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Abstract

This paper generalizes Poisson-Multifractal for correlated time series of count data.

We show that the model has useful properties; it captures long-term time dependence

and �exible dependence between types of count. Based on real data, the correlated

multifractal model is used to model the number of claims of two separate coverages in

automobile insurance. Smoothed values of the underlying process can be estimated, and

a speci�c property of the model allows us to split the unobserved process into separate

elements. These elements can be considered as climatic, economic or social factors

a�ecting the frequency of claims, which can be associated with exogeneous informations.

Even if the model proposed in this paper implies dependence between count variables,

we think that it can be easily generalized in many directions: to model dependence

between claim cost and frequency, or between the claims frequency of di�erent insurance

products.

Key Words: Time Series, Count Data, Multivariate Analysis, Multifractal

process, Maximum Likelihood, Poisson, Dependence.
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1. INTRODUCTION

Models of time series of counts can be classi�ed in many ways. Cox (1981) proposed to

separate the models into two families: observation driven models and parameter driven

models. More recently, a detailed overview of time series models for counts has been done

by Jung and Tremayne (2011), who identi�ed several categories of models, such as static

regression models, autoregressive conditional mean models, integer autoregressive models,

and generalized linear autoregressive models (GLARMA). In their classi�cation, a Poisson

process with an autoregressive intensity is a parameter-driven model called the Poisson

Stochastic Autoregressive Mean (Poisson-SAM).

The word "fractal' emerged on the scienti�c scene with the work of Mandelbrot(1982)

in the 1960s and 1970s. Subsequently, multifractal processes became popular means of

modeling �nancial time series. We refer the interested reader to the numerous publications

of Mandelbrot (e.g. (1997) and (2001)), for applications of these processes to �nance. In

a recent paper, Boucher and Hainaut (2013) generalized the approach for count data, and

proposed a Poisson-Multifractal model that can be advantageously compared to the Poisson-

SAM model, even if the underlying unobserved process is not continuous. The authors also

showed that this new Poisson model can capture particular unobserved time dependence

structure, not present in the other model.

There are many practical reasons to construct a model where a dependence between two

time series of counts is supposed. To our knowledge, no dependent time series model of counts

using correlated autoregressive mean models has been developed. Recently, Jung, Liesenfeld

and Richard (2011) use the e�cient importance sampling (EIS) techniques to estimate the

parameters of correlated times series. They apply independent underlying processes to each

time series of count and add a common autoregressive process to introduce dependence. The

model that we propose in this paper directly supposes �exible dependence with multifractal

processes.

In Section 2, the univariate Poisson-Multifractal model is reviewed. Generalizations of
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the Poisson-Multifractal model for bivariate time series of count is presented in Section 3.

In Section 4, an applied example using insurance data is used to illustrate the model, where

we use another conditional distribution with the Multifractal process, namely the Negative

Binomial distribution. The last section concludes the paper.

2. THE POISSON MULTIFRACTAL MODEL

We suppose that the number of events observed on the time interval [t, t+1) has the following

probability function:

Pr (Nt = n|Ft) =
λ(t)ne−λ(t)

n!
. (2.1)

where we suppose that the parameter λ(t) for the period of time [t, t+ 1) is modeled as:

λ(t) = dt exp(β>xt)Ft = τ(t)Ft. (2.2)

The vector xt is used to include covariates, dt is the risk exposure, and Ft is a multifractal pro-

cess. The random process Ft is used here to introduce overdispersion and time dependence.

This approach was inspired by the binomial multifractal process used to model volatility in

a Gaussian time series, as studied by Calvet and Fisher (2008).

The process Ft has interesting interpretations because it is the product of m random

factors, which may be seen as climatic, economic or social, for example. In insurance, we

can then compare the underlying processes with economic statistics, such as unemployment

and the cost of oil. Those m factors cannot be observable directly, and are then modeled by

a Markov state vector, M t, of m components:

M t = (M1,t ,M2,t . . .Mm,t) ∈ Rm
+ .
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Formally, the process Ft is the product of those factors:

Ft =
m∏
j=1

Mj,t (2.3)

The Mj,t, j = {1, . . . ,m}, are built in a recursive manner. Let us assume that the vector of

Mj,t−1 exists up to period t−1. For each j = {1, . . . ,m}, the next period Mj,t is drawn from

a �xed distribution M(j) with probability γj, and is otherwise equal to its previous value

Mj,t = Mj,t−1. It can be expressed as:

Mj,t =


Mj,t−1 with probability 1− γj

M(j) with probability γj

. (2.4)

The random variable M(j) is a simple binomial variable that is worth m0,j with probability

p0 and 2−m0,j with probability 1− p0. Formally, we have:

M(j) =


m0,j p0 = 1

2

2−m0,j ≡ m1,j 1− p0 = 1
2

. (2.5)

The m0,j=1...m ∈ (0, 1) are parameters to be estimated and p0 is set to
1
2
. If the underlying

Markov process Mj,t equals 2−m0,j, it will increase the intensity rate. Conversely, if Mj,t =

m0,j, the intensity of the process will be reduced.

By construction, the parameter γj represents the probability that the factorMj,t changes

its value. If γj is inversely proportional to j (and we will impose this relation in the inference),

the last factorMm,t changes its value less frequently than the �rst factorM1,t. This approach

allows us to capture low-valued regime shifts and long volatility cycles of the counting process.

To reduce the number of parameters to be estimated, a speci�c parametrization of

m0,j=1...m and γi=1...m have been proposed. In particular, we assume that the probability

parameters γj and the possible values of Mj,t, j = 1, ...,m, t = 1, ..., T are given by the

functions:
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γj ≡ γb
j−1

1 j = 1, . . . ,m. (2.6)

m0,j ≡ (m0)
jc , (2.7)

where m0 and c are such that m0,j ∈ (0, 1). The 2m parameters m0,1, ...,m0,m, γ1, ..., γm are

then replaced by four parameters γ1, b,m0, c.

Basic properties of the Poisson-Multifractal model, as well as the method to estimate the

parameters (using Hamilton's �lter) can be found in Boucher and Hainaut (2013).

3. BIVARIATE MULTIFRACTAL PROCESS

The dependence between two time series of counts can also be managed with multifractal

processes. As indicated in the introduction, to our knowledge, no dependent time series

model of counts using correlated autoregressive mean models has been developed. Jung,

Liesenfeld and Richard (2011) used two Poisson-SAM models with independent underlying

processes to each time series of count and add a common autoregressive process to introduce

dependence. The model proposed in this paper directly supposes �exible dependence between

each underlying fractal process.

3.1 Model

We consider in this section, two time series of counts N (A)(t) and N (B)(t). The time series

N (A)(t) and N (B)(t) depend respectively on multifractal processes F
(A)
t and F

(B)
t , which will

be de�ned later. Conditionally on multifractal processes, both series of counts are Poisson

random variables with an autoregressive mean. More precisely, we have

Pr(N (A)(t) = at|F (A)
t ) =

(λ
(A)
t )ate−λ

(A)
t

at!
, (3.1)

Pr(N (B)(t) = bt|F (B)
t ) =

(λ
(B)
t )bte−λ

(B)
t

bt!
, (3.2)
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with intensities de�ned as:

λ
(A)
t = d

(A)
t exp(x

(A)
t β(A))F

(A)
t = τ(t)F

(A)
t (3.3)

λ
(B)
t = d

(B)
t exp(x

(B)
t β(B))F

(B)
t = κ(t)F

(B)
t , (3.4)

where d
(A)
t , d

(B)
t are the exposures and vectors x

(A)
t , x

(B)
t , β(A), β(B) are respectively covariates

and their coe�cients. As for the one-dimensional multifractal model, we de�ne processes

M
(A)
j,t and M

(B)
j,t , for j = 1 to m. The marginal distribution of M

(A)
j,t is such that

M
(A)
j,t =


M

(A)
j,t−1 with probability 1− γA,j

M (A)(j) with probability γA,j

. (3.5)

where M (A)(j) is again a simple binomial random variable equal to m
(A)
0,j with probability

1
2
and 2 − m

(A)
0,j = m

(A)
1,j with probability 1

2
. M

(B)
j,t is de�ned in the same way as M

(A)
j,t .

Multifractal processes F
(A)
t and F

(B)
t are the same as in the one-dimensional model de�ned

as the product of fractal components:

F
(A)
t =

m∏
j=1

M
(A)
j,t F

(B)
t =

m∏
j=1

M
(B)
j,t .

Following Fisher and Calvet (2008, chapter 4), we introduce speci�c dependence for the two-

dimensional process {F (A)
t , F

(B)
t } through each pair of fractal components M

(A)
j,t and M

(B)
j,t .

The level of dependence is controlled by a vector of parameters θj ∈ [0, 1] for , j = 1, ...,m.

3.2 Dependence Structure

We note Aj,t = 1 (resp. Aj,t = 0), the fact that the process M
(A)
j,t is (resp. not) drawn from

the distributionM (A)(j). We de�ne in a similar way a process Bj,t related toM
(B)
j,t . We have
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the following marginal distributions for Aj,t and Bj,t:

Pr(Aj,t = 1) = γj,A (3.6)

Pr(Bj,t = 1) = γj,B, (3.7)

that are used with the following dependence structure:

Pr(Bj,t = 1|Aj,t = 1) = (1− θj)γj,B + θj

= γj,B + θj(1− γj,B) (3.8)

Pr(Bj,t = 0|Aj,t = 1) = (1− θj)(1− γj,B)

= (1− γj,B)− θj(1− γj,B). (3.9)

With this structure, the processes M
(A)
j,t and M

(B)
j,t are pairwise dependent. We can infer the

following properties for the two-dimensional multifractal process:

Proposition 3.1. Using the dependence structure de�ned in equations (3.6) to (3.9), we

have the following joint probabilities:

Pr(Aj,t = 1, Bj,t = 1) = γj,Aγj,B + φj

Pr(Aj,t = 0, Bj,t = 1) = (1− γj,A)γj,B + φj

Pr(Aj,t = 1, Bj,t = 0) = γj,A(1− γj,B) + φj

Pr(Aj,t = 0, Bj,t = 0) = (1− γj,A)(1− γj,B) + φj,

where φj = θjγj,A(1− γj,B), for j = 1, ...,m.

Proof. The proof can be found in the appendix.

Let us denote Mt = (M
(A)
1,t . . . M

(A)
m,t , M

(B)
1,t . . . M

(B)
m,t ) the m vector of volatility com-

ponents. Mt can take d = 22m possible values, s1, . . . , sd ∈ R2m
+ . This two-dimensional
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multifractal model is then de�ned by parameters m
(A)
0,j ,m

(B)
0,j , γA,j, γB,j for j = 1, ...m, with

extra parameters θj, j = 1, ...m that introduce a dependence between processes. As for the

one-dimensional process, we de�ne m
(A)
0,j and m

(B)
0,j as function of j:

m
(A)
0,j = (mA,0)

jAc m
(B)
0,j = (mB,0)

jBc , (3.10)

that have 4 parameters mA,0, mB,0, Ac, Bc . Similarly, the frequencies at which Aj,t and Bj,t

switches are an increasing function of j de�ned as follows:

γA,j ≡ 1− (1− γA,1)b
j−1
A j = 1, . . . ,m (3.11)

γB,j ≡ 1− (1− γB,1)b
j−1
B j = 1, . . . ,m, (3.12)

where γA,1, γB,1 and bA, bB are constant parameters. Calvet and Fisher (2008) introduced

this type of dependence in a two-dimensional autoregressive Gaussian process but they as-

sume that all θj, j = 1, ...m are identical. In our approach, a better �t is obtained when we

di�erentiate the θj, j = 1, ...m. In certain cases, a parametrization for θj, j = 1, ...m can be

used so as to reduce the number of parameters to assess. For example, the use of a speci�c

parametrization such as θj = θj
η
can lead, for positive values of η, to stronger dependence

for long-term cycle processes, and stronger dependence for short-term cycle processes if η is

negative. Other parametrizations of θj allows us to construct several kinds of dependence

structures.

3.3 Inference

We can see that the vector

Mt = {M (A)
1,t , . . . ,M

(A)
m,t ,M

(B)
1,t , . . . ,M

(B)
m,t }
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takes d = 4m possible values, s1, . . . , sd ∈ R2m
+ . Each value corresponds to a certain state

of Mt. We denote in the remainder of this section M
(A)
t = {M (A)

1,t , . . . ,M
(A)
m,t}, M

(B)
t =

{M (B)
1,t , . . . ,M

(B)
m,t }. The �rst (resp. the last) m elements of sk=1...d are noted s

(A)
k (resp s

(B)
k ).

The vector Mt is a Markov chain with a transition matrix A = (ax,y)1≤x,y≤d :

ax,y = Pr(Mt+1 = sy |Mt = sx )

= Pr
(
M

(A)
t+1 = s(A)y , M

(B)
t+1 = s(B)

y |M
(A)
t = s(A)x , M

(B)
t = s(B)

x

)
=

m∏
j=1

Pr
(
M

(A)
j,t+1 = s(A)y (j), M

(B)
j,t+1 = s(B)

y (j) |M (A)
j,t = s(A)x (j), M

(B)
j,t = s(B)

x (j)
)
.

The probability in this last equation can be split as follows

Pr
(
M

(A)
j,t+1 = s(A)y (j), M

(B)
j,t+1 = s(B)

y (j) |M (A)
j,t = s(A)x (j), M

(B)
j,t = s(B)

x (j)
)

=

I
(j)
00 p00(j, t) + I

(j)
01 p01(j, t) + I

(j)
10 p10(j, t) + I

(j)
11 p11(j, t),

where I
(j)
00 , I

(j)
00 , I

(j)
00 , I

(j)
00 are indicator variables

I
(j)
00 = I

(s
(A)
y (j)=s

(A)
x (j),s

(B)
y (j)=s

(B)
x (j))

I
(j)
01 = I

(s
(A)
y (j)=s

(A)
x (j),s

(B)
y (j)6=s(B)

x (j))

I
(j)
10 = I

(s
(A)
y (j)6=s(A)

x (j),s
(B)
y (j)=s

(B)
x (j))

I
(j)
11 = I

(s
(A)
y (j)6=s(A)

x (j),s
(B)
y (j)6=s(B)

x (j))
,
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and where the associated probabilities are

p00(j, t) = (1− γA,j)
[
Pr(Bj,t = 0|Aj,t = 0) +

1

2
Pr(Bj,t = 1|Aj,t = 0)

]
+

1

2
γA,j

[
Pr(Bj,t = 0|Aj,t = 1) +

1

2
Pr(Bj,t = 1|Aj,t = 1)

]
p10(j, t) =

1

2
γA,j

[
Pr(Bj,t = 0|Aj,t = 1) +

1

2
Pr(Bj,t = 1|Aj,t = 1)

]
p01(j, t) = (1− γA,j)

[
Pr(Bj,t = 0|Aj,t = 0) +

1

2
Pr(Bj,t = 1|Aj,t = 0)

]
p11(j, t) =

1

2
γA,j

[
1

2
Pr(Bj,t = 1|Aj,t = 1)

]
.

Let us denote ot=1,...,T = (n
(A)
t , n

(B)
t )t=1,...,T the observed numbers of N

(A)
t and N

(B)
t , on T

periods of time. The probabilities of the presence in a certain state j = 1...d of the Markov

chain Mt is noted as in the one-dimensional model:

Π
(j)
t = P

(
Mt = sj | o1, . . . , ot, x(A)t , x

(B)
t , d

(A)
t , d

(B)
t

)
.

The 4m vector Πt =
(
Πj
t

)
j=1,...,d

can be calculated recursively by Hamilton's �lter:

Πt =
p(t, ot, x

(A)
t , x

(B)
t , d

(A)
t , d

(B)
t ) ∗ (Πt−1A)〈

p(t, ot, x
(A)
t , x

(B)
t , d

(A)
t , d

(B)
t ) ∗ (Πt−1A) , 1

〉 , (3.13)

where p(t, ot, x
(A)
t , x

(B)
t , d

(A)
t , d

(B)
t ) is the likelihood vector of Poisson functions, computed for

each state of Mt.

If the set of parameters is noted Υ = {mA,0,mB,0, Ac,Bc, γA,1, γA,2, bA, bB, θj=1...m}, the

loglikelihood is:

lnL(o1 . . . oT |Υ) =
T∑
t=0

ln
〈
p(t, x

(A)
t , x

(B)
t , d

(A)
t , d

(B)
t ), (Πt−1A)

〉
. (3.14)

The parameters are obtained numerically by maximization of this loglikelihood.
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4. EMPIRICAL ILLUSTRATION USING INSURANCE DATA

We apply the two-dimensional Poisson-Multifractal to an insurance database that contains

information about the weekly number of car accidents reported to an insurance company,

over a period of 4 years. Analyses of the number of claims for an insurer is an important

research topic in statistics and in actuarial sciences (see e.g. Denuit et al.(2007) or Frees and

Valdez (2008) for reviews). Modeling these data can provide insight into the claim process

and is practical for solvency purposes.

We work with a sample of the automobile portfolio of a major company operating in

Canada. Only private use cars have been considered in this sample of 1, 393, 401 insured

vehicles, observed over 206 weeks, on the time period 2004 to 2007. We split the number of

claims into two categories: at fault and non-at fault accidents.

The insurance portfolio exhibits clear seasonality for at-fault claims, as shown in Figure

4.1. Indeed, each winter, the frequency for both type of claims is much higher than during

the rest of the year. The claim frequencies decrease until mid-spring, and then increase again

in the summer to attain a peak in July. The claim frequencies are at their lowest in mid-

fall, and rise again for the winter. This seasonality is explained by big di�erences between

road conditions in winter, spring, summer, and fall in Canada. Snowstorms and very low

temperatures creating ice on roads represent driving hazards. In summer, clement weather

conditions, greater car use because of annual vacations create another kind of situation

in which insurers observe higher claim frequency. Consequently, we consider the following

covariates to model seasonality:

xt =

(
1,

t

1000
, cos

(
2π

12
t

)
, sin

(
2π

12
t

)
, cos

(
2π

6
t

)
, sin

(
2π

6
t

))
, (4.1)

One purpose of the research is to model claim frequency, with a presumption of the ex-

istence of time dependence between the claim frequency of consecutive weeks. Intuitively,
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Figure 4.1: Claim frequencies per week between 2004 and 2008

we can think that a strong dependence exists between these types of claims. Indeed, if in

a speci�c week we observe a high number of at-fault accidents, we can suppose that a high

number of non-at fault accidents also arise because at-fault accidents generate non-at-fault

claims. However, a single insurance company does not insure the whole population, but

only some speci�c pro�les, meaning that a single accident does not necessarily produce an

at-fault claim and a non-at-fault claim with the same company. We think that the depen-

dence can be explained by the fact that similar weather conditions can be observed during

several consecutive weeks. Other social conditions, such as road, economic or environmental

conditions, can also in�uence claim experience for long periods of time. By using a bivariate

count distribution, we look for underlying dependence between the number of each types of

claim.

4.1 Independent Poisson-Multifractal Models

First, we �t two independent one-dimensional Poisson-Multifractal models, with m = 8, to

the two categories of claims. To compare the results of the independent Poisson-Multifractal
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model, we also used a popular generalization of the Poisson distribution, where an au-

toregressive lognormal process has been added in the mean function. The model, denoted

Poisson-AR(1) or noted Poisson-SAM (stochastic autoregressive mean) (Jung and al., 2011),

is described as:

Nt|θt ∼ Poisson(λ(t)θt), θt = exp(Wt), (4.2)

with:

Wt = δ1Wt−1 + ν2εt, , (4.3)

where εt ∼ N(0, 1). To account for trend and seasonality, the same covariate vector as the

Poisson-Multifractal models is used.

We use the EIS method of Jung and Liesenfeld (2001) to estimate the parameters of the

model, that is a simulation-based method. Contrary to the Poisson-Multifractal, the Poisson-

AR(1) is �tted by simulations. Procedures based on simulations are more time consuming

and involve loss of precision due to variations in the estimates. The Poisson-Multifractal

model is easy to estimate because it takes countable values only, but at the same time, it

is �exible because the underlying process takes a very large number of possible values (for

m = 8, 28 = 512 values are possible for Ft).

Results of the Poisson-AR(1) are in Table 4.2. Based on loglikelihoods, the �ts are

quite similar for both types of claims, despite the fact that the Multifractal model uses

more parameters than the Poisson-AR(1). The parameters β̂ of the Poisson-AR(1) are

di�erent from those of the Multifractal model. This can be explained by the di�erences

between models. The underlying unobserved process (that follows a multifractal process or

a lognormal process) captures di�erent kinds of time dependence.

To highlight di�erences between models, we can illustrate smoothed values of the pro-
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cesses. As expressed in Boucher and Hainaut (2013), given all T observed counts NT =

n1, ..., nT , smoothed values E[Ft|NT ] and E[Nt|NT ] can easily be computed. Indeed, the

conditional distribution of Ft is noted g(Ft|NT ) and is provided by the following relation:

g(Ft|NT ) =
Pr(nt+1, ..., nT |Ft) Pr(Nt)

Pr(NT )
g(Ft|Nt). (4.4)

All elements of this ratio can be retrieved in the estimation procedure. Figures 4.2, 4.3

and 4.4 present the smoothed values of the random e�ects (Ft and e
Wt), the means (dte

βxt)

and smoothed values of means (dte
βxtFt and dte

βxteWt), respectively. Even if the smoothed

values of means are almost similar for both models, by looking at Figures 4.2 and 4.3, we can

see that the mean of each model is constructed di�erently. This is even more apparent when

we look at the non at-fault claims. The Poisson-AR(1) model proposes β parameters that are

close to the observed frequency, while the Poisson-Multifractal model seems to overestimate

their values. To compensate, the underlying multifractal process is much lower than the

lognormal process.

To better understand the time dependence of the underlying multifractal process of the

Poisson distribution, we will use a speci�c property of the model highlighted by Boucher and

Hainaut (2013). The multifractal component of the Poisson distribution, Ft can be split into

m elements, because Ft is equal to the product of Mj,t, j = 1...,m. We can then compute

the smoothed value of each Mj,t, j = 1...,m, using a similar development of (4.4):

g(Mj,t|NT ) =
Pr(nt+1, ..., nT |Mj,t) Pr(Nt)

Pr(NT )
g(Mj,t|Nt) j = 1, ...,m, (4.5)

or using the decomposition of g(Ft|NT ) =
∏m

j=1 g(Mj,t|NT ). Figure 4.5 illustrates the

underlying random e�ects in detail. The �rst component of the multifractal process, for at-

fault and non at-fault claims, exhibits long-term cycles. These two long-term cycles are quite
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At-Fault Non-at-Fault
Parameters Estimate (std.err.) Estimate (std.err.)

γ1 0.067 (0.039) 0.081 (0.030)
b 12.332 (10.905) 4.5920 (2.298)
m0 0.839 (0.021) 0.813 (0.018)
β0 -5.349 (0.026) -5.022 (0.030)
β1 0.135 (0.021) 0.030 (0.023)
β2 -0.026 (0.020) -0.073 (0.021)
β3 0.109 (0.020) 0.041 (0.020)
β4 0.005 (0.020) -0.015 (0.019)
c -1.084 (0.184) -1.359 (0.137)

Loglikelihood -886.388 -925.4908

Table 4.1: Parameter estimates for the Poisson-Multifractal model

At-Fault Non-at-Fault
Parameters Estimate Estimate

β0 -5.492 -5.221
β1 0.204 0.090
β2 0.010 -0.043
β3 0.138 0.094
β4 0.050 -0.003
ν 0.129 0.119
δ1 0.490 0.436

Loglikelihood -888.468 -922.3601

Table 4.2: Parameter estimates for the Poisson-AR(1)

similar for both type of claims and seems to validate our assumption that some dependence

exists between them. The second processes M2 present mid-term cycles for both type of

claims, and shows some form of dependence because peaks of both process happen in the

same time periods. It is more di�cult to conclude something about the other processes. We

can even considered them as random noise.

Such decomposition of the cycles can be useful to analyze, and to compare with climatic

data or economic factors, for example. In our paper, however, we limit our analysis to the

study of potential dependence between the random e�ects of each type of claim.
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Figure 4.2: Smoothed values of the random e�ects (Ft and e
Wt) for the Poisson-Multifractal

and the Poisson-AR(1) models, for the number of at-fault (left) and non at-fault (right)
claims

Figure 4.3: Mean frequencies (dte
βxt) of Poisson-Multifractal and Poisson-AR(1) models,

for the number of at-fault (left) and non at-fault (right) claims
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Figure 4.4: Smoothed frequencies (dte
βxtFt and dte

βxteWt) of Poisson-Multifractal and
Poisson-AR(1) models, for the number of at-fault (left) and non at-fault (right) claims

Figure 4.5: Smoothed values of the 5 fractal processes of the Poisson-Multifractal model, for
the number of at-fault (left) and non at-fault (right) claims
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4.2 Dependent Count Distribution

A bivariate version of the Poisson Multifractal model is proposed to �t the frequency of

claims for both types of coverage. This model will allow us to test for dependence between

frequencies of both type of claims. We choose to work with �ve fractal components per type

of claims (m = 5). The dimension of the transition matrix is 1024(= 22×5)× 1024. A higher

number of fractal components requires more computer memory than what we possess.

In the previous subsection, we illustrate the count distribution with a Multifractal process

by using a conditional Poisson distribution. Other conditional count distributions can be

used easily. To model possible overdispersion that does not come from the time dependence

structure of the data, we tested the negative binomial (NB) distribution for both types of

claims. The NB distribution has the following probability distribution:

Pr(Nt = n|Ft) =
Γ(n+ a)

Γ(n+ 1)Γ(a)

( λ(t)

a+ λ(t)

)n( a

a+ λ(t)

)a
.

where we still suppose that the parameter λ(t) for the period of time [t, t+ 1) is modeled

as:

λ(t) = dt exp(β>xt)Ft = τ(t)Ft. (4.6)

Empirical analyses and classic statistical tests show us that the Poisson distribution is

rejected against the NB distribution for the number of non at-fault claims, but is not rejected

for the number of at-fault claims. Consequently, we used a bivariate count distribution with

conditional Poisson distribution for at-fault claims, and with a conditional NB for non at-

fault claims.

Results of the bivariate count distribution are shown in Table 4.3. Notations (A) and

(B) refer to claims respectively related to at-fault and non-at-fault claims. A better model

is obtained with γA,1 = γB,1 = γ1 and bA = bB = b, because statistical tests show that these
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Parameters Estimate (std. err.)

β
(A)
0 -5.318 (0.022)

β
(A)
1 0.145 (0.0252)

β
(A)
2 -0.010 (0.019)

β
(A)
3 0.093 (0.026)

β
(A)
4 0.020 (0.018)

β
(B)
0 -5.054 (0.022)

β
(B)
1 0.027 ( 0.017)

β
(B)
2 -0.064 (0.0159)

β
(B)
3 0.060 (0.018)

β
(B)
4 -0.025 (0.015)
a(B) 0.004 (0.002)
γ1 0.071 (0.022)
b 6.678 (3.625)

mA,0 0.817 (0.0168)
Ac -1.256 (0.137)
mB,0 0.821 (0.016)
Bc -1.820 (0.329)
θ1 1.000 (0.001)
θ2 1.000 (0.002)
θ3 1.000 (0.024)

Loglikelihood -1787.13

Table 4.3: Parameter estimates for the two-dimensional Poisson-multivariate model

parameters were not statistically di�erent.

For the dependence structure, only the dependence parameters for the �rst three processes

(θ1, θ2 and θ3) were statistically signi�cant. Consequenty, we can suppose independence

between the fourth and the �fth processes ( θ4 = θ5 = 0). These results tend to validate the

existence of some dependence the frequencies of at-fault and non-at-fault claims.

As done with the independent models, smoothed values of the two-dimensional multifrac-

tal process can be found. Figure 4.6 illustrates the smoothed mean value (and the observed

number of claims), for at-fault and non-at-fault claims.

Analysis of the smoothed factors for m = 1, ..., 5 also allows us to undertand the model in

more details. The dependence parameter θ1 of the �rst processes M
(A)
1,t and M

(B)
1,t , is positive

and can be seen as a measure of correlation. As illustrated in in Figure 4.7, which presents the
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Figure 4.6: Smoothed frequencies in the two-dimensional Poisson-Multifractal model, for
the number of at-fault and non-at-fault claims

smoothed values of M
(A)
1,t and M

(B)
1,t , this dependence is clearly visible. As mentioned earlier,

this dependence can come from common endegenous factors, but can also be considered as

situations where the number of expected claims is clearly di�erent from what we expect. For

some period of time in the year, the count distributions with covariates (4.1) seems to have

di�culties modelling the number of claims correctly. With a bivariate multifractal model, we

saw that this error of prediction often a�ects at-fault and non at-fault claims simultaneously.

For solvency purposes, it is important to consider these possibilities of contagion.

Finally, the analysis of independent processes M4,t and M5,t for both type of counts,

allows us to consider these elements as random noise. Because we used a negative binomial

distribution to model the number of non-at-fault claims, we can see that the magnitude of

the M
(B)
4,t and M

(B)
5,t is smaller than the magnitude of M

(A)
4,t and M

(A)
5,t .
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Figure 4.7: Smoothed values of the m processes, for the number of at-fault and non-at-fault
claims
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In this numerical example, only complete dependence (θ = 1) or independence (θ = 0) is

observed. As explained in the construction of the bivariate model in Section 3.2, the model is

�exible enough to use many values smaller than 1 for all θs. Indeed, other empirical analyses

of dependence between other insurance coverages generates such values. In the modeling

of dependence between the number of at-fault and non-at-fault claims, we observed that

dependence between the two time series of count is not perfect. The dependence obtained

between the two time series consists, however, of a strong dependence for the �rst processes,

and independence for the last ones.

5. CONCLUSION

This work introduces the parametric count distribution with Multifractal process to the

actuarial science literature. This is a �exible approach for time series of count, particularly

when data exhibits overdispersion and periodic time dependence. The model has been shown

to be have useful properties, particularly the fact that it does not need complex simulation

methods to estimate the parameters.

We also generalize the model for bivariate count data, and show that the dependence

structure that can be used in the multivariate fractal model is �exible and easily interpretable.

Indeed, the bivariate model has been applied to at-fault and non-at-fault claims, where we

dependence between the random variables has been shown to be signi�cant. Because we

can decompose each underlying multifractal process into m independent processes, we can

understand the dependence between these two types of claims more precisely.

We think that the models introduced in this paper are �rst step toward constructing

general models where dependence between two time series is possible. Indeed, the model can

be easily generalized in many directions. For example, other count distributions can be used,

as we did in using not only a conditional Poisson distribution but also a negative binomial

distribution. Moreover, a model where a dependence between the costs and the frequency

of claims can be constructed using the same structure as the one presented in this paper.
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APPENDIX

Proof of Proposition 3.1. We have (subscripts have been removed for the sake of clarity):

Pr(B = 1|A = 1) Pr(A = 1) + Pr(B = 1|A = 0) Pr(A = 0) = Pr(B = 1)

((1− θ)γB + θ)γA + Pr(B = 1|A = 0)(1− γA) = γB,

from which we �nd:

Pr(B = 1|A = 0) = γB − θγA
1− γB
1− γA

= γB − θ(1− γB)
γA

1− γA
.

Similarly, we then have:

Pr(B = 0|A = 0) = (1− γB) + θγA
1− γB
1− γA

= (1− γB) + θ(1− γB)
γA

1− γA
= 1− Pr(B = 1|A = 0).

We then de�ne the joint probabilities as:
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Pr(A = 1, B = 1) = Pr(B = 1|A = 1) Pr(A = 1)

= [γj,B + θ(1− γj,B)] γA

= γAγB + θγA(1− γB)

Pr(A = 0, B = 1) = Pr(B = 1|A = 0) Pr(A = 0)

=

[
γB − θγA

1− γB
1− γA

]
(1− γA)

= (1− γA)γB + θγA(1− γB)

Pr(A = 1, B = 0) = Pr(B = 0|A = 1) Pr(A = 1)

= [(1− γj,B)− θ(1− γj,B)] γA

= γA(1− γB) + θγA(1− γB)

Pr(A = 0, B = 0) = Pr(B = 0|A = 0) Pr(A = 0)

=

[
(1− γB) + θ(1− γB)

γA
1− γA

]
(1− γA)

= (1− γA)(1− γB) + θγA(1− γB).

Remember that 0 ≤ Pr(A,B) ≤ 1, leading to some constraints about the θs.
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