pons Updates

- -- ------- --------------- - --~

TE~

Ports Sl'atus

Pa th Computa tion E lement l
1

Exec ulor

1
1
1

~
1

Oplic• 1
Switcb 1

Wavelength Assignment Ada~ :

Source+ Destination (Graph Coloring) l :
lnfonnation 1

- -- ----------- - -- - ----- ---- - - - __ __ J

Oulput : LightPath
information

Fig. 3: Path Computation Element workftow

1) Executor: Thi modu le ensures the avoidance of using
one wavelength more than once in the same fi ber. Each
wavelength cam es tTaffi c between a pair of source and destina
tion. Therefore, mul tiple wavelengtbs are reserved in a single
strand of fibcr fo r cstabli shing mul tiple lightpath through one
fiber. The e connections between source/destination nodes in
DWDM networks are performed in two teps:

• Routing: We use Dijkstra Algorithm in order to find
the shortest path between each node pair. In our case,
we are interested in a network topology composed of
OpenFiow switches and ROADMs.

• Wavelength Assignmen t: Once the ligbtpath routes
are dete1mined, the wavelength a signment problem
can be represented as a graph coloring problem. Each
lightpath corresponds to a node in wavelength assign
ment graph, and two nodes are set as neighbors only
if the respective lightpaths share at !east one common
lin k.

2) Optical Switch Adapter: Each ROADM consists of a
set of cards and each card contains a set of confi gurcd port
[19] . ROADM edges are connected to OpenFlow switches

1 Ports discovery is out of scope in this paper

via WSS (Wavelength Selective Switch) and DMX (Channel
Demultiplexer) cards, whereas ROADM core interfaces are
interconnected via UNE cards. Two fibers are used for the
bidirectional connection between two ROADMs. These speci
fications lead us to add this module.

III. GMPLS-BASED UN lFIED C ONTROL P LANE

A. Overview

Actually, there are still a lot of non capable GMPLS
equipments. DRAGON software solves this problem in the
Ethernet networks using SNMP to adapt tbese equipments
to GMPLS control plane. The DRAGON project studies and
develops an open ource software to enable dynamic provi
sioning of network resources on an interdomain basis across
heterogeneous network technologies. The project enables the
communication between networks of diffe rent types through
the GMPLS control suite. For its implementation, DRAGON
deploys the IP network infra tructure and creates a GMPLS
capable optical core network to allow dynamic provisioni ng
of determin istic network paths in direct response to end-user
requests, spanning multiple administrative demains. Optical
transport and switching equipments acting as Label Switching
Routers (LSRs) prov ide deterministi c network resources at the
packet, wavelength, and fiber cross-connect levcls.

B. DRAGON Control Plane Componen.ts

DRAGON software is thought to work li ke control plane
within a GMPLS network. The control plane archi tecture
consists of two basic elements 2 : The Client System Agent
(CSA) and Virtual Label Switch Router (VLSR).

1) CSA (Client System Agent): Tbe CSA is a software tbat
runs on (or on behalf of) any system which terminates the
data plane (traffic engineering) link of the provisioned service.
This is the software that participates in the GMPLS protocols
to al low for on demand end-to-end provisioning from client
system to client system. A CSA can be a host, a router, or any
networked deviee.

2) VLSR (Virtual Label Switch Router): GMPLS bas not
yet been implemented on large a scale. There are still a lot
of non GMPLS capable switches in use. To overcome this
limitation, the DRAGON protocol suite uses the VLSR. A
VLSR is used to control di fferent kinds of switches like fo r
instance Ethernet, TDM or Optical switches . What a VLSR
does besides participati ng in the GMPLS protocols is trans
lating GMPLS comrnands into switch specifie commands like
SNMP. By the use of these comrnands, a VLSR can control the
switch and fo r example set a swi tch port in the specifie VLAN.
To communicate with other VLSRs and CSAs, a VLSR uses
the routing protocol OSPF-TE (Open Sh01test Path First
Traffi c Engi neeri ng) and path signaling protocol RSVP-TE
(Resource Reservation Protocol-Traffic Engineering). A VLSR
uses OSPF-TE to get farni liar with the control plane network
and to inform the VLSRs and CSAs in the control plane about
the TE network links. A VLSR uses the OSPF-TE LSAs (Link
State Advertisements) to send in formation about the TE links.

2The infom1ations fo und in this section is based on the Sara Project
documentation produced by the RFC 3945 [20]

Information that could be send over the control plane is infor
mation about upcoming and down going LSPs (Label Switched
Paths). The OSPF-TE works with two daemons called OSPFD
and zebra. Zebra, or GNU Zebra [21], is routing software
for managing TCP!IP based routing protocols like RIP, BGP
and OSPF. The DRAGON software extends the OSPF routing
daemon with Traffic Engi neering informations like bandwidth,
WDM and TOM used by GMPLS. A VLSR uses RSVP-TE for
signaling and setting up LSPs within the GMPLS network. The
RSVP-TE protocol originates from the Technische Universitt
Darmstadts KOMRSVP [22]. The DRAGON software extends
the KOM-RSVP signal ing protocol with support for RSVP-TE,
GMPLS, Q-B1idge, SNMP and VLAN control.

C. Adapting VLSR for Cisco ONS 15454

The DRAGON software suite is being developed under
the GNU General public license [23] . The source code cao
be viewed, changed for own use. The latest version of the
software suite can be downloaded at [24]. In arder to install
the DRAGON software, the VLSR implementation guide has
been fo llowed [25].
By default, the VLSR PC uses SNMP RFC 2674 to communi
cate with switch. To manage and control the Cisco ONS 15454,
we use TLl commands. Tbus, we implement an SNMPffLl
Gateway that acts as a proxy to adapt the VLSR software with
Cisco ONS 15454 pecification (Figure 4). As hown in figure

1 SNMP •

~
) :

i.

'

R !
j Til

_:::j 1
! CJsco ONS 15454

SNMPAgent

SNMP/Tll Gateway

Fig. 4: SNMPfTLl Gateway

4, the SNMP/TLl Gateway is composed of two modules:

• SNMP Agent: Using snmp4j [26] open source Java
library, we have developed an SNMP agent. It provides
fonctions to receive and send SNMP PDUs (Protocol
Data Unit).

• TLI Agent: Using the iReasing [27] TLl API, we
have developed a TL 1 based management application
that communicates with the Cisco ONS 15454. Its
main function is to map the SNMP messages into
TL! commands to set-up configuration in Cisco ONS
15454.

IV. EXPER lME TAL SETUP

In this section, we tir t present the OpenFlow experiments
followed by the GMPLS ones. Theo we discuss the experi
mental results in arder to evaluate and compare the OpenFlow
solutions with GMPLS .

A. OpenFlow Experiments

Two experiments are conducted to demonstrate the efficacy
of our proposed solutions. The firs t experiment consists of
creating end-to-end lightpath whi le the second experiment
performs a backup restoration lightpath wben fai lure occurs
on the primary lightpath.

1) Testbed Setup: The architecture of our testbed is de
picted by figure 5. lt consists of two clients A and B, which are
connected directly to OpenFlow switches 1 and 2, respectively.
Eacb switch is connected to an Electrical!Optical converter.
These converters are connected to DWDM optical network
composed of tbree Cisco ROADM optical switches (Cisco
ONS 15454) . Each ROADM is controlled by an OpenFlow
Optical Agent. The OpenFlow optical agents and the Open
Flow switches are connected to an OpenFlow controller over
an OpenFlow channel.

2) Scenario 1: End-ta-End Lightpath Setup: As sbown in
Figure 5, a data flow sent fro m Client A to Client B arrives
at OpenFlow switchl. When the OpenFlow switchl does not
find any flow entry that matchs with thi s fl ow, it encapsulates
the first flow packet in an OFPT_pACKET_IN message and
forwards it to the Controller. Then the controller uses the
PCE to calculate the lightpath, and creates the lightpath by
sending OFPT_FLOW _MOD message (OpenFlow Messages
Mapping solution) or OFPT_CFLOW _MOD message (Open
Flow Extension solution) to the switches . The connection is
established between the two clients following steps Al, A2,
A3 , A4, AS, A6, and A 7 (Figure 5). The wireshark screenshot
presents the excbanged messages during this scenario (Figure
6).

Fig. 6: OpenFiow Scenario! : Wireshark screenshot

3) Scenario 2: Shared Optical Resto ration: This scenario
demonst.rates how OpenFlow controller acts when a link fa ilure
occurs . The path deletion is performed by the controller using
OFPFC_DELETE message. Figure 5 shows the steps tbat are
executed in this scenario (B l , B2, B3, B4, and B5). The
wireshark screenshot presents the exchanged messages during
this scenario (Figure 7).

B. GMPLS Experiments

To experiment GMPLS, we construct a transparent opti
cal network testbed with two ROADMs (Figure 8). ln this
infrastructure, the control plane consists of two CSA and
two VLSRs. The CSAs and the VLSRs are connected via the
switch hub. GRE (Generic Routing Encapsulation) tunnels
are created between the CSAs and the VLSRs and between
the VLSRs themselves to exchange RSVP-TE and OSPF-TE
messages. The SNMP/TLl Gateway has a connection with
the switch hub to allow SNMP management by the VLSRs.

A, Scenario 1

• Scenario2

OpfnFlow
Switch 1

Oifni A
ROADM 1

A data flo\\' sent from client A to client 8 nrrins nt Open Flow switch 1.

Open Flow switch 1 does not fmd a flow entry in its flow table to fon,•ard
this flow. so ir eocapsubtes the first flow packet in a OFI'T_PACKET_lN
messa~e and forward.s it ro the conrroiJer.

The conrroUer caJcuhttes the putb from Client A to Client B, nod sends
OFPT_PACh.~T_OUT message to the Open Flow switch 1 • The controller
sends also OFPT_FLO\V_MOD messages (Open Flow ft'l es.mgL"S Muppiug
solution) or OFPT_CFLO\V_MOD message (OpenFimv Extension solution)
ro the Optical OpenFlow agents in order to create the lightpa th.

Wbcn OpenFiow optical :.~gents recei,•e this message, they trunsbte it into
the appropriate TLJ commands and scnd it to the ROADM swirches .

Aftcr crcating the lightpatb. d1c data fl ow traverses unril OpenFJow switch 2.
When the flow is receh·cd by Openlilow switch 1, if the swirch does not find 11

flow entry in its flow table to forward this packer, it sends a
OFPT_ PACKET_IN messa2e to the conrroller requesring an action for this
flow.

The controller sends a OFI'T_PACKET_OUT messoge to OpenFiow switch 2
to fonYard this packet ro dient B.

@ OpenHow switch 2 forwards d1is packet to dienr B.

•
•
•
•
•

O if.ntB

OpfnFJow
Swilch 2

\Vbt!n the interconnection betwee.n the ROADM 3 and ROADM 2 fnils, both
Open Flow optical agents corrrspondin: t·o these Optical Switches read the
ala rms of the OJllical switches . Then they send OFYf_PORT _STAT US
Messages to the controller about the port status update.

OpenFiow con troUer calcula tes alremati\•e ligbtpaths to the existing failed
Ugbtputbs.

The controller sends OFI'T_FLOW _MOD (typ.=ADD FLOW) messages
(Open Flou' A1t.."SSagej· !Yiapping solution) or OFPT_ CFLO\V _MOD message
(OpenFlmv Exten:ritm solution) to the opticalswitcbes to crcate new ligbtpatb.
ln this case, a new lightpath is cstablished from ROADM 2 to ROADM J via
ROADM 1 on a differeotwavelength (1588.17nru).

The controller sends nnother OFPT_FLOW _MOD (Type=OFPFC DELETE)
messages (Opct~Fiow Nl es.mgLi3. ftlt~ppiug solution) or OFPT _CFLO\V_MOD
messn:e (Open Flow Exte11siou Solution) to the opticol switches which are
assodat·ed with old lightpa tb to deJete the prinL1 ry ligbtpatb.

\Vhen the Open Flow Optical agents receive these messne:es. they translate ir
into the nppropriate TLJ cornm:1nds and send it to the optical switches.

Fig. 5: Network configuration and exchanged messages during the OpenFiow experiments

It translates SNMP messages to TL! commandes in order to
confi gure the ROADMs. ln the SNMPffLI Gateway machine,
we installed two virtual machines . Each one listens to a
VLSR on port 161 and cont:rols one ROADM. Using wireshark
capture in VLSR2 (Figure 9 (a)) and VLSR l (Figure 9 (b)),
we ex plain the GMPLS signaling to create an LSP from CSA2
to CSAl.
CSA2 sends RSVP _FATH message to VLSR2 witb the des

tination set to the target CSA l. Botb VLSRs fm·ward the path
mes age si.nce they are not the destination. When CSA l receivs

the RSVP _PATH message, it replies to it witb RSVP _RESV
message and sends it to VLSRl. VLSRl forwards this message
to VLSR2 because again it is not the destination of the
message. Final! y, VLSR2 forwards the RSVP _RESV message
to CSA2. At this point, the LSP is active and can be used. The
SNMPffLI Gateway translates the SNMP messages sent by
the two VLSRs to TLl commands in order to configure the
two ROADMs.

Gtel : UU:O.o.l
Tt : lO.l.lO.l
TE : lO.l.lO.S

Grel

CS Al

....
-----,

Ethl

UtiO: IO. l O.U.l

Grll : IO. l O.O. I
lt : IO.l. l lU

Gre2

VLSRl

SNMP

10.10.23.101/20

10.10.23.100/20
~

NCl

[Nez
191.1.0.100 / 24

192.1.0.101 / 24,

n1

SNMP /TU Gatewayl

10 10 23 101 / 20

~

~
192.1.0.102/24

n1

VLSR2

Cnl_vlsr2

Gre3

lEthO

F

CSA2

[thO:lO.lCI.ll..S

<ir•J : lO.JO.O. l
Tl : 10.1.10.10

Fig. 8: DRAGON test with two ROADMs

Orl' f_PORT_STAfl S ,~& OFPT_PORT_STATUS Messages from
OFPT_FLOW_MOD OF _Agent2,3 to OF _Controller (Step Bl)

g 2 g' Ire~~~~~~~~~~ - - :-~:.:-;: --: -;--'- -- !: IQ ~
-: :3 c.. L:o. r- Sca..•u ~ r.~- J ~ Wt 1 : g 1-t
~ ë ~ I14121. 331J40l000 Of...Agentl OF_ControllerliPtriFlor 118Type: OfPT~T A ~:a ;!!
~ GJ "':é 115021. •• 6946000 Cf"_.\gt11t] Of_(ontroller ~enflor UHype: ŒPTJIORT_51ATU 1 j; 2,._ ~
~ :/ ~ 1Slll. 446999000 Of_(ontNllltr Of _Agent] ~enFiow ~ Jype: OFPTJUlW.)(lll ~ :1: <
~ ~~ 2; llSS 2l.S64058000 Of_Controller OF..Agent2 OpenFlow 614TyPe: OFPT..fLOl.J()O 1 t:'. ~ 13:
o 0 ~ IIS7 21.650229000 Of_Controller OF_.Agent3 OpenFlow 374 T}'JM!: OFPTJl<JW.J«)) l ~ ~ g
~ ~ ~ 1107 34 .7<46444000 Of _Controller Of J,qeotl OpenFlow 1~ Type: OFPTJLO'•.J(IO ~ ,"'" ~

l.!! t! 120914.746969000 Of_Controller OFJ.gentl !)JltnF IOif 134 Type: OFPTJLO'II.JO) 1 ~ l
3: ~ ~ lU l4.876n9000 Œ_Controller OF _Agent! OpenFlow U4T~l)e: OFPTJLOW.J(I) 1 ;:: n~ e
g ~ -5 21D4.909426000 Cf_Cootroller OFJ.gentl ~enfltM' 294 Type: ll=PT_flO'(J()O 1 ; a, :l
'*1 8 111 1 no JS.UOUlC«< ŒJ:«<troller OF-'Qentl Openflow 134 T)'l)e: <W=PT_FLOWJ(IO "C !'""' ~
~ ~.~,.1,!! 1121 JS .880l01IXXI Cf=_Cootroller Cf= _Agent] ~enFlow B4 Type: OFnJLcr-._0 1 .;. t:: a
0 o -c ll~ ~9!!_~-Cf~on~ro~e':._OF~~l- -~~ ~_!)~ !."~~ _ 1 ô 3

Fig. 7: OpenFlow Scenario2 : Wireshark screenshot

C. Experimentation Results

Table 1 shows the time (in ms) consumed on each solution
(OpenFlow Messages Mapping and OpenFlow Extension)
and the GMPLS approacb. ln this table, Patbl and Path2
refer to the primary and the backup li ghtpaths. Pathl nodes
are OF_Switchl -+ ROADM2 -+ ROADM3-+ OF_Switch2,
wbile Path2 nodes are OF _Switchl -+ ROADM2 -+ ROADMl
-+ ROADM3 -+ OF _Switch2. LSP on the table refers to
Label Switch Pa th for GMPLS. LSP nodes are CSA 1 -+
ROADM2 -+ ROADM3 -+ CSA2. The experiments results
show that OpenFlow Extension solution (2 16 ms) outperforms
OpenFlow Messages Mapping (227 ms) solution. This result
is expected because OpenFlow Extension solution use one
message to encapsulate bidirectional lightpath information

(b)VLSR 1

Fig. 9: GMPLS Scenario Wireshark creenshot

and OpenFlow Messages Mapping needs two messages. For
the backup lightpath (Path2) whi ch span on three node ,
OpenFlow Extension solution takes 239 ms to create the
lightpath while OpenFlow Messages Mapping takes 269 ms.

upen"tow Messages Mappmg ~o uuon
Comrol er Swllch eslabilshment Tota (ms)

KUAUM~ KUAUMI KUAUMJ
1 Path l 16 121 1 - 1 90 227
1 Path2 18 110 1 30 1 Ill 269

OpenFiow Extension Solution
Con troUer !Swnch estab 1s 1ment ota (ms)

RUAUMZ KUAUMI RuADMJ
1 Pathl 16 100 1 1 100 2 16
1 Path2 18 90 1 30 1 10 1 239

GMPLS Solution
KSVP- t to Swllch eSiabiiShment ota (ms)

RUAUMZ KUAUIVII KUAUMJ 1

1 LSP 130 110 1 1 100 1 340

TABLE 1: The experiments timing

On the other hand, GMPLS takes more time (340 ms) to
create lightpath than OpenFlow solutions. This is because the
GMPLS-based control pl ane is complicated especially when it
is deployed as a unifi ed control plane (UCP) for TP/DWDM
multi-layer networks. This is due to its disuibuted nature,
the number of protocol s, and the interactions among different
laycrs. The fl ex ibility and manageabi li ty of the GMPLS-based
control plane is low, because, for example, if we want to
create or update an end-to-end lightpath, the signalisation and
reservation messages must be updated and exchanged between
ali the intermediate VLSRs. However, the OpenFlow-based
UCP provides the maximum fl exibility and manageability for
ca1Tiers since ali the functionalities are integrated into a single
OpenFlow controller. More importantly, the OpenFlow-based
control plane is a natural choice for a UCP in IP/DWDM multi
layer networks due to its inherent feature, as the procedure
shown in Figure 5. Thus, the technical evolution from GMPLS
to OpenFlow is a process that the control plane evolves from
a fully distributed architecture to a fully centralized one.

V. CO CLUS ION

In this paper, we experimentally present two solutions
(OpenFlow Messages Mapping and OpenFlow Extension)
for a dynamic wavelength path control in IP/DWDM multi
layer optical networks. The overall feasibility of these solution
is experimentally assessed, and their performance is quantita
tively evaluated and compared with GMPLS approach, on an
actual u·ansparent network testbed. The comparison reveals that
the OpenFlow-based control plane is simpler, more flexible and
manageable than the GMPLS-based control plane, especially
for an IP/DWDM multi-layer optical network. Finally, the ex
perimental results show that the OpenFlow Extension solution
outperforms the OpenFLow Messages Mapping and GMPLS
solu tions. It can significantly improve the performance of the
control p lane and reduce the lightpath setup time.

R EFE RE NCES

[1] " DRAGON: Dynamic Resource Allocation via GMPLS Optica l Net
works," http:/ldragon.east.i si.edu/ twiki/bin/view/DRAGON/WebHome.

[2] S. Das, G. Parulkar, N. McKeow n, P. Singh, D. Getachew, and L. Ong,
"Packct and ci rcuit network convergence with openft ow;· in Optical
Fiber Communication (OFC), collocated National Fiber Optic Engi
neers Conference, 2010 Conference on (OFCINFOEC) , March 2010,
pp. 1-3.

[3] E. Mannie, "Generalized multi-protocol label switching (gmpls) archi
tecture," lntetface, vol. 501, p. 19, 2004.

[4] L. Liu , T. Tsuritani , and 1. Morita, "Experimenta! demonstration of
openA ow/grnpls interworldng control pl ane for ip/dwdm multi-layer
optical networks,'' in Transparent Optica/ Nenvorks (ICTON), 2012 /4th
lntem ationa/ Conference 011. ŒEE, 20 12, pp. 1-4.

[5] Y. Zhao, J. Zhang, H. Yang, and Y. Yu , "Which is more suitable for
the control over large scale optical networks, grnpls or openft ow?"
in Optical Fiber Communication Conference and Exposition ami the
National Fiber Optic Engineers Conference (OFCINFOEC), 2013,
20 13, pp. 1- 3.

(6] T. Lehman, J. Sobieski , and B. Jabbari , " Dragon: a framework for
service provisioning in heterogeneous grid networks," Communications
Magazine, IEEE, vol. 44, no. 3, pp. 84-90, March 2006.

[7] "SDN: Software Defined etworking,"
https:/lwww.opennetworking.org/sdn-resources/sd n-defi nition.

[8] "OpenFiow,'' https://www.opennetworking.org/sdn-resources/onf-
specificati ons/openft ow.

[9] L. Liu, T. Tsuritani, 1. Morita, H. Guo, and J. Wu, "Openftow-based
wavelength path control in transparent optica l networks: a proof-of
concept demonstration,'' in Optical Communication (ECOC), 2011 37th
European Conference and Exhibition on. ŒEE, 20 11, pp. 1-3.

[1 0] L. Liu, D. Zhang, T. T uritani, R. Yilalta, R. Casellas, L. Hong,
1. Morita, H. Guo, J. Wu, R. Martfncz et al. , "Field trial of an
openflow-based unified control pl ane for multil ayer multi gran ul ari ty
optical switching networks," Journal of Lightwave Tee/mo/ogy, vol. 3 1,
no. 4, pp. 506--5 14, 20 13.

[Il] L. Liu, D. Zhang, T. Tsuritani , R. Yilalta, R. Case lias, L. Hong,
1. Morita, H. Guo. 1. Wu, R. Marti nez. and R. Munoz. "Fi rst field
Jrial or an openfl ow-bascd unified control plane ror multi-layer mulii
granularity optical networks," in Optical Fiber Communication Con
ference and Exposition (OFC/NFOEC), 2012 and the National Fiber
Optic Engineers Conference, March 20 12, pp. 1-3.

[12] A. Giorgetti. F. Cugini , F. Paolucci, and P. Castoldi , "Openflow and
pee architectures in wavelength switched optical networks," in Opti
cal Network Design and Modeling (ONDM), 2012 /6th International
Conference on. ŒEE, 20 12, pp. 1-6.

(1 3] http:/lwww.open fl ow.orgldocuments/openflow-wp-lates t.pdf.

[14] O. S. Consortium et al. , "Open fl ow switch specification version 1.0. 0,' '
2009.

[1 5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rex.ford , S. Shenker, and J. Turner, "Open fl ow: enabling innovation in
campus networks,'' ACM SICCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

[1 6] C. Headquarters, "Til command reference for the cisco ons 15808
dwdm system,'' 2003.

[17] S. Das, "Extensions to the open fl ow protocol in support of circuit
switching,'' Addendum tn OpenFinw prntncnl.<pecijication (v / . O)Circuit
Switch Addendum vO, vol. 3, 20 1 O.

[18] Y. Tintor and J. Radunovié, " MuiJihop routi ng and wavelength assign
ment algorithm for optica l wdm networks,' ' International Joumal of
Networks and Communications, vol. 2, no. 1, pp. 1- 10, 201 2.

[19] "Cisco ONS 15454 DWDM Reference Manual, Release 9.2,"
http:/lwww.cisco. com/en!U S/docs/optica 111 5000r9 _2/d wdm/reference/gu ide/
454d92_ref.htm1/, 20 12.

[20] "RFC 3945 Generalized Mulii-Protocol Label Switching (GMPLS)
Architecture,'' http://www.ietf.org/rfc/rfc3945.txt.

[2 1] "GNU Zebra," http:/lwww.gnu.org/software/zebra/.

[22] "KOMRSYP Engine," http://www.kom.tu-
dannstadt.de/enldownloads/softwarelkomrsvp- engine/ .

[23] "GNU General Public License," http://www.gnu .org/copyleftlgpl.html.

[24] " DRAGON Source Code,'' http :/IDragon. maxgigapop.netlpublic/Dragon
swvlsr-daily. ta r.gz.

[25] hJtp: //dragon.east.isi.edu/twiki/pub/DRAGONNLSR/dragon-vlsr-
implement-v2.1 b.pdf.

[26] "SNM P4J API ,' ' http://www.snmp4j.org/.

[27] " iReasoning TL.I API,'' http://ireasoning.com/ tll api.shtrnl .

79

6.2 Submitted paper at OpticslnfoBase journal (2014)

JOURNAL OF J5IEX GLASS FILES, VOL. 6, NO. 1, J ANUARY 2007

OpenFlow and GMPLS Unified Control Planes:
Testbed Implementation and Comparative Study

Mahmoud Bahnasy, Karim Idoudi, and Halima Elbiaze

Abstract-Finding an effective and simple unified control
plane (UCP) for IP/Dense Wavelength Division Multiplex
ing (DWDM) multi-layer optical networks is very important
for network providers. Generalized Multi-Protocol Label
Switching (GMPLS) has been in development for decades to
control optical tt·ansport networks. However, GMPLS-based
UCP for IP/DWDM multi-layer networks is extremely com
p lex to be deployed in a real operational products because
still there are a lot of non-capable GMPLS equipments. On
the other ha nd, OpenFiow (OF), one of the most widely used
SDN (Software Defined Ne tworking) implementations, can
be u sed as a unified control plane for packet and circuit
switched networks [1].
In this paper, we pr·opose and experimentally evaluate two
solu tions using OpenFlow to control both packet and optical
networks (OpenFlow Messages Mapping and OpenFlow Ex
tension) . The overall feasibility of these solutions is assessed,
and their performance is evalu ated and compared with
GMPLS approach, using a custom-build simulator. Simu
lation res ults show that the OpenFlow Extension solu tion
outperforms the OpenFlow Messages Mapping and GMPLS
solutions.

Index Term.s-Optical Network; Software Defined Network
ing; OpenFlow; GMPLS; Testbed

I. I NTRO D UCTIO N

C URRENTLY, IP and optical layer s opera te separately
without dynamic interaction which leads to high op

erational cost , low network effici ency, and long latency for
end-to-end path provisioning. The main reason behind these
limitations is that IP-based and optical-based networks have
differen t architectures, switching technologies, and control
mech ani sms. Therefore, a unifi ed control plane (UCP) for
both IP and optical layers, as one of the key challenges
fo r the network carriers, is very impor tant to address th e
aforementioned issue.
GMPLS, a relatively mature control plane technique for
optical transport networks, has been proposed as a solution
for UCP [2] . The GMPLS protocol suite has been developed
decades ago to fully opera te in a distributed fashion. It is
considered as the reference control plane for IP/Dense Wave
length Division Multiplexing (DWDM) multi-layer optical
networks. But due to i ts distributed nature, the number
of protocols, and the interactions between different layer s,
the GMPLS-based UCP is overly complex[3], [4]. Moreover,
the implantation of this technology is difficult because s till
ther e ar e a lot of non-capable GMPLS equipments. DRAGON
(5], [6] (Dynamic Resource Allocation via GMPLS Optical
Networks), is a software tha t solves this problem using
SNMP (Simple Network Management Protocol) to control
these equipmen ts and making them ca pable for working in
a GMPLS network. In this pa per, we use this software and
ada pt it to operate with our optical switch (Cisco ONS 15454

H. Elbiaze is with the Depar tm ent of Electrical and Computer
Engi neeri ng, Université du Québec à Montréal, Québec, Canada (e
mail : elbiaze.halima@uqam .ca) .

1) .

On the other h and, we propose SDN [7] as a prormsmg
solution for a UCP. Generally, the SDN technology separ a tes
the control and data planes so tha t we can in troduce new
functionalities by writing software programs, running within
an ext ernal controller that manipula tes the logical ma p of
th e network. This provides the maximum flexibiliLy for the
opera tor to control differen t types of network, and match
the carrier s preferences. One of the widely used SDN imple
mentations is OpenFlow [8]. OpenFlow protocol is mature
for L2/L3 packet switching networks, but still at a starting
stage for wavelength-switched optical networks. So, it needs
sorne extensions to be able to support the optical domain.
Sorne efforts have been done to present OpenFlow-based
UCP to control packet and circuit switches. Most notably,
PAC. C [1] has been experimented with alterna tive ap
proaches. Other works [9] , [10], [11] h ave presen ted similar
proposition to PAC.C by providing an experimental study or
a Proof-of-Concept to support the using of OpenFlow as a
unified control plane. However, [12] presents a comparative
study between OpenFlow and GMPLS solutions based only
on simula tions. In this paper, we propose two a pproaches
based on OpenFlow protocol to control both optical and elec
trical networks. Then we experimentally compar e these two
solutions with a real implementa tion ofGMPLS approach. To
th e best of our knowledge, this is the first work considering
both OpenFlow and GMPLS UCP solutions, and compare
them via testbed experimentation. We conduct a real case
study of implementing end-to-end ligh tpath and a ligh tpath
restoration by establishing a dynamical configur ed backup
lightpath.
The first solution is named OpenFlow Messages Mapping .
It maps the OpenFlow standard messages in to equivalen t
optical channel requests, without modifyi ng the OpenFlow
protocol. The second one is named OpenFlow Extension
where new messages have been added to the OpenFlow pro
tocol in arder to support the circuit switching. The proposed
solutions are implemented in a testbed to demonstrate their
effectiveness, as well as GMPLS-based approach. For both
solutions, we implement an OpenFlow Optical Agent to
translate the OpenFlow messages to be executed on the
optical switches. Mor eover, an Open Flow-Path Computa
tion Element (OF-PCE) module is added to the OpenFlow
controller as a network application in order to control the
optical domain.
The r emaining of this pa per is organized as follows. Sec
tion II descr ibes how can OpenFlow defines a unifie d con
trol plane for both IP and optical networks and the iple
mentation of the proposed solutions (OpenFlow Messages
Mapping and OpenFlow Extension) . Section III presents
the GMPLS-based UCP approach and the deployment of
thi s protocol in our testbed. ln particular, we explain the

1ROADM : Reco nfigurable Optical Add-D rop Mul tipl exer

JOURNAL OF mEJ{ GLASS FILES, VOL. 6, NO. l , JANUARY 2007

adaptation of DRAGON software for our ROADM (CISCO
ONS 15454). Section IV presents the different experimental
scenarios for each solution and the comparative results with
GMPLS. In Section V, we present our custom-built Java
event-driven simulator and the different algorithms and
topologies used in order to compare the performances of the
proposed solutions. Concluding remarks are eventually given
in Section VI.

Il. 0PENFLOW-BASED UNIFIED CONTROL PLANE

A. Overview

We briefly outline the main characteristics of OpenFlow.
A more detailed and exhaustive documentation is available
in the OpenFlow white paper [13] and in the Open Flow
specification [14]. OpenFlow is an open standard that was
developed several years ago at Stanford University in order
to enable researchers to run experimental new protocols
and technologies on real networks, without disrupting the
existing traffic or network availability [15] . In a traditional
network, the data path and the control path occur on the
same deviee (switch, router). OpenFlow separates these two
functions. OpenFlow switches perform the data plane func
tions and OpenFlow controller implements the control plane
intelligence and communicates with the OpenFlow switch
via the OpenFlow protocol.
An OpenFlow switch consists of one or more flow tables and
group tables, which perform packet lookups and forwarding,
and a secure channel that is connected to an external con
troUer. Each flow table in the switch contains a set of flow
en tries. Each flow entry consists of match fields2

, counters
and a set of instructions to apply to matching packets.
OpenFlow advocates the separation of data and control
planes for circuit and packet networks, as well as the
treatment of packets as part of flows, where a packet flow
is defined as any combination of L2/L3/L4 headers. This,
together with Ll/LO circuit flows, provides a simple flow
abstraction that fits well with both types of networks. Hence,
OpenFlow presents a common platform for the control of
the underlying switching hardware, that switches flows of
different granularities, while allowing all of the routing,
control and management to be defined in software outside
the datapath, in the OpenFlow controller as shown in figure
1.

Open flow
Controller

-.. ..
··········

~

} unified Control Plane

} Unifying Abstraction

} Data Plane Switching

Fig. 1. Unified architecture of a converged Packet-Circuit
network

2Match Field: a field on wh.ich packet could be matched, including
packet headers, the ingress port, and the metadata value.

2

B. OpenFlow Messages Mapping and OpenFlow Extension

This paper proposes two solutions using OpenFlow proto
col as a unified control plan for both optical and electrical
domains (OpenFlow Messages Mapping and OpenFlow
Extension). For both solutions, we implement an OpenFlow
Optical Agent to translate the OpenFlow messages to its
proper TL1 (Transaction Language 1) commands [16] to
be executed on the optical switch using telnet channel.
A Path Computation Element (PCE) module is added to
the OpenFlow controller as a network application (Figure
2). Upon request arrival, PCE calculates the corresponding
lightpath and sends the cross-connection messages to in
volved ROADMs. In the next sections, we describe separately
the two solutions.

1) OpenFlow Messages Mapping: In this solution,
OpenFlow standard messages are used without any modi
fication. OpenFlow messages are mapped into optical switch
commands. Hence, the OFPT _FLOW_ MOD message of type
OFPFC _ADD is mapped into ENT-OCHNC TL1-command
to create a lightpath channel. The OFPT FLOW MOD
message of type OFPFC DELETE is mapped into DLT
OCHNC TL1-command to delete a lightpath channel. When
the agent receives OFPT FEATURES REQUEST mes
sage, it encapsulates the emulated port information into
OFPT _ FEATURES _RE PLY message. Finally the agent
reads periodically the ROADM events (using RTRV-ALM
ALL TL1-command) and if it finds any critical alerts, it
crea tes OFPT _PORT_ STATUS message and forwards it to
the controller.

2) OpenFlow Extension: In this solution, OpenFlow
messages are extended and new messages are added.
The new messages specification [17] allows the
controller to distinguish between the circuit-switching
and the packet-switching networks. For example,
OFPT _FEATURES_REPLY message is extended by
adding extra information about the circuit-switching
ports. To send an optical cross-connect information, a new
match structure called ofp _ connect is presented. Multiple
ports can be cross-connected by a single structure. This
structure is added to the newly defined message called
OFPT _CFLOW _MOD. Finally when the state of a port
changes, the OpenFlow Optical Agent sends a new defined
message called OFPT _CPORT _STATUS.

C. OpenFlow Optical Agent

As mentioned above, the main role of the OpenFlow Op
tical Agent is to translate the optical channel requests and
OpenFlow messages into TL1 commands to be executed on
optical nodes (Figure 2).

This agent is associated to each optical node and
acts as a virtual switch. It consists of : (i) OpenFlow
Channel to communicate with the OpenFlow controller, (ii)
OpenFlow 1 TLl Translator to con vert OpenFlow messages
into TL1 commands, and (iii) Ports Emulation module to
emulate the optical node ports and send the port status
information to the controller. This information is used by
the controller to update ports database and to calculate the
lightpath 1

.

1 Ports discovery is out of scope in this paper

JOURNAL OF IDE;X CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

OpenFiow-Path ComputaUon Element
(OF-PCE)

(OpenFiow Standard)

Paper Contribution Optical Switch

Fig. 2. OpenFlow Optical Agent intercations

D. OpenFlow-Path Computation Element (OF-PCE)

The OF-PCE implements an algorithm to establishe light
paths between source-destination pairs in order to create a
fully connected logical topology [18]. A Tra.ffic Engineering
Database (TED) is created to save the network topology
information. As the OpenFlow controller has a centralized
management, the TED will be updated in case of light
path creation/release and ports status change. Two modules
are proposed to implement the PCE; Executor and Optical
Switch Adapter (Figure 3).

Inilial Pons
Configurat ion

Pons Updates

r-- ~ -- ----------------------------,
1 OpenFiow-Path Computation Element:
1 1
1 1
1

Executor 1
1 1
1 1
1 1
1 1
1 Wavelength Assignment Adaptrr 1 1

(Graph Coloring) i 1 Source + Destmnuon 1
1 lnformaùon 1 L _____________________________ ----•

Output : LightPath
infonnation

Fig. 3. OpenFlow-Path Computation Element workflow

1) Executor: This module ensures the avoidance of us
ing one wavelength more than once in the same fiber.
Each wavelength carries traffi.c between a pair of source
and destination. Therefore, multiple wavelengths are re
served in a single strand of fiber for establishing multi
ple lightpath through one fiber. These connections between
source/destination nodes in DWDM networks are performed
in two steps:

• Rou ting: We use Dijkstra Algorithm in order to find the
shortest path between each node pair. In our case, we are
interested in a network topology composed of OpenFlow
switches and ROADMs.

• Wavelength Assignment: Once the lightpath routes

3

are determined, the wavelength assignment problem
can be represented as a graph coloring problem. Each
lightpath corresponds to a node in wavelength assign
ment graph, and two nodes are set as neighbors only
if the respective lightpaths share at least one common
link.

2) Optical Switch Adapter: Each ROADM consists of a set
of cards and each card contains a set of configured ports
[19]. ROADM edges are connected to OpenFlow switches
via WSS (Wavelength Selective Switch) and DMX (Channel
Demultiplexer) cards, whereas ROADM core interfaces are
interconnected via LINE cards. Two fibers are used for
the bidirectional connection between two ROADMs. These
specifications lead us to add this module.

III. GMPLS-BASED UNIFIED CONTROL PLANE

A. Overview

It is easy to guess that GMPLS cornes from MPLS. MPLS
was introduced in the nineties and its best characteristics
are that it could set up multiple tunnels and apply tra.ffic
engineering properties to them and also with MPLS had
found a way to make two opposing Technologies coexist next
to each-other and establish end-to-end paths in both packet
based and cell-based networks. At the beginning of the new
millennium appears GMPLS to put together ail the current
networking technologies. The GMPLS is an extension of
MPLS that solves sorne problems and adds new features.
GMPLS has a set of five interfaces such as a Time-Division
Multiplex capable, Lambda Switch capable or Fi ber Switched
capable interfaces as well as the Packet switch capable and
Layer-2 Switch capable interfaces inherited from MPLS.
Furthermore, of the diversity of networking technologies the
GMPLS supports, it eliminates the need of an operator, the
entire network can be automated and no human interference
will be required in the tunneling process. Using a distributed
protocol on large networks makes the path computation
process very complex and resources consuming. To address
this problem, Internet Engineering Task Force (IETF) has
introduced a centralized Path Computation Element (PCE)
entity in the GMPLS control plane.

B. GMPLS WITH PCE SIGNALING

Because of the complexity of the GMPLS protocol, a cen
tralized approach is presented using a PCE. The PCE is a
centralized network element responsible for computing the
lightpath. In this topology PCE also assign wavelength on
each link for each request. The PCE is used in GMPLS
controlled Wavelength Switched Optical Network (WSON)
[20], [21]. PCE uses a messaging protocol called PCEP to
exchange information between GMPLS controller of each
node and the PCE. PCE maintains the information of the
nodes, links status and wavelength availability in a database
called Traffi.c Engineering Database (TED) The links up
date is carried out by the OSPF messaging (Link State
Advertisements - LSAs). This updates are sent when a new
wavelength status change occurs (reserve/release). A full
link status update occurs when new node joins or leaves
the network. Following in detail the message sequence on
GMPLS with PCE mechanism to create a lightpath:

• The source node sends a PCEP request message for
submitting a path computation request.

JOURNAL OF illEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

• The PCE computes the path requested and assigns a
wavelength to this path. Then the PCE sends this infor
mation to the source by using a PCEP PCRep message.
Otherwise, if the PCE fails in computing a path or in
assigning a wavelength on it, it replies with a PCRep
message with NO-PA TH reply, and the lightpath request
is refused (forward-blocking) .

• Upon the reception of PCRep message, the source node
sends the Resource Reservation Protocol-Traffic Engi
neering (RSVP-TE) messages along the computed path
to reserve it. The Path reservation message includes the
Explicit Route and the Label set. The label set informa
tion include the wavelength assigned by the PCE.

• When a node receives RSVP-TE path reservation mes
sage, it performs the wavelength assignment if it is
available. Otherwise, another wavelength contained in
the Label Set is selected, according to a specifie wave
length assignment strategy (e.g., fust fit) .

• If another request requested the same resource (link
and wavelength) on a specifie node and this request is
accomplished before this one, this will have this node to
refuse this request and reply with RSVP refuse message
(backward -blocking).

• When the wavelength assigned, the destination node
sends back a Resv message to effectively reserve the
selected wavelength on each link of the path.

• Once the Resv message reaches the source, the lightpath
is established and data could be carried through the
pa th.

Lightpath release is performed in a sinlilar way as the setup
process (in a distributed manner through RSVP-TE signaling
[22]). As the previous description the setup procedure may be
blocked during path computation because oflack ofresources
(forward-blocking), or may be blocked due to wavelength
contentions (backward-blocking). Contentions arrive when
two or more RSVP-TE messages attempt to reserve the same
resource (link and wavelength). This actually because the
link availability da tabase TED may be outdated when the
path request reached PCE.

C. DRAGON

Actually, there are still a lot of non capable GMPLS
equipments. DRAGON software salves this problem in the
Ethernet networks using SNMP to adapt these equipments
to GMPLS control plane. ln this paper, we use this software
and adapt it to operate with our optical switch (Cisco ONS
15454).
The DRAGON project studies and develops an open source
software to enable dynamic provisioning of network re
sources on an interdomain basis across heterogeneous net
work technologies. The project enables the co=unication
between networks of different types through the GMPLS
control suite. For its implementation, DRAGON deploys the
lP network infrastructure and creates a GMPLS capable
optical core network to allow dynamic provisioning of de
terministic network paths in direct response to end-user
requests, spanning multiple administrative domains. Optical
transport and switching equipments acting as Label Switch
ing Routers (LSRs) provide deterministic network resources
at the packet, wavelength, and fib er cross-connect levels.

1) DRAGON Control Plane Components: DRAGON soft
ware is thought to work like control plane within a GMPLS

4

network. The control plane architecture consists of two basic
elements 3 : The Client System Agent (CSA) and Virtual
Label Switch Router (VLSR).

a) CSA (Client System Agent): The CSA is a software
that runs on (or on behalf of) any system which terminates
the data plane (traffic engineering) link of the provisioned
service. This is the software that participates in the GMPLS
protocols to allow for on demand end-to-end provisioning
from client system to client system. A CSA can be a host,
a router, or any networked deviee.

b) VLSR (Virtual Label Switch Router): GMPLS has
not yet been implemented on large a scale. There are still
a lot of non GMPLS capable switches in use. To overcome
this limitation, the DRAGON protocol suite uses the VLSR.
A VLSR is used to control different kinds of switches like
for instance Ethernet, TDM or Optical switches. What a
VLSR does besides participating in the GMPLS protocols
is translating GMPLS co=ands into switch specifie com
mands like SNMP. By the use of these commands, a VLSR
can control the switch and for example set a switch port in
the specifie VLAN. To co=unicate with other VLSRs and
CSAs, a VLSR uses the routing protocol OSPF-TE (Open
Shortest Path First-Traffic Engineering) and path signal
ing protocol RSVP-TE (Resource Reservation Protocol-Traffic
Engineering). A VLSR uses OSPF-TE to get familiar with
the control plane network and to inform the VLSRs and
CSAs in the control plane about the TE network links. A
VLSR uses the OSPF-TE LSAs (Link State Advertisements)
to send information about the TE links. Information that
could be send over the control plane is information about
upcoming and down going LSPs (Label Switched Paths). The
OSPF-TE works with two daemons called OSPFD and zebra.
Zebra, or GNU Zebra [24], is routing software for managing
TCPIIP based rou ting protocols like RIP, BGP and OSPF. The
DRAGON software extends the OSPF routing daemon with
Traffic Engineering informations like bandwidth, WDM and
TDM used by GMPLS. A VLSR uses RSVP-TE for signaling
and set ting up LSPs within the GMPLS network. The RSVP
TE protocol originates from the Technische Universitt Darm
stadts KOMRSVP [25]. The DRAGON software extends the
KOM-RSVP signaling protocol with support for RSVP-TE,
GMPLS, Q-Bridge, SNMP and VLAN control.

2) Adapting VLSR for Cisco ONS 15454: The DRAGON
software suite is being developed under the GNU General
public license [26]. The source code can be viewed, changed
for own use. The latest version of the software suite can
be downloaded at [27]. In order to install the DRAGON
software, the VLSR implementation guide has been followed
[28].
By default, the VLSR PC uses SNMP RFC 2674 to com
municate with switch. To manage and control the Cisco
ONS 15454, we use TL1 co=ands. Thus, we implement an
SNMP/TL1 Gateway that acts as a proxy to adapt the VLSR
software with Cisco ONS 15454 specification (Figure 4). As
shown in figure 4, the SNMP/TL1 Gateway is composed of
two modules:

• SNMP Agent: Using snmp4j [29] open source Java
library, we have developed an SNMP agent. It provides
functions to receive and send SNMP PDUs (Protocol
Data Unit).

3The informations found in this section is based on the Sara
Project documentation produced by the RFC 3945 [23)

JOURNAL OF JdiEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

'"""''"'Il m~-] r-~ VLSR) - -, __
SNMP/Tll Gate wav

Fig. 4. SNMP!TLl Gateway

Tll ---
Clsco ONS 15454

TLl Agen t : Using the iReasing [30] TLl API, we have
developed a TLl based management application that
communicates with the Cisco ONS 15454. Its main func
tion is to map the SNMP messages into TLl commands
to set-up configurations in Cisco ONS 15454.

IV. EXPERIMENTAL SETUP

In this section, we first present the OpenFlow experi
ments followed by the GMPLS ones. Then we discuss the
experimental results in order to evaluate and compare the
OpenFlow solutions with GMPLS.

A. OpenFlow Experiments

Two experiments are conducted to demonstrate the effi
cacy of our proposed solutions. The fust experiment consists
of crea ting end-to-end lightpath while the second experiment
performs a backup restoration lightpath when failure occurs
on the primary lightpath.

1) Testbed Setup: The architecture of our testbed is de
picted by :figure 5. It consists of two clients A and B, which
are connected directly to OpenFlow switches 1 and 2, re
spectively. Each switch is connected to an Electrical/Optical
converter. These converters are connected to DWDM optical
network composed of three Cisco ROADM optical switches
(Cisco ONS 15454). Each ROADM is controlled by an Open
Flow Optical Agent. The OpenFlow optical agents and the
OpenFlow switches are connected to an OpenFlow controller
over an OpenFlow charmel.

2) Scenario A: End-ta-End Lightpath Setup: As shown
in Figure 5, a data flow sent from Client A to Client
B arrives at OpenFlow switchl. When the OpenFlow
switchl does not :find any flow entry that matchs with
this flow, it encapsulates the first flow packet in an
OFPT PACKET IN message and forwards it to the Con
troller:- Then the controller uses the OF-PCE to calcu
late the lightpath, and creates the lightpath by sending
OFPT FLOW MOD message (OpenFlow Messages Map
p ing solution) or OFPT CFLOW MOD message (Open
Flow Extension solutiorD to the ~tches. The connection
is established between the two clients following steps Al,
A2, A3, A4, A5, A6, and A7 (Figure 5). The wireshark
screenshot presents the exchanged messages during this
scenario (Figure 6).

3) Scenario B: Shared Optical Restoration: This scenario
demonstrates how OpenFlow controller acts when a link fail
ure occurs. The path deletion is performed by the controller
using OFPFC DELETE message. Figure 5 shows the steps
that are executed in this scenario (Bl, B2, B3, B4, and B5).
The wireshark screenshot presents the exchanged messages
during this scenario (Figure 7).

5

Fig. 6. OpenFlow Scenario A: Wireshark screenshot

OF'PT_PORT_ TATll &.~ OFPT_PORT_STATUS M essages from
OFL'T_FLOW_MOD OF _Agent2,3 to OF _Controller (Step 81)

g B ~ f,: ~~~~~~ .. ~~-- :-~;: - ~ ~- - - o o - , s ~,.,~
.:: m .. a. .,._ r- s-c. c--o. r..-.-~ t.q&ol ioie W o 1.....,
: ~ ~ IHI 21.339403000 Of _4gtntl Of _controller "bpenrlow ua rwe: CfPT.JiœT A (;' a ;:!::!
ta Gl :ë 11S02L44~ Of_.l,getlt3 Of_C'ontroller Openflow ll8 Type: OFPT.JIMT....5TA 1 ~ 0 0
~ :f ~ ISI 21.446999000 Of_Controlltr OfJ,gent J Openflow 294 Type:: ŒPT_Ft.OW.JIJO ~ ~ ~ ~~
~ ~~ ~ l l5S U.S640S8000 OF_Controller OFJ,qent2 Openflow 614 Type: OFPTJLOW.J(IO 1 !:: :_ ~
0 0 ~ 1157 21.6S02290C() Œ_{ontroller OF _Agent] Openflow l74Type: OFPT..FLQW.JCXI l ~ 0 0
0 .S :::i ll07]4.746444000 OF_Controller OFJ,gentl Openflow B4 type: OFPTJLOWJOJ ~ ~ 0

~,_!! E 1209 34. 746969000 OF_Cootroller OF..Agentl OpenFlow ll4 Type: OFPTJLOWJOJ 1 ~ '> ~
~ ë '; lU 14 .876159000 CF_Cootrol ler OF.J,qentl OpenFlow 134 Type: ŒPTJUlW.JO) 1 ~ C: t
9 ë .;: ill 14.909426000 Of_Control ler Of..Açtntl OptW"low 294 Type: OFPT..flOW.JO)

1
;; ;a CJQ

u..l 8 ., 1220lS.S801BOOO Of_Controll er 0F~tl'lt2 Op~lo.· 134 Type: ŒPT..FLOWJ(X) l "a 1:: t2
~ Poi.l:! 11ZllS.830301000 OF_Controller OF ..AgentJ OpenFlo. B4T_ype: OFPTJLOW..Jil) ; 'ùJ à
Ô o -a n4~93_:_~_c-:~on~o~e~Œ~~J--Op~~_?}:_~!'f~~~-~ ô 3

Fig. 7. OpenFlow Scenario B: Wireshark screenshot

B. GMPLS Experiments

To experiment GMPLS, we construct a transparent op
tical network testbed with two ROADMs (Figure 8). In this
infrastructure, the control plane consists of two CSAs and
two VLSRs. The CSAs and the VLSRs are connected via the
switch hub. GRE (Generic Routing Encapsulation) tunnels
are created between the CSAs and the VLSRs and between
the VLSRs themselves to exchange RSVP-TE and OSPF
TE messages. The SNMP!TLl Gateway has a connection
with the switch hub to allow SNMP management by the
VLSRs. It translates SNMP messages to TLl commandes in
order to configure the ROADMs. In the SNMPtrLl Gateway
machine, we installed two virtual machines. Each one listens
to a VLSR on port 161 and controls one ROADM. Using
wireshark capture in VLSR2 (Figure 9 (a)) and VLSRl
(Figure 9 (b)), we explain the GMPLS signaling to create
an LSP from CSA2 to CSAl.

CSA2 sends RSVP PATH message to VLSR2 with the
destination set to the target CSAl. Both VLSRs forward
the path message since they are not the destination. When
CSAl receives the RSVP PATH message, it replies to it
with RSVP RESV messa~ and sends it to VLSRl. VLSRl
forwards this message to VLSR2 because again it is not
the destination of the message. Finally, VLSR2 forwards the
RSVP RESV message to CSA2. At this point, the LSP is ac
tive arÎd can be used. The SNMPtrLl Gateway translates the
SNMP messages sent by the two VLSRs to TLl commands
in order to configure the two ROADMs.

JOURNAL OF T!JIEX GLASS FILES, VOL. 6, NO. 1, JANUARY 2007

Scenario 1

• ScenarioZ

OpenFlow
Switch 1

Client A
ROADM 1

A data flow sent from client A to client 8 arrives at Open Flow switcb J.

0tJenF1ow switch 1 does not find n flow enlry in its flow table to forward
this flow, so it eocapsulates the first flow pncket in a OFPT PACKET IN
message and fonvnrds il to tbe controUer. - -

The cootrollcr calculates the tJath from Client A tu Client B, ami sends
OFPT_PACKET_OUT message to the OpcnFlow switch 1 . The controUcr
sends Jalso OFPT _FLO\V _J\100 messages (OpeuFimv Messuges ft1uppi11g
solution) or OFPT _ CFLO\V _MOD message (Ope11Fiow E:deusiou so lution)
tu the Oprical OpenF1ow agents in order tu create the Jjgbtp:.ath.

\Vhen OpenFiow optical agents receive tbis message, they translate it into
the appropriate TLI commands and send ir ro the ROADM swirches .

After creu rin g: the Iigbtp~ttb1 the data flow trn,·erses unriJ Openflow swirch 2.
\Vhen d1e flow is n~ceived by Open Flow switch 2, if the switch does not fi nd a
flow entry in irs fl ow table to forward this packet, ir sends a
OFPT_PACKET_lN message to the controller reques ting a.o action for this
flow.

The controller sends .o OFPT_PACKET_OUT message to OpenFlow switcb 2
to fon~·ard this pncket ro client B.

Open Flow switch 2 forwards tbis pncket to client B.

•
•
•
•
•

Clienr 8

ÛJ)tnFtow
Swirch 2

When the intercoonection between the ROADM J nnd ROADM 2 fails. both
Open flow opticalueents corresponding ro these Oprical Switches read. the
alarms of the OJ>tical switches . Th en theysend OFPT PORT STATUS
Messages to the con troUer about the port starus UJKiaÏe . -

OpenFiow conrroller calcula tes alternative lightp:Uhs ro the existing failed
lightJ»Ihs.

The cootroller seods OFPT _FLOW _MOD (type=ADD FLOW) messa&es
(OpeuFitJw A-lesst1ge.v kl11pping solution) or OFPT _CFLO\V _MOD mHSage
(Open Flow Extension solution) to the opricnl switches to crente new li&:htpnth.
ln this case, a ucw lightparb is establi.shed from ROADM 2 to ROADM J via
RO.-\DM 1 on n different wovelcngth (1588.17nm).

The controller sends nnother OFPT_FLOW _MOD (Type=OFPFC DELETE)
messages (OpenF/uov Me.t~·age:o· Mapping solution) or OFPT CFLOW MOD
message (OpenF/mv E\·tem·itm Solution) ro the oprical switches which -are
associated with old Jigbtpath to delcte lhe primary lightpath.

\\ih~n the ÛJJ~nFlow Opticul agt:nts receive the.se messages, they trun.slute it
into the appropri.ute TLI commands and scnd it to the OIJricnl switches.

6

Fig. 5. Network connguration and exchanged messages during the OpenFlow experiments

C. Experimentation Results

Table I shows the time (in ms) consumed on each solu
tion (OpenFlow Messages Mapping and OpenFlow Ex
tension) and the GMPLS approach. In tlùs table, Pathl
and Path2 refer to the primary and the backup lightpaths.
Pathl nodes are OF Switchl -t ROADM2 -t ROADM3
-t OF_ Switch2, wlùle Path2 nodes are OF Switchl -t

ROADM2 -t ROADMl -t ROADM3 -t OF Switch2. LSP on
the table refers to Label Switch Path for GMPLS. LSP nodes
are CSAl -t ROADM2 -t ROADM3 -t CSA2. The experi
ments results show that OpenFlow Extension solution (216

ms) outperforms OpenFlow Messages Mapping (227 ms)
solution. Tlùs result is expected because OpenFlow Exten
sion solution uses one message to encapsulate biclirectional
lightpath information and OpenFlow Messages Mapping
needs two messages. For the backup lightpath (Path2) wlùch
span on three nodes, OpenFlow Extension solution takes
239 ms to create the lightpath wlùle OpenFlow Messages
Mapping takes 269 ms. On the other hand, GMPLS takes
more time (340 ms) to create lightpath than OpenFlow
solutions. Tlùs is because the GMPLS-based control plane
is complicated especially when it is deployed as a unified

JOURNAL OF JdiEX GLASS FILES, VOL. 6, NO. 1, JANUARY 2007

(lh0:1D.1CL2l ••
Grwt : IO. lO.O.l
ç,. t : llUD.O..l
rt : tO..L10..l
Tt : l0.1.10.$

CS Al

hhO: lO.lO.U .J
Elhl :IO.l00.11Ll

Grel

EthO

Fig. 8. DRAGON test with two ROADMs

(b)YLSR 1

VLSRl

Fig. 9. GMPLS Scenario : Wireshark screenshot

SNMP

10.10.23.101/20

10.10.23.100/20
,.----,
NCl

El
19Ll.O.l00 /2A

192.1.0.101/24 ..
!

ROAOMl

control plane (UCP) for IP/DWDM multi-layer networks.
This is due toits distributed nature, the number ofprotocols,
and the interactions among different layers. The flexibility
and manageability of the GMPLS-based control plane is low,

lo.l0.23.102/20

d

a
l!tl.LO.l02/2A

11.1

ROADM 2

1 Path1
1 Path2

1 .Path1
1 Path2

1 LSP

VLSR2

Cnl_vlsr2

GreZ

Con troUer

16
18

(,jontrouer

16
18

WoO: liUO.:U.'
G<el : UUO.O . .l
CiteJ : tO.lO.G.l
n :to.uu

Gre3

CSA2

(thl :lO.lOO.ULS
G•el : ICUO.O.t
rt: : IO.l.IQ.lO

OpenFlow Messages Mappmg :::iolutwn
:::>wltch establishment

1 R
121 - 1 90
110 30 1 111
OpenFlow ~xtenswn Solution

SWltch establishment
1 .JA lM:{

100 - 1 100
90 30 1 101

GMPLS Solution
K:::>V.P-TJ!; 1 :::iWltch establishment

1 RJlAnM? 1 R '

130 1 110 1 - 1 100
TAtlLJ!; 1

THE EXPERIMENTS TIMING

7

Total (ms)

227
269

Total \IDS)

216
239

Total (ms)

340

because, for example, if we want to crea te or update an end
to-end lightpath, the signalisation and reservation messages
must be updated and exchanged between all the interme
diate VLSRs. However, the OpenFlow-based UCP provides
the maximum flexibility and manageability for carriers since
all the functionalities are integrated into a single OpenFlow
controller. More importantly, the OpenFlow-based control
plane is a natural choice for a UCP in IP/DWDM multi-layer
networks due to its inherent feature, as the procedure shown
in Figure 5. Thus, the technical evolution from GMPLS to
OpenFlow is a process that the control plane evolves from a
fully distributed architecture to a fully centralized one.

JOURNAL OF JdiEX GLASS FILES, VOL. 6, NO. 1, JANUARY 2007

SUMMARY OF SIMULATED SOLUTIONS

V. SIMULATION STUDY

In this chapter we present a simulation comparative study
of the OpenFlow solutions (OpenFlow Messages-Mapping,
OpenFlow Extension) and the GMPLS approach. To conduct
the comparison, a custom-built Java event-driven simulator
is written based on the mechanisms mentioned in III-B.
The measurements taken from the previously conducted
experiments are used in writing the simulator.

Table II shows the signaling protocol used by each solution.

The simulation is carried out on two real optical network
topologies. These network topologies are the optical network
topology of America National Science Foundation (NSF) and
the optical network topology of the European union U1tra
High Capacity Optical Transmission Network (European
Re-search Project Cost239). The next section presents the
simulation environment, parameters and algorithms. Then,
the results for each topology is presented in sections V-Band
V-C.

A. The Custom-built Java Event-Driven Simulator

The simulator is a custom-built Java event-driven appli
cation. It is written based on the mechanisms mentioned in
chapter III-B. The internai optical switch lightpath estab
lishment time is emulated to 60 ms for ali solutions. For both
topologies, the links between nodes are two directions. Each
link supports 32 wavelengths. The controller and the PCE
perform first-fit for assigning wavelengths. Wavelength can
not be changed across the path since nodes do not support
wavelength conversion. Lightpath requests are generated
according to a Poisson process and uniformly distributed
among ail node pairs. The holding time is fixed to 180
seconds, the average inter-arrivai time is varied from 0.3 s
to 18 s. This varies the Erlang from 600 to 10.

The first algorithm explains how the written application
simulates the OpenFlow solutions. The application uses the
network topology nodes (G:Graph), the connections between
them (V:Vertex), and the simulation end-time as inputs.
Then, it starts by generating one event of type create
channel. After that, it reads events one at a time and handles
it. Depending on the event type, each event type is treated
differently as explained on the algorithm. For the create
channel event, it genera tes a new crea te-channel event based
on the Poisson inter-arrivai time, updates the controller's
time, calculates the lightpath, finds a free channel (wave
length). Finally, it generates the create cross-connect events
for each switch through the calculated path (Events to be
executed by the switches). Unless there is no lightpath
available, it declares this request as a blocked request. For
the events of type DeJete channel, it updates the controller's
time. Then, it generates the deJete cross-connect events for
each switch through the lightpath (Events to be executed by
the switches). For the event of type create cross-connect, it

8

generates an event of type deJete channel. For both events
of type create/delete cross-connect, it updates nodes time
(Emulating the cross-connect creation time 60 ms). Then, it
updates vertex information.

Data: G: Graph, V: vertex, EndTime: Simulation End Time
Result: Establishment time, Blocking probability and

control traffic
Initialization: Generate one event (using a uniformly
distributed source and destination and Poisson inter-atTival
ti me);
w hile current time < EndTime do

read the nearest event;
switch Event Type do

case Create Channel
Generate new Create Channel event based on
Poisson inter-arrivai time;
Update the controller's time;
Update the controUer's vertex information;
Calculate path using Dijkstra Algorithm;
Find a free channel (wavelength) cross the
calculated path;
if Path calculation return false OR no channel
available then

1

Declare Request Blocked;
Continue with the next event;

el se
Generate create Cross-Connect events for
each node through the calculated path (with
the information of event ti me, path and
wavelength);

end
end
case Delete Channel

Update the controUer's time;
Update the controller's vertex information;
Generate deJete Cross-Connect events for each
node through the calculated path (with the
information of event ti me, pa th and wavelength);

end
case Create Cross-Connect

Update nodes' time (emulating the cross-connect
creation time 60 ms);
Update vertex information;
Generate deJete event for the created path (with
event time = cm-rent time + hold time);

end
case Delete Cross-Connect

1

Update nodes' time (emulating the cross-connect
creation time 60 ms);
Update vertex information;

end
endsw

end
Algorithm 1: OpenFiow Event-Driven Simulator algorithms

GMPLS simulation is shown in algorithm 2. The algorithm
explains how the written application simulates the GMPLS
with PCE approach. In this algorithm, the inputs and the ini
tialization are the same as algorithm 1. By traversing ail the
events depending on their types, each event type is treated
differently. For the create-channel events, it genera tes a new
crea te-channel event based on the Poisson inter-arrivai time,
updates the controller time, calculates the lightpath , finds
a free channel (wavelength), finally it generates the create
cross-connect event for the first switch in the calculated
path (Event to be executed by the switch). Unless there is
no lightpath available, it declares this request as a blocked

JOURNAL OF mEJC GLASS FILES, VOL. 6, NO. 1, JANUARY 2007

requ est. For the events of types Delete channel, it updates
the controller's time. Then , it generates the delete cross
connect event for the first switch in t he lightpath (Event
to be executed by the switch). For both events of type cre
ate/delete cross-connect, it updates node time (Emulating the
cross-connect creation time 60 ms). Then, it updates vertex
information. For the event of type create cross-connect, it
verifies if the req uested channel is available. Ifit is not avail
able, it declares this request blocked (Backward Blocking)
and it genera tes deJete channel request . If it is available
a nd this is not the last switch in the lightpa th, it generates
an event of type create cross-connect for the next switch in
the lightpa th, otherwise it genera tes an event of type deJete
channel. For both events of type LSA update (create/delete),
it updates TED (controller Vertex information).

B. National Science Foundation (NSF) topology

The first topology we ran our simulation on is the National
Science Foundation (NSF) topology [31].
NSF topology consists of 14 nodes and 21 links, each link
has 32 cha nnels (wavelength) (Figure 10). The distances
between each pairs are shown in the figure . Dijkstra
algorithm use these distances to calculate the shortest
pa th .

Fig. 10. NSF topology (14 nodes and 21 links)

The Simul ation is run for a period of 3000 sec to ensure
the stability of the network. Lightpath establishment time,
control traffic gotten into and out of the controller and
PCE, and the blocking probability are calculated from
the simulation. The results are shown in the graph s : (i)
Lightpath establishment time expressed in millisecond vs.
network load (Erla ng) (Figure 11); (ii) Number of control
messages (Controller load) vs. network load (Erlang) (Figure
13); (iii) Lightpath blocking proba bility vs. network Joad
(Erlang) (Figure 14).

Figure 11 depicts the establishment time for bidirectional
lightpath. It shows that OpenFlow Extension solution ex
periences the lowest setup time as shown with blue line.
Because OpenFlow Message-Mapping u ses two FLOWMOD
messages to es tablish the lightpath, it is expected that this
solution experiences higher time than OpenFlow Extension
so luti on as shown in the figure with t he red lin e. OpenFlow
olu tions execute the lightpath on parallel, hence the es

tabli shm ent time of lightpath is around a fixed value. On
the other hand, GMPLS approach executes the light path
sequentially. As a result, it has the highest setup time as
sh own in the figure with the green line in the range 600-
900 ms for bidirectionallightpath.

Data: G: Graph, V: vertex, EndTime: Simulation End Time
Result: Establishment time, Blocking probability a nd

control traffic
Ini tialization : Generate one event (using a uniformly
distJ;buted source and destinabon and Poisson inter-anival
ti me);
while current time < EndTime do

read the nearest event;
if Euent Type == Create Channel then Generate one
event based on Poisson inter-anival bme ;
switch Euent Type do

case Create Channel
Update the controller's bme;
Calculate path using Dijkstra Algorithm;
Find a free channel (wavelength) cross the
calculated path;
if Path calculation return fal se OR no channel
auailable then

1

Declare Request Blocked; Continue with the
next event;

el se
Genera te create Cross-Connect event for the
first node in the calculated path (with the
information of event ti me, path and
wavelength);

end
end
case Delete Channel

Update the controller's time;
Genera te delete Cross-Conn ect event for first
node in the calculated path (with the
information of event ti me, pa th and wavelength);

end
case Create Cross-Connect

Update nodes time (emulating the cross-connect
creation time 60 ms);
Update switch's vertex occupation;
if current switch is the last one in the path th en

1

Generate deJete event for the created path
(with event time = current time + hold time);

el se
if channel (wauelength) is auailable then

1

Generate create Cross-Connect event for
the next node in the calculated path ;

el se

1

Declare this request blocked;
Generate deJete channel event

end
end
Generate LAS update (Create) event;

end
case Delete Cross-Connect

Update nodes time (emulating the cross-con nect
creation time 60 ms);
Update switch's vertex occupation ;
if current switch is not the last on the path th en
Generate deJete Cross-Connect event for the
next node in the calculated path ;
Generate LAS update (DeJete) event;

end
case LSA update (Create / Delete)

J Update TED (controller Vertex information);
end

endsw
end

9

Algorithm 2: GMPLS/PCE Event-Driven Simulator algo-
rithms

JOURNAL OF JdJ.EX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

Fig. 11. Lightpath establishment time [ms] vs network Joad (NSF
Topology)

Fig. 12. Nurnber Of Hop Per Request vs network Joad (NSF

........-~-·ntt•,..,..
•5 -·· · ··-Opffbo< &!

- ... -Gt.A.SIPCE

10

Fig. 13. Nurnber of control messages vs network Joad (NSF
Topology)

Fig. 14. Lightpath blocking probability vs network Joad (NSF
Topology)

Topology) C. European Optical Network Topology (COST239)

GMPLS has the tendency to decrease the establishment
time as the network Joad increases. Because at high network
Joad, the average path length is shorter as shown in figure
12 (it decreases from 3.6 to 2.6 nodes per request). Even
though the number of hop decreases too on OpenFlow-based
solutions, this do not affect the lightpath setup since the
request is executed on parallel.

Figure 13 depicts the control traffic for each solution. lt
shows that both OpenFlow solutions experience low control
traffic compared to GMPLS solution as shown by blue and
green !ines. This difference is due to the PCEP messaging
which bas to be sent for each node and also because of the
LSA update messages which each node has to send back to
the controller in case link state changes.

Figure 14 depicts the blocking probability. This figure
shows that both OpenFlow based solutions have the same
blocking probability values which are expected since both
techniques use the same Dijkstra algorithm and the same
resource Database. On the other band, GMPLS-based
approach experiences the backward-blocking which makes
this technique have higher blocking ratio with low network
Joad as shown in the figure with green line. As we mentioned
before, the backward-blocking occurs because of wavelength
contentions. Contentions arrive when two or more RSVP-TE
messages attempt to reserve the same resource (link and
wavelength). Indeed, the link state database TED may be
outdated when the path request reaches PCE causing this
contention.

illtra-High Capacity Optical Transmission Network (Eu
ropean Re-search Project Cost239) [32] is the second topology
we ran our simulation on. This topology is depicted on Figure
15.

COST239 topology consists of 11 nodes and 26 links, each
link has 32 channels (wavelength). The distances between
each pairs are shown in the figure. Dijkstra algorithm uses
these distances to calculate the shortest path.

Fig. 15. COST239 Topology (11 nodes and 26 links)

The same simulation steps are followed as the NSF
topology. The Simulation is run for a period of 3000 sec to
ensure the stability of the network. Lightpath establishment
time, control traffic gotten into and out of the controller
and PCE, and the blocking probability are calculated from
the simulation. The results are shown in the graphs : (i)
Lightpath establishment time expressed in millisecond vs.
network load (Erlang) (Figure 16); (ii) Number of control

JOURNAL OF mE;X CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

messages (Controller load) vs. network load (Erlang) (Figure
18); (üi) Lightpath blocking probability vs. network load
(Erlang) (Figure 19).

--+- Openf low mnngn mapping l
"' + '" 0 penf low EJtention · ... ;:.

~:.~i~.~~ .. .;.~ ·.~·i ~ • ~:;:·~=·::_ .
.J ... ···~ ~····· L ;.. ··r···· .. ··!

...... ·--~- : ..

~ ~ ~ D ~ D ~ 0 ~ m ~ ~
Network Lo•d (Erlang)

Fig. 16. Lightpath establishment time [ms] vs network Joad
(COST239 Topology)

2.9 .

j 2.<

152.3 .

J 2.2

2.1

5D 100 t5D aD 250 m J5D o
Networklo•d (Er1ang)

Fig. 17. Number Of Hop Per Request vs network Joad (COST239
Topology)

~= :: : :i~:j;'I;~d· '
~ 2S ··+·· t· ·:;,~ . ''':"'"'

1: k~;i .. r-~.,, ,.
D ~ m ~ o ~ m ~ ~

NI IW'OI1C lotd (Erlang)

Fig. 18. Number of control messages vs network Joad (COST239
Topology)

The results shown in figw-e 16 support the same result
of the NSF topology. It depicts that OpenFlow Extension
solution experiences the lowest setup time as shown with
blue line. It depicts also that GMPLS has the highest setup
time as shown in the same figure with green line.

As the previous topology, the figure shows that GMPLS
lightpath establishment time decreases as the network load
increases, because at high network load the average path

11

Fig. 19. Lightpath blocking probability vs network Joad (COST239
Topology)

length is shorter as shown in figure 17 (it decreases from
2.77 to 2.34 hopper request).

Figure 18 depicts the control messages for each solution.
It confirms the result we got on the NSF topology. It shows
that OpenFlow solutions experience the lowest control
traffic. It depicts also that GMPLS has the highest control
traffic as shown in the same figure with the green line.

Figure 19 depicts the blocking probability and it also
confirms the result we got on the NSF topology. This figure
shows that both OpenFlow based solutions have almost
the same blocking probability values. On the other hand,
GMPLS protocol experiences the backward-blocking which
makes this technique have higher blocking ratio with low
network load as shown in the figure with green line.

VI. CONCLUSION

In this paper, we present a comparative study between two
OpenFlow solutions (OpenFlow Messages Mapping, Open
Flow extension) and GMPLS approach. The overall feasi
bility of these solutions is experimentally assessed, and
their performance is evaluated and compared with GMPLS
approach, using a custom-build simulator. The simulation
results show that the OpenFlow Extension solution outper
forms the OpenFlow Messages Mapping and GMPLS solu
tions since it experience lower end-to-end lightpath setup
time and lower blocking ratio and control traffic compared
by GMPLS.

REFERENCES

[1] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew,
and L. Ong, "Packet and circuit network convergence with
openllow," in Optical Fiber Communication (OFC), collocated
National Fiber Optic Engineers Conference, 2010 Conference on
(OFC /NFOEC) , March 2010, pp. 1-3.

[2] E. Mann:ie, "Generalized multi-protocollabel switching (gmpls)
architecture," Interface, vol. 501, p. 19, 2004.

[3] L. Liu, T. Tsuritani , and l. Morita, "Experimental demonstra
tion of openllow/gmpls interworking control plane for ip/dwdm
multi-layer optical networks," in Transparent Optical Networks
(]CTON), 2012 14th International Conference on. IEEE, 2012,
pp. 1-4.

[4] Y. Zhao, J . Zha ng, H. Yang, and Y. Yu, "Which is more suitable
for the control over large scale optical networks, gmpls or
openflow?" in Optical Fiber Communication Conference and
Exposition and the National Fiber Optic Engineers Conference
(OFC /NFOEC), 2013 , 2013, pp. 1- 3.

JOURNAL OF rn:EJ(GLASS FILES, VOL. 6, NO. 1, JANUARY 2007

[5] "DRAGON: Dynamic Resource Alloca-
tion via GMPLS Optical Networks,"
http://dragon.east. isi.edu/twiki/bin/view/DRAGON/WebHome.

[6] T. Lehman, J. Sobieski , and B. Jabbari, "Dragon: a framework
for service provisioning in heterogeneous grid networks," Com
munications Magazine, IEEE, vol. 44, no. 3, pp. 84-90, March
2006.

[7] "ONF: Open Networking Foundation,"
https://www.opennetworking.org/.

[8] "OpenFlow," https://www.opennetwork.ing.org/sdn-
resources/on f-s peci fications/openflow.

[9] L. Liu, T. Tsuritan i, I. Morita, H. Guo, and J. Wu, "Openflow
based waveiength pa th control in transparent op ti cal networks:
a proof-of-concept demonstration," in Optical Communication
(ECOCJ, 2011 37th European Conference and Exhibition on .
IEEE, 2011, pp. 1-3.

[10] L. Liu, D. Zhang, T. Tsuritani , R. Vilalta, R. Casellas, L. Hong,
L Morita, H . Guo, J . Wu, R. Mar tinez et al., "Field trial of
an openflow-based unified control plane for multilayer multi
granularity optical switching networks," Journal of Lightwave
Technology, vol. 31, no. 4, pp. 506-514, 2013.

[11] L. Liu, D. Zhang, T. Tsuritani , R. Vilalta, R. Casellas, L. Hong,
!. Morita , H. Guo, J. Wu, R. Marti nez, and R. Munoz, "First fi eld
trial of an openflow-based uni fied control plane for mu! ti-layer
mul ti-granularil-y optical networks," in Optical Fiber Commu
nication Conference and Exposition (OFC /NFOEC), 2012 and
the National Fiber Optic Engineers Conference, March 2012, pp.
1-3.

[12] A. Giorgetti, F. Cugini, F. Paoiucci, and P. Castold.i, "Open
flow and pee a rchi tectures in wavelength switched optical net
works," in Optical Network Design and Modeling (ONDM), 2012
16th International Conference on. IEEE, 2012, pp. 1-6.

[13] http://www.openflow.org/documents/openflow-wp-latest.pdf.
[14] O. S. Consortium et al. , "Openflow switch specification version

1.0. 0," 2009.
[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford , S. Shenker, and J . Turner, "Openflow:
enabling innovation in campus networks," ACM SIGCOMM
Computer Communication Reuiew, vol. 38, no. 2, pp. 69-74,
2008.

[16] C. Headquarters, "Til command reference for the cisco ons
15808 dwdm system," 2003 .

[17) S. Das, "Extensions to the open flow protocol in support of ci rcuit
switching," Addendum to OpenFlow protocol specification (v1.
O)Circuit Switch Addendum vO, vol. 3, 2010.

[18] V. Tintor and J . Radunovié, "Multihop routing and wavelengtb
assignment algorithm for optical wdm networks," International
Journal of Networks and Communications , vol. 2, no. 1, pp. 1-
10, 2012.

[19] "Cisco ONS 15454 DWDM Reference Manual, Release 9.2,"
http://www.cisco.com/en/US/docs/opticaV15000r9 2/dwdm/ ref~
erence/guide/454d92 ref.ht=V, 2012. -

[20] D. Li , G. Bernstein,-G. Martinelli, and Y. Lee, "A framework
for the control ofwavelength switched optical networks (wsons)
with impairments," 2012.

[21) V. Lôpez, B. Huiszoon, J. Fernandez-Palacios, O. Gonzalez de
Dios, and J. Aracil, "Patb computation element in telecom
networks: Recent developments and standardization activities,"
in Optical N etwork Design and Modeling (ONDM), 2010 14th
Conference on. IEEE, 2010, pp. 1-6.

[22] A. Giorgetti , N. Sambo, I. Cerutti, N. Andriolli, and P. Cas
toldi , "Label preference schemes for lightpath provisioning and
restoration in d.i stributed gmpls networks," Journal of L ight
wave Technology, vol. 27, no. 6, pp. 688-697, 2009.

[23] "RFC 3945 Generalized Multi-Protocol Label Switcbing (GM
PLS) Architecture," http://www.ietf.org/rfdrfc3945.txt.

[24] "GNU Zebra," http://www.gnu.org/software/zebra/.
[251 "KOMRSVP Engine," h ttp://www.kom.tu-

darmstadt.de/en/downloads/softwarelkomrsvp- engine/ .
[26] "GNU General Public License,"

http://www.gnu.org/copyleft/gpl.btiDl.
[27] "DRAGON Source Code," http://Dragon.maxgigapop.net/public/

Dragon-swvlsr-daily.tar.gz.
[28] http://dragon.east. isi.edu/twikilpub/DRAGON/VLSR/dragon

vlsr-implement-v2.1b.pdf.
[29] "SNMP4J API," http://www.snmp4j.org/.
[30] "iReasoning TL! API," h ttp://ireasoning.com/tllapi.shtml.

12

[31] N. S. Foundation. (2014) National science foundation. [Online].
Available: http://www.nsf.gov/

[32] M. O'Mahony, "Results from the cost 239 project. ultra-high
capacit-y oplical transmission networks," in Optical Communi
cation, 1996. ECOC '96. 22nd European Conference on , vol. 2,
Sept 1996, pp. 11- 18 vol.2.

BIBLIOGRAPHY

Ban erj ee, A. , Drake, J. , Lang, J. , Turner , B. , Awduche, D. , Berger, 1 ., Kompella , K. , and

Rekhter , Y. (2001). Generalized multiprotocol label switching: an overvi w of signaling

enhancements and recovery techniques . Communication Magazine, IEEE, 39 (7):144- 151.

CIS CO (2012a) . Cisco ons 15454 dwdm reference manual, release 9.2.

CISCO (2012b). Tll cisco : Tll command guide.

Computerworld (2000). Packet-switched v . circui t-switched.

Consortium, O. S. et al. (2009) . Openfl.ow switch specification version 1.0. O.

Das, S. (2010). Extensions to the openfiow proto col in support of circuit switching. Addendum

to OpenFlow pTOtocol specification (vi . 0) Circuit Switch Addendum vO, 3.

Da , S. , Parulkar , G. , and McKeown, N. (2012). Why openfiow/ dn can succeed where

gmpls failed. In European Conference and Exhibition on Op ti cal Communication, page

Th 1. Optical Society of America.

Das, S. , Parulkar , G. , McKeown, N., Singh, P ., Getachew, D. , andOng, L. (2010) . Packet and

circuit network convergence with openfiow. In Optical Fiber Communication (OFC) , col

located National Fiber Optic Engineers Conference, 2010 Conference on (OFC/ NFOEC) ,

pages 1- 3.

Fa.rrel, A. and Bry. kin , I. (2005) . GMPLS: architecture and applications. Academie Pr ss .

Founda.tion , N. S. (2014). Nat ional science founda.tion.

fp7 fed rica. eu (2014) . Federica: Federated e-infrastructure dedica.ted to european researchers

innovating in computing network archi tectures.

geni .net (2014). Geni: Global environment for n twork innovations.

93

Giorgetti, A., Cugini , F. , Paolucci, F ., and Castoldi, P . (2012). Openflow and pee architec

tures in wavelength switched optical networks. In Optical Network Design and Modeling

(ONDM), 2012 16th International Conf erence on, pages 1- 6. IEEE.

Giorgetti, A., Sambo, N. , Cerutti , I. , Andriolli , ., and Castoldi, P. (2009). Label preference

schemes for lightpath provisioning and restoration in distributed gmpls networks. Journal

of Lightwave Technology, 27(6):688- 697.

Headquarters, C. (2003) . Tll command reference for the cisco ons 15808 dwdm system .

IT (2000). IT U-T Recommendation G.805 : Generic functional architecture of transport

networks. Technical report , International Telecommunication Union.

Lehman , T. , Sobieski , J. , and Jabbari , B. (2006a). Dragon: a framework for service provi

sioning in heterogeneous grid networks. Communications Magazine , IEEE, 44(3) :84- 90.

Lehman , T., Sobieski, J ., and Jabbari, B. (2006b). Dragon : a framework for service provi

sioning in heterogeneous grid networks. Communications Magazine , IEEE, 44(3):84- 90.

Li , D., Bernstein , G. , Martinelli , G. , and Lee, Y. (2012). A framework for the control of

wavelength switched optical networks (wsons) with impairments.

lightreading.com (2011). Packet-optical stays out of control.

Liu, L., Tsuritani, T. , Morita, I. , Guo, H. , and Wu , J. (2011). Openflow-based wavelength

path control in transparent optical networks: a proof-of-concept demonstration. In Optical

Communication (ECOC) , 2011 37th European Conference and Exhibition on, pages 1- 3.

IEEE.

Liu, L. , Zhang, D. , Tsuritani , T. , Vilalta, R. , Casellas , R. , Hong, L. , Morita, 1. , Guo , H. , vVu,

J. , Martinez, R. , et al. (2013). Field trial of an openflow-based unified control plane for

multilayer multigranularity optical switching networks. Journal of Lightwave Technology,

31 (4) :506- 514.

Liu , L., Zhang, D. , Tsuritani , T. , Vilalta, R. , Casella , R. , Hong, L. , Morita, 1. , Guo , H. , \1\Tu ,

J. , Martinez , R. , and Munoz , R. (2012). First fi eld trial of an openflow-based unified control

plane for multi-layer multi-granular ity optical networks. In Optical Fiber Communication

94

Conference and Exposition (OFC/ NFOEC) , 201 2 and the National Fiber Optic Engineers

Conference, page 1 3.

L6pez, V ., Hui zoon, B., Fernandez-Palacios, J. , Gonzalez de Dios, 0 ., and Aracil , J. (2010).

Path computation element in telecom n tworks: Recent developments and stand ardization

activities. In Optical NetwoTk Design and Modeling (ONDM), 2010 14th Conference on,

pages 1 6. IEEE.

l\ilannie, E. (2004) . Generalized multi-protocollabel witching (gmpls) architecture. Interface,

501:19 .

NicKeown , N. , Ancier on , T ., Balakrishnan , H., Parulkar , G. , Peterson , L. , Rexford , J. ,

Shenker , S. , and Turner, J. (2008a) . Op nflow: enabling innovation in campu network .

A CM SIGCOMM ComputeT Communication Review, 3 (2):69- 74.

McKeown , N. , nder on, T. , Balakri Iman , H. , Parulkar , G. , Peterson , L. , Rexford , J. ,

Shenk r , S. , and Turn r , J. (200 b). Openfiow: nabling innovation in ampu networks.

ACM SIGCOMM ComputeT Communication Review, 38(2):69- 74 .

aous, J. , Erickson, D. , Covington , G. A. , Appenzeller , G. , and McKeown , . (200) . Imple

menting an open fl ow swi tch on the netfpga platform. In Pmceedings of the 4th A CM/ IEEE

Sympa ium on ArchitectuTe fo r Ne twoTking and Communications Sy tem , pages 1 9.

ACM.

O'Mahony, M. (1996) . Re ults from the cost 239 project. ultra-high capacity optical t ran -

mission networks. ln Optical Communication, 1996. ECOC '96. 22nd Eumpean ConfeTence

on, volume 2, pages 11 1 vol.2.

open networking foundation (2013). Software-defined networking (sdn) definiti on .

OpenFlow (2011) . Op nflow.

Tintor , V . and Radunovié, J. (2012). Multihop routing and wavelength assignm nt algori thm

for optical wdm networks. International Journal of N etwoTk and Communications, 2(1):1

10.

Wikimedia Foundation , I. (2003). Autonomou system (int rnet) .

95

wikipedia (2014). Tier 1 and t ier 2 isps.

