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FOREWORD 

This Master' s thesis comprises ofthree chapters. First chapter gives a background about mine 

restoration approach that is based on using covers with capillary barrier effects as a closure 

plan for mines with acid mine drainage problem. It also presents a literature review about the 

option of applying allelopathic species as bio-barriers to improve long-term performance of 

system of multilayered covers and outlines the objectives of the research. Second chapter is 

written in the form of a scientific paper. The title of the manuscript is "Bio-intrusion barri ers 

of Calamagrostis canadensis and Kalmia angustifolia have specifie impacts on root system 

architecture and growth of tree species established on mine covers" . The last chapter presents 

the overview, main conclusions, and possible avenues for future research. I conducted the 

sampling, analyzed the data and wrote the Master' s thesis. Drs. Bussière, Smirnova, and 

Tremblay set the framework of the research and experimental approach, and edited the thesis. 

This project was frnancially supported by a NSERC CRD (Natural Sciences and Engineering 

Research Council of Canada Collaborative Research and Development) grant (B. Bussière and 

collaborators) and by the NSERC Industrial Chair Polytechnique-UQAT on Environment and 
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RÉSUMÉ 

La formation de drainage mmter acide (DMA) reste l'un des grands problèmes 
environnementaux causés par les résidus de l'activité minière. La mise en place de couvertures 
avec effets de barrière capillaire (CEBC) est fréquemment utilisée pour la restauration de sites 
miniers ayant des problèmes de DMA. Toutefois la colonisation de ces sites par les végétaux, 
particulièrement les espèces d'arbres à racines profondes, peut compromettre l'efficacité à long 
tenne des CEBC, à savoir la limitation de la migration de l'oxygène de l'atmosphère vers les 
roches acides. L'une des avenues les plus prometteuses pour améliorer la performance à long 
terme des CEBC est de créer une barrière biologique (BB) à l' aide d'espèces indigènes à effets 
allélopathiques potentiels. L'allélopathie est l'effet inhibiteur d'une espèce de plante sur la 
croissance et/ ou la reproduction d'une autre, directement à travers la libération de composés 
allélopathiques dans le sol ou, indirectement, par la compétition pour les ressources et l'espace. 
Cette étude vise à évaluer si les espèces suivantes, le calamagrostide du Canada ( Calamagrostis 
canadensis) et le kalmia à feuilles étroites (Kalmia angustifolia), peuvent représenter des 
barrières biologiques efficaces et inhiber la croissance d'espèces d'arbres cibles (AC), 
représentant un risque particulier pour l'efficacité des CEBC telles que: le peuplier baumier 
(Populus balsamifera) , le saule (Salix spp.), et l'épinette noire (Picea mariana). L'influence des 
BB sur (1) la croissance en hauteur de la tige et du diamètre basal, la biomasse (tiges, feuilles, 
racines et biomasse totale), et le ratio racine/tige des AC; (2) les caractéristiques de 
l'architecture du système racinaire des AC ont été mesurées . L'influence relative des BB sur la 
croissance des AC dans des conditions sèches et humides a également été évaluée. L'expérience 
a débuté en 2008 sur le site Les Terrains Aurifères (LTA), Malartic (Québec). Les espèces bio
barrières ont été plantées systématiquement avec les arbres cibles dans des parcelles 
expérimentales à l' intérieur de blocs aléatoires respectivement dans les zones sèche et humide 
du site LT A. Nous avons utilisé une méthode de numérisation tridimensionnelle de la racine, 
suivie d'une analyse avec le logiciel AMAPmod pour évaluer 1 ' architecture des racines des AC. 
Les données ont été analysées à l'aide des modèles linéaires mixtes. Un effet inhibiteur 
important du calamagrostide sur la croissance aérienne et souterraine des trois AC (croissance 
en hauteur de la tige, diamètre, biomasse, profondeur maximale des racines, extension radiale 
des racines, longueur et volume totaux des racines, nombre de racines de 2 ème et 3 ème ordres) a 
été observé. La biomasse du calamagrostide a eu un effet négatif sur la biomasse et 
l' architecture du système racinaire des AC. La présence du kalmia, a eu une influence positive 
sur la croissance en hauteur de la tige et en diamètre, la biomasse, la profondeur maximale des 
racines, le volume et le nombre de racines de 2 ème ordre du peuplier baumier, tandis que la 
croissance du sau le n'a pas été affectée. À 1 'exception du rapport racine/ tige et du nombre de 
racines de 2 ème ordre, la présence de kalmia a eu un effet positif sur toutes les caractéristiques 
de croissance de l'épinette noire. Les résultats obtenus nous permettent de conclure que le 
calamagrostide représente une barrière biologique plus efficace que le kalmia. Les contraintes 
d'adaptation sur le site LT A et le taux de mortalité élevé observé chez le kalmia, pourraient être 
les principales causes de sa faible performance comme barrière biologique. 

Mots clés: couvertures avec effets de barrière capillaire, effet allélopathique, biomasse, 
architecture du système racinaire, numérisation des racines. 



ABSTRACT 

Acid mine drainage (AMD) generation remains one of the challenging environmental issues 
caused by mining industry wastes . The construction of covers with capillary barrier effects 
(CCBE) is frequently used as a closure plan for various mines with AMD problems. 
Nevertheless, colonization of vegetation on mining sites (especially deep-rooting tree species) 
can compromise the CCBE main function i.e . restriction of oxygen migration from the 
atmosphere ta acid-generating rock. One of the environmentally sa fe solutions ta improve the 
long-term CCBE performance is ta create a bio-barrier made of native species with potential 
allelopathic effects. Allelopathy is the inhibiting effect of one plant species on growth and 
reproduction of another one, either directly through release of allelopathic compounds into the 
sail environment, or indirectly through the competition (resource competition, interference 
competition for space). This study was aimed ta test whether the bio-barrier species (BBS), 
bluejoint reedgrass (Calamagrostis canadensis) and sheep laurel (Kalmia angustifolia), can 
inhibit the growth and alter the root system architecture (especially inhibition downward root 
growth) of the target tree species (TS), which representa particular risk to the CCBE efficiency: 
balsam poplar, willow, and black spruce. The influence ofBBS was assessed on (1) stem height 
and basal diameter increment, biomass (shoot, root, total) , and root-to-shoot ratios of TS; (2) 
root system architecture characteristics of TS. The relative influence of BBS on TS growth in 
dry and wet conditions was also evaluated. The experiment started in 2008 at Les Terrains 
Aurifères (LTA) site located near Malartic, Québec. Bio-barrier species were planted 
systematically with TS in experimental plots within blacks in dry and wet zones of the LTA 
site. A method of three-dimensional root digitizing followed by analysis in AMAPmod 
software was used ta determine the root architecture ofTS. The data were analyzed with linear 
mixed models. A strong inhibiting effect of bluejoint reedgrass on above- and belowground 
growth of three TS (stem height and basal diameter increment, biomass, maximum root depth 
and root radial extension, total root length and volume, number of2"d- and 3d-arder roots) was 
observed. The biomass of bluejoint reedgrass had an adverse effect on biomass and root 
parameters of TS . In the presence of sheep laurel, stem height and basal diameter increment, 
biomass, maximum root depth, root volume and number of 2"d-order roots of balsam poplar 
increased, whereas willow was not affected. Except for the root-to-shoot ratio and number of 
2"d-order roots, the presence of sheep laurel had a positive effect on all investigated 
characteristics of black spruce. We concluded that bluejoint reedgrass represents a more 
efficient bio-barrier species than sheep laurel in this study. Slow adaptation of sheep laurel ta 
site conditions that was induced by transplant shock, possibly led to its high mortality, law 
phytotoxic and competitive activities. 

Key words: covers with capillary barrier effects, allelopathic effect, biomass, root system 
architecture, root digitizing. 



CHAPTERI 

GENERAL INTRODUCTION 

1.1 Covers with capillary barrier effects as mine site reclamation method 

Québec is one of the leading Canadian provinces in exploitation of mineral resources. 

Nevertheless, mining operations are accompanied by the release of millions tonnes of tailings 

that may lead to serious ecological problems. To prevent this, the government of Québec issued 

the Mining Act (MNR 2014) that requires the mining companies to work towards sustainable 

development. Following the regulations ofthe Mining act, mining companies must rehabilitate 

tailings impoundment areas to prevent contamination of the environment, thereby obtaining 

social acceptance. 

Nowadays, acid mine drainage (AMD) remains one of the challenging environmental issues 

for the mining industry (Johnson and Hallberg 2005; Bussière 2009). Acid mine drainage is 

produced from the oxidation of sulphide minerais, such as pyrite and pyrrhotite, contained in 

mine tailings (Kleinmann et al. 1981 ; Blowes et al. 1994). Many methods are proposed to 

control AMD generation (MEND 2001). In humid climates, the construction of covers with 

capillary barrier effects (CCBE) is frequently used as a closure plan for various mines with 

AMD generation (Ricard et al. 1997; Dagenais et al. 2005; Bussière et al. 2006) . Covers with 

capillary barrier effects have to maintain a high degree of saturation in one (or more) of its 

layers in order to limit oxygen migration from the atmosphere to the mine tailings and 

consequently to prevent AMD generation (Nicholson et al. 1989; Bussière et al. 2003) . 

Basically, CCBEs consist ofthree to five layers. Each layer is made of different materials , each 

having a specifie function. From the bottom to the top the layers are: a support and capillary 

break layer made of course-grained materials; a moisture-retention layer made of fine-grained 

materials that serves as oxygen and water barrier; a drainage layer made of coarse-grained 

material to prevent water loss from evaporation; protection and surface layers to protect against 

erosion and bio-intrusion of the CCBE (Aubertin et al. 1995; Bussière et al. 2003). Schematic 

illustration of a typical CCBE is presented in Figure 1.1. 
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Figure 1.1 Configuration of covers with capillary barrier effects (Aubertin et al. 1995). 

Many studies conducted in laboratory and field conditions to verify the ability of CCBE to 

control oxygen migration and thereby to avoid AMD generation (Aubertin et al. 1995, 1997; 

Bussière et al. 2004; Dagenais et al. 2005; Bussière et al. 2006). Nevertheless, long-term CCBE 

efficiency can be compromised in boreal contexts by the invasion ofundesirable plant species, 

such as balsam poplar (Populus balsamifera L.) , willow (Salix spp.), and black spruce (Picea 

mariana (Mill.) BSP), which colonize mining sites from nearby forest soon after CCBE 

construction (Trépanier 2005; Trépanier et al. 2006; Smimova et al. 2009, 2011) . The main 

risks associated with uncontrolled vegetation establishment on the CCBE are: (1) extraction of 

water from fine grained soil by plant roots, which reduces the degree of saturation and the 

capa city of the CCBE to cons train oxygen migration; (2) creation of macropores by roots and 

consequent! y an increase in water infiltration and oxygen migration through the cover system; 

and (3) physical damage to the CCBE through up-rooting of shallow-rooting trees (such as 

Picea spp.) (USDOE 1990; Handel et al. 1997; Hutchings 2001). 

1.2 Description of root systems of un desirable tree species 

Undesirable trees species, especially their root systems, can threaten the integrity of CCBE and 

affect their long-term performance. In the following, the root system of the potentially 

dangerous tree species are described and discussed. 
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1.2.1 Poplars 

The species of the genus Populus, known in the boreal zone as poplar and aspen, can produce 

new roots from the radical, from a cutting or an abscised branch, and from the pre-existing root 

system in the case of suckers (Zasada and Phipps 1990). However, roots of healthy parent 

poplar trees rarely develop suckers without aboveground disturbance (Wan et al. 2006). The 

root system of a parent poplar trees and its suckers have different root architecture. Euphrates 

poplar (Populus euphratica Oliv.) seedlings produce one deep vertical tap root, keeping this as 

adult tree, and radiating coarse lateral roots that are formed from the tap root (Wiehle et al. 

2009). Suckers have a "T"- like root system that originates from lateral roots of a parent tree. 

Consequently, suckers never develop a tap root but have two apparent side roots opposite from 

each other (Wiehle et al. 2009). 

Trembling aspen (Populus tremuloides Michx.) produces strong vertically penetrating roots 

originating near the tree base and sinker roots that are formed from a network of lateral roots 

(Peterson and Peterson 1992). The lateral roots of as pen are usually within 15 to 30 cm of the 

soi! surface, whereas the sinker roots may reach 3 rn in depth (Strong and La Roi 1983b; Perala 

1990). Root system morphology and depth distribution of aspen vary with stand age and site 

conditions (Strong and La Roi 1983a,b ). As pen roots can rea ch a depth of 130 cm with age but 

on sandy soils. On clay loam, aspen has a maximum rooting depth of 95 cm (Strong and La 

Roi 1983b).Maximum vertical rooting depth of aspen ranges from 1.5 to > 3 rn, whereas the 

radial spread ranges from 14.3 to 30.5 rn (see review by Stone and Kalisz 1991 ). In earl y growth 

of trembling aspen and balsam poplar (28-30 days after seed establishment), balsam poplar 

tends to produce deeper roots, compared to aspen (W alken et al. 201 0). Root systems ofbalsam 

poplar penetra te deeply in the soil and possess an extensive system of lateral roots on dry sites 

(Zasada and Phipps 1990). On wet sites, rooting depth ofbalsam poplar can be reduced (Zasada 

and Phipps 1990). 

Maximum root branching arder for tree species is seven (Dickmann and Pregitzer 1992; 

Pregitzer and Friend 1996). However, little is known about root branching pattern (total number 

of root orders, number of roots by orders) and root system architecture of poplar trees (total 

root length and volume, etc). 
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1.2.2 Willows 

Most willows (Salix spp.), frequently used in ecological engineering (i .e. soil remediation, 

short-rotation woody crops for the biomass production, stabilization of slopes , soil erosion 

control), are fast-growing shrubs (Greger and Landberg 1999; Schaff et al. 2002; Pulford and 

Watson 2003; Mirck et al. 2005; Meers et al. 2007; Mickovski et al. 2009). The root system 

architecture ofwillow shrubs differs from willow trees. Willow shrubs are highly dependent on 

an efficient root system for water and nutrient uptake to maintain its high yield production 

(Rytter 1999). The root system of willows is characterized by a high production and turnover 

rate of fme roots (Rytter and Rytter 1998; Rytter 1999) and an extensive gravitropic coarse root 

system (Mickovski et al. 2009). The majority of its roots are located in the upper soi! layers 

where soi! conditions are more favorable for root penetration and growth ( e.g. high nutrients 

availability, optimal soil density, better soil aeration) (Volk et al. 2001). Black willow (Salix 

nigra Marsh.), a commercially important species native to North America, is recognized as a 

shallow-rooting species (Pitcher and McK.night 1990). 

Between 40 to 45% of fine root number and root mass of a four-year-o1d basket willow (Salix 

viminalis L.) plantations is located in the top 10 cm of soil with an average root depth of 25-30 

cm (Rytter and Hansson 1996). According to investigation clone on fme root biomass 

production of basket willows on irrigated and daily ferti1ized plantations , around 80% of the 

fine root biomass is concentrated in the upper 50 cm and 35% in the upper 30 cm of soil (Rytter 

1999). Total number of roots of basket willow is also grea test in the upper 10 cm of soil and 

decreases by 24% at depth ranging between 10 to 40 cm (Mickovski et al. 2009). Total root 

length and root length per soil volume of willow are the highest at 1 0 to 20 cm of the soil profile 

(Mickovski et al. 2009) . Willow can develop roots to depths greater than 3.5 m with radial 

extension of 6 to 40 m (see review by Stone and Kalisz 1991 ). 

1.2.3 Black spruce 

Spruce has a shallow root system that consists of four to six lateral roots spreading horizontally 

(Eis 1970; Strong and La Roi 1983a; Viereck and Johnston 1990). The roots of black spruce 

can reach a depth of 90 cm, however roots are rare below 30 cm (Damman 1971). The 

maximum root biomass of spruce is concentrated in the upper 10 cm of the ground lev el (Strong 
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and La Roi 1983a; Bhatti 1998). Maximum radial root growth of black spruce is 9.1 m (Stone 

and Kalisz 1991 ). Black spruce can initia te adventitious roots wh en a bran ch or stem is in direct 

contact with the ground (Viereck and Johnston 1990; Krause and Morin 2005). 

The root architecture of black spruce makes this species vulnerable to windthrow (Viereck and 

Johnston 1990; Ni coll et al. 2006). The potential of black spruce to crea te large ho les after up

rooting is the main reason why it represents a particular risk to CCBE efficiency. The oxygen 

and water can penetrate through the holes to sulphide minerais, thereby contributing to AMD 

formation. 

1.3 Root behaviour in response to environmental stresses 

Root system development in plants is under sorne degree of genetic control (Gale and Grigal 

1987). This means that the root architecture that was described above is exbibited in normal 

conditions. However, roots growth is also influenced by environmental conditions. It can be 

limited by physical, chemical, and biological soil properties (Bengough et al. 2011). One of 

the widely recognized plant responses to changes in soil media in the presence of plant species 

is a shift in biomass partitioning between above- and belowground plant structures (Chapin et 

al. 1993; Wardle and Peltzer 2003). It is frequently reported that biomass allocation to the roots 

increases as supplies of water and/or mineral nutrients ( especially P and N) become growth

limiting (Haynes and Gower 1995; Huante et al. 1995; Bonifas et al. 2005; Murphy et al. 2009). 

Biomass allocation shifts towards roots and consequently an increase in root-to-shoot ratio is 

induced by belowground resource competition (Gersani et al. 2001; Donaldson et al. 2006; 

Murphy and Dudley 2007). This response allows plants to maximize the exploitation of 

insufficient nutrients and water, thereby minimizing resource requirements (Chapin et al. 

1987). 

In addition to altering biomass partitioning, plants can also ad just their root architecture (L6pez

Bucio et al. 2003) by producing their roots in soil patches with more favorable conditions , 

thereby avoiding zones that are depleted in water and nutrients (Eissenstat and Caldwe111988; 

Callaway 1990; Fitter and Stickland 1991 ; Bilbrough and Caldwell 1995). Moreover, plants 

possess the ability to discrimina te self from non-self-neighbours (Falik et al. 2003; Gruntman 

and Novoplansky 2004; Fang et al. 2013) and can segregate their root system spatially (Schenk 
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et al. 1999). There is sorne evidence that plants can alter their root architecture in the presence 

and absence of neighbouring species (Krannitz and Caldwell 1995; Fang et al. 2013). The 

adaptive changes of roots to various environmental conditions can be exhibited through the 

alteration in total root length, root volume, and vertical root depth (Gilman et al. 1982; Fang et 

al. 2011 , 2013). For example, plants grown with neighbours had lower shoot and root biomass, 

total root length, root surface area, root system volume, and higher root ramification than when 

they were grown alone (Fang et al. 20 13) . Hodge (2009) considered that there is no general rule 

to explain plant root proliferation in the presence of neighbouring species and root behaviour 

depends on the genetic identity of coexisting species. Nevertheless, the main strategy of plant 

species when they adjust their root architectural pattern is to avoid belowground competition 

and maximize nutrient uptake (Wardle and Peltzer 2003) . 

1.4 Bio-barriers to improve long-term performance of mining covers 

Two approaches can be used to prevent the establishment of undesirable vegetation on the 

CCBE: ( 1) creation of a physical barrier ( engineered measures) and (2) the use of a bio-barrier 

made of native species. Physical barrier may have substantial drawbacks, such as low 

durability, high implementation costs , whereas a bio-barrier has the advantage of being more 

environmentally safe. Plants with potential allelopathic effects can be used as bio-barrier 

species on the CCBE (Smimova et al. 2009). Allelopathy is the inhibiting effect of one plant 

species on the growth and reproduction of another plant species, either directly through release 

of allelopathic compounds into the soi! environment, or indirectly through competition 

(competition for resources and space) (Inderjit and del Moral 1997; Siciliano and Germida 

1998; Wardle 1998). The apparent physiological effect of allelopathy can be expressed through 

the inhibition of stem height and basal diameter of tree seedlings (English and Hackett 1994; 

Y amas a ki et al. 1998; Thiffault et al. 2004), reduction in root and shoot dry weights (Jobidon 

and Thibault 1982; Weston and Putnam 1985; Nilsson 1994), root growth, and root hair 

formation (Weston and Putnam 1986; Mallik 1987; Zhu and Mallik 1994). Along with abiotic 

stresses (i.e. water deficit, temperature stress, radiation) , allelopathy is also a stress factor that 

can limit plant growth and development (Pedrol et al. 2008) . 
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Allelopathic compounds are secondary metabolites, such as phenolics (Appel 1993; Gallet and 

Pellissier 1997; Indeijit and Mallik 1997a; Li et al. 2010), flavonoids, alkaloids (Rice 1984), 

which may influence nutrient cycling and rate of nutrient turnover (Appel 1993; Inderjit and 

Mallik 1997a; Joanisse et al. 2007) . The occurrence of allelopathic compounds varies 

depending on clin1atic conditions. For example, phenolic compounds are very frequent in cool 

temperate zones, whereas terpenoids were studied extensively in arid ecosystems (see review 

by Reigosa et al. 1999). 

Allelopathic compounds can suppress microbial activity, thereby reducing the decomposition 

rate and consequently, reducing the availability of nutrients (Siciliano and Germida 1998; 

W ardle et al. 1998). Allelochemicals are produced by all plant parts, however leaf litter 

decomposition is considered to be its main source (Reigosa et al. 1999). 

Plant-plant interactions are very complex and can include both direct allelopathy (release of 

allelochemicals) and competition (Qasem and Hill 1989). In natural ecosystems, it is difficult 

to discrirninate allelopathy from competition, because these two phenomena can operate 

simultaneously (Indeijit and del Moral 1997; Indeijit and Callaway 2003; Mallik 2008). The 

production of allelochemicals can be altered by biotic and abiotic stresses (Einhellig 1995; 

Reigosa et al. 1999); in particular, plants may produce more allelochemicals under water stress 

conditions (Galmore 1977; Pedrol et al. 2008), thereby causing greater damage to neighbouring 

plants . Thus, the inhibiting effect of leaves, litter, and soil extracts of potential allelopathic 

species is stronger as the soil pH becomes more acidic (Zhu and Mallik 1994). 

The ecological importance of allelopathy is recognized in the boreal forest (J obidon 1992; 

English and Hackett 1994; Titus et al. 1995; Thiffault and Jobidon 2006) . The use of bio

barriers made of species with potential allelopathic effects, such as sheep laurel (Kalmia 

angustifolia L.) and bluejoint reedgrass (Calamagrostis canadensis (Michx.) Beauv.), was 

suggested as a method to protect the cover system against bio-intrusions (Smirnova et al. 2009). 

1.4.1 Bluejoint reedgrass 

Bluejoint reedgrass is a perennial grass that is commonly found in North American boreal and 

temperate regions (USDA 1937). This species prefers moist sites but cau survive on a wide 
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range of habitats (Haeussler et al. 1990). Bluejoint reedgrass is recognized as a problematic 

species that creates adverse conditions for the establishment and growth oftree seedlings, such 

as white spruce (Picea glauca (Moench.) Voss.) (Eis 1981 ; Drew 1988; Staples et al. 1999) 

and trembling aspen (Populus tremuloides Michx.) (Landhausser and Lieffers 1998; 

Landhausser et al. 2007). For examp1e, severe mortality of white spruce was observed in the 

presence of bluejoint reedgrass (Eis 1981). A decrease in average height, root collar calliper 

growth, dry weight of stems and leaves, and an increase in root-to-shoot ratio of trembling 

aspen in the presence of bluejoint reedgrass was reported, but no effect on root dry weight of 

aspen was detected (Landhausser and Lieffers 1998). 

Experimental evidence suggests that belowground resource competition for water and nutrients 

is likely to be one of the main factors responsible for growth suppression of tree seedlings in 

the presence of perennial grasses (Nambiar and Sands 1993; Ludovici and Morris 1996,1997; 

LOf and W elan der 2004; Collet et al. 2006) . Bluejoint reedgrass is a nutrient-demanding species 

(Landhausser and Lieffers 1994). This species produces a fibrous root system consisting of a 

high number of fine roots and rhizomes that allows it to consume rapidly available resources 

(Ludovici and Morris 1997; Balandier et al. 2006). It is because fine roots are capable of 

absorbing immobile nutrients and nutrients from a soi! solution at very low concentrations 

(Nambiar and Sands 1993). Bluejoint reedgrass is one of the major competitors for absorption 

of applied fertilizer 15N when planted with white spruce seedlings (Staples et al. 1999). Also, 

bluejoint reedgrass has a higher capacity for NH/ and N03· uptake, compared to tree species, 

such as white spruce, jack pine, and trembling aspen (Rangs et al. 2003) . 

Spatial distribution of root systems of tree seedlings can be shifted in the presence of grasses 

because the grasses are capable of creating nu trient depletion zones (Collet et al. 2006) . Also, 

bluejoint reedgrass forms a root sod in the upper soillayers (5-15 cm below the soi! surface) 

(Lieffers et al. 1993) and therefore, it can cause a physical obstacle to root penetration of tree 

seedlings (Balandier et al. 2006; Landl1ausser et al. 2007). 

The detrimental effects ofbluejoint reedgrass litter on root collar caliper growth, dry weight of 

stems and leaves of aspen was presented (Landhausser and Lieffers 1998). The slow rate of 

bluejoint reedgrass litter decomposition insulates the soi! and keeps the soi! cool in spring 
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(Hogg and Lieffers 1991 ). Bluejoint reedgrass can tolera te cold soi! temperatures (Lieffers et 

al. 1993; Landhausser and Lieffers 1994), whereas the emergence and growth of trembling 

aspen is strongly affected by cold soi! temperatures (Landhausser and Lieffers 1998; 

Landhausser et al. 2006) . 

Straw extract ofbluejoint reedgrass has direct allelopathic effects on seed germination (Winder 

and Macey 2001 ). Other graminoids are also capable of releasing allelochemicals and cause a 

detrimental effect on growth of neighbouring plants (Jo bidon et al. 1989). 

1.4.2 Sheep laurel 

Sheep laurel is an ericaceous understory shrub native to the eastern Canadian boreal forests 

that ranges from Newfoundland to Ontario (Titus et al. 1995). It is very efficient at vegetative 

propagation: by stem base sprouting, belowground rhizomatous growth, and layering (Mallik 

1993). Sheep laurel can tolerate a wide range ofedaphic conditions (Damman 1971 ; Titus et 

al. 1995). However, this ericaceous shrub is found to be more vigorous (higher values for plant 

height, leaf area and specifie leaf area) in partial shade, compared to open sites (clear-cut) 

(Mallik 1994). Earlier studies demonstrated that the presence ofsheep laurel inhibits the growth 

of conifer seedlings, su ch as black spruce (English and Hackett 1994; Y amasaki et al. 1998; 

Thiffault et al. 2004; Thiffault and Jobidon 2006), red pine (Pinus resinosa Ait.) (Krause 1986), 

and balsam fir (Abies balsamea (L.) Mill.) (Thompson and Mallik 1989). A risk of conversion 

of productive to unproductive forest stands occupied by sheep laurel following disturbance in 

the boreal forest was reported (Thiffault and Jobidon 2006) 

A decrease in the growth of conifers in the presence of sheep laurel was frequent! y attributed 

to direct allelopathy, competition, soi! nutrient imbalance, and weak ectomyccorhization of 

seedlings caused by the ericaceous shrub (Inderjit and Mallik 2002) . Sheep laurel produces a 

very extensive fme root system that provides a competitive advantage over conifers (Wallstedt 

et al. 2002) . One study on the effect of direct competition for nutrients and water between 

sheep laurel and black spruce demonstrated that most of the available nutrients were captured 

by sheep laurel (Thiffault et al. 2004) . Sheep laurel has the potential to modify soil nutrient 

cycling by changing the availability of different inorganic ions (Inderj it and Mallik 1996, 1999). 

The leaves of this ericaceous shrub contain secondary metabolites (polyphenols such as 
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tannins) (Zhu and Mallik 1994; Joanisse et al. 2007) that can be leached into the soil and cause 

a nutrient imbalance. Tannins, which released by sheep laurel litter, form complexes with 

proteins (Bradley et al. 2000; Joanisse et al. 2009) and inhibit the activity of acid phosphatase 

enzymes, thereby reducing nitrogen mineralization and microbial activity in the soil (Joanisse 

et al. 2007). The removal of sheep laurel during six consecutive years increases the leve} of 

nitrogen rnineralization rates in the forest floor (LeBel et al. 2008). 

In la bora tory conditions, water extract of sheep laurel leaves, litter, roots, and soil showed a 

strong inhibitory effect on the primary root growth and root hair formation in black spruce 

seedlings (Mallik 1987; Zhu and Mallik 1994). The length of the primary roots and shoot 

growth of black spruce were considerably reduced by different concentrations (0, 0.5, 1, 2, and 

5 mM) of eight phenolic acids that were leached from sheep laurel leaves (Zhu and Mallik 

1994). The different types of phenolic acids showed different toxicities on the root growth of 

black spruce. Root growth inhibition that was caused by several polyphenols was observed 

even at the lowest concentration of0.5 mM (Zhu and Mallik 1994). 

1.5 Research context 

Covers with capillary barrier effects represent an efficient measure limiting short-term 

production of AMD (Bussière et al. 2006). This Master' s study was conducted to integrate a 

bio-barriers made of species with potential allelopathic effects in the design of CCBEs in order 

to protect the CCBEs against undesirable tree establishment, thereby improving its long-term 

efficiency. The main objective of this study was to assess whether two bio-barrier species 

(BBS) with potential allelopathic effects, bluejoint reedgrass (Landhausser and Lieffers 1998; 

Balandier et al. 2006) and sheep laurel (Yamasaki et al. 1998; Thiffault et al. 2004; Joanisse 

et al. 2007), can inhibit the growth of three target tree species (TS): balsam poplar, willow, and 

black spruce (most problematic species in the Québec boreal context) . The effects ofBBS are 

assessed on growth increment, biomass (root, shoot, total) , and root-to-shoot of three TS. 

Increased attention was paid to test whether BBS are able to alter the root system architecture 

of three TS (maximum root depth and root radial extension, total root length and volume, root 

branching parameters number of 2nct_and 3'ct-order roots) and especially to inhibit downwards 

root growth of TS because tree roots represent a particular risk to CCBEs. The use of bio-
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barriers made of species with potential allelopathic effects is a promising ecological solution 

to control undesirable tree invasions since BBS are native to boreal ecosystems (no pesticides 

or herbicides are involved to control tree invasions on the CCBEs). 

The results of the study will allow us to answer the question: does a bio-barrier made of species 

with potential allelopathic effects representa reliable ecological approach to improve the long

term CCBE performance? These results are particularly important in areas where CCBEs are 

frequently applied, such as Québec. This study is innovative since this is the frrst work that 

in volves this ecological approach ( allelopathic bio-barriers) instead of using physical barri ers 

to control this natural tree invasion on the existing CCBEs. It is also important to note that the 

method ofthree-dimensional root digitizing with consequent analyzing in AMAPmod software 

(Godin et al. 1997; Danjon et al. 1999a, b) that was used in this study to assess the root system 

architecture ofTS has never been previously applied in Canada. 

Direct allelopathic potential of BBS (measurement of allelochemicals concentration in the 

foliar and foliar-litter tissues ofBBS, root exudates analyses, chernical analyses of soil below 

the BBS and water from shoot and root exudates collectors) was not performed in this study 

due to time constraints and the typical size of a Master's thesis . However, these data were 

collected in a larger project that integrates this Master ' s work; results will be presented 

elsewhere. 
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2.1 Résumé 

Les couvertures avec effets de barrière capillaire (CEBC) sont fréquemment utilisées par 
l' industrie minière comme une technique efficace pour prévenir le drainage minier acide 
(DMA). Cette méthode est basée sur la présence d'une couche saturée en eau à l'intérieur de la 
couverture, ce qui permet de réduire la disponibilité d'oxygène et, par conséquent, la production 
du DMA. Cependant, l'efficacité à long terme des CEBC peut être compromise par l' intrusion 
des racines (surtout des arbres) dans la couche de rétention d'eau. Les arbres représentent une 
menace particulière pour la performance des couve1tures, car l' intrusion des racines peut 
réduire la capacité des couvertures à limiter la migration de l'oxygène et augmenter le risque 
de dommages physiques à la CEBC. L'utilisation de plantes à effets allélopathiques potentiels 
comme barrière biologique pour protéger le CEBC contre la colonisation des plantes 
indésirables a été suggérée. Dans ce projet, deux espèces communes de la zone boréale du 
Québec, le calamagrostide du Canada (Calamagrostis canadensis) et le kalnlia à feuilles 
étroites (Kalmia angustifolia) , ont été choisies comme barrières biologiques (BB) pour tester 
si elles réduisent la croissance d'espèces d'arbres cibles (AC): le peuplier baumier (Populus 
balsamifera) , le saule (Salix spp.) et l'épinette noire (Picea mariana). L'impact des BB sur les 
AC a été évalué pour: (1) la croissance en hauteur et en diamètre de la tige; la biomasse des 
feuilles , tiges et racines; le ratio racine/tige des AC ; et (2) les paramètres de l'architecture du 
système racinaire des AC. L'influence relative du calamagrostide et du kalnlia sur les AC a été 
également évaluée dans des zones sèche et humide de la CEBC. L'expérimentation a été 
amorcée en 2008 au site de Les Terrains Aurifères situé près de Malartic au Québec. Les 
systèmes racinaires de 192 arbres ont été numérisés en utilisant un dispositif Polhemus 
FASTRAK et analysés à 1 ' aide du logiciel AMAPmod. La présence du calamagrostide a exercé 
une influence négative sur la croissance des AC (croissance en hauteur et en diamètre, 
biomasse, profondeur maximale des racines, extension radiale des racines , longueur et volume 
totaux des racines, nombre de racines de 2ème_ et 3èm•-ordres). La biomasse du calamagrostide 
a eu un effet négatif sur la biomasse et les caractéristiques des racines des AC. La croissance 
en hauteur et en diamètre, la biomasse, la profondeur, le volume et le nombre des racines du 
2èm•-ordre de peuplier baumier ont augmenté dans les parcelles de kalnlia. La présence du 
kalmia n' a pas eu d 'effet sur la croissance du sau le. Toutes les caractéristiques de croissance 
de l'épinette noire, saufle ratio racine/tige et le nombre de racines de 2ème_ordre, ont également 
été améliorées en présence du kalrnia. Donc, on remarque que le calamagrostide représente une 
BB plus efficace que le kalmia. Nos travaux suggèrent que l'effet inhibiteur du calamagrostide 
sur la croissance des AC pourrait être le résultat de la compétition pour l'espace et les ressources 
plutôt que celui de l'interférence allélopathique directe (libération des substances 
allélochimiques). Le peu d' effet du kalmia sur la croissance des AC est probablement relié à la 
faible densité de cette espèce consécutive à une contrainte d'adaptation aux conditions de site. 

Mots clés : couvertures avec effets de barrière capillaire, calamagrostide du Canada, kalmia à 
feuilles étroites, l'architecture du système racinaire, numérisation des racines 
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2.2 Abstract 

Covers with capillary barrier effects (CCBE) are frequently used by mining companies as an 
effective technique to prevent acid mine drainage (AMD) generation. This method uses the 
unsaturated properties of soils to maintain one of its layers at a high degree of saturation, 
thereby reducing 0 2 availability and consequently the production of the AMD. However, 
CCBE long-tenn efficiency can be affected by root intrusion (especially from trees) into the 
moisture-retaining layer. Tree species representa particular threat to co ver performance as their 
roots may reduce cover ability to limit oxygen migration (and subsequent AMD generation) 
and can increase the risk of physical damage to the CCBE. The use of plants with potential 
allelopathic effects has been suggested as a bio-barrier to protect the CCBE against 
colonization of undesirable plants. In this project, two species common in the boreal zone of 
Québec, bluejoint (Calamagrostis canadensis) and sheep laurel (Kalmia angustifolia), were 
selected as bio-barrier species (BBS) to test whether they reduce the growth of target tree 
species (TS) : balsam poplar (Populus balsamifera), willow (Salix spp.), and black spruce 
(Picea mariana). Effects ofBBS on TS were assessed in terms of: (1) stem height and basal 
diameter increment, shoot, root and total biomass, root-to-shoot ratios of TS; and (2) root 
system architecture parameters of TS. The relative influence of bluejoint and sheep laurel on 
TS under dry and wet conditions was also evaluated. In 2008, the experiment was established 
at mine tailings located near the town of Malartic, Québec (Canada). The coarse root systems 
of 192 TS were digitized using a Polhemus F ASTRAK deviee and analyzed with AMAPmod 
software. The presence ofbluejoint strongly decreased above- and belowground growth ofTS 
(stem height and basal diameter increment, biomass, maximum root depth, root radial 
extension, total root length and volume, and number of 2nd_ and 3rd_order roots). Bluejoint 
biomass negatively affected biomass and root characteristics of TS . Stem height and basal 
diameter increment, biomass, maximum root depth, root volume, and number of2"d-order roots 
of balsam poplar increased in the sheep laurel plots, whereas willow showed no response to 
this treatment. All characteristics ofblack spruce (except for root-to-shoot ratio and number of 
2"d-order roots) improved in the presence of sheep laurel. Thus, bluejoint was a more efficient 
BBS than sheep laurel. We suggest that the inhibitory effects of bluejoint on TS growth were 
achieved through competition for space and resources rather than direct allelopathic 
interference (release of allelochemicals). Low competitive and phytotoxic activity of sheep 
laurel could probably be attributed to its low density and transplantation stress re la ted to site 
conditions. 

Key words: covers with capillary barrier effects, sheep laurel , bluejoint, tree root system 
architecture, root digitizing 
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2.3 Introduction 

Along with the economie benefits that are derived from the exploitation of mineral resources in 

Canada, the rnining industry produces substantial quantities of wastes that may incur adverse 

environmental impacts. Acid mine drainage (AMD), which results from the oxidation of 

sulphide-containing minerais in mine wastes (Kleinmann et al. 1981 ; Blowes et al. 1994), 

represents one of the most challenging environmental problems for the mining industry 

(Bussière et al. 2006). Many methods have been proposed to control AMD generation (MEND 

2001). Covers with capillary barrier effects (CCBE) are considered to be an efficient means of 

limiting oxygen migration in humid climates, thereby controlling AMD generation from mine 

wastes (Ricard et al. 1997; Bussière et al. 2003; Dagenais et al. 2005; Bussière et al. 2006) . 

Colonization of undesirable plant species, which naturally invade CCBEs from the adjacent 

forest, can however compromise long-term CCBE efficiency (Trépanier et al. 2006). The main 

risks that are associated with vegetation invasion of the cover system are: 1) extraction ofwater 

from fine grained sail by plant roots, which reduce the degree of saturation and the capacity of 

the CCBE to constrain oxygen migration; (2) creation of macropores by roots and consequently 

an increase in water infiltration and oxygen migration through the caver system; and (3) 

physical damage to the CCBE through up-rooting of shallow-rooting trees (such as Picea spp.) 

(USDOE 1990; Handel et al. 1997; Hutchings 2001) . 

Different approaches have been proposed to control vegetation invasion and its effects on 

CCBE performance (Cooke and Johnson, 2002), such as the addition of herbicides, the 

installation of an asphalt layer, or the use of other physical barriers that are constructed of 

compacted soil. These approaches can have substantial drawbacks, such as limited lifespans 

and soil contamination. In contrast, the establishment of bio-intrusion barriers that are 

composed of native species with potential allelopathic effects represents an interesting 

environmental solution for improving CCBE long-term efficiency (Srnirnova et al. 2009). 

Allelopathy is defrned as the inhibition or delay of germination and growth of one plant species 

that can be attributed to the effects of another, either direct! y through the release ofbiochemical 

compounds into the environment, or indirectly through competition (Inderjit and del Moral 

1997; Siciliano and Gerrnida 1998; Wardle 1998). 
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Bluejoint reedgrass (hereafter bluejoint; Calamagrostis canadensis (Michaux) Beauvois) and 

sheep laurel (Kalmia angustifolia L.) are species native to boreal ecos ys tems of Canada. These 

two species are recognized for their allelopathic effects (Zhu and Mallik 1994; Winder and 

Macey 2001 ; Joanisse et al. 2007) and strong competitive ability (Rangs et al. 2003; Thiffault 

et al. 2004). Like most perennial grasses, bluejoint can impede the growth and emergence of 

trees, mainly through belowground competition for space and resource capture (Landhausser 

and Lieffers 1998; Balandier et al. 2006; Landhausser et al. 2007) . The presence of grasses 

inhibits root development of trees, i.e., root biomass, total length density, surface area, and 

extension rates (Ludovici and Morris 1996, 1997; Harmer and Robertson 2003; Collet et al. 

2006) . 

Sheep laurel inhibits the growth of naturally and artificially established coniferous seedlings 

(Thompson and Mallik 1989; English and Hackett 1994; Thiffault et al. 2004) . Earlier studies 

that were conducted in the boreal forest have demonstrated that sheep laurel competes with 

conifers for soi! resources and interferes with nutrient cycling (nitrogen cycle) through the 

release of secondary metabolites (polyphenols, such as condensed tannins) into the soi! 

environment (Yamasaki et al. 1998; Thiffault et al. 2004; Bloom and Mallik 2006; Joanisse et 

al. 2007; LeBel et al. 2008). For example, the addition of leaves, litter, roots, and soi! extracts 

of sheep laurel can inhibit the prirnary root growth of black spruce (Picea mariana (Miller) BSP 

(Mallik 1987; Zhu and Mallik 1994). 

Plants rea ct to changes in the soi! environment ( e.g. abiotic stress, presence of competitors, 

among others) in various ways. For example, they can produce more allelochemicals under 

water-stress conditions (Galrnore 1977; Pedro! et al. 2008), which causes greater damage to 

neighbouring individuals. Plants can preferentially reallocate biomass to the roots as a response 

to stressful belowground conditions (moisture deficiencies, resource competition, etc.) (Chapin 

et al. 1987; Haynes and Gower 1995; Donaldson et al. 2006; Murphy and Dudley 2007). 

Moreover, they can discrirninate self from non-self-neighbours (Falik et al. 2003 ; Gruntman 

and Novoplansky 2004) and can spatially segregate their root systems (Schenk et al. 1999). In 

the presence of neighbours, plants can alter their root growth through root proliferation in soil 

patches where physical and chemical conditions are favourable, thereby avoiding inhibitory soi! 

zones and zones where water and nutrients are lacking (Gilman et al. 1982; Callaway 1990; 
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Fitter and Stickland 1991 ). Adaptive changes in root architecture to various environmental 

conditions are manifested by alterations in total root length, root volume, vertical root depth, 

and root ramification patterns (Gilrnan et al. 1982; Fang et al. 20 13). However, root architecture 

adjustments to environmental changes vary greatly amongst plant species (Godin et al. 1999; 

Danjon and Reubens 2008). 

The main objective of our study was to test whether two native species can maintain effective 

bio-barriers against tree establishment on CCBEs that are located in boreal Québec, Canada. 

Effects oftwo bio-barrier species (BBS), bluejoint and sheep laurel, were examined with respect 

to bath the aboveground component and root growth of three target tree species (TS): balsam 

poplar (Populus balsamifera L.), willow (Sa/ix spp.), and black spruce. The target tree species 

that had been selected were identified as potentially detrimental to CCBE perfonnance because 

they are comrnon and widely distributed throughout northwestem Québec, including our study 

area (Trépanier et al. 2006; Smimova et al. 2009, 2011). The study specifically assessed BBS 

effects on: (1) height and diameter increment, biomass (root, shoot, total), and root-to-shoot 

ratios of TS (target tree species); and (2) the root architecture of TS . Furthennore, (3) the 

relative influence ofBBS on TS was tested under bath dry and wet soil conditions. 

We hypothesized that BBS are capable of inhibiting TS growth, especially downward TS root 

growth. We predicted: (1) a decrease in height and diameter increment and biomass, and an 

increase in root-to-shoot ratios forTS ; (2) a shift from vertical root distribution to lateral root 

expansion and proliferation of roots in the upper soillayers, together with a decrease in total 

root length and volume, and an increase of root ramification; and 3) a stronger inhibitory effect 

ofBBS on TS growth in the dry, compared to the wet zone. 

This study is the fust attempt to introduce BBS onto an existing CCBE in a boreal context. 

Data that are obtained in this study will aid in evaluating the use of BBS as an ecological 

approach for improving CCBE long-tenn efficiency. This study also increases our 

understanding of tree root development in the presence of neighbouring species, given that the 

effects ofBBS on TS root system architecture have not been previously investigated. 
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2.4 Materials and methods 

2.4.1 Study site 

The study was conducted on the site of Les Terrains Aurifères (LT A), which is located in 

Fournière and Du buisson Townships near Malartic, Québec ( 48°06'55" N; 78°00'31" W; Figure 

2.1 ). Les Terrains Aurifères was bordered on the east by an old Malartic Goldfield tailings 

impoundment, which belongs to Ministère des Ressources Naturelles du Québec (MRN). 

Figure 2.1 Les Terrains Aurifères site, which is located in Fournière and Du buisson Townships (Québec, 
Canada). Modified from Bussière et al. 2006. 

The tailings impoundment that was created on Les Terrains Aurifères covers an area of about 

60 ha (Bussière et al. 2006). Around 8 mega-tonnes of acid-generating tailings (12 m-thick 

layer) were spread over half of the surface of the Malartic Goldfield site, where 10 mega-tonnes 

of non-acid genera ting carbonaceous tailings (5 m-thick layer) had been accumulated following 

the initial mining operation (MEND 2000; Bussière et al. 2003, 2006). 

Co vers that incorporated capillary barrier effects (CCBE) had been constructed in 1995-1996. 

The cover system consisted of three layers that were composed of different materials: (1) a 

layer of sand (0 .5 rn) that was placed directly upon the tailings, which was used as a support 
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and as a capillary break layer; (2) a moisture-retention layer (0 .8 rn) composed of the fine 

materials (non-reactive tailings) ; and (3) a layer of sand and gravel (0.3 rn) that was spread 

over top oflayers 1 and 2 as protection against erosion and bio-invasion into the CCBE (Ricard 

et al. 1999). The principal role of the caver system is to control the movement of atmospheric 

0 2 into the acid-generating tailings beneath the CCBE. For the CCBE to be effective, a high 

degree of saturation must be maintained in the moisture-retention layer, which can be attributed 

to capillary barrier effects at the interfaces with the two sand layers. It is recognized that if 

more than 85% of the soil pores are filled with water, oxygen flux is low enough to control 

acid generation. More detailed information about CCBEs can be found in Aubertin et al. (1995) 

and Bussière et al. (2006). 

Two zones (dry and wet) were identified at the LT A site (Figure 2.2). In the dry zone, the water 

table was typically more than one meter below the bottom of the sand layer of the CCBE 

(capillary break layer) . In the wet zone, the water table was near saturation in the bottom 

capillary break layer and in the moisture-retention layer (Bussière et al. 2006) . 

Figure 2.2 Photographs representing A) dry and B) wet zones that were identified at Les Terrains 
Aurifères (Québec) . 

2.4.2 Experimental design and treatment 

Three TS (balsam poplar, willow, and black spruce) and two BBS (bluejoint and sheep laurel) 

were used for this study. In 2008, six blocks replicated three times per zone were established. 

(Figure 2.3). Each block contained three main plots, to which one of each TS was randomly 

attributed; the main plots were further divided in three sub-plots containing a systematic 
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distribution of the two BBS and a control (no BBS). The plot surfaces were raked, manually 

weeded, and the cobbles were removed. In 2008, topsoil was added to the site. The soi! 

amendment was loamy sand with low organic matter (50 to 54 g/kg) and nu trient content (1 0-

16 mg N/kg, 38-41 mg P/kg, 31-41 mg K./kg, 468-779 mg Ca/kg, 35-48 mg Mg/kg). At the 

beginning of the 2009 growing season, a mixture of sand and clay (lm3/1 m2) was added, 

which bad higher organic matter (506-514 g/kg) and macronutrient concentrations (30-47 mg 

N/kg, 43-56 mg Plkg, 42-48 mg K./kg, 1560-2420 mg Ca/kg, 235-368 mg Mg/kg) than the 

previous amendment. 

Figure 2.3 Locations of experimental blocks within the Les Terrains Aurifères site. Blocks B 1, B2 and 
B3 were in the dry zone; B4, B5 and B6 were in the wet zone. 

In 2008, balsam poplar and willow seedlings were transplanted direct! y from the LTA site into 

the main plots). Individuals of these two species were selected off-block on the basis of their 

stem height (30 ± 10 cm) and excavated with a mechanical shovel to prevent root damages. 

Two-year-old containerized black spruce seedlings were obtained from a local nursery. Stem 

height, basal diameter and root characteristics (number of roots per order, length of flrst-order 

roots, the diameter of roots at the coll ar, direction of root growth) of TS were measured prior 

planting. 

The experimental design thus consisted of experimental blocks each divided into three main 

plots that were divided into three subplots of 1m2 each (Figure 2.4) . The tree seedlings were 
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planted within each 1m2 subplot. In total, six blocks with 18 main plots that consisted of 54 

experimental subplots were involved to this study. The TS were grown either without BBS 

(control), or in presence ofBBS (sheep laurel, bluejoint, respectively). 
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Figure 2.4 Example of one experimental black illustrating the plot arrangement. Each treatment was 
replicated three times within each black. White qua dra tes signify the experimental plots where additional 
species were planted but not involved to this study. 

Sheep laurel was transplanted at the LTA site in 2008. The root rhizomes were collected in an 

open site, located along power transmission lines, adjacent to the forest and approximately 50 

km away from the LTA site. The collection site had a sandy soi! with an organic horizon of 

about 2 cm. Bluejoint seed was purchased from a nursery and sown in 2010. Bluejoint had a 

low survival rate. Consequently, bluejoint seedlings were planted in 2011 at a density of about 

40 plants/m2. 

2.4.3 Seedling measurements and sampling 

Stem height (cm) and basal diameter (root collar diameter, cm) of each TS were measured 

within each experimental 1 m2 subplot once at the end of each growing season (2009-20 12) in 

the control and sheep laurel plots, and once per 2011-2012 growing seasons in the bluejoint 

plots. In total, the root systems of 192 TS distributed among the 54 subplots were excavated 

with a high-pressure water jet in August 2012 (see Tarroux and DesRochers 201 0) (Appendix 

A) . The reference direction (north) was marked on the TS stem prior TS excavation. Broken 

coarse roots (> 2 mm in diameter) were collected during TS excavation and reattached at their 

appropria te locations for further measurements. Percent co ver of the BBS was determined for 

each subplot as the area that was occupied by the vertical projection of BBS leaves onto the 

·1 
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soil surface (Mallik et al. 2012) . The BBS surrounding the TS (within the entire1 m2 subplot) 

were excavated. 

Each TS was separated into shoots and roots in the laboratory. Shoots were further divided into 

foliar components, and branches. The material was oven-dried 48 hat 65°C and weighed (± 

0.01 g). Roots of the TS were washed; fine roots (< 2 mm in diarneter) were clipped off and 

were not considered in further analyses. Thereafter, coarse roots were digitized (details 

presented below). After digitizing, coarse roots were dried at 65°C and weighed . 

Fifty grams of each BBS component (leaves, stems, and roots) per sample was collected and 

oven-dried at 65°C for 48 h. These subsamples were used to estimate sample gravimetrie 

moisture content and the remaining dry biomass ofBBS (Smimova et al. 2008) . 

2.4.4 Root architecture measurements and analyses 

Coarse root systems of TS were digitized in tbree dimensions with a Polhemus Fastrak low

magnetic field digitizer (Polhemus, Colchester, VT, USA; http://polhemus.com/) and PiafDigit 

software (Danjon and Reubens 2008) following the method described by Danjon et al. (1999a). 

The root systems were positioned according to the reference direction (north). Since metal 

might interfere with the magnetic field and measurements (Danjon et al. 1999b; Nicoll et al. 

2006), digitizing was performed outdoors and far away from large metallic abjects. The 

topology, Cartesian XYZ coordinates, and diarneter of each digitized point were 

simultaneously recorded. The diameter corresponding to the first digitized point was measured 

in two directions (north-south and east-west), considering that the roots had oval cross

sectional areas (Danjon et al. 2005; Nicol! et al. 2006) . Measurements along the length of the 

roots were taken at 2 cm intervals when the root was straight and every 0.5 cm when the root 

was highly curved or when its diarneter changed abruptly. Appendix B shows sorne examples 

of how coarse root systems were digitized from August to September 2012 at the Lac 

Duparquet Research Station ofUQAT. 

Multi-scale tree graph coding (Godin et al. 1997; Godin 2000) was used to represent the 

hierarcbical structure of the root system (Danjon et al. 1999b, 2005). The data that were 

obtained from the digitizing were analyzed with AMAPmod software (Godin et al. 1997, 1999; 
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Danjon et al. 1999a). Maximum root depth (cm) and root radial extension (cm), total root 

length (cm) and root volume (cm3) , and the total number of 2nct_ and 3rct_order roots were 

computed from the AMAPmod routines. Computations of root characteristics were perfom1ed 

at various scales, viz. , at the segment- and axis-levels, and at the entire root system level. The 

procedure for the calculations has been detailed by Danjon et al. (1999a) and Nicoll et al. 

(2006). 

2.4.5 Statistical analyses 

Characteristics of TS (stem height and basal diameter increment; above-, belowground, and 

total dry mass; root-to-shoot ratio; root architectural characteristics) were analyzed in R 

(Version 2.15 .2, R Development Core Team 2012) with linear mixed effects models (Zuur et 

al. 2009). Each TS and treatment (BBS) was analyzed separately. Homoscedasticity and 

normality of residuals were verified for all data prior to analysis. Data were ln- transformed 

whenever necessary. The block and treatment-within block were treated as random effects. 

Two candidate models were identified to assess the effects of BBS on height and diameter 

increment of TS during the experimental period 2011 -2012 for bluejoint and 2009-2012 for 

sheep laurel. The models included the fixed effects of zone (wet vs. dry), treatment (control, 

bluejoint, and sheep laurel) and their interaction (zone x treatment). The respective reference 

levels for these categorical variables were dry zone and control plot. Effects of zone, treatment, 

dry mass of BBS (aboveground, belowground, and total), and their interactions (zone x 

treatment, zone x BBS dry mass) on TS dry mass and root characteristics were assessed. The 

correlated parameters, such as the treatment and BBS dry mass, were not included in the same 

model. 

Models were ranked based on the second-order Akaike Information Criterion (i.e., AICc), using 

the modavg.lme function of the AICcmodavg package (Mazerolle 2006). Akaike weights and 6. 

AICc were computed to determine the strength of evidence for each model (Burnham and 

Anderson 2002). Model averaging was performed to obtain parameter estima tes , unconditional 

standard errors (SE) and 95% unconditional confidence intervals (Cl). 
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2.5 Results 

2.5 .1 Bio-barrier species responses 

We observed a high cover of bluejoint in the experimental plots with the three TS (> 60%) 

(Table 2.1 ). The establishment ofbluejoint was better in the plots planted with deciduous trees: 

balsam poplar and willow (> 86%) (Table 2.1). 

Table 2.1 Mean(± SE) percent cover (%)and dry mass of roots, shoots, total biomass dry weight of bio
barrier species (g) when grown in the plots with target tree species at Les Terrains Aurifères site, Québec. 

Bio-barrier 
Target tree 

Percent Shoot dry 
Root dry mass, g T ota) dry mass, g species cover,% mass, g 

Balsam poplar 88 (8) 75.8 (26.4) 45 .9 (26.2) 121.7 (46.9) 
Bluejoint Willow 86 (7) 85.2 (23.2) 33 .7 (18.4) 118.9 (69 .5) 

Black spruce 60 (15) 34.7 (16.0) 27.9 (5.6) 62.6 (34.1) 

Balsam poplar 19 (11) 182.5 (97.4) 144.8 (47.2) 327.3 (140.1) 
Sheep laurel Willow 17 (11) 205.2 (105.8) 183.4 (133.8) 388.6 (211.3) 

Black spruce 33 (14) 213.4 (94.5) 140.8 (59.4) 354.1 (143.8) 
Note . Values are shown as the mean with standard deviation in the parentheses. 

Sheep laurel had a high mortality rate and low percent cover in the plots with three TS by the 

end of the experiment (August, 2012) (Table 2.1). The mean percent cover of sheep laurel was 

< 24%. Sheep laurel bad a lower percent cover than bluejoint (Table 2.1), but biomass 

measurements showed the opposite. W e obtained a higher biomass for sheep laurel than 

bluejoint (Table 2.1 ). 

2.5.2 Target tree species mortality 

The survival of TS varied among treatments. Bluejoint bad a strong detrimental effect on TS 

survival one year after the grass was planted. Mortality of balsam poplar and willow reached 

42% in the bluejoint experimental plots in both zones. For black spruce, about 8% ofmortality 

was observed in the dry and 17% in the wet zones, respective! y, in the presence of bluejoint. 

No significant tree mortality was observed in the control, except for 8% of dead willow 

observed in the dry zone and in the sheep laurel plots. 

2.5 .3 Target tree species growth 
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2.5.3.1 Bluejoint 

One-year stem height increment (2011-2012) was 90% lower for balsam poplar, 75% lower 

for willow, and 62% lower for black spruce, when the target tree species were growing in the 

presence ofbluejoint, compared to the control plots (balsam poplar, estimatebluejoint= -2.90, 95% 

CI: -3 .23, -2.57; willow, estimatebluejoi nt = -5 .65, 95% CI: -7.93, -3 .37; black spruce, 

estimatebluejoint = -3.59, 95% CI: -7.00, -0.18; Figure 2.5). On average, basal diameter increment 

of balsam poplar and willow was four times lower in the bluejoint plots, compared to the 

controls (balsampoplar, estimatebluejoint = -0.16, 95% CI: -0 .25 , -0.07; willow, estimatebluejo int = 

-0.13, 95% CI: -0.21 , -0.04). For black spruce, basal increment decreased by 80% when planted 

in the bluejoint plots, compared to the control plots ( estimatebluejoint = -0.17, 95% CI: -0 .22, -

0.13). Stem height increment of balsa rn poplar was lower in the wet zone, compared to the dry 

zone (estimate wetzone = -0.51 , 95% CI: -0.84, -0.18) (Figure 2.5). We detected no other effect 

of zone. 
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Figure 2.5 One-year (2011-2012) stem height and basal diameter increment (cm) of target tree species 
in the control and bluejoint plots at Les Terrains Aurifères site (Québec). Data are presented as mean(± 
SE). 
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2.5.3.2 Sheep laurel 

Growth characteristics of the TS varied among treatments (Appendices E and F) . In both zones, 

the presence of sheep laurel improved height and diameter growth for balsam poplar 

(estimatesheeplaurel = 0.48, 95% CI: 0.15 , 0.88 ; estimatesheep laurel = 0.48, 95% CI: 0.15, 0.80) and 

black spruce (estimatesheep laurel= 0.84, 95% CI: 0.52, 1.16; estimatesheep laurel= 0.29, 95% CI: 

0.05 , 0.52) over the four growing seasons (2009-2012). Stem height and basal diameter 

increment of balsam poplar were respectively 45% and 55% higher in the sheep laurel plots, 

compared to the contrais (Figure 2.6). Three-year stem height increment for black spruce that 

was grown in the sheep laurel plots was twice that observed in the control plots, whereas the 

respective basal diameter increment was 29% higher in the sheep laurel plots (Figure 2.6) . The 

presence of sheep laurel did not influence willow growth, as the unconditional 95% CI around 

the model-averaged estimate largely included 0 (Appendix F, Figure 2.6) . 
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Figure 2.6 Three-year (2009-2012) stem height and basal diameter increment (cm) of target tree species 
in the control and sheep laurel plots at Les Terrains Aurifères site (Québec). Data are presented as mean 
(± SE). 

2.5.4 Target tree species biomass and root-to-shoot ratios 

2.5.4.1 Bluejoint 

V aria ti on in TS biomass (dry mass, DM) was weil explained by the model that included the 

main effects ofbluejoint and zone (Appendix G). Mean(± SE) shoot (2.8 ± 0.4 g), root (2.2 ± 
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0.4 g), and total (5.0 ±_0.7 g) biomass of balsam poplar in the bluejoint plots was 14 times 

lower than that measured in the control plots (Table 2.2). Willow biomass was about five times 

higher in the control plots (shoot, 31.2 ± 7.1 g; root, 25.4 ± 5.1 g; total, 56.6 ± 3.0 g) than in 

the presence ofb1uejoint (shoot, 6.1 ± 0.6 g; root, 4.4 ± 0.5 g; total, 10.5 ± 1.0 g) . Black spruce 

biomass (shoot, 11.7 ± 1.9 g; root, 3.3 ± 0.6 g; total , 15 .0 ± 2.4 g) was four times lower in the 

bluejoint plots, compared to the controls (shoot, 45.5 ± 5.5 g; root, 11.9 ± 1.6 g; total, 57.5 ± 

7.1 g) . The biomass of bluejoint had adverse effect on black spruce biomass (Table 2.2). No 

explanatory variable influenced the root-to-shoot ratio ofTS (Table 2.2). 

Table 2.2 Pararneter estirnates for root, shoot, total dry mass, and root-to-shoot ratios of target tree 
species in response to the bluejoint treatrnent at Les Terrains Aurifères site, Québec. 

Response variable Explanatory variable Estima te SE Upper and lower 95% CI 

1. Balsam ~o~lar 

Wet zone 0.14 0.23 -0.30, 0.58 

Shoot dry rnass Bluejoint -2.66 0.22 -3.09, -2.33 

Wetzone -0.26 0.34 -0.40, 0.93 

Root dry mass Bluejoint -2.57 0.25 -3.06, -2.07 

Wet zone 0.17 0.23 -0.28, 0.61 

Total dry mass Bluejoint -2.60 0.21 -3.02 -2.18 

Wetzone 0.05 0.18 -0.29, 0.40 

Bluejoint 0.10 0.17 -0.23, 0.43 
Root-to-shoot ratio Shoot dry mass ofbluejoint 0.00 0.00 0.00 

Root dry mass ofbluejoint 0.00 0.00 0.00 

Total dry mass ofbluejoint 0.00 0.00 0.00 
II. Willow 

Shoot dry mass 
Wetzone -0.40 0.41 -1 .20, 0.40 

Bluejoint -2.10 0.35 -2.77 -1.42 

Root dry mass 
Wetzone 0.17 0.43 -1.01 ' 0.68 
Bluejoint -2.51 0.38 -3.25, -1 .76 

Total dry mass 
Wetzone -0.30 0.41 -1.10, 0.50 

Bluejoint -2.27 0.35 -2.95 -1.58 

Wet zone 0.07 0.21 -0.34, 0.47 

Bluejoint -0.06 0.14 -0.33 , 0.22 
Root-to-shoot ratio Shoots dry mass ofbluejoint 0.00 0.00 0.00 

Root dry mass ofbluejoint 0.00 0.00 0.00 

Total dry mass ofbluejoint 0.00 0.00 0.00 
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Response variable Explanatory variable Estima te SE Upper and lower 95% CI 

m. Black spruce 

Wet zone -0.27 0.27 -0.80, 0.26 

Bluejoint -1.36 0.15 -1.65, -1.06 
Shoots dry mass Shoot dry mass of bluejoint -0.04 0.005 -0.05, -0.03 

Root dry mass of bluejoint -0.04 0.007 -0.05, -0.03 
Total dry mass ofbluejoint -0.02 0.003 -0.03, -0.01 
Wetzone -0.46 0.35 -1.14, 0.22 

Bluejoint -1.39 0.20 -1. 78, -1.00 
Root dry mass Shoot dry mass of bluejoint -0.04 0.01 -0.05, -0.02 

Root dry mass of bluejoint -0.04 0.01 -0.06, -0.02 
Total dry mass of bluejoint -0.02 0.01 -0.03, -0.01 

Wet zone -0.31 0.28 -0.87, 0.25 

Bluejoint -1.36 0.16 -1.67, -1.05 
Total dry mass Shoot dry mass of bluej oint -0.04 0.01 -0.05, -0.02 

Root dry mass ofbluejoint -0.04 0.01 -0.05, -0.02 
Total dry mass ofbluejoint -0.02 0.01 -0.03, -0.01 

Wetzone 0.03 0.10 -0.17, 0.22 

Bluejoint 0.06 0.1 0 -0 .14, 0.26 
Root-to-shoot ratio Shoot dry mass of bluejoint 0.00 0.00 0.00 

Root dry mass of bluejoint 0.00 0.00 0.00 

Total dry mass ofbluejoint 0.00 0.00 0.00 
Notes. The reference levels in the mixed mode! were dry zone and control plot. The values in boldface 
type signify that 95 % unconditional confidence interval fo r a given parameter excludes zero. 

2.5.4.2 Sheep laurel 

Four models bad strong support (high Akaike weights) for explaining variation in DM and the 

root-to-shoot ratios of three TS. The " best" models, which encompassed more than 95% of 

total Akaike weights, contained the main effects of zone, sheep laurel treatment, and DM of 

sheep laurel (Appendix H). The shoot, root, and total DM of bals am poplar were higher in the 

presence of sheep laurel by 72%, 53%, and 64%, respectively, compared to in its absence 

(shoot, estimatesheep laurel= 0.63, 95% CI: 0.20, 1.07; root, estimateshccp laurel= 0.52, 95% CI: 0.10, 

0.95 ; total, estimateshecp laurel= 0.59, 95% CI: 0.17, 1.01) (Figure 2.7) 
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Figure 2.7 Dry mass of target tree species in the control and sheep laurel plots at Les Terrains Aurifères 
site (Québec). Data are presented as mean(± SE) 

In the presence of sheep laurel, the shoot, root, and total DM of black spruce increased by 71%, 

62%, and 69%, respectively (shoot, estimateshecp laurel = 0.64, 95% CI: 0.34, 0.95; root, 

estimatesheep laurel= 0.60, 95% CI: 0.24, 0.96; total, estimatesheep laurel= 0.63 , 95% CI: 0.32, 0.95). 

The biomass of willow and the root-to-shoot ratios of the three TS did not vary among 

treatments (sheep laurel vs . control) and zones (dry vs. wet) (Appendix I). 

2.5.5 Target tree species root system architecture 

2.5.5.1 Bluejoint 
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Bluejoint bad a strong detrimental effect on root architecture characteristics ofthree TS (Tables 

2.3 and 2.4). In the presence ofbluejoint, maximum root depth, root radial extension, total root 

length, and the root volume of balsam poplar decreased by > 80%, compared to control 

conditions. The number of 2nd_ and 3rct-order roots of bals am poplar decreased respectively by 

68% and 77% in the bluejoint plots, compared to control plots . Shoot and total DM ofbluejoint 

had an adverse effect on total root length and root volume of bal sam poplar (Table 2. 3). The 

total number of 2"d- and y ct_order roots of balsam poplar was detrimentally affected by the 

biomass of bluejoint. 

Maximum root depth and root radial extension, the total number of 2"d- and 3'd-order roots of 

willow were reduced by bluejoint treatment by 72%, 87%, 83%, and 84%, respectively, 

compared to control conditions (Tables 2.3 and 2.4). Total root length and root volume of 

willow decreased by 93% in the presence ofbluejoint, compared to the control plots. Root DM 

ofbluejoint had a detrimental effect on the number of2"d-order roots ofwillow. 

Maximum root depth, maximum root radial extension, and the number of 3'd-order roots of 

black spruce decreased in the presence ofbluejoint, compared to control conditions (Tables 2.3 

and 2.4). Total root volume and the number of 3'd-order roots were detrimentally affected by 

the biomass ofbluejoint. Mean total root volume(± SE) was 43 .8 ± 5.9 cm3 vs. 14.5 ± 3.2 cm3, 

whereas the total number of3'd-order roots was 2.8 ± 0.3 in the controls versus 1.0 ± 0.3 in the 

bluejoint plots. Shoot and total DM ofbluejoint bad an adverse effect on maximum root radial 

extension and total root length of black spruce (Tables 2.3 and 2.4) . The number of 2"d-order 

roots of black spruce was negatively affected by root and total DM ofbluejoint (Tables 2.3 and 

2.4) . The three-dimensional representation offirst-, second- and third-order root systems ofTS 

that were grown in the control and in the presence of bluejoint is illustrated in Figure 2.8 

Model-averaging revealed no main effect of zone on root characteristics of three TS, except 

for maximum root depth ofbalsam poplar (Tables 2.3 and 2.4). Balsam poplar roots extended 

more deeply in dry zone than in the wet zone. Poplar roots were 17 cm (37%) and 1 cm (11 %) 

deeper in the dry zone, in the control and bluejoint plots, respectively, compared to the wet 

zone. Bluejoint had a strong detrimental effect on root architecture characteristics of three TS 

(Tables 2.3 and 2.4). 
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2.5.5.2 Sheep laurel 

As observed in the b1uejoint plots, only one root characteristic, i.e., maximum root depth of 

balsam poplar, varied among zones (estimate wet zone = -0.36, 95% CI: -0.61 , -0.12) . When 

compared to the dry zone, the maximum root depth ofbalsam poplar in the wet zone was 37% 

(17 cm) and 23% (13.4 cm) lower in the control and sheep laurel plots, respectively (Table 

2.4) . In the presence of sheep laurel , the maximum root depth of balsam poplar increased by 

38% (estimatesheep laurel= 0.32, 95% CI: 0.09, 0.55) and its total root volume was 57% greater, 

compared to the control plot (estimatesheep laurel= 0.57, 95% CI: 0.08, 1.07). The number of2"d

order roots of ba1sam poplar in the sheep laurel plots was 36% greater than in the control 

(estimatesheep laurel = 1.63 , 95% CI: 0.37, 2.88). No difference between plots was observed for 

maximum root radial extension, total root length, and the number of 3 rd_order roots of balsam 

poplar (Table 2.4, Appendix L). 

The maximum root depth of willow varied among zones (estima te wet zone= 6.23 , 95% CI: 2.96, 

9 .50). In comparison with the dry zone, maximum root depth of willow in the wet zone was 

11 % (3 .1 cm) and 44% (9.5 cm) greater in the control and sheep laurel plots, respectively. 

Other root architecture characteristics of willow were not affected by the presence of sheep 

laurel (Table 2.4, Appendix L) . 

The sheep laurel treatment increased maximum root depth of black spruce by 23% (estimate 

sheeplaurel = 0.25, 95% CI: 0.15, 0.35) (Table 2.4). Root radial extension and total root length of 

black spruce were 28% greater in the sheep laurel plots, compared to the control (root radial 

extension, estima te sheep laurel = 0.31 , 95% CI: 0 .15, 0 .46; total root length, estima te sheep laurel = 

0.36, 95% CI: 0.15, 0.57) . Total root volume and the number of 3rd_order roots of black spruce 

increased by 58% and 55%, respectively, in presence of sheep laurel ( estimatesheep laurel = 0.58, 

95% CI: 0.21 , 0.95 ; estimatesheep laurel= 1.25, 95% CI: 0.63, 1.87). The number of2"d-order roots 

did not vary among control and sheep laurel plots (Appendix L). Severa! examples of 

AMAPmod images of TS root systems that were excavated from the control and the sheep 

laurel plots are presented in Figure 2.8. 
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2.6 Discussion 

2.6.1 Influence ofbluejoint on above- and belowground growth of target trees 

We measured high mortality and strong growth suppression of balsam poplar, willow, and 

black spruce in the plots that were colonized by bluejoint at the LTA site (Tables 2.2 to 2.4; 

Figure 2.5). Previous studies have reported that perennial grasses detrimentally affect tree 

seedlings by modifying environmental conditions (Balandier et al. 2006; Collet et al. 2006; 

Landhausser et al. 2007). Interference competition for space with the bluejoint may be 

responsible for this substantial reduction in aboveground (growth increment, shoot biomass) 

and belowground structures (root and total biomass, maximum root depth, maximum root 

radial extension, total root length, total root volume, total number of 2nd_ and 3rd_order roots) 

of the three TS. The dense sod that was fonned by roots and rhizomes of bluejoint could 

represent a physical obstacle to root penetration and growth of the three TS (Landhausser et al. 

2007). Indeed, plant root growth decreases in dense substrates (Landhausser et al. 1996). A 

detrimental effect of root biomass of bluejoint was observed for sorne of the root architectural 

characteristics of TS, viz. , root ramification parameters of three TS and the root volume of 

black spruce. High bluejoint cover estimates (Table 2.1) on plots with TS also demonstrated 

that bluejoint is an aggressive competitor for space. Together with limiting root growing space, 

the presence of dense bluejoint roots could decrease aeration of and rainfall penetration into 

the soil (see Balandier et al. 2006). Plant growth may decrease if rooting space is physically 

restricted, regardless of the presence of abundant supplies of nutrients and water to the plant 

(Young et al. 1997, Schenk et al. 1999). 

Direct resource competition for nutrients and water between TS and bluejoint could also occur 

and cause TS growth inhibition, since bluejoint is very nutrient-demanding (Landhausser and 

Lieffers 1994; Rangs et al. 2003) . Previous studies have frequently reported that grass-induced 

resource competition (mainly for water and nitrogen) decreased stem height and basal diameter, 

and leaf and root biomass of tree species (Collet et al. 1996; Landhausser and Lieffers 1998; 

Coll et al2004) . Reductions in the biomass of roots, root system size and the number of roots 

(Collet et al. 2006), together with root extension rates and root length density (Ludovici and 

Morris 1996, 1997) of trees affected by grass competition were detected. 
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Shoot biomass of bluejoint (Table 2.1) exerted an adverse effect on shoot biomass of black 

spruce. Cover estimates of bluejoint in plots that contained deciduous trees and black spruce 

were > 80% and 60%, respective! y. These responses suggest that bluejoint could have competed 

for light with TS, thereby further inhibiting their growth (Eis 1981 ). Survival and growth of 

black spruce was greater than for balsam poplar and willow in the bluejoint plots. These results 

are consistent with the findings of Messier et al. (2009), who showed that late-successional tree 

species are less affected by grass competition than early successional species, which require 

high levels of resources ( e. g. light and nutrients) to main tain their fast rates of growth. 

In addition, bluejoint litter has an insulating effect on the soil and contributes in maintaining 

cool soil temperatures throughout the growing season (Hogg and Lieffers 1991 ; Landhausser et 

al. 2006), which is known to detrimentally affect tree seedling growth (Tryon an Chapin 1983). 

Direct allelopathic effects (release of allelochemicals) have been reported for other grarninoid 

species (Jobidon et al. 1989; Winder and Macey 2001). However, alle1opathic interference by 

bluejoint, if present, was unlikely to be the sole cause ofhigh tree mortality and strong inhibition 

of tree seedling growth in this study. Production of chemical compounds by the BBS was 

beyond the scope of this study, but sorne measurements (Smimova et al., unpublished results) 

were performed that confirmed no significant allelochemical release by bluejoint reedgrass into 

the test plots. 

2.6 .2 Influence of sheep laurel on above- and belowground growth of target trees 

Earlier studies have reported a strong inhibitory effect of sheep laurel on tree seedling growth 

in both naturai ecosystems and in experimental field manipulations (Titus et al. 1995; Indeijit 

and Mallik 2002; Thiffault et al. 2004; LeBel et al. 2008). In our study, the effects of sheep 

laurel on growth of the TS were tested sole! y under experimental conditions at the LT A site. 

Target tree species showed high survival and adaptation capacity to site conditions, whereas 

sheep laurel had to be planted severa! times in the experimental plots due to high mortality 

during the first growing season (2008). Thus, sheep laurellikely suffered high stress levels from 

transplantation into the site. Sheep laurel is more vigorous (grea ter plant height, leaf area and 

specifie leaf area) under partial shade conditions, compared to open sites (Mallik 1994, Mallik 

et al. 2012) . The LTA is an open site that is subject to direct insolation and strong winds. Soil 
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temperature was measured in the experimental plots (control and sheep laurel plots) in a parallel 

study (Smirnova et al. 2012); soil temperature at a depth of 10 cm varied between 16.0 and 

19 .5°C during the vegetative season at the L TA site. In comparison, in nearby black spruce and 

trembling as pen stands, average soil temperature was 13.4 ± 1.5°C (Fréchette et al. 2011 ). Th us, 

microclimatic conditions at the LTA site did not contribute to successful growth of sheep laurel. 

At the end of the experiment, the density of sheep laurel in the sample plots was relatively low 

(on average,< 20% of sheep laurel co ver in plots with balsam poplar and willow; 24% in black 

spruce plots; see Table 2.1). This likely resulted in small surface accumulations of leaf litter, 

which is recognized as a major source of allelochemicals (see review by Reigosa et al. 1999). 

In comparison, Mallik et al. (20 12) reported that sheep laurel co ver measured in black spruce 

forest in Newfoundland was > 34.5 ± 9.0% in open sites, 44.0 ± 14.3% under low shade 

conditions, 34.5 ± 6.0% in medium shade, and 36.6 ± 9.5% in deep shade sites. In the present 

study, the leve! of allelopathic compounds that were produced by sheep laurel was probably too 

low to exert measurable phytotoxic effects. This assumption is reinforced by the work of 

Smirnova et al. (unpublished results), who reported that sheep laurel produced polyphenols at 

a lower concentrations in the LTA site than was reported by Joanisse et al. (2009) in natural 

boreal forest stands. 

Previous studies have revealed that plant root system development is altered in the presence of 

neighbouring plant species (Nord et al. 2011 ; Fang et al. 2013) in order to maximize their 

growth (Gersani et al. 2001). In our experiment, stem height and basal diameter increment, 

together with the shoot, root, and total dry mass ofbalsam poplar, was enhanced in the presence 

of sheep laurel. This effect is assumed to be the result of optimization in root growth. Balsam 

poplar adjusted its root growth in the presence of sheep laurel by increasing vertical growth of 

coarse roots, root ramification (number of 2"d-order roots), and root volume. These results are 

consistent with Nord et al. (20 11), who found that the presence of neighbours can stimula te 

plants to produce fewer roots in the uppermost soillayers and more roots in the subsoil layers 

that are free of competitor roots, to place fewer roots in soil patches near roots of neighbours, 

and to increase root length. Hence, balsam poplar appears to have minimized resource 

competition with sheep laurel by producing more roots below the zones of sheep laurel root 

proliferation. A deeper root system with grea ter ramification possibly allowed the bals am poplar 
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to better explore available growth space and improve its resource capture (mainly water), 

thereby improving aboveground growth in presence of neighbouring sheep laurel. 

Although they are in the same family (Salicaceae), willow and balsam poplar have adopted 

different plant growth forms, i.e. , shrubs and trees, which responded in different ways to the 

presence of sheep laurel. The presence of sheep laurel had no effect on the growth of willow. 

Neutra! responses ofwillow might be attributable toits well-developed fine root system (Rytter 

and Rytter 1998; Rytter 1999), which allowed nutrient and water uptake without altering root 

system architecture in the plots containing sheep laurel. 

The root systems of shrubs tend to be shallower in dry conditions and spread laterally, whereas 

trees have vertical root systems that are strongly developed downwards (Schenk and Jackson 

2002). Our results support this idea, as a similar trend was observed in the two zones at the LTA 

site. Willow shrubs produced roots that were deeper in the wet zone, compared to the dry one. 

Balsam poplar had more shallowly developed roots in the wet zone. This response is likely to 

be an adaptive response of different plant growth forms to survive in water-limited conditions. 

The roots of willow need an abundant and continuous water supply (Pitcher and McKnight 

1990); therefore, willow mainly used rainfall that inflltrated the upper soil layers of the dry 

zone. Greater depth penetration of balsam poplar roots in the dry zone gave them access to 

moisture reserves in deeper soillayers. 

Black spruce also showed good potential for minimizing resource competition when grown in 

the plots with sheep laurel. Ali parameters that were measured for black spruce, i.e. , stem height 

and basal diameter increment, biomass (root, shoot, total), and root architecture characteristics, 

increased in the presence of sheep laurel, relative to the control, except for the root-to-shoot 

ratio and the number of 2"d-order roots. In addition, we observed that sheep laurel and black 

spruce that were grown at the LT A site were both colonized by co mm on dark sep tate endophyte 

(DSE), Phialocephalafortinii Wang and Wilcox (Appendix M). The presence of this endophyte 

indicates that sheep laurel, which had been transplanted earlier to LTA site from its natural 

habitat, might share symbionts with black spruce that stimulated the latter's growth. To date, 

the role ofDSE in natural ecosystems is poorly deflned (see Jumpponen 2001). However, the 

enhanced growth of gymnosperm plant species that were colonized by Phialocephala fortinii 
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bas been reported (Jumpponen and Trappe 1998; Alberton et al. 2010; Newsham 2011). 

Microbiological analyses that were performed on the roots ofbalsam poplar and willow did not 

reveal the presence of DSE (unpublished data). 

2. 7 Conclusion 

A multilayered cover system was demonstrated to be a technically feasible and effective mining 

site reclamation method, which could be used to restrict oxygen flux into spoil materials and 

elimina te a cid generation over the short-term (Ricard et al. 1997; Dagenais et al. 2005; Bussière 

et al. 2006). The risks that were associated with rapid and uncontrolled establishment of 

vegetation on CCBE (Trépanier et al. 2006) provided the impetus for developing this 

experimental study, which was aimed at improving long-term CCBE efficiency. We tested 

whether an ecological approach that was based on BBS could be used as a countermeasure for 

controlling tree invasion onto CCBE. In this study, tree root system architecture was 

emphasized. This unique experimental study quantified root development of balsam poplar, 

willow, and black spruce on a tailings impoundment that bad been rehabilitated using a CCBE. 

Our results showed that bluejoint is a more efficient BBS than sheep laurel. They suggest that 

strong suppression of above- and belowground growth of three TS by bluejoint was achieved 

mainly through competition (Landhausser and Lieffers 1998; Rangs et al. 2003; Balandier et 

al. 2006). Allelopathic potential of sheep laurel (Yamasaki et al. 1998; Joanisse et al. 2007) 

was not detected at the LTA site over the 2009-2012 experimental periods. Moreover, enhanced 

growth of balsam poplar and black spruce was observed when trees grew with sheep laurel. 

Low competitiveness and phytotoxic activity of sheep laurel could be explained by its low 

density and the stress that is incurred in transplantation to the site. Although sheep laurel was 

not demonstrated to be an appropriate BBS in this experiment, data related to root adjustments 

that were made by the trees in the presence of this ericaceous species on the CCBE are unique. 

From these data, we can conclude that trees exhibited a high degree of root system plasticity 

that optimized tbeir growth wben they were grown with roots of neighbouring species. 

Increased root biomass allocation relative to shoots bas been frequently reported regarding 

conditions ofbelowground competition and water stress (Chapin et al. 1987; Haynes and Gower 

1995; Donaldson et al. 2006; Murphy and Dudley 2007), but this response was not detected in 
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our study. In contrast, alterations to root system architecture was found to be the primary 

response of trees growing in the presence of neighbouring plant roots (Lynch and Ho 2005; 

Nord et al. 2011; Fang et al. 2013) .With respect to future research, efforts should be oriented 

towards testing whether it is possible to improve the establishment and growth of sheep laurel 

on CCBE. lt could be preferable to introduce various allelopathic BBS, such as Rhododendron 

groenlandicum (Oeder) Kron & Judd (Indeijit and Mallik 1997), onto the CCBE to increase the 

heterogeneity of the plant cover as well as its biodiversity. 
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CHAPTERill 

GENERAL CONCLUSION AND RESEARCH PERSPECTNES 

3.1 Summary and conclusion 

In Québec, mining tailings accumulation areas must be rehabilitated to protect the environment 

from AMD production (MRN 2014). Covers with capillary barrier effects are recognized as one 

of the most effective engineered methods to rehabilitate AMD generating mining sites 

(Dagenais et al. 2005; Bussière et al. 2006). Nevertheless, the rapid establishment of tree 

species and shrubs on CCBEs was a cause of concem since uncontrolled vegetation can reduce 

long-term CCBE efficiency (Trépanier et al. 2006; Smirnova et al. 2009). This project was 

developed to improve the ability ofCCBEs to control AMD production. The main objective of 

this study was to introduce two native species with potential allelopathic effects (bluejoint and 

sheep laurel) at the LT A tailings impoundment, which was rehabilitated with a CCBE in order 

to test whether these species can be used as effective BBS that are able to impede the growth 

ofundesirable TS (balsam poplar, willow, and black spruce) . 

The assessment ofTS growth in the presence of the BBS (compared to the control plots) was 

performed based on changes in TS growth increment over the experimental period (2009 -2012 

for the bluejoint and 2011 - 2012 for sheep laurel plots), biomass (shoot, root, and total) , root

to-shoot ratio, and root system architecture parameters. The effects of BBS biomass on TS 

characteristics was also tested (except for the growth increment data) . In total, 192 TS were 

involved in this investigation. A method of three-dimensional root digitizing allowed us to 

obtain precise data conceming topological and geometrical structures ofTS coarse root systems 

(Danjon and Reubens 2008) . To succeed in digitizing them, TS root systems had to be 

complete! y excavated in order to be touched by a hand-held receiver and then, the data sets that 

were obtained from the digitizing had to be processed with AMAPmod software (Godin et al. 

1997; Danjon et al. 1999a) for subsequent calculations of TS root architecture parameters. ln 

fact, the part of this project that was dedicated to TS root architecture was time-consuming and 

contained at !east 4 steps: root excavation, root system digitizing, root analysis with AMAPmod 

software and fmally, statistical analysis in order to evaluate whether there was BBS effect on 
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root characteristics ofTS. It was very important to assess whether there were sorne changes in 

TS root system architecture in the BBS plots because: (1) TS roots were recognized as a 

particular threat to CCBE performance (USDOE 1990; Handel et al. 1997; Hutchings 2001); 

(2) root system architecture has been proven to be a critical factor in plant survival and growth 

(L6pez-Bucio et al. 2003) . Severa! root characteristics were assessed from the root analysis: 

maximum root depth and root radial extension, total root length and volume, number of2"d-and 

3d-order roots. 

In this study, bluejoint was shown to be an efficient BBS. It took bluejoint one year to cause 

high tree seedling mortality and a strong inhibiting effect on above-and belowground structures 

of surviving TS (Tables 2.2 - 2.4, Figure 2.5). Detrimental effects of bluejoint on TS growth 

was mainly caused through competition (interference competition for space, resource 

competition) (Landhiiusser and Lieffers 1998; Rangs et al. 2003 ; Balandier et al. 2006). 

Strong allelopathic potential of sheep laurel (Yamasaki et al. 1998; Joanisse et al. 2007) was 

not demonstrated in this study. Moreover, our experiment showed improved growth ofbalsam 

poplar and black spruce in the sheep laurel plots (Figures 2.6 and 2.7, Tables 2.4). In the case 

of black spruce, sheep laurel shared with this tree species a representative of DSE 

(Phialocephalafortinii) that potentially contributed to spruce growth (Appendix M). Although 

ecological conditions on the CCBE promote the natural establishment of sorne plant species 

(Smimova et al. 2011), sheep laurel, being transplanted from its natural habitat, had an 

adaptation stress to the LTA site conditions. This adaptation stress led to low competitive and 

phytotoxic activities of sheep laurel. Thus, it is likely that the substrate that was added to the 

LT A site was not appropria te and probably too rich for optimal growth and high allelochemicals 

production of sheep laurel. Sheep laurel grows abundantly on nutrient-poor to medium quality 

boreal forest (Titus et al. 1995). Sites colonized by sheep laurel in Newfoundland were 

characterized by high soi! acidity (pH 2.8 to 4.5), and phytotoxic effect of sheep laurel on plants 

growth (especially on their roots) in laboratory conditions was higher at soi! pH 3.0 (Zhu and 

Mallik 1994). 

We detected no increase in root-to-shoot ratio of the three TS in the BBS plots. An increased 

biomass allocation to TS roots was expected as a response to competition caused by BBS 



55 

(Cannell1985; Chapin et al. 1987; Schenk and Jackson 2002; Mokany et al. 2006). However, 

root system architecture of TS was substantially altered in the presence of BBS (except for 

willows that were grown with sheep laurel). Results from this study demonstrated that the TS 

root architecture adjustment plays a greater role in belowground competition responses than 

previously thought. Alteration of root architecture of tree species in response to neighbouring 

plants may probably reduce belowground competition and represents a greater plasticity than 

changes in biomass allocation (Lynch and Ho 2005 ; Nord et al. 2011 ; Fang et al. 2013) . It is 

more likely that the primary response of plant species to the presence of neighbouring plants is 

an adjustment of root architecture rather the reallocate plant biomass (Nord et al. 2011 ). 

3.2 A venues for future research 

Bluejoint has proved its potential as a BBS on the CCBE, but monospecific planting in large 

areas, such as LTA site (60 ha) , is not a good option in terms ofbiodiversity conversation in the 

boreal zone. To achieve a successful restoration, care should be taken not only to control 

pollution, but also to maintain the ecological stability of the ecosystem that is artificially created 

on mining sites (Bradshaw 1997; Cooke and Johnson 2002). It might be a better solution to 

introduce various BBS onto the CCBE to increase the species richness. The combinations of 

patches that are made of various plants can increase the heterogeneity of plant caver on the 

CCBE, thereby maximizing the ecological sustainability of the rehabilitated area and increase 

social acceptability. 

Generally, this study demonstrated that the use of a natural mechanism (at least competition) 

can be a promising method for mining site restoration in a CCBE context. Although, the 

experiment with sheep laurel did not prove our expectations, this study allowed us to obtain 

unique data concerning root behaviour in the presence of neighbouring BBS on the existing 

CCBE. Additional investigations can be performed to develop the option to use allelopathic 

species as BBS. Investigations can also be extended for other representatives of ericaceous 

plants, such as Labrador tea (Rhododendron groenlandicum (Oeder) Kron & Judd) (Inderjit and 

Mallik 1997b ). Efforts can be directed to improve the establishment of ericaceous plants on the 

CCBE. It might be interesting to verify whether sorne associated species can improve 

ericaceous plant adaptation and growth in the relatively harsh environmental conditions that are 
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presented on the CCBE. It could be also appropria te to investigate what kind of substrate and 

planting density contribute to the establishment of ericaceous plants on the CCBE. Further 

studies that could be devoted to introducing the ericaceous plants on the CCBE should include 

biochemical analyses of the soil and different plants parts to evaluate the production of 

phytotoxins by allelopathic species. More microbiological analyses should be clone on the 

presence of mutualistic microorganisms on the root hairs of both undesirable tree species and 

ericaceous plants. To evaluate more precise! y belowground competition for space between BBS 

and TS, other explanatory variables could be involved in statistical analysis, for example BBS 

root density and root surface area (Casper and Jackson 1997). 

More investigations could also be clone to prevent the germination of seeds ofundesirable plant 

species on the CCBE. lt would be interesting to know whether allelopathic and/ or highly 

competitive species can be used as BBS against tree seed germination. Also, it could be 

important to conduct long-term investigations to obtain detailed information on how long BBS 

can delay the growth and seed germination ofundesirable vegetation. 

Another question is whether tree growth retardants can be effective to hinder seed germination 

and tree species growth on the CCBE. However, the method of using growth retardants can 

have a disadvantage of being not environmentally sa fe. Ali advantages and drawbacks of mine 

restoration methods should be accounted because the restoration needs to be achieved as 

effectively and as cheaply as possible (Cooke and Johnson 2002). 
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ROOT EXCAVATION AT LES TERRAINS AURIFÈRES SITE, QUÉBEC 
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APPENDIXB 

ROOT DIGITIZING AT THE LAC DUPARQUET RESEARCH STATION OF UQAT 

Symbols were used at the pictures: 

B - block number; 

Target tree species: P- balsam poplar, W- willow, and S- black spruce; 

Treatment: C- control, K - sheep laurel (Kalmia) , and G- bluejoint (Gramineae) 
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APPENDIXC 

SUMMARY OF LINEAR MIXED EFFECTS MODELS SELECTION BASED ON AICc 
FOR ONE-YEAR STEM HEIGHT AND BASAL DIAMETER INCREMENT OF TARGET 

TREE SPECIES IN RESPONSE TO THE BLUEJOINT TREATMENT AT LES 
TERRAINS AURIFÈRES SITE, QUÉBEC 

Candidate models K' AI Cc f..AICc AICc Wt2 

1. Stem height of balsarn poplar 

Zone + Bluejoint 6 41.56 0.00 1.00 
Zone + Bluejoint + Zone x Bluejoint 7 71.50 29.94 0.00 

Il. Basal diameter of balsam poplar 

Zone + Bluejoint 6 15.76 0.00 1.00 
Zone + Bluejoint + Zone x Bluejoint 7 44.59 28 .84 0.00 

m. Stem height of willow 

Zone + Bluejoint 6 79.63 0.00 1.00 
Zone + Bluejoint + Zone x Bluejoint 7 97 .85 18.22 0.00 

IV. Basal diarneter of willow 

Zone + Bluejoint 6 6.62 0.00 1.00 
Zone + Bluejoint + Zone x Bluejoint 7 22.46 15.84 0.00 

V. Stem height of black spruce 

Zone + Bluejoint 6 87.32 0.00 1.00 
Zone + Bluejoint + Zone x Bluejoint 7 103.70 16.39 0.00 

VI. Basal diarneter of black spruce 

Zone + Bluejoint 6 -6.05 0.00 1.00 
Zone + Bluejoint + Zone x Bluejoint 7 12.18 18.24 0.00 

Notes. 1Number of estimated parameters, 2 Akaike weights 



APPENDIXD 

P ARAMETER ESTIMA TES FOR ONE-YEAR STEM HEIGHT AND BASAL 
DIAMETER INCREMENT OF TARGET TREE SPECIES IN RESPONSE TO THE 

BLUEJOINT TREATMENT AT LES TERRAINS AURIFÈRES SITE, QUÉBEC. 

Response Exp lana tory 
Estima te SE Lower 95% CI Upper 95% CI 

variable variable 

1. Balsam ~o~lar 

Height Wet zone -0.51 0.17 -0.84 -0.18 

increment Bluejoint -2.9 0.17 -3.23 -2.57 

Diameter Wetzone -0 .0 1 0.05 -0 .1 0.08 

increment Bluejoint -0.16 0.05 -0.25 -0.07 

Il. Willow 

Height Wet zone 1.68 1.29 -0.84 4.21 

increment Bluejoint -5.65 1.16 -7.93 -3.37 

Diameter Wet zone -0.03 0.04 -0.11 0.06 

increment Bluejoint -0.13 0.04 -0.21 -0.04 

III. Black s~ruce 

Height Wet zone -0.74 1.74 -4.15 2.67 

increment Bluejoint -3.59 1.74 -7 -0.18 

Diameter Wet zone 0.04 0.03 -0.01 0.09 

increment Bluejoint -0.17 0.02 -0.22 -0.13 
Notes. The reference levels in the mixed mode! were dry zone and control plot. The values in boldface 

type signify that 95% unconditional confidence interval for a given parameter excludes zero 



APPENDIXE 

SUMMARY OF LINEAR MIXED EFFECTS MODELS SELECTION BASED ON AlCc 
FOR THREE-YEAR STEM HEIGHT AND BASAL DIAMETER INCREMENT OF 

TARGET TREE SPECIES IN RESPONSE TO THE SHEEP LAUREL TREATMENT AT 
LES TERRAlNS AURIFÈRES SITE, QUÉBEC 

Candidate models Ki AI Cc 11 AICc AICc Wt2 

1. Stem height of balsam poplar 

Zone + Sheep laurel 6 40.81 0.00 1.00 
Zone + Sheep laurel + Zone x Sheep laurel 7 53 .20 12.39 0.00 

ll. Basal diameter of balsam poplar 

Zone + Sheep laurel 6 34.36 0.00 1.00 
Zone + Sheep laurel + Zone x Sheep laurel 7 46.89 12.53 0.00 

ID. Stem height of willow 

Zone + Sheep laurel 6 32.84 0.00 0.99 
Zone + Sheep laurel + Zone x Sheep laurel 7 41.52 8.68 0.01 

IV. Basal diameter of willow 

Zone + Sheep laurel 6 29.64 0.00 0.89 
Zone + Sheep laurel + Zone x Sheep laurel 7 33 .80 4.17 0.11 

V. Stem height of black spruce 

Zone + Sheep laurel 6 38 .54 0.00 1.00 
Zone + Sheep laurel + Zone x Sheep laurel 7 51.71 13.17 0.00 

VI. Basal diameter of black spruce 

Zone + Sheep laurel 6 25 .27 0.00 1.00 
Zone + Sheep laurel + Zone x Sheep laurel 7 38.21 12.94 0.00 

Notes. 1 Number of estimated pararneters, 2 Akaike weights 



APPENDIXF 

PARAMETER ESTIMA TES FOR THREE-YEAR STEM HEIGHT AND BASAL 
DIAMETER INCREMENT OF TARGET TREE SPECIES IN RESPONSE TO THE SHEEP 

LAUREL TREATMENT AT LES TERRAINS AURIFÈRES SITE, QUÉBEC. 

Response Exp lana tory 
Estima te SE Lower95% CI Upper 95% CI 

variable variable 

1. Balsam ~o~lar 

Height Wet zone -0.30 0.26 -0.81 0.21 
increment SheeE laurel 0.48 0.20 0.08 0.88 

Diameter Wet zone 0.10 0.19 -0 .27 0.46 
increment Sheep laurel 0.48 0.17 0.15 0.80 

Il. Willow 

Height Wet zone -0.02 0.17 -0.34 0.31 
increment Sheep laurel 0.15 0.17 -0.17 0.48 

Diameter Wet zone -0.04 0.14 -0 .32 0.24 
increment Sheep laurel -0.02 0.14 -0.30 0.26 

ill. Black s~ruce 

Height Wet zone -0.02 0.27 -0.54 0.50 
increment SheeE laurel 0.84 0.16 0.52 1.16 

Diameter Wet zone -0.02 0.12 -0.26 0.2 1 
increment SheeE laurel 0.29 0.12 0.05 0.52 

Notes. The reference levels in the mixed mode! were dry zone and control plot. The values in boldface 
type signify that 95% unconditional confidence interval for a given parameter excludes zero 
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ROOT TIPS OF BLACK SPRUCE COLONIZED BY PHIALOCEPHALA FORTJ7viJ 
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